A general framework for routing problems with stochastic demands

Iliya Markov^a, Michel Bierlaire^a, Jean-François Cordeau^b Yousef Maknoon^c, Sacha Varone^d

> ^aTransport and Mobility Laboratory École Polytechnique Fédérale de Lausanne

> > ^bHEC Montréal and CIRRELT

^cFaculty of Technology, Policy, and Management Delft University of Technology ^dHaute École de Gestion de Genève University of Applied Sciences Western Switzerland (HES-SO)

17th Swiss Transport Research Conference (STRC) Monte Verità / Ascona, May 17–19, 2017

Outline

Introduction

2 Stochastic Information

3 Formulation

- 4 Methodology
- 5 Numerical Experiments

6 Conclusion

Outline

Introduction

2 Stochastic Information

3 Formulation

- 4 Methodology
- 5 Numerical Experiments

Conclusion

• Logistic setting:

- depots, supply points, demand points
- non-stationary stochastic demands over a planning horizon
- distribution or collection context

Logistic setting:

- depots, supply points, demand points
- non-stationary stochastic demands over a planning horizon
- distribution or collection context
- Decisions:
 - visits
 - routing
 - inventory management

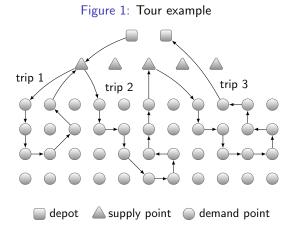
- Undesirable events:
 - stock-outs
 - overflows

.

- breakdowns
- route failures

- Undesirable events:
 - stock-outs
 - overflows
 - breakdowns
 - route failures
- The objective:
 - minimize cost
 - satisfying all constraints
 - avoiding the occurrence of undesirable events

Routing



• Generality of the approach: VRP, IRP, others

- Generality of the approach: VRP, IRP, others
- Relies on dynamic probabilistic information to integrate the cost of undesirable events
- Uses recourse actions to recover from undesirable events

- Generality of the approach: VRP, IRP, others
- Relies on dynamic probabilistic information to integrate the cost of undesirable events
- Uses recourse actions to recover from undesirable events
- Integrates demand forecasting
- Modeling framework corroborated by practical application

- Generality of the approach: VRP, IRP, others
- Relies on dynamic probabilistic information to integrate the cost of undesirable events
- Uses recourse actions to recover from undesirable events
- Integrates demand forecasting
- Modeling framework corroborated by practical application
- High quality meta-heuristic solution approach
- Intuitive evaluation of various solution aspects by simulation

Outline

Introduction

2 Stochastic Information

Formulation

4 Methodology

5 Numerical Experiments

Conclusion

Forecasting

• The demand of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$ decomposes trivially as:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

Forecasting

• The demand of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$ decomposes trivially as:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

Definition 1

The error terms are modeled as $\varepsilon_{it} \sim D(\varpi)$, where $D(\varpi)$ may be any theoretical or empirical distribution.

Forecasting

• The demand of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$ decomposes trivially as:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

Definition 1

The error terms are modeled as $\varepsilon_{it} \sim D(\varpi)$, where $D(\varpi)$ may be any theoretical or empirical distribution.

Definition 2

A forecasting model provides the expected demands $\mathbb{E}(\rho_{it})$ for all $i \in \mathcal{P}, t \in \mathcal{T}$ and the error distribution $D(\boldsymbol{\varpi})$.

Demand point states and probabilities

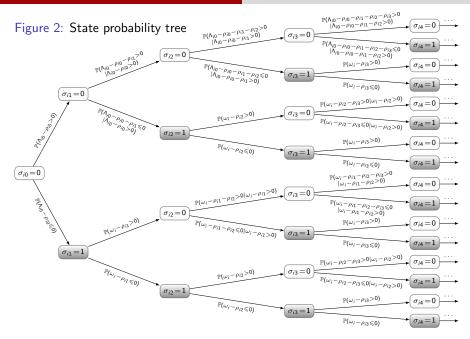
- Notation:
 - Λ_{i0} : inventory after delivery of demand point *i* in period 0
 - ω_i : inventory capacity of demand point *i*
 - σ_{it} : state of demand point *i* in period *t*
 - $\sigma_{it} = 0$: normal
 - $\sigma_{it} = 1$: stock-out

Demand point states and probabilities

- Notation:
 - Λ_{i0} : inventory after delivery of demand point *i* in period 0
 - ω_i : inventory capacity of demand point *i*
 - σ_{it} : state of demand point *i* in period *t*
 - $\sigma_{it} = 0$: normal
 - $\sigma_{it} = 1$: stock-out
- Delivery types:
 - regular delivery: performed by a vehicle
 - **emergency delivery**: recourse action performed in a state of stock-out when no vehicle visits the point

Demand point states and probabilities

- Notation:
 - Λ_{i0} : inventory after delivery of demand point *i* in period 0
 - ω_i : inventory capacity of demand point *i*
 - σ_{it} : state of demand point *i* in period *t*
 - $\sigma_{it} = 0$: normal
 - $\sigma_{it} = 1$: stock-out
- Delivery types:
 - regular delivery: performed by a vehicle
 - **emergency delivery**: recourse action performed in a state of stock-out when no vehicle visits the point
- Relevant costs:
 - **stock-out cost** χ : paid in a state of stock-out
 - emergency delivery cost ζ : paid in a state of stock-out when no vehicle visits the point



Order-Up-to (OU) inventory policy

Proposition 1

Under an OU policy in a distribution context, the stock-out probabilities can be pre-computed for any distribution $D(\varpi)$ using simulation.

Order-Up-to (OU) inventory policy

Proposition 1

Under an OU policy in a distribution context, the stock-out probabilities can be pre-computed for any distribution $D(\varpi)$ using simulation.

Proposition 2

The calculation of the overflow probabilities in a collection context is identical to the calculation of the stock-out probabilities in a distribution context.

Order-Up-to (OU) inventory policy

Proposition 1

Under an OU policy in a distribution context, the stock-out probabilities can be pre-computed for any distribution $D(\varpi)$ using simulation.

Proposition 2

The calculation of the overflow probabilities in a collection context is identical to the calculation of the stock-out probabilities in a distribution context.

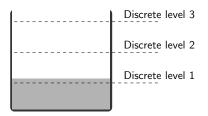
Corollary 1

Under an OU policy in a collection context, the overflow probabilities can be pre-computed for any distribution $D(\varpi)$ using simulation.

Maximum Level (ML) inventory policy

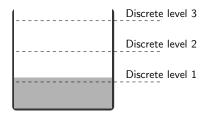
• Discretized ML policy:

Figure 3: Level discretization for a demand point



Maximum Level (ML) inventory policy

Discretized ML policy:



Proposition 3

Under a discretized ML policy, the relevant probabilities can be pre-computed, and the complexity is linear with the number of discrete levels.

Outline

Introduction

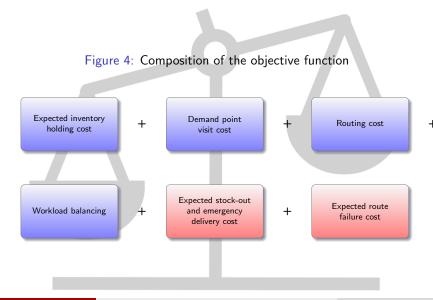
2 Stochastic Information

3 Formulation

- 4 Methodology
- 5 Numerical Experiments

Conclusion

Objective function



Objective Function: Stochastic components

• Expected Stock-Out and Emergency Delivery Cost (ESOEDC) component:

$$\mathsf{ESOEDC} = \sum_{t \in \mathcal{T}^+} \sum_{i \in \mathcal{P}} \left(\mathbb{P}\left(\sigma_{it} = 1 \mid \Lambda_{im}\right) \left(\chi + \zeta - \zeta \sum_{k \in \mathcal{K}} y_{ikt}\right) \right), \tag{2}$$

where

- \mathcal{T}^+ : planning horizon plus following day
- \mathcal{P} : set of demand points
- \mathcal{K} : set of vehicles
- $\sigma_{it} = 1$: state of stock-out of point *i* in period *t*
- Λ_{im} : inventory after delivery of point *i* in period *m*
- m: period of the previous delivery to point i
- χ : stock-out cost
- ζ : emergency delivery cost
- $y_{ikt} = 1$ if point *i* is visited by vehicle *k* in period *t*, 0 otherwise

Objective Function: Stochastic components

• Expected Route Failure Cost (ERFC) component:

$$\mathsf{ERFC} = \sum_{k \in \mathcal{K}} \sum_{\mathscr{S} \in \mathfrak{S}_{k}} \sum_{n=1}^{N_{\mathscr{S}}-1} C_{\mathscr{S}} \mathbb{P}(n\Omega_{k} < \Xi_{\mathscr{S}} \leq (n+1)\Omega_{k}), \tag{3}$$

where

- $\mathcal{K}:$ set of vehicles
- \mathfrak{S}_k : set of supply point delimited trips for vehicle k
- $N_{\mathscr{S}}$: number of demand points in trip \mathscr{S}
- $C_{\mathscr{S}}$: route failure cost for trip \mathscr{S}
- $\Xi_{\mathscr{S}}$: volume delivered in trip \mathscr{S}
- Ω_k : capacity of vehicle k

Objective function: Tractability

Proposition 4

The route failure probabilities cannot be pre-computed.

• Because the volume to deliver in a given trip is a decision variable and not known in advance

Objective function: Tractability

Proposition 4

The route failure probabilities cannot be pre-computed.

 Because the volume to deliver in a given trip is a decision variable and not known in advance

Assumption 1

Restrict the error terms as $\varepsilon_{it} \stackrel{\text{iid}}{\sim} D(\varpi)$, where $D(\varpi)$ may be any theoretical or empirical distribution.

- While we cannot pre-compute the probabilities themselves, we can derive their ECDFs
- The number of ECDFs to derive is bounded by the number of demand points times the number of periods in the planning horizon

• The objective function does not fully capture the effect of stock-outs occurring earlier than expected

• The objective function does not fully capture the effect of stock-outs occurring earlier than expected

Definition 3

A reaction policy defines how the subsequent decisions are changed in response to an emergency delivery.

• The objective function does not fully capture the effect of stock-outs occurring earlier than expected

Definition 3

A reaction policy defines how the subsequent decisions are changed in response to an emergency delivery.

• Reaction policies can vary from doing nothing to completely re-optimizing the subsequent decisions

• The objective function does not fully capture the effect of stock-outs occurring earlier than expected

Definition 3

A reaction policy defines how the subsequent decisions are changed in response to an emergency delivery.

• Reaction policies can vary from doing nothing to completely re-optimizing the subsequent decisions

Proposition 5

In the absence of inventory holding costs, the objective function always overestimates the real cost.

Constraints

- Routing aspect:
 - multiple depots
 - supply point visits
 - open tours
 - multi-period tours
 - periodicities and service frequency
 - etc...

Constraints

- Routing aspect:
 - multiple depots
 - supply point visits
 - open tours
 - multi-period tours
 - periodicities and service frequency
 - etc...
- Inventory related:
 - track inventory
 - implement the inventory policy
 - forbid stock-outs in the expected sense

Constraints

- Routing aspect:
 - multiple depots
 - supply point visits
 - open tours
 - multi-period tours
 - periodicities and service frequency
 - etc...
- Inventory related:
 - track inventory
 - implement the inventory policy
 - forbid stock-outs in the expected sense
- Vehicle capacity related

Constraints

- Routing aspect:
 - multiple depots
 - supply point visits
 - open tours
 - multi-period tours
 - periodicities and service frequency
 - etc...
- Inventory related:
 - track inventory
 - implement the inventory policy
 - forbid stock-outs in the expected sense
- Vehicle capacity related
- Duration and time window related
- Etc...

Formulation

Applications

- Stochastic demand problems:
 - vehicle routing problem
 - waste collection inventory routing
 - supermarket delivery routing
 - fuel delivery routing
 - home health care routing
 - maritime inventory routing
 - etc...

Formulation

Applications

- Stochastic demand problems:
 - vehicle routing problem
 - waste collection inventory routing
 - supermarket delivery routing
 - fuel delivery routing
 - home health care routing
 - maritime inventory routing
 - etc...
- Probability-based routing problems:
 - facility maintenance
 - epidemic prevention
 - etc...

Outline

- 1 Introduction
- 2 Stochastic Information
- 3 Formulation
- 4 Methodology
 - 5 Numerical Experiments

Adaptive Large Neighborhood Search (ALNS)

- State-of-the-art meta-heuristic framework
- Operators compete in modifying the current solution
- At each iteration, draw a destroy and a repair operator randomly

Adaptive Large Neighborhood Search (ALNS)

- State-of-the-art meta-heuristic framework
- Operators compete in modifying the current solution
- At each iteration, draw a destroy and a repair operator randomly
- The destroy (repair) operator $i \in O$ is drawn with probability:

$$\mathbb{P}(i) = \frac{\omega_i}{\sum_{j \in \mathcal{O}} \omega_j} \tag{4}$$

 The weights ω_i are periodically updated by an adaptive layer that tracks operator performance

Adaptive Large Neighborhood Search (ALNS)

- State-of-the-art meta-heuristic framework
- Operators compete in modifying the current solution
- At each iteration, draw a destroy and a repair operator randomly
- The destroy (repair) operator $i \in O$ is drawn with probability:

$$\mathbb{P}(i) = \frac{\omega_i}{\sum_{j \in \mathcal{O}} \omega_j} \tag{4}$$

- The weights ω_i are periodically updated by an adaptive layer that tracks operator performance
- Rich operator pools reflecting the problem structure
- Simulated annealing solution guiding principle

Outline

- 1 Introduction
- 2 Stochastic Information
- 3 Formulation
- 4 Methodology
- 5 Numerical Experiments

Benchmarking: Archetti et al. (2007) Instances

- First classical IRP testbed
- 160 instances in total
- 5 to 50 customers
- 3 or 6 periods in the planning horizon
- Single vehicle
- Low and high inventory holding costs
- Optimal solutions (branch-and-cut) by Archetti et al. (2007)

Benchmarking: Archetti et al. (2007) instances

Table 1: Results on Archetti et al. (2007) Instances

			High Inventor	y Holding Cost		Low Inventory Holding Cost					
$ \mathcal{T} $	n	Runtime(s.)	Best Gap(%)	Avg Gap(%)	Worst Gap(%)	Runtime(s.)	Best Gap(%)	Avg Gap(%)	Worst Gap(%)		
3	5	69.08	0.00	0.00	0.00	85.69	0.00	0.00	0.00		
3	10	183.94	0.00	0.00	0.00	156.36	0.00	0.00	0.00		
3	15	317.93	0.00	0.00	0.00	274.05	0.00	0.00	0.00		
3	20	440.02	0.00	0.00	0.01	444.68	0.00	0.00	0.02		
3	25	523.42	0.00	0.08	0.25	501.78	0.01	0.20	0.66		
3	30	835.21	0.01	0.15	0.32	649.09	0.00	0.41	0.98		
3	35	866.06	0.00	0.15	0.36	731.21	0.00	0.46	1.68		
3	40	896.91	0.02	0.18	0.44	976.83	0.16	0.47	0.97		
3	45	1124.57	0.05	0.42	0.91	1074.19	0.00	1.05	2.53		
3	50	1424.27	0.06	0.35	0.79	1223.56	0.13	1.19	2.15		
6	5	105.86	0.00	0.00	0.00	73.28	0.00	0.00	0.00		
6	10	184.48	0.00	0.01	0.08	181.93	0.00	0.00	0.00		
6	15	333.82	0.01	0.09	0.15	272.03	0.00	0.03	0.16		
6	20	394.39	0.00	0.17	0.41	420.28	0.05	0.34	0.82		
6	25	636.27	0.12	0.34	0.82	546.85	0.09	0.67	1.60		
6	30	725.63	0.10	0.47	0.93	733.12	0.44	1.43	2.63		
Aver	age	566.37	0.02	0.02 0.15		521.56	0.05	0.39	0.89		

Waste collection inventory routing problem

- 63 instances, each covering a week of white glass collections in Geneva, Switzerland in 2014, 2015, or 2016
- Planning horizon of 7 days
- Up to 2 heterogeneous vehicles
- Up to 53 containers (41 on average)
- 2 dumps located far apart from each other

Waste collection inventory routing problem

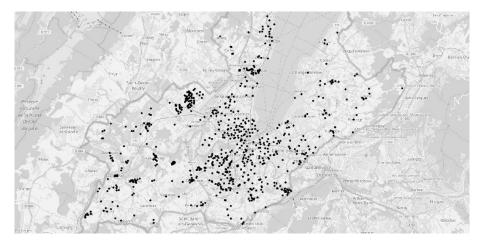
- 63 instances, each covering a week of white glass collections in Geneva, Switzerland in 2014, 2015, or 2016
- Planning horizon of 7 days
- Up to 2 heterogeneous vehicles
- Up to 53 containers (41 on average)
- 2 dumps located far apart from each other
- Overflow cost: 100 CHF

Waste collection inventory routing problem

- 63 instances, each covering a week of white glass collections in Geneva, Switzerland in 2014, 2015, or 2016
- Planning horizon of 7 days
- Up to 2 heterogeneous vehicles
- Up to 53 containers (41 on average)
- 2 dumps located far apart from each other
- Overflow cost: 100 CHF
- Simulation of undesirable events on the final solution

Waste collection IRP: Geography

Figure 5: Geneva service area



Waste collection IRP: Policies

- Probabilistic objective:
 - routing cost
 - expected overflow and emergency collection cost
 - expected route failure cost
 - we vary the emergency collection cost (100 CHF, 50 CHF, 25 CHF) and the route failure cost multiplier (1.00, 0.50, 0.25, 0.00)

Waste collection IRP: Policies

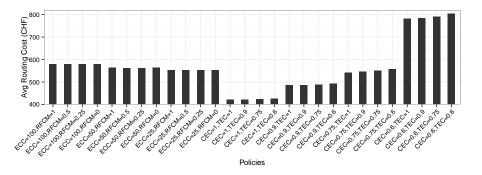
- Probabilistic objective:
 - routing cost
 - expected overflow and emergency collection cost
 - expected route failure cost
 - we vary the emergency collection cost (100 CHF, 50 CHF, 25 CHF) and the route failure cost multiplier (1.00, 0.50, 0.25, 0.00)

• Deterministic objective:

- routing cost only
- reduced container effective capacity
- reduced truck effective capacity
- we vary the container and truck effective capacities (1.00, 0.90, 0.75, 0.60)

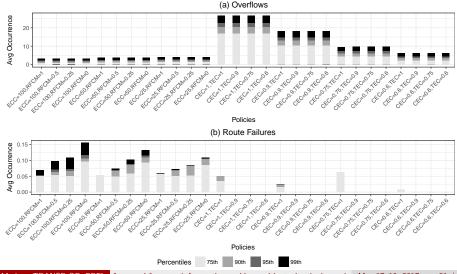
Waste collection IRP: Routing costs

Figure 6: Comparison of routing costs for probabilistic and deterministic policies



Waste collection IRP: Overflows and route failures

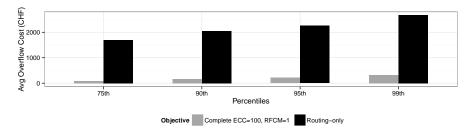
Figure 7: Comparison of undesirable events at different simulated percentiles



I. Markov TRANSP-OR, EPFL A general framework for routing problems with stochastic demands May 17–19, 2017 31 / 42

Waste collection IRP: Realized costs

Figure 8: Comparison of realized costs at different simulated percentiles



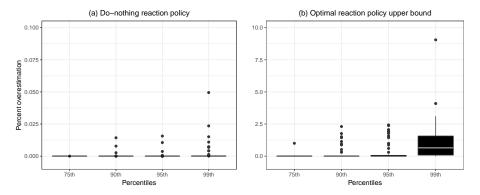
Waste collection IRP: Simulation and Tractability

Table 2: Impact of ECDFs on computation time

				Cost (CHF)			Runtime (s.)			ECDF calls (millions)		
ALNS version	Bins	ECC	RFCM	Best	Avg	Worst	Best	Avg	Worst	Best	Avg	Worst
Original	-	100	1	662.65	666.64	672.87	870.65	906.84	936.40	-	-	-
Original	1000	100	1	662.82	666.97	673.43	1028.87	1096.86	1153.05	84.91	94.93	105.52
Original	100	100	1	662.29	666.61	673.40	912.54	955.96	990.57	84.11	94.54	103.84
Efficient	1000	100	1	662.63	666.74	673.35	909.06	948.77	982.68	52.95	58.90	65.00
Efficient	100	100	1	662.49	666.46	672.73	869.52	903.81	932.79	52.94	58.44	63.90

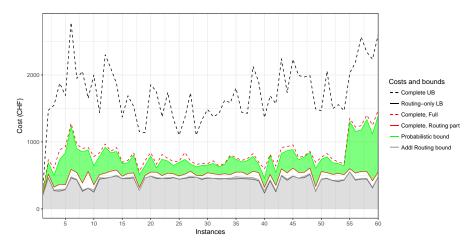
Waste collection IRP: Objective Overestimation

Figure 9: Objective function overestimation for two reaction policy extremes



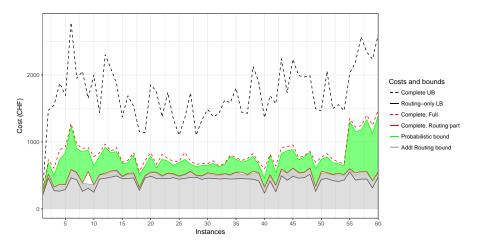
Waste collection IRP: Bounds

Figure 10: Heuristic bounds, single visit, gap = 17%



Waste collection IRP: Bounds

Figure 11: Heuristic bounds with re-optimization, single visit, gap = 7%



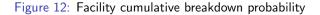
Facility maintenance

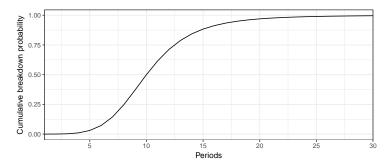
- 24 instances derived from the waste collection instances
- Planning horizon of 7 days
- Up to 2 vehicles
- Up to 50 containers (41 on average)

Facility maintenance

- 24 instances derived from the waste collection instances
- Planning horizon of 7 days
- Up to 2 vehicles
- Up to 50 containers (41 on average)
- Simulation of breakdowns on the final solution

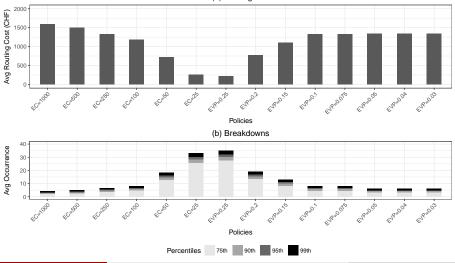
Facility maintenance: Breakdown probability





Facility maintenance: Routing cost and breakdowns

Figure 13: Verification of modeling approach



(a) Routing cost

Outline

- 1 Introduction
- 2 Stochastic Information
- 3 Formulation
- 4 Methodology
- 5 Numerical Experiments

- General framework for rich stochastic and probability-based routing problems
- Computationally tractable
- Corroborated by practical applications
- Much superior to classical deterministic approaches
- High quality efficient and stable solution methodology

- General framework for rich stochastic and probability-based routing problems
- Computationally tractable
- Corroborated by practical applications
- Much superior to classical deterministic approaches
- High quality efficient and stable solution methodology
- Next steps:
 - further work on the facility maintenance problem
 - further stability tests

- General framework for rich stochastic and probability-based routing problems
- Computationally tractable
- Corroborated by practical applications
- Much superior to classical deterministic approaches
- High quality efficient and stable solution methodology
- Next steps:
 - further work on the facility maintenance problem
 - further stability tests
- Future work:
 - further work on bounds
 - comparison to alternative approaches
 - generation of additional sets of realistic instances

Thank you. Questions?

Archetti, C., Bertazzi, L., Laporte, G., and Speranza, M. G. (2007). A branch-and-cut algorithm for a vendor-managed inventory-routing problem. *Transportation Science*, 41(3):382–391.