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Abstract

In this paper we aim at integrating the selection of a nesting structure to the maximum likelihood
framework of the parameter estimation. Given a finite set of nesting structures, the traditional
approach is to estimate the models corresponding to each of them and select a posteriori the
most appropriate one based on some fit statistics and informal testing procedures. However, the
number of possible nesting structures grows as a function of the number of alternatives.

Our approach simultaneously solves the problem of selecting the optimal nesting structure
and estimating its corresponding parameters with maximum likelihood. We call this discrete-
continuous maximum likelihood (DCML). We are able to linearize the logarithm in the objective
function so that it results in a mixed integer linear problem.
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1 Introduction

In the family of discrete choice models, the multinomial logit (MNL) model is the most
frequently used in practice. Its key advantage relies on the simplicity of its closed-form
probability expression. In the MNL model, the error terms are supposed to be independently
and identically distributed across alternatives and individuals. This leads to the independence
of irrelevant alternatives (IIA) property, a property which states that the ratio of two choice
probabilities is independent of the attributes or even the existence of any other alternatives. In
terms of substitution patterns, the IIA property implies unrealistic substitution patterns across
alternatives.

To overcome this limitation, more advanced models, that incorporate more realistic substitution
patterns by relaxing the assumptions of independent errors terms, have been proposed. Among
these more advanced models, the nested, cross nested and mixed logit models have been
extensively studied in the literature, mostly from a theoretical point of view. The common idea
behind these models is to allow patterns of correlation by placing the alternatives into several
groups called nests. Alternatives that belong to the same nest share a common error term and are
therefore correlated, while alternatives that are not in the same nest are independent. We refer
the interested reader to Bierlaire (2006) and Abbe et al. (2007) for a detailed analysis of the
cross-nested logit model (CNL) and to Walker et al. (2007) for an analysis on error component
logit-mixture models.

In some cases, it is clear which alternatives share unobserved attributes and the nesting structure
is obvious. However, in other cases there are several nesting structures that make intuitive
sense. In practice, to determine the most appropriate nesting structure, the analyst has several
options. The first option is to estimate a model for each possible nesting structure and to choose
a posteriori the one which best fits the data. Another option is to use a cross nested structure
where all alternatives belong to all nests and the membership parameters of each alternative to
each nest are estimated. However, the parameters of cross-nested logit models are often difficult
to estimate due to the non-convexity of the likelihood function.

We therefore propose to find the best –in terms of likelihood– nested logit model by introducing
binary variables that define the allocation of alternatives to nests. We fix the number of nests
and find the best nesting structure by estimating simultaneously the binary variables and the
continuous parameters in the utility functions. We build on the framework developed by Pacheco
et al. (forthcoming) and show that we can formulate the problem defined above as a mixed
integer linear problem (MILP). To the best of our knowledge, this is the first time that discrete
variables are used in the context of discrete choice models within the maximum likelihood





          

framework. The contributions of the paper are both introducing discrete-continuous maximum

likelihood (DCML) and linearizing the log-likelihood function by relying on simulation.

The remaining of the paper is organized as follows. The mathematical model is presented in
Section 2, followed by the case study in Section 3. Finally, the conclusions of the paper and
future research directions are presented in Section 4.

2 Mathematical model

In order to model the nesting structure, we use a nested logit model with the following utility
functions

Uin = Vin + εin, (1)

where Vin is the deterministic part of the utility function for alternative i and individual n. Vin is a
linear-in-parameters function of a vector of parameters to be estimated (β), observed attributes of
the alternatives (ain) and socioeconomic characteristics of the individual (sn), Vin = f (ain, sn, β).
εin are the error terms, that capture the correlation between alternatives. The choice set is denoted
as C.

Following Ben-Akiva and Lerman (1985), the error term associated with each alternative i that
belongs to nest m can be decomposed into a common error component, εmn, and an independent
error term, εimn

εin = εmn + εimn, (2)

where

• εmn is such that ε̃mn = εmn + ε′mn, where ε̃mn
iid
∼ EV(0, µ) and ε′mn

iid
∼ EV(0, µm).

• εimn
iid
∼ EV(0, µm),

Therefore, Equation (1) can be rewritten as

Uin = Vin + ε̃mn + (εimn − ε
′
mn), (3)

where ε̃mn
iid
∼ EV(0, µ), ε′mn

iid
∼ EV(0, µm), εimn

iid
∼ EV(0, µm). For normalization reasons, µ = 1

and µm ≥ µ = 1.

From the properties of the extreme value distribution, we know that if εimn ∼ EV(0, µm), then





          

ξimn = 1
µm
εimn ∼ EV(0, 1). Analogously, if ε′mn ∼ EV(0, µm), then ξ′mn = 1

µm
ε′mn ∼ EV(0, 1).

and Equation (3) can be rewritten as

Uin = Vin + ε̃mn +
1
µm

(ξimn − ξ
′
mn). (4)

Finally, as we don’t know a priori if alternative i belongs to nest m, we introduce the following
binary decision variables:

bim =

1 if alternative i belongs to nest m,

0 otherwise,
(5)

and our utility function (4) becomes:

Uin = Vin +

M∑
m=1

bim

(
ε̃mn +

1
µm

(ξimn − ξ
′
mn)

)
(6)

= Vin +

M∑
m=1

bimε̃mn +

M∑
m=1

(
bim

µm
(ξimn − ξ

′
mn)

)
. (7)

2.1 Objective function

In order to apply maximum likelihood, we want to maximize the following function

log

 N∏
n=1

I∏
i=1

Pn(i)din

 , (8)

where Pn(i) is the probability that individual n chooses alternative i, and din is an observed
variable that takes value 1 if individual n chooses alternative i and 0 otherwise. N is the
number of individuals and I is the number of alternatives, C = {1, 2, . . . , I}. The probability that
individual n chooses alternative i within her choice set is

Pn(i) = P(Uin ≥ U jn, ∀ j , i). (9)

Using the framework developed by Pacheco et al. (forthcoming) we can use simulation of the
error terms and avoid the non-linearities caused by the expression of the probabilities. This is
done by working with the values of the utility functions instead of with the probabilities. We
generate, for each error term, R draws based on the distributional assumptions. Once the draws
have been generated, we obtain the utility associated with each alternative i by each individual n





          

in each scenario r = 1, . . . ,R

Uinr = Vin +

M∑
m=1

bimε̃mnr +

M∑
m=1

(
bim

µm
(ξimnr − ξ

′
mnr)

)
. (10)

Then the objective function becomes

N∑
n=1

I∑
i=1

din log

 1
R

R∑
r=1

winr

 , (11)

where

winr =

1 if Uinr > U jnr ∀ j , i,

0 otherwise,
∀i, n, r. (12)

The only remaining non-linearity is the logarithm that appears in the objective function. Since∑R
r=1 winr can only take integer values from 1 to R, we can linearize it by introducing binary

variables denoted γinp defined as follows

γinp =

1 if
∑R

r=1 winr = p,

0 otherwise,
∀i, n, p. (13)

Then, Equation (11) is equivalent to

N∑
n=1

I∑
i=1

din

R∑
p=1

γinpLp, (14)

where Lp = log(p), p = 1, ...,R is a pre-processed vector of R components. The linearization of
Equation (13) is described in Section 2.2.





          

2.2 Constraints

Linearization of the utility functions In order to linearize Equation (10), we define vari-
ables µ̄m = 1

µm
∈ (0, 1] and τim = bimµ̄m. Then the linearization of Equation (10) is as follows

Uinr = f (ain, sn, β) +

M∑
m=1

bimε̃mnr +

M∑
m=1

τim(ξimnr − ξ
′
mnr), ∀i, n, r, (15)

τim ≤ bim, ∀i,m, (16)

τim ≤ µ̄m, ∀i,m, (17)

τim ≥ µ̄m + bim − 1, ∀i,m. (18)

Discounted utility We introduce the variable that denotes the availability of an alternative i

for an individual n as follows

yin =

1 if alternative i is available for individual n,

0 otherwise,
∀i, n. (19)

The discounted utility associated to individual n, alternative i and draw r is denoted zinr and
defined as

zinr =

Uinr if yin = 1,

`nr if yin = 0,
∀i, n, r. (20)

where `nr = min j∈C ` jnr is the smallest lower bound across all alternatives. The linear formulation
of Equation (20) is

lnr ≤ zinr, ∀i, n, r, (21)

zinr ≤ lnr + Minryin, ∀i, n, r, (22)

Uinr − Minr(1 − yin) ≤ zinr, ∀i, n, r, (23)

zinr ≤ Uinr, ∀i, n, r, (24)

as shown by Pacheco et al. (forthcoming).

Choice As defined in Equation (12), winr is a binary variable that takes value 1 if alternative i

is chosen by individual n in draw r and zero otherwise. The following constraints model the fact
that an individual can only choose one alternative per draw and that only available alternatives





          

can be chosen by an individual

I∑
i=1

winr = 1, ∀n, r, (25)

winr ≤ yin, ∀i, n, r. (26)

Moreover, based on the behavioral assumption, the chosen alternative of an individual corre-
sponds to its associated highest discounted utility. We introduce the continuous variable Unr that
is defined as

Unr = max
i∈C

zinr, ∀n, r. (27)

Its linear formulation (Pacheco et al. (forthcoming)) is given by

zinr ≤ Unr, ∀i, n, r, (28)

Unr ≤ zinr + Mnr(1 − winr) ∀i, n, r, (29)

where mnr = max j∈Cm jnr is the largest upper bound accross all alternatives, and Mnr = mnr − `nr

is the difference between the largest upper bound and the smallest lower bound.

Linearization of γinp Equation (13) can be linearized as follows

(R + 1)δ1
inp − 1 ≥

R∑
r=1

winr − p, ∀i, n, p, (30)

(R + 1)δ2
inp − 1 ≥ p −

R∑
r=1

winr, ∀i, n, p, (31)

δ1
inp + δ2

inp − 2γinp ≤ 1, ∀i, n, p, (32)
R∑

p=1

γinp = 1, ∀i, n, (33)

where δ1
inp, δ

2
inp are binary variables. To prove the equivalence between Equation (13) and

Equations (30)-(33) we consider three cases:

• If
∑R

r=1 winr = p, constraints (30)-(31) become

(R + 1)δ1
inp − 1 ≥ 0 ∀i, n, p, (34)

(R + 1)δ2
inp − 1 ≥ 0 ∀i, n, p. (35)





          

Constraints (34) and (35) impose that δ1
inp = δ2

inp = 1. Using this, constraint (32) is written

2 − 2γinp ≤ 1 ⇐⇒ 1 ≤ 2γinp ⇐⇒ γinp = 1. (36)

From constraint (33), γinr = 0 if r , p.
• If

∑R
r=1 winr > p, constraint (30) becomes

(R + 1)δ1
inp − 1 ≥

R∑
r=1

winr − p > 0 ⇐⇒ (R + 1)δ1
inp > 1 ⇐⇒ δ1

inp = 1 (37)

From constraint (33) we obtain that γinp = 0, so from constraint (32) δ2
inp = 0 and

constraint (32) is trivial.
• If

∑R
r=1 winr < p, the derivation is analogous to the previous case.

Nesting structure To express that each alternative belongs to exactly one nest we use the
following constraint

M∑
m=1

bim = 1, ∀i (38)

and in order to break possible symmetries

bim = 0, ∀m > i. (39)

Finally, for identification purposes, the scale of a nest with only one alternative must be 1. That
is, if

∑I
i=1 bim = 1 then µ̄m = 1, ∀m. This implication is linearized by the following constraints

I∑
i=1

bim ≤ Mqm, ∀m, (40)

2 −
I∑

i=1

bim ≤ Mtm, ∀m, (41)

qm + tm ≤ 1 + µ̄m, ∀m, (42)

where tm and qm are binary variables and M a big number. To prove the equivalence we consider
the following:

• If
∑I

i=1 bim = 1, constraints (40)-(41) become

1 ≤ Mqm, ∀m, (43)

1 ≤ Mtm, ∀m, . (44)





          

From constraint (43) we have that qm = 1, and from constraint (44) we have that tm = 1.
Then, constraint (42) becomes 2 ≤ 1 + µ̄m ⇐⇒ 1 ≤ µ̄m. Since by definition, µ̄m ∈ (0, 1],
we obtain that µ̄m = 1.

3 Case study

For the proof-of-concept we use a stated preferences mode choice case study collected in
Switzerland in 1998. The respondents provided information in order to analyze the impact of
the model innovation in transportation represented by the Swissmetro, a mag-lev underground
system, compared to the usual transport modes of car and train.

The choice set of the respondents is C = {car, train, swissmetro}. A possible assumption is that
the modes train and car share unobserved attributes due to the fact that they are both classic or
existing transportation modes. This is represented by Figure 1(a). One could also hypothesize
what is represented in Figure 1(b), that it is the alternatives train and swissmetro that share
unobserved attributes, due to the fact that they are both rail-based, unlike the car alternative.
Finally, it could also be that swissmetro and car are correlated due to the fact that they are
generally faster than the train alternative.

N1

innovative classic

cartrainswissmetro

((a)) Innovative vs. classic

N2

non-rail rail

car train swissmetro

((b)) Rail vs. non-rail

N3

slow fast

carswissmetrotrain

((c)) Fast vs. slow

Figure 1: Possible nesting structures with two nests.

Table 1 shows the model specification considered.

Parameter Car Train Swissmetro

AS CCAR 1 0 0
AS CS M 0 0 1
βCOS T COSTcar COSTtrain COSTsm
βHE 0 HEtrain HEsm
βT IME TIMEcar TIMEtrain TRAINsm

Table 1: Model specification - Deterministic part of the utility functions





          

Enumeration of the nesting structures In order to have a benchmark we first estimate the
models discussed above using pythonbiogeme (Bierlaire (2016)). The results, with the nesting
structures introduced in Figure 1, are presented in Table 2. Models N2 and N3 are not identified,
since both µRAIL and µFAS T reach the lower bounds. For this reason, the rest of the parameters, as
well as the final log likelihood is the same for both models. From these results we conclude that
the best model is N1. It is also better than an multinomial logit model (MNL) since µCLAS S IC is
significantly different from one.

N1 N2 N3
Parameter Value t-test Value t-test Value t-test

AS CCAR 0.0943 1.71 0.189 2.37 0.189 2.37
AS CS M 0.335 4.04 0.451 4.84 0.451 4.84
βCOS T -0.00860 -14.38 -0.0108 -15.90 -0.0108 -15.90
βHE -0.00380 -5.45 -0.00535 -5.45 -0.00535 -5.45
βT IME -0.00900 -8.38 -0.0128 -12.23 -0.0128 -12.23
µCLAS S IC 2.06 6.50 1 - - - -
µRAIL - - 1.00 0.001 - -
µFAS T - - - - 1.00 0.001

L(β̂) -5219.883 -5315.386 -5315.386

Table 2: Estimation results: biogeme

The next step is to obtain results from the framework defined in Section 2, and compare them to
the results from Table 2.

4 Conclusion

We have introduced the concept of discrete-continuous maximum likelihood and shown that it
can be modeled as a mixed integer linear program. This framework allows to simultaneously
estimate the (continuous) parameters of the utility function as well as the (discrete) allocation
parameters of alternatives to nests.

Moreover, we have found a linear approximation of the log-likelihood function. This framework
can therefore also be used to insure a global optimum in other discrete choice models where

1t-tests for mu parameters are against one.





          

exact expression of the log-likelihood is non-convex, such as cross-nested logit models, when
the nesting structure of the alternatives is known.

We consider a case study with three alternatives so that a full enumeration of the nesting
structures is possible, in order to have a benchmark for the results that we will obtain. The
data used is a stated preference mode choice case study developed in Switzerland in 1998.
This research is still in progress. The next step is to obtain results using the MILP framework
developed in order to compare them with the results from the full enumeration of nesting
structures and to show that our approach is numerically feasible.
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A Complete model

The discrete continuous maximum likelihood problem can be formalized as follows:

max
N∑

n=1

I∑
i=1

din

R∑
p=1

γinpLp

subject to Uinr = f (ain, sin, β) +

M∑
m=1

bim ˜εmnr +

M∑
m=1

τim(ξimnr + ξ′mnr) ∀i, n, r (45)

winr ≤ yin ∀i, n, r (46)

lnr ≤ zinr ∀i, n, r (47)

zinr ≤ lnr + Minryin ∀i, n, r (48)

Uinr − Minr(1 − yin) ≤ zinr ∀i, n, r (49)

zinr ≤ Uinr ∀i, n, r (50)

zinr ≤ Unr ∀i, n, r (51)

Unr ≤ zinr + Mnr(1 − winr) ∀i, n, r (52)
I∑

i=1

winr = 1 ∀n, r (53)

M∑
m=1

bim = 1 ∀i (54)

bim = 0 ∀m > i (55)

τim ≤ bim ∀i,m (56)

τim ≤ µ̄m ∀i,m (57)

τim ≥ µ̄m + bim − 1 ∀i,m (58)
I∑

i=1

bim ≤ Msm ∀m (59)

2 −
I∑

i=1

bim ≤ Mtm ∀m (60)

sm + tm ≤ 1 + µ̄m ∀m (61)

(R + 1)δ1
inp − 1 ≥

R∑
r=1

winr − p ∀i, n, p (62)

(R + 1)δ2
inp − 1 ≥ p −

R∑
r=1

winr ∀i, n, p (63)

δ1
inp + δ2

inp − 2γinp ≤ 1 ∀i, n, p (64)
R∑

p=1

γinp = 1 ∀i, n (65)

sm, tm ∈ {0, 1} ∀m (66)

bim ∈ {0, 1} ∀i,m (67)

winr, δ
1
inr, δ

2
inr ∈ {0, 1} ∀i, n, r (68)

γinp ∈ {0, 1} ∀i, n, p (69)

µ̄m ∈ [0, 1] ∀m (70)

τim ∈ [0, 1] ∀i,m (71)

β ∈ Rp (72)




          

• (45) are the utility functions.
• (46)-(48) are used to linearize bimσm.
• (49)-(52) are equivalent to zinr = Uinr if yin = 1, zinr = lnr if yin = 0, which sets the utility

of a given alternative to a lower bound if the alternative is not available.
• (53) express the fact that each customer chooses one alternative.
• (54) say that only available alternatives can be selected by individuals.
• (55)-(56) are equivalent to Unr = maxi zinr.
• Constraints (57)-(60) are equivalent to γinp = 1 ⇐⇒

∑R
r=1 winr = p.

• (61) say that each alternative belongs to exactly one nest.
• (62) are used as a symmetry-breaking constraints.
• (63) to (68) define the space of solutions.
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