Emerging Technologies for Computing
 Giovanni De Micheli

CPPFl

Outline

- Introduction and motivation
- Technological innovations
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- New technologies for broader computing systems
- Device fusion
- Conclusions

Computing today

Computing today

(c) Giovanni De Micheli

Walls

- High-performance, energy-proportional servers
- High speed computation and data retrieval
- Ultra-low power computing and communication
- Connect myriad of devices for Internet of Things

(c) Giovanni De Micheli

Walls and game changers

- New computing paradigms
- Quantum computing (superposition, entanglement)
- Analog computing (memristors, dynamical systems)
- Neuromoprhic computing
- In-memory computing
- New materials and devices
- Enhanced CMOS devices
- Exploit heterogeneous integration
- Parallelism in algorithms and software
- Exploit new computational methods
- Use new design methods and tools
- Revisit hardware synthesis and design techniques

Outline

- Introduction and motivation
- Technological innovations
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- New technologies for broader computing systems
- Device fusion
- Conclusions

Semiconductor technologies

- Most manufacturing technologies have geometries in the nanometer range
- Recently-established nano-electronic technologies
- Tri-Gate (FinFET) transistors
- Fully-depleted Silicon on Insulator (FDSOI)
- Downscaling geometries is still effective
- Emerging nano-electronic technologies
- New materials and devices for processing and memory

22 nm Tri-Gate Transistors

32 nm Planar Transistors

22 nm Tri-Gate Transistors

[Courtesy: M. Bohr]
(c) Giovanni De Micheli

Tri-Gate vs. planar transistors

- Smaller current for same gate voltage (when offf)
- Same gate delay for smaller operational voltage
[Source: Intel]

Fully Depleted Sol Transistors

[Courtesy: STMicroelectronics]

- Transistor is built on top of buried oxide (BOX)
- Thin, undoped channel (fully depleted)
- Fine power-consumption control through body bias

Fully Depleted Sol Transistors

- Energy efficiency
- Forward body biasing

Outline

- Introduction and motivation
- Technological innovations
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- New technologies for broader computing systems
- Device fusion
- Conclusions

Emerging nano-technologies

- Enhanced silicon CMOS is likely to remain the main manufacturing process in the medium term
- The 7 nm and 5 nm technology nodes are on the way
- What are the candidate technologies beyond the $5 n m$ node?
- Silicon Nanowires (SiNW)
- Carbon Nanotubes (CNT)
- 2D devices (Flatronics)
- ... and many others

- What are the differentiators and common denominators from a design standpoint?

Silicon Nanowire Transistor

- Fully compatible with CMOS process
- Gate all around
- High $I_{\text {on }} / I_{\text {off }}$ ratio

Vertically-aligned horizontal SiNW

(c) Giovanni De Micheli

FinFET to Nanowire FET

FinFET
NW FET

Vertical silicon nanowire transistors

- Fully compatible with CMOS process
- Higher device density
- More complex fabrication process
[Guerfi, Nanoscale 16]
(c) Giovanni De Micheli

Vertical silicon nanowire arrays

(c) Giovanni De Micheli
[Larrieu, SS Electronics17]

Carbon Nanotube Transistors

- CNTs benefit from higher mobility and thus higher currents
- CNTs grown separately but can be ported to Si wafers
- Handling CNT imperfection is major design and fabrication issue

CNT nanocomputer

- First CNT computing engine
- Runs 20 MIPS instructions
- Multitasking

[Shulaker, Wong, Mitra et al, NatureNano 13]
(c) Giovanni De Micheli

2D electronic technologies

[Kis, Nature Nano 2011]

- Graphene, MoS_{2} and other materials
- Single or few atomic layers
- High $\mathrm{I}_{\text {on }} / \mathrm{I}_{\text {off }}$ ratio for $\mathrm{MoS}_{2}\left(10^{8}\right)$ but n-type mainly

MoS_{2} nanocomputer

- First MoS_{2} computing engine
- Runs 4instructions
- 115 N -xtors (enhancement load)
- 2 micron feature size

[Wacter et al. Nature Comm, 2017]
(c) Giovanni De Micheli

Double gate SiNW FET

- Electrc
- Electr

- Comparator-activated switch

Fabricated device view

100 nm gate segments
350-nm long nanowires
20-40 nm wire diameter

Device cross-sections

Device working principle

$$
\begin{gathered}
\text { PG = } 1 \rightarrow \text { n-type } \\
C G=0 \\
\text { PG = } 1 \rightarrow \text { n-type } \\
C G=1 \\
\\
\text { PG }=0 \rightarrow \text { p-type } \\
C G=1 \\
\\
\text { PG }=0 \rightarrow p \text {-type } \\
C G=0
\end{gathered}
$$

Device $I_{d} / V_{c g}$

Similar devices

- Controlled devices can be realized with various materials and shapes (e.g., FINFET)
- SiNW controlled-polarity devices can be made with one polarity gate on one side [Heinzig]
- Polarity-gate bias can enable:
- Steep Subthreshold
- Multiple threshold voltages

Three-independent-gate SiNWFET

*Structure

- Vertically stacked nanowires
- 3 independent gate regions
- Schottky barrier contacts at S/D
- Polarity and Vt controllability
* Electrostatic control

S	D	PGS	ce	PGD	State
0	1	0	0	0	ON (P-type)
		1	1	1	ON (N-type)
		0	1	0	OFF (LVT)
		1	0	1	OFF (LVT)
		0	0	1	OFF (HVT)
		0	1	1	OFF (HVT)

Controllable polarity in 2D

2D Controllable-polarity transistor (WSe_{2})

[Resta, Scientific Reports 2016]
(c) Giovanni De Micheli

Modeling various emerging nanogates

Outline

- Introduction and motivation
- Technological innovations
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- New technologies for broader computing systems
- Device fusion
- Conclusions

Logic level abstraction

- Three terminal transistors are switches
- A loaded transistor is an inverter
- Controllable-polarity transistors compare two values
- A loaded transistor is an exclusive or (EXOR)
- The intrinsic higher computational expressiveness leads to more efficient data-path design
- The larger number of terminals must be compensated by smart wiring
- Fine-grained programmability

Logic cell design

- CMOS complementary logic is efficient only for negative-unate functions (INV, NAND, NOR...etc)
- Controllable-polarity logic is efficient for all functions
- Best for XOR-dominated circuits (binate functions)

Layout abstraction and regularity

(c) Giovanni De Micheli

Logic Design Abstraction: Biconditional Binary Decision Diagrams

- Native canonical data structure for logic design
- Biconditional expansion:

$$
f(v, w, . ., z)=(v \oplus w) f\left(w^{\prime}, w, . ., z\right)+(v \oplus \bar{\oplus}) f(w, w, . ., z)
$$

- Each BBDD node:
- Has two branching variables
- Implements the biconditional expansion
- Reduces to Shannon's expansion for single-input functions

BBDDs are Compact (Majority Function)

New logic models and data structures

- Design with emerging devices requires exploring new logic models combining:
- XOR primitives (programmable complementation)
- MAJority functions (programmable AND/OR)
- The resulting models and algorithms have wide applicability to logic design (including CMOS)

Majority logic: a new/old paradigm?

In fact <x,y,z> is probably the most important ternary operation in the entire universe, because it has amazing properties that are continuously being discovered and rediscovered.
Donald Knuth, The Art of Computer Programming, Vol. 4A

- Majority Inverter graphs as data structure for logic synthesis
- Reachable design space
- Surprising experimental results

[Courtesy: Amaru', DAC 14]

Experimental Results: MCNC circuits

MIGs \& AIGs better than BDDs

MIGs size \& activity ~AlGs

MIGs depth
-20\% w.r.t AIGs

CMOS Design Results

Advanced 22nm CMOS
MIG as front-end to LS \& PD
Behavioral

All circuits underwent formal verification with success

Well-established 90 nm CMOS
MIG as front-end to LS \& PD
MIG

Both circuits underwent formal verification with success

Modeling various emerging nanogates

Resistive RAMs

- Non-volatile, low-power dense RAM arrays
- Based on resistive switching:
- Various physical mechanisms
- Can be realized in the BEOL
- 3D integration

[Fujitsu MB85AS4MT]
4M (512kx8)

Oxide ReRAM switching

[Su et al.Functional Metal Oxide Nanostructures, 2011]
(c) Giovanni De Micheli

Oxide Resistive RAMs

- Formation of an oxygen vacancy filament
- Reversible write: set/reset
- Low-current read
- Unipolar and bipolar switching

(c) Giovanni De Micheli
[P. Wong et al 2016]

ReRAM integrated devices

TiN/TaOx/TiN forming-free, $\mathrm{V}_{\text {set }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {reset }}=1.3 \mathrm{~V}$

ReRAM as computational element

$Z_{n}=P Z+Q^{\prime} Z^{\prime}+P Q^{\prime}$
$Z_{n}=\operatorname{Maj}\left(P, Q^{\prime}, Z\right)$

In memory processing/computing

- New paradigm for big data processing
- Data in main memory and operated upon locally
- Hardware:
- Large memory arrays with embedded processors
- Technology compatibility
- What about ReRAM arrays?
- Convert small portion of memory array to perform computation
- Map data flow computation to memory cell control
- Create appropriate local controller
- Use memory for storage

PLIM Architecture

(c) Giovanni De Micheli

ReRAMs for artificial neurons

[Tuma et al, NatureNano 16]
(c) Giovanni De Micheli

Resistance modulation (\# of pulses)

Pulses: -1V, 1us, 20\%, 10ms between pulses

10x resistance
modulation with less
than 100 pulses
[Courtesy: Leblebici]

Outline

- Introduction and motivation
- Technological innovations
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- New technologies for broader computing systems
- Device fusion
- Conclusions

What is next?

- Technology hybridization
- Fusion of sensing and computing
- 3D integration with sensors
- Heterogeneous integration
- Sequential integration

[Batude, IEDM 14]
(c) Giovanni De Micheli
[Sacchetto, Nanoscale12]

SiNWs: ideal biosensing support

1. Nano size

- Best interface to proteins

SENSITIVITY

2. Surface-to-volume ratio

- Larger interaction area
- Charge confinement

3. Silicon biomodification \Rightarrow SPECIFICITY
4. Compatibility \Rightarrow INTEGRATION

SiNW biosensors

Example of sensor integration

Muti-sensor for lab animals

Chip implant in mouse

Chip layers

Step injection response
[Baj-Rossi, 15]

Outline

- Introduction and motivation
- Technological innovations
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- New technologies for broader computing systems
- Device fusion
- Conclusions

Conclusions

- Computing is evolving in various directions and permeates everyday life and activities
- Computing is still mainly based on von Neuman architectures, switching theory and silicon devices
- New materials and devices can change the physical substrate of computation, making it more efficient and broader in scope
- Progress will require a strong coordination of technology, architecture and software as well as design methods and tools

Thank you

- Yusuf Leblebici (EPFL)
- Pierre Emmanuel Gaillardon (U. Utah)
- Davide Sacchetto (CSEM)
- Michele de Marchi (ESPROS Photonics)

Thank you

