2	Effects of episodic rainfall on a subterranean estuary
3	
4	Xiayang Yu ¹ , Pei Xin ¹ , Chunhui Lu ¹ , Clare Robinson ² , Ling Li ³ , D. A. Barry ⁴
5	
6	¹ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai
7	University, Nanjing, China
8	² Department of Civil and Environmental Engineering, Western University, London, Ontario,
9	Canada
10	³ School of Civil Engineering, The University of Queensland, Queensland, Australia
11	⁴ Laboratoire de technologie écologique (ECOL), Institut d'ingénierie de l'environnement (IIE),
12	Faculté de l'environnement naturel, architectural et construit (ENAC), Ecole Polytechnique
13	Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
14	
15	
16	Corresponding author: Pei Xin, State Key Laboratory of Hydrology-Water Resources and
17	Hydraulic Engineering, Hohai University, Nanjing, China. (pei.xin@outlook.com)
18	
19	
20	

22 Abstract

23 Numerical simulations were conducted to examine the effect of episodic rainfall on nearshore groundwater dynamics in a tidally-influenced unconfined coastal aquifer, with a 24 focus on both long- (yearly) and short-term (daily) behavior of submarine groundwater 25 26 discharge (SGD) and seawater intrusion (SWI). The results showed non-linear interactions 27 among the processes driven by rainfall, tides and density-gradients. Rainfall-induced infiltration increased the yearly averaged fresh groundwater discharge to the ocean but reduced the extents 28 29 of the saltwater wedge and upper saline plume as well as the total rate of seawater circulation through both zones. Overall, the net effect of the interactions led to an increase of the SGD. The 30 nearshore groundwater responded to individual rainfall events in a delayed and cumulative 31 32 fashion, as evident in the variations of daily averaged SGD and salt stored in the saltwater wedge (quantifying the extent of SWI). A generalized linear model (GLM) along with a 33 34 Gamma distribution function was developed to describe the delayed and prolonged effect of 35 rainfall events on short-term groundwater behavior. This model, validated with results of daily averaged SGD and SWI from the simulations of groundwater and solute transport using 36 independent rainfall datasets, performed well in predicting the behavior of the nearshore 37 38 groundwater system under the combined influence of episodic rainfall, tides and densitygradients. The findings and developed GLM form a basis for evaluating and predicting SGD, 39 SWI and associated mass fluxes from unconfined coastal aquifers under natural conditions, 40 including episodic rainfall. 41

4	2
---	---

43	Keywords
44	Submarine groundwater discharge; Seawater intrusion; Coastal aquifer; Recharge; Numerical
45	modeling; Density-dependent flow
46	
47	Key Points:
48	• SGD and SWI responded to rainfall events in a delayed and prolonged fashion
49	• Effect of episodic rainfall on SGD and SWI was quantified using the Gamma distribution
50	function
51	Rainfall-induced SGD and SWI were predictable
52	
53	1. Introduction
53 54	1. Introduction The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays
54	The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays
54 55	The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays an important role in controlling chemical fluxes from the aquifer to ocean [<i>Burnett et al.</i> , 2006;
54 55 56	The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays an important role in controlling chemical fluxes from the aquifer to ocean [<i>Burnett et al.</i> , 2006; <i>Moore</i> , 1999; 2010; <i>Robinson et al.</i> , 2009; <i>Santos et al.</i> , 2012]. In this zone, submarine
54 55 56 57	The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays an important role in controlling chemical fluxes from the aquifer to ocean [<i>Burnett et al.</i> , 2006; <i>Moore</i> , 1999; 2010; <i>Robinson et al.</i> , 2009; <i>Santos et al.</i> , 2012]. In this zone, submarine groundwater discharge (SGD) and seawater intrusion (SWI) are two complementary processes
54 55 56 57 58	The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays an important role in controlling chemical fluxes from the aquifer to ocean [<i>Burnett et al.</i> , 2006; <i>Moore</i> , 1999; 2010; <i>Robinson et al.</i> , 2009; <i>Santos et al.</i> , 2012]. In this zone, submarine groundwater discharge (SGD) and seawater intrusion (SWI) are two complementary processes [<i>Moore</i> , 2010; <i>Werner et al.</i> , 2013], with the former covering all the water effluxes across the
54 55 56 57 58 59	The freshwater-saltwater mixing zone in a coastal aquifer, called subterranean estuary, plays an important role in controlling chemical fluxes from the aquifer to ocean [<i>Burnett et al.</i> , 2006; <i>Moore</i> , 1999; 2010; <i>Robinson et al.</i> , 2009; <i>Santos et al.</i> , 2012]. In this zone, submarine groundwater discharge (SGD) and seawater intrusion (SWI) are two complementary processes [<i>Moore</i> , 2010; <i>Werner et al.</i> , 2013], with the former covering all the water effluxes across the land-ocean interface and the latter linked to the extent of intruded saltwater in a coastal aquifer.

63 impacts on coastal environments and water quality in coastal aquifers [Bakhtyar et al., 2012;

- 64 Bakhtyar et al., 2013; Brovelli et al., 2007; Lu et al., 2015; Michael et al., 2013; Moore, 2010;
- 65 Santos et al., 2012; Wang et al., 2015; Werner et al., 2013].
- 66 Terrestrial groundwater discharge, density-driven flow, tides and waves are major driving
- 67 forces affecting SGD and SWI in coastal aquifers (Fig. 1) [Burnett et al., 2006; Heiss and
- 68 *Michael*, 2014; *Li et al.*, 1999; *Michael et al.*, 2016; *Moore et al.*, 2008; *Taniguchi et al.*, 2002;
- 69 Xin et al., 2010]. In early work, it was assumed that SGD could be estimated based on a
- summation of fluxes driven by these forces independently [*Burnett et al.*, 2006; *Li et al.*, 1999;
- 71 *Taniguchi et al.*, 2002], i.e.,
- 72

$$SGD = Q_f + Q_c = Q_f + Q_d + Q_t + Q_w$$
(1)

73 where Q_f and Q_c are the inland freshwater input and total circulating seawater flux,

respectively; and Q_c is given by a linear combination of the density-driven flow (Q_d) , tidally driven flow (Q_t) and wave-induced flow (Q_w) .

In the presence of a seaward hydraulic gradient, fresh terrestrial groundwater flows towards and discharges into the coastal sea. In the absence of tides and waves on the seaward side, fresh groundwater flows above the denser seawater associated with the saltwater wedge (SW). Convective circulation of seawater through the SW is caused by the density-gradient and affected by hydrodynamic dispersion along the freshwater-saltwater transition zone of the SW [*Cooper*, 1959] (Fig. 1). The extent of the intruding saltwater wedge generally increases with decreasing fresh groundwater discharge (Q_f) [*Glover*, 1959; *Smith*, 2004; *Werner et al.*, 2013].

83	Most coastlines worldwide are exposed to tides. The effect of tides on subterranean estuaries
84	has been studied intensively over the last ten years [Anschutz et al., 2009; Heiss and Michael,
85	2014; Kuan et al., 2012; Li et al., 2008; Mao et al., 2006; Robinson et al., 2006; Robinson et al.,
86	2007a; Robinson et al., 2007b; Robinson et al., 2009; Wilson et al., 2015; Zhang et al., 2016].
87	Tidal fluctuations drive seawater circulations in shallow intertidal aquifers, alter the salt
88	distribution and, under certain conditions, lead to the formation of an upper saline plume (USP)
89	(Fig. 1) [Evans and Wilson, 2016; Heiss and Michael, 2014; Robinson et al., 2006; Robinson et
90	al., 2007a]. Fresh groundwater discharges through a "tube" bounded by the USP and lower SW
91	[Boufadel, 2000; Robinson et al., 2007a]. The tide-induced seawater circulations can contribute
92	significantly to the total SGD [Burnett et al., 2006; Li et al., 1999; Robinson et al., 2007a] and
93	limit the extent of SWI [Kuan et al., 2012].
94	Waves are another important forcing factor for a nearshore subterranean estuary. The effects
94 95	Waves are another important forcing factor for a nearshore subterranean estuary. The effects of waves are mainly manifested in wave setup, an onshore upward tilt in the mean sea level that
95	of waves are mainly manifested in wave setup, an onshore upward tilt in the mean sea level that
95 96	of waves are mainly manifested in wave setup, an onshore upward tilt in the mean sea level that drives a seawater circulation similar to that induced by tides [<i>Bakhtyar et al.</i> , 2013; <i>Geng et al.</i> ,
95 96 97	of waves are mainly manifested in wave setup, an onshore upward tilt in the mean sea level that drives a seawater circulation similar to that induced by tides [<i>Bakhtyar et al.</i> , 2013; <i>Geng et al.</i> , 2014; <i>Li and Barry</i> , 2000; <i>Longuet-Higgins</i> , 1983; <i>Robinson et al.</i> , 2014; <i>Xin et al.</i> , 2010]. This
95 96 97 98	of waves are mainly manifested in wave setup, an onshore upward tilt in the mean sea level that drives a seawater circulation similar to that induced by tides [<i>Bakhtyar et al.</i> , 2013; <i>Geng et al.</i> , 2014; <i>Li and Barry</i> , 2000; <i>Longuet-Higgins</i> , 1983; <i>Robinson et al.</i> , 2014; <i>Xin et al.</i> , 2010]. This circulation also increases the total SGD and inhibits the SWI. In contrast to tides, which have
95 96 97 98 99	of waves are mainly manifested in wave setup, an onshore upward tilt in the mean sea level that drives a seawater circulation similar to that induced by tides [<i>Bakhtyar et al.</i> , 2013; <i>Geng et al.</i> , 2014; <i>Li and Barry</i> , 2000; <i>Longuet-Higgins</i> , 1983; <i>Robinson et al.</i> , 2014; <i>Xin et al.</i> , 2010]. This circulation also increases the total SGD and inhibits the SWI. In contrast to tides, which have well-defined principal frequencies (e.g., spring-neap tides with semi-diurnal solar and lunar

103	Evaporation and rainfall lead to net water loss and gain for the aquifer, which affect
104	groundwater discharge to the ocean. The effect of evaporation on nearshore groundwater slightly
105	reduces the total SGD but increases considerably the pore-water salinity in the intertidal zone
106	[Geng and Boufadel, 2015; Geng et al., 2016]. The rainfall effect however has not been
107	investigated directly. Rainfall induces water infiltration that increases the aquifer recharge and
108	raises the watertable [Evans and Wilson, 2017; Heiss and Michael, 2014; Jun et al., 2013; Li et
109	al., 2009]. This would affect the SGD and SWI processes in the nearshore zone. A particular
110	question is how rainfall interacts with other forcing factors, including tides and density-gradients.
111	Interactions among different forces on the nearshore groundwater are non-linear and requires
112	careful consideration in applying Eq. 1 for estimating the total SGD [King, 2012; Sawyer et al.,
113	2013; Xin et al., 2010; Xin et al., 2014; Xin et al., 2015]. Each term in the equation cannot be
114	treated as being solely dependent on a particular forcing factor but instead are functions of all the
115	interacting forces.
116	The effect of rainfall on nearshore groundwater is likely to be long-lasting and cumulative,
117	and is expected to result in hysteretic groundwater response, i.e., dependence of the present
118	groundwater behavior on past rainfall events. Xin et al. [2014] examined the hysteresis of SGD
119	driven by irregular waves and developed a hysteretic model based on functional data analysis
120	[Ramsay and Silverman, 2005]. In the model, the effects of past wave conditions on SGD were
121	assumed to vary over a continuum and were described by a continuous and smooth function
122	(Gamma distribution function). Given its episodic nature, it is unclear whether the effect of

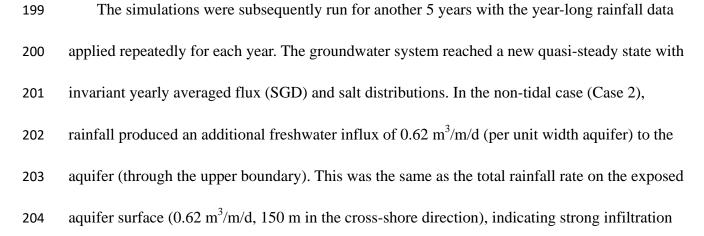
rainfall on SGD and SWI processes in the nearshore aquifer can be described similarly by ahysteretic model.

125 This study aims to examine the impact of rainfall based on numerical simulations with year-long data of episodic rainfall generated randomly to drive the nearshore groundwater flow 126 and (salt) solute processes that are also affected by tides and density gradients. The analysis of 127 128 the simulation results focuses on both long- and short-term nearshore groundwater responses with respect to yearly and daily averaged SGD and SWI. The yearly averaged SGD and SWI 129 are analyzed to reveal the interactions of rainfall, tide and density-gradients. The variations of 130 131 daily averaged quantities are linked to rainfall events through functional data analysis with the intention to develop a predictive, hysteretic model of SGD and SWI under episodic rainfall 132 conditions. 133

134

135 **2. Numerical model and simulations**

The 2D model simulates a vertical cross-shore section of a nearshore unconfined aquifer with a setup similar to those adopted in previous studies (Fig. 1) [*Geng and Boufadel*, 2015; *Kuan et al.*, 2012; *Liu et al.*, 2016; *Robinson et al.*, 2007a; *Xin et al.*, 2010; *Xin et al.*, 2014]. The model domain and parameter values were based on the conditions of a field site on the west coast of Moreton Island, Australia [*Robinson et al.*, 2006]. At the site, oceanic oscillations are dominated by semi-diurnal tides. The aquifer was assumed to be homogeneous and isotropic [*Robinson et al.*, 2006]. 143 Variably saturated and density-dependent pore-water flow coupled with salt transport in the
144 aquifer was simulated using SUTRA [*Voss and Provost*, 2008] under various forcing conditions
145 including rainfall, tides and density-gradients.


In SUTRA, pore-water flow is described by the Richards equation [*Richards*, 1931] with 146 the relative hydraulic conductivity and soil saturation calculated using the *van-Genuchten* [1980] 147 148 formulas (details in Xin et al. [2010]). The model parameter values used in the simulations were representative of a permeable sandy coastal aquifer [Robinson et al., 2006] with hydraulic 149 conductivity $K_s = 10$ m/d, porosity $\phi = 0.45$, longitudinal dispersivity $\alpha_L = 0.5$ m and transverse 150 dispersivity $\alpha_T = 0.05$ m. The residual soil water saturation S_{Wres} was set to 0.1 while the shape 151 parameters α and *n* were set to 14.5 m⁻¹ and 2.68, respectively, for the *van-Genuchten* [1980] 152 formulas [Carsel and Parrish, 1988]. This model setup was also used previously by Xin et al. 153 [2010]. 154

The occurrence, duration and intensity of rainfall over a year, R [LT⁻¹], were determined by 155 156 a Markov-chain Monte-Carlo simulator [Morris, 1995] (Fig. 2), in which the probability of dry weather following an hour of rain was set to 10% and the probability of rain following an hour 157 158 of dry weather to 1%. The rainfall intensity followed a normal distribution with a mean intensity of 2 mm/h and standard variation of 0.5 mm/h. The annual rainfall of the generated 159 random rainfall series was around 1.6 m occurring over approximately 80 events. The rainfall 160 pattern was assumed to repeat on an annual basis and hence the generated year-long rainfall 161 data were applied to all simulation years. 162

Rainfall-induced vertical infiltration was simulated as water influx across the aquifer 163 surface including the exposed beach section. Based on the pore-water pressure (P) at the node 164 165 immediately below the aguifer surface, the local maximum infiltration rate under the surface ponding condition of zero water depth was calculated as $I_{\text{max}} = -K_s \left[1 - P / (\rho g \Delta z) \right]$, where 166 Δz is the vertical grid size, ρ is the fluid density and g the gravitational acceleration. The 167 rainfall infiltration rate (*RI*) was then determined according to $RI = \min(R, I_{\max})$. It should be 168 noted that a sandy coastal unconfined aquifer was considered in the simulations. The soil under 169 the aquifer platform (AF in Fig. 1) was largely unsaturated, with an infiltration capacity larger 170 171 than the maximum rainfall rate. Thus, infiltration-excess runoff did not occur. On the sloping beach (EF in Fig. 1), tides induced a moving boundary condition, which led to increase and 172 decrease of the recharge area (in width) on falling and rising tides, respectively (more details in 173 174 Section 3.1).

The details of the model setup and boundary conditions for all the simulations are given in 175 Table 1. To explore how rainfall combines with tides and density-gradients to influence the 176 nearshore groundwater dynamics, simulations were conducted with and without rainfall, and 177 under both non-tidal (static sea level, Cases 1-3) and tidal (sea level oscillating with the semi-178 diurnal tide, Cases 4-6) conditions. The inland freshwater influx was set to 2.1 m³/m/d (per unit 179 width aquifer) for most simulation cases. In two reference cases without rainfall (Cases 3 and 6), 180 fluxes matching the total rainfall-induced daily averaged infiltration rates were added uniformly 181 to the landward boundary to evaluate the effect of vertical recharge versus increased inland 182 groundwater influx. Additional two simulations (Cases 7 and 8) were conducted to examine the 183

184	effect of increased model domain sizes in both vertical and cross-shore directions, i.e., the
185	upper boundary (AF) was extended upwards by 2 m in Case 7 (note that the beach, EF, was also
186	extended to fix the beach slope) and the left boundary (AB) was extended landwards by 50 m in
187	Case 8 (see Xin et al. [2010] for the detailed setup of the tide-induced moving boundary).
188	
189	3. Results and analysis
190	3.1. Long-term rainfall effect based on yearly averaged results
191	The simulations were run with no rainfall included for 5 years to reach a steady (for Case 1)
192	or quasi-steady (periodic) state (for Case 4) with respect to both hydraulic heads and salinity
193	distribution. These simulations produced similar results (Figs. 3a,c) to those of Robinson et al.
194	[2007a] and Xin et al. [2010], in particular, changes of the salinity distribution due to the
195	influence of tides (Fig. 3c for Case 4 versus Fig. 3a for Case 1). These results served as a model
196	verification. Tide-induced recirculation led to the formation of a USP in the intertidal zone. The
197	freshwater-saltwater mixing zone expanded, while the extent of the SWI decreased (i.e., the toe
198	of the SW retreated from $x = -40$ to -10 m, $z = -30$ m).

capacity during the rainfall events. As expected, the rainfall-induced infiltration increased the freshwater discharge to the ocean, which in turn reduced the extent of SWI in the aquifer – the toe of the SW retreated from x = -40 m in Case 1 to -30 m in Case 2 (Fig. 3b versus 3a, z = -30m).

209	In the tidal case (Case 5), rainfall produced a freshwater influx to the aquifer at the annual
210	average rate of 0.61 m ³ /m/d, slightly less than that for the non-tidal case (Case 2) due to the
211	reduced infiltration capacity in the intertidal zone. This again increased the freshwater discharge
212	to the ocean. As a result, the USP contracted and the SW retreated as evident in the comparison
213	with Case 4 with no rainfall (Fig. 3d versus 3c). We calculated the salt mass stored in,
214	respectively, the USP (SM _{USP}) and SW (SM _{SW} , note that only the area of $x \le 20$ m was
215	considered as seawater occupied the area for $x > 20$ m) (Table 1). The yearly averaged SM _{USP}
216	decreased from 3,498 kg/m in Case 4 to 2,485 kg/m in Case 5, due to contraction of the USP.
217	This is consistent with the results of Robinson et al. [2007a], which demonstrated that the size
218	of the USP is controlled by the magnitude of tidal forcing relative to the fresh groundwater
219	discharge rate. The retreat of the SW led to a reduction of SM_{SW} from 16,801 (Case 4) to
220	15,255 (Case 5) kg/m. This reduction, 1,546 kg/m, was significantly less than that under the
221	non-tidal condition, i.e., the difference between Case 1 and Case 2 (5,916 kg/m).
222	As expected, rainfall infiltration modified the water fluxes across the aquifer-ocean
223	interface (Fig. 4). In the non-tidal case, rainfall infiltration increased the total SGD from 2.26
224	(Case 1) to 2.89 (Case 2) $m^3/m/d$ across a slightly expanded water efflux zone (Table 1 and Fig.
225	4a). The increase of SGD was largely due to the additional freshwater influx/discharge induced

by rainfall and also a slightly larger flux of circulating seawater through the SW driven by 226 density gradients (0.17 m³/m/d in Case 2 compared with 0.16 m³/m/d in Case 1). The increase 227 228 of the seawater circulation rate was caused by intensified freshwater-seawater mixing in the mixing zone of the SW due to increased freshwater discharge [Smith, 2004]. 229 Tides induced significant seawater circulation at a rate of 2.56 m³/m/d (Q_t) in the intertidal 230 231 zone with influx occurring between the high tide level and the mean sea level ($-10 \le x \le 0$ m, Fig. 4b), as shown by Case 4 in comparison with Case 1. The tidal effect also produced an 232 increased rate of seawater circulation through the SW (0.56 $m^3/m/d$ compared with 0.16 $m^3/m/d$ 233 234 in Case 1). As discussed above, rainfall generated an additional freshwater influx of 0.61 $m^3/m/d$ to the aquifer, which increased the total freshwater discharge but reduced the extents of 235 the USP and SW. The rainfall effect also resulted in a reduction in the tidal seawater circulation 236 (Q_t) , similar to that of Case 4. However, the seawater circulation through SW driven by density 237 gradients (Q_d) was enhanced slightly (increased from 0.56 m³/m/d in Case 4 to 0.58 m³/m/d in 238 Case 5), similar to the non-tidal case (Case 2). The net effect of rainfall led to an increase of 239 SGD from 5.22 m³/m/d in Case 4 to 5.50 m³/m/d in Case 5. Despite an additional freshwater 240 241 influx of 0.61 $m^3/m/d$ induced by rainfall, the SGD increased by only less than half of that amount ($0.28 \text{ m}^3/\text{m/d}$). 242

These results demonstrate strong interactions among the forces in controlling the nearshore groundwater processes: rainfall-induced freshwater discharge, and seawater circulations in the USP and SW driven by tides and density-gradients, respectively. Such interactions must be considered in estimating SGD, particularly when Eq. 1 is used. The coupling effects of different

247	forces need to be taken into account in determining each flux term. For example, Q_t depends on
248	not only the tidal condition but also the freshwater influx and discharge including the
249	component induced by rainfall. Each term in Eq. 1 must be determined as a function of all
250	forces. This applies to rainfall-induced Q_{f} , which can be influenced by the tidal condition as
251	evident in the difference between Cases 2 and 5.
252	Two additional simulations (Cases 3 and 6) were conducted with the rainfall infiltration
253	simulated indirectly by increasing the inland freshwater flux to account for the daily averaged
254	infiltration rate. Both simulations produced similar results (Fig. S1 in Supplemental material
255	and Table 1), which suggest that under both non-tidal and tidal conditions, the long-term
256	rainfall effect on nearshore groundwater (in terms of yearly averaged SGD and salt distribution)
257	is determined largely by the amount of infiltration generated by rainfall.
258	3.2. Short-term effect of episodic rainfall based on daily variations of SGD and SWI
259	The SGD and associated salt distribution varied temporally in response to alternating rain
260	
	events and dry weather. These variations are expected to increase the variability of the
261	events and dry weather. These variations are expected to increase the variability of the nearshore groundwater system, which was previously examined in relation to tidal fluctuations
261 262	
	nearshore groundwater system, which was previously examined in relation to tidal fluctuations
262	nearshore groundwater system, which was previously examined in relation to tidal fluctuations [<i>Robinson et al.</i> , 2007a; <i>Xin et al.</i> , 2010]. The analysis presented here focused on the daily
262 263	nearshore groundwater system, which was previously examined in relation to tidal fluctuations [<i>Robinson et al.</i> , 2007a; <i>Xin et al.</i> , 2010]. The analysis presented here focused on the daily averaged results and aimed to determine how they were related to the episodic rainfall data.
262 263 264	nearshore groundwater system, which was previously examined in relation to tidal fluctuations [<i>Robinson et al.</i> , 2007a; <i>Xin et al.</i> , 2010]. The analysis presented here focused on the daily averaged results and aimed to determine how they were related to the episodic rainfall data. The maximum daily average rainfall rate, 0.048 m/d, appeared on day 97 (Fig. 2). However,

small peak appeared (Fig. 5). These results indicated that SGD responded to rainfall events in adelayed and prolonged fashion.

270 The rainfall effect also influenced the variations of daily averaged SM_{SW} (Fig. 6). The trend was, however, opposite to that observed for the SGD. Figure 6b shows that in Case 5, SM_{SW} 271 increased during days 118-150 while the SGD exhibited an overall decline (Fig. 5). This inverse 272 273 relationship is consistent with previous findings [Kuan et al., 2012; Michael et al., 2005]. An inhibiting effect of rainfall was evident in the variations of the SM_{USP} (Figs. 7 and 8, Case 5). A 274 nadir appeared on day 112 (Fig. 7d), when the USP was at its shallowest position (Figs. 7 and 275 276 8). With a similar amount of rainfall infiltration added directly to the inland boundary, Case 6 captured a similar SM_{USP} trend in comparison with Case 5 (Fig. 8). This suggests that the salt 277 mass stored in the USP (SM_{USP}) was mainly controlled by the inland freshwater input, rather 278 279 than the dilution due to the rainfall-induced infiltration across the intertidal zone, which was small in comparison with the total infiltration into the aquifer platform. 280 281 Simple regression models were found to be inadequate for describing the relationships of 282 daily averaged SGD and salt storage with the daily average rainfall rate. We explored an approach based on functional data analysis (FDA), used in a wide range of research fields, 283 including hydrology [Ramsay and Silverman, 2005; Suhaila et al., 2011; Wang et al., 2011; Xin 284 et al., 2014]. The effect of rainfall events was considered to follow a continuous and smooth 285 function at the relevant (daily) temporal scale. 286 To quantify the prolonged and cumulative effect of (past) rainfall events, we hypothesized 287

that these events can be weighted in the form of convolution:

289
$$DRI = \frac{\sum_{j=n}^{m} \zeta_j R_{t-j\Delta t}}{\sum_{j=n}^{m} \zeta_j}$$
(2)

where *DRI* is a parametric regressor, i.e., the weighted rainfall events combined in a cumulative fashion; *t* is the present time, $t - j\Delta t$ is the given past time with Δt being the increment (set to 1 d as the daily averaged results were used for the analysis), $R_{t-j\Delta t}$ is the daily average rainfall at that time. The minimum and maximum values of *j* are, respectively, *n* and *m*, which define the past time period considered. ζ_j is a time-dependent weighting factor described by a Gamma distribution with the following probability density function (PDF):

296
$$\zeta_{j} \Box \operatorname{Gamma}(\alpha, \beta, j\Delta t) = \beta^{\alpha} \frac{1}{\Gamma(\alpha)} (j\Delta t)^{\alpha-1} \exp(-\beta j\Delta t)$$
(3)

where α and β are, respectively, the shape and scale factors. The ratio α/β controls the tail of 297 the distribution and reflects the weight of past forcing conditions. It should be noted that we 298 299 chose Gamma distribution function because it can be non-monotonic (if $\alpha > 1$) and has the advantage of characterizing the delayed and prolonged effects of rainfall on SGD and SWI. 300 With two parameters, it is widely used to describe flow and solute transport in various 301 302 hydrological systems, e.g., for transit time modelling in catchment systems [Kirchner et al., 2000; McGuire and McDonnell, 2006]. Furthermore, the Gamma distribution has no value at 303 zero (i.e., required that $i\Delta t > 0$). In this study, we set n and m, respectively, to 1 and 365 (a 304 305 year) and thus Eq. 2 does not consider the effect of the present rainfall event.

We then explored how daily averaged SGD, SM_{USP} and SM_{SW} might be related to *DRI*based on a generalized linear model (GLM):

This regression model contains only four coefficients (α , β , a and b), which assists in 309 assessing the effect of rainfall on the considered subterranean estuary. 310 This model (Eq. 4) fitted the simulated results well (summarized in Table 2). For Case 2 311 without the tide, the slope of the regression (a) of Eq. 4 was positive (87.91 m) for the SGD 312 but negative $(-3.49 \times 10^5 \text{ kgd/m}^2)$ for the SM_{SW}, which is consistent with the overall effect that 313 rainfall increased the SGD but inhibited the SWI. The two fitted Gamma distribution PDFs 314 were non-monotonic with $\alpha > 1$, suggesting that the past rainfall effect did not decay 315 316 immediately (Fig. 9 and Table 2). For the SGD, the peak of the fitted PDF appeared on day 4, corresponding with the occurrence of the maximum rainfall effect. We further calculated the 317 backward elapsed time when the rainfall effect decayed to 10% (defined as memory time, MT) 318 319 based on the fitted PDF. For Case 2, the MT for the SGD was 22 d, suggesting that the present

SGD was still affected considerably by rainfall events 22 d before. The past rainfall effect on SM_{SW} was more long-lasting. The peak occurred on day 35 with MT = 224 d. A similarly strong past rainfall effect was found for Case 3 (in which the equivalent rainfall infiltration was added

to the inland boundary, Table 2 and Fig. S2). The peak occurred on day 41 with MT = 197 d.

In the tidally influenced aquifer, the SGD and SWI were also significantly affected by past rainfall events (Case 5, Fig. 10 and Table 2). While the MT for the SGD differed little from the non-tidal case, the MT for the SM_{SW} was dramatically reduced from 224 (Case 2) to 46 (Case 5) d under the tidal influence (Table 2). This shows the competition between tides and rainfall

328 infiltration in affecting SWI. The tidal effect weakened the influence of past rainfall and hence

329	shortened its MT. For SM_{USP} , both the peak (day 21) and MT (56 d) were longer than those for
330	SM_{SW} (day 3 and 46 d, respectively). This suggests that the effect of (past) rainfall on USP
331	lasted longer than that on SW. This behavior is also evident in the comparison between Cases 5
332	and 6 (Fig. 10 and Fig. S3). With the equivalent rainfall infiltration rate added to the inland
333	boundary, Case 6 simulated well the rainfall effect on USP with the regression model for SM_{USP}
334	close to that of Case 5 (Table 2).
335	The GLM is essentially a memory-dependent linear signal filter. Despite the simplicity, it
336	appears to capture the characteristics of episodic rainfall effects on the different metrics of the
337	simulated subterranean estuary since all the adjusted R^2 values are larger than 0.8 (Table 2).
338	3.3. Predictability of the SGD and SWI affected by episodic rainfall
339	We next consider if the GLM given by Eq. 4 captures the behavior of the nearshore aquifer
340	when subjected to rainfall of different patterns. For this purpose, we generated another yearlong
341	rainfall series using the Markov-chain Monte-Carlo simulator with the same statistical
342	parameters (Fig. 11a). We continued to run the SUTRA simulations for the four cases with
343	rainfall considered, i.e., using the results at the end of the year (day 365) as the initial
344	conditions of the new simulations. The GLM, derived from previous simulations based on the
345	rainfall dataset in Fig. 2, satisfactorily predicted the newly predicted SGD, SM_{SW} and SM_{USP}
346	averaged over a daily cycle (Fig. 11 and Figs. S4-6). The model performed even better for the
347	tidal case (Fig. 11, Case 5). For the SM_{USP} , the simulated and predicted results largely overlap
348	with adjusted R^2 up to 0.97 (Figs. 11d and g).
349	3.4. Influence of model domain

350	With the model domain extended in either the upward (Case 7) or landward (Case 8)
351	directions, the yearly averaged SGD, SM_{SW} and SM_{USP} did not change considerably (Table 1).
352	This suggests that the total freshwater input controlled the overall long-term behavior of the
353	nearshore aquifer system. However, the responses of the daily averaged SGD, SM_{SW} and SM_{USP}
354	were further delayed as indicated by postponed peaks of the fitted PDFs for daily averaged
355	SGD, SM_{SW} and SM_{USP} curves (Figs. S7-S9). As expected, the travel time of the freshwater
356	increased for both the aquifer with a thickened vadose zone (Case 7) and that with the landward
357	boundary moved inland (Case 8). The prolonged effects of rainfall were well quantified by the
358	regression model (Figs. S10-S12). Both the peak time (time for the maximum historic effect)
359	and MT (time for the rainfall effect to decay to 10%) given by the PDFs increased (Table 2).
360	For example, the peak time increased from 7 d for Case 5 to 13 d for Case 7, while MT
361	increased from 31 to 42 d. These increases are consistent with the theory of groundwater wave
362	propagation in unconfined aquifers [Li et al., 1997; Li et al., 2000; Nielsen, 2009; Parlange et
363	<i>al.</i> , 1984].

365 **4. Discussion and concluding remarks**

Rainfall generates freshwater influx to coastal aquifers, which subsequently discharges to the sea. As rainfall events are episodic, this influx tends to be highly variable. However, most previous modeling studies incorporated the freshwater input via the inland boundary of the aquifer with a fixed flux or head, overlooking the variability and randomness of natural systems [*Lu et al.*, 2015; *Michael et al.*, 2013; *Werner et al.*, 2013]. This paper quantified the SGD and

371	SWI processes in a nearshore aquifer subjected to the influence of episodic rainfall, and
372	uncovered the delayed and prolonged rainfall effect. The findings have the following
373	implications for future investigations on coastal and offshore environments:
374	• Different forces on the nearshore groundwater system interact strongly. While simple
375	models such as Eq. 1 may still be applicable for predictions of SGD, each term attributed to
376	a particular force must be determined with consideration of the influence of other forces.
377	• The interactions of the forces also affect the short-term behavior of the nearshore
378	groundwater. Tides appear to shorten the period of past rainfall influence on nearshore
379	groundwater dynamics, particularly seawater circulations through the USP and SW.
380	• The rainfall effect coupled with the influence of other forces must be considered in the
381	studies of coastal groundwater dynamics. In particular, field investigations need to account
382	for the effect of past rainfall events during both data collection and analysis.
383	• Meteorological data including rainfall are available widely in coastal zones around the world.
384	Combined with data of other forcing factors such as tides and waves, these meteorological
385	data allow the development of FDA models for predicting SGD and associated solute fluxes
386	worldwide. These predictive models have a simple form and would be of direct use in
387	developing strategies for protection of nearshore environments and groundwater resources
388	management.
389	While the present study has generated insights into the SGD and SWI in a nearshore
390	aquifer subjected to the influence of episodic rainfall, further investigations are needed to
391	explore the following aspects:

392	• Soil hydraulic conductivity, capillarity and beach slope are key aquifer properties and
393	worthy of detailed studies, particularly to explore how these parameters modify the
394	coefficients of the generalized linear model. The model domain was a 2D vertical section
395	perpendicular to the shoreline, and the aquifer was homogeneous and isotropic.
396	Heterogeneous aquifer properties should be investigated. Three-dimensionality linked
397	strongly to the beach morphology and land surface topography is likely to alter the SGD and
398	SWI [Zhang et al., 2016]. Local topographic variations, rather than the idealized geometry
399	used here, are expected to affect rainfall infiltration and groundwater flow in both cross- and
400	along-shore directions.
401	• Wave forcing and multiple tidal constituents (e.g., combined semi-diurnal solar and lunar
402	tides) were not considered. These factors would provide additional forcing on the flow and
403	associated solute transport in a nearshore aquifer. Particularly, wave motions are highly
404	variable. It remains to be determined how this variability combined with episodic rainfall
405	events would be manifested in the SGD and SWI.
406	• Variations of SGD and SWI over the tidal cycle are significantly altered by tidal fluctuations.
407	While we have quantified the daily variation of SGD and SWI, an improved statistical model
408	with high-order terms is needed to unravel the intra-tidal variations of SGD and SWI.
409	Although these research questions remain unsolved, the generalized linear model
410	developed based on functional data analysis is a potentially useful approach to characterizing
411	and quantifying the complex SGD and SWI processes in a nearshore aquifer, subjected to
412	irregular forcing factors such as rainfall.

414 Acknowledgements

415	This work was supported by the National Natural Science Foundation of China (51579077)
416	and the 111 Project approved by the Ministry of Education and the State Administration of
417	Foreign Experts Affairs, China. PX acknowledges the Fundamental Research Funds for the
418	Central Universities (2014B17214). The authors acknowledge valuable comments from the
419	managing editor (Harihar Rajaram), the associate editor and three anonymous reviewers, which
420	led to significant improvement of the paper.
421	
422	References
423	Anschutz, P., T. Smith, A. Mouret, J. Deborde, S. Bujan, D. Poirier, and P. Lecroart (2009),
424	Tidal sands as biogeochemical reactors, Estuarine Coastal and Shelf Science, 84(1), 84-
425	90, 10.1016/j.ecss.2009.06.015.
426	Bakhtyar, R., D. A. Barry, and A. Brovelli (2012), Numerical experiments on interactions
427	between wave motion and variable-density coastal aquifers, Coastal Engineering, 60,
428	95-108, 10.1016/j.coastaleng.2011.09.001.
429	Bakhtyar, R., A. Brovelli, D. A. Barry, C. Robinson, and L. Li (2013), Transport of variable-
430	density solute plumes in beach aquifers in response to oceanic forcing, Advances in
431	Water Resources, 53, 208-224, 10.1016/j.advwatres.2012.11.009.

432	Boufadel, M. C. (2000), A mechanistic study of nonlinear solute transport in a groundwater-
433	surface water system under steady state and transient hydraulic conditions, Water
434	Resources Research, 36(9), 2549-2565, 10.1029/2000wr900159.
435	Brovelli, A., X. Mao, and D. A. Barry (2007), Numerical modeling of tidal influence on
436	density-dependent contaminant transport, Water Resources Research, 43(10),
437	10.1029/2006wr005173.
438	Burnett, W. C., P. K. Aggarwal, A. Aureli, H. Bokuniewicz, J. E. Cable, M. A. Charette, E.
439	Kontar, S. Krupa, K. M. Kulkarni, A. Loveless, W. S. Moore, J. A. Oberdorfer, J.
440	Oliveira, N. Ozyurt, P. Povinec, A. M. G. Privitera, R. Rajar, R. T. Ramassur, J.
441	Scholten, T. Stieglitz, M. Taniguchi, and J. V. Turner (2006), Quantifying submarine
442	groundwater discharge in the coastal zone via multiple methods, Science of the Total
443	Environment, 367(2-3), 498-543, 10.1016/j.scitotenv.2006.05.009.
444	Carsel, R. F., and R. S. Parrish (1988), Developing joint probability distributions of soil water
445	retention characteristics, Water Resources Research, 24(5), 755-769,
446	10.1029/WR024i005p00755.
447	Cooper, H. H. (1959), A hypothesis concerning the dynamic balance of fresh water and salt
448	water in a coastal aquifer, Journal of Geophysical Research, 64(4), 461-467,
449	10.1029/JZ064i004p00461.
450	Evans, T. B., and A. M. Wilson (2016), Groundwater transport and the freshwater-saltwater
451	interface below sandy beaches, Journal of Hydrology, 538, 563-573,
452	10.1016/j.jhydro1.2016.04.014.

453	Evans, T. B., and A. M. Wilson (2017), Submarine groundwater discharge and solute transport							
454	under a transgressive barrier island, Journal of Hydrology, 574, 97-110,							
455	10.1016/j.jhydrol.2017.01.028.							
456	Geng, X., M. C. Boufadel, Y. Xia, H. Li, L. Zhao, N. L. Jackson, and R. S. Miller (2014),							
457	Numerical study of wave effects on groundwater flow and solute transport in a							
458	laboratory beach, Journal of Contaminant Hydrology, 165, 37-52,							
459	10.1016/j.jconhyd.2014.07.001.							
460	Geng, X., and M. C. Boufadel (2015), Impacts of evaporation on subsurface flow and salt							
461	accumulation in a tidally influenced beach, Water Resources Research, 51(7), 5547-							
462	5565, 10.1002/2015wr016886.							
463	Geng, X. L., M. C. Boufadel, and N. L. Jackson (2016), Evidence of salt accumulation in beach							
464	intertidal zone due to evaporation, Scientific Reports, 6, 10.1038/srep31486.							
465	Glover, R. (1959), The pattern of fresh-water flow in a coastal aquifer, Journal of Geophysical							
466	Research, 64(4), 457-459, 10.1029/JZ064i004p00457.							
467	Heiss, J. W., and H. A. Michael (2014), Saltwater-freshwater mixing dynamics in a sandy							
468	beach aquifer over tidal, spring-neap, and seasonal cycles, Water Resources Research,							
469	50(8), 6747-6766, 10.1002/2014wr015574.							
470	Heiss, J. W., J. A. Puleo, W. J. Ullman, and H. A. Michael (2015), Coupled surface-subsurface							
471	hydrologic measurements reveal infiltration, recharge, and discharge dynamics across							
472	the swash zone of a sandy beach, Water Resources Research, 51(11), 8834-8853							
473	10.1002/2015WR017395.							

474	Jun, S. C., G. O. Bae, and K. K. Lee (2013), Factors causing dynamic variations in the
475	saltwater-freshwater transition zone in a beach aquifer, Mangsang, South Korea,
476	Hydrogeology Journal, 21(6), 1355-1371, 10.1007/s10040-013-0995-y.
477	King, J. N. (2012), Synthesis of benthic flux components in the Patos Lagoon coastal zone, Rio
478	Grande do Sul, Brazil, Water Resources Research, 48, 10.1029/2011wr011477.
479	Kirchner, J. W., X. H. Feng, and C. Neal (2000), Fractal stream chemistry and its implications
480	for contaminant transport in catchments, Nature, 403(6769), 524-527,
481	10.1038/35000537.
482	Kuan, W. K., G. Q. Jin, P. Xin, C. Robinson, B. Gibbes, and L. Li (2012), Tidal influence on
483	seawater intrusion in unconfined coastal aquifers, Water Resources Research, 48,
484	10.1029/2011wr010678.
485	Kwon, E. Y., G. Kim, F. Primeau, W. S. Moore, H. M. Cho, T. DeVries, J. L. Sarmiento, M. A.
486	Charette, and Y. K. Cho (2014), Global estimate of submarine groundwater discharge
487	based on an observationally constrained radium isotope model, Geophysical Research
488	Letters, 41, 8438-8444, 10.1002/2014GL061574.
489	Li, H., M. C. Boufadel, and J. W. Weaver (2008), Tide-induced seawater-groundwater
490	circulation in shallow beach aquifers, Journal of Hydrology, 352(1-2), 211-224,
491	10.1016/j.jhydrol.2008.01.013.
492	Li, L., D. Barry, and C. Pattiaratchi (1997), Numerical modelling of tide-induced beach water
493	table fluctuations, Coastal Engineering, 30(1), 105-123, 10.1016/S0378-
494	3839(96)00038-5.
	24

495	Li, L., D. A. Barry, F. Stagnitti, and JY. Parlange (1999), Submarine groundwater discharge
496	and associated chemical input to a coastal sea, Water Resources Research, 35(11),
497	3253-3259, 10.1029/1999wr900189.
498	Li, L., and D. A. Barry (2000), Wave-induced beach groundwater flow, Advances in Water
499	Resources, 23(4), 325-337, 10.1016/s0309-1708(99)00032-9.
500	Li, L., D. A. Barry, F. Stagnitti, JY. Parlange, and D. S. Jeng (2000), Beach water table
501	fluctuations due to spring-neap tides: Moving boundary effects, Advances in Water
502	Resources, 23(8), 817-824, 10.1016/s0309-1708(00)00017-8.
503	Li, X. Y., B. X. Hu, W. C. Burnett, I. R. Santos, and J. P. Chanton (2009), Submarine ground
504	water discharge driven by tidal pumping in a heterogeneous aquifer, Ground Water,
505	47(4), 558-568, 10.1111/j.1745-6584.2009.00563.x.
506	Liu, Y., J. J. Jiao, and X. Luo (2016), Effects of inland water level oscillation on groundwater
507	dynamics and land-sourced solute transport in a coastal aquifer, Coastal Engineering,
508	114, 347-360, 10.1016/j.coastaleng.2016.04.021.
509	Longuet-Higgins, M. S. (1983), Wave set-up, percolation and undertow in the surf zone,
510	Proceedings of the Royal Society of London Series A-Mathematical Physical and
511	Engineering Sciences, 390(1799), 283-291, 10.1098/rspa.1983.0132.
512	Lu, C., P. Xin, L. Li, and J. Luo (2015), Seawater intrusion in response to sea-level rise in a
513	coastal aquifer with a general-head inland boundary, Journal of Hydrology, 522, 135-
514	140, 10.1016/j.jhydrol.2014.12.053.

515	Mao, X., P. Enot, D. A. Barry, L. Li, A. Binley, and D. S. Jeng (2006), Tidal influence on
516	behaviour of a coastal aquifer adjacent to a low-relief estuary, Journal of Hydrology,
517	327(1-2), 110-127, 10.1016/j.jhydrol.2005.11.030.
518	McGuire, K. J., and J. J. McDonnell (2006), A review and evaluation of catchment transit time
519	modeling, Journal of Hydrology, 330(3-4), 543-563, 10.1016/j.jhydrol.2006.04.020.
520	Michael, H. A., A. E. Mulligan, and C. F. Harvey (2005), Seasonal oscillations in water
521	exchange between aquifers and the coastal ocean, Nature, 436(7054), 1145-1148,
522	10.1038/nature03935.
523	Michael, H. A., C. J. Russoniello, and L. A. Byron (2013), Global assessment of vulnerability
524	to sea-level rise in topography-limited and recharge-limited coastal groundwater
525	systems, Water Resources Research, 49(4), 2228-2240, 10.1002/wrcr.20213.
526	Michael, H. A., K. C. Scott, M. Koneshloo, X. Yu, M. R. Khan, and K. Li (2016), Geologic
527	influence on groundwater salinity drives large seawater circulation through the
528	continental shelf, Geophysical Research Letters, 43(20), 10.1002/2016GL070863.
529	Moore, W. S. (1996), Large groundwater inputs to coastal waters revealed by Ra-226
530	enrichments, Nature, 380(6575), 612-614, 10.1038/380612a0.
531	Moore, W. S. (1999), The subterranean estuary: a reaction zone of ground water and sea water,
532	Marine Chemistry, 65(1-2), 111-125, 10.1016/s0304-4203(99)00014-6.
533	Moore, W. S., J. L. Sarmiento, and R. M. Key (2008), Submarine groundwater discharge
534	revealed by Ra-228 distribution in the upper Atlantic Ocean, Nature Geoscience, 1(5),
535	309-311, 10.1038/ngeo183.

536	Moore, W. S. (2010), The effect of submarine groundwater discharge on the ocean, Annual
537	Review of Marine Science, 2, 59-88, 10.1146/annurev-marine-120308-081019.
538	Morris, J. T. (1995), The mass balance of salt and water in intertidal sediments: results from
539	North Inlet, South Carolina, Estuaries, 18(4), 556-567, 10.2307/1352376.
540	Nielsen, P. (2009), Coastal and Estuarine Processes, World Scientific, Singapore.
541	Parlange, JY., F. Stagnitti, J. Starr, and R. Braddock (1984), Free-surface flow in porous
542	media and periodic solution of the shallow-flow approximation, Journal of Hydrology,
543	70(1), 251-263, 10.1016/0022-1694(84)90125-2.
544	Ramsay, J. O., and B. W. Silverman (2005), Functional Data Analysis, Springer, New York.
545	Richards, L. A. (1931), Capillary conduction of liquids through porous mediums, <i>Physics</i> , 1(5),
546	318-333.
547	Robinson, C., B. Gibbes, and L. Li (2006), Driving mechanisms for groundwater flow and salt
548	transport in a subterranean estuary, Geophysical Research Letters, 33(3),
549	10.1029/2005gl025247.
550	Robinson, C., L. Li, and D. A. Barry (2007a), Effect of tidal forcing on a subterranean estuary,
551	Advances in Water Resources, 30(4), 851-865, 10.1016/j.advwatres.2006.07.006.
552	Robinson, C., L. Li, and H. Prommer (2007b), Tide-induced recirculation across the aquifer-
553	ocean interface, Water Resources Research, 43(7), 10.1029/2006wr005679.
554	Robinson, C., A. Brovelli, D. A. Barry, and L. Li (2009), Tidal influence on BTEX
555	biodegradation in sandy coastal aquifers, Advances in Water Resources, 32(1), 16-28,
556	10.1016/j.advwatres.2008.09.008.

557	Robinson, C., P. Xin, L. Li, and D. A. Barry (2014), Groundwater flow and salt transport in a
558	subterranean estuary driven by intensified wave conditions, Water Resources Research,
559	<i>50</i> , 10.1002/2013WR013813.
560	Rodellas, V., J. Garcia-Orellana, P. Masqué, M. Feldman, and Y. Weinstein (2015), Submarine
561	groundwater discharge as a major source of nutrients to the Mediterranean Sea,
562	Proceedings of the National Academy of Sciences, 112(13), 3926-3930,
563	10.1073/pnas.1419049112.
564	Santos, I. R., B. D. Eyre, and M. Huettel (2012), The driving forces of porewater and
565	groundwater flow in permeable coastal sediments: A review, Estuarine, Coastal and
566	Shelf Science, 98, 1-15, 10.1016/j.ecss.2011.10.024.
567	Sawyer, A. H., F. Shi, J. T. Kirby, and H. A. Michael (2013), Dynamic response of surface
568	water-groundwater exchange to currents, tides, and waves in a shallow estuary,
569	Journal of Geophysical Research-Oceans, 118(4), 1749-1758, 10.1002/jgrc.20154.
570	Smith, A. J. (2004), Mixed convection and density-dependent seawater circulation in coastal
571	aquifers, Water Resources Research, 40(8), 10.1029/2003wr002977.
572	Suhaila, J., A. A. Jemain, M. F. Hamdan, and W. Z. W. Zin (2011), Comparing rainfall patterns
573	between regions in Peninsular Malaysia via a functional data analysis technique,
574	Journal of Hydrology, 411(3-4), 197-206, 10.1016/j.jhydrol.2011.09.043.
575	Taniguchi, M., W. C. Burnett, J. E. Cable, and J. V. Turner (2002), Investigation of submarine
576	groundwater discharge, Hydrological Processes, 16(11), 2115-2129,
577	10.1002/hyp.1145.

578	van-Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity
579	of unsaturated soils, Soil Science Society of America Journal, 44(5), 892-898.
580	Voss, C. I., and A. M. Provost (2008), A model for saturated-unsaturated, variable-density
581	ground-water flow with solute or energy transport, U.S. Geological Survey, Reston,
582	Virginia, USA
583	Wang, X., H. Li, J. J. Jiao, D. Barry, L. Li, X. Luo, C. Wang, L. Wan, X. Wang, and X. Jiang
584	(2015), Submarine fresh groundwater discharge into Laizhou Bay comparable to the
585	Yellow River flux, Scientific Reports, 5, 10.1038/srep08814.
586	Wang, Y. G., P. Kuhnert, and B. Henderson (2011), Load estimation with uncertainties from
587	opportunistic sampling data - A semiparametric approach, Journal of Hydrology,
588	396(1-2), 148-157, 10.1016/j.jhydrol.2010.11.003.
589	Werner, A. D., M. Bakker, V. E. Post, A. Vandenbohede, C. Lu, B. Ataie-Ashtiani, C. T.
590	Simmons, and D. A. Barry (2013), Seawater intrusion processes, investigation and
591	management: recent advances and future challenges, Advances in Water Resources, 51,
592	3-26, 10.1016/j.advwatres.2012.03.004.
593	Wilson, A. M., T. B. Evans, W. S. Moore, C. A. Schutte, and S. B. Joye (2015), What time
594	scales are important for monitoring tidally influenced submarine groundwater
595	discharge? Insights from a salt marsh, Water Resources Research, 51(6), 4198-4207,
596	10.1002/2014WR015984.
597	Xin, P., C. Robinson, L. Li, D. A. Barry, and R. Bakhtyar (2010), Effects of wave forcing on a
598	subterranean estuary, Water Resources Research, 46, 10.1029/2010wr009632.

599	Xin, P., S. S. J. Wang, C. Robinson, L. Li, YG. Wang, and D. A. Barry (2014), Memory of
600	past random wave conditions in submarine groundwater discharge, Geophysical
601	Research Letters, 41(7), 2401-2410, 10.1002/2014gl059617.
602	Xin, P., S. S. J. Wang, C. Lu, C. Robinson, and L. Li (2015), Nonlinear interactions of waves
603	and tides in a subterranean estuary, Geophysical Research Letters, 42(7), 2277-2284,
604	10.1002/2015gl063643.
605	Zhang, Y., L. Li, D. V. Erler, I. Santos, and D. Lockington (2016), Effects of alongshore
606	morphology on groundwater flow and solute transport in a nearshore aquifer, Water
607	Resources Research, 52(2), 990-1008, 10.1002/2015wr017420.

Case	Model domain	Tide	Rainfall		Per unit width influx (m ³ /m/d)				Per unit width	Salt mass stored in per unit width aquifer (kg/m)	
Case					${\cal Q}_f$	Q_t	$Q_{_{d}}$	Q_r	efflux (SGD) (m ³ /m/d)	Saltwater wedge	Upper saline plume
1	Fig. 1	Without	Without	NA	2.10	NA	0.16	NA	2.26	32,499	NA
2	Fig. 1	Without	With	Тор	2.10	NA	0.17	0.62	2.89	26,583	NA
3	Fig. 1	Without	With*	Left	2.10+0.62*	NA	0.16	NA	2.88	26,867	NA
4	Fig. 1	With	Without	NA	2.10	2.56	0.56	NA	5.22	16,801	3,498
5	Fig. 1	With	With	Тор	2.10	2.21	0.58	0.61	5.50	15,255	2,485
6	Fig. 1	With	With*	Left	2.10+0.62*	2.21	0.58	NA	5.51	15,352	2,526
7	AF in Fig. 1 was extended upwards by 2 m	With	With	Тор	2.10	2.14	0.58	0.61	5.43	15,569	2,560
8	AB in Fig. 1 was extended landwards by 50 m	With	With*	Left	2.10+0.62*	2.21	0.58	NA	5.51	15,343	2,504

609 Table 1. Simulated cases with model setup and key results of long-term SGD and salt mass[#].

610 [#] All the results are yearly averaged. Q_f is the inland freshwater input; Q_t is the circulating flux induced by tide; Q_d is the density-

611 driven flux; Q_r is the rainfall infiltration. * indicates that the rainfall infiltration was considered as the inland freshwater input across

612 the inland boundary. NA means not applicable.

USP .						-	
		Case 2	Case 3	Case 5	Case 6	Case 7	Case 8
	α	1.50	2.00	1.76	1.50	2.40	1.6
	α/β	0.21	0.26	0.20	0.16	0.26	0.1
	Adjusted R^2	0.80	0.83	0.89	0.99	0.87	0.98
SGD	a	87.91	63.32	64.12	65.16	72.10	67.66
	b	2.52	2.76	5.08	5.09	4.92	5.08
	Peak (d)	4	8	7	5	13	9
	MT (d)	22	30	31	29	42	53
	α	1.62	1.80	1.20	3.80	1.20	3.52
	α/β	0.02	0.03	0.07	0.58	0.04	0.37
	Adjusted R^2	0.91	0.94	0.87	0.97	0.88	0.96
SM _{SW}	a	-3.49×10^5	-4.04×10^5	-1.76×10^{5}	-1.34×10^{5}	-2.79×10^5	-1.31×10^{5}
	b	2.84×10^4	$2.85 imes 10^4$	1.60×10^4	1.59×10^4	1.67×10^4	$1.59 imes 10^4$
	Peak (d)	35	41	3	18	5	24
	MT (d)	224	197	46	42	79	58
	α	NA	NA	3.10	3.30	3.60	3.52
	α/β	NA	NA	0.30	0.34	0.34	0.31
	Adjusted R^2	NA	NA	0.98	0.99	0.96	0.99
$\mathrm{SM}_{\mathrm{USP}}$	a	NA	NA	-2.29×10^5	-2.13×10^{5}	-2.53×10^5	-2.03×10^5
	b	NA	NA	3.43×10^3	3.41×10^{3}	3.61×10^{3}	3.35×10^3
	Peak (d)	NA	NA	21	22	27	29
	MT (d)	NA	NA	56	56	66	70

Table 2. Summary of regression results for daily averaged SGD and salt mass in SW and 613 USP[#]. 614

[#] SGD is the submarine groundwater discharge; SM_{SW} is the salt mass stored in the saltwater wedge (per unit width aquifer); SM_{USP} is the salt mass stored in the upper saline plume; α and 616

 β are, respectively, the shape and scale factors of Gamma distribution function; a and b are 617

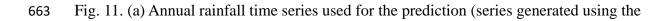
618 coefficients for the regression. Peak indicates the backward elapsed time for the maximum

historic effect; MT is the memory time, i.e., the backward elapsed time for the rainfall effect to 619

decay to 10%. NA means not applicable. 620

621 Figure captions

622


623	Fig. 1. Conceptual diagram of an unconfined near-shore aquifer (subterranean estuary)
624	including major flow processes: (1) density-driven recirculation, (2) tide-induced recirculation,
625	(3) recirculation driven by wave setup and (4) terrestrial groundwater discharge including
626	freshwater influx generated by rainfall infiltration. The colors represent the salinity (red for
627	seawater and yellow for freshwater). Boundary ABCDEF is the model domain. The x - z
628	coordinate origin was set at the mean shoreline. The coordinates of the domain reference points
629	for Cases 1-6 are given in the unit of m. The upper boundary (AF) was extended upwards by 2
630	m in Case 7 and the left boundary (AB) was extended landwards by 50 m in Case 8. Note that
631	wave forcing is not considered in the present study.
632	
633	Fig. 2. Annual rainfall time series used in the simulations. The red line indicates the daily
634	averaged results.
635	
636	Fig. 3. Yearly averaged salinity distributions in the subterranean estuary. Cases are indicated in
637	the figure titles. The left hand side panels are for the non-tidal cases, in which the black lines
638	indicate the static sea level. The right side panels are for the tidal cases, in which the black lines
639	indicate the tidal range. The results for Cases 3 and 6 were, respectively, similar to those for

640 Cases 2 and 4 (see Fig. S1 in Supplemental material).

641

642	Fig. 4. Yearly averaged water influx and efflux rates per-unit-area along the aquifer-ocean
643	interface. (a) is for the non-tidal cases. The lines for the influx of Cases 1, 2 and 3 overlap as do
644	the lines for the efflux of Cases 2 and 3. (b) is for the tidal cases. Note that the influx excluded
645	the rainfall infiltration. The lines for the influx and efflux of Cases 5 and 6 overlap.
646	
647	Fig. 5. Daily averaged water efflux (SGD) across the per-unit-width aquifer-ocean interface.
648	
649	Fig. 6. Daily averaged salt mass stored in the per-unit-width saltwater wedge.
650	
651	Fig. 7. Snapshots of daily averaged salinity distributions for Case 5. The time is given in the figure
652	titles and the salt mass stored in the per-unit-width upper saline plume is marked on the figure. Two
653	black lines indicate the high and low tidal levels.
654	
655	Fig. 8. Daily averaged salt mass stored in the per-unit-width upper saline plume.
656	
657	Fig. 9. (a) Gamma distribution functions used for quantifying the effect of past rainfall events
658	on the subterranean estuary (Case 2); (b and c) Fitted results versus those simulated.
659	
660	Fig. 10. (a) Gamma distribution functions used for quantifying the effect of past rainfall events

on the subterranean estuary (Case 5); (b-d) Fitted results versus those simulated.

- 664 Markov-chain Monte-Carlo simulator with the same statistical parameters as the rainfall time
- series in Fig. 2). The red line indicates the daily averaged results. (b-d) Daily averaged SGD,
- 666 SM_{SW} and SM_{USP} predicted by the regression model in comparison with the simulated results
- 667 (Case 5). (e-g) Predicted results versus those simulated.

Figure 1.

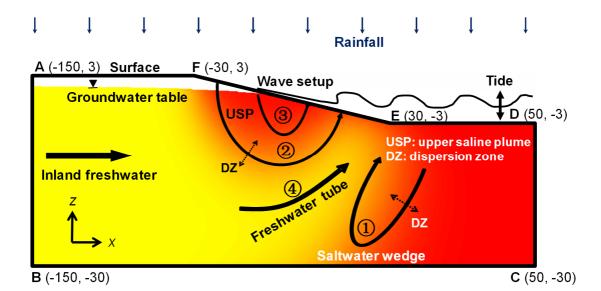


Figure 2.

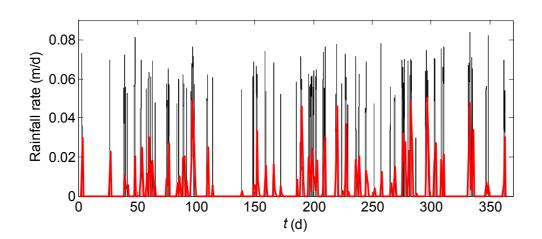


Figure 3.

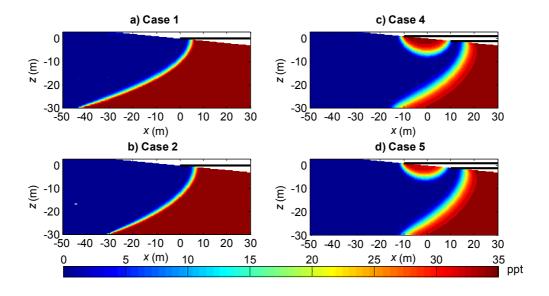


Figure 4.

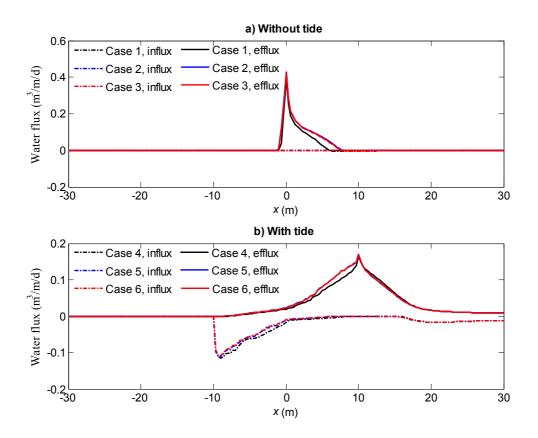


Figure 5.

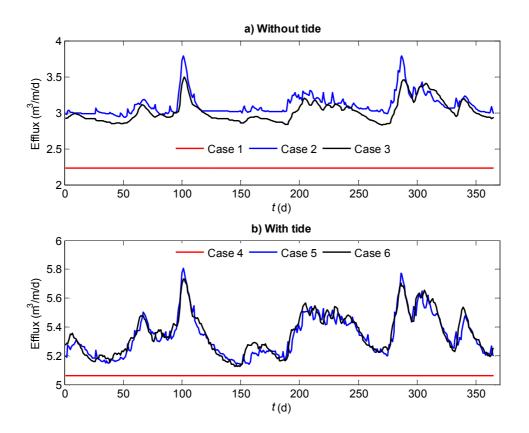


Figure 6.

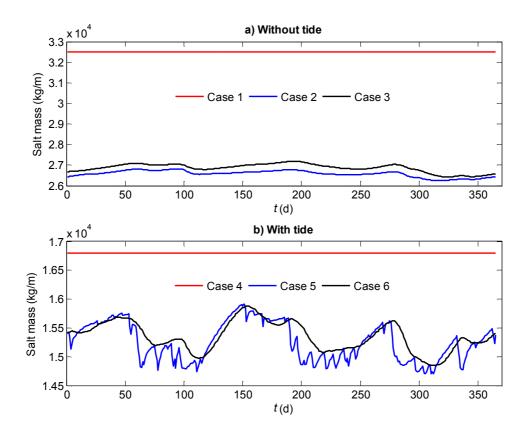


Figure 7.

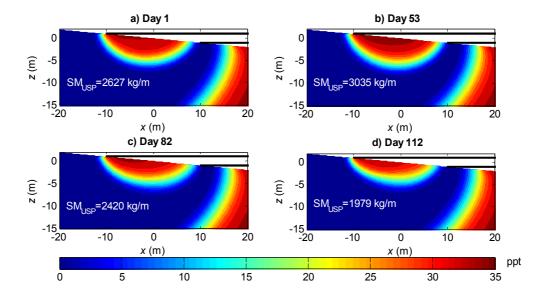


Figure 8.

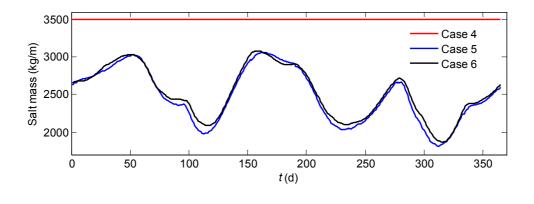


Figure 9.

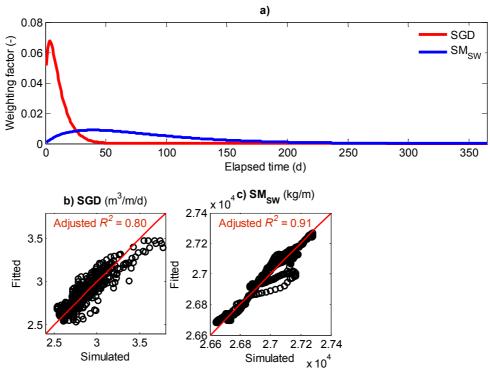


Figure 10.

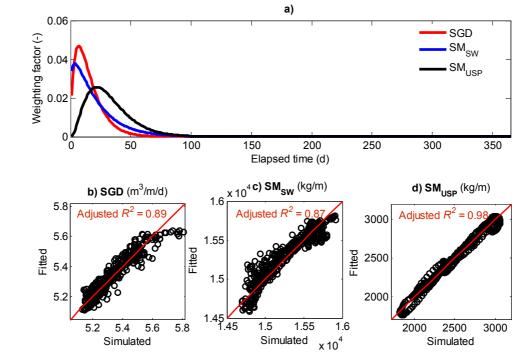
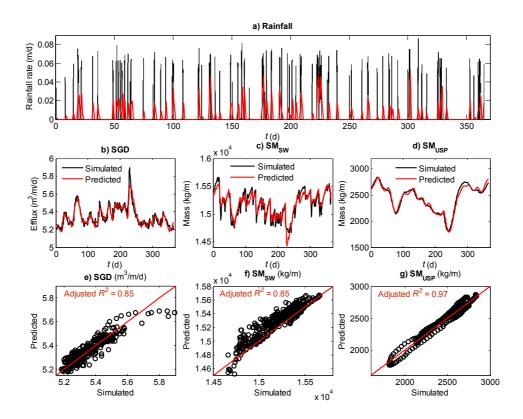



Figure 11.

