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Abstract

The security of public-key cryptography relies on well-studied hard problems, problems

for which we do not have efficient algorithms. Factorization and discrete logarithm are

the two most known and used hard problems. Unfortunately, they can be easily solved

on a quantum computer by Shor’s algorithm. Also, the research area of cryptography

demands for crypto-diversity which says that we should offer a range of hard problems

for public-key cryptography. If one hard problem proves to be easy, we should be able to

provide alternative solutions. Some of the candidates for post-quantum hard problems,

i.e. problems which are believed to be hard even on a quantum computer, are the

Learning Parity with Noise (LPN), the Learning with Errors (LWE) and the Shortest

Vector Problem (SVP). A thorough study of these problems is needed in order to assess

their hardness. In this thesis we focus on the algorithmic study of LPN.

LPN is a hard problem that is attractive, as it is believed to be post-quantum res-

istant and suitable for lightweight devices. In practice, it has been employed in several

encryption schemes and authentication protocols.

At the beginning of this thesis, we take a look at the existing LPN solving algorithms.

We provide the theoretical analysis that assesses their complexity. We compare the the-

oretical results with practice by implementing these algorithms. We study the efficiency

of all LPN solving algorithms which allow us to provide secure parameters that can be

used in practice.

We push further the state of the art by improving the existing algorithms with the

help of two new frameworks. In the first framework, we split an LPN solving algorithm

into atomic steps. We study their complexity, how they impact the other steps and

we construct an algorithm that optimises their use. Given an LPN instance that is

characterized by the noise level and the secret size, our algorithm provides the steps to

follow in order to solve the instance with optimal complexity. In this way, we can assess

if an LPN instance provides the security we require and we show what are the secure

instances for the applications that rely on LPN.

The second framework handles problems that can be decomposed into steps of equal

complexity. Here, we assume that we have an adversary that has access to a finite or

infinite number of instances of the same problem. The goal of the adversary is to succeed

in just one instance as soon as possible. Our framework provides the strategy that

achieves this. We characterize an LPN solving algorithm in this framework and show
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that we can improve its complexity in the scenario where the adversary is restricted.

We show that other problems, like password guessing, can be modelled in the same

framework.

Keywords: Learning Parity with Noise, LPN, algorithmic study, cryptography, Walsh

Hadamard transform, BKW, LF1, LF2, covering codes, Gaussian elimination, post-

quantum cryptography, public-key cryptography, password quessing
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Résumé

La sécurité de la cryptographie à clé publique est basée sur des problèmes mathématiques

supposés difficiles à résoudre. La factorisation et le logarithme discret sont deux problèmes

de ce type. Ce sont les plus connus et les plus utilisés. Malheureusement, ils deviennent

faciles à résoudre avec l’algorithme de Shor sur un ordinateur quantique. La recherche en

cryptographie exige également de la crypto-diversité. Cette dernière demande que l’on

offre une variété de problèmes difficiles à résoudre en cryptographie à clé publique. Si un

problème se révèle facile à résoudre, nous devons être capable de proposer des solutions

alternatives. Le problème Learning Parity with Noise (LPN), le problème Learning with

Errors (LWE) et le problème Shortest Vector Problem (SVP) sont quelques candidats de

problèmes mathématiques difficiles à résoudre sur un ordinateur quantique. Une étude

approfondie de ces problèmes est nécessaire afin d’évaluer leur sécurité. Dans cette thèse,

nous effectuons une étude algorithmique approfondie de LPN.

LPN est un problème qui est intéressant, car on le suppose difficile à résoudre sur

un ordinateur quantique. Il est aussi adapté pour l’utilisation de la cryptogrpahie sur

des appareils bas-coût. En pratique, ce problème est utilisé dans plusieurs systèmes de

chiffrement et protocoles d’authentification.

Au début de cette thèse, nous étudions les algorithmes existants qui résolvent LPN.

Nous présentons une analyse théorique qui évalue leur complexité. Nous comparons les

résultats théoriques avec la pratique. Nous étudions l’efficacité de tous ces algorithmes

et cela nous permet de fournir des paramètres qui sont sûrs et qui peuvent être utilisés

en pratique.

Nous poussons l’état de l’art en améliorant les algorithmes existants à l’aide de deux

frameworks. Dans le premier, nous séparons les algorithmes résolvant LPN en étapes

atomiques. Nous étudions la complexité de chaque étape ainsi que la façon dont ces

étapes interagissent. Nous construisons un algorithme qui optimise leur utilisation.

Étant donné une instance LPN, qui est caractérisée par un niveau de bruit et une taille

de secret, notre algorithme fournit les étapes à suivre pour résoudre l’instance avec une

complexité optimale. De cette façon, nous pouvons évaluer si une instance LPN fournit la

sécurité nécessaire et nous montrons quelles sont les instances sûres pour les applications

qui utilisent LPN.

Le second framework traite des problèmes qui peuvent être décomposés en étapes

de même complexité. Ici, nous supposons que nous avons un adversaire qui a accès à

vii
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un nombre fini ou infini d’instances du même problème. Le but de l’adversaire est de

résoudre une seule instance le plus vite possible. Notre framework fournit la stratégie qui

permet d’atteindre cet objectif. Nous adaptons un algorithme qui résout LPN dans ce

framework et nous montrons que nous pouvons améliorer sa complexité dans le scénario

où l’adversaire est restreint en nombre de requètes. Nous montrons aussi que d’autres

problèmes, comme celui demandant de deviner un mot de passe, peuvent être modelés

à l’aide de ce même framework.

Mots clefs: Learning Parity with Noise, LPN, étude algorithmique, cryptographie, trans-

formée d’Hadamard, BKW, LF1, LF2, code couvrant, élimination de Gauss-Jordan,

cryptographie post-quantique, cryptographie à clé publique, deviner un mot de passe
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s, i să ı̂nvăt, de la tine.
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Chapter1
Introduction

The area of cryptography has developed tremendously in the last decades, both in its

definition and in its use. Nowadays, cryptography is the science of providing primit-

ives/solutions for scenarios in which we deal with adversaries and we want to ensure

properties like confidentiality. Cryptography is ubiquitous, it is a tool that every person

is using. Anyone with access to the Internet benefits from the security that cryptography

offers. It can be about passwords, accessing the bank account or securely storing data

in the cloud. In all these scenarios we use cryptography. Whether it is about ensuring

confidentiality, integrity, authentication, non repudiation, unpredictability, cryptography

offers a large palette of primitives.

The most well-known primitive of cryptography is the encryption scheme. An en-

cryption scheme ensures confidentiality, i.e. when a message m is encrypted, only the

legitimate recipient can decrypt and have access to it. In cryptography, we have two

types of encryption: symmetric and public-key. On the symmetric encryption side we

have the block ciphers (e.g. DES [Des77], AES [FIP01]) and the stream ciphers (e.g.

RC4 ). Two main representatives of the public-key encryption are RSA [RSA78] and

ElGamal [Gam85]. These two encryption schemes base their security on two hard prob-

lems: factorization and discrete logarithm, respectively. We believe that these two prob-

lems are hard based on the unsuccessful efforts of the cryptography and mathematics

community to find efficient algorithms to solve them. If a new algorithm is able to

solve easily one of these problems, then the corresponding encryption scheme becomes

insecure. RSA and ElGamal are extensively studied and used in practice.

Besides the two aforementioned hard problems, we have several other candidates:

Learning Parity with Noise (LPN), Learning with Errors (LWE) [Reg05], the quadratic

residuosity problem, the shortest vector problem, etc..

One might ask: if we have the factorization and the discrete logarithm problems,

which we believe to be hard, why should we try to analyse new problems?

The first and the most important reason is that we need to have crypto diversity.

Assume half of our encryption schemes base their security on factorization and half on
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discrete logarithm. Having only two standard hard problems can simplify the choice

of someone who needs to use an encryption scheme. But, if one discovers how to eas-

ily solve one of these problems, then half of our encryption schemes become insecure.

Cryptography needs to offer a range of hard problems that can be the starting point for

an encryption scheme. In order to create a pool of such problems, we need to carefully

study them in order to assess their hardness. Different problems can better fit to dif-

ferent scenarios or platforms. So, having more choices can offer more flexibility and a

better match.

Secondly, both problems are easily solved by a quantum computer with the Shor’s

algorithm [Sho97]. Thus, we cannot count on them in a quantum computer era and

we need to provide alternatives that are post-quantum resistant. While there is yet

no quantum computer capable of solving such problems, progresses are done [VSB+01,

LBYP07, LWL+07, LBC+12, MLL+12, XZL+12, DB14] in this direction and we cannot

know when this will become reality. Hence, we need to propose a standard for post-

quantum cryptography.

This thesis focuses on the analysis of the Learning Parity with Noise (LPN) problem,

on the implementation of the LPN solving algorithms existing in the literature and on

improvements to these algorithms.

We study LPN, as it is a good candidate for post-quantum cryptography. It is also a

good candidate for lightweight devices.

Informally, the LPN problem asks to solve a noisy binary system of linear equations

(all the operations are done modulo 2). I.e., given an uniformly distributed secret vector

s ∈ {0, 1}k and an uniformly distributed vector v ∈ {0, 1}k , for which we compute their

inner product 〈s, v〉 =
∑k

i=1 sivi, we make public the value of v and c = 〈s, v〉 ⊕ d,

where d ∈ {0, 1} is the noise. The value of d is 1 with probability τ ∈ [0, 12 ]. Given

many such equations, one is asked to recover the value of s. Note that the noise is the

variable that gives hardness to the problem. If we always have d = 0, then s can be

easily recovered with the Gaussian elimination algorithm. Depending on the application

where it is instantiated, the noise level in LPN can be adjusted and offer a degree of

flexibility. An LPN instance is characterized by two parameters: the size of the secret,

k, and the noise level, τ .

The LWE problem is a generalization of LPN, where, instead of working modulo 2

we work in a ring Zq. While there are quantum and classical reductions [Reg05, Pei09,

BLP+13] from a worst-case problem on lattices to LWE that attest the hardness of LWE,

this reduction does not exist for LPN. Thus, the best way to assess its hardness is by

trying to design and improve algorithms that solve it.

Here, we analyse the existing LPN solving algorithms. This allows us to define the

memory and time complexity needed to solve this problem. While this is a theoretical

work, we validate our analysis by comparing the theoretical results with the practical

ones offered by an implementation. We further improve the complexity of an LPN solving

algorithm. This allows us to asses the hardness of LPN and to propose secure parameters
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for the cryptographic primitives that base their security on it.

For instance, we show that RSA with 2048-bit moduli or ECDH with a secp224r1

curve is equivalent to LPN with 512-bit secret and τ = 0.4.

Thus, this thesis deepens the study of the LPN problem by formally analysing it, by

improving the existing algorithms and by validating our theoretical results with practical

ones.

Outline of the Thesis

We provide the formal definition of LPN and give an overview of the existing LPN

heuristic solving algorithms in Chapters 2 and 3. All these algorithms are presented in

a unified framework where an LPN solving algorithm has two phases: a reduction phase

and a solving phase. The reduction phase reduces the size of the secret and the solving

phase recovers the truncated secret. This framework allows us to better compare the

algorithms and to give an intuition on which methods are more efficient. We describe

the algorithms as they were presented in the literature and we bring our improvements

by providing a more detailed analysis and by using better bounds. While most of the

algorithms are generic, we present three algorithms for the case when the secret is sparse,

i.e. it has a small Hamming weight. For all the algorithms we describe, we state their

complexity in terms of number of LPN equations, memory and time.

Our theoretical analysis is compared with the practice in Chapter 4. We implement

the algorithms described in Chapter 3 and study the gap between the theoretical and

the practical results. We discover that the results provided by the implementation are

very close to what the theory dictates. After this comparison, we compare all the LPN

solving algorithms for the case when the secret is sparse. Having validated our heuristic,

we provide the security offered by each algorithm when we vary the size of the secret

and the level of noise. Having these results, the LPN based cryptographic primitives can

instantiate LPN with secure parameters. This also allows us to see what is the best LPN

solving algorithm depending on the noise level.

Chapters 5 and 6 focus on methods that allow us to improve the performance of the

LPN solving algorithms. In Chapter 5, we represent an LPN algorithm as a sequence of

reduction steps followed at the end by a solving step. We maintain the same framework

as in Chapter 3 but we look more into the details on how we can improve the reduction

phase. We construct a graph of all possible reduction steps and search for the chain of

steps that minimizes the time complexity while trying to keep the noise level as low as

possible. For this, we construct an algorithm that allows us to search in an efficient way

the optimal chains. This method automatizes the LPN solving algorithms: given any

LPN instance our algorithm gives us what is the best complexity we can achieve together

with the steps that need to be followed in order to obtain that complexity.

Chapter 6 introduces a framework where we have an adversary that can mount sev-
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eral attacks (e.g. key searches). These attacks can be broken down into steps of equal

complexity. An attacker can stop and resume an attack. The question we answer in

this scenario is what strategy an adversary should adopt such that he succeeds in one

of these attacks as fast of possible. This framework is a general one and can be adopted

to several problems. In this chapter, we focus on LPN and password guessing. With

this framework we improve the complexity of an LPN solving algorithm in which we are

limited in the number of equations.

We conclude and present the future work in Chapter 7.
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Chapter2
Preliminaries

In this chapter, we introduce notations, definitions and results that are used in the next

chapters. In Section 2.1, we present the notations used for describing the LPN problem.

In Section 2.2, we provide the formal definition of the Learning Parity with Noise (LPN)

problem and describe the parameters that characterize an LPN solving algorithm. We

recall some of the Hoeffding’s bounds and the Central Limit Theorem in Sections 2.3

and 2.4. These results are used in the analysis of LPN solving algorithms. Section 2.5

gives the definition of the Walsh Hadamard Transform that we use for our algorithms.

Definitions for linear codes, perfect and quasi-perfect codes are presented in Section 2.6.

2.1 Notations and Preliminaries

Let 〈·, ·〉 denote the inner product and let ⊕ denote the bitwise XOR. By Zp we denote

the quotient group Z/pZ and we have Z2 = {0, 1}. For a domain D, we denote by

x
U←− D the fact that x is drawn uniformly at random from D. We use small letters

for vectors and capital letters for matrices. We represent a binary vector v of size k as

v = (v1, . . . , vk), where vi is the i
th bit of v. We denote the Hamming weight of a vector

v, i.e. the number of non-zero elements of v, by HW(v).

By Berτ we define the Bernoulli distribution with parameter τ , i.e. for a random

variable X following Berτ ,

Pr[X = 1] = τ = 1− Pr[X = 0].

The bias of a boolean random variable X is defined as δ = E((−1)X ). Thus, for a

Bernoulli variable, we have δ = 1 − 2τ . By Berkτ we denote the binomial distribution

with parameters k and τ . I.e. Berkτ is the sum of k independent random variables that

follow the Berτ distribution. For a random variable Y following Berkτ , we have
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Pr[Y = i] =

{(k
i

)
τ i(1− τ)k−i for i ≤ k

0 for i > k.

Given X and Y, two discrete distributions over a support Z, we define by d(X ,Y) the
statistical distance between the two distributions as follows:

d(X ,Y) = 1

2

∑
z∈Z
|X (z) − Y(z)|,

where by |x| we denote the absolute value of the real value x.

2.2 Learning Parity with Noise Problem

LPN is a well-known problem studied in cryptography, coding theory and machine learn-

ing. LPN is believed to be resistant to quantum computers. This makes it a good candid-

ate to the number-theoretic problems (e.g. factorization and discrete logarithm) which

can be solved easily with quantum algorithms. Also, due to its simplicity, it is a nice

candidate for lightweight devices. Among the cryptographic applications where LPN

or LPN variants are deployed, we first have the HB family of authentication protocols:

HB [HB01], HB+ [JW05], HB++ [BCD06], HB# [GRS08] and AUTH [KPC+11]. An

LPN-based authentication scheme secure against Man-in-the-Middle attacks was presen-

ted in Crypto 2013 [LM13]. There are also several encryption schemes based on LPN:

Alekhnovich [Ale03] presents two public-key schemes that encrypt one bit at a time.

Later, Gilbert, Robshaw and Seurin [GRS08] introduce LPN-C, a symmetric crypto-

graphic system. Two schemes that improve upon Alekhnovich’s scheme are introduced

by Döttling at al [DMN12] and Damg̊ard and Sunoo [DP12]. In PKC 2014, Kiltz et

al. [KMP14] propose an alternative scheme to [DMN12]. Duc and Vaudenay [DV13]

introduce HELEN, an LPN-based public-key scheme for which they propose concrete

parameters for different security levels. There are several PRNG [BFKL93, ACPS09]

based on LPN.

The hardness of this problem was discussed first by Kearns in [Kea93]. It is believed to

be hard and is closely related to the long-standing open problem of efficiently decoding

random linear codes. Also, LPN is a special case of the Learning With Errors (LWE)

problem [Reg05], where, instead of the ring Zp, we work in Z2. There are quantum and

classical reductions [Reg05, Pei09, BLP+13] from a worst-case problem on lattices to

LWE that attest the hardness of LWE. But these reductions do not work for the LPN

problem and thus, prove nothing about its hardness.

The LPN problem can be seen as a noisy system of linear equations in the binary

domain. More specifically, we have a secret s and an adversary that has access to an

LPN oracle which provides him tuples of uniformly distributed binary vectors vi and the

inner product between s and vi to which some noise was added. The noise is represented
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by a Bernoulli variable with a probability τ of the noise bit to be 1. In the following,

we assume w.l.o.g. that τ ∈ [0, 12 ], otherwise we can change τ to 1− τ . The goal of the

adversary is to recover the secret s. So, the problem asks to recover a secret vector s

given access to noisy inner products of itself with random vectors. Below, we present

the formal definition.

Definition 2.1 (LPN oracle). Let s
U←− Z

k
2, let τ ∈]0, 12 [ be a constant noise parameter

and let Berτ be the Bernoulli distribution with parameter τ . Denote by Ds,τ the distri-

bution defined as

{(v, c) | v U←− Z
k
2, c = 〈v, s〉 ⊕ d, d← Berτ} ∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples according

to Ds,τ .

2.2.1 Search LPN

Definition 2.2 (Search LPN). Given access to an LPN oracle OLPN
s,τ , find the vector

s. We denote by LPNk,τ the LPN instance where the secret has size k and the noise

parameter is τ . Let k′ ≤ k. We say that an algorithm M (n, t,m, θ, k′)-solves the search

LPNk,τ problem if

Pr[MOLPN
s,τ (1k) = (s1 . . . sk′) | s U←− Z

k
2] ≥ θ,

andM runs in time t, uses memory m and asks at most n queries from the LPN oracle.

Note that we consider here the problem of recovering only a part of the secret.

Throughout the literature, this is how the LPN problem is formulated. The reason

for doing so is that the recovery of the first k′ bits dominates the overall complexity.

Once we recover part of the secret, the new problem of recovering a shorter secret of

k − k′ bits is easier. We will discuss more about this in Section 3.4.

Easy instances of LPN occur when τ < 1
k , as in this case we can assume that we have

k equations with no noise and we can recover the secret with Gaussian elimination. The

other extreme case is when τ = 1
2 and where we cannot recover the secret s.

An equivalent way to formulate the search LPNk,τ problem is as follows: given access

to a random matrix A ∈ Z
n×k
2 and a column vector c over Z

n
2 , such that AsT ⊕ d = c,

find the vector s. Here the matrix A corresponds to the matrix that has the vectors v

on its rows, s is the secret vector of size k and c corresponds to the column vector that

contains the noisy inner products. The column vector d is of size n and contains the

corresponding noise bits.

2.2.2 Decision LPN

The LPN problem has also a decisional form. The decisional LPNk,τ asks to distin-

guish between the uniform distribution over Z
k+1
2 and the distribution Ds,τ . A similar
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definition for an algorithm that solves decisional LPN can be adopted as above.

Definition 2.3 (Decision LPN). Let Uk+1 denote an oracle that outputs binary random

vectors of size k+1. We say that an algorithm M (n, t,m, θ)-solves the decisional LPNk,τ

problem if

| Pr[MOLPN
s,τ (1k) = 1]− Pr[MUk+1(1k) = 1] | ≥ θ

andM runs in time t, uses memory m and needs at most n queries.

The search and the decisional LPN problems are polynomially equivalent [KSS10,

BFKL93]. The following lemma expresses this result.

Lemma 2.4 ([KSS10, BFKL93]). If there is an algorithm M that (n, t,m, θ)-solves

the decisional LPNk,τ , then one can build an algorithm M′ that (n′, t′,m′, θ′, k)-solves
the search LPNk,τ problem, where n′ = O(n · θ−2 log k), t′ = O(t · k · θ−2 log k), m′ =
O(m · θ−2 log k)) and θ′ = θ

4 .

We do not present the details of this result as it is outside the scope of this thesis.

We only analyse the solving algorithms for search LPN. From now on, we will refer to

it simply as LPN.

2.3 Hoeffding’s Bounds

Our results from Chapter 3 use the following Hoeffding bounds in order to formalize the

solving step of an LPN solving algorithm.

Theorem 2.5. [Hoe63] Let X1,X2, . . . ,Xn be n independent random variables. We

are given that Pr[Xi ∈ [αi, βi]] = 1 for 1 ≤ i ≤ n. We define X = X1 + . . . +Xn and

E(X) is the expected value of X. We have that

Pr[X − E(X) ≥ λ] ≤ e
− 2λ2∑n

i=1
(βi−αi)

2

and

Pr[X − E(X) ≤ −λ] ≤ e
− 2λ2∑n

i=1
(βi−αi)

2
,

for any λ > 0.

2.4 Central Limit Theorem

The Central Limit Theorem is used in Chapter 3 as it improves upon the result that

uses the Hoeffding bounds.

10
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Theorem 2.6. Let X1,X2, . . . ,Xn be n independent identically distributed (i.i.d) ran-

dom variables. We define X = X1 + . . . + Xn, E(X1) as the expected value of X1,

Var(X1) as the variance of X1 and

Zn =
X − nE(X1)√

nVar(X1)
.

Then, as n approaches infinity, Zn converges in distribution to a normal distribution

with mean 0 and variance 1, i.e. Zn
d−−−→

n→∞ N (0, 1). This means that for all t,

Pr[Zn ≤ t] −−−→
n→∞ ϕ(t),

where ϕ(t) = 1
2 + erf( t√

2
) and erf(t) = 2√

π

∫ t
0 e

−x2
dx is the Gauss error function.

2.5 Walsh Hadamard Transform (WHT)

Our results in Chapters 3-5 make use of the Walsh Hadamard Transform. This transform

helps improving the solving phase of LPN solving algorithms.

Definition 2.7 (Walsh Hadamard Transform). We write the n-dimensional binary vec-

tor x ∈ {0, 1}n by its components x = (x1, . . . , xn) with xi ∈ {0, 1}. The Walsh Hadam-

ard Transform of a function f : {0, 1}n → C is a function f̂ : {0, 1}n → C defined

as

f̂(ν) =
∑
x

f(x)(−1)
∑

xiνi .

The complexity to compute the Walsh Hadamard Transform is O(n2n) by running the

fast Hadamard transform algorithm [CT65].

2.6 Linear Codes

While presenting the state of the art in the area of LPN solving algorithms in Chapter 3,

we introduce a technique called covering code reduction. This method uses linear codes.

We present the main results related to linear codes needed to describe the covering code

step. In Chapter 5, we improve this reduction by using perfect and quasi-perfect linear

codes. Their definition is given below.

Definition 2.8 (Binary Linear Code). An [n, k] binary linear code C is a linear subspace

of the vector space Z
n
2 of dimension k. The elements of C are called codewords. The

value n represents the length and k is the dimension of the code.

In the [n, k] binary linear code C, the codewords can be defined as all possible linear

combinations of the rows of a k×n generator matrix G [MS78]. In the systematic form,

the matrix G is of the form G = (Ik|A) where Ik is the k× k identity matrix and A is a

k × (n− k) matrix.

11



The Hamming distance between two codewords x and y, is the number of places

where they differ. We denote this by d(x, y). The minimum distance of a linear code

C is the minimum distance between its codewords [MS78]. We denote this by D. I.e.

D = minC d(x, y), where x 
= y and x, y ∈ C. An equivalent result is that D is the

minimum Hamming weight of any non-zero codeword. A code with minimum distance

D can correct
⌊
D−1
2

⌋
errors. A linear code C of length n, dimension k and minimum

distance D will be denoted by [n, k,D].

Definition 2.9 (Covering Radius). For a code C, the covering radius is ρ = maxv d(v,C),

where d(v,C) denotes the Hamming distance of v from the code C.

Definition 2.10 (Packing Radius). The packing radius is the largest radius R such that

the balls of this radius centered on all codewords are non-overlapping.

So, the packing radius is R =
⌊
D−1
2

⌋
. We further have ρ ≥ ⌊

D−1
2

⌋
.

Definition 2.11 (Perfect Code). A perfect code is a [n, k,D] code C characterized by

ρ =
⌊
D−1
2

⌋
= R.

Examples of perfect codes are: binary Golay code [23, 12, 7], Hamming codes [2k, 2k−
k − 1, 3] and the repetition codes [k, 1, k].

Definition 2.12 (Quasi-perfect Code). A quasi-perfect code is a [n, k,D] code C char-

acterized by ρ =
⌊
D−1
2

⌋
+ 1 = R+ 1.

These two classes of codes will be used in the code reduction presented in Section 5.4.
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Chapter3
Solving Algorithms for LPN

In this chapter, we present the existing LPN solving algorithms in a unified manner. We

emphasize the main differences between these algorithms and discuss which improve-

ments they bring. We improve on the previous results. The personal contribution in

this chapter is a joint work with Florian Tramèr and Serge Vaudenay that was pub-

lished in the Journal of Cryptography and Communications [BTV16]. Further improve-

ments on this are a joint work with Serge Vaudenay that was published in ASIAC-

RYPT’16 [BV16b]. The presentation of LF(4) is a joint work with Serge Vaudenay

published as a note on ePrint [BV16a].

Structure of the Chapter. We give an overview of the existing LPN algorithms in

Section 3.1. Following that, in Sections 3.3-3.7, we present step by step the LPN al-

gorithms that have a sub-exponential complexity and require a sub-exponential number

of queries. For each of these algorithms, we provide a new analysis that brings improve-

ments on the complexity or corrects the previous results. In Section 3.8, we present

algorithms that are efficient in the case of a sparse secret. We describe in Section 3.9 an

LPN solving algorithm that works with a polynomial number of queries.

3.1 Previous Work

In the current literature, there are several algorithms to solve the LPN problem. Recall

that in LPN, one is asked to recover a secret given noisy inner products of it with

randomly chosen vectors. A query is composed of the random vectors and the result

of the noisy inner product. Depending on how many queries are given from the LPN

oracle, we can split the solving algorithms into three categories.

With a sub-exponential number of queries, the existing algorithms solve an LPN in-

stance in sub-exponential time. For this category, we have the BKW [BKW00], LF1,

LF2 [LF06], FMICM [FMI+06] and the covering code algorithms [GJL14, ZJW16]. All

these algorithms solve LPNk,τ with a time complexity of 2
O
(

k
log k

)
and require 2

O
(

k
log k

)

13



queries.

The first that appeared, and the best known, is the BKW [BKW00] algorithm. This

algorithm can be described as a Gaussian elimination on blocks of bits (instead on

single bits) where the secret is recovered bit by bit. Improvements of it were presented

in [FMI+06, LF06]. One idea that improves the algorithm is the use of the fast Walsh-

Hadamard transform as we can recover several bits of the secret at once. In their

work [LF06], Levieil and Fouque provide an analysis with the level of security achieved

by different LPN instances and propose secure parameters. A more efficient algorithm

to solve LPN was presented at ASIACRYPT’14 [GJL14] and it introduces the use of

covering codes to improve the performance. The same reduction is used also in the paper

from EUROCRYPT’16 [ZJW16] and ASIACRYPT’16 [BV16b] (that will be presented

in Chapter 5).

Using BKW as a black-box, Lyubashevsky [Lyu05] introduces a ”pre-processing”phase

and solves an LPNk,τ instance with a polynomial number of queries n = k1+η and with

a time complexity of 2O
(

k
log log k

)
. The queries given to BKW have a worse bias of τ ′ =

1
2 − 1

2

(
1−2τ
4

) 2k
η log k . Thus, this variant requires a polynomial number of queries but has

a worse time complexity. When τ = 1√
k
, we can improve the result of [Lyu05] and

have a complexity of e
1
2

√
k(ln k)2+O(

√
k ln k) [BV15]. More details about this are given in

Section 6.5.

With a linear number of queries, the best algorithms are exponential, i.e. with

n = Θ(k) the secret is recovered in exponential time 2Θ(k) [MMT11, Ste88].

An easy to solve instance of LPN was introduced by Arora and Ge [AG11]. They

show that in the k-wise version where the k-tuples of the noise bits can be expressed as

the solution of a polynomial (e.g. there are no 5 consecutive errors in the sequence of

queries), the problem can be solved in polynomial time. What makes the problem easy

is the fact that an adversary is able to structure the noise.

Another easy instance is when the noise is 0, i.e. τ = 0. In this case, the LPN problem

is solved in polynomial time through Gaussian elimination given n = Θ(k) queries. The

problem becomes hard once noise is added to the inner product. The value of τ can be

either independent or dependent of the value k. Usually, the value of τ is constant and

independent from the value of k. A case where τ is taken as a function of k occurs in

the construction of the encryption schemes [Ale03, DP12]. Intuitively, a larger value of

τ means more noise and makes the problem of search LPN harder. When τ = 1
2 , the

queries from the LPN oracle are uniformly distributed and we cannot recover the secret.

The value of the noise parameter is a trade-off between the hardness of the LPNk,τ and

the practical impact on the applications that rely on this problem.

3.2 Our Contribution

In this chapter, we present the current existing LPN solving algorithms in a unified frame-

work, where each LPN algorithm is split in two phases: the reduction and the solving

14
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phase. This characterization allows us to better compare and see what improvements

each algorithm bring.

For these algorithms, we give a better theoretical analysis that brings an improvement

over the work of Levieil and Fouque [LF06] and Guo et. al. [GJL14]. Furthermore, we

analyse three new algorithms for the case where the secret is sparse. Our results show

that for a sparse secret, the BKW family of algorithms is outperformed by an algorithm

that uses Gaussian elimination. Our discussion on LF(4) gives insights on why this

reduction method might not bring improvements over the existing reduction methods.

While improving the existing results, we hope to provide a theoretical analysis that

matches the experimental results. Although this does not prove that LPN is hard, it

gives tighter bounds for the parameters used by the LPN-based cryptographic schemes.

It can also be used to have a tighter complexity analysis of algorithms related to solving

LPN. Our results were actually used in [GJL14] and also for LWE solving [DTV15].

LPN solving algorithms in a nutshell. The common structure of all the afore-

mentioned LPN algorithms is the following: given n queries from the OLPN
s,τ oracle, the

algorithm tries to reduce the problem of finding a secret s of k bits to one where the

secret s′ has only k′ bits, with k′ < k. This is done by applying several reduction tech-

niques. We call this phase the reduction phase. Afterwards, during the solving phase, we

can apply a solving algorithm that recovers the secret s′. We then update the queries

with the recovered bits and restart to fully recover s. For the ease of understanding,

we describe all the aforementioned LPN solving algorithms in this setting, where we

separate the algorithms in two phases.

First, we assume that k = a · b. Thus, we can visualise the k-bit length vectors v as

a blocks of b bits. Recall that we define δ = 1 − 2τ . We call δ the bias of the error

bit d. We have δ = E((−1)d), with E(·) the expected value. We denote the bias of the

secret bits by δs. As s is a uniformly distributed random vector, at the beginning we

have δs = 0.

3.3 BKW

We start by describing the BKW∗ algorithm. The notation BKW∗ is used as we illustrate

the algorithm as described in [LF06] which is different from the original BKW [BKW00].

We explain what is the difference and why we use this variant later in this Section. The

BKW∗ works in two phases:

Reduction phase. Given n queries from the LPN oracle, we group them in equivalence

classes. Two queries are in the same equivalence class if they have the same value on

a set q1 of b bit positions. These b positions are chosen arbitrarily in {1, . . . , k}. There

are at most 2b such equivalence classes. Once this separation is done, we perform the

following steps for each equivalence class: pick one query at random, the representative
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vector, and xor it to the rest of the queries from the same equivalence class. Discard the

representative vector. This will give vectors with all bits set to 0 on those b positions.

These steps are also illustrated in Algorithm 3.1 (steps 5 - 11). We are left with at least

n− 2b queries where the secret is reduced to k− b effective bits (others being multiplied

by 0 in all queries).

We can repeat the reduction technique a − 1 times on other disjoint position sets

q2, . . . , qa−1 from {1, . . . , k}\q1 and end up with at least n− (a− 1)2b queries where the

secret is reduced to k− (a− 1)b = b bits. The bias of the new queries is δ2
a−1

, as shown

by the following Lemma where we use w = 2a−1.

Lemma 3.1 ([LF06, BKW00]). If (v1, c1), . . . , (vw, cw) are the results of w queries from

OLPN
s,τ , then the probability that:

〈v1 ⊕ v2 ⊕ . . .⊕ vw, s〉 = c1 ⊕ . . .⊕ cw

is equal to 1+δw

2 .

It is easy so see that the complexity of performing this reduction step is O(kan).

Algorithm 3.1 BKW∗ Algorithm by [LF06]

1: Input: a set V of n queries (vi, ci) ∈ {0, 1}k+1 from the LPN oracle OLPN
s,τ , values a,

b such that k = ab and n ≥ a2b

2: Output: values s1, . . . , sb

3: Partition the positions {1, . . . , k} \ {1, . . . , b} into disjoint q1 ∪ . . . ∪ qa−1 with qi of
size b

4: for i = 1 to a− 1 do � Reduction phase
5: Partition V = V1 ∪ . . . ∪ V2b s.t. vectors in Vj have the the same bit values at

positions in qi
6: foreach Vj

7: Choose a random (v∗, c∗) ∈ Vj as a representative vector
8: Replace each (v, c) by (v, c) ⊕ (v∗, c∗), (v, c) ∈ Vj for (v, c) 
= (v∗, c∗)
9: Discard (v∗, c∗) from Vj

10: end foreach

11: V = V1 ∪ . . . ∪ V2b

12: end for

13: Discard from V all queries (v, c) such that HW(v) 
= 1
14: Partition V = V1 ∪ . . . ∪ Vb s.t. vectors in Vj have a bit 1 on position j
15: foreach position i � Solving phase
16: si = majority(c), for all (v, c) ∈ Vi

17: end foreach

18: return s1, . . . , sb

After a − 1 iterations, we are left with at least n − (a − 1)2b queries, and a secret of

size of b effective bits at positions 1, . . . , b. The goal is to keep only the queries that
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have Hamming weight 1 (step 13 of Algorithm 3.1). Given n − (a − 1)2b queries and

one bit position j ∈ {1, . . . , k}\{q1 ∪ . . . ∪ qa−1}, only n′ = n−(a−1)2b

2b
will have a single

non-zero bit on position j and 0 on all the others. These queries represent the input to

the solving phase. The bias does not change since we do not alter the original queries.

The complexity for performing this step for n− (a− 1)2b queries is O(b(n− (a− 1)2b))

as the algorithm just checks if the queries have Hamming weight 1.

The bit c is part of the query also: it gets updated during the xoring operations but

we do not consider this bit in partitioning or when computing the Hamming weight of

a query. Later on, the information stored in this bit will be used to recover bits of the

secret.

Remark 1. Given that we have performed the xor between pairs of queries, we note that

the noise bits are no longer independent. In the analysis of BKW∗, this was overlooked

by Levieil and Fouque [LF06].1 The original BKW [BKW00] algorithm overcomes this

problem in the following manner: each query that has Hamming weight 1 is obtained with

a fresh set of queries. Given a2b queries, the algorithm runs the xoring process and is left

with 2b vectors. From these 2b queries, with a probability of 1−(1−2−b)2
b ≈ 1− 1

e , where

e = 2.718, there is one with Hamming weight 1 on a given position i. In order to obtain

more such queries the algorithm repeats this process with fresh queries. This means that

for guessing one bit of the secret, the original algorithm requires n = a · 2b · 1
1−1/e · n′

queries, where n′ denotes the number of queries needed for the solving phase. This is

larger than n = 2bn′ + (a − 1)2b which is the number of queries given by Levieil and

Fouque [LF06]. We implemented and ran BKW∗ as described in Algorithm 3.1 and we

discovered that this dependency does not affect the performance of the algorithm. I.e.,

the number of queries computed by the theory that ignores the dependency of the error

bits matches the practical results. The theoretical and practical results are presented in

the next chapter, in Section 4.2. Given our practical experiments, we keep the “heur-

istic” assumption of independence and the algorithm as described in [LF06] which we

called BKW∗. Thus, we assume from now on the independence of the noise bits and the

independence of the queries.

Another discussion on the independence of the noise bits is presented in [Fit14]. There,

we can see what is the probability to have a collision, i.e. two queries that share an error

bit, among the queries formed during the xoring steps.

We can repeat the algorithm a times, with the same queries, to recover all the k bits.

The total time complexity for the reduction phase is O(ka2n), as we perform the steps

described above a times (instead of O(kan) as given in [LF06]). However, by making the

selection of a and b adaptive with ab near to the remaining number of bits to recover,

we can show that the total complexity is dominated by the one of recovering the first

block. So, we can typically concentrate on the algorithm to recover a single block. We

provide a more complete analysis in Section 3.4.

1Definition 2 of [LF06] assumes independence of samples but Lemma 2 of [LF06] shows the reduction
without proving independence.
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Solving phase. The BKW solving method recovers the 1-bit secret by applying the

majority rule. The queries from the reduction phase are of the form c′j = si ⊕ d′j,
d′j ← Ber

(1−δ2a−1 )/2
and si being the ith bit of the secret s. Given that the probability

for the noise bit to be set to 1 is smaller than 1
2 , in more than half of the cases, these

queries will be si. Thus, we decide that the value of si is given by the majority rule

(steps 14-16 of Algorithm 3.1). By applying the Hoeffding bounds [Hoe63], we find how

many queries are needed, such that the probability of guessing incorrectly one bit of the

secret is bounded by some constant θ, with 0 < θ < 1.

The time complexity of performing the majority rule is linear in the number of queries.

Complexity analysis. With their analysis, Levieil and Fouque [LF06] obtain the

following result:

Theorem 3.2 (Th. 1 from [LF06]). For k = a · b, the BKW∗ algorithm heuristically

(n = 20 · ln(4k) · 2b · δ−2a , t = O(kan),m = kn, θ = 1
2 , b)-solves the LPN problem.

New Analysis on BKW∗. We improve the number of queries needed for the majority

rule. Recall that the queries are of the form c′j = si⊕d′j , d
′
j ← Ber(1−δ′)/2. The majority

of these queries will most likely be c′j = si. It is intuitive to see that the majority rule

fails when more than half of the noise bits are 1 for a given bit. Any wrong guess of a

bit gives a wrong value of the k-bit secret s. In order to bound the probability of such

a scenario, we could use the Hoeffding bounds [Hoe63] with Xj = dj (See Section 2.3).

We have Pr[Xj = 1] = 1−δ′
2 . For X =

∑n′
j=1Xj, we have E(X) = (1−δ′)n′

2 and we apply

Theorem 2.5 with λ = δn′
2 , αj = 0 and βj = 1 and we obtain

Pr[incorrect guess on si] = Pr

[
X ≥ n′

2

]
≤ e−

n′δ′2
2 .

As discussed in Remark 1, the assumption of independence is heuristic.

Using the above results for every bit 1, . . . , b, we can bound by a constant θ, the

probability that we guess incorrectly a block of s, with 0 < θ < 1. Using the union

bound, we get that n′ = 2δ′−2 ln( bθ ). Given that n′ = n−(a−1)2b

2b
and that δ′ = δ2

a−1
, we

obtain that we need n = 2b+1δ−2a ln( bθ ) + (a − 1)2b queries in total. This is the result

presented by Bogos et al. [BTV16]. It was further improved with the use of Central

Limit Theorem (CLT) in ASIACRYPT’16 [BV16b]. With Xj = dj and X =
∑n′

j=1Xj

we have that E(X1) = 1−δ′
2 and Var(X1) = E(X2

1 ) − E(X1)
2 = 1−δ′2

4 . If we apply

Theorem 2.6, we obtain

Pr[incorrect guess on si] = Pr

[
X ≥ n′

2

]
≈ 1− ϕ

( √
n′δ′√

1− δ′2

)
.

and that n′ ≥ 1−δ′2
δ′2

(
ϕ−1

(
1− θ

b

))2
. With this new bound, we obtain the following

result.
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Table 3.1: BKW∗ query complexity
(log2) - our theory (Th. 3.3)

τ
k

32 48 64 80 100

0.01 9.71 11.69 14.84 17.67 20.80

0.10 14.73 19.02 23.19 27.32 32.43

0.20 18.70 23.93 30.11 33.97 39.09

0.25 20.81 26.05 32.23 37.33 43.30

0.40 27.33 35.56 42.80 47.91 55.02

Table 3.2: BKW∗ query complexity
(log2) - original theory (Th. 3.2)

τ
k

32 48 64 80 100

0.01 14.56 16.60 19.68 22.59 25.64

0.10 19.75 23.87 27.95 32.00 37.06

0.20 23.50 28.61 34.69 38.64 43.70

0.25 25.60 30.72 36.79 41.85 47.90

0.40 31.89 40.00 47.37 52.43 59.48

Theorem 3.3. For k ≤ a·b, the BKW∗ algorithm heuristically (n = 2b 1−δ2
a

δ2a

(
ϕ−1

(
1− θ

b

) )2
+

(a− 1)2b, t = O(kan),m = kn, θ, b)-solves the LPN problem.2

We note that we obtained the above result using the union bound. One could make

use of the independence of the noise bits and obtain n = 2b 1−δ2
a

δ2a

(
ϕ−1

(
(1− θ)

1
b

))2
+

(a− 1)2b, but this would bring a very small improvement.

In terms of query complexity, we compare our theoretical results (i.e. Theorem 3.3)

with the ones from [LF06] (i.e. Theorem 3.2) in Table 3.1 and Table 3.2. We provide the

log2(n) values for k varying from 32 to 100 and we take different Bernoulli noise para-

meters that vary from 0.01 to 0.4. Overall, our theoretical results bring an improvement

of a factor 20 over the results of [LF06].

We note that our BKW∗ algorithm, for which we have stated the above theorem,

follows the steps from Algorithm 3.1 for k = a · b. For k < a · b the algorithm is a bit

different. In this case, we have a − 1 blocks of size b and an incomplete block of size

smaller than b. During the reduction phase, we first partition the incomplete block and

then apply (a − 2) reduction steps for the complete blocks. We finally have b bits to

recover. Other than this small change, the algorithm remains the same.

3.4 LF1

During the solving phase, the BKW algorithm recovers the value of the secret bit by

bit. Given that we are interested only in queries with Hamming weight 1, many queries

are discarded at the end of the reduction phase. As first noted in [LF06], this can be

improved by using a Walsh-Hadamard transform instead of the majority rule. This

2The term (a− 1)2b is not included in Theorem 3.2 (Theorem 1 from [LF06]). This factor represents
the number of queries lost during the reduction phase.
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improvement of BKW is denoted in [LF06] by LF1. Again, we present the algorithm in

pseudo-code in Algorithm 3.2. As in BKW∗, we can concentrate on the complexity to

recover the first block.

Reduction phase. The reduction phase for LF1 follows the same steps as in BKW∗ in

obtaining new queries as 2a−1 xors of initial queries in order to reduce the secret to size

b. At this step, the algorithm does not discard queries anymore but proceeds directly

with the solving phase (see Steps 3-11 of Algorithm 3.2). We now have n′ = n−(a−1)2b

queries after this phase.

Solving phase. The solving phase consists in applying a Walsh-Hadamard transform

in order to recover b bits of the secret at once (Steps 13-15 in Algorithm 3.2). We can

recover the b-bit secret by computing the Walsh-Hadamard transform of the function

f(x) =
∑

i 1v′i=x(−1)c′i , where (v′i, c
′
i) are the queries after the reduction phase. Writing

the LPN instance as A′sT⊕d′ = c′, whereA′ contains the v′i vectors, the Walsh-Hadamard

transform is

f̂(ν) =
∑
x

(−1)〈ν,x〉f(x) =
∑
x

(−1)〈ν,x〉
∑
i

1v′i=x(−1)c
′
i

=
∑
i

(−1)〈v′i,ν〉+c′i = n′ − 2HW(A′νT + c′).

For ν = s, the correct secret, we have f̂(s) = n′ − 2 · HW(d′), where d′ represents
the noise vector after the reduction phase. We know that most of the noise bits are set

to 0. So, f̂(s) is large and we suppose it is the largest value in the table of f̂ . Thus,

we have to look at the maximum value of the Walsh-Hadamard transform in order to

recover the value of s. A naive implementation of a Walsh-Hadamard transform would

give a complexity of 22b since we apply it on a space of size 2b. Since we apply a fast

Walsh-Hadamard transform, we get a time complexity of b2b [CT65].

Complexity analysis. The following theorem states the complexity of LF1:

Theorem 3.4 (Th. 2 from [LF06]). For k = a · b and a > 1, the LF1 algorithm heurist-

ically (n = (8b + 200)δ−2a + (a− 1)2b, t = O(kan + b2b),m = kn + b2b, θ = 1
2 , b)-solves

the LPN problem.3

BKW∗ vs. LF1. We can see that compared to BKW∗, LF1 brings a significant improve-

ment in the number of queries needed. As expected, the factor 2b disappeared as we did

not discard any query at the end of the reduction phase. There is an increase in the

3The term b2b in the time complexity is missing in [LF06]. While in general kan is the dominant
term, in the special case where a = 1 (thus we apply no reduction step) a complexity of O(kan) would
be wrong since, in this case, we apply the Walsh-Hadamard transform on the whole secret and the term
k2k dominates the final complexity.
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Algorithm 3.2 LF1 Algorithm

1: Input: a set V of n queries (vi, ci) ∈ {0, 1}k+1 from the LPN oracle, values a, b such
that k = ab

2: Output: values s1, . . . , sb

3: Partition the positions {1, . . . , k} \ {1, . . . , b} into disjoint q1 ∪ . . . ∪ qa−1 with qi of
size b

4: for i = 1 to a− 1 do � Reduction phase
5: Partition V = V1 ∪ . . . ∪ V2b s.t. vectors in Vj have the the same bit values at

positions in qi
6: foreach Vj

7: Choose a random (v∗, c∗) ∈ Vj as a representative vector
8: Replace each (v, c) by (v, c) ⊕ (v∗, c∗), (v, c) ∈ Vj for (v, c) 
= (v∗, c∗)
9: Discard (v∗, c∗) from Vj

10: end foreach

11: V = V1 ∪ . . . ∪ V2b

12: end for

13: f(x) =
∑

(v,c)∈V 1v1,...,b=x(−1)c � Solving phase

14: f̂(ν) =
∑

x(−1)〈ν,x〉f(x) � Walsh transform of f(x)

15: (s1, . . . , sb) = arg max(f̂(ν))
16: return s1, . . . , sb

time and memory complexity because of the fast Walsh-Hadamard transform, but these

terms are not the dominant ones.

New Analysis on LF1. We improve the analysis done on the number of queries needed

for the Walsh transform. The failure probability for LF1 is bounded by the probability

that there is another vector ν 
= s such that that f̂(ν) > f̂(s). This is equivalent to

HW(A′νT + c′) ≤ HW(A′sT + c′). Recall that A′sT + c′ = d′. We define x = s+ν so that

A′νT + c′ = A′xT + d′. As A′ is uniformly distributed, independent from d′, and x is

fixed and non-zero, A′xT + d′ is uniformly distributed, so we can rewrite the inequality

as HW(y) ≤ HW(d′), for a random y.

Using again the Hoeffding’s bounds, we need to have n′ = 8 ln(2
k′

θ )δ′−2 [BTV16]

queries in order to bound the probability of guessing wrongly the k′-bit secret by θ. We

can improve further by applying directly the Central Limit Theorem. Let X1,X2, . . . ,

Xn′ be i.i.d random independent variables with Xj = yj − d′j, Pr(Xj ∈ [−1, 1]) = 1

and X =
∑n′

i=0 Xi. We have E(X1) =
δ′
2 and Var(X1) =

2−δ′2
4 . Using Theorem 2.6 we

obtain:

Pr[X ≤ 0] ≈ ϕ

(√
n′E(X1)√
Var(X1)

)
.
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We can bound the probability of incorrectly guessing one block of s by θ to have

Pr[incorrect guess on one block] ≈ 1− (1− Pr[X ≤ 0])2
k′−1 ≤ θ

and obtain that we need to have n′ ≥ 2−δ′2
δ′2 ϕ−1

(
1− (1− θ)

1

2k
′−1

)
. We can derive the

approximation of Selçuk [Sel08] that n′ ≥ 4 ln(2
k′

θ )δ′−2.

The total number of queries will be n = n′ + (a− 1)2b and we have δ′ = δ2
a−1

, k′ = b.

Complexity of the WHT(k′) is O(k′2k′ log2 n′+1
2 +k′n′) as we use the fast Walsh Hadamard

Transform4,5. Similar to BKW, we obtain the following theorem:

Theorem 3.5. For k ≤ a·b and n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ)

1

2b−1

))2
, the LF1 algorithm

heuristically (n = n′+(a−1)2b, t = O(kan+b2b log2 n
′+1

2 +bn′),m = kn+b2b, θ, b)-solves

the LPN problem.

By comparing the term (8b+ 200)δ−2a in Theorem 3.4 with our value of

2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ)

1

2b−1

))2
, one might check that our term is roughly a factor 4

smaller than that of [LF06] for practical values of a and b. For example, for a LPN768,0.01

instance (with a = 11, b = 70), our analysis requires 267 queries for the solving phase

while the Levieil and Fouque analysis requires 269 queries.

Recovery of the first block dominates the complexity. For BKW∗ and LF1 we

stated their complexity in terms of recovering one block of the secret. We show how

the cost of solving one block of the secret dominates the total cost of recovering s. The

main intuition is that after recovering a first block of k′ secret bits, we can apply a

simple back substitution mechanism and consider solving a LPNk−k′,τ problem. The

same strategy is applied by [ACF+15, DTV15] when solving LWE. Note that this is

simply a generalisation of the classic Gaussian elimination procedure for solving linear

systems, where we work over blocks of bits.

Specifically, let k1 = k and ki = ki−1 − k′i−1 for i > 1 and k′i−1 < ki−1. Now, suppose

we were able to (ni, ti,mi, θi, k
′
i)-solve an LPNki,τ instance (meaning we recover a block

of size k′i from the secret of size ki with probability θi, in time ti and with memory mi).

One can see that for ki+1 < ki we need less queries to solve the new instance (the number

of queries is dependent on the size ki+1 and on the noise level). With a smaller secret,

the time complexity will decrease. Having a shorter secret and less queries, the memory

needed is also smaller. Then, we can (n, t,m, θ, k)-solve the problem LPNk,τ (i.e recover s

completely), with n = max(n1, n2, . . .), θ = θ1+θ2+ . . ., t = t1+k′1n1+ t2+k′2n2 . . . (the

4The second term k′n′ illustrates the cost of constructing the function f . In cases where n′ > 2k
′

this
is the dominant term and it should not be ignored. This was missing in several works [GJL14, BTV16].
For the instance LPN592,0.125 from Guo et al. [GJL14] this makes a big difference as k′ = 64 and n′ = 269;
the complexity of WHT with the second term is 275 vs 270 [GJL14]. Given that is must be repeated 213

(as 35 bits of the secret are guessed), the cost of WHT is 288.
5Normally, the values f̂(ν) have an order of magnitude of

√
n′ so we have 1

2
log2 n

′ bits.
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terms k′ini are due to query updates by back substitution) and m = max(m1,m2, . . .).

Finally, by taking θi = 3−i, we obtain θ ≤ 1
2 and thus recover the full secret s with over

50% probability.

It is easily verified that for all the algorithms we consider, we have n = n1, m = m1,

and t is dominated by t1. We provide an example on a concrete LPN instance in Ap-

pendix A.1.

3.5 LF2

LF2 is a heuristic algorithm, also introduced in [LF06], that applies the same Walsh-

Hadamard transform as LF1, but has a different reduction phase. We provide the

pseudocode for LF2 in Algorithm 3.3.

Algorithm 3.3 LF2 Algorithm

1: Input: a set V of n queries (vi, ci) ∈ {0, 1}k+1 from the LPN oracle, values a, b such
that k = ab

2: Output: values s1, . . . , sb

3: Partition the positions {1, . . . , k} \ {1, . . . , b} into disjoint q1 ∪ . . . ∪ qa−1 with qi of
size b

4: for i = 1 to a− 1 do � Reduction phase
5: Partition V = V1 ∪ . . . ∪ V2b s.t. vectors in Vj have the the same bit values at

positions in qi
6: foreach Vj

7: V ′
j = ∅

8: foreach pair (v, c), (v′, c′) ∈ Vj, (v, c) 
= (v′, c′)
9: V ′

i = V ′
i ∪ (v ⊕ v′, c⊕ c′)

10: end foreach

11: end foreach

12: V = V ′
1 ∪ . . . ∪ V ′

2b

13: end for

14: f(x) =
∑

(v,c)∈V 1v1,...,b=x(−1)c � Solving phase

15: f̂(ν) =
∑

x(−1)〈ν,x〉f(x) � compute the Walsh transform of f(x)

16: (s1, . . . , sb) = arg max(f̂(ν))
17: return s1, . . . , sb

Reduction phase. Similarly to BKW∗ and LF1, the n queries are grouped into equi-

valence classes. Two queries are in the same equivalence class if they have the same

value on a window of b bits. In each equivalence class, we perform the xor of all the

pairs from that class. Thus, we do not choose one representative vector that is discarded

afterwards.

23



Solving phase. This phase works like in LF1, i.e. we use the Walsh-Hadamard trans-

form and find its maximum in order to recover a block of the secret s.

New Analysis on LF2. There is no formal result for LF2 stated in [LF06]. Using

the new bounds for LF1, we can state the number of queries needed for the solving

phase. For the reduction phase, we can analyse how the number of queries fluctuate.

When we do the xor of all the pairs from each class, the expected new number of

queries is E(
∑

i<j 1vi matches vj on the b-bit block) = n(n−1)
2b+1 which improves previous

results [BTV16]6. When n ≈ 1 + 2b+1, the number of queries are maintained. For

n > 1 + 2b+1, the number of queries will increase.

With this analysis, we have the following result.

Theorem 3.6. For k ≤ a·b, n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ)

1

2b−1

))2
and n = 1+2b+1 ≥ n′,

the LF2 algorithm heuristically (n, t = O(kan + b2b log2 n
′+1

2 + bn′),m = kn + b2b, θ, b)-

solves the LPN problem.

One can observe that we may allow n to be smaller than 1 + 2b+1. Given that the

solving phase may require less than 1 + 2b+1, we could start with less queries, decrease

the number of queries during the reduction and end up with the exact number of queries

needed for the solving phase.

In a scenario where the attacker has access to a restricted number of queries, this

heuristic algorithm helps in increasing the number of queries. With LF2, the attacker

might produce enough queries to recover the secret s.

3.6 Covering Code Algorithm

The new algorithm [GJL14] that was presented at ASIACRYPT’14 (and received the best

paper award), introduces a new type of reduction. There is a difference between [GJL14]

and what was presented at the ASIACRYPT conference. We concentrate here on [GJL14]

and on the suggestions we provided to the authors.

Reduction phase. The first step of this algorithm is to transform the LPN instance

where the secret s is randomly chosen to an instance where the secret has now a Bernoulli

distribution. This method was described in [Kir11, ACPS09, BL12].

Given n queries from the LPN oracle: (v̄1, c1), (v̄2, c2), . . . , (v̄n, cn), select k linearly

independent vectors v̄i1 , . . . , v̄ik . Construct the k × k target matrix M that has on

its columns the aforementioned vectors, i.e. M = [v̄Ti1 v̄
T
i2
. . . v̄Tik ]. Compute (MT )−1

the inverse of MT , where MT is the transpose of M . We can rewrite the k queries

corresponding to the selected vectors as MT sT + d′, where d′ is the k-bit column vector

6In Bogos et al. [BTV16], the approximation for the number of queries was
n

2b

(
n

2b
−1

)

2
, which is less

favourable.
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d′ = (di1 , di2 , . . . , dik)
T . We denote c′ = MT sT + d′. For any v̄j that is not used in

matrix M do the following computation:

v̄j(M
T )−1c′ + cj = 〈v̄j(MT )−1, d′〉+ dj .

We discard the matrix M . From the initial set of queries, we have obtained a new

set where the secret value is d′. This can be seen as a reduction to a sparse secret.

The complexity of this transform is O(k3 + nk2) by the schoolbook matrix inversion

algorithm. This can be improved as follows: for a fixed χ, one can split the matrix

(MT )−1 in a′ = � kχ� parts

⎡
⎢⎢⎢⎣
M1

M2

. . .

Ma′

⎤
⎥⎥⎥⎦ of χ rows. By pre-computing v̄Mi for all v̄ ∈ {0, 1}χ,

the operation of performing v̄j(M
T )−1 takes O(ka′). The pre-computation takes O(2χ)

and is negligible if the memory required by the BKW reduction is bigger. With this

pre-computation the complexity is O(nka′).
Afterwards, the algorithm follows the usual BKW reduction steps where the size of

the secret is reduced to k′ by the xoring operation. Again, the vector of k bits is seen as

being split into blocks of size b. The BKW reduction is applied a times. Thus, we have

k′ = k − ab.

The secret s of k′ bits is split into 2 parts: one part denoted s2 of k′′ bits and the

other part, denoted s1, of k
′ − k′′ bits. The next step in the reduction is to guess value

of s1 by making an assumption on its Hamming weight: HW(s1) ≤ w0. The remaining

queries are of the form (vi, ci = 〈vi, s2〉 ⊕ di), where vi, s2 ∈ {0, 1}k′′ and di ∈ Ber 1−δ2
a

2

.

Thus, the problem is reduced to a secret of k′′ bits.
At this point, the algorithm approximates the vi vectors to the nearest codeword gi

in a [k′′, 
] linear code where k′′ is the size and 
 is the dimension. By observing that gi
can be written as gi = g′iG, where G is the generating matrix of the code, we can write

the equations in the form

ci = 〈vi, s2〉 ⊕ di = 〈g′iG, s2〉 ⊕ 〈vi − gi, s2〉 ⊕ di = 〈g′i, s′2〉 ⊕ d′i

with s′2 = s2G
T and d′i = 〈vi − gi, s2〉 ⊕ di, where g′i, s

′
2 have length 
. If the code has

a covering radius of ρ, vi − gi is a random vector of weight bounded by ρ, while s2 is a

vector of some small weight bounded by w1, with some probability. So, 〈vi − gi, s2〉 is
biased and we can analyse d′i in place of di.

In [GJL14], the authors approximate the bias of 〈vi− gi, s2〉 to δ′ =
(
1− 2 ρ

k′′
)w1 , as if

all bits were independent. As discussed later, this approximation is far from good.

No query is lost during this covering code operation and now the secret is reduced to


 bits. We now have n′ = n− k − a2b queries at the end of the reduction phase.

Solving phase. The solving phase of this algorithm follows the same steps as LF1, i.e.

it employs a fast Walsh-Hadamard transform. One should notice that the solving phase
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recovers 
 linear relations between the bits of the secret and not actual bits of the secret.

Complexity analysis. Recall that in the algorithm two assumptions are made re-

garding the Hamming weight of the secret: that s2 has a Hamming weight bounded

by w1 and that s1 has a Hamming weight bounded by w0. This holds with probability

Pr(w0, k
′ − k′′) · Pr(w1, k

′′) where

Pr(w,m) =

w∑
i=0

(1− τ)m−iτ i
(
m

i

)
. (3.1)

The total complexity is given by the complexity of one iteration to which we add the

number of times we have to repeat the iteration. We state below the result from [GJL14]:

Theorem 3.7 (Th 1. from [GJL14]). 7

Let n be the number of samples required and a, a′, b, w0, w1, 
, k
′, k′′ be the algorithm

parameters. For the LPNk,τ instance, the number of bit operations required for a suc-

cessful run of the new attack is equal to

t =
tsparse reduction + tbkw reduction + tguess + tcovering code + tWalsh transform

Pr(w0, k′ − k′′) Pr(w1, k′′)
,

where

• tsparse reduction = nka′ is the cost of reducing the LPN instance to a sparse secret

• tbkw reduction = (k + 1)an is the cost of the BKW reduction steps

• tguess = n′ ∑w0
i=0

(k′−k′′

i

)
i is the cost of guessing k′ − k′′ bits and n′ = n − k − a2b

represents the number of queries at the end of the reduction phase

• tcovering code = (k′′− 
)(2n′ +2
) is the cost of the covering code reduction and n′ is
again the number of queries

• tWalsh transform = 
2

∑w0

i=0

(k′−k′′

i

)
is the cost of applying the fast Walsh-Hadamard

transform for every guess of k′ − k′′ bits

under the condition that n− a2b > 1

δ2a+1 ·δ′2 , where δ = 1− 2τ and δ′ =
(
1− 2 ρ

k′′
)w1 and

ρ is the smallest integer, s.t.
∑ρ

i=0

(k′′
i

)
> 2k

′′−
.

The condition n− a2b > 1

δ2a+1 ·δ′2 proposed in [GJL14] imposes a lower bound on the

number of queries needed in the solving phase for the fast Walsh-Hadamard transform.

In our analysis, we will see that this is underestimated: the Central Limit Theorem

dictates a larger number of queries.

7This theorem includes imprecisions. It is updated in Theorem 3.8.
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New Analysis on Covering Code. We describe the shortcomings of the covering

code algorithm when computing the bias introduced by the covering code method. We

present a solution to this that was adopted also by the authors of this algorithm [GJL14].

Recall that the algorithm first reduces the size of the secret to k′′ bits by running

BKW reduction steps. Then it approximates the vi vector to the nearest codeword gi
in a [k′′, 
] linear code with G as generator matrix. The noisy inner products can be

rewritten as

ci = 〈g′iG, s2〉 ⊕ 〈vi − gi, s2〉 ⊕ di = 〈g′i, s2GT 〉 ⊕ d′i = 〈g′i, s′2〉 ⊕ d′i,

where gi is such that gi = g′iG, s′2 = s2G
T and d′i = 〈gi − vi, s2〉 ⊕ di.

Given that the code has a covering radius of ρ and that the Hamming weight of s2
is bounded by w1, the bias of 〈gi − vi, s2〉 is computed as δ′ =

(
1− 2 ρ

k′′
)w1 in ASIAC-

RYPT’14 [GJL14], where k′′ is the size of s2. We stress that this approximation is far

from good.

Indeed, with the [3, 1] repetition code given as an example in their paper [GJL14], the

xor of two error bits is unbiased. Even worse: the xor of the three bits has a negative

bias. So, when using the code obtained by 25 concatenations of this repetition code and

w1 = 6, with some probability of 36%, we have at least two error bits falling in the same

concatenation and the bias makes this approach fail.

We can do the same computation with the concatenation of five [23, 12] Golay codes

with w1 = 15, as suggested in [GJL14]. With probability 0.21%, the bias is zero or

negative so the algorithm fails. With probability 8.3%, the bias is too low.

In any case, we cannot assume the error bits to be independent. When the code

has optimal covering radius ρ, we can actually find an explicit formula for the bias of

〈vi − gi, s2〉 assuming that s2 has weight w1:

Pr[〈vi − gi, s2〉 = 1|HW(s2) = w1] =
1

S(k′′, ρ)

∑
i≤ρ,i odd

(w1

i

)
S(k′′ −w1, ρ− i) (3.2)

where S(k′′, ρ) is the number of k′′-bit strings with weight at most ρ.

To solve LPN512,0.125, the authors of ASIACRYPT’14 [GJL14] propose the following

parameters

a = 6 a′ = 9 b = 63 
 = 64 k′′ = 124 w0 = 2 w1 = 16

and obtain n = 266.3 and a complexity of 279.92. With these parameters, the pa-

per [GJL14] approximated the bias to
(
1− 2 ρ

k′′
)w1 = 2−5.91 (with ρ = 14). With our

exact formula, the bias should rather be of 2−7.05. So, n should be multiplied by 4.82

(the square of the ratio).

Also, we stress that all this assumes the construction of a code with optimal radius

coverage, such as the Golay codes, or the repetition codes of odd length and dimension 1.

But these codes do not exist for all [k′′, 
]. If we use concatenations of repetition codes,
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given as an example in [GJL14], the formula for the bias changes. Given 
 concatenations

of the [ki, 1] repetition code, with k1 + · · · + k
 = k′′, ki ≈ k′′

 and 1 ≤ i ≤ 
, we would

have to split the secret s2 in chunks of k1, . . . , k
 bits. We take w11 + · · · + w1
 = w1

where w1i is the weight of s2 on the ith chunk. In this case the bias for each repetition

code is

δi = 1− 2× 1

S(ki, ρi)

∑
j≤ρi,j odd

(
w1i

j

)
S(ki − w1i, ρi − j), (3.3)

where ρi = �ki2 �.
The final bias is

δ′ = δ1 · · · δ
. (3.4)

We emphasize that the value of n is underestimated in [GJL14]. Indeed, with n′ =
bias−2, the probability that argmax(f̂(ν)) = s′2 is too low in LF1. To have a constant

probability of success θ, our analysis says that we should multiply n′ by 4 ln(2
�

θ ) if we

apply the Hoeffding’s bound. We use below Central Limit Theorem to define the value

of n′. For LPN512,0.125 with the parameters presented above and θ = 1
3 , this is 181.

When presenting their algorithm at ASIACRYPT’14, the authors of [GJL14] updated

their computation by using our suggested formulas for the bias and the number of queries.

In order to obtain a complexity smaller than 280, they further improved their algorithm

by the following observation: instead of assuming that the secret s2 has a Hamming

weight smaller or equal to w1, the algorithm takes now into account all the Hamming

weights that would give a good bias for the covering code reduction. I.e., the algorithm

takes into account all the Hamming weights w for which δ′ > εset, where εset is a preset

bias. The probability of a good secret changes from Pr(w1, k
′′) to Pr(HW) that we define

below. They further adapted the algorithm by using the LF2 reduction steps. With these

changes, they suggest the following parameters for LPN512,0.125:

a = 5 b = 62 
 = 60 k′′ = 180 w0 = 2 εset = 2−14.18

Using two [90, 30] linear codes, they obtain that n = 263.6 = 3 · 2b queries are needed,

the memory used is of m = 272.6 bits and the time complexity is t = 279.7. Thus, this

algorithm gives better performance than LF2 and shows that this LPN instance does not

offer a security of 80 bits.

With all the above observations we update Theorem 3.7 as follows.

Theorem 3.8. Let a, a′, b, w0, w1, 
, k
′, k′′, εset be the algorithm parameters. The covering

code

(n = 2−δ2
a+1

ε2set
δ2a+1 ε2set

(
ϕ−1

(
1− (1− θ)

1

2�−1

))2
+ a2b ,t,m = kn+ 2k

′′−
 + 
2
, θ, 
)-solves the

LPN problem 8, where δ = 1 − 2τ and εset is a preset bias. The code chosen for the

8This n corresponds to covering code reduction using LF1. For LF2 reduction steps we need to have
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covering code reduction step can be expressed as the concatenation of one or more linear

codes. The time t complexity can be expressed as

t =
tsparse reduction + tbkw reduction + tguess + tcovering code + tWalsh transform

Pr(w0, k′ − k′′) Pr(HW)
,

where

• tsparse reduction = nka′ is the cost of reducing the LPN instance to a sparse secret

• tbkw reduction = (k + 1)an is the cost of the BKW reduction steps

• tguess = n′ ∑w0
i=0

(
k′−k′′

i

)
i is the cost of guessing k′ − k′′ bits and n′ = n − k − a2b

represents the number of queries at the end of the reduction phase

• tcovering code = (k′′− 
)(2n′ +2
) is the cost of the covering code reduction and n′ is
again the number of queries

• tWalsh transform =
(

2


log2(n−a2b)+1
2 + 
(n− a2b)

)∑w0
i=0

(k′−k′′

i

)
is the cost of apply-

ing the fast Walsh-Hadamard transform for every guess of k′ − k′′ bits

• Pr(HW) =
∑

wi
(1− τ)k

′′−wiτwi
(
k′′

wi

)
where wi is chosen such that the bias δ′ (com-

puted following (3.3) and (3.4)), which depends on wi and the covering radius ρ of

the chosen code, is larger than εset

3.7 LF(4)

The algorithm that was presented at EUROCRYPT’16 [ZJW16], introduces a new type

of reduction that is denoted LF(4). The authors also claim to improve the complexity

of the existing reduction steps through precomputation. We focus here on the structure

of the algorithm of [ZJW16] and discuss its issues.

Reduction phase. Given an LPN instance, where the secret has size k, the first step

of the reduction phase is to do a sample selection. It keeps from the LPN oracle only the

samples that have 0 bits on an entire given window of c bits. In this way, we obtain an

LPN instance where the secret has size k − c. This step is called sample selection. This

idea is present also in the BKW algorithm. The next step is to change the distribution

of the secret from uniform to a binomial distribution. The same steps as in Section 3.6

are used in order to change to a secret that follows the noise distribution. This step is

entitled Gaussian elimination.

With the new secret, the algorithm is further reducing the size of the secret by xoring

pairs of vectors that have the same value on a window of b bits. This can be done by

applying the BKW reduction step (LF1), LF2 or a new method which is named LF(4)

n = 1 + 2b+1+ k ≥ 2−δ2
a+1

ε2set

δ2
a+1

ε2set

(
ϕ−1

(
1− (1− θ)

1

2�−1

))2

.
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based on Wagner’s algorithm [Wag02]. This new method finds four vectors from a list

which, when they are xored, give a zero vector. By performing this step (either with

LF1, LF2 or LF(4) ) t times, we end up with an LPNk−c−t∗b,η′ instance, where η′ = η2
t
for

LF1 and LF2 and η′ = η4
t
for LF(4). The use of the xoring is named collision procedure

in [ZJW16].

Using the fact that the distribution of the secret is the same as the one of the initial

noise, the algorithm is further guessing k1 bits of the secret. More precisely, it tries

all possible values of the k1 bit vector that have a Hamming weight smaller than w1.

The probability that the secret has a Hamming weight smaller than w1 is given in (3.1).

Thus, to make the algorithm succeed, we must run it several times. Afterwards, it is

applying the covering code reduction to further reduce to a LPN
,η′ instance where we

use a [k2, 
] code and k2 = k − c− t · b− k1.

Solving phase. The solving phase consists in applying the Walsh transform on the

remaining 
 bits. Given that the algorithm is guessing k1 bits of the secret, the Walsh

transform has to be instantiated
∑w1

i=0

(
k1
i

)
times.

Complexity analysis. We state below the result from [ZJW16].

Theorem 3.9 ([ZJW16]). Let N be the initial number of queries from the LPN oracle

and c, f, t, a, u, w1, 
, k1, k2 be the parameters of the algorithm. In order to solve a LPNk,τ

instance the overall time complexity of the algorithm is

C = C0 +
PC11 + C1 + C2 + C3 +C4 + C5

Pr(w1, k1)
,

where Pr(w1, k1) is computed as in (3.1) and

• C0 = N = 2cn is the sample selection complexity and n represents the number of

queries after the sample reduction

• C1 = (n− k+ c)(a+ �(k− c)/u�) is the cost of Gaussian elimination, where a and

u are two parameters that are used in the optimization of this step

• PC11 = (2s − s − 1)(k − c)a is the cost to update the queries after the Gaussian

elimination

• C2 =
∑t

i=1�k−c+1−ib
f �(n−k−c− i2b) is the cost for collision procedure when using

LF1 as reduction method and f is a parameter used in the pre-computation of the

collision procedure

• C2 =
∑t

i=1�k−c+1−ib
f �n[i] is the cost for collision procedure when using LF2 as

reduction method, where n[i] = n[i − 1] − 2b and n[0] represents the number of

queries before the reduction
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• C2 =
∑t

i=1(�k−c+1−ib
f �n[i] + (2bn[i])1/3) is the cost for collision procedure when

using LF(4) as reduction method, where n[i] =
(n[i−1]

4

)
2−b and n[0] represents the

number of queries before the reduction 9

• C3 = m
∑w1

i=1

(
k1
i

)
is the cost of the partial secret guessing and m is the cost of

performing the xor

• C4 = mh is the cost of the covering code reduction method

• C5 = 
2

∑w1

i=0

(k1
i

)
is the cost of applying the Walsh transform for every guess of

the secret

Revised Analysis on LF(4). We re-evaluate the work by Zhang et al. [ZJW16]. While

this new algorithm claims to improve all the previous results, we have discovered issues

in its analysis. We review the LF(4) reduction method and find that this method is

misleading.

The authors of the EUROCRYPT’16 paper [ZJW16] introduce a new reduction tech-

nique that they call LF(4) which is based on Wagner’s algorithm [Wag02]. As afore-

mentioned, this reduction method finds four vectors from a list which, when they are

xored, give a zero. They use an information theoretic estimate on the required number

of vectors for a solution to exist and the complexity results from Wagner.

If we have n vectors of b bits, information theory says we need n ≈ (4! · 2b) 1
4 for one

collision. For this n, there is an algorithm of complexity n2

2 ≈
√
6 ·2b/2 to find a solution

(make a list of XOR of two strings then look for a collision). Wagner’s algorithm works

with the better time complexity of 2b/3 but needs a larger n ≈ 2b/3 because it looks

for solutions such that the XOR of the first two vectors starts with b
3 zero bits. For

this, it makes a list of XOR of two vectors colliding on their first b/3 bits then look for

collisions of their XOR on the remaining bits. What the authors of [ZJW16] use is a

data complexity of 2b/4 and a time complexity of 2b/3 by invoking Wagner. So, they mix

up the two algorithms: they take the best data complexity of the two and the best time

complexity of the two without realising that this applies to two different ones. We will

now exemplify this.

For their algorithm, they need more than one solution so instead of having a complex-

ity of 2b/3, they will have 2b/3n
1/3
sol with Wagner’s algorithm, where nsol represents the

number of solutions for LF(4). So, for nsol collisions Wagner’s algorithms will require

n ≈ n
1
3
sol2

b
3 and have a complexity of 2b/3n

1/3
sol . For the information theory algorithm, n

becomes n = (4! · nsol2
b)

1
4 and the algorithm has a complexity of

√
6 · n

1
2
sol2

b/2.

The results from [ZJW16] show that for an LPN512,1/8 for n ≈ nsol = 253.5 and b = 156

the complexity is 272.8. By fixing the number of queries we want to have at the end and

the length on the segment we want to find collisions, i.e. nsol and b, the Wagner algorithm

would require n ≈ 270 and would have a complexity of about 270. For the information

theory algorithm, we would have n ≈ 253.5 and a complexity of about 2106.

9This part is incorrect as commented below
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They claim that their results are confirmed by simulations, but the results they provide

miss the time complexity of the simulations.

There are also inconsistencies in the data complexity and the complexity of the Gaus-

sian elimination step, but this analysis is outside the scope of this thesis. Details about

this can be found in ePrint [BV16a]. What we are interested in is analysing the efficiency

of the new reduction or solving steps.

The conclusion regarding LF(4) is that it does not bring improvements. The compu-

tations with the correct LF(4) give worse results than LF1 and LF2. This is because an

LF(4) with Wagner’s algorithm means 2 LF2 consecutive reductions and the LF(4) with

the information theory algorithm approach brings no improvement.

3.8 Other LPN Solving Algorithms

Most LPN-based encryption schemes use τ as a function of k, e.g. τ = 1√
k
[Ale03, DP12].

The bigger the value of k, the lower the level of noise. For k = 768, we have τ ≈ 0.036.

For such a value, we say that the noise is sparse. Given that these LPN instances are

used in practice, we study how we can construct other algorithms that take advantage

of this extra information.

The first two algorithms presented in this section bring new ideas for the solving

phase. The third one provides a method to recover the whole secret and does not need

any reduction phase.

We maintain the notations used until now: n′ queries remain after the reduction phase,

the bias is δ′ and the block size is k′.
For these solving algorithms, we assume that the secret is sparse. Even if the secret

is not sparse, we can just assume that the noise is sparse. We can transform an LPN

instance to an instance of LPN where the secret is actually a vector of noise bits by the

method presented in [Kir11]. The details of this transform were given in Section 3.6 for

the covering codes algorithm.

We denote by δs the bias of the secret, i.e. Pr[si = 1] = 1−δs
2 for any 1 ≤ i ≤ k. We

can take δs = δ.

The assumption we make is that the Hamming weight of the k′-bit length secret s

is in a given range. On average, we have that HW(s) = k′(1−δs
2 ), so an appropriate

range is
[
0, k′(1−δs

2 ) + σ
2

√
k′
]
, where σ is constant. We denote k′(1−δs

2 ) by EHW and

σ
2

√
k′ by dev. Thus, we are searching in the range [0, EHW + dev]. We can bound

the probability that the secret has a Hamming weight outside the range by using the

Hoeffding bound [Hoe63].

Let X1,X2, . . . ,Xk′ be independent random variables that correspond to the secret

bits, i.e. Pr[Xi = 1] = 1−δs
2 and Pr[Xi ∈ [0, 1]] = 1. We have E(X) = 1−δs

2 k′. Using

Theorem 2.5, we get that

Pr[HW(s) not in range] = Pr

[
HW(s)− (1− δs)

2
k′ ≥ σ

√
k′

4

]
≤ e−

σ2

2 .
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If we want to bound by θ/2 the probability that HW(s) is not in the correct range for

one block, we obtain that σ =
√

2 ln(2θ ).

3.8.1 Exhaustive Search on Sparse Secret

We have S =
∑EHW+dev

i=0

(k′
i

)
vectors ν with Hamming weight in our range. One first idea

would be to perform an exhaustive search on the sparse secret. We denote this algorithm

by Search1. For every such value ν, we compute HW(AνT + c) (See Algorithm 3.4). In

order to compute the Hamming weight, we have to compute the multiplication between A

and all ν which have a Hamming weight in the correct range. This operation would take

O(Sn′k′) time but we can save a k′ factor by the following observation done in [BLP11]:

computing AνT , with HW(ν) = i means xoring i columns of A. If we have the values of

AνT for all ν where HW(ν) = i then we can compute Aν ′T for HW(ν ′) = i+1 by adding

one extra column to the previous results.

We use here a similar reasoning done for the Walsh-Hadamard transform. When ν = s,

the value of HW(AsT + c) is equal to HW(d) and we assume that this is the smallest

value as we have more noise bits set to 0 than 1. Thus, going through all possible values

of ν and keeping the minimum will give us the value of the secret. The time complexity

of Search1 is the complexity of computing the Hamming weight, i.e. O(Sn′).

Algorithm 3.4 Search1 - solving phase

1: Input: a matrix A and vector c s.t. As+ d = c from the reduction phase, values k′,
EHW, dev

2: Output: value s

3: Set minHW = k′

4: Set s = ⊥
5: for each ν s.t. HW(ν) ∈ [0, EHW + dev] do
6: Compute h = HW(Aν + c)
7: if h < minHW then

8: minHW = h
9: s = ν

10: end if

11: end for

12: return s

Besides Search1, which requires a matrix multiplication for each trial, we also dis-

covered that a Walsh transform can be used for a sparse secret. We call this algorithm

Search2. The advantage is that a Walsh transform is faster than a naive exhaustive search

and thus, improves the time complexity. We thus compute the fast Walsh-Hadamard

transform and search the maximum of f̂ only for those S values with Hamming weight

in the correct range (See Algorithm 3.5). Given that we apply a Walsh transform, we

get that the complexity of this solving algorithm is O(k′2k′ log2(n′)+1
2 ). So, it is more

interesting than Search1 when Sn′ > k′2k′ log2(n
′)+1

2 .
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Algorithm 3.5 Search2 - solving phase

1: Input: a matrix A and vector c s.t. As+ d = c from the reduction phase, values k′,
EHW, dev

2: Output: value s

3: f(x) =
∑

(ai)∈A 1ai1,...,ik′=x(−1)ci
4: f̂(ν) =

∑
u(−1)νuf(w) � Walsh transform of f(x)

5: (sp1 , . . . , spb) = arg max(f̂(ν))
6: where HW(sp1 , . . . , spb) ∈ [0, EHW + dev]
7: return s

For both algorithms, the failure probability is given by the scenario where there ex-

ists another sparse value ν 
= s such that HW(AνT + c) ≤ HW(AsT + c). We ap-

ply a similar analysis with the one done for WHT, where now we have S vectors in

total. We obtain that we need n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S−1

))2
. Another fail-

ure scenario, that we take into account into our analysis, occurs when the secret has

a Hamming weight outside our range. Thus, we can say that with σ =
√

2 ln(2θ ) and

n = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S−1

))2
+ (a − 1)2b, the probability of failure is smaller

than θ.

Complexity analysis. Taking n = n′ + (a − 1)2b, k′ = b, δ′ = δ2
a−1

and δs = δ, we

obtain the following theorems for Search1 and Search2:

Theorem 3.10. Let S =
∑EHW+dev

i=0

(b
i

)
where EHW = b(1−δs

2 ) and dev = σ
2

√
b and

let n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S−1

))2
. For k ≤ a · b and a secret s with bias δs,

the Search1 algorithm heuristically (n = n′ + (a − 1)2b, t = O(kan + n′S),m = kn +

b
( b
EHW+dev

)
, θ, b)-solves the LPN problem.

Theorem 3.11. Let S =
∑EHW+dev

i=0

(
b
i

)
where EHW = b(1−δs

2 ) and dev = σ
2

√
b and let

n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S−1

))2
. For k ≤ a · b and a secret s with bias δs, the

Search2 algorithm heuristically (n = n′ + (a− 1)2b, t = O(kan+ b2b log2 n
′+1

2 + bn′),m =

kn, θ, b)-solves the LPN problem.

Here, we take the probability, that any of the two failure scenarios to happen, to be

each θ/2. A search for the optimal values such that their sum is θ, brings a very little

improvement to our results. We expect to require less queries for exhaustive search

compared to LF1. As the asymptotic time complexity of Search2 is the same as LF1 and

the number of queries is smaller, we expect to see that this algorithm runs faster than

LF1.
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3.8.2 Meet in the Middle on Sparse Secret (MITM)

While MITM is a widely used technique for analysing block ciphers, stream ciphers

and hash functions [GJNS14, NS16, Sas13, SKS+13, WSK+12, SWS+12, Iso11, IS12,

CNV13, GLRW10, DSP07, BR10], we try to use it for LPN and we use a mask in order

to remove the effect of the noise. The idea of MITM is used also for solving the LWE

problem [AFFP14, BG14, APS15].

Given that AsT+d = c, we split s into s1 and s2 and rewrite the equation as A1s
T
1 +d =

A2s
T
2 +c. With this split, we try to construct a meet-in-the-middle attack by looking for

A2s
T
2 + c close to A1s

T
1 . The secret s has size k′ and we split it into s1 of size k1 and s2

of size k2 such that k1 + k2 = k′. We consider that both s1 and s2 are sparse. Thus the

Hamming weight of si lies in the range
[
0, ki(

1−δs
2 ) + σ′

2

√
ki

]
. We denote ki(

1−δs
2 )+ σ′

2

√
ki

by maxHW(ki). In order to bound the probability that both estimates are correct, we

use the same bound shown in Section 3.8.1 and obtain that σ′ =
√

2 ln(4θ ).

For our MITM attack, we have a pre-computation phase. We compute and store A1s
T
1

for all S1 =
∑maxHW(k1)

i=0

(k1
i

)
possible values for s1. We do the same for s2, i.e compute

A2s
T
2 + c for all S2 =

∑maxHW(k2)
i=0

(k2
i

)
vectors s2. The pre-computation phase takes

(S1 + S2)n
′ steps in total. Afterwards, we pick ξ bit positions and hope that the noise

d has only values of 0 on these positions. If this is true, then we could build a mask μ

that has Hamming weight ξ such that d ∧ μ = 0. The probability for this to happen is

(1+δ′
2 )ξ = e

−ξ ln 2
1+δ′ .

We build our meet-in-the-middle attack by constructing a hash table where we store,

for all s2 values, A2s
T
2 + c at position h((A2s

T
2 + c) ∧ μ). We have S2 vectors s2, so

we expect to have S22
−ξ vectors on each position of the hash table. For all S1 values

of s1, we check for collisions, i.e. h((A1s
T
1 ) ∧ μ) = h((A2s

T
2 + c) ∧ μ). If this happens,

we check if A1s
T
1 xored with A2s

T
2 + c gives a vector d with a small Hamming weight.

Remember that with the pre-computed values we can compute d with only one xor

operation. If the resulting vector has a Hamming weight in our range, then we believe

we have found the correct s1 and s2 values and we can recover the value of s. Given that

A1s
T
1 +A2s

T
2 + d = c, we expect to have (A2s

T
2 + c)∧μ = A1s

T
1 ∧μ only when d∧μ = 0.

The condition d ∧ μ = 0 holds with a probability of (1+δ′
2 )ξ so we have to repeat our

algorithm ( 2
1+δ′ )

ξ times in order to be sure that our condition is fulfilled. The steps of

the meet-in-the-middle algorithm are illustrated in Algorithm 3.6.

As for exhaustive search, we have two scenarios that could result in a failure. One

scenario is when s1 or s2 have a Hamming weight outside the range. The second

one happens when there is another vector ν 
= s such that HW(A1ν
T
1 + A2ν

T
2 + c) ≤

HW(A1s
T
1 +A2s

T
2 + c) and (A1ν

T
1 +A2ν

T
2 + c) ∧ μ = 0.

Complexity analysis. The time complexity of constructing the MITM attack is (S1+

S2)n
′+((S1+S2)ξ+S1S22

−ξn′)·( 2
1+δ′ )

ξ. We include here the cost of the pre-computation

phase and the actual MITM cost. We obtain that the time complexity is O((S1+S2)n
′+

(S1 + S2)ξ(
2

1+δ′ )
ξ + S1S2n

′( 1
1+δ′ )

ξ). Taking again n′ = n− (a− 1)2b, k′ = b, δ′ = δ2
a−1

,
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Algorithm 3.6 MITM Algorithm - solving phase

1: Input: a matrix A and vector c s.t. As+ d = c from the reduction phase, values k′,
δ′, maxHW(·), ξ, hash function h

2: Output: the value s

3: Split s in s1 and s2 and A into A1 and A2 � si ∈ {0, 1}ki s.t. k1 + k2 = k′

4: such that A1s
T
1 + d+A2s

T
2 = c

5: for j = 1 to ( 2
1+δ′ )

ξ do

6: Construct mask μ s.t. HW(μ) = ξ
7: for each ν2 s.t. HW(ν2) ∈ [0,maxHW(k2)] do
8: Store A2ν

T
2 + c at position h((A2ν

T
2 + c) ∧ μ)

9: end for

10: for each ν1 s.t. HW(ν1) ∈ [0,maxHW(k1)] do
11: if h((A1ν

T
1 ) ∧ μ) = h((A2ν

T
2 + c) ∧ μ) then

12: if Hw(A1ν
T
1 +A2ν

T
2 + c) ∈ [0,maxHW(k′)] then

13: Construct s from ν1 and ν2
14: end if

15: end if

16: end for

17: end for

18: return s

δs = δ, we obtain the following result for MITM.

Theorem 3.12. Let n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S1S2−1

))2
. Take k1 and k2 values

such that b = k1 + k2. Let Sj =
∑maxHW(kj)

i=0

(kj
i

)
where maxHW(kj) = kj(

1−δs
2 ) + σ′

2

√
kj

for j ∈ {1, 2}. For k ≤ a ·b and a secret s with bias δs, the MITM algorithm heuristically

(n = n′+(a− 1)2b, t = O(kan+(S1 +S2)n
′+(S1+S2)ξ(

2

1+δ2a−1 )
ξ +S1S2n

′( 1

1+δ2a−1 )
ξ),

m = kn+ S2 + (S1 + S2)n
′, θ, b)-solves the LPN problem.

3.8.3 Gaussian Elimination

In the case of a sparse noise, one may try to recover the secret s by using Gaussian

elimination. It is well known that LPN with noise 0, i.e. τ = 0, is an easy problem.

This idea was used in [CTIN09] in order to mount a passive attack on HB and HB+

protocols. If we are given Θ(k) queries for which the noise is 0, one can just run Gaussian

elimination and in O(k3) recover the secret s. For a LPNk,τ instance, the event of having

no noise for k queries happens with a probability pnonoise = (1− τ)k.

We design the following algorithm for solving LPN: first, we have no reduction phase.

For each k new queries, we assume that the noise is 0. We recover an ν through Gaussian

elimination. We must test if this value is the correct secret by computing the Hamming

weight of A′νT + c′, where A′ is the matrix that contains n′ fresh queries and c′ is the

vector containing the corresponding noisy inner products. We expect to have a Hamming

weight in the range [0, (1−δ
2 )n′ + σ

√
n′
2 ], where σ is a constant.
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If we want to bound by θ/2 the probability that the Hamming weight of the noise is

not in the correct range, for the correct secret, we obtain that σ = ϕ−1(1−θ/2)
√
1− δ2.

For a ν 
= s, we use the Central Limit Theorem to bound that HW(A′νT + c′) is

in the correct range. Let X1, . . . ,Xn′ be the i.i.d random variables that correspond to

Xi = 〈vi, ν〉⊕ ci. Let X = X1 + . . .+Xn′ . We have E(X1) =
1
2 and Var(X1) =

1
4 . Using

Theorem 2.6, we obtain

Pr[failure] = Pr[∃νs.t. HW(A′νT + c′) in correct range]

=

(
1−

(
1− Pr[X ≤ (

1− δ

2
)n′ +

σ
√
n′

2
]
)2k−1

)

=

(
1−

(
1− ϕ(σ − δ

√
n′)

)2k−1
)

If we bound this probability of failure by θ/2 we obtain that we need at least n′ =(
σ − ϕ−1(1− (1− θ/2)

1

2k−1 )
)2

δ−2 queries besides the k that are used for the Gaussian

elimination.

As aforementioned, with a probability of pnonoise = (1− τ)k, the Gaussian elimination

will give the correct secret. Thus, we have to repeat our algorithm 1
pnonoise

times.

Complexity analysis. The computation of the Hamming weight has a cost ofO(n′k2).
Given that we run the Gaussian elimination and the verification step 1

pnonoise
times, we

obtain the following theorem for this algorithm:

Theorem 3.13. Let n′ =
(
σ − ϕ−1(1 − (1 − θ/2)

1

2k−1 )
)2

δ−2. The Gaussian elimin-

ation algorithm (n = k+2
(1−τ)k

+ n′, t = O
(
n′k2+k3

(1−τ)k

)
,m = k2 + n′k, θ, k)-solves the LPN

problem.10

Remark 2. Notice that this algorithm recovers the whole secret at once and the only

assumption we make is that the noise is sparse. We do not need to run the transform

such that we have a sparse secret and there are no queries lost during the reduction

phase.

Remark 3. In the extreme case where (1− τ)k > θ, the Gaussian elimination algorithm

can just assume that k queries have noise 0 and retrieve the secret s without verifying

that this is the correct secret.

3.9 Solving LPN with a Polynomial Number of Samples

So far, all the algorithms presented here require access to a subexponential number of

LPN queries. In real applications, e.g. passive attack on LPN-based encryption schemes,

10Given that we receive uniformly distributed vectors from the LPN oracle, from n + 2 vectors v we
expect to have n linearly independent ones.
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an adversary has a limited access to these queries. Thus, it is of interest to see what

is the complexity of solving LPN when n, the initial number of queries, is polynomial.

Lyubashevsky presented in [Lyu05] a subexponential algorithm for solving LPN when

n = k1+ε, for ε > 0. We present in this Section the main results from [Lyu05] and later

in this thesis (in Chapter 6) we will prove that one can do better.

Pre-reduction phase. The aim of this phase is to construct enough LPN-like samples

from the n = k1+ε LPN initial queries. The new queries are going to be given as input

to the BKW algorithm, i.e. following the reduction and solving phase.

A way to increase the number of queries is to construct w combinations of them. At

the end, we would have
(n
w

)
new queries. The following results show that by choosing a

correct w, in the end, we have enough samples and that they behave like the LPN ones.

The following Lemma shows that if we make random combinations of the vi vectors,

the new vectors are also uniformly distributed.

Lemma 3.14 (Lemma 1 from [Lyu05]). Let X ⊆ {0, 1}k1+ε
such that |X| > 22k and

let Y = {0, 1}k. Let H be the universal family of hash functions from X to Y , where

H = {hv |v = (v1, . . . , vk1+ε), vi ∈ {0, 1}k}, and where hv(x) = x1v1 ⊕ . . . ⊕ xk1+εvk1+ε.

If hv is chosen uniformly at random from H, then, with probability at least 1 − 2−
k
4 ,

d(hv(x), U) ≤ 2−
k
4 where x is chosen uniformly at random from X and U is the uniform

distribution over Y .

Once it is proven that H is a universal family of hash functions, one can use the

Leftover Hash Lemma and prove Lemma 3.14. For this algorithm, X is chosen to be

X = {x ∈ {0, 1}k1+ε |HW (x) = � 2k
ε log2 k

�}. Thus, the new queries are a combination

of w = � 2k
ε log2 k

� initial queries. The new noisy inner products have a noise of τ ′ ≤
1
2 − 1

2

(
1−2τ
4

) 2k
ε log2 k .

At the end of this phase, the algorithm gives the new queries to the BKW algorithm.

Reduction phase. This phase follows the same steps that are done in the BKW

algorithm.

Solving phase. It uses the majority rule as in BKW.

Complexity analysis. We state the main result from [Lyu05].

Theorem 3.15 (Th. 1 from [Lyu05]). Let n = k1+ε be the number of samples from the

LPN oracle and let w = � 2k
ε log2 k

� with ε > 0. For τ < 1
2 − 2−(log2 k

σ) for any constant

σ < 1, the algorithm (n, t = 2
O( k

log2 log2 k
)
,m = k

(n
w

)
, θ, b)-solves the LPN problem.
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Chapter4
Comparing the LPN Solving Algorithms

Having provided a tighter analysis of the LPN solving algorithms, in this chapter, we

provide a comparison between the theory and practice with respect to the performance

of these algorithms. The personal contribution in this chapter is a joint work with

Florian Tramèr and Serge Vaudenay that was published in Journal of Cryptography and

Communications [BTV16].

Structure of the Chapter. We present the environment and the libraries we used

for the implementation in Section 4.2. We also give the comparison between the theory

and the practice for the algorithms described in Sections 3.3 - 3.8. We compare the

performance of all these algorithms and show what are the secure parameters that LPN

should be instantiated with in Section 4.3.

4.1 Our Contribution

Having a better analysis of the LPN solving algorithms described in the previous chapter,

we provide experimental results and compare them with the practice. For this, we imple-

ment all the algorithms that we describe. Our motivation is to study the gap between

theory and practice. We discover that our practical results are very close to our theoret-

ical results. Besides comparing theory with practice for each algorithm, we compare all

the algorithms for a family of LPN instances where the secret is sparse and establish that

the Gaussian elimination is the best algorithm for this case. As we validate our theory,

we can propose secure parameters for different LPN instances, where we vary the size of

the secret and the noise level. We see that depending on the noise level, we have several

algorithms that are the most efficient. For a sparse noise the Gaussian elimination is

the best. For a a constant noise level, the covering code and the LF2 provide the best

results.
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4.2 Comparing Theory with Practice

In this section, we compare the theoretical analysis with implementation results of all

the LPN solving algorithms described in Sections 3.3 - 3.8.

We implemented the BKW, LF1 and LF2 algorithms as they are presented in [LF06]

and in pseudocode in Algorithms 3.1-3.3. The implementation was done in C on a Intel

Xeon 3.33Ghz CPU. We used a custom bit library to store and handle bit vectors. Using

the OpenMP library1, we have also parallelized certain crucial parts of the algorithms.

The xor-ing in the reduction phases as well as the majority phases for instance, are

easily distributed onto multiple threads to speed up the computation. Furthermore, we

implemented the exhaustive search and MITM algorithms described in Section 3.8. The

various matrix operations performed for the sparse LPN solving algorithms are done

with the M4RI library 2. Regarding the memory model used, we implemented the one

described in [LF06] in order to accommodate the LF2 algorithm. The source code of our

implementation can be found at http://lasec.epfl.ch/lpn/lpn_source_code.zip.

We ran all the algorithms for different LPN instances, where the size of the secret

varies from 48 to 100 bits and the Bernoulli parameter τ takes different values from

0.01 to 0.4. A value of τ = 0.1 for a small k as the one we are able to test means

that very few, if none, of the queries have the noise bits set on 1. For this sparse case,

an exhaustive search is the optimal strategy. Also, τ = 0.4 might also seem to be an

extreme case. Still, we provide the query complexity for these extreme cases to fully

observe the behaviour of the LPN solving algorithms.

For each LPN instance, we try to find the theoretical number of oracle queries required

to get a 50% probability of recovering the full secret while optimizing the time complexity.

This means that in half of our instances, we recover the secret correctly. In the other

half of the cases, it may happen that one or more bits are guessed wrong. We thus

take θ = 1
3 as the probability of failure for the first block. We choose a and b that

would minimize the time complexity and we apply this split in our theoretical bounds

in order to compute the theoretical number of initial queries. We apply the same split

in practice and try to minimize the number of initial queries such that we maintain a

50% probability of success. We thus experimented with different values for the original

number of oracle samples, and ran multiple instances of the algorithms to approximate

the success probability. One can observe that in our practical and theoretical results the

a, b parameters are the same and the comparison is consistent. We were limited by the

power of our experimental environment and thus, we were not able to provide results for

instances that require more than 230 queries.

4.2.1 BKW∗

The implementation results for BKW∗ are presented in Table 4.1. Each entry in the table

is of the form log2(n)(a), where n is the number of oracle queries that were required to

1http://openmp.org/wp
2http://m4ri.sagemath.org/
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Comparing the LPN Solving Algorithms

Table 4.1: BKW∗ query complexity - prac-
tice (log2)

τ
k

48 64 80 100

0.01 11.85(6) 15.01(6) 17.68(7) 20.78(7)

0.10 19.99(4) 23.13(4) 27.30(4)

0.20 23.84(3)

0.25 25.95(3)

0.40

Table 4.2: BKW∗ query complexity - the-
ory (log2)

τ
k

48 64 80 100

0.01 11.69(6) 14.84(6) 17.69(7) 20.80(7)

0.10 19.02(4) 23.19(4) 27.32(4) 32.43(4)

0.20 23.94(3) 30.11(3) 33.97(4) 39.09(4)

0.25 26.05(3) 32.23(3) 37.33(3) 43.30(4)

0.40 35.56(2) 42.81(3) 47.91(3) 55.02(3)

obtain a 50% success rate for the full recovery of the secret. The parameter a is the

algorithm parameter denoting the number of blocks into which the vectors were split.

We take b = �ka�. By maintaining the value of a, we can easily compute the number

of queries and the time & memory complexity. In Table 4.2, we present the theoretical

results for BKW∗ obtained by using Theorem 3.3. We can see that our theoretical and

practical results are very close. We are a bit too optimistic with the theory for the small

values of k, i.e. k = 48 and k = 60 where we require a bit less number of queries. For

larger values, our theory requires more queries than the practice.

If we take the example of LPN100,0.01, we need 220.78 queries and our theoretical analysis

gives a value of 220.80. These two values are very close. We emphasize again that for

both the theory and the practice, we use the split that optimizes the time complexity

and from this optimal split we derive the number of queries.

Remark 4. For the BKW∗ algorithm, we tried to optimize the average final bias of the

queries, i.e. obtaining a better value than δ2
a−1

. Recall that at the beginning of the

reduction phase, we order the queries in equivalence classes and then choose a represent-

ative vector that is xored with the rest of queries from the same class. One variation of

this reduction operation would be to change several times the representative vector. The

incentive for doing so is the following: one representative vector that has error vector

set on 1 affects the bias δ of all queries, while by choosing several representative vectors

this situation may be improved; more than half of them will have error bit on 0. We

implemented this new approach, but we found that it does not bring any significant im-

provement. Another change that was tested was about the majority rule applied during

the solving phase. Queries have a worst case bias of δ2
a−1

(See Lemma 3.1), but some

have a larger bias. So, we could apply a weighted majority rule. This would decrease the

number of queries needed for the solving phase. We implemented the idea and discovered

that the complexity advantage is very small.

Remark 5. In our implementation, we try to optimize the way we split our blocks during

the reduction phase. The optimal split might give an a that does not divide k. For the
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Table 4.3: LF1 query complexity - practice
(log2)

τ
k

48 64 80 100

0.01 9.78(7) 11.29(8) 13.32(8) 14.99(8)

0.10 13.20(4) 15.52(5) 17.98(5) 21.38(5)

0.20 16.30(4) 18.03(4) 21.04(4) 25.18(4)

0.25 16.20(3) 20.70(4) 22.24(4) 25.93(4)

0.40 23.49(3) 23.97(3)

Table 4.4: LF1 query complexity - theory
(log2)

τ
k

48 64 80 100

0.01 9.90(7) 12.24(8) 13.44(8) 15.94(8)

0.10 13.69(4) 16.12(5) 18.24(5) 22.02(5)

0.20 16.75(4) 18.34(4) 21.66(4) 26.59(4)

0.25 17.01(3) 21.36(4) 22.60(4) 26.64(4)

0.40 23.84(3) 24.82(3) 28.13(3) 35.00(3)

theoretical analysis, we always assume that k can be written as k = a·b. When comparing

the theory with practice, the results for the theoretical values give an upper bound as we

take b = �ka� and we actually give exact results for a secret of size a�ka� ≥ k. This

observation holds for all the algorithms we implemented.

4.2.2 LF1

Below, we present the experimental and theoretical results for the LF1 algorithm. As a

first observation we can see that, for all instances, this algorithm is a clear optimization

over the original BKW∗ algorithm. As before, each entry is of the form log2(n)(a), where

n and a are selected to obtain a 50% success rate for the full recovery of the secret and

b = �ka�.
Table 4.4 shows our theoretical results for LF1 using Theorem 3.5. When we compare

the experimental and the practical results for LF1 (See Table 4.3 and Table 4.4), we can

see that the gap between them is of a factor up to 2.

Remark 6. Recall that in LF1, like in all LPN solving algorithms, we perform the

reduction phase by splitting the queries into a blocks of size b. When this split is not

possible, we consider that we have a− 1 blocks of size b and a last block shorter of size

b′ with b′ < b. By LF1∗, we denote the same LPN solving algorithm that makes use of

the Walsh transform but where the split of the blocks is done different. We allow now

to have a last block larger than the rest. The gain for this strategy may be the following:

given that we recover a larger block of the key, we run our solving phase fewer times.

Although the complexity of the transform is bigger as we work with a bigger block, the

reduction phase has to be applied fewer times. From our experiments, we discover there

seems to be no difference between the performance of the two algorithms.

4.2.3 LF2

We tested the LF2 heuristic on the same instances as for BKW∗ and LF1. The results are

summarized in Table 4.5. To illustrate the performance of the heuristic, we concentrate
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Table 4.5: LF2 query complexity - practice (log2)

τ
k

48 64 80 100

0.01 8.97(7) 10.24(7) 12.41(8) 13.15(8)

0.10 12.60(4) 15.12(5) 16.90(5) 20.65(5)

0.20 15.40(3) 16.94(4) 20.47(4) 24.88(4)

0.25 15.92(3) 20.61(4) 21.00(4) 25.40(4)

0.40 19.74(2) 23.52(3)

on a particular instance, LPN100,0.1 with a = 5, b = 20. As derived in [LF06], the LF1

algorithm for this parameter set should require less than (8 · b + 200) · δ−2a ≈ 218.77

queries for a solving phase and (a− 1) · 2b + (8 · b+200) · δ−2a ≈ 222.13 queries overall to

achieve a success probability of 50%. Using our theoretical analysis, the LF1 algorithm

for this parameter set requires to have ≈ 222.05 queries overall and 215.91 queries for the

solving phase. Our experimental results for LF1 were a bit lower than our theoretical

ones: 221.38 oracle samples were sufficient. If we use the LF2 heuristic starting with

1+2 ∗ 2b ≈ 221 samples, we get about the same amount of vectors for the solving phase.

In this case, there are no queries lost during reduction. We thus have much more queries

than should actually be required for a successful solving phase and correctly solve the

problem with success probability close to 100%. So we can try to start with less. By

starting off with 220.65 queries and thus loosing some queries in each reduction round, we

also solved the LPN problem in slightly over 50% of the cases. The gain in total query

complexity for LF2 is thus noticeable but not extremely important.

As another example, consider the parameter set k = 768, τ = 0.05 proposed at the

end of [LF06]. The values for a, b which minimize the query complexity are a = 9, b = 86

(a · b = 774 > k). Solving the problem with LF1 should thus require about 285.66 vectors

for the solving phase and 289.13 oracle samples overall. Using LF2, as 1 + 2 ∗ 2b ≈ 287

oracle samples would be sufficient, we obtain a reduction by a factor ≈ 4.

Even though LF2 introduces linear dependencies between queries, this does not seem

to have any noticeable impact on the success probability in recovering the secret value.

Remark 7. A general observation for all these three algorithms, shown also by our

results, is that the bias has a big impact on the number of queries and the complexity.

Recall that the bias has value δ2
a−1

at the end of the reduction phase. We can see from

our tables that the lower the value of τ , i.e. larger value of δ = 1− 2τ , the higher a can

be chosen to solve the LPN instance. Also, for a constant τ , the higher the size of the

secret, the higher a can be chosen.

Remark 8. The LF2 algorithm is a variation of LF1 that offers a different heuristic

technique to decrease the number of initial queries. The same trick could be used for

BKW∗, exhaustive search and MITM.
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While the same analysis can be applied for exhaustive search and MITM as for LF2,

BKW∗ is a special case. We denote by BKW2 this variation of BKW where we use the re-

duction phase from LF2. Recall that for BKW∗, we need to have n = 2b 1−δ2
a

δ2a

(
ϕ−1

(
1− θ

b

))2
+

(a− 1)2b queries and here the dominant term is 2b 1−δ2
a

δ2a

(
ϕ−1

(
1− θ

b

) )2
. Thus, we need

to start with 2 · 2b + ε, where ε > 1 and increase such that at the end of the last iteration

of the reduction, we get the required number of queries. This improves the initial number

of queries and we have a gain of a factor a for the time complexity. For an LPN48,0.1

instance, our implementation of BKW2 requires n = 213.82 initial queries and increases

it, during the reduction phase, up to 219.51, the amount of queries needed for the solving

phase. Thus, there is an improvement from 219.99 (See Table 4.1) to 213.82 and the time

complexity is better. While this is an improvement over BKW∗, it still performs worse

than LF1 and LF2.

4.2.4 Exhaustive Search

Recall that for exhaustive search, we have two variants. The results for Search1 are

displayed in Table 4.6 and Table 4.7. For Search1 we observe that the gap between

theory and practice is of a factor smaller than 4. In terms of number of queries, Search1
brings a small improvement compared to LF1. We will see in the next section the

complete comparison between all the implemented algorithms.

Remark 9. One may observe a larger difference for the LPN48,0.4 and LPN64,0.25 in-

stances. For example for LPN48,0.4 we have n = 219.74 (practice) vs. n = 224.00 (theory).

For this case, the implementation requires n = 219.74 initial queries compared with the

theory that requires n = 224.00 queries. Here, we have a = 2 and b = 24 and the term

(a − 1)2b dominates the query complexity. The discrepancy comes from the worst-case

analysis of the reduction phase where we say that at each reduction step we discard 2b

queries. With this reasoning, we predict to lose 224 queries. If we analyse more closely,

we discover that actually in the average-case, we discard only 2b · [1− (
1− 1

2b

)n]
queries

(this is the number of expected non-empty equivalence classes). Thus, with only 219.74

initial queries, we run the reduction phase and discard 219.70 queries, instead of 224. We

are left with 214.45, queries which are sufficient for the solving phase. We note that for

large LPN instances, this difference between worst-case and average-case analysis for the

number of deleted queries during reduction rounds becomes negligible.

The results for Search2 are displayed in Table 4.8 and Table 4.9.

We notice that for both Search1 and Search2 the instances LPN48,0.01 and LPN68,0.01

have a very low number of queries. This is due to the following observation: for n ≤ 68

linearly independent queries and τ = 0.01 we have that the noise bits are all 0 with a

probability larger than 50%. Thus, for k ≤ 64 we hope that the k queries we receive from
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Table 4.6: Search1 query complexity -
practice (log2)

τ
k

48 64 80 100

0.01 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 13.15(4) 16.44(4) 17.93(5) 21.34(5)

0.20 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 16.18(3) 19.88(3)

0.40 19.74(2)

Table 4.7: Search1 query complexity - the-
ory (log2)

τ
k

48 64 80 100

0.01 5.70(1) 6.12(1) 13.28(8) 15.90(8)

0.10 13.69(4) 17.59(4) 18.20(5) 22.02(5)

0.20 17.02(3) 18.31(4) 21.66(4) 26.59(4)

0.25 17.10(3) 23.00(3) 28.00(3) 26.64(4)

0.40 24.00(2) 24.91(3) 28.15(3) 35.00(3)

Table 4.8: Search2 query complexity -
practice (log2)

τ
k

48 64 80 100

0.01 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 13.15(4) 15.36(5) 17.93(5) 21.34(5)

0.20 16.09(4) 17.99(4) 21.02(4) 25.15(4)

0.25 16.18(3) 20.63(4)

0.40 23.50(2)

Table 4.9: Search2 query complexity - the-
ory (log2)

τ
k

48 64 80 100

0.01 5.70(1) 6.12(1) 13.11(8) 15.87(8)

0.10 13.66(4) 15.87(5) 18.17(5) 22.02(5)

0.20 16.58(4) 18.27(4) 21.65(4) 26.59(4)

0.25 17.10(3) 21.26(4) 22.54(4) 26.64(4)

0.40 23.86(3) 24.82(3) 28.13(3) 35.00(3)
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Table 4.10: MITM query complexity -
practice (log2)

τ
k

48 64 80 100

0.01 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 13.15(4) 16.47(4)

0.20 15.54(3)

0.25

0.40

Table 4.11: MITM query complexity - the-
ory (log2)

τ
k

48 64 80 100

0.01 5.70(1) 6.12(1) 13.28(8) 15.90(8)

0.10 13.67(4) 17.59(4) 18.20(5) 22.01(5)

0.20 17.02(3) 18.30(4) 21.66(4) 26.59(4)

0.25 17.11(3) 23.01(3) 28.00(3) 26.64(4)

0.40 24.00(2) 32.85(2) 28.14(3) 35.00(3)

the oracle have all the noise set to 0. With k noiseless and linearly independent queries,

we can just recover s with Gaussian elimination. This is an application of Remark 3

from Chapter 3.

4.2.5 MITM

In the case of MITM, the experimental and theoretical results are illustrated in Table 4.10

and Table 4.11. There is a very small difference between MITM and exhaustive search

algorithms for a sparse secret: in practice, MITM requires just dozens of queries less

than Search1 and Search2 for the same a and b parameters.

4.2.6 Gaussian Elimination

In the Gaussian elimination algorithm, the only assumption we need to make is that we

have a sparse noise. We do not run any reduction technique and the noise is not affected.

As the algorithm depends on the probability to have a 0 noise on k linearly independent

vectors, the complexity decays very quickly once we are outside the sparse noise scenario.

We present in Table 4.12 the theoretical results obtained for this algorithm.

In the next section, we will show the effectiveness of this simple idea in the sparse case

scenario and compare it to the other LPN solving algorithms.

Again for LPN48,0.01 and LPN64,0.01 we apply Remark 3.

4.2.7 Covering Codes

The covering code requires the existence of a code with the optimal coverage. For each

instance one has to find an optimal code that minimizes the query and time complexity.

Unlike the previous algorithms, this algorithm cannot be truly automatized. In practice,

we could test only the cases that were suggested in [GJL14]. Thus, we are not able to
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Table 4.12: Gaussian elimination query complexity - theory (log2)

τ
k

48 64 80 100

0.01 5.70 6.12 8.23 8.73

0.10 12.96 15.78 18.52 21.87

0.20 21.09 26.65 32.11 38.87

0.25 25.57 32.61 39.56 48.18

0.40 41.01 53.21 65.31 80.37

compare the theoretical and practical values. Nevertheless, we will give theoretical values

for different practical parameters in the next section.

4.3 Complexity Analysis of the LPN Solving Algorithms

We have compared our theoretical bounds with our practical results and we saw that

there is a small difference between the two. Our theoretical analysis also gives tighter

bounds compared with the results from [LF06]. We now extend our theoretical res-

ults and compare the asymptotic performance of all the LPN algorithms for practical

parameters used by the LPN-based constructions. We consider the family of LPNk, 1√
k

instances proposed by some encryption schemes [Ale03, DP12]. Although the covering

code cannot be automatized, as for each instance we have to try different codes with

different sizes and dimensions, we provide results also for this algorithm. When dealing

with the covering code reduction, we always assume the existence of an ideal code and

compute the bias introduced by this step. We do not consider here concatenation of

ideal codes and we will see that we obtain a worse result for the LPN512,0.125 instance

compared with the result from [GJL14], although the difference is small. In the covering

code algorithm, we also stick with the BKW reduction steps and do not use the LF2 re-

duction. As aforementioned, the LF2 reduction brings a small improvement to the final

complexity. This does not affect the comparison between all the LPN solving algorithms.

We analyse the time complexity of each algorithm, by which we mean the number of

bit operations the algorithm performs while solving an LPN problem. For each algorithm,

we consider values of k for which the parameters (a, b) minimising the time complexity

are such that k = a · b. For the LF2 algorithm, we select the initial number of queries

such that we are left with at least n′ = 2−δ2
a

δ2a

(
ϕ−1

(
1− (1− θ)

1

2b−1

))2
queries after

the reduction phase. Recall that by Search1, we denote the standard exhaustive search

algorithm and Search2 is making use of a Walsh-Hadamard transform. The results are

illustrated in Figure 4.1. We recall the time complexity and the initial number of queries

for each algorithm in Table 4.13, where S represents the number of sparse secrets with

S < 2b. For MITM, the values S1 (resp. S2) represent the number of possible values
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Figure 4.1: Time Complexity of LPN Algorithms on instances LPNk, 1√
k

for the first (resp. second) half of the secret, n′ represents the number of queries left

after the reduction phase and ξ represents the Hamming weight of the mask used. In

the case of the covering codes algorithm, all a, b, a′, k′, k′′, l, w0, εset are parameters of the

algorithm. Recall that θ is 1
3 .

We can bound the logarithmic complexity of all these algorithms by k
log2(k)

+ c1 and

c3 log2(k) +
√
k

ln(2) + c2 (denoted in Figure 4.1 by lower bound). The lower bound is

given by the asymptotic complexity of the Gaussian elimination that can be expressed

as c log2 k +
√
k

ln(2) when τ = 1√
k
.

The complexity of BKW can be written as mink=ab(poly · 2b · δ−2a) and for the other

algorithms (except the Gaussian elimination), the formula is mink=ab(poly · (2b + δ−2a)),

where poly denotes a polynomial factor. By searching for the optimal a, b values, we

have two cases:

• for a > 1, we find a ∼ log2
k

(log2 k)
2 ln 1

δ

and b = k
a and obtain that 2b dominates

δ−2a . For δ = 1− 2√
k
we obtain the complexity poly · 2 k

log2(k) .

• for a = 1, we have that for

– BKW the complexity is poly · 2k

– LF1, LF2,Search2 the complexity is poly+ k2k
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– Search1, MITM the complexity is poly · Sr and poly · S2
r′ , respectively, where

we define Sr to be #{v ∈ {0, 1}k | HW (v) ≤ r}. We need to bound the value

of Sr. By induction we can show that Sr ≤ k
k−r−1 · k

r

r! . For τ ≈ 1√
k
, we have

that r ≈ (1 + σ
2 )
√
k and r′ ≈ (12 + σ

2
√
2
)
√
k. We obtain that the complexity

for both algorithms is poly · 2γ
√
k log2 k+O(

√
k), where γ is a constant. This is

not better than 2
k

log2(k) for k < 200 000, but asymptotically this gives a better

complexity.

For Gaussian elimination, the complexity is poly

(1−τ)k
which is poly · 2

√
k for τ = 1√

k
.

Table 4.13: Query & Time complexity for LPN solving algorithms for recovering the first
b bits

LPN algorithm Query complexity(n) and Time complexity(t)

BKW
n = 2b 1−δ2

a

δ2a

(
ϕ−1

(
1− θ

b

) )2
+ (a− 1)2b

t = kan

LF1
n = 2−δ2

a

δ2a

(
ϕ−1

(
1− (1− θ)

1

2b−1

))2
+ (a− 1)2b

t = kan+ b2b log2(n−(a−1)2b)+1
2 + b(n − (a− 1)2b)

LF2
n = 1 + 2b+1 ≥ 2−δ2

a

δ2a

(
ϕ−1

(
1− (1− θ)

1

2b−1

))2

t = kan+ b2b log2(n−(a−1)2b)+1
2 + b(n − (a− 1)2b)

Search1
n = 2−δ2

a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S−1

))2
+ (a− 1)2b

t = kan+ S(n− (a− 1)2b)

Search2
n = 2−δ2

a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S−1

))2
+ (a− 1)2b

t = kan+ b2b
log2(n−(a−1)2b)+1

2 + b(n − (a− 1)2b)

MITM
n = 2−δ2

a

δ2a

(
ϕ−1

(
1− (1− θ/2)

1
S1S2−1

))2
+ (a− 1)2b

t = kan+ (S1 + S2)n
′ + (S1 + S2)ξ(

2
1+δ2a−1 )

ξ + S1S2n
′( 1

1+δ2a−1 )
ξ

Gauss
n = k+2

(1−τ)k
+

(
σ − ϕ−1(1− (1− θ/2)

1

2k−1 )
)2

δ−2

t =

(
n− k+2

(1−τ)k

)
k2+k3

(1−τ)k

Covering codes

n = 2−δ2
a+1

ε2set
δ2a+1 ε2set

(
ϕ−1

(
1− (1− θ)

1

2�−1

))2
+ a2b

t = nka′ + comp+ compsolving, where

comp = (k + 1)an+ (n− a2b)
∑w0

i=0

(
k′−k′′

i

)
i+ (k′′ − 
)(2(n − a2b) + 2
)

compsolving =
(

2
 log2(n−a2b)+1

2 + 
(n− a2b)
)∑w0

i=0

(k′−k′′

i

)
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We see in Figure 4.1 that in some cases, increasing the value of k may result in a

decrease in time complexity. The reason for this is that we are considering LPN instances

where the noise parameter τ takes value 1√
k
. Thus, as k grows, the noise is reduced,

which leads to an interesting trade-off between the complexity of the solving phase

and the complexity of the reduction phase of the various algorithms. This behaviour

does not seem to occur for the BKW algorithm. In this case, the query complexity

n = 2b 1−δ2
a

δ2a

(
ϕ−1

(
1− θ

b

) )2
+ (a − 1)2b is largely dominated by the first term, which

grows exponentially not only in terms of the noise parameter, but also in terms of the

block size b.

Remark 10 (LF1 vs. Search2). As shown in Figure 4.1, the overall complexity of the

LF1 and Search2 algorithms is quasi identical. From Theorems 3.5 and 3.11, we deduce

that for the same parameters (a, b), the Search2 algorithm should perform better as long

as S < 2b−1. This is indeed the case for the instances we consider here, although the

difference in complexity is extremely small.

We can see clearly that for the LPNk, 1√
k

family of instances, the Gaussian elimination

outperforms all the other algorithms for k > 500. For no k < 1000, the LPNk, 1√
k

offers

an 80 bit security. This requirement is achieved for k = 1090.

Selecting secure parameters. We remind that for each algorithm we considered,

our analysis made use of a heuristic assumption of query and noise independence after

reduction. In order to propose security parameters, we simply consider the algorithm

which performs best under this assumption.

By taking all the eight algorithms described in this work, Tables 4.14-4.21 display

the logarithmic time complexity for various LPN parameters. For instance, the LF2

algorithm requires 279 steps to solve a LPN384,0.25 instance.

We recall here the result from [GJL14]: an instance LPN512,0.125 offers a security of

79.7. We obtain a value of 82. The difference comes mainly from the use of LF2 reduction

in [GJL14] and from a search of optimal concatenation of linear codes.

When comparing all the algorithms, we have to keep in mind that the Gaussian

elimination recovers the whole secret, while for the rest of the algorithms, we give the

complexity to recover a block of the secret. Still, this does not affect our comparison as

we have proven in Section 3.4 that the complexity of recovering the first block dominates

the total complexity.

We highlight in red the best values obtained for different LPN instances. We observe

the following behaviour: for a sparse case scenario, i.e. τ = 0.05 for k ≥ 576 or τ =
1√
k
< 0.05, the Gaussian elimination offers the best performance. Once we are outside

the sparse case scenario, we have that LF2 and the covering code algorithms are the best

ones. The covering code proves to be better than LF2 for a level of noise of 0.125. While

the performance of the covering code reduction highly depends on the sparseness of the

noise, LF2 has a more general reduction phase and is more efficient for noise parameters
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of 0.25 and 0.4. Also, for a τ > 0.05 the covering code is better than the Gaussian

elimination.

Thus, for different scenarios, there are different algorithms that prove to be efficient.

This comparison clearly shows that for the family of instances LPNk, 1√
k

neither the BKW,

nor its variants are the best ones. One should use the Gaussian elimination algorithm.

Table 4.14: Bit security of LPN against BKW

τ
k

256 384 448 512 576 640 768 1280

1√
k

68 88 97 106 114 122 139 197

0.05 66 88 98 108 117 126 145 215

0.125 78 104 116 127 137 148 170 252

0.25 93 123 136 149 162 175 201 294

0.4 114 147 163 179 195 212 243 346

Table 4.15: Bit security of LPN against LF1

τ
k

256 384 448 512 576 640 768 1280

1√
k

50 63 71 79 84 88 102 145

0.05 50 62 71 79 87 95 102 160

0.125 56 72 78 89 98 107 125 176

0.25 65 83 89 100 110 121 143 199

0.4 76 93 104 117 130 142 168 230
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Table 4.16: Bit security of LPN against LF2

τ
k

256 384 448 512 576 640 768 1280

1√
k

47 59 67 75 79 84 98 141

0.05 47 59 67 75 83 91 98 156

0.125 53 69 75 85 95 104 122 173

0.25 63 79 87 98 108 119 140 197

0.4 75 90 102 115 128 140 165 228

Table 4.17: Bit security of LPN against Search1

τ
k

256 384 448 512 576 640 768 1280

1√
k

54 69 74 79 87 95 104 147

0.05 51 69 76 81 87 95 111 160

0.125 64 80 89 100 110 121 135 199

0.25 80 108 119 130 142 152 175 258

0.4 107 140 156 171 187 203 235 335

Table 4.18: Bit security of LPN against Search2

τ
k

256 384 448 512 576 640 768 1280

1√
k

50 63 71 79 83 88 102 145

0.05 50 62 71 79 87 95 102 160

0.125 56 72 78 88 98 107 125 176

0.25 65 83 89 100 110 121 143 199

0.4 76 93 104 117 130 142 168 230
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Table 4.19: Bit security of LPN against MITM

τ
k

256 384 448 512 576 640 768 1280

1√
k

55 69 75 79 87 95 108 151

0.05 51 69 78 82 87 95 111 160

0.125 64 80 89 100 110 121 138 199

0.25 81 108 120 132 143 155 177 261

0.4 107 140 156 172 188 204 235 336

Table 4.20: Bit security of LPN against Gaussian elimination

τ
k

256 384 448 512 576 640 768 1280

1√
k

49 56 59 62 64 67 71 85

0.05 44 56 61 66 72 77 87 127

0.125 75 102 115 127 140 153 179 279

0.25 133 188 215 242 269 296 350 565

0.4 218 314 362 410 457 505 600 979

Table 4.21: Bit security of LPN against Covering codes

τ
k

256 384 448 512 576 640 768 1280

1√
k

44 55 60 66 69 74 86 123

0.05 42 54 60 64 73 78 88 132

0.125 53 68 75 82 90 96 109 162

0.25 69 87 96 106 115 125 139 203

0.4 94 110 123 136 149 161 179 281
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As we have shown, there still remains a small gap between the theoretical and practical

results for the algorithms we analysed. It thus seems reasonable to take a safety margin

when selecting parameters to achieve a certain level of security.

Based on this analysis, we could recommend the LPN instances LPN512,0.25, LPN640,0.125,

LPN1280,0.05 or LPN1280, 1√
1280

to achieve 80 bit security for different noise levels.
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Chapter5
Optimizations on LPN Solving

Algorithms

In this chapter, we explain how to automatize the process of finding optimal LPN solving

algorithms. The previous work from the LPN literature, presented in Chapters 3 and 4,

does not explain how to choose the parameters and what is the best use of the existing

tools, i.e. reduction methods, for optimising the total complexity of solving LPN. The

personal contribution in this chapter is a joint work with Serge Vaudenay that was

published in [BV16b].

Structure of the Chapter. In Section 5.2, we describe the main tools used to solve

LPN, i.e. the reduction techniques and the most efficient solving technique. We carefully

analyse the complexity of each step. Section 5.3 studies the failure probability of the

entire algorithm and validates the use of the average bias in the analysis. Section 5.4

introduces the bias computation for perfect and quasi-perfect codes. We provide an

algorithm to find good codes. The algorithm that searches the optimal strategy to solve

LPN is presented in Sections 5.5 and 5.6. We illustrate and compare our results in

Section 5.7.

5.1 Our Contribution

As a first contribution, we analyze the existing LPN algorithms and study the operations

that are used in order to reduce the size of the secret.

Second, we improve the theory behind the covering code reduction and show the link

with perfect and quasi-perfect codes. Using the average bias of covering codes allows

us to use arbitrary codes and even random ones. Using the algorithm to construct

optimal concatenated codes based on a pool of elementary ones allows us to improve

complexities (In [GJL14], only a hypothetical code was assumed to be close to a perfect
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code; in [ZJW16], only the concatenation of perfect codes are used).

Third, we optimize the order and the parameters used by the operations that reduce

the size of the secret such that we minimize the time complexity required. We design

a “meta-algorithm” that combines the reduction steps and finds the optimal strategy to

solve LPN. We automatize the process of finding LPN solving algorithms, i.e. given a

random LPN instance, our algorithm provides the description of the steps that optimize

the time complexity. In our formalization, we call such algorithms “optimal chains”. We

perform a security analysis of LPN based on the results obtained by our algorithm and

compare our results with the existing ones. We discover that we improve the complexity

compared with the results from [BTV16, LF06, ZJW16] and [GJL14].

5.2 Reduction and Solving Techniques

Recall that the LPN solving algorithms have a common structure: given an LPNk,τ

instance with a secret s, they reduce the original LPN problem to a new LPN problem

where the secret s′ is of size k′ ≤ k by applying several reduction techniques. Then,

they recover s′ using a solving method. The queries are updated and the process is

repeated until the whole secret s is recovered. As before, we compute the complexity

of the algorithm such that the probability of success is at least 50%. We present here

the list of reduction and solving techniques used in the existing LPN solving algorithms.

The reduction methods were presented in the previous chapters as steps in different LPN

solving algorithms. For a clear comparison, we gather and list here all these methods.

In a further section, we combine the reduction techniques such that we find the optimal

reduction phases for solving different LPN instances.

We assume, for all the reduction steps, that we start with n queries, that the size of

the secret is k, the bias of the secret bits is δs and the bias of the noise bits is δ. After

applying a reduction step, we will end up with n′ queries, size k′ and biases δ′ and δ′s.
Note that δs averages over all secrets although the algorithm runs with one target secret.

As it will be clear below, the complexity of all reduction steps only depends on k, n,

and the parameters of the steps but not on the biases. Actually, only the probability of

success is concerned with biases. We see in Section 5.3 that the probability of success of

the overall algorithm is not affected by this approach. Actually, we will give a formula

to compute a value which approximates the average probability of success over the key

based on the average bias.

We have the following reduction steps:

• sparse-secret changes the secret distribution (this reduction step was described also

in Section 3.6). In the formal definition of LPN, we take the secret s to be a random

row vector of size k. When other reduction steps or the solving phase depends on

the distribution of s, one can transform an LPN instance with a random s to a

new one where s has the same distribution as the initial noise, i.e. s ← Berkτ .

1http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_SolvingLPNUsingCoveringCodes.pdf
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The reduction performs the following steps: from the n queries select k of them:

(vi1 , ci1), . . . , (vik , cik) where the row vectors vij , with 1 ≤ j ≤ k, are linearly

independent. Construct the matrix M as M = [vTi1 · · · vTik ] and rewrite the k

queries as sM + d′ = c′, where d′ = (di1 , . . . , dik). With the rest of n − k queries

we do the following:

c′j = 〈vj(MT )−1, c′〉 ⊕ cj = 〈vj(MT )−1, d′〉 ⊕ dj = 〈v′j , d′〉 ⊕ dj .

We have n−k new queries (v′j , c
′
j) where the secret is now d′. In Guo et al. [GJL14],

the authors use an algorithm which is inappropriately called “the four Russians

algorithm” [ADKF70]. This way, the complexity should be of

O
(
minχ∈N

(
kn′� kχ�+ k3 + kχ2χ

))
.1 Instead, the Bernstein algorithm [Ber]

works in O
(

n′k2
log2 k−log2 log2 k

+ k2
)
. We use the best of the two, depending on the

parameters. Thus, we have:

sparse-secret : k′ = k; n′ = n− k; δ′ = δ; δ′s = δ

Complexity: O
(
minχ∈N

(
n′k2

log2 k−log2 log2 k
+ k2, kn′� kχ�+ k3 + kχ2χ

))

• partition-reduce(b) is used by the BKW algorithm (See Section 3.3). Recall that the

queries received from the oracle are of the form (v, 〈v, s〉⊕d). In this reduction, the

v vectors are sorted in equivalence classes according to their values on a block of b

bits. These b positions are chosen randomly. Two queries in the same equivalence

class have the same values on the b positions. In each equivalence class, we choose

a representative vector and xor it with the rest of the queries. This will give

vectors with only 0 on this window of b bits. Afterwards, the representative vector

is dropped. This operation reduces the secret to k− b effective bits (since b bits of

the secret are always xored with zero). The new bias is δ2 as the new queries are

xor of two initial ones and the number of queries is reduced by 2b (as there are 2b

equivalence classes).

partition-reduce(b) : k′ = k − b; n′ = n− 2b; δ′ = δ2; δ′s = δs
Complexity: O(kn)

The next reduction, xor -reduce(b), is always better than partition-reduce(b). Never-

theless, we keep this operation in our analysis for backward compatibility with

existing algorithms (e.g. to fill our Table 5.4 with the algorithms from [GJL14]).

• xor -reduce(b) was first used by the LF2 algorithm (See Section 3.5). The queries are

grouped in equivalence classes according to the values on b random positions. In

each equivalence class, we perform the xoring of every pair of queries. The size of

the secret is reduced by b bits and the new bias is δ2. The expected new number

of queries is n(n−1)
2b+1 . For n ≈ 1 + 2b+1, the number of queries are maintained, i.e.

n′ = n.

1but the k3 + kχ2χ terms is missing in [GJL14].
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xor -reduce(b) : k′ = k − b; n′ = n(n−1)
2b+1 ; δ′ = δ2; δ′s = δs

Complexity: O(k ·max(n, n′))

• drop-reduce(b) is a reduction used only by the BKW algorithm (See Section 3.3). It

consists in dropping all the queries that are not 0 on a window of b bits. Again,

these b positions are chosen randomly. In average, we expect that half of the

queries are 0 on a given position. For b bits, we expect to have n
2b

queries that are

0 on this window. The bias is unaffected and the secret is reduced by b bits.

drop-reduce(b) : k′ = k − b; n′ = n
2b
; δ′ = δ; δ′s = δs

Complexity: O(n)
The complexity of n(1 + 1

2 + . . . + 1
2b−1 ) = O(n) comes from the fact that we do

not need to check all the b bits: once we find a 1 we can stop and just drop the

corresponding query.

• code-reduce(k, k′, params) is a method used by the covering code algorithm presented

in ASIACRYPT’14 [GJL14] (this reduction step was described also in Section 3.6).

In order to reduce the size of the secret, one uses a linear code [k, k′] (which is

defined by params) and approximates the vi vectors to the nearest codeword gi.

We assume that decoding is done in linear time for the code considered. (For the

considered codes, decoding is indeed based on table look-ups.) The noisy inner

product becomes:

〈vi, s〉 ⊕ di = 〈g′iG, s〉 ⊕ 〈vi − gi, s〉 ⊕ di

= 〈g′i, sGT 〉 ⊕ 〈vi − gi, s〉 ⊕ di

= 〈g′i, s′〉 ⊕ d′i,

where G is the generator matrix of the code, gi = g′iG, s′ = sGT ∈ {0, 1}k′ and
d′i = 〈vi − gi, s〉 ⊕ di. We denote by bc = E((−1)〈vi−gi,s〉) the bias of 〈vi − gi, s〉.
We will see in Section 5.4 how to construct a [k, k′] linear code making bc as large

as possible.

Here, bc averages the bias over the secret although s is fixed by sparse-secret . It

gives the correct average bias δ over the distribution of the key. We will see that

it allows to approximate the expected probability of success of the algorithm.

By this transform, no query is lost.

code-reduce(k, k′, params) : k′; n′ = n; δ′ = δ · bc
δ′s depends on δs and G

Complexity: O(kn)
The way δ′s is computed is a bit more complicated than for the other types of

reductions. However, δs only plays a role in the code-reduce reduction, and we will

not consider algorithms that use more than one code-reduce reduction.
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It is easy to notice that with each reduction operation the number of queries decreases

or the bias is getting smaller. In general, for solving LPN, one tries to lose as few queries

as possible while maintaining a large bias. We will study in Chapter 5.5 what is a good

combination of these reductions.

After applying the reduction steps, we assume we are left with an LPNk′,δ′ instance

where we have n′ queries. The original BKW algorithm was using a final solving technique

based on majority decoding. Since the LF1 algorithm, we use a better solving technique

based on the Walsh Hadamard Transform (WHT).

WHT recovers a block of the secret by computing the fast Walsh Hadamard trans-

form on the function f(x) =
∑

i 1vi=x(−1)〈vi,s〉⊕di (this analysis was presented also in

Section 3.4). The Walsh-Hadamard transform is

f̂(ν) =
∑
x

(−1)〈ν,x〉f(x) =
∑
i

(−1)〈vi,s+ν〉⊕di .

For ν = s, we have f̂(s) =
∑

i(−1)di . For a positive bias, we know that most of the

noise bits are set to 0. It is the opposite when the bias is negative. So, |f̂(s)| is large and
we suppose it is the largest value in the table of f̂ . Using the Central Limit Theorem

we obtain

n′ ≥ (2δ′−2 − 1) ·
(
ϕ−1

(
1− (1− θ)

1

2k
′−1

))2
. (5.1)

WHT(k′);

Requires n′ ≥ (2δ′−2 − 1) ·
(
ϕ−1

(
1− (1− θ)

1

2k
′−1

))2

Complexity: O(k′2k′ log2 n′+1
2 + k′n′)

As we can see in the formulas of each possible step, the computations of k′, n′, and
of the complexity do not depend on the secret weight. Furthermore, the computation

of biases is always linear. So, the correct average bias (over the distribution of the key

made by the sparse-secret transform) is computed. Only the computation of the success

probability is non-linear, but we discuss about this in the next section. As it only matters

in WHT, we will see in Section 5.3 that the approximation is justified.

5.3 On Approximating the Probability of Success

Approximating n by using Central Limit Theorem. In order to approximate

the number of queries needed to solve the LPN instance, we consider when the Walsh

Hadamard Transform fails to give the correct secret. We first assume that the bias is

positive. We have a failure when for another s̄ 
= s, we have that f̂(s̄) > f̂(s). Following

the analysis from Section 3.4, we let y = A′s̄T + c′T and d′ = A′sT + c′T . We have

f̂(s̄) =
∑

i(−1)yi = n′− 2 ·HW(y) and similarly, f̂(s) = n′− 2 ·HW(d′). So, f̂(s̄) > f̂(s)
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translates to HW(y) ≤ HW(d′). Therefore

Pr[f̂(s̄) > f̂(s)] = Pr

[
n′∑
i=1

(yi − d′i) ≤ 0

]
.

For each s̄, we take y as a uniformly distributed random vector and we let δ′(s) be the

bias introduce with a fixed s for d′i (we recall that our analysis computes δ′ = E(δ′(s))
over the distribution of s). Let X1, . . . ,Xn′ be random variable corresponding to Xi =

yi − d′i. Since E(yi) = 1
2 , E(d′i) = 1

2 − δ′(s)
2 and yi and d′i are independent, we have

that E(Xi) =
δ′(s)
2 and Var(Xi) = 2−δ′(s)2

4 . By using the Central Limit Theorem (See

Theorem 2.6) we obtain that

Pr[X1 + . . .+Xn′ ≤ 0] ≈ ϕ (Z(s)) with Z(s) = − δ′(s)√
2− δ′(s)2

√
n′

where ϕ can be calculated by ϕ(x) = 1
2 + 1

2erf(
x√
2
) and erf is the Gauss error function.

For δ′(s) < 0, the same analysis with f̂(s̄) < f̂(s) gives the same result. Applying the

reasoning for any s′ 
= s, we obtain that the failure probability is

p(s) = 1− (1− ϕ(Z(s)))2
k′−1 , if δ′(s) > 0

and p(s) = 1− 1

2k′
, if δ′(s) ≤ 0.

We deduce the following (for θ < 1
2)

p(s) ≤ θ ⇔
√
n′ ≥ −

√
2δ′(s)−2 − 1ϕ−1

(
1− (1− θ)

1

2k
′−1

)
and δ′(s) > 0 .

As a condition for our WHT step, we adopt the inequality in which we replace δ′(s) by
δ′. We give a heuristic argument below to show that it implies that E(p(s)) ≤ θ, which

is what we want.

Note that if we use the approximation ϕ (Z) ≈ − 1
Z
√
2π
e−

Z2

2 for Z → −∞, we obtain

the condition n′ ≥ 2(2δ′−2 − 1) ln(2
k′−1
θ ). So, our analysis brings an improvement of

factor two over the Hoeffding bound method used by Bogos et al. [BTV16] that requires

n′ ≥ 8δ′−2 ln(2
k′

θ ).

On the validity of using the bias average. The above computation is correct when

using δ′(s) but we use δ′ = E(δ′(s)) instead. If no code-reduce step is used, δ′(s) does

not depend on s and we do have δ′(s) = δ′. However, when a code-reduce is used, the

bias depends on the secret which is obtained after the sparse-secret step. For simplicity,

we let s denote this secret. The bias δ′(s) is actually of form δ′(s) = δ2
x
bc(s) where x

is the number of xor -reduce and partition-reduce steps and bc(s) is the bias introduced by
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code-reduce depending on s. The values of δ′(s), Z(s), and p(s) are already defined above.

We define Z = − δ′√
2−δ′2

√
n′ and p = 1− (1−ϕ(Z))2

k′−1. Clearly, E(p(s)) is the average

failure probability over the distribution of the secret obtained after sparse-secret .

Our method ensures that δ′ = E(δ′(s)) over the distribution of s. Since δ′ is typically
small (after a few xor -reduce steps, δ2

x
is indeed very small), we can consider Z(s) as a

linear function of δ′(s) and have E(Z(s)) ≈ Z. This is confirmed by experiment. We

make the heuristic approximation that

E

(
1− (1− ϕ(Z(s)))2

k′−1

)
≈ 1− (1− ϕ(E(Z(s))))2

k′−1 ≈ 1− (1− ϕ(Z))2
k′−1

So, E(p(s)) ≈ p.2

We did some experiments based on some examples in order to validate our heuristic

assumption. Our results show indeed that E(Z(s)) ≈ Z. There is a small gap between

E(p(s)) and p but this does not affect our results. Actually, we are in a phase transition

region so any tiny change in the value of n′ makes E(p(s)) change a lot. We include

these results in Appendix A.2. Thus, ensuring that p ≤ θ with the above analysis based

on the average bias ensures that the expected failure probability is bounded by θ.

Both the choice of the codes and the secret have a big influence on our approximation.

We believe that choosing larger codes can give us the best results. Splitting the reduction

code-reduce in several small codes can give a smaller bias (as a multiplication of several

biases) and in the worst case can give a negative or a 0 bias. In Appendix A.3 we prove

that for a repetition codes [k, 1], with k odd, for a secret with even Hamming weight,

we always introduce a bias of 0. A larger code would eliminate such scenarios and could

give a better bias.

5.4 Bias of the Code Reduction

In this section, we present how to compute the bias introduced by a code-reduce. Recall

that the reduction code-reduce(k, k′) introduces a new noise:

〈vi, s〉 ⊕ di = 〈g′i, s′〉 ⊕ 〈vi − gi, s〉 ⊕ di,

where gi = g′iG is the nearest codeword of vi and s′ = sGT . Note that gi is not necessarily

unique, specially if the code is not perfect. We take gi = Decode(vi) obtained from an

arbitrary decoding algorithm. Then the noise bc can be computed by the following

formula:

2Note that Zhang et al. [ZJW16] implicitly does the same assumption as they use the average bias as
well.
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bc = E((−1)〈vi−gi,s〉) =
∑

e∈{0,1}k
Pr[vi − gi = e]E((−1)〈e,s〉)

=
k∑

w=0

∑
e∈{0,1}k ,
HW(e)=w

Pr[vi − gi = e]δws = E
(
δHW(vi−gi)
s

)

for a δs-sparse secret. (We recall that the sparse-secret reduction step randomizes the

secret.) So, the probability space is over the distribution of vi and the distribution of

s. Later, we consider bc(s) = E((−1)〈vi−gi,s〉) over the distribution over vi only. (In the

work of Guo et al. [GJL14], only bc(s) is considered. In Zhang et al. [ZJW16], our bc was

also considered.) In the last expression of bc, we see that the ambiguity in decoding does

not affect bc as long as the Hamming distance HW(vi − Decode(vi)) is not ambiguous.

This is a big advantage of averaging in bc as it allows to use non-perfect codes. From this

formula, we can see that the decoding algorithm vi → gi making HW(vi − gi) minimal

makes bc maximal. In this case, we obtain

bc = E
(
δd(vi,C)
s

)
, (5.2)

where C is the code and d(vi, C) denotes the Hamming distance of vi from C.

We recall that for a perfect code C the covering radius is ρ =
⌊
D−1
2

⌋
and for quasi-

perfect code, we have ρ =
⌊
D−1
2

⌋
+ 1, where D is the minimum distance of C (See

Section 2.6).

Theorem 5.1. We consider a [k, k′,D] linear code C, where k is the length, k′ is the

dimension, and D is the minimum distance. For any integer r and any positive bias δs,

we have

bc ≤ 2k
′−k

r∑
w=0

(
k

w

)
(δws − δr+1

s ) + δr+1
s

where bc is a function of δs defined by (5.2). Equality for any δs such that 0 < δs < 1

implies that C is perfect or quasi-perfect. In that case, the equality is reached when

taking the packing radius r = R =
⌊
D−1
2

⌋
.

By taking r as the largest integer such that
∑r

w=0

(
k
w

)
≤ 2k−k′ (which is the packing

radius R =
⌊
D−1
2

⌋
for perfect and quasi-perfect codes), we can see that if a perfect [k, k′]

code exists, it makes bc maximal. Otherwise, if a quasi-perfect [k, k′] code exists, it

makes bc maximal.

Proof. Let decode be an optimal deterministic decoding algorithm. The formula gives
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us that

bc = 2−k
∑
g∈C

∑
v∈decode−1(g)

δHW(v−g)
s .

We define decode−1
w (g) = {v ∈ decode−1(g);HW(v− g) = w} and decode−1

>r(g) the union

of all decode−1
w (g) for w > r. For all r, we have

∑
v∈decode−1(g)

δHW(v−g)
s

=

r∑
w=0

(
k

w

)
δws +

r∑
w=0

(
#decode−1

w (g)−
(
k

w

))
δws +

∑
w>r

δws #decode−1
w (g)

≤
r∑

w=0

(
k

w

)
δws +

r∑
w=0

(
#decode−1

w (g)−
(
k

w

))
δws + δr+1

s #decode−1
>r(g)

≤
r∑

w=0

(
k

w

)
δws + δr+1

s

(
#decode−1(g) −

r∑
w=0

(
k

w

))

where we used δws ≤ δr+1
s for w > r, #decode−1

w (g) ≤
(

k
w

)
and δws ≥ δr+1

s for w ≤ r.

We further have equality if and only if the ball centered on g of radius r is included

in decode−1(g) and the ball of radius r + 1 contains decode−1(g). By summing over all

g ∈ C, we obtain the result.

So, the equality case implies that the packing radius is at least r and the covering

radius is at most r + 1. Hence, the code is perfect or quasi-perfect. Conversely, if the

code is perfect or quasi-perfect and r is the packing radius, we do have equality.

So, for quasi-perfect codes, we can compute

bc = 2k
′−k

R∑
w=0

(
k

w

)
(δws − δR+1

s ) + δR+1
s (5.3)

with R =
⌊
D−1
2

⌋
. For perfect codes, the formula simplifies to

bc = 2k
′−k

R∑
w=0

(
k

w

)
δws . (5.4)

5.4.1 Bias of a Repetition Code

Given a [k, 1] repetition code, the optimal decoding algorithm is the majority decoding.

We have D = k, k′ = 1, R =
⌊
k−1
2

⌋
. For k odd, the code is perfect so ρ = R. For k
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even, the code is quasi-perfect so ρ = R+ 1. Using (5.3) and (5.4), we obtain

bc =

⎧⎪⎪⎨
⎪⎪⎩

∑ k−1
2

w=0
1

2k−1

(
k
w

)
δws if k is odd

∑ k
2
−1

w=0
1

2k−1

(k
w

)
δws + 1

2k

( k
k/2

)
δ

k
2
s if k is even

We give below the biases obtained for some [k, 1] repetition codes.

[k, 1] bias

[2, 1] 1
2δs +

1
2

[3, 1] 3
4δs +

1
4

[4, 1] 3
8δ

2
s +

1
2δs +

1
8

[5, 1] 5
8δ

2
s +

5
16δs +

1
16

[6, 1] 5
16δ

3
s +

15
32δ

2
s +

3
16δs +

1
32

[7, 1] 35
64δ

3
s +

21
64δ

2
s +

7
64δs +

1
64

[8, 1] 35
128δ

4
s +

7
16δ

3
s +

7
32δ

2
s +

1
16δs +

1
128

[9, 1] 63
128δ

4
s +

21
64δ

3
s +

9
64δ

2
s +

9
256δs +

1
256

[10, 1] 63
256δ

5
s +

105
256δ

4
s +

15
64δ

3
s +

45
512δ

2
s +

5
256δs +

1
512

5.4.2 Bias of a Perfect Code

In previous works [GJL14, ZJW16], the authors assume a perfect code. In this case,∑R
w=0

(
k
w

)
= 2k−k′ and we can use (5.4) to compute bc. There are not so many binary

linear codes which are perfect. Except the repetition codes with odd length, the only

ones are the trivial codes [k, k, 1] with R = ρ = 0 and bc = 1, the Hamming codes

[2
 − 1, 2
 − 
 − 1, 3] for 
 ≥ 2 with R = ρ = 1, and the Golay code [23, 12, 7] with

R = ρ = 3.

For the Hamming codes, we have

bc = 2−

1∑

w=0

(
2
 − 1

w

)
δws =

1 + (2
 − 1)δs
2


.

For the Golay code, we obtain

bc = 2−11
3∑

w=0

(
23

w

)
δws =

1 + 23δs + 253δ2s + 1771δ3s
211

.

Previously [BTV16, GJL14], the value bcw of bc(s) for any s of Hamming weight w

was approximated to

bcw = 1− 2
1

S(k, ρ)

∑
i≤ρ,

i odd

(
w

i

)
S(k −w, ρ − i),
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where w is the Hamming weight of the k-bit secret and S(k′, ρ) is the number of k′-bit
strings with weight at most ρ. Intuitively, the formula counts the number of vi− gi that

produce an odd number of xor with the 1’s of the secret (See 3.2 and [BTV16, GJL14]).

So, Guo et al. [GJL14] assumes a fixed value for the weight w of the secret and considers

the probability that w is not correct. If w is lower, the actual bias is larger but if w is

larger, the computed bias is overestimated and the algorithm fails.

For instance, with a [3, 1] repetition code, the correct bias is bc = 3
4δs +

1
4 following

our formula. With a fixed w, it is of bcw = 1 − w
2 [BTV16, GJL14]. The probability of

w to be correct is
(
k
w

)
τw(1− τ)k−w. We take the example of τ = 1

3 so that δs =
1
3 .

w bcw Pr[w] Pr[w], τ = 1
3

0 1 (1− τ)3 0.2963

1 1
2 3τ(1− τ)2 0.4444

2 0 3τ2(1− τ) 0.2222

3 −1
2 τ3 0.0370

So, by taking w = 1, we have δ = bcw = 1
2 but the probability of failure is about 1

4 . Our

approach uses the average bias δ = bc = 1
2 .

5.4.3 Using Quasi-Perfect Codes

If C ′ is a [k − 1, k′,D] perfect code with k′ > 1 and if there exists some codewords of

odd length, we can extend C ′, i.e., add a parity bit and obtain a [k, k′] code C. Clearly,

the packing radius of C is at least
⌊
D−1
2

⌋
and the covering radius is at most

⌊
D−1
2

⌋
+1.

For k′ > 1, there is up to one possible length for making a perfect code of dimension

k′. So, C is a quasi-perfect code, its packing radius is
⌊
D−1
2

⌋
and its covering radius is⌊

D−1
2

⌋
+ 1.

If C ′ is a [k + 1, k′,D] perfect code with k′ > 1, we can puncture it, i.e., remove one

coordinate by removing one column from the generating matrix. If we chose to remove

a column which does not modify the rank k′, we obtain a [k, k′] code C. Clearly, the

packing radius of C is at least
⌊
D−1
2

⌋− 1 and the covering radius is at most
⌊
D−1
2

⌋
. For

k′ > 1, there is up to one possible length for making a perfect code of dimension k′.
So, C is a quasi-perfect code, its packing radius is

⌊
D−1
2

⌋− 1 and its covering radius is⌊
D−1
2

⌋
.

Hence, we can use extended Hamming codes [2
, 2
 − 
− 1] with packing radius 1 for


 ≥ 3, punctured Hamming codes [2
 − 2, 2
 − 
 − 1] with packing radius 0 for 
 ≥ 3,

the extended Golay code [24, 12] with packing radius 3, and the punctured Golay code

[22, 12] with packing radius 2.

There actually exist many constructions for quasi-perfect linear binary codes. We list

a few in Table 5.1. We took codes listed in the existing literature [CKJS85, Table 1],

[PW72, p. 122], [GS85, p. 47], [EM05, Table 1], [CHLL97, p. 313], and [BBDF08, Table I].

In Table 5.1, k, k′, D, and R denote the length, the dimension, the minimum distance,

and the packing radius, respectively.
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Table 5.1: Perfect and Quasi-Perfect Binary Linear Codes

name type [k, k′, D] R comment ref.
P [k, k, 1], k ≥ 1 0 [∗, . . . , ∗]

r P [k,1, k], k odd k−1
2

repetition code

H P [2� − 1, 2� − 
− 1, 3], 
 ≥ 3, 1 Hamming code
G P [23, 12, 7] 3 Golay code

QP [k, k − 1, 1] 0 [∗, . . . , ∗, 0]
r QP [k,1, k], k even k

2
− 1 repetition code

eG QP [24, 12, 8] 3 extended Golay code
pG QP [22, 12, 6] 2 punctured Golay code
eH QP [2�, 2� − 
− 1, 4], 
 ≥ 2 1 extended Hamming code

QP [2� − 1, 2� − 
, 1], 
 ≥ 2, 0 Hamming with an extra word
pH QP [2� − 2, 2� − 
− 1, 2], 
 ≥ 2 0 punctured Hamming
HxH QP [2 ∗ (2� − 1), 2 ∗ (2� − 
− 1)], 
 ≥ 2 1 Hamming × Hamming [CKJS85]
upack QP [2� − 2, 2� − 
− 2, 3], 
 ≥ 3 1 uniformly packed [CKJS85]
2BCH QP [2� − 1, (2� − 1)− (2 ∗ 
)], 
 ≥ 3 2 2-e.c. BCH [CKJS85]
Z QP [2� + 1, (2� + 1)− (2 ∗ 
)], 
 > 3 even 2 Zetterberg [CKJS85]
rGop QP [2� − 2, (2� − 2)− (2 ∗ 
)], 
 > 3 even 2 red. Goppa [CKJS85]
iGop QP [2�, (2�)− (2 ∗ 
)], 
 > 2 odd 2 irred. Goppa [CKJS85]
Mclas QP [2� − 1, (2� − 1)− 2 ∗ 
], 
 > 2 odd 2 Mclas [CKJS85]
S QP [5, 2], [9, 5], [10, 5], [11, 6] 1 Slepian [PW72]
S QP [11, 4] 2 Slepian [PW72]
FP QP [15, 9], [21, 14], [22, 15], [23, 16] 1 Fontaine-Peterson [PW72]
W QP [19, 10], [20, 11], [20, 13], [23, 14] 2 Wagner [PW72]
P QP [21, 12] 2 Prange [PW72]
FP QP [25, 12] 3 Fontaine-Peterson [PW72]
W QP [25, 15], [26, 16], [27, 17], [28, 18],

[29, 19], [30, 20], [31, 20]
1 Wagner [PW72]

GS QP [13, 7], [19, 12] 1 GS85 [GS85]
BBD QP [7, 3, 3], [9, 4, 4], [10, 6, 3], [11, 7, 3],

[12, 7, 3], [12, 8, 3], [13, 8, 3], [13, 9, 3],
[14, 9, 3], [15, 10, 3], [16, 10, 3],
[17, 11, 4], [17, 12, 3], [18, 12, 4],
[18, 13, 3], [19, 13, 3], [19, 14, 3],
[20, 14, 4]

1 BBD08 [BBDF08]

BBD QP [22, 13, 5] 2 BBD08 [BBDF08]
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5.4.4 Finding the Optimal Concatenated Code

The linear code [k, k′] is typically instantiated by a concatenation of elementary codes

for practical purposes. By “concatenation” of m codes C1, . . . , Cm, we mean the code

formed by all gi,1‖ · · · ‖gi,m obtained by concatenating any set of gi,j ∈ Cj. Decoding

v1‖ · · · ‖vm is based on decoding each vi,j in Cj independently. If all Cj are small,

this is done by a table lookup. So, concatenated codes are easy to implement and

to decode. For [k, k′] we have the concatenation of [k1, k
′
1], . . . , [km, k′m] codes, where

k1 + · · · + km = k and k′1 + · · · + k′m = k′. Let vij , gij , s
′
j denote the jth part of vi, gi, s

′

respectively, corresponding to the concatenated [kj , k
′
j ] code. The bias of 〈vij−gij, sj〉 in

the code [kj , k
′
j ] is denoted by bcj . As 〈vi− gi, s〉 is the xor of all 〈vij − gij , sj〉, the total

bias introduced by this operation is computed as bc =
∏m

j=1 bcj and the combination

params = ([k1, k
′
1], . . . , [km, k′m]) is chosen such that it gives the highest bias.

The way these params are computed is the following: we start by computing the biases

for all elementary codes. I.e. we compute the biases for all codes from Table 5.1. We may

add random codes that we found interesting. (For these, we use (5.2) to compute bc.)3

Next, for each [i, j] code, we check to see if there is a combination of [i−n, j−m],[n,m]

codes that give a better bias, where [n,m] is either a repetition code, a Golay code or

a Hamming code. We illustrate below the algorithm to find the optimal concatenated

code. This algorithm was independently proposed by Zhang et al. [ZJW16] (with perfect

codes only).

Algorithm 5.1 Finding the optimal params and bias

1: Input: k
2: Output: table for the optimal bias for each [i, j] code, 1 ≤ j < i ≤ k

3: initialize all bias(i, j) = 0
4: initialize bias(1, 1) = 1
5: initialize the bias for all elementary codes
6: for all j : 2 to k do

7: for all i : j + 1 to k do

8: for all elementary code [n,m] do
9: if |bias(i− n, j −m) · bias(n,m)| > |bias(i, j)| then

10: bias(i, j) = bias(i− n, j −m) · bias(n,m)
11: params(i, j) = params(i− n, j −m) ∪ params(n,m)
12: end if

13: end for

14: end for

15: end for

Using O(k) elementary codes, this procedure takes O(k3) time and we can store all

params for any combination [i, j], 1 ≤ j < i ≤ k with O(k2) memory.

3The random codes that we used are provided in Appendix A.4 of the thesis.
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5.5 The Graph of Reduction Steps

Having in mind the reduction methods described in Section 5.2, we formalize an LPN

solving algorithm in terms of finding the best chain in a graph. The intuition is the

following: in an LPN solving algorithm, we can see each reduction step as an edge

from a (k, log2 n) instance to a new instance (k′, log2 n′) where the secret is smaller,

k′ ≤ k, we have more or less queries and the noise has a different bias. For example,

a xor -reduce(b) reduction turns an (k, log2 n) instance with bias δ into (k′, log2 n′) with

bias δ′ where k′ = k − b, n′ = n(n−1)
2b+1 and δ′ = δ2. By this representation, the reduction

phase represents a chain in which each edge is a reduction type moving from LPN with

parameters (k, n) to LPN with parameters (k′, n′) and that ends with an instance (ki, ni)

used to recover the ki-bit length secret by a solving method. The chain terminates by

the fast Walsh-Hadamard solving method.

We formalize the reduction phase as a chain of reduction steps in a graph G = (V,E).

The set of vertices V is composed of V = {1, . . . , k}×L where L is a set of real numbers.

For instance, we could take L = R or L = N. For efficiency reasons, we could even

take L = {0, . . . , η} for some bound η. Every vertex saves the size of the secret and the

logarithmic number of queries; i.e. a vertex (k, log2 n) means that we are in an instance

where the size of the secret is k and the number of queries available is n. An edge from one

vertex to another is given by a reduction step. An edge from (k, log2 n) to a (k′, log2 n′)
has a label indicating the type of reduction and its parameters (e.g. xor -reduce(k − k′)
or code-reduce(k, k′, params)). This reduction defines some α and β coefficients such that

the bias δ′ after reduction is obtained from the bias δ before the reduction by

log2 δ
′2 = α log2 δ

2 + β

where α, β ∈ R.

We denote by �λ�L the smallest element of L which is at least equal to λ and by �λ�L
the largest element of L which is not larger than λ. In general, we could use a rounding

function RoundL(λ) such that RoundL(λ) is in L and approximates λ.

The reduction steps described in Section 5.2 can be formalized as follows:

• sparse-secret : (k, log2 n)→ (k,RoundL(log2 (n− k))) and α = 1, β = 0

• partition-reduce(b): (k, log2 n)→ (k − b,RoundL(log2(n− 2b)) and α = 2, β = 0

• xor -reduce(b): (k, log2 n)→ (k − b,RoundL(log2

(
n(n−1)
2b+1

)
)) and α = 2, β = 0

• drop-reduce(b): (k, log2 n)→ (k − b,RoundL(log2 (
n
2b
))) and α = 1, β = 0

• code-reduce(k, k′, params): (k, log2 n) → (k′, log2 n) and α = 1, β = log2 bc
2, where

bc is the bias introduced by the covering code reduction using a [k, k′] linear code
defined by params.

68



Optimizations on LPN Solving Algorithms

Below, we give the formal definition of a reduction chain.

Definition 5.2 (Reduction chain). Let

R = {sparse-secret , partition-reduce(b), xor -reduce(b), drop-reduce(b), code-reduce(k, k′, params)}

for k, k′, b ∈ N . A reduction chain is a sequence

(k0, log2 n0)
e1−→ (k1, log2 n1)

e2−→ . . .
ei−→ (ki, log2 ni),

where the change (kj−1, log2 nj−1)→ (kj , log2 nj) is performed by one reduction from R,
for all 0 < j ≤ i.

A chain is simple if it is accepted by the automaton from Figure 5.1 4.

initial state 1 3 4

2 accepting state
WHT

WHT

WHT

WHT

code-reduce

drop-reduce drop-reduce
xor -reduce

drop-reduce
xor -reduce

xor -reduce

sparse-secret

xor -reduce

Figure 5.1: Automaton accepting simple chains

Remark: Restrictions for simple chains are modelled by the automaton in Figure 5.1.

We restrict to simple chains as they are easier to analyze. Indeed, sparse-secret is only

used to raise δs to make code-reduce more effective. And, so far, it is hard to analyze

sequences of code-reduce steps as the first one may destroy the uniform and high δs for

the next ones. This is why we exclude multiple code-reduce reductions in a simple chain.

So, we use up to one sparse-secret reduction, always one before code-reduce. And sparse-secret
occurs before δ decreases. For convenience, we will add a state of the automaton to the

vertex in V .

Definition 5.3 (Exact chain). An exact chain is a simple reduction chain for L = R.

I.e. RoundL is the identity function.

A chain which is not exact is called rounded.

For solving LPN we are interested in those chains that end with a vertex (ki, log2 ni)

which allows to call a WHT solving algorithm to recover the ki-bit secret. We call these

chains valid chains and we define them below.
4We simplify the automaton by removing any partition-reduce ; xor -reduce is always better than

partition-reduce .
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Definition 5.4 (Valid reduction chain). Let

(k0, log2 n0)
e1−→ (k1, log2 n1)

e2−→ · · · ei−→ (ki, log2 ni)

be a reduction chain with ej = (αj , βj , .). Let δj be the bias corresponding to the vertex

(kj , log2 nj) iteratively defined by δ0 = δ and log2 δ
2
j = αj log2 δ

2
j−1 + βj for j = 1, . . . , i.

We say the chain is a θ-valid reduction chain if ni satisfies (5.1) from page 59 for

δ′ = δi and n′ = ni.

The time complexity of a chain (e1, . . . , ei) is simply the sum of the complexity of

each reduction step e1, e2, . . . , ei and WHT. We further define the max-complexity of

a chain which is the maximum of the complexity of each reduction step and WHT. The

max-complexity is a good approximation of the complexity. Our goal is to find a chain

with optimal complexity. What we achieve is that, given a set L, we find a rounded

chain with optimal max-complexity up to some given precision.

5.5.1 Towards Finding the Best LPN Reduction Chain

In this subsection, we present the algorithm that helps finding the optimal valid chains

for solving LPN. As aforementioned, we try to find the valid chain with optimal max-

complexity for solving an LPNk,τ instance in our graph G.

The first step of the algorithm is to construct the directed graph G = (V,E). We take

the set of vertices V = {1, . . . , k} × L× {1, 2, 3, 4} which indicate the size of the secret,

the logarithmic number of queries and the state in the automaton in Figure 5.1. Each

edge e ∈ E represents a reduction step and is labelled with the following information:

(k1, log2 n1, st)
α,β,t→ (k2, log2 n2, st

′) where t is one of the reduction steps and α and β

save information about how the bias is affected by this reduction step.

The graph has O(k · |L|) vertices and each vertex has O(k) edges. So, the size of the

graph is O(k2 · |L|).
Thus, we construct the graph G with all possible reduction steps and from it, we try to

see what is the optimal simple rounded chain in terms of max-complexity. We present in

Algorithm 5.2 the procedure to construct the graphG that contains all possible reduction

steps with a time complexity bounded by 2η (As explained below, Algorithm 5.2 is not

really used).

The procedure of finding the optimal valid chain is illustrated in Algorithm 5.3. The

procedure of finding a chain with upper bounded max-complexity is illustrated in Al-

gorithm 5.4.

Algorithm 5.4 receives as input the parameters k and τ for the LPN instance, the

parameter θ which represents the bound on the failure probability in recovering the

secret. Parameter η represents an upper bound for the logarithmic complexity of each

reduction step. Given η, we build the graph G which contains all possible reductions with

time complexity smaller than 2η (Step 4). Note that we do not really call Algorithm 5.2.

Indeed, we do not need to store the edges of the graph. We actually keep a way to
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Algorithm 5.2 Construction of graph G

1: Input: k, τ, L, η
2: Output: graph G = (V,E) containing all the reduction steps that have a complexity

smaller than 2η

3: V = {1, . . . , k} × L× {1, . . . , 4}
4: E is the set of all ((i, η1, st), (j, η2, st

′)) labelled by (α, β, t) such that there is a

st
t−→ st′ transition in the automaton and for

5: t = sparse-secret :
6: for all η : 1 such that lcomp ≤ η do set the edge
7: where i = k, (j, η2) = (i,RoundL(log2(2

η1 − i))), α = 1, β = 0, lcomp =

minx log2(
(2η1−i)i2

log2i−log2(log2i)
+ i2, i(2η1 − i)� i

2x �+ i3 + i2x+2x)
8: end for

9: t = partition-reduce:
10: for all (i, η1, b) such that b ≥ 1 and lcomp ≤ η do set the edge
11: where (j, η2) = (i− b,RoundL(log2 (η1 − 2b))), α = 2, β = 0, lcomp = log2 i+ η1
12: end for

13: t = xor -reduce:
14: for all (i, η1, b) such that b ≥ 1 and lcomp ≤ η do set the edge
15: where (j, η2) = (i − b,RoundL(η1 − 1 + log2 (

2η1−1
2b

))), α = 2, β = 0, lcomp =
log2 i+max(η1, η2)

16: end for

17: t = drop-reduce:
18: for all (i, η1, b) such that b ≥ 1 and lcomp ≤ η do set the edge
19: where (j, η2) = (i− b,RoundL(η1 − b)), α = 1, β = 0, lcomp = log2 b+ η1
20: end for

21: t = code-reduce:
22: for all (i, η1, j) such that j < i and lcomp ≤ η do set the edge
23: where η2 = η1, α = 1, β = log2 bc

2, lcomp = log2 i + η1, bc is the bias from the
optimal [i, j] code

24: end for

enumerate all edges going to a given vertex (in Step 12) by using the rules described in

Algorithm 5.2.

For each vertex, we iteratively define Δst and Bestst, the best reduction step to reach

a vertex and the value of the corresponding error bias. The best reduction step is the

one that maximizes the bias. We define these values iteratively until we reach a vertex

from which the WHT solving algorithm succeeds with complexity bounded by 2η . Once

we have reached this vertex, we construct the chain by going backwards, following the

Best pointers.

We easily prove what follows by induction.

Lemma 5.5. At the end of the iteration of Algorithm 5.4 for (j, η2, st
′), Δst′

j,η2
is the

maximum of log2 δ
2, where δ is the bias obtained by a RoundL-rounded simple chain from

a vertex of form (k, η1, 0) to (j, η2, st
′) with max-complexity bounded by 2η (Δst′

j,η2
= −∞
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Algorithm 5.3 Search for a rounded chain with optimal max-complexity

1: Input: k, τ, θ, precision
2: Output: a valid simple rounded chain in which rounding uses a given precision

3: set found = bruteforce � found is the best found algorithm
4: set increment = k
5: set η = k � 2η is a bound on the max-complexity
6: repeat

7: set increment← 1
2 increment

8: define L = {0, precision, 2× precision, . . .} ∩ [0, η − increment]
9: run (out, success) = Search(k, τ, θ, L, η − increment) with Algorithm 5.4

10: if success then

11: set found = out

12: set η = η − increment

13: end if

14: until increment ≤ precision

15: output found

if there is no such chain).

Lemma 5.6. If there exists a simple RoundL-rounded chain c ending on state (kj , ηj , stj)

and max-complexity bounded by 2η, there exists one c′ such that Δsti
i,ηi

= log2 δ
2
i at each

step.

Proof. Let c′′ be a simple chain ending on (kj , ηj , stj) with Δ
stj
j,ηj

= log2 δ
2
j .

Let (kj−1, ηj−1, stj−1) be the preceding vertex in c′′. We apply Lemma 5.6 on this vertex

by induction to obtain a chain c′′′. Since the complexity of the last edge does not depend

on the bias and α ≥ 0 in the last edge, we construct the chain c′, by concatenating c′′′

with the last edge of c′′.

Theorem 5.7. Algorithm 5.4 finds a θ-valid simple RoundL-rounded chain for LPNk,τ

with max-complexity bounded by 2η if there exists one.

Proof. We use Lemma 5.6 and the fact that increasing δ2 keeps constraint (5.1) valid.

If we used L = R, Algorithm 5.4 would always find a valid simple chain with bounded

max-complexity when it exists. Instead, we use rounded chains and hope that rounding

still makes us find the optimal chain.

So, we build Algorithm 5.3. In this algorithm, we look for the minimal η for which

Algorithm 5.4 returns something by a divide and conquer algorithm. First, we set η

as being in the interval [0, k] where the solution for η = k corresponds to a brute-force

search. Then, we cut the interval in two pieces and see if the lower interval has a solution.

If it does, we iterate in this interval. Otherwise, we iterate in the other interval. We stop

once the amplitude of the interval is lower than the requested precision. The complexity

of Algorithm 5.3 is of log2
k

precision
calls to Algorithm 5.4.
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Algorithm 5.4 Search for a best LPN reduction chain with max-complexity bounded
to η

1: Input: k, τ, θ, L, η
2: Output: a valid simple rounded chain with max-complexity bounded to η

3: δ = 1− 2τ
4: Construct the graph G using Algorithm 5.2 with parameters k, τ, L, η
5: for all η1 ∈ L do

6: set Δ0
k,η1

= log2 δ
2, Best0k,η1 = ⊥

7: set Δst
k,η1

= −∞, Beststk,η1 = ⊥ � Δst stores the best bias for a vertex (k, η1, st)

in a chain, and Bestst is the edge ending to this vertex in this chain
8: end for

9: for j : k downto 1 do � Search for the optimal chain
10: for η2 ∈ L in decreasing order do
11: set Δst

j,η2
= 0, Beststj,n2

= ⊥ for all st
12: foreach st’ and each edge e to (j, η2, st

′)
13: set (i, η1, st) to the origin of e and α and β as defined by e
14: if αΔst

i,η1
+ β ≥ Δst′

j,η2
then set Δst′

j,η2
= αΔst

i,η1
+ β, Bestst

′
j,n2

= e
15: end if

16: end foreach

17: if η2 > 1−Δst′
j,η2

+ 2 log2

(
−ϕ−1(1− (1− θ)

1

2j−1 )
)
and j + log2 j ≤ η then

18: Construct the chain c ending by Bestst
′

j,η2 and output (c, true)
19: end if

20: end for

21: end for

22: output (⊥, false)

Theorem 5.8. Algorithm 5.3 finds a θ-valid simple RoundL-rounded chain for LPNk,τ

with parameter precision, with optimal rounded max-complexity, where the rounding func-

tion approximates log2 up to precision if there exists one.

Proof. Algorithm 5.3 is a divide-and-conquer algorithm to find the smallest η such that

Algorithm 5.4 finds a valid simple RoundL-rounded chain of max-complexity bounded

by 2η .

We can see that the complexity of Algorithm 5.4 is of O (
k2 · |L|) iterations as vertices

have k possible values for the secret length and |L| possible values for the logarithmic

number of equations. So, it is linear in the size of the graph. Furthermore, each type of

edge to a fixed vertex has O(k) possible origins. The memory complexity is O (k · |L|),
mainly to store the Δk,η and Bestk,η tables. We also use Algorithm 5.1 which has a

complexity O(k3) but we run it only once during precomputation. Algorithm 5.3 sets

|L| ∼ k
precision

. So, the complexity of Algorithm 5.3 is O
(
k3 + k3

precision
× log k

precision

)
.
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5.6 Chains with a Guessing Step

In order to further improve our valid chain, we introduce a new reduction step to our

algorithm. As it is done in previous works [GJL14, BL12], we guess part of the bits of

the secret. More precisely, we assume that b bits of the secret have a Hamming weight

smaller or equal to w. The influence on the whole algorithm is more complicated: it

requires to iterate the WHT step
∑w

i=0

(w
i

)
times. The overall complexity must further

be divided by
∑w

i=0

(w
i

) (
1−δs
2

)i (1+δs
2

)w−i
. Note that this generalized guess-secret step

was used in Guo et al. [GJL14].

We formalize this step as following:

• guess-secret(b, w) guesses that b bits of the secret have a Hamming weight smaller or

equal to w. The b positions are chosen randomly. The number of queries remains

the same, the noise is the same and the size of the secret is reduced by b bits.

Thus, for this step we have

guess-secret(b, w) : k′ = k − b; n′ = n; δ′ = δ; δ′s = δ

Complexity: O(nb) (included in sparse-secret) and
the Walsh transform has to be iterated

∑w
i=0

(
w
i

)
times and

the complexity of the whole algorithm is divided by∑w
i=0

(w
i

) (
1−δs
2

)i (1+δs
2

)w−i

This step may be useful for a sparse secret, i.e. τ is small, as then we reduce the size

of the secret with a very small cost. In order to accommodate this new step, we would

have to add a transition from state 3 to state 3 in the automaton that accepts the simple

chains (See Figure 5.1).

To find the optimal chain using guess-secret(b, w), we have to make a loop over all

possible b and all possible w. We run the full search O(k2) times. The total complexity

is thus O
(

k5

precision
× log k

precision

)
.

5.7 Results

We illustrate in this section the results obtained by running Algorithm 5.4 for different

LPN instances. They vary from taking k = 32 to k = 768, with the noise levels:

0.05, 0.1, 0.125, 0.2 and 0.25. In Table 5.2, we display the logarithmic time complexity

we found for solving LPN without using guess-secret .5

5Complete results are provided in Appendix A.5 and A.6.
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τ
k

32 48 64 100 256 512 768

0.05 13.911.30.1 14.513.00.1c 16.014.40.1c 20.518.50.1c 36.734.40.1c 57.855.10.1c 76.674.00.1c

0.1 15.012.70.1 18.616.40.1 21.619.40.1c 27.625.40.1c 46.744.20.1c 73.770.90.1c 99.096.00.1c

0.125 15.713.50.1 19.317.00.1 22.920.50.1 28.926.30.1 49.947.30.1c 78.876.20.1c 105.9103.00.1c

0.2 17.014.80.1 21.219.20.1 24.422.00.1 32.129.70.1 56.353.80.1c 89.086.40.1c 121.0118.20.1c

0.25 18.416.30.1 22.320.40.1 26.924.60.1 32.930.70.1 59.556.90.1 94.792.00.1c 127.3124.60.1c

entry of form abc···: a = log2 complexity, b = log2max-complexity,
c = precision; subscript c means that a code-reduce is used

Table 5.2: Logarithmic time complexity on solving LPN without guess-secret

τ
k

32 48 64 100 256 512 768

0.05 11.810.90.1cg13o 13.012.50.1cg23o 14.413.70.1cg38o 17.216.20.1cg75o 30.128.00.1cg178o 49.647.31cg417o 68.166.01cg682o

0.1 12.411.60.1cg23o 15.214.20.1cg37o 17.716.80.1cg52o 24.022.10.1cg77o 46.043.50.1cg100o 73.771.11cg2 99.296.31cg5

0.125 13.312.40.1cg26o 16.515.50.1cg39o 20.618.60.1cg36o 27.124.80.1cg47o 49.947.30.1c 79.076.21cg1 106.2103.41cg4

0.2 17.014.80.1o 21.219.20.1o 24.422.00.1 32.129.70.1 56.353.80.1cg1 89.386.81cg3 121.1118.61

0.25 18.416.30.1 22.320.40.1 26.924.60.1 32.930.70.1 59.556.90.1 94.892.41cg2 127.6125.01cg3

entry of form abc···: a = log2 complexity, b = log2 max-complexity, c = precision

subscript c means that a code-reduce is used
subscript o means that a only 1 bit of the secret is found by WHT

subscript gb means that a guess-secret(b, ·) is used

Table 5.3: Logarithmic time complexity on solving LPN with guess-secret

Sequence of chains. If we analyse in more detail one of the chains that we obtained,

e.g. the chain for LPN512,0.125, we can see that it first uses a sparse-secret . Afterwards,

the secret is reduced by applying five times the xor -reduce and one code-reduce at the end

of the chain. With a total complexity of 279.46 and θ < 33% it recovers 64 bits of the

secret. 6

6The detailed results for the full recovery of the secret of this LPN instance are given in Appendix A.7.
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(512, 63.3)
sparse-secret−−−−−−→ (512, 63.3)

xor-reduce(59)−−−−−−−−→ (453, 66.6)
xor-reduce(65)−−−−−−−−→

(388, 67.2)
xor-reduce(66)−−−−−−−−→ (322, 67.4)

xor-reduce(66)−−−−−−−−→ (256, 67.8)
xor-reduce(67)−−−−−−−−→

(189, 67.6)
code-reduce−−−−−→ (64, 67.6)

WHT−−−→

The code used is a [189, 64] concatenation made of ten random codes: one instance

of a [18, 6] code, five instances of a [19, 6] code, and four instances of a [19, 7] code.

By manually tuning the number of equations without rounding, we can obtain with

n = 263.299 a complexity of 278.85. This is the value from Table 5.4.

On the guess-secret reduction. Our results show that the guess-secret step does not

bring any significant improvement. If we compare Table 5.2 with Table 5.3, we can

see that in few cases the guess step improves the total complexity. For k ≥ 512, some

results are not better than Table 5.2. This is most likely due to the lower precision used

in Table 5.3.

We can see several cases where, at the end of a chain with guess-secret , only one bit

of the secret is recovered by WHT. If only 1 bit of the secret is recovered by non-

bruteforce methods, the next chain for LPNk−1,τ will have to be run several times, given

the guess-secret step used in the chain for LPNk,τ . Thus, it might happen that the first

chain does not dominate the total complexity. So, our strategy to use sequences of chains

has to be revised, but most likely, the final result will not be better than sequences of

chains without guess-secret . So, we should rather avoid these chains ending with 1 bit

recovery.

There is no case where a guess-secret without a chain ending with 1 bit brings any

improvement.

On using random codes. With our results, we expand the pool of codes that can

be used in the reduction code-reduce: besides perfect codes, we add quasi-perfect codes

and some small random codes that we generated. One could wonder if these results

could be improved further by using a big code, so that we do not split the reduction

among several small codes. The challenge in big codes is to find a random code that

introduces a large bias by having a small covering radius while still decreasing the size

of the secret considerably (i.e. a code [k, k − 1,D] might not be interesting for our

algorithm). By selecting codes used in steganography, we can improve further our results:

for LPN512,0.125 from a complexity of 278.85 we get a complexity of 278.11 7. The other

results have a similar improvement.

Comparing the results. For practical values we compare our results with the previ-

ous work [GJL14, LF06, ZJW16, BTV16].

7Personal communication with Simona Samardjiska.
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(k, τ) ASIACRYPT’14 [GJL14] EUROCRYPT’16 [ZJW16] our results

(512, 0.125)
286.96(279.9) (proceedings)

281.90(279.7) (presentation) 10
280.09(274.73) 278.85

(532, 0.125) 288.62(281.82) 282.17(276.90) 281.02

(592, 0.125) 297.71(288.07) 289.32(283.84) 287.57

Table 5.4: Time complexity to solve LPN (in bit operations). These complexities are
based on the formulas from Chapter 5.2 with the most favourable covering codes we
constructed from our pool, with adjusted data complexity to reach a failure probability
bounded by 33%. Originally claimed complexities by [GJL14] and [ZJW16] are under
parentheses.

From the work of ASIACRYPT’14 [GJL14] and EUROCRYPT’16 [ZJW16], we have

LPN512,0.125 which can be solved in time complexity of 279.9 (with more precise complexity

estimates). The comparison is shown in Table 5.4.8 9

Recall that the previous work on LPN analysed code-reduce only with perfect codes. In

Table 5.4, our computed complexities are based on the real codes that we built with our

bigger pool to have a fair comparison.

We do better, provide concrete codes and we even remove the guess-secret step using a

code in an optimized way. Thus, the results of Algorithm 5.4 improve all the existing

results on solving LPN.

We put in Appendices A.5- A.8 details of our results: the complete list of the chains

we obtain (for Table 5.2 and Table 5.3), an example of complete solving algorithm, and

an analysis of the results from [GJL14] and [ZJW16] to obtain Table 5.4.

8As for [ZJW16], we only reported the results based on LF2 which are better than with LF1, as the
LF(4) operation is incorrect. Details about this were presented in and [BV16a] and Section 3.7.

9Detailed results are provided in Appendix A.8.
10http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_SolvingLPNUsingCoveringCodes.pdf
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Chapter6
How to Sequentialize Independent

Parallel Attacks

In this chapter, we present a new framework that allows us to improve the complexity of

solving LPN when given only a polynomial number of queries. The same framework can

be adapted to several other problems, e.g. password guessing. The personal contribution

in this chapter is a joint work with Serge Vaudenay that was published in [BV15].

Structure of the Chapter. Section 6.1 introduces the scenario we are working in

and connects it with existing results. Section 6.3 formalizes the problem we solve, i.e.

what is the optimal strategy for an adversary that wants to succeed in guessing a key

from a sequence of independent keys, and presents a few useful results. In Section 6.4,

we characterize the optimal strategies and show that they can be given a special regular

structure. We then apply our results in Section 6.5 with LPN and password recovery.

Finally, in Section 6.6, we study how the strategies are shaped by the distribution of the

keys.

6.1 General Framework and Related Work

We have a framework where we assume that there are an infinite number of independent

keys K1,K2, . . . and that we want to find at least one of these keys by trials with minimal

complexity. Each key search can be stopped and resumed. The problem is to find the

optimal strategy to run several partial key searches in a sequence. One restriction to

our framework is that we assume a scenario where one can mount several independent

attacks on a single CPU. I.e. one cannot run key searches in parallel.

In this optimization problem, we assume that the distributions Di for each Ki are

known. We denote D = (D1,D2, . . .). We consider the problem of guessing a key Ki,

drawn following distribution Di, which is not necessarily uniform. We assume that we

try all key values exhaustively from the first to the last following a fixed ordering (we
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could assume that this ordering follows a decreasing likelihood but this is not necessary).

If we stop the key search on Ki after m trials, the sequence of trials is denoted by

ii · · · i = im. It has a worst-case complexity m and a probability of success which we

denote by PrD(i
m).

Instead of running parallel key searches in sequence, we could consider any other

attack which decomposes into steps of the same complexity and in which each step has

a specific probability to be the succeeding one. We assume that the ith attack has a

probability PrD(i
m) to succeed within m steps and that each step has complexity 1. The

fundamental problem is to wonder how to run steps of these attacks in a sequence so

that we minimize the complexity until one attack succeeds. For instance, we could run

attack 1 for up to m steps and decide to give up and try again with attack 2 if it fails for

attack 1, and so on. We denote by s = 1m2m3m · · · this strategy. Unsurprisingly, when
the Di’s are the same, the average complexity of s is the ratio CD(1m)

PrD(1m) where CD(1
m) is

the expected complexity of the strategy 1m which only runs attack 1 for m steps1 and

PrD(1
m) is its probability of success.

Traditionally, when we want to compare single-target attacks with different complexity

C and probability of success p, we use as a rule of the thumb to compare the ratio C
p .

Quite often, we have a continuum of attacks C(m) with a number of steps limited to a

variable m and we tune m so that p(m) is a constant such as 1
2 . Indeed, the curve of

m �→ C(m)
p(m) is often decreasing (so has an L shape) or decreasing then increasing (with a U

shape) and it is optimal to target p(m) = 1
2 . But sometimes, the curve can be increasing

with a Γ shape. In this case, it is better to run an attack with very low probability of

success and to try again until this succeeds. In some papers, e.g. [HVLN15], we consider

min C(m)
p(m) as a complexity metric to compare attacks. Our framework justifies this choice.

LPN falls in the aforementioned scenario of guessing a k-bit biased noise vector by a

simple transformation. Work on breaking cryptosystems with biased keys was also done

in [MS91].

The guessing game that we describe in our framework also matches well the password

guessing scenario where an attacker tries to gain access to a system by hacking an

account of an employee. There exists an extensive work on the cryptanalytic time-

memory tradeoffs for password guessing [ABC15, Hel80, Oec03, AC13, NS05, AJO05],

but the game we analyse here requires no pre-computation done by the attacker.

6.2 Our Contribution

We develop a formalism to compare strategies and derive some useful lemmas. We show

that when we can run an infinite number of independent attacks of the same distribution,

an optimal strategy is of the form 1m2m3m · · · and it has complexity

min
m

CD(1
m)

PrD(1m)

1CD(1m) can be lower than m since there is a probability to succeed before reaching the mth step.
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for some “magic” value m. This justifies the rule of thumb to compare attacks with

different probabilities of success.

When the probability that an attack succeeds at each new step decreases (e.g., because

we try possible key values in decreasing order of likelihood), there are two remarkable

extreme cases: m = n (where n is the maximal number of steps) corresponds to the

normal single-target exhaustive search with a complexity equal to the guesswork en-

tropy [Mas94] of the distribution; m = 1 corresponds to trying attacks for a single step

until it works, with complexity 2−H∞ , where H∞ is the min-entropy of the distribution.

When looking at the “magic” value m in terms of the distribution D, we observe that

in many cases there is a phase transition: when D is very close to uniform, we have

m = n. As soon as it becomes slightly biased, we have m = 1. There is no graceful

decrease from m = n to m = 1.

We also treat the case where we have a finite number |D| of independent attacks to

run. We show that there is an optimal “magic” sequence m1,m2, . . . such that an optimal

strategy has form

1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · ·

The best strategy is first to run all attacks for m1 steps in a sequence then to continue

to run them for m2 steps in a sequence, and so on.

Although our results look pretty natural, we show that there are distributions making

the analysis counter-intuitive. Proving these results is actually non trivial.

We apply this formalism to LPN by guessing the noise vector then performing a Gaus-

sian elimination to extract the secret. The optimal m decreases as the probability τ to

have an error in a parity bit decreases from 1
2 . For τ = 1

2 , the optimal m corresponds

to a normal exhaustive search. For τ < 1
2 − ln 2

2k , where k is the length of the secret, the

optimal m is 1: this corresponds to guessing that we have no noise at all. So, there is a

phase transition.

Furthermore, for LPN with τ = k−
1
2 , which is what is used in several cryptographic

constructions, the obtained complexity is poly · e
√
k which is much better than the usual

poly · 2 k
log2 k that we obtain for variants of the BKW algorithm [BTV16]. More generally,

we obtain a complexity of poly · e−k ln(1−τ). It is not better than the BKW variants for

constant τ but becomes interesting when τ < ln 2
log2 k

.

When the number of samples is limited in the LPN problem with τ = k−
1
2 , we can

still solve it with complexity eO(
√
k(ln k)2) which is better than eO(

k
ln ln k ) with the BKW

variants [Lyu05].

For password search, we tried several empirical distributions of passwords and again

obtained that the optimal m is m = 1. So, the complexity is 2−H∞ .
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(K1,K2,...)
increment ti

A
STEP(i)

1Ki=ti

Figure 6.1: The STEP game

6.3 The STEP Game

In this section, we formalize our framework by addressing the fundamental question of

what is the best strategy to succeed in at least one attack when we can step several

independent attacks. Let D = (D1,D2, . . .) be a tuple of independent distributions. If

it is finite, |D| denotes the number of distributions.

We formalize our framework as a game where we have a ppt adversary A and an oracle

that has a sequence of keys (K1,K2, . . .) where Ki ← Di. At the beginning, the oracle

assigns the keys according to their distribution. These distributions are known to the

adversary A. The adversary will test each key Ki by exhaustive search following a given

ordering of possible values. We can assume that values are sorted by decreasing order

of likelihood to obtain a minimal complexity but this is not necessary in our analysis.

We only assume a fixed order. So, our framework generalizes to other types of attacks

in which we cannot choose the order of the steps. Each test on Ki corresponds to a step

in the exhaustive search for Ki. In general, we write “i” in a sequence to denote that we

run one new step of the ith attack. The sequence of “i”s defines a strategy s. It can be

finite or not. The sequence of steps we follow is thus a sequence of indices. For instance,

im means “run the Ki search for m steps”.

The oracle is an algorithm that has a special command: STEP(i). When queried with

the command STEP(i), the oracle runs one more step of the ith attack ( so, it increments a

counter ti and tests if Ki = ti, assuming that possible key values are numbered from 1).

If this happens, then the adversary wins. The adversary wins as soon as one attack

succeeds (i.e., he guesses one of the keys from the sequence K1,K2, . . . ).

Definition 6.1 (Distributions). A distribution Di over a set of size n is a sequence of

probabilities Di = (p1, . . . , pn) of sum 1 such that pj ≥ 0 for j = 1, . . . , n. We assume

without loss of generality that pn 
= 0 (Otherwise, we decrease n). We can equivalently

specify the distribution Di in an incremental way by a sequence Di = [p′1, . . . , p
′
n] (denoted

with square brackets) such that

p′j =
pj

pj + · · ·+ pn
pj = p′j(1− p′1) · · · (1− p′j−1)

for j = 1, . . . , n.
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We have PrD(i
j) = p1 + · · · + pj = 1 − (1 − p′1) · · · (1 − p′j), the probability of the j

first values under Di.

When considering the key search, it may be useful to assume that distributions are

sorted by decreasing likelihood. We note that the equivalent condition to pj ≥ pj+1 with

the incremental description is 1
p′j

+ j ≤ 1
p′j+1

+ j + 1, for j = 1, . . . , n− 1.

Definition 6.2 (Strategies). Let D be a sequence of distributions D = (D1, . . . ,D|D|)
(where |D| can be infinite or not). A strategy for D is a sequence s of indices between

1 and |D|. It corresponds to Algorithm 6.1. We let PrD(s) be the probability that the

Algorithm 6.1 Strategy s in the STEP game

1: initialize attacks 1, . . . , |D|
2: for j = 1 to |s| do
3: STEP(sj): run one more step of the attack sj and stop if succeeded
4: end for

5: stop (the algorithm fails)

strategy succeeds and CD(s) be the expected number of STEP when running the algorithm

until it stops. We say that the strategy is full if PrD(s) = 1 and that it is partial otherwise.

For example for s = 11223344 · · · , Algorithm 6.1 tests the first two values for each

key.

We define the distribution that the keys are not among the already tested ones.

Definition 6.3 (Residual distribution). Let D = (D1, . . . ,D|D|) be a sequence of distri-

butions and let s be a strictly partial strategy for D (i.e., PrD(s) < 1). We denote by

“|¬s” the residual distribution in the case where the strategy s does not succeed, i.e., the

event ¬s occurs.

We let #occs(i) denote the number of occurrences of i in s. We have

D|¬s =
(
D1|¬1#occs(1), . . . ,D|D||¬|D|#occs(|D|)

)

where Di|¬iti = [p′i,ti+1, . . . , p
′
i,ni

] if Di = [p′i,1, . . . , p
′
i,ni

]. Hence, defining distributions

in the incremental way makes the residual distribution being just a shift of the original

one.

We write PrD(s
′|¬s) = PrD|¬s(s′) and CD(s

′|¬s) = CD|¬s(s′).
Next, we prove a list of useful lemmas in order to compute complexities, compare

strategies, etc.

Lemma 6.4 (Success probability). Let s be a strategy for D. The success probability is

given by

Pr
D
(s) = 1−

|D|∏
i=1

Pr
Di

(¬i#occs(i))
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Proof. The failure corresponds to the case where for all i, Ki is not in {1, . . . ,#occs(i)}.
The independence of the Ki implies the result.

Lemma 6.5 (Complexity of concatenated strategies). Let ss′ be a strategy for D ob-

tained by concatenating the sequences s and s′. If PrD(s) = 1, we have PrD(ss
′) =

PrD(s) and CD(ss
′) = CD(s). Otherwise, we have

Pr
D
(ss′) = Pr

D
(s) +

(
1− Pr

D
(s)

)
Pr
D
(s′|¬s)

CD(ss
′) = CD(s) +

(
1− Pr

D
(s)

)
CD(s

′|¬s) .

Proof. The first equation is trivial from the definition of residual distributions and con-

ditional probabilities.

The prefix strategy s succeeds with probability PrD(s). Let c be the complexity of

s conditioned to the event that s succeeds. Clearly, the complexity of ss′ conditioned
to this event is equal to c. The complexity of ss′ conditioned to the opposite event

is equal to |s| + CD(s
′|¬s). So, CD(ss

′) = PrD(s)c + (1 − PrD(s))(|s| + CD(s
′|¬s)).

The complexity of s conditioned to the event that s fails is equal to |s|. So, CD(s) =

PrD(s)c+ (1− PrD(s))|s|. From these two equations, we obtain the result.

Lemma 6.6 (Complexity with incremental distributions). Let Di = [p′i,1, . . . , p
′
i,ni

] and

let s be a strategy for D = (D1,D2, . . .). We have

Pr
D
(s) = 1−

|s|∏
t′=1

(1− p′st′ ,#occs1···st′ (st′)
)

CD(s) =

|s|∑
t=1

t−1∏
t′=1

(1− p′st′ ,#occs1···st′ (st′)
) .

Proof. By induction, the probability that the strategy fails on the first t − 1 steps is

qt =
∏t−1

t′=1(1− p′st′ ,#occs1···st′ (st′ )
). We can express CD(s) =

∑|s|
t=1 qt. So, we can deduce

PrD(s) and CD(s).

Example 6.3.1. For D1 = (p1, . . . , pn) = [p′1, . . . , p
′
n] and m ≤ n, due to Lemma 6.6

we have

Pr
D
(1m) = p1 + · · ·+ pm = 1− (1− p′1) · · · (1− p′m)

and

CD(1
m) =

m∑
t=1

t−1∏
j=1

(1− p′j)

=

m∑
t=1

(pt + · · ·+ pn) = p1 + 2p2 + · · · +mpm +mpm+1 + · · ·+mpn .
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The second equality uses the relations from Definition 6.1.

For the next results, we analyse strategies where the same number of guesses are done

for several keys (e.g. 1m2m · · · ). We want to concatenate an isomorphic copy w of a

strategy v to another strategy u. For this, we make sure that w and u have no index in

common.

Definition 6.7 (Disjoint copy of a strategy). Two strategies v and w are isomorphic if

there exists an injective mapping ϕ such that wt = ϕ(vt) for all t and Dϕ(i) = Di for

all i. So, CD(v) = CD(w). Let u and v be two strategies for D. Whenever possible,

we define a new strategy w = newu(v) such that v and w are isomorphic and w has no

index in common with u.

We can define it by recursion: if w1 = ϕ(v1), . . . , wt−1 = ϕ(vt−1) are already defined

and ϕ(vt) is not, we set it to the smallest index i (if exists) which does not appear in u

nor in w1, . . . , wt−1 and such that Di = Dvt .

For instance, if v = 1m, all Di are equal, and i is the minimal index which does not

appear in u, we have newu(v) = im.

Lemma 6.8 (Complexity of a repetition of disjoint copies). Let s be a non-empty strategy

for D. We define new strategies s+1, s+2, . . ., disjoint copies of s, by recursion as follows:

s+r = newss+1···s+(r−1)
(s). We assume that s+1, s+2, . . . , s+(r−1) can be constructed. If

PrD(s) = 0, then

CD(ss+1s+2 · · · s+(r−1)) = r · CD(s).

Otherwise, we have

CD(ss+1s+2 · · · s+(r−1)) =
1− (1− PrD(s))

r

PrD(s)
CD(s) .

For r going to ∞, we respectively obtain CD(ss+1s+2 · · · ) = +∞ and

CD(ss+1s+2 · · · ) = CD(s)

PrD(s)
.

For instance, for s = 1m and Di all equal, the disjoint isomorphic copies of s are

s+r = (1 + r)m. I.e., we run m steps the (1 + r)th attack. So, ss+1s+2 · · · s+(r−1) =

1m2m · · · rm.

Proof. We prove it by induction on r. This is trivial for r = 1. Let s̄r = ss+1s+2 · · · s+r.

If it is true for r − 2, then

CD(s̄r−1) = CD(s̄r−2) + (1− Pr
D
(s̄r−2))CD(s+(r−1)|¬s̄r−2)

=

⎧⎪⎨
⎪⎩

1−(1−PrD(s))r−1

PrD(s) CD(s) + (1− PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrD(s) > 0

(r − 1) · CD(s) + (1− PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrD(s) = 0
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Clearly, we have 1−PrD(s̄r−2) = (1−PrD(s))
r−1 and CD(s+(r−1)|¬s̄r−2) = CD(s). So,

we obtain the result.

Example 6.3.2. For all Di equal, if we let s = 1m, we can compute

CD(1
m2m · · · rm) =

1− (1− PrD(1
m))r

PrD(1m)
CD(1

m)

=
1− (pm+1 + · · · + pn)

r

p1 + · · ·+ pm
(p1 + 2p2 + · · ·+mpm +mpm+1 + · · ·+mpn)

We now consider r =∞. For an infinite number of i.i.d distributions we have

CD(1
m2m · · · ) = CD(1

m)

PrD(1m)

=
p1 + 2p2 + · · ·+mpm +mpm+1 + · · · +mpn

p1 + · · ·+ pm

=

∑m
i=1 ipi +m(1− p1 + · · · + pm)

p1 + · · · + pm

= Gm +m

(
1

PrDi
(1m)

− 1

)

where Gm = CD1|1m(1
m) and D1|1m = ( p1

PrD1
(1m) , . . . ,

pm
PrD1

(1m)). If D1 is ordered, Gm

corresponds to the guesswork entropy of the key with distribution D1|1m.

We can see two extreme cases for s = 1m2m · · · . On one end, we have a strategy of

exhaustively searching the key until it is found, i.e. take m = n. On the other extreme,

we have a strategy where the adversary tests just one key before switching to another

key, i.e. m = 1. For the sequences s = 12 · · · and s = 1n2n · · · , i.e. m = 1 and m = n,

when D1 is ordered by decreasing likelihood, we obtain the following expected complexity:

m = 1⇒ CD(12 · · · ) = 1

p1
= 2−H∞(D1)

m = n⇒ CD(1
n2n · · · ) = CD(1

n) = Gn,

where H∞(D1) and Gn denote the min-entropy and the guesswork entropy of the distri-

bution D1, respectively.

We now define a way to compare partial strategies.

Definition 6.9 (Strategy comparison). We define

minCD(s) = inf
s′;PrD(ss′)=1

CD(ss
′)

the infimum of CD(ss
′), i.e. the greatest of its lower bounds. We write s ≤D s′ if and

only if minCD(s) ≤ minCD(s
′). A strategy s is optimal if minCD(s) = minCD(∅), where

∅ is the empty strategy (i.e. the strategy running no step at all).
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So, s is better than s′ if we can reach lower complexities by starting with s instead of

s′. The partial strategy s is optimal if we can still reach the optimal complexity when

we start by s.

Lemma 6.10 (Best prefixes are best strategies). If u and v are permutations of each

other, we have u ≤D v if and only if CD(u) ≤ CD(v).

Proof. Note that PrD(u) = 1 is equivalent to PrD(v) = 1. If PrD(u) = 1, it holds that

minCD(u) = CD(u) and minCD(v) = CD(v). So, the result is trivial in this case. Let us

now assume that PrD(u) < 1 and PrD(v) < 1. For any s′, by using Lemma 6.5 we have

CD(us
′) = CD(u) +

(
1− Pr

D
(u)

)
CD(s

′|¬u)

So,

inf
s′;PrD(us′)=1

CD(us
′) = CD(u) +

(
1− Pr

D
(u)

)
inf

s′;PrD(us′)=1
CD(s

′|¬u)

The same holds for v. Since u and v are permutations of each other, we have D|¬u =

D|¬v. So, PrD(us
′) = PrD(vs

′) and CD(s
′|¬u) = CD(s

′|¬v). Hence, inf CD(s
′|¬u) =

inf CD(s
′|¬v). Furthermore, we have PrD(u) = PrD(v). So, minCD(u) ≤ minCD(v) is

equivalent to CD(u) ≤ CD(v).

6.4 Optimal Strategy

The question we address in this chapter is: what is the optimal strategy for the adversary

so that he obtains the best complexity in our STEP formalism? That is, we try to find

the optimal sequence s for Algorithm 6.1. At a first glance, we may think that a greedy

strategy, where we always make a step which is the most likely to succeed, is an optimal

strategy. We show below that this is wrong. Sometimes, it is better to run a series of

unlikely steps in one given attack because we can then run a much more likely one of

the same attack after these steps are completed. However, criteria to find this strategy

are not trivial at all.

The greedy algorithm is based on looking at the i for which the next applicable p′j in

Di is the largest. With our formalism, this defines as follows.

Definition 6.11 (Greedy strategy). Let s be a strategy for D. We say that s is greedy

if

Pr
D
(st|¬s1 · · · st−1) = max

i
Pr
D
(i|¬s1 · · · st−1)

for t = 1, . . . , |s|.

The following example shows that the greedy strategy is not always optimal.
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Example 6.4.1. We take |D| = ∞ and all Di equal to Di = (23 ,
7
36 ,

5
36) = [23 ,

7
12 , 1].

After testing the first key, we have D|¬1 = (D′,D2,D3, . . .) with D′ = ( 7
12 ,

5
12) = [ 7

12 , 1].

Since 2
3 > 7

12 , the greedy algorithm would then test a new key and continue testing new

keys. I.e., we would have s = 1234 · · · as a greedy strategy. By applying Lemma 6.5, the

complexity is solution to c = 1 + 1
3c, i.e., c =

3
2 . However, the one-key strategy s = 111

has complexity

2

3
+ 2

7

36
+ 3

5

36
=

53

36
<

3

2

so the greedy strategy is not the best one.

Remark: The above counterexample works even when |D| is finite. If we take D =

(D1,D2) with Di = (23 ,
7
36 ,

5
36 ) = [23 ,

7
12 , 1], the greedy approach would test the strategy

s = 1211 that has a complexity of

1 +
1

3

(
1 +

1

3

(
1 +

5

12
· 1

))
=

161

108
.

This is greater than 53
36 , which is the complexity of the strategy 111.

Next, we note that we may have no optimal strategy as the following example shows.

Example 6.4.2 (Distribution with no optimal strategy). Let qi be an increasing se-

quence of probabilities which tends towards 1 without reaching it. Let Di = [qi, qi, . . . , qi, 1]

of support n. We have C(in) = 1
qi
(1 − (1 − qi)

n) which tends towards 1 as i grows. So,

1 is the best lower bound of the complexity of full strategies. But there is no full strategy

of complexity 1.

When the number of different distributions is finite, optimal strategies exist.

Lemma 6.12 (Existence of an optimal full strategy). Let D = (D1,D2, . . .) be a sequence

of distributions. We assume that we have in D a finite number of different distributions.

There exists a full strategy s such that CD(s) is minimal.

Proof. Let c = inf CD(s) over all full strategies s. c is well defined. Essentially, we want

to prove that c is reached by one strategy, i.e. that the infimum is a minimum. First, if

c = ∞, all full strategies have infinite complexity, and the result is trivial. So, we now

assume that c < +∞ and we prove the result by a diagonal argument.

We now construct s = s1s2 · · · by recursion. We assume that s1s2 · · · sr is constructed
such that minC(s1s2 · · · sr) = c. We concatenate s1, . . . , sr to im where m is such that

PrD[i
m−1|¬s1 · · · sr] = 0 and PrD[i

m|¬s1 · · · sr] > 0. The values of i to try are the

ones such that i appears in s1, . . . , sr (we have a finite number of them), and the ones

which do not appear, but we can try only one for each different Di. We take the choice

minimizing minC(s1s2 · · · srim) and set sr+1 = im. So, we construct a strategy s.

If one key Ki is tested until exhaustion, we have PrD(s) = 1. If no key is tested

until exhaustion, there is an infinite number of keys with same distribution Di which are
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tested. If p = PrD[i
m] is the nonzero probability with the smallest m of this distribution,

there is an infinite number of tests which succeed with probability p. So, PrD(s) ≥
1− (1− p)∞ = 1. In all cases, as s has a probability to succeed of 1, s is a full strategy.

What remains to be proven is that CD(s) = c. We now denote by si the ith step of s.

Let qt be the probability that s fails on the first t − 1 steps. We have CD(s) =∑|s|
t=1 qt. Let ε > 0. For each r, by construction, there exists a tail strategy v such that

CD(s1 · · · sr−1v) ≤ c + ε. Since qt is also the probability that s1 · · · sr−1v fails on the

first t − 1 steps for t ≤ r, we have
∑r

t=1 qt ≤ CD(s1 · · · sr−1v) ≤ c + ε. This holds for

all r. So, we have CD(s) ≤ c + ε. Since this holds for all ε > 0, we have CD(s) ≤ c.

Consequently, CD(s) = c: s is an optimal and full strategy.

The following two subsections show what is the structure of an optimal strategy.

6.4.1 Optimal Strategy for an Infinite Number of Distributions

Theorem 6.13. Let D = (D1,D2, . . .) be a sequence of distributions. We assume that

we have in D a finite number of pairwise different distributions but an infinite number

of copies of each of them in D. Then, there exists a sequence of indices i1 < i2 < · · ·
and an integer m such that Di1 = Di2 = · · · and s = im1 im2 · · · is an optimal strategy of

complexity
CD(im1 )
PrD(im1 ) .

This result can be translated in: if we can run independent copies of several algorithms

and that the probability that the ith one succeeds afterm steps is PrD(i
m) with complex-

ity CD(i
m), the best strategy to make at least one algorithm succeed is to run iteratively

some copies of a single algorithm for m steps, for some magic value m. The complexity

is CD(im)
PrD(im) .

To prove the result, we first state a useful lemma.

Lemma 6.14 (Is it better to do s or s′ first?). If s and s′ are non-empty and have

no index in common (i.e., if st 
= s′t′ for all t and t′), then ss′ ≤D s′s if and only if
CD(s)
PrD(s) ≤ CD(s′)

PrD(s′) in [0,+∞], with the convension that c
p = +∞ for c > 0 and p = 0.

Proof. Due to Lemma 6.5, when PrD(s) < 1 we have

CD(ss
′) = CD(s) +

(
1− Pr

D
(s)

)
CD(s

′|¬s) .

Since s′ does not make use of the distributions which are dropped in D|¬s, we have

CD(s
′|¬s) = CD(s

′). So,

CD(ss
′) = CD(s) +

(
1− Pr

D
(s)

)
CD(s

′) .

This is also clearly the case when PrD(s) = 1. Similarly,

CD(s
′s) = CD(s

′) +
(
1− Pr

D
(s′)

)
CD(s) .
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So, CD(ss
′) ≤ CD(s

′s) is equivalent to

CD(s) +

(
1− Pr

D
(s)

)
CD(s

′) ≤ CD(s
′) +

(
1− Pr

D
(s′)

)
CD(s) .

Hence, this inequality is equivalent to CD(s)
PrD(s) ≤ CD(s′)

PrD(s′) .

We can now prove Th. 6.13.

Proof of Th. 6.13. Due to Lemma 6.12, we know that optimal full strategies exist. Let

s be one of these. We let i be the index of an arbitrary key which is tested in s. We

can write s = u0i
m1u1i

m2 · · · imrur where i appears in no uj and mj > 0 for all j, and

u1, . . . , ur−1 are non-empty.

Since s is optimal, by permuting imj and either uj−1 or uj , we obtain larger complex-

ities. So, by applying Lemma 6.14, we obtain

CD(i
m1)

PrD(im1)
≤ CD(u1|¬u0)

PrD(u1|¬u0) ≤
CD(i

m2 |¬im1)

PrD(im1 |¬im1)
≤ · · · ≤ CD(ur|¬u0 · · · ur−1)

We now want to replace ur in s by some isomorphic copy of s which is not overlapping

with u0i
m1u1i

m2 · · · imr . Due to the optimality of s, we would deduce

CD(ur|¬u0 · · · ur−1) ≤ CD(s|¬u0 · · · ur−1) = CD(s)

so CD(im1 )
PrD(im1 ) ≤ CD(s) which would imply that the repetition of isomorphic copies of im1

are at least as good as s, so CD(im1 )
PrD(im1 ) = CD(s) due to the optimality of s. But to replace

ur in s by the isomorphic copy of s, we need to rewrite the original s containing ur by

some isomorphic copy in which indices are left free to implement another isomorphic

copy of s.

For that, we split the sequence (1, 2, 3, . . .) into two subsequences v and v′ which are

non-overlapping (i.e. vt 
= v′t′ for all t and t′), complete (i.e. for every integer j, v

contains j or v′ contains j), and representing each distribution with infinite number of

occurrences (i.e. for all j, there exist infinite sequences t1 < t2 < · · · and t′1 < t′2 < · · ·
such that Dj = Dvt�

= Dv′
t′
�

for all 
). For that, we can just construct v and v′ iteratively:

for each j, if the number of j′ < j such that Dj′ = Dj in v or v′ is the same, we put j

in v, otherwise (we may have only one more instance in v), we put j in v′ (to balance

again). For instance, if all Di are equal, this construction puts all odd j in v and all

even j in v′. Hence, we can define s′ = newv(s) and s′′ = newv′(s). s
′ will thus only use

indices in v′ while s′′ will only use indices in v. Therefore, s′ and s′′ will be isomorphic,

with no index in common. So, CD(s) = CD(s
′) = CD(s

′′).
Following the split of s, the strategy s′ can be written s′ = u′0i

′m1u′1i
′m2 · · · i′mru′r with

CD(i
m1)

PrD(im1)
=

CD(i
′m1)

PrD(i′m1)
≤ CD(u

′
r|¬u′0 · · · u′r−1) = CD(u

′
r|¬u′0i′m1u′1i

′m2 · · · i′mr)
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If we replace u′r in s′ by s′′, since s′ is optimal, we obtain a larger complexity. So,

CD(u
′
0i

′m1u′1i
′m2 · · · i′mru′r) ≤ CD(u

′
0i

′m1u′1i
′m2 · · · i′mrs′′)

These two strategies have the prefix u′0i
′m1u′1i

′m2 · · · i′mr in common. We can write

their complexities by splitting this common prefix using Lemma 6.5. By eliminating the

common terms, we deduce

CD(u
′
r|¬u′0i′m1u′1i

′m2 · · · i′mr) ≤ CD(s
′′|¬u′0i′m1u′1i

′m2 · · · i′mr ) = CD(s
′′) = CD(s)

We deduce

CD(i
m1)

PrD(im1)
≤ CD(s)

Let i1 < i2 < · · · be a sequence of keys using the distribution Di. By Lemma 6.8, the

strategy im1 im2 · · · has complexity CD(im1 )
PrD(im1 ) . As s is optimal, we have CD(im1 )

PrD(im1 ) ≥ CD(s).

Therefore, CD(im1 )
PrD(im1 ) = CD(s).

Here are examples of optimal m for different distributions.

Example 6.4.3 (Uniform distribution). For the uniform distribution pi =
1
n , with 1 ≤

i ≤ n. We get PrD(1
m) = m

n and Gm = m+1
2 . With this, we obtain CD(1

m2m · · · ) = n−
m−1
2 . Thus, the value of m that minimizes the complexity is m = n and CD(1

m2m · · · ) =
n−1
2 . The best strategy is to exhaustively search the key until it is found.

Example 6.4.4 (Geometric distribution). For the geometric distribution with parameter

p, we have pi = (1− p)i−1p, with i = 1, 2, . . . or Di = [p, p, . . .]. Due to Lemma 6.5, we

can see that for every infinite strategy s, CD(s) =
1
p .

We give a formula to compute the optimal strategies for distributions obtained by

composing several distributions. The formula is useful when we want to regroup equal

consecutive pj’s in a distribution D1 so that D1 appears as a composition of uniform

distributions.

Lemma 6.15. Let U1, . . . , Uk be independent distributions of support n1, . . . , nk, respect-

ively. Let Ui = (pi,1, . . . , pi,ni
). Given a distribution (α1, . . . , αk) of support k, we define

D1 = α1U1 + α2U2 + . . . + αkUk by D1 = (α1p1,1, . . . , α1p1,n1 , α2p2,1, . . . , αkpk,nk
).

Let m =
∑i

j=1 nj . We have

Pr
D1

(1n11n2 · · · 1ni) = α1 + · · ·+ αi

CD1(1
n11n2 · · · 1ni) =

i∑
j=1

αjCUj
(1nj ) +

i∑
j=1

nj

(
1−

j∑
k=1

αk

)

We note that if all Ui are ordered and if αipi,ni
≥ αi+1pi+1,1 for all 1 ≤ i < k, then

D1 is ordered as well.
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We let D = (D1,D1, . . .). If we assume that the Ui are uniform distributions, we can

use the observation following Lemma 6.18 to deduce from Th. 6.13 that the optimal

strategy is 1m2m · · · for m =
∑i

j=1 nj and i minimizing

minCD(∅) = min
i

⎛
⎝

∑i
j=1 αjCUj

(1nj ) +
∑i

j=1 nj

(
1−∑j

k=1 αk

)
∑i

j=1 αj

⎞
⎠ .

Proof. We prove it by induction on i. It is trivial for i = 0. We assume the result holds

for i− 1. By induction, we have

CD1(1
n1 · · · 1ni) = CD1(1

n1 · · · 1ni−1) + (1− Pr
D1

(1n1 · · · 1ni−1))CD1(1
ni |¬(1n1 · · · 1ni−1))

=

i−1∑
j=1

αjCUj
(1nj ) +

i−1∑
j=1

nj

(
1−

j∑
k=1

αk

)
+ αiCUi

(1ni) + ni

(
1−

i∑
k=1

αk

)

=

i∑
j=1

αjCUj
(1nj ) +

i∑
j=1

nj

(
1−

j∑
k=1

αk

)

The second equality is obtained from the fact that

CD1(1
ni |¬(1n1 · · · 1ni−1)) =

αi

αi + · · ·+ αk
(pi,1 + 2pi,2 + . . .+ nipi,ni

) + ni

(
αi+1 + · · ·+ αk

αi + · · ·+ αk

)

=
αi

1− PrD1(1
n1 · · · 1ni−1)

CUi
(1ni) + ni

(
1− PrD1(1

n1 · · · 1ni−1)− αi

1− PrD1(1
n1 · · · 1ni−1)

)

We note that Th. 6.13 does not extend if some distribution has a finite number of

copies as the following example shows.

Example 6.4.5 (Distribution with no optimal strategy of the form im1 im2 · · · ). Let D1 =

[1 − ε, ε, ε, . . . , ε, 1] of support n and D2 = D3 = · · · = [p, . . . , p, 1] for ε < p ≤ 1
2 and

n large enough. Given a full strategy s, the formula in Lemma 6.6 defines a sequence

qt(s) = p′st,#occs1···st (st)
. We can see that for all full strategies s and s′, if |s| ≤ |s′| and

qt(s) ≥ qt(s
′) for t = 1, . . . , |s|, then CD(s) ≤ CD(s

′). With this, we can see that s = 12n

is better than all full strategies with length at least n+1. There are only two full strategies

with smaller length: 1n and 2n. We have CD(2
n) = 1−(1−p)n

p ≈ 1
p ≥ 2 as n grows. We

have CD(12
n) = 1 + ε1−(1−p)n

p ≈ 1 + ε
p as n grows, so CD(12

n) < CD(2
n) for n large

enough. We have CD(1
n) = 1+ ε1−(1−ε)n−1

ε = 2− (1− ε)n−1 ≈ 2 so CD(12
n) < CD(1

n)

for n large enough. For all strategies of length at least n+1, s = 12n collected the largest

possible p′ values. So, the best strategy is s = 12n. It is better than any strategy of form

im1 im2 · · · .
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6.4.2 Optimal Strategy for a Finite Number of Distributions

When we have a finite number of distributions, we may have no optimal strategy of the

form given in Th. 6.13. We may have multiple layers of repetition of im as the following

result shows.

Theorem 6.16. Let D1 be a distribution of finite support n. Let D = (D1,D2, . . . ,D|D|)
be a finite sequence of length |D| in which D1 = D2 = · · · = D|D|. There exists a sequence

m1, . . . ,mr such that the strategy

s = 1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · · 1mr

is optimal.

For the proof of Theorem 6.16, we need the result of the following lemma.

Lemma 6.17. Let s = uiavjbw be an optimal strategy with n occurrences of each key.

We assume that i 
= j, a < b, u does not end with i, v has no occurrence of either i or j,

and w has equal number of occurrences for i and j. Furthermore, we assume that either

a 
= 0, or v is nonempty and starts with some k such that u does not end with k. Then,

CD(s) = CD(uj
b−aiavjaw).

Proof. We will show below that there exists d > 0 such that a ≤ b − d and CD(s) =

CD(uj
diavjb−dw). Hence, we can rewrite s by replacing u by ujd and b by b− d. Since

d > 0 and a ≤ b−d, we can just apply this rewriting rule enough times until b is lowered

down to a. Hence, we obtain the result.

To find d, we first write s = u0i
m1u1i

m2 · · · imruri
avjbw where i appears in no ut, the

mt are nonzero, and u1, . . . , ur are non-empty. (Note that since a < b, we must have

m1+· · ·+mr > 0 so r ≥ 1.) Let n′ be the equal number of occurrences of i and j in uiavjb.

Let t be the smallest index such that m1+ · · ·+mt > n′−b (for t = 0, the left-hand term

is 0 but n′ ≥ b; for t = r, the left-hand term is n′−a and we know that a < b; so, t exists

and t > 0). We write mt = m′ + d such that m1 + · · · +mt−1 +m′ = n′ − b. So, d > 0.

Note that b− d = b−mt+m′ = n′−m1− · · ·−mt = mt+1+ · · ·+mr+a. So, b− d ≥ a.

Clearly, d ≤ b. We write s = HidBiavjdT with head H = u0i
m1u1i

m2 · · · ut−1i
m′
, body

B = uti
mt+1 · · · imrur, and tail T = jb−dw. Clearly, H has n′ − b occurrences of i and

HidBiav has n′ − b occurrences of j. Since s is optimal for D, idBiavjd is optimal for

D|¬H. We note that B does not start with i (t is between 1 and r and ut is nonempty

and with no i) and that iav is non-empty and with no j (either a 
= 0 or v is nonempty

and with no j). We split idBiavjd = idx1 · · · x
iay1 · · · y
′jd where two consecutive blocks
in the list id, x1, . . . , x
, i

a, y1, . . . , y
′ , j
d have no key in common. (For a = 0, we can

always split so that x
 and y1 have no key in common by using the first term k of v

which is not the last of u: we just take y1 as a block of k’s and x
 as a block with no k.)

We can apply Lemma 6.14 and obtain

CD(i
d|¬in′−b)

PrD(id|¬in′−b)
≤ CD(i

a|¬in′−a)

PrD(ia|¬in′−a)
≤ CD(y1|¬ · · · )

PrD(y1|¬ · · · ) ≤
CD(y
′ |¬ · · · )
PrD(y
′ |¬ · · · ) ≤

CD(j
d|¬jn′−b)

PrD(jd|¬jn′−b)
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Since the first and the last terms are equal, all of them are equal. So, we can permute

two consecutive blocks which have no index in common. Hence, we can propagate jd

earlier until it is stepped before ia, since we know there is no other occurrence of j in

the exchanged blocks. We obtain that

CD(HidBiavjdT ) = CD(HidBjdiavT )

as announced.

Lemma 6.17 will be used in two ways.

1. For s = u′jcvjbw with c > 0, b > 0, v with no i or j, and balanced occurrences of

i and j in w, which has the same complexity as s′ = u′jb+cvw (so, to apply the

lemma we define a = 0, u = u′jc, k = j, and s = u′jci0vjbw; all hypotheses are

verified except v being non-empty, but the result is trivial for an empty v). This

means that we can regroup jc and jb when they are separated by a v with no i

and followed by a balanced tail w.

2. For s = uiavjbw with 0 < a < b, v with no i or j, and balanced occurrences of

i and j in w, which has the same complexity as s′ = ujb−aiavjaw. This means

that we can balance ia and jb when there are separated by a v with no i or j and

followed by a balanced tail w.

In what follows, we say that a strategy is in a normal form if for all t, i �→ #occs1···st(i)
is a non-increasing function, i.e. #occs1···st(i) ≥ #occs1···st(i+ 1) for all i. For instance,

1112322133 is normal as the number of STEP(1) is at no time lower than the number of

STEP(2) and the same for the number of STEP(2) and STEP(3).

Since all distributions are the same, all strategies can be rewritten into an equivalent

one in a normal form: for this, for the smallest t such that there exists i such that

#occs1···st(i) < #occs1···st(i + 1), it must be that st = i + 1 and #occs1···st−1(i) =

#occs1···st−1(i + 1). We can permute all values i and i + 1 in the tail stst+1 · · · and

obtain an equivalent strategy on which the function becomes non-increasing at step t

and is unchanged before. By performing enough such rewriting, we obtain an equivalent

strategy in normal form. For instance, 12231332 is not normal. The smallest t is t = 3

when we make a second STEP(2) while we only did a single STEP(1). So, we permute

1 and 2 at this time and obtain 12132331. Then, we have t = 7 and permute 2 and 3

to obtain 12132321. Then, again t = 7 to permute 1 and 2 to obtain 12132312 which is

normal.

We now prove Th. 6.16.

Proof of Th. 6.16. Let s be an optimal strategy. Due to the assumptions, it must be

finite. We assume w.l.o.g. that s is in normal form. We note that we can always

complete s in a form s2a23a3 · · · so that the final strategy has exactly n occurrences

of each i. So, we assume w.l.o.g. that s has equal number of occurrences. We write

s = 1m1x11
m2x2 · · · 1mrxr where the xt’s are non-empty and with no 1 inside.
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As detailed below, we rewrite xr (and push some steps earlier in xr−1) so that we obtain

a permutation of the blocks 2mr , . . . , |D|mr . The rewriting is done by preserving the

probability of success (which is 1) and the complexity (which is the optimal complexity).

Then, we do the same operation in xr−1 and continue until x1. When we are done, each xt
becomes a permutation of the blocks 2mt , . . . , |D|mt . Finally, we normalize the obtained

rewriting of s and obtain the result.

We assume that s has already been rewritten so that for each t′ = t + 1, . . . , r, the

xt′ sub-strategy is a permutation of the blocks 2mt′ , . . . , |D|mt′ . We explain now how to

rewrite xt. We make a loop for j = 2 to |D|. In the loop, we first regroup all blocks of

j’s by using Lemma 6.17 with i = 1: while we can write xt = u′jcvjbw′ where c > 0,

b > 0, v is non-empty with no j, and w′ has no j, we write u = 1m1x11
m2x2 · · · 1mtu′ and

w = w′1mt+1xt+1 · · · 1mrxr, and set a = 0 and i = 1. This rewrites xt = u′jb+cvw′ by
preserving the complexity and making a permutation. When this while loop is complete,

we can only find a single block of j’s in xt and write xt = vjbw′, where v and w′ have no j.
So, we apply again Lemma 6.17 to balance 1mt and jb: we write u = 1m1x11

m2x2 · · · xt−1

and w = w′1mt+1xt+1 · · · 1mrxr, and set a = mt and i = 1. This rewrites 1mtxt to

jb−mt1mtvjmtw′ by preserving the complexity and making a permutation. So, this re-

writes xt to vjmtw′ and xt−1 to xt−1j
b−mt . When the loop of j is complete, xt is a

permutation of the blocks 2mt , . . . , |D|mt .

Interestingly, the sequence m1, . . . ,mr is unchanged from our starting optimal normal

full strategy s. If we rather start from an optimal full strategy s which is not in normal

form, we can still see how to obtain this sequence: for each t, m1 + · · ·+mt is the next

record number of steps for an attack i after the m1 + · · · + mt−1 record. That is the

number of steps for the attack i when s decides to move to another attack.

We provide toy examples below.

Example 6.4.6. We take D = (D1,D2) with D1 = D2 = (35 ,
9
25 ,

1
50 ,

1
50) = [35 ,

18
20 ,

1
2 , 1].

Here are the complexities of some full strategies.

CD(1111) =
146

100
= 1.46

CD(12111) =
792

500
= 1.584

CD(11211) =
732

500
= 1.464

CD(121211) =
7892

5000
= 1.5784

CD(112211) =
7292

5000
= 1.4584

so the last strategy is the best one. Notice that this is also a greedy strategy.

Example 6.4.7. We take D = (D1,D2) with D1 = D2 = ( 70
100 ,

20
100 ,

5
100 ,

3
100 ,

1
100 ,

1
100 ) =
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[ 70
100 ,

2
3 ,

1
2 ,

3
5 ,

1
2 , 1]. Here are the complexities of some full strategies.

CD(111111) = 1.48

CD(1211111) = 1.44

CD(12121111) = 1.438

CD(121212111) = 1.439

CD(121122111) = 1.444

so s = 12121111 is the best one. For this example, we have that the optimal strategy

requires m1 = 1, m2 = 1 and m3 = 4. It is also greedy.

6.4.3 Finding the Optimal m

We provide here a simple criterion for the optimal m of Th. 6.13.

Lemma 6.18. We let D1 = (p1, . . . , pn) = [p′1, . . . , p
′
n] be a distribution and define

D = (D1,D1, . . .). Let m be such that s = 1m2m · · · is an optimal strategy based on

Th. 6.13. We have 1
p′m
≤ CD(1

m2m · · · ) ≤ 1
p′m+1

.

Proof. We let s = 2m3m · · · We know that CD(1
m+1s) ≥ CD(1

ms) since 1ms is optimal.

So,

0 ≤ CD(1
m+1s)− CD(1

ms)

= (1− Pr
D
(1m))(CD(1s|¬1m)− CD(s))

= (1− Pr
D
(1m))(1 − p′m+1 · CD(s))

from which we deduce 1
p′m+1

≥ CD(s). Similarly, we have

0 ≥ CD(1
ms)− CD(1

m−1s)

= (1− Pr
D
(1m−1))(CD(1s|¬1m−1)− CD(s))

= (1− Pr
D
(1m−1))(1 − p′m · CD(s))

from which we deduce 1
p′m
≤ CD(s).

We note that if pm = pm+1, then

p′m+1 =
pm+1

pm+1 + · · · + pn
=

pm
pm+1 + · · ·+ pn

>
pm

pm + pm+1 + · · ·+ pn
= p′m

which is impossible (given the result from Lemma 6.18). Consequently, we must have

pm 
= pm+1. So, in distributions when we have sequences of equal probabilities pt, we

can just look at the largest index t in the sequence as a possible candidate for being the

value m.

Lemma 6.18 has an equivalent for Th. 6.16.
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Lemma 6.19. We let D1 = (p1, . . . , pn) = [p′1, . . . , p
′
n] be a distribution of support n

and D = (D1,D1, . . . ,D1) of size |D|. Let m1, . . . ,mr be such that

s = 1m1 · · · |D|m11m2 · · · |D|m2 · · · is an optimal strategy based on Th. 6.16. For all t,

we have 1
p′mt

≤ CD(1mt )
PrD(1mt ) ≤ 1

p′mt+1
.

The proof is essentially the same as for Lemma 6.18. We just have to compare the

optimal strategy with

· · · 1mt−1 · · · |D|mt−11mt+12mt · · · |D|mt1mt+1−12mt+1 · · · |D|mt+11mt+2 · · · |D|mt+2 · · ·

and

· · · 1mt−1 · · · |D|mt−11mt−12mt · · · |D|mt1mt+1+12mt+1 · · · |D|mt+11mt+2 · · · |D|mt+2 · · ·

6.5 Applications

We apply our results on two applications: LPN and password guessing.

6.5.1 Solving Sparse LPN

We model the LPN problem in our STEP game. We use the noise bits as the keys the

adversary A is trying to guess.

Recall that in the list of LPN solving algorithms, we have the one that guesses that

the noise is 0 and runs a Gaussian elimination until it finds the correct solution. This

algorithm works with complexity poly · (1−τ)−k (See Section 3.8.3). So this algorithm is

better than the BKW variants that work with a complexity of poly ·2 k
log2 k as soon as τ <

ln 2
log2 k

, and in particular for τ = k−
1
2 which is the case for some applications [Ale03, DP12].

The Gaussian elimination algorithm is reduced to finding a k-bit noise vector. It

guesses that this vector is 0. If this does not work, the algorithm tries again with new LPN

queries. We can see this as guessing at least one k-bit biased vector Ki which follows the

distribution Di = Berkτ defined by Pr[Ki = v] = τHW(v)(1− τ)k−HW(v) in our framework.

The most probable vector is v = 0 which has probability Pr[Ki = 0] = (1 − τ)k. The

above algorithm corresponds to trying K1 = 0 then K2 = 0, ... i.e., the strategy 123 · · ·
in our framework. We can wonder if there is a better 1m2m3m · · · . This is the problem

we study below. We will see that the answer is no: using m = 1 is the best option as

soon as τ is less than 1
2 − ε for ε = ln 2

2k which is pretty small.

For instance, for LPN768, 1√
768

we obtain CD(12 · · · ) = 241. I.e., 241 calls to the STEP

command which corresponds to collecting k LPN queries and making a Gaussian elim-

ination to recover the secret based on the assumption that the error bits are all 0. If we

add up the cost of running Gaussian elimination in order to recover the secret, we obtain

a complexity of 270. This outperforms all the BKW variants and proves that LPN768, 1√
768

is not a secure instance for a 80-bit security. Furthermore, this algorithm outperforms

even the covering code algorithm [GJL14].
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Figure 6.2: The change of optimal m for solving LPN100,τ

Di is a composite distribution of uniform ones in the sense defined in Lemma 6.15.

Namely, Di =
∑k

w=0 τ
k(1 − τ)k−wUw where Uw is uniform of support

(
k
w

)
. By The-

orem 6.13, we know that there exists a magic m for which the strategy s = 1m2m · · · is
optimal. The analysis of composite distributions further says that m must be of form

m = Bw =
∑w

i=0

(
k
i

)
for some magic w. Let cm be the complexity of 1m2m · · · . A value

w = k, i.e. m = n corresponds to the exhaustive search of the noise bits. For w = 0, i.e.

m = 1, the adversary assumes that the noise is 0 every time he receives k queries from

the LPN oracle.

We first computed experimentally the optimal m for the LPN100,τ instance where we

take 0 < τ < 1
2 . The magic m takes the value 1 for a τ which is not close to 1

2 . As

shown on Fig. 6.2, it changes to n = 2100 around the value τ = 0.4965. This boundary

between two different strategies corresponds to the value τ = 1
2 − ln 2

2k computed in our

analysis below. Interestingly, there is no intermediate optimal m between 1 and n.

For cryptographic parameters, c1 is optimal. The optimal w depends on τ . The

case when τ is lower than 1
k is not interesting as it is likely that no error occurs so all

w lead to a complexity which is very close to 1. Conversely, for τ = 1
2 , the exhaustive

search has a complexity of cn = 1
2(2

k + 1) and w = 0 has a complexity of c1 = 2k.

Actually, Di is uniform in this case and we know that the optimal m completes batches

of equal consecutive probabilities. So, the optimal strategy is the exhaustive search.

We now show that for τ < 0.16, the best strategy is obtained for w = 0.

Below, we use pBw = τw(1− τ)k−w and c1 = (1− τ)−k.

Let wc be a threshold weight and let α = Pr(1Bwc ). For 0 < w ≤ wc, due to

Lemma 6.18, if cBw is optimal we have

cBw ≥
1

p′Bw

=
PrD(¬1Bw−1)

pBw

≥ PrD(¬1Bwc )

pBw

=
1− α

pBw

=
1− α(
τ

1−τ

)w c1 ≥ 1− α
τ

1−τ

c1 .

For τ < 0.16, we have τ
1−τ < 0.20. So, if α ≤ 4

5 we obtain cBw > c1. This contradicts
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that w is optimal. For wc = τk, the Central Limit Theorem gives us that α ≈ 1
2 which

is less than 4
5 . So, no w such that 0 < w ≤ τk is optimal.

Now, for w ≥ wc, we have

cw =
CD(1

Bw)

PrD(1Bw)
≥ CD(1

Bw) =

Bw∑
i=1

ipi+Bw Pr
D
(¬1Bw) ≥ Bwc Pr

D
(¬1Bwc ) = (1−α)Bwc

By using the bound Bwc ≥
(

k
wc

)wc

, for wc = τk we have α ≈ 1
2 and we obtain cw ≥

1
2τ

−τk. We want to compare this to c1 = (1 − τ)−k. We look at the variations of the

function τ �→ −kτ ln τ − ln 2 + k ln(1 − τ). We can see by derivating twice that for

τ ∈ [0, 12 ], this function increases then decreases. For τ = 0.16, it is positive. For τ = 1
k ,

it is also positive. So, for τ ∈ [ 1k , 0.16], we have cBw ≥ c1.

Therefore, for all τ < 0.16, c1 is the best complexity so m = 0 is the magic value.

Experiment shows that this remains true for all τ < 1
2 − ln 2

2k . Actually, we can easily see

that c1 becomes lower than 2k+1
2 for τ ≈ 1

2 − ln 2
2k . We will discuss this in Section 6.6.

Solving LPN with O(k) queries. We now concentrate on the m = n case to limit

the query complexity to O(k). (In our framework, we need only k queries but we would

practically need more to check that we did find the correct value.) So, we estimate

the complexity of the full exhaustive search on one error vector x of k bits for LPN,

i.e., CD(1
n). If pt is the probability that x is the t-th enumerated vector, we have

CD(1
n) =

∑n
t=1 tpt. For t between Bw−1+1 and Bw, the sum of the pt’s is the probability

that we have exactly w errors. So, CD(1
n) ≤ ∑k

w=0Bw Pr[w errors]. We approximate

Pr[w errors] to the continuous distribution. So, the Hamming weight has a normal

distribution, with mean kτ and standard deviation σ =
√

kτ(1− τ). We do the same

for Bw ≈ 2k√
2π

∫ 2w−k√
k

−∞ e−
v2

2 dv. With the change of variables w = kτ + tσ, we have

CD(1
n) ≤

k∑
w=0

Bw Pr[w errors]

≈ 2k

2π

∫ +∞

−∞

(∫ 2w−k√
k

−∞
e−

v2

2 dv

)
1

σ
e−

(w−kτ)2

2σ2 dw

=
2k

2π

∫∫
v≤ 2kτ−k+2tσ√

k

e−
t2+v2

2 dv dt

The distance between the origin (t, v) = (0, 0) and the line v = 2kτ−k+2tσ√
k

is

d =
√
k

1− 2τ√
1 + 4τ(1 − τ)
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τ log2(CD(1
n)) log2

(
2k

d
√
2π
e−

d2

2

)
0.1 1350.04 1314.81
0.125 1458.86 1429.33
0.25 1794.57 1788.49
0.4 1966.67 1966.55

Table 6.1: log2(CD(1
n)) vs. log2

(
2k

d
√
2π
e−

d2

2

)
for k = 2000

By rotating the region on which we sum, we obtain

CD(1
n) ≈ 2k

2π

∫∫
x≥d

e−
x2+y2

2 dx dy =
2k√
2π

∫ +∞

d
e−

x2

2 dx ∼ 2k

d
√
2π

e−
d2

2

On Fig. 6.3 we can see that this approximation of CD(1
n) is very good for τ = k−

1
2 .

So, the complexity CD(1
n) is asymptotically 2k(1−

1
2 ln 2)+O(

√
k). Interestingly, the dom-

inant part of log2 CD(1
n) is 0.2788× k and does not depend on τ as long as 1

k � τ � 1
2 .

Although very good for the low k that we consider, this approximation of CD(1
n) de-

viates, probably because of the imprecise approximation of the Bw’s. Next, we de-

rive a bound which is much higher but asymptotically better (the curves crossing for

k ≈ 50 000). We now use the bound Bw ≤ kw and do the same computation as before.

We have

CD(1
n) ≤

k∑
w=0

kw Pr[w errors]

≈ 1√
2π

∫ +∞

−∞
kkτ+tσe−

t2

2 dt

=
e

1
2
(σ lnk)2+kτ lnk

√
2π

∫ +∞

−∞
e−

(t−σ ln k)2

2 dt

= e
1
2
(σ lnk)2+kτ lnk

So, CD(1
n) = e

1
2

√
k(ln k)2+O(

√
k ln k) for τ = k−

1
2 . Recall that Lyubashevsky [Lyu05] has a

complexity of eO(
k

ln ln k ) (See Section 3.9). We obtain a better result that is asymptotically

better and that requires O(k) queries instead of k1+ε. However, this new bound for

CD(1
n) is very loose.

Outside the scenario of a sparse LPN, we display in Figure 6.4 the logarithmic com-

plexity to solve LPN in our STEP game when the noise parameter is constant.

Comparing log2(CD(1
n)) with our approximation, i.e. log2

(
2k

d
√
2π
e−

d2

2

)
, we obtain

the following results which validate our approximations (See Table 6.1).
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6.5.2 Password Recovery

There is numerous information nowadays accounting attacks and leaks of passwords from

different famous companies. From these leaks, the community has studied what are the

worst passwords used by the users. Having in mind these statistics, we are interested to

see what is the best strategy of an outsider that tries to get access to a system having

access to a list of users. The goal of the attacker is to hack one account. He can try to

hack several accounts. Within our framework, we compute to see what is the optimal

m for the strategy 1m2m · · · . In this given scenario, the strategy corresponds to making

m guesses for each user until it reaches the end of the list and starting again with new

guesses.

We consider the statistics that we have found for the 10 000 Top Passwords2 and the

one done for the database with passwords in clear from the RockYou hack3. Studies on

the distribution of user’s passwords were also done in [DMR10, WACS10, Bon12, Sch06].

The first case-study analyses what are the top 10 000 passwords from a total 6.5 million

username-passwords that leaked. The most frequent passwords are the following:

password p1 = 0.00493

123456 p2 = 0.00400

12345678 p3 = 0.00133

1234 p4 = 0.00089

In the case of the RockYou hack, where 32 million of passwords were leaked, we find

that the most frequent passwords and their probability of usage is:

123456 p1 = 0.009085

12345 p2 = 0.002471

123456789 p3 = 0.002400

Password p4 = 0.000194

Moreover, approximately 20% of the users used the most frequent 5 000 passwords.

What these statistics show is that users frequently choose poor and predictable pass-

words. While dictionary attacks are very efficient, we study here the case where the

attacker wants to minimize the number of trials until he gets access to the system, with

no pre-computation done. By using our formulas of computing CD(1
m2m · · · ), we obtain

in both of the above distributions that m = 1 is the optimal one. This means that the

attacker tries for each username the most probable password and in average, after couple

of hundred of users (for the two studies we obtain CD to be about 203 and about 110),

he will manage to access the system. We note that having m = 1 is very nice as for the

typical password guessing scenario, we need to have a small m to avoid complications of

blocking accounts and triggering an alarm that the system is under an attack.

2https://xato.net/passwords/more-top-worst-passwords/#.VNiORvnF-xW
3http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
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6.6 On the Phase Transition

Given the experience of the previous applications, we can see that for “regular” distri-

butions, the optimal m falls from m = n to the minimal m as the bias of the distri-

bution increases. We let n1 be such that p1 = p2 = · · · = pn1 
= pn1+1 and n2 be

such that pn1+1 = · · · = pn1+n2 
= pn1+n2+1. Due to Lemma 6.18, the magic value m

can only be n1, n1 + n2, or more. We study here when the curves of CD(1
n12n1 · · · ),

CD(1
n1+n22n1+n2 · · · ), and CU (1

n) = n+1
2 cross each other.

Lemma 6.20. We consider a composite distribution D1 = αU1 + βU2 + (1− α− β)D′,
where U1 and U2 are uniform of support n1 and n2. For U uniform, we have

CD(1
n12n1 · · · ) ≤ CD(1

n1+n22n1+n2 · · · ) ⇐⇒ α− β
n1

n2
≥ α

(
α+ β

1− n1/n2

2

)

CD(1
n12n1 · · · ) ≤ CU (1

n) ⇐⇒ n/n1 + 1

2
≥ 1

α

Note that for 2−H∞ ≥ 2
n , we have α

n1
≥ 2

n so the second property is satisfied.

As an example, for n1 = n2 = 1, the first condition becomes α − β ≥ α2 which is

the case of all the distribution we tried for password recovery. The second condition

becomes 2−H∞ ≥ 2
n+1 , which is also always satisfied.

For LPN, we have n1 = 1, n2 = k, α = (1− τ)k, and β = n2τ(1− τ)k−1. The first and

second conditions become

(1− τ)k ≤ 1− 2τ

1 + k−3
2 τ

and (1− τ)k ≥ 2

2k + 1

respectively. They are always satisfied unless τ is very close to 1
2 : by letting τ = 1

2 − ε

with ε → 0, the right-hand term of the first condition is asymptotically equivalent to
8ε
k+1 and the left-hand term tends towards 2−k. The balance is thus for τ ≈ 1

2 − k+1
8 2−k.

The second condition gives

τ ≤ 1−
(
2k + 1

2

)− 1
k

=
1

2
− ln 2

2k
− o

(
1

k

)

So, we can explain the phase transition in LPNk,τ as follows: if we make τ decrease

from 1
2 , for each fixed m, the complexity of all possible CD(1

m) smoothly decrease. The

function for m = n1 crosses the one of m = n1 + n2 before it crosses n+1
2 which is close

to the value of the one for m = n. So, the curve for m = n1 becomes interesting after

having beaten the curve for m = n1 + n2. This proves that we never have a magic m

equal to n1 + n2. Presumably, it is the case for all other curves as well. This explains

the abrupt fall from m = n to m = 1 which we observed on Fig. 6.2.
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Proof. We have

CD(1
n12n1 · · · ) = CD(1

n1)

PrD(1n1)
=

αn1+1
2 + (1− α)n1

α

and

CD(1
n1+n22n1+n2 · · · ) = CD(1

n1+n2)

PrD(1n1+n2)
=

αn1+1
2 + β

(
n1 +

n2+1
2

)
+ (1− α− β)(n1 + n2)

α+ β

so

CD(1
n1)

PrD(1n1)
≤ CD(1

n1+n2)

PrD(1n1+n2)
⇐⇒

αn1+1
2 + (1− α)n1

α
≤ αn1+1

2 + β
(
n1 +

n2+1
2

)
+ (1− α− β)(n1 + n2)

α+ β
⇐⇒

α− β
n1

n2
≥ α

(
α+ β

1− n1/n2

2

)
For the second property, we have

CD(1
n12n1 · · · ) ≤ CU (1

n) ⇐⇒ CD(1
n1)

PrD(1n1)
≤ CU (1

n)

⇐⇒ αn1+1
2 + (1− α)n1

α
≤ n+ 1

2

⇐⇒ n/n1 + 1

2
≥ 1

α

Our framework enables the analysis of different strategies to sequentialize algorithms

where the objective is to make one succeed as soon as possible.

When the algorithms have the same distribution and are unlimited in number, the

optimal strategy is of form 1m2m · · · for some magic m. As the distribution becomes

biased, we observe a phase transition from the regular single-algorithm run 1n (i.e., m =

n) to the single-step multiple algorithms 123 · · · (i.e., m = 1) which is very abrupt in the

application we considered: LPN and password recovery. Besides the 2 problems we have

studied here, we believe that our results can prove to be useful in other cryptographic

applications.
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Chapter7
Conclusion and Further Work

7.1 Conclusion

This thesis presents an algorithmic study of LPN. In Chapter 3, we gave an overview of

the existing LPN solving algorithms. By formally analysing them we introduced several

improvements. An LPN solving algorithm works in two phases: a reduction and a solving

phase. During the reduction phase, we reduce the size of the secret through several

reduction techniques. The solving phase recovers part of the secret through a solving

technique. We validated our heuristic results with practice in Chapter 4. This allowed

us to asses the security offered by each algorithm and to propose secure parameters to

be used in practice by the LPN based cryptographic primitives.

In Chapter 5, we further improved the complexity of an LPN solving algorithm by

saying how the reduction steps should be organized in order to maximize their use. We

designed an algorithm that receives at input an LPN instance and provides at output the

steps of the algorithm that solves the LPN instance and minimizes the time complexity.

This algorithm allows us to automatize an LPN solving algorithm. It also provides

flexibility as our algorithm could be further adapted and automatized if new reduction

techniques are introduced. The results we obtained bring improvements to the existing

work and to the best of our knowledge we have the best algorithm for solving LPN. A

similar analysis in optimizing the reduction steps is done for LWE [KF15].

In Chapter 6, we provided the STEP framework that allows us to improve the existing

results in the area of solving LPN for the case where the initial number of queries are

limited.

7.2 Future Work

Recall that for the BKW∗ algorithm, we made the assumption that the noise bits are

independent. This assumption is supported by the practical results that show that the
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performance of the algorithm is not affected by it. An interesting theoretical result in

this direction would be to use martingales to prove we do not need the independence in

order to apply the Chernoff bound or the Central Limit Theorem.

The performance of an LPN solving algorithm can be improved in several ways. First,

one could study whether code-reduce reductions applied in cascade can bring improvement

compared to code-reduce applied once. We recall that the distribution of the secret changes

in this case and we did not cover this scenario. Also, one could extend the pool of codes

used by this reduction. We already have indications that this can improve the existing

results. Using a larger code, instead of concatenating several small codes, can give us

a bigger, better bias. Thus, the solving method would require less number of queries.

This can decrease the number of initial queries and the overall performance of a solving

algorithm can be improved.

A new reduction technique can bring another improvement. The introduction of the

code-reduce brought some fresh air in the research area of LPN solving algorithms and there

is no result to indicate that we exhausted all our methods. The algorithm presented in

Chapter 5 can easily incorporate a new technique and show how this new tool can be

optimally used.

For the STEP game, there are several interesting questions that could be analysed.

Our game considers an adversary that runs his attack sequentially and wants to succeed

in just one attack. A more realistic scenario to consider is the one where the adversary

can run several attacks in parallel, e.g. i attacks. Given this, one could check what is

the best strategy and if the complexity of a parallel optimal strategy achieves to be i

times better than a sequential optimal strategy. Also, the goal of the adversary can be

to succeed in j out of n attacks. In this case should the attacker focus on only one attack

at once until he succeeds in j of them or should he apply a different strategy?

Our main results in the STEP game considers identical distributions. In the case

where we have several different distributions, how to compare them and say which one

is to be preferred? Is a uniform distribution with a small support better than a biased

distribution with a larger support where the first candidates have a high probability to

occur?

Final Words. To conclude, we want to emphasize on the importance of assessing the

hardness of problems on which we rely in cryptography. This proves to be crucial in

this moment when NIST is calling for candidates for post-quantum cryptography. While

problems like factorization and discrete logarithm have a long history of cryptanalysis,

some of the post-quantum hard problems lack this. A collaborative effort of the crypto-

graphy community is needed in order to have thorough study of the problems that will

ensure the security of our data in the future.
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[Sel08] Ali Aydin Selçuk. On probability of success in linear and differential crypt-

analysis. J. Cryptology, 21(1):131–147, 2008. Cited on page: 22.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–

1509, 1997. Cited on page: 2.

[SI14] Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIAC-

RYPT 2014 - 20th International Conference on the Theory and Applica-

tion of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,

December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in

Computer Science. Springer, 2014.

[SKS+13] Yu Sasaki, Wataru Komatsubara, Yasuhide Sakai, Lei Wang, Mitsugu

Iwamoto, Kazuo Sakiyama, and Kazuo Ohta. Meet-in-the-middle preimage

attacks revisited - new results on MD5 and HAVAL. In Pierangela Samarati,

editor, SECRYPT 2013 - Proceedings of the 10th International Conference

on Security and Cryptography, Reykjav́ık, Iceland, 29-31 July, 2013, pages

111–122. SciTePress, 2013. Cited on page: 35.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In Gérard D.

Cohen and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd

International Colloquium, Toulon, France, November 2-4, 1988, Proceedings,

volume 388 of Lecture Notes in Computer Science, pages 106–113. Springer,

1988. Cited on page: 14.

121



[SWS+12] Yu Sasaki, Lei Wang, Yasuhide Sakai, Kazuo Sakiyama, and Kazuo Ohta.

Three-subset meet-in-the-middle attack on reduced XTEA. In Aikaterini

Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptology - AFRIC-

ACRYPT 2012 - 5th International Conference on Cryptology in Africa,

Ifrance, Morocco, July 10-12, 2012. Proceedings, volume 7374 of Lecture

Notes in Computer Science, pages 138–154. Springer, 2012. Cited on page:

35.

[VSB+01] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S.

Yannoni, Mark H. Sherwood, and Isaac L. Chuang. Experimental realization

of shor’s quantum factoring algorithm using nuclear magnetic resonance.

Nature, pages 883–887, 2001. Cited on page: 2.

[WACS10] Matt Weir, Sudhir Aggarwal, Michael P. Collins, and Henry Stern. Test-

ing metrics for password creation policies by attacking large sets of revealed

passwords. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,

editors, Proceedings of the 17th ACM Conference on Computer and Com-

munications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010,

pages 162–175. ACM, 2010. Cited on page: 102.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, Ad-

vances in Cryptology - CRYPTO 2002, 22nd Annual International Crypto-

logy Conference, Santa Barbara, California, USA, August 18-22, 2002, Pro-

ceedings, volume 2442 of Lecture Notes in Computer Science, pages 288–303.

Springer, 2002. Cited on pages: 30 and 31.

[WSK+12] Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Sakiyama, and Kazuo

Ohta. Meet-in-the-middle (second) preimage attacks on two double-branch

hash functions RIPEMD and RIPEMD-128. IEICE Transactions, 95-

A(1):100–110, 2012. Cited on page: 35.

[XZL+12] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du. Quantum Factorization

of 143 on a Dipolar-Coupling Nuclear Magnetic Resonance System. Physical

Review Letters, 108(13):130501, March 2012. Cited on page: 2.

[ZJW16] Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster algorithms for solving

LPN. In Fischlin and Coron [FC16], pages 168–195. Cited on pages: xix, 13,

14, 29, 30, 31, 56, 61, 62, 64, 67, 76, 77, 140, 142, 143, 144, 147, 148, 150,

151, and 152.

122



AppendixA
Appendix

A.1 LF1 - Full Recovery of the Secret

We provide here an example of the LF1 algorithm, for the LPN512,0.125 instance, where

we recover the full secret. We provide the values of a, b, n and time complexity to show

that indeed the number of queries for the first iteration, dominates the number of queries

needed later on. Also, this shows that the time complexity of recovering the first block

dominates the total time complexity. For LPN512,0.125, we obtain the following values

(See Table A.1).

The way one can interpret this table is the following: LF1 recovers first 74 bits by

taking a = 7 and requiring 276.59 queries. The total complexity of this step, i.e. the

reduction, solving and updating operation, is of 288.57 bit operations. Next, LF1 solves

LPN438,0.125 and continues this process until it recovers the whole secret.

We can easily see that indeed the number of queries and the time complexity of the

first block dominate the other values.

A.2 Heuristic Approximation

In our work, we make the following assumption on the failure probability:

E

(
1− (1− ϕ(Z(s)))2

k′−1

)
≈ 1− (1− ϕ(E(Z(s))))2

k′−1 ,

where s is the secret, of k′ bits, we recover with the Walsh Hadamard Transform (WHT),

ϕ(x) = 1
2 +

1
2erf(

x√
2
) and erf is the Gauss error function, Z(s) = − δ′(s)√

2−δ′(s)2

√
n′. So, we

consider that the average probability of error is very close to the probability of error,

i.e. E(p(s)) ≈ p, where p = 1 − (1− ϕ(Z))2
k′−1. and Z = − δ′√

2−δ′2

√
n′. The values n′

and δ′ are computed as from our formulae for the biases.
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Table A.1: Full secret recovery for the instance LPN512,0.125

i a b log2 n log2 t

1 7 74 76.59 88.57

2 7 64 66.73 78.50

3 7 55 63.21 74.66

4 6 55 57.32 68.45

5 6 46 48.32 59.19

6 6 39 41.36 51.96

7 6 33 36.51 46.83

8 5 33 35.00 44.90

9 5 27 29.01 38.59

10 5 22 24.26 33.53

11 5 18 21.87 30.79

12 4 18 19.63 28.09

13 4 14 16.06 24.08

14 4 11 14.46 22.07

15 3 11 12.42 19.51

16 3 8 10.68 17.12

17 2 8 9.08 15.02

18 2 4 8.00 12.63

19 1 4 6.73 10.57

In order to validate this assumption, we compare our theory with what we observe

in practice. For this, we take several chains that contain a code reduction (as the

bias introduced by this operation depends on the secret s). The following chains were

analysed:

k=48, tau=0.005, theta=0.33:

(48,5.8)-sparse-(48,2.9)-xor(1)-(47,3.6)-xor(1)-(46,5.1)-xor(2)-(44,7.2)-code

-(1,7.2)-WHT

with the codes [44,1,r]

k=48, tau=0.05, theta=0.33:

(48,6.2100)-sparse-(48,4.70)-xor( 1)-(47,7.35)-xor( 1)-(46,12.69)-code

-(24,12.69)-xor(14)-(10,10.37)-WHT

with the codes [23,12,G][23,12,G]

124



k=64, tau=0.05, theta=0.28:

(64,11.30)-sparse-(64,11.3)-code-(10,11.3)-WHT

with the codes [5,1,r][5,1,r][5,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r

][7,1,r]

k=64, tau=0.1, theta=0.32:

(64,8.88)-sparse-(64,8.68)- xor( 4)-(60,12.35)-xor(11)-(49,12.70)- xor(11)

-(38,13.40)-code-(23,13.40)-WHT

with the codes [15,11,H][23,12,G]

k=64, tau=0.1, theta = 0.33:

(64,9.3)-sparse-(64,9.1)-xor(4)-(60,13.2)-xor(12)-(48,13.4)-xor(12)-(36,13.8)-

code-(1,13.8)-WHT

with the codes [36,1,r]

k=256, tau=0.2, theta=0.12:

(256,41.94)-sparse-(256,41.94)-xor(37)-(219,45.88)-xor(45)-(174,45.76)-xor(45)

-(129,45.52)-xor(44)-(85,46.04)-code-(45,46.04)-WHT

with the codes [2,1,r][7,4,H][7,4,H][23,12,G][23,12,G][23,12,G]

We obtain the following results:

LPN48,0.05 with the codes [44, 1, r]

• E(p(s)) = 0.4231

• 1− (1− ϕ(E(Z(s))))2
k′−1 = 0.3220

• 1− (1− ϕ(Z))2
k′−1 = 0.310893249450781

• E(δ(s)) = 0.0514

• δ = 0.0573009521884174

• E(Z(s)) = −0.461981714958069
• Z = −0.493326542156718

LPN48,0.05 with the codes [23, 12, G][23, 12, G]

• E(p(s)) = 0.4780

• 1− (1− ϕ(E(Z(s))))2
k′−1 = 0.0318

• 1− (1− ϕ(Z))2
k′−1 = 0.334275183642941

• E(δ(s)) = 0.1298

• δ = 0.129822931628186

• E(Z(s)) = −4.00049008907774
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• Z = −3.35442479599458

LPN64,0.05 with the codes [5, 1, r][5, 1, r][5, 1, r][7, 1, r][7, 1, r][7, 1, r][7, 1, r][7, 1, r][7, 1, r][7, 1, r]

• E(p(s)) = 0.8670

• 1− (1− ϕ(E(Z(s))))2
k′−1 = 0.074

• 1− (1− ϕ(Z))2
k′−1 = 0.282948298443234

• E(δ(s)) = 0.10654

• δ = 0.09580

• E(Z(s)) = −3.79016746911067

• Z = −3.40978448268245

LPN64,0.1 with the codes [15, 11,H][23, 12, G]

• E(p(s)) = 0.5353

• 1− (1− ϕ(E(Z(s))))2
k′−1 = 0.3274

• 1− (1− ϕ(Z))2
k′−1 = 0.335578150280515

• E(δ(s)) = 0.0724

• δ = 0.0724220723200000

• E(Z(s)) = −5.33685553225594

• Z = −5.33137227108397

LPN64,0.1 with the codes [36, 1, r]

• E(p(s)) = 0.4461

• 1− (1− ϕ(E(Z(s))))2
k′−1 = 0.3159

• 1− (1− ϕ(Z))2
k′−1 = 0.316793578967859

• E(δ(s)) = 0.0056

• δ = 0.00564445020331737

• E(Z(s)) = −0.478971239492193

• Z = −0.476684216638090
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LPN256,0.2 with the codes [2, 1, r][7, 4,H][7, 4,H][23, 12, G][23, 12, G][23, 12, G]

• E(p(s)) = 0.7609

• 1− (1− ϕ(E(Z(s))))2
k′−1 = 0.1209

• 1− (1− ϕ(Z))2
k′−1 = 0.120943626782345

• E(δ(s)) = 1.2933e − 6

• δ = 1.2933e − 6

• E(Z(s)) = −7.77878914531831
• Z = −7.77878914490038
From this, we conclude that the approximations E(δ(s)) ≈ δ and E(Z(s)) ≈ Z are

correct but that there is a small gap between E(p(s)) and p. The function x �→ 1 −
(1 − ϕ(x))2

k′−1 is convex in the region x ≤ 0 so we rather have E(p(s)) ≥ 1 − (1 −
ϕ(E(Z(s))))2

k′−1.

A.3 Covering Code with a Bias of 0

For a code-reduce we have that bc = E((−1)〈vi−gi,s〉).
For a repetition code [k, 1,D] we have D = k and R = �k−1

2 �. Thus, Hw(vi− gi) ≤ R.

When k is odd and the Hw(s) is even we have (−1)〈x,s〉 = (−1)〈x̄,s〉 for any x ∈ {0, 1}k
where x̄ is the complement of x.

Thus,

Evi

(
(−1)〈vi−gi,s〉

)
= Ex

(
(−1)〈x,s〉 | HW(x) ≤ R

)
= Ey

(
(−1)〈y,s〉 | HW(x) > R

)

The second equality holds because R < k
2 and because of the aforementioned property.

We also know that Ex((−1)〈x,s〉) = 0 for s 
= 0 as the bits of x are independent. We

deduce that for s 
= 0

Ex((−1)〈x,s〉) = Ex

(
(−1)〈x,s〉|HW(x) ≤ R

)
· Pr[HW(x) ≤ R]+

+ Ex

(
(−1)〈x,s〉|HW(x) > R

)
· Pr[HW(x) > R]

= Ex

(
(−1)〈x,s〉|HW(x) ≤ R

)
· (Pr[HW(x) ≤ R] + Pr[HW(x) > R])

= Ex

(
(−1)〈x,s〉|HW(x) ≤ R

)
= bc

= 0

Thus, bc = 0 for a repetition code [k, 1,D] where k is odd and the Hamming weight

of s is even and s 
= 0.
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A.4 Random Codes

We present below a list of random codes and their bc. The way we generate these codes

is the following: for a [k, k′] code, we generate, step by step, random vectors of size k

until we have k′ independent ones. This will form the generator matrix G. Once we

generate all the 2k
′
codewords, we use our formula to compute the bc. After many trials,

we keep the code with the largest value for bc.

Random Codes for τ = 0.05:

[4, 2] bc = 0.925000000000000

[7, 2] bc = 0.820437500000001

[9, 2] bc = 0.755670312499999

[10, 2] bc = 0.717886796875003

[11, 2] bc = 0.689080273437506

[12, 2] bc = 0.658278378906265

[13, 2] bc = 0.627343367480487

[14, 2] bc = 0.605104670898428

[15, 2] bc = 0.574849437353450

[16, 2] bc = 0.550932480072046

[17, 2] bc = 0.522348102187504

[18, 2] bc = 0.503960971625559

[19, 2] bc = 0.479500628284949

[5, 3] bc = 0.925000000000000

[8, 3] bc = 0.830843750000002

[9, 3] bc = 0.795250000000000

[10, 3] bc = 0.764220312499999

[11, 3] bc = 0.734533281250005

[12, 3] bc = 0.707727851562494

[13, 3] bc = 0.677121250000042

[14, 3] bc = 0.644854535644540

[15, 3] bc = 0.622457954101448

[16, 3] bc = 0.592374557714663

[17, 3] bc = 0.570423946075392

[18, 3] bc = 0.542640210536539

[19, 3] bc = 0.523425509870706

[10, 4] bc = 0.799187499999992

[12, 4] bc = 0.747566406249973

[13, 4] bc = 0.717848281250054

[14, 4] bc = 0.686005234375007

[15, 4] bc = 0.659313910156184

[16, 4] bc = 0.635095716308526

[17, 4] bc = 0.609055215502953

[18, 4] bc = 0.583034990081217

[19, 4] bc = 0.560423084937082

[8, 5] bc = 0.912500000000003

[11, 5] bc = 0.810718749999989

[12, 5] bc = 0.780814062499967

[13, 5] bc = 0.756492578125057

[14, 5] bc = 0.723323867187460

[15, 5] bc = 0.696788447265571

[16, 5] bc = 0.670566863281211

[17, 5] bc = 0.642065001220673

[18, 5] bc = 0.621900535155624

[19, 5] bc = 0.596215895090632

[8, 6] bc = 0.925000000000003

[9, 6] bc = 0.912499999999993

[12, 6] bc = 0.813390624999974

[13, 6] bc = 0.785820312500064

[15, 6] bc = 0.734159374999888

[16, 6] bc = 0.708464716796699

[17, 6] bc = 0.682572705077685

[18, 6] bc = 0.656482291502392

[19, 6] bc = 0.633382513669716

[9, 7] bc = 0.924999999999994

[10, 7] bc = 0.901249999999986

[14, 7] bc = 0.789750781249873

[16, 7] bc = 0.741090429687176

[17, 7] bc = 0.714251874999825

[18, 7] bc = 0.687121879880629

[19, 7] bc = 0.664058937986979

[10, 8] bc = 0.924999999999989

[11, 8] bc = 0.912500000000028

[15, 8] bc = 0.797351562500136

[17, 8] bc = 0.746043945312908

[18, 8] bc = 0.720697158201192

[19, 8] bc = 0.696926562499299

[11, 9] bc = 0.925000000000025

[12, 9] bc = 0.912500000000054

[16, 9] bc = 0.803749999999664

[18, 9] bc = 0.754477929686187

Random Codes for τ = 0.1:

[4, 2] bc = 0.850000000000000

[7, 2] bc = 0.650250000000000

[9, 2] bc = 0.550462500000000

[10, 2] bc = 0.501896250000001

[11, 2] bc = 0.451706624999987

[12, 2] bc = 0.414441562499999

[13, 2] bc = 0.384841406249986

[14, 2] bc = 0.347599265625008

[15, 2] bc = 0.315965939062601

[16, 2] bc = 0.292209785156346

[17, 2] bc = 0.255932410640333

[18, 2] bc = 0.235804919976357

[19, 2] bc = 0.217948973378862

[5, 3] bc = 0.850000000000000

[8, 3] bc = 0.662249999999999

[9, 3] bc = 0.620124999999997

[10, 3] bc = 0.570712499999995

[11, 3] bc = 0.523481249999980

[12, 3] bc = 0.483963124999979

[13, 3] bc = 0.439562812499995

[14, 3] bc = 0.406910531250004

[15, 3] bc = 0.374183078125198

[16, 3] bc = 0.338270570312456

[17, 3] bc = 0.305143173281109

[18, 3] bc = 0.282576971953005

[19, 3] bc = 0.257462926757663

[10, 4] bc = 0.620124999999991

[12, 4] bc = 0.533606249999987

[13, 4] bc = 0.498295625000009

[14, 4] bc = 0.456234062499976

[15, 4] bc = 0.423086156250238

[16, 4] bc = 0.388249140624795

[17, 4] bc = 0.357040026562527

[18, 4] bc = 0.326219003906170

[19, 4] bc = 0.298997873515392

[8, 5] bc = 0.805000000000002

[11, 5] bc = 0.647124999999997

[12, 5] bc = 0.602012500000006

[13, 5] bc = 0.557631250000012

[14, 5] bc = 0.514058124999978

[15, 5] bc = 0.477960312500255

[16, 5] bc = 0.432172781249713

[17, 5] bc = 0.404812453125008

[18, 5] bc = 0.370472807812691

[19, 5] bc = 0.342473907030773

[8, 6] bc = 0.850000000000003

[9, 6] bc = 0.785000000000002

[12, 6] bc = 0.657625000000007

[13, 6] bc = 0.604262500000019

[15, 6] bc = 0.523140625000133

[16, 6] bc = 0.483241562499645

[17, 6] bc = 0.449978906249989

[18, 6] bc = 0.415639015625284

[19, 6] bc = 0.385346414062386

[9, 7] bc = 0.850000000000006

[10, 7] bc = 0.804999999999990

[14, 7] bc = 0.610312500000011

[16, 7] bc = 0.535203124999684

[17, 7] bc = 0.492602812500183

[18, 7] bc = 0.459242031250249
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[19, 7] bc = 0.427382828126207

[10, 8] bc = 0.849999999999990

[11, 8] bc = 0.824999999999974

[15, 8] bc = 0.624562499999774

[17, 8] bc = 0.543265625000525

[18, 8] bc = 0.505529062500634

[19, 8] bc = 0.466630156251362

[11, 9] bc = 0.849999999999978

[12, 9] bc = 0.825000000000046

[16, 9] bc = 0.625812499999804

Random Codes for τ = 0.125:

[4, 2] bc = 0.812500000000000

[7, 2] bc = 0.590820312500000

[9, 2] bc = 0.469238281250000

[10, 2] bc = 0.410583496093750

[11, 2] bc = 0.363045692443848

[12, 2] bc = 0.331746578216553

[13, 2] bc = 0.295313835144043

[14, 2] bc = 0.262624084949493

[15, 2] bc = 0.229796074330807

[16, 2] bc = 0.199777818284929

[17, 2] bc = 0.178411910077557

[18, 2] bc = 0.161525560077280

[19, 2] bc = 0.142899490048876

[5, 3] bc = 0.812500000000000

[8, 3] bc = 0.596679687500000

[9, 3] bc = 0.538574218750000

[10, 3] bc = 0.484985351562500

[11, 3] bc = 0.438781738281250

[12, 3] bc = 0.395263671875000

[13, 3] bc = 0.344362258911133

[14, 3] bc = 0.318330764770508

[15, 3] bc = 0.280164837837219

[16, 3] bc = 0.250766009092331

[17, 3] bc = 0.222185984253883

[18, 3] bc = 0.201188247650862

[19, 3] bc = 0.173051953781396

[10, 4] bc = 0.556884765625000

[12, 4] bc = 0.459289550781250

[13, 4] bc = 0.416761398315430

[14, 4] bc = 0.364337921142578

[15, 4] bc = 0.324589252471924

[16, 4] bc = 0.295842528343201

[17, 4] bc = 0.266516566276550

[18, 4] bc = 0.238161936402321

[19, 4] bc = 0.215231126174331

[8, 5] bc = 0.734375000000000

[11, 5] bc = 0.568603515625000

[12, 5] bc = 0.515930175781250

[13, 5] bc = 0.467575073242188

[14, 5] bc = 0.427307128906250

[15, 5] bc = 0.384399414062500

[16, 5] bc = 0.345722198486328

[17, 5] bc = 0.308802604675293

[18, 5] bc = 0.278767108917236

[19, 5] bc = 0.249812759459019

[8, 6] bc = 0.812500000000000

[9, 6] bc = 0.757812500000000

[12, 6] bc = 0.584716796875000

[13, 6] bc = 0.533325195312500

[15, 6] bc = 0.436737060546875

[16, 6] bc = 0.391594886779785

[17, 6] bc = 0.354474067687988

[18, 6] bc = 0.323782920837402

[19, 6] bc = 0.291754990816116

[9, 7] bc = 0.812500000000000

[10, 7] bc = 0.757812500000000

[14, 7] bc = 0.539184570312500

[16, 7] bc = 0.451797485351562

[17, 7] bc = 0.404412269592285

[18, 7] bc = 0.368431568145752

[19, 7] bc = 0.336303114891052

[10, 8] bc = 0.812500000000000

[11, 8] bc = 0.781250000000000

[15, 8] bc = 0.542846679687500

[17, 8] bc = 0.452558517456055

[18, 8] bc = 0.415075302124023

[19, 8] bc = 0.374835968017578

[11, 9] bc = 0.812500000000000

[12, 9] bc = 0.757812500000000

[16, 9] bc = 0.547607421875000

[18, 9] bc = 0.462966918945312

Random Codes for τ = 0.2:

[4, 2] bc = 0.700000000000000

[7, 2] bc = 0.405500000000000

[9, 2] bc = 0.272749999999999

[10, 2] bc = 0.221980000000003

[11, 2] bc = 0.177584000000003

[12, 2] bc = 0.154187500000002

[13, 2] bc = 0.126058437500001

[14, 2] bc = 0.102578124999976

[15, 2] bc = 0.0806773999999974

[16, 2] bc = 0.0672851875000390

[17, 2] bc = 0.0541784750000697

[18, 2] bc = 0.0430625200001377

[19, 2] bc = 0.0349497860001292

[5, 3] bc = 0.700000000000000

[8, 3] bc = 0.405499999999999

[9, 3] bc = 0.343000000000001

[10, 3] bc = 0.291275000000004

[11, 3] bc = 0.240512500000004

[12, 3] bc = 0.197742500000001

[13, 3] bc = 0.156951999999985

[14, 3] bc = 0.137524624999980

[15, 3] bc = 0.111005200000025

[16, 3] bc = 0.0928898000000887

[17, 3] bc = 0.0767771256251488

[18, 3] bc = 0.0609095375002112

[19, 3] bc = 0.0505532889999707

[10, 4] bc = 0.364750000000007

[12, 4] bc = 0.258325000000002

[13, 4] bc = 0.213679999999971

[14, 4] bc = 0.176458750000002

[15, 4] bc = 0.147204875000059

[16, 4] bc = 0.121787406250114

[17, 4] bc = 0.102391512500167

[18, 4] bc = 0.0842524562500867

[19, 4] bc = 0.0690329674999138

[8, 5] bc = 0.589999999999999

[11, 5] bc = 0.369250000000010

[12, 5] bc = 0.318649999999986

[13, 5] bc = 0.268149999999959

[14, 5] bc = 0.225544999999992

[15, 5] bc = 0.188910625000082

[16, 5] bc = 0.157532562500143

[17, 5] bc = 0.130860062500169

[18, 5] bc = 0.109656978125099

[19, 5] bc = 0.0912561109374092

[8, 6] bc = 0.699999999999998

[9, 6] bc = 0.650000000000002

[12, 6] bc = 0.379749999999974

[13, 6] bc = 0.328624999999967

[15, 6] bc = 0.235025000000079

[16, 6] bc = 0.197588125000182

[17, 6] bc = 0.169437500000210

[18, 6] bc = 0.139357843750180

[19, 6] bc = 0.119218062500138

[9, 7] bc = 0.700000000000003

[10, 7] bc = 0.620000000000010

[14, 7] bc = 0.343999999999986

[16, 7] bc = 0.245225000000221

[17, 7] bc = 0.207013750000245

[18, 7] bc = 0.175233125000239

[19, 7] bc = 0.151714656250229

[10, 8] bc = 0.700000000000010

[11, 8] bc = 0.619999999999996

[15, 8] bc = 0.356000000000120

[17, 8] bc = 0.255875000000282

[18, 8] bc = 0.214251250000277

[19, 8] bc = 0.185132187500286

[11, 9] bc = 0.699999999999990

[12, 9] bc = 0.649999999999956

[16, 9] bc = 0.366875000000244
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Random Codes for τ = 0.25:

[4, 2] bc = 0.625000000000000

[7, 2] bc = 0.292968750000000

[9, 2] bc = 0.184570312500000

[10, 2] bc = 0.143066406250000

[11, 2] bc = 0.107299804687500

[12, 2] bc = 0.0848999023437500

[13, 2] bc = 0.0620727539062500

[14, 2] bc = 0.0496444702148438

[15, 2] bc = 0.0366325378417969

[16, 2] bc = 0.0274744033813477

[17, 2] bc = 0.0209437608718872

[18, 2] bc = 0.0164231657981873

[19, 2] bc = 0.0120856314897537

[5, 3] bc = 0.625000000000000

[8, 3] bc = 0.320312500000000

[9, 3] bc = 0.250000000000000

[10, 3] bc = 0.196289062500000

[11, 3] bc = 0.150146484375000

[12, 3] bc = 0.121704101562500

[13, 3] bc = 0.0912780761718750

[14, 3] bc = 0.0709533691406250

[15, 3] bc = 0.0566749572753906

[16, 3] bc = 0.0420742034912109

[17, 3] bc = 0.0335798263549805

[18, 3] bc = 0.0254254341125488

[19, 3] bc = 0.0197929143905640

[10, 4] bc = 0.263671875000000

[12, 4] bc = 0.168457031250000

[13, 4] bc = 0.129882812500000

[14, 4] bc = 0.101013183593750

[15, 4] bc = 0.0771789550781250

[16, 4] bc = 0.0606994628906250

[17, 4] bc = 0.0467262268066406

[18, 4] bc = 0.0371999740600586

[19, 4] bc = 0.0295500755310059

[8, 5] bc = 0.531250000000000

[11, 5] bc = 0.275390625000000

[12, 5] bc = 0.218750000000000

[13, 5] bc = 0.170166015625000

[14, 5] bc = 0.138671875000000

[15, 5] bc = 0.111480712890625

[16, 5] bc = 0.0867004394531250

[17, 5] bc = 0.0682830810546875

[18, 5] bc = 0.0538368225097656

[19, 5] bc = 0.0424060821533203

[8, 6] bc = 0.625000000000000

[9, 6] bc = 0.500000000000000

[12, 6] bc = 0.292968750000000

[13, 6] bc = 0.230468750000000

[15, 6] bc = 0.147705078125000

[16, 6] bc = 0.118072509765625

[17, 6] bc = 0.0952911376953125

[18, 6] bc = 0.0742111206054688

[19, 6] bc = 0.0585670471191406

[9, 7] bc = 0.625000000000000

[10, 7] bc = 0.531250000000000

[14, 7] bc = 0.240234375000000

[16, 7] bc = 0.154541015625000

[17, 7] bc = 0.119049072265625

[18, 7] bc = 0.0965576171875000

[19, 7] bc = 0.0788497924804688

[10, 8] bc = 0.625000000000000

[11, 8] bc = 0.562500000000000

[15, 8] bc = 0.251953125000000

[17, 8] bc = 0.162719726562500

[18, 8] bc = 0.134338378906250

[19, 8] bc = 0.106536865234375

[11, 9] bc = 0.625000000000000

[12, 9] bc = 0.531250000000000

[16, 9] bc = 0.255859375000000

[18, 9] bc = 0.171264648437500

The random codes used for LPN512,0.125 have the following generator matrices:

[18,6]

G is:

(0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1)

(0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0)

(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0)

(1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0)

(0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)

(0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1)

[19,7]

G is:

(0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0)

(1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0)

(0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)

(0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0)

(0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1)

(0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1)

(0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1)

[19,6]

G is:

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1)

(1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1)
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(1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)

(1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0)

(1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0)

A.5 Solving LPN without guess-secret

We present below the chains without guess-secret . The codes used in the code-reduce cor-

respond to the perfect and quasi-perfect codes presented in the paper, to which we

add random codes that we generated. The list of random codes can be found in this

document as well.

% below, lsumc and lmaxc are the logarithmic total and max- complexities

% what follows uses precision .1, without guess

k=32 tau=0.050 theta=0.33 precision=0.10 lmaxc=11.26 lsumc=13.89:

(32,11.2)-drop(1)-(31,10.2)-drop(4)-(27,6.2)-xor(5)-(22,6.4)-xor(5)-(17,6.8)-

xor(6)-(11,6.6)-xor(5)-(6,7.2)-xor(5)-(1,8.4)-WHT

k=32 tau=0.100 theta=0.33 precision=0.10 lmaxc=12.70 lsumc=15.04:

(32,12.7)-drop(1)-(31,11.7)-drop(4)-(27,7.7)-xor(7)-(20,7.4)-xor(6)-(14,7.8)-

xor(6)-(8,8.6)-xor(7)-(1,9.2)-WHT

k=32 tau=0.125 theta=0.33 precision=0.10 lmaxc=13.52 lsumc=15.66:

(32,13.3)-drop(1)-(31,12.3)-drop(4)-(27,8.3)-xor(7)-(20,8.6)-xor(7)-(13,9.2)-

xor(8)-(5,9.4)-drop(4)-(1,5.4)-WHT

k=32 tau=0.200 theta=0.33 precision=0.10 lmaxc=14.80 lsumc=17.01:

(32,14.8)-drop(1)-(31,13.8)-drop(4)-(27,9.8)-xor(9)-(18,9.6)-xor(8)-(10,10.2)

-xor(8)-(2,11.4)-drop(1)-(1,10.4)-WHT

k=32 tau=0.250 theta=0.33 precision=0.10 lmaxc=16.30 lsumc=18.42:

(32,16.3)-drop(1)-(31,15.3)-drop(4)-(27,11.3)-xor(11)-(16,10.6)-xor(8)

-(8,12.2)-WHT

k=48 tau=0.050 theta=0.33 precision=0.10 lmaxc=12.94 lsumc=14.52:

(48,5.8)-sparse-(48,2.9)-xor(1)-(47,3.6)-xor(1)-(46,5.1)-xor(2)-(44,7.2)-code

([44,1,r])-(1,7.2)-WHT

k=48 tau=0.100 theta=0.33 precision=0.10 lmaxc=16.43 lsumc=18.58:

(48,16)-drop(1)-(47,15)-drop(4)-(43,11)-xor(10)-(33,11)-xor(10)-(23,11)-xor

(10)-(13,11)-xor(9)-(4,12)-drop(3)-(1,9)-WHT

k=48 tau=0.125 theta=0.33 precision=0.10 lmaxc=17.00 lsumc=19.29:

(48,16.5)-drop(1)-(47,15.5)-drop(4)-(43,11.5)-xor(11)-(32,11)-xor(9)-(23,12)-

xor(11)-(12,12)-xor(10)-(2,13)-drop(1)-(1,12)-WHT

k=48 tau=0.200 theta=0.33 precision=0.10 lmaxc=19.23 lsumc=21.25:

(48,18.8)-drop(1)-(47,17.8)-drop(4)-(43,13.8)-xor(13)-(30,13.6)-xor(12)

-(18,14.2)-xor(13)-(5,14.4)-drop(4)-(1,10.4)-WHT

k=48 tau=0.250 theta=0.33 precision=0.10 lmaxc=20.43 lsumc=22.34:

(48,20)-drop(1)-(47,19)-drop(4)-(43,15)-xor(14)-(29,15)-xor(14)-(15,15)-drop

(2)-(13,13)-WHT
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k=64 tau=0.050 theta=0.33 precision=0.10 lmaxc=14.43 lsumc=16.04:

(64,6.3)-sparse-(64,3.9)-xor(1)-(63,5.7)-xor(2)-(61,8.4)-code([61,1,r])

-(1,8.4)-WHT

k=64 tau=0.100 theta=0.33 precision=0.10 lmaxc=19.38 lsumc=21.58:

(64,9.3)-sparse-(64,9.1)-xor(4)-(60,13.2)-xor(12)-(48,13.4)-xor(12)-(36,13.8)

-code([36,1,r])-(1,13.8)-WHT

k=64 tau=0.125 theta=0.33 precision=0.10 lmaxc=20.50 lsumc=22.94:

(64,20.5)-drop(1)-(63,19.5)-drop(5)-(58,14.5)-xor(14)-(44,14)-xor(12)-(32,15)

-xor(14)-(18,15)-xor(13)-(5,16)-drop(4)-(1,12)-WHT

k=64 tau=0.200 theta=0.33 precision=0.10 lmaxc=22.00 lsumc=24.42:

(64,22)-drop(1)-(63,21)-drop(5)-(58,16)-xor(15)-(43,16)-xor(15)-(28,16)-xor

(14)-(14,17)-WHT

k=64 tau=0.250 theta=0.33 precision=0.10 lmaxc=24.58 lsumc=26.86:

(64,24.5)-drop(1)-(63,23.5)-drop(5)-(58,18.5)-xor(18)-(40,18)-xor(16)-(24,19)

-xor(17)-(7,20)-WHT

k=100 tau=0.050 theta=0.33 precision=0.10 lmaxc=18.46 lsumc=20.47:

(100,7.9)-sparse-(100,7.1)-xor(2)-(98,11.2)-xor(10)-(88,11.4)-xor(10)

-(78,11.8)-code([78,1,r])-(1,11.8)-WHT

k=100 tau=0.100 theta=0.33 precision=0.10 lmaxc=25.39 lsumc=27.61:

(100,14.9)-sparse-(100,14.9)-xor(11)-(89,17.8)-xor(16)-(73,18.6)-xor(17)

-(56,19.2)-code([18,5,rnd150927][19,6,rnd150927][19,6,rnd150927])

-(17,19.2)-WHT

k=100 tau=0.125 theta=0.33 precision=0.10 lmaxc=26.30 lsumc=28.91:

(100,26.3)-drop(1)-(99,25.3)-drop(6)-(93,19.3)-xor(18)-(75,19.6)-xor(19)

-(56,19.2)-xor(17)-(39,20.4)-xor(19)-(20,20.8)-drop(2)-(18,18.8)-WHT

k=100 tau=0.200 theta=0.33 precision=0.10 lmaxc=29.75 lsumc=32.06:

(100,29.1)-drop(1)-(99,28.1)-drop(5)-(94,23.1)-xor(22)-(72,23.2)-xor(22)

-(50,23.4)-xor(22)-(28,23.8)-drop(6)-(22,17.8)-WHT

k=100 tau=0.250 theta=0.33 precision=0.10 lmaxc=30.75 lsumc=32.94:

(100,30.1)-drop(1)-(99,29.1)-drop(5)-(94,24.1)-xor(23)-(71,24.2)-xor(23)

-(48,24.4)-xor(23)-(25,24.8)-drop(3)-(22,21.8)-WHT

k=256 tau=0.050 theta=0.33 precision=0.10 lmaxc=34.45 lsumc=36.75:

(256,21.8)-sparse-(256,21.8)-xor(17)-(239,25.6)-xor(24)-(215,26.2)-xor(25)

-(190,26.4)-xor(25)-(165,26.8)-code([165,1,r])-(1,26.8)-WHT

k=256 tau=0.100 theta=0.33 precision=0.10 lmaxc=44.22 lsumc=46.75:

(256,32.3)-sparse-(256,32.3)-xor(28)-(228,35.6)-xor(34)-(194,36.2)-xor(35)

-(159,36.4)-xor(35)-(124,36.8)-code([11,4,S][18,5,rnd150927][19,5,

rnd150927][19,5,rnd150927][19,5,rnd150927][19,5,rnd150927][19,5,rnd150927

])-(34,36.8)-WHT

k=256 tau=0.125 theta=0.33 precision=0.10 lmaxc=47.35 lsumc=49.90:

(256,35.6)-sparse-(256,35.6)-xor(31)-(225,39.2)-xor(38)-(187,39.4)-xor(38)

-(149,39.8)-xor(39)-(110,39.6)-code([15,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,7,rnd150926][19,7,rnd150926])-(37,39.6)-WHT

k=256 tau=0.200 theta=0.33 precision=0.10 lmaxc=53.82 lsumc=56.31:
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(256,42.4)-sparse-(256,42.4)-xor(38)-(218,45.8)-xor(45)-(173,45.6)-xor(44)

-(129,46.2)-xor(45)-(84,46.4)-code([15,7,2BCH][25,15,W][25,15,W][19,7,

rnd150927])-(44,46.4)-drop(1)-(43,45.4)-WHT

k=256 tau=0.250 theta=0.33 precision=0.10 lmaxc=56.88 lsumc=59.47:

(256,56.7)-drop(1)-(255,55.7)-drop(7)-(248,48.7)-xor(48)-(200,48.4)-xor(47)

-(153,48.8)-xor(47)-(106,49.6)-xor(59)-(47,39.2)-WHT

k=512 tau=0.050 theta=0.33 precision=0.10 lmaxc=55.09 lsumc=57.77:

(512,41.3)-sparse-(512,41.3)-xor(36)-(476,45.6)-xor(44)-(432,46.2)-xor(46)

-(386,45.4)-xor(44)-(342,45.8)-xor(44)-(298,46.6)-code([9,1,r][9,1,r

][11,1,r][11,1,r][11,1,r][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927

][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,

rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927

][19,3,rnd150927])-(44,46.6)-WHT

k=512 tau=0.100 theta=0.33 precision=0.10 lmaxc=70.92 lsumc=73.68:

(512,57.4)-sparse-(512,57.4)-xor(52)-(460,61.8)-xor(61)-(399,61.6)-xor(60)

-(339,62.2)-xor(61)-(278,62.4)-xor(61)-(217,62.8)-code([8,2,iGop][19,5,

rnd150927][19,5,rnd150927][19,5,rnd150927][19,6,rnd150927][19,6,rnd150927

][19,5,rnd150927][19,5,rnd150927][19,5,rnd150927][19,5,rnd150927][19,5,

rnd150927][19,5,rnd150927])-(59,62.8)-WHT

k=512 tau=0.125 theta=0.33 precision=0.10 lmaxc=76.22 lsumc=78.85:

(512,63.3)-sparse-(512,63.3)-xor(59)-(453,66.6)-xor(65)-(388,67.2)-xor(66)

-(322,67.4)-xor(66)-(256,67.8)-xor(67)-(189,67.6)-code([18,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926

])-(64,67.6)-WHT

k=512 tau=0.200 theta=0.33 precision=0.10 lmaxc=86.38 lsumc=89.04:

(512,73.6)-sparse-(512,73.6)-xor(69)-(443,77.2)-xor(76)-(367,77.4)-xor(76)

-(291,77.8)-xor(77)-(214,77.6)-xor(76)-(138,78.2)-code([23,12,G][25,15,W

][25,15,W][25,15,W][25,15,W][15,4,rnd150927])-(76,78.2)-drop(2)-(74,76.2)-

WHT

k=512 tau=0.250 theta=0.33 precision=0.10 lmaxc=91.97 lsumc=94.66:

(512,79.3)-sparse-(512,79.3)-xor(75)-(437,82.6)-xor(81)-(356,83.2)-xor(82)

-(274,83.4)-xor(82)-(192,83.8)-xor(83)-(109,83.6)-code([31,26,H][16,15,

Chop][31,20,W][31,20,W])-(81,83.6)-drop(1)-(80,82.6)-WHT

k=768 tau=0.050 theta=0.33 precision=0.10 lmaxc=74.03 lsumc=76.63:

(768,60)-sparse-(768,60)-xor(55)-(713,64)-xor(63)-(650,64)-xor(63)-(587,64)-

xor(63)-(524,64)-xor(62)-(462,65)-code([11,1,r][11,1,r][19,3,rnd150927

][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,

rnd150927][19,3,rnd150927][13,1,r][13,1,r][13,1,r][13,1,r][13,1,r][13,1,r

][13,1,r][13,1,r][13,1,r][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927

][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,rnd150927][19,3,

rnd150927][19,3,rnd150927][19,3,rnd150927])-(62,65)-WHT

k=768 tau=0.100 theta=0.33 precision=0.10 lmaxc=96.04 lsumc=98.97:

(768,82.1)-sparse-(768,82.1)-xor(77)-(691,86.2)-xor(85)-(606,86.4)-xor(85)

-(521,86.8)-xor(86)-(435,86.6)-xor(85)-(350,87.2)-xor(86)-(264,87.4)-code
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([17,5,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,

rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927

][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,

rnd150927])-(83,87.4)-WHT

k=768 tau=0.125 theta=0.33 precision=0.10 lmaxc=103.01 lsumc=105.89:

(768,89.1)-sparse-(768,89.1)-xor(84)-(684,93.2)-xor(92)-(592,93.4)-xor(92)

-(500,93.8)-xor(93)-(407,93.6)-xor(92)-(315,94.2)-xor(93)-(222,94.4)-code

([25,15,W][25,15,W][25,15,W][14,3,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926])-(90,94.4)-WHT

k=768 tau=0.200 theta=0.33 precision=0.10 lmaxc=118.18 lsumc=121.04:

(768,104.7)-sparse-(768,104.7)-xor(100)-(668,108.4)-xor(107)-(561,108.8)-xor

(108)-(453,108.6)-xor(107)-(346,109.2)-xor(108)-(238,109.4)-xor(108)

-(130,109.8)-code([63,57,H][16,15,Chop][20,13,W][31,20,W])-(105,109.8)-WHT

k=768 tau=0.250 theta=0.33 precision=0.10 lmaxc=124.63 lsumc=127.35:

(768,111.3)-sparse-(768,111.3)-xor(107)-(661,114.6)-xor(113)-(548,115.2)-xor

(114)-(434,115.4)-xor(114)-(320,115.8)-xor(115)-(205,115.6)-code([5,1,r

][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W])

-(121,115.6)-drop(9)-(112,106.6)-WHT

A.6 Solving LPN with guess-secret

We present below the chains that use guess-secret .

% below, lsumc and lmaxc are the logarithmic total and max- complexities

% lrep is the logarithmic number of repetitions applied to WHT

% what follows uses precision .1, with guess

k=32 tau=0.050 theta=0.33 precision=0.10 lmaxc=10.90 lsumc=11.85 lrep=8.57:

(32,5.1)-sparse-(32,1.2)-guess(13,3)-(19,1.2)-code([19,1,r])-(1,1.2)-WHT

k=32 tau=0.100 theta=0.33 precision=0.10 lmaxc=11.65 lsumc=12.41 lrep=8.87:

(32,5.1)-sparse-(32,1.2)-guess(23,2)-(9,1.2)-code([9,1,r])-(1,1.2)-WHT

k=32 tau=0.125 theta=0.33 precision=0.10 lmaxc=12.40 lsumc=13.30 lrep=9.96:

(32,5.1)-sparse-(32,1.2)-guess(26,2)-(6,1.2)-code([6,1,r])-(1,1.2)-WHT

k=32 tau=0.200 theta=0.33 precision=0.10 lmaxc=14.80 lsumc=17.01 lrep=0.00:

(32,14.8)-drop(1)-(31,13.8)-drop(4)-(27,9.8)-xor(9)-(18,9.6)-xor(8)-(10,10.2)

-xor(8)-(2,11.4)-drop(1)-(1,10.4)-WHT

k=32 tau=0.250 theta=0.33 precision=0.10 lmaxc=16.30 lsumc=18.42 lrep=0.00:

(32,16.3)-drop(1)-(31,15.3)-drop(4)-(27,11.3)-xor(11)-(16,10.6)-xor(8)

-(8,12.2)-WHT

k=48 tau=0.050 theta=0.33 precision=0.10 lmaxc=12.52 lsumc=13.01 lrep=8.27:

(48,5.7)-sparse-(48,2)-guess(23,2)-(25,2)-code([25,1,r])-(1,2)-WHT

k=48 tau=0.100 theta=0.33 precision=0.10 lmaxc=14.25 lsumc=15.23 lrep=11.35:

(48,5.7)-sparse-(48,2)-guess(37,2)-(11,2)-code([11,1,r])-(1,2)-WHT
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k=48 tau=0.125 theta=0.33 precision=0.10 lmaxc=15.49 lsumc=16.49 lrep=12.68:

(48,5.7)-sparse-(48,2)-guess(39,2)-(9,2)-code([9,1,r])-(1,2)-WHT

k=48 tau=0.200 theta=0.33 precision=0.10 lmaxc=19.23 lsumc=21.25 lrep=0.00:

(48,18.8)-drop(1)-(47,17.8)-drop(4)-(43,13.8)-xor(13)-(30,13.6)-xor(12)

-(18,14.2)-xor(13)-(5,14.4)-drop(4)-(1,10.4)-WHT

k=48 tau=0.250 theta=0.33 precision=0.10 lmaxc=20.43 lsumc=22.34 lrep=0.00:

(48,20)-drop(1)-(47,19)-drop(4)-(43,15)-xor(14)-(29,15)-xor(14)-(15,15)-drop

(2)-(13,13)-WHT

k=64 tau=0.050 theta=0.33 precision=0.10 lmaxc=13.74 lsumc=14.44 lrep=10.04:

(64,6.1)-sparse-(64,2.2)-guess(38,2)-(26,2.2)-code([26,1,r])-(1,2.2)-WHT

k=64 tau=0.100 theta=0.33 precision=0.10 lmaxc=16.76 lsumc=17.71 lrep=13.80:

(64,6.1)-sparse-(64,2.2)-guess(52,2)-(12,2.2)-code([12,1,r])-(1,2.2)-WHT

k=64 tau=0.125 theta=0.33 precision=0.10 lmaxc=18.61 lsumc=20.57 lrep=12.07:

(64,6.8)-sparse-(64,5.6)-xor(1)-(63,9.2)-xor(8)-(55,9.4)-guess(36,2)-(19,9.4)

-code([19,4,rnd150926])-(4,9.4)-drop(3)-(1,6.4)-WHT

k=64 tau=0.200 theta=0.33 precision=0.10 lmaxc=22.00 lsumc=24.42 lrep=0.00:

(64,22)-drop(1)-(63,21)-drop(5)-(58,16)-xor(15)-(43,16)-xor(15)-(28,16)-xor

(14)-(14,17)-WHT

k=64 tau=0.250 theta=0.33 precision=0.10 lmaxc=24.58 lsumc=26.86 lrep=0.00:

(64,24.5)-drop(1)-(63,23.5)-drop(5)-(58,18.5)-xor(18)-(40,18)-xor(16)-(24,19)

-xor(17)-(7,20)-WHT

k=100 tau=0.050 theta=0.33 precision=0.10 lmaxc=16.19 lsumc=17.20 lrep=13.37:

(100,6.7)-sparse-(100,2)-guess(75,2)-(25,2)-code([25,1,r])-(1,2)-WHT

k=100 tau=0.100 theta=0.33 precision=0.10 lmaxc=22.14 lsumc=24.02 lrep=17.74:

(100,6.9)-sparse-(100,4.3)-xor(1)-(99,6.5)-xor(3)-(96,9)-guess(77,2)-(19,9)-

code([19,6,rnd150927])-(6,9)-drop(5)-(1,4)-WHT

k=100 tau=0.125 theta=0.33 precision=0.10 lmaxc=24.80 lsumc=27.14 lrep=16.87:

(100,11.2)-sparse-(100,11.1)-xor(6)-(94,15.2)-xor(14)-(80,15.4)-xor(15)

-(65,14.8)-guess(47,3)-(18,14.8)-code([18,8,rnd150926])-(8,14.8)-drop(7)

-(1,7.8)-WHT

k=100 tau=0.200 theta=0.33 precision=0.10 lmaxc=29.75 lsumc=32.06 lrep=0.00:

(100,29.1)-drop(1)-(99,28.1)-drop(5)-(94,23.1)-xor(22)-(72,23.2)-xor(22)

-(50,23.4)-xor(22)-(28,23.8)-drop(6)-(22,17.8)-WHT

k=100 tau=0.250 theta=0.33 precision=0.10 lmaxc=30.75 lsumc=32.94 lrep=0.00:

(100,30.1)-drop(1)-(99,29.1)-drop(5)-(94,24.1)-xor(23)-(71,24.2)-xor(23)

-(48,24.4)-xor(23)-(25,24.8)-drop(3)-(22,21.8)-WHT

k=256 tau=0.050 theta=0.33 precision=0.10 lmaxc=28.02 lsumc=30.13 lrep=17.28:

(256,8.1)-sparse-(256,4.2)-xor(1)-(255,6.3)-xor(2)-(253,9.6)-xor(8)

-(245,10.2)-guess(178,1)-(67,10.2)-code([67,1,r])-(1,10.2)-WHT

k=256 tau=0.100 theta=0.33 precision=0.10 lmaxc=43.49 lsumc=45.99 lrep=27.36:

(256,26)-sparse-(256,26)-xor(21)-(235,30)-xor(29)-(206,30)-xor(29)-(177,30)-

xor(29)-(148,30)-guess(100,4)-(48,30)-code([11,4,S][18,5,rnd150927][19,6,

rnd150927])-(15,30)-drop(14)-(1,16)-WHT

k=256 tau=0.125 theta=0.33 precision=0.10 lmaxc=47.35 lsumc=49.90 lrep=0.00:
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(256,35.6)-sparse-(256,35.6)-xor(31)-(225,39.2)-xor(38)-(187,39.4)-xor(38)

-(149,39.8)-xor(39)-(110,39.6)-code([15,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,7,rnd150926][19,7,rnd150926])-(37,39.6)-WHT

k=256 tau=0.200 theta=0.33 precision=0.10 lmaxc=53.82 lsumc=56.34 lrep=1.00:

(256,42.4)-sparse-(256,42.4)-xor(38)-(218,45.8)-xor(45)-(173,45.6)-xor(44)

-(129,46.2)-xor(45)-(84,46.4)-guess(1,1)-(83,46.4)-code([14,6,FP][25,15,W

][25,15,W][19,7,rnd150927])-(43,46.4)-drop(1)-(42,45.4)-WHT

k=256 tau=0.250 theta=0.33 precision=0.10 lmaxc=56.88 lsumc=59.47 lrep=0.00:

(256,56.7)-drop(1)-(255,55.7)-drop(7)-(248,48.7)-xor(48)-(200,48.4)-xor(47)

-(153,48.8)-xor(47)-(106,49.6)-xor(59)-(47,39.2)-WHT

% what follows uses precision 1

k=512 tau=0.050 theta=0.33 precision=1.00 lmaxc=47.29 lsumc=49.56 lrep=39.23:

(512,10)-sparse-(512,9)-xor(2)-(510,15)-xor(14)-(496,15)-xor(14)-(482,15)-

guess(417,2)-(65,15)-code([13,1,r][14,1,r][19,3,rnd150927][19,3,rnd150927

])-(8,15)-drop(7)-(1,8)-WHT

k=512 tau=0.100 theta=0.33 precision=1.00 lmaxc=71.09 lsumc=73.68 lrep=1.60:

(512,58)-sparse-(512,58)-xor(53)-(459,62)-xor(61)-(398,62)-xor(61)-(337,62)-

xor(61)-(276,62)-xor(61)-(215,62)-guess(2,1)-(213,62)-code([5,1,r][18,5,

rnd150927][19,5,rnd150927][19,5,rnd150927][19,6,rnd150927][19,6,rnd150927

][19,5,rnd150927][19,5,rnd150927][19,5,rnd150927][19,5,rnd150927][19,5,

rnd150927][19,5,rnd150927])-(58,62)-WHT

k=512 tau=0.125 theta=0.33 precision=1.00 lmaxc=76.24 lsumc=78.97 lrep=0.19:

(512,63)-sparse-(512,63)-xor(58)-(454,67)-xor(66)-(388,67)-xor(66)-(322,67)-

xor(66)-(256,67)-xor(65)-(191,68)-guess(1,0)-(190,68)-code([19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926

])-(64,68)-WHT

k=512 tau=0.200 theta=0.33 precision=1.00 lmaxc=86.79 lsumc=89.28 lrep=2.16:

(512,74)-sparse-(512,74)-xor(70)-(442,77)-xor(76)-(366,77)-xor(75)-(291,78)-

xor(77)-(214,78)-xor(77)-(137,78)-guess(3,1)-(134,78)-code([25,15,W

][25,15,W][25,15,W][25,15,W][25,15,W][9,4,BBD])-(79,78)-drop(6)-(73,72)-

WHT

k=512 tau=0.250 theta=0.33 precision=1.00 lmaxc=92.36 lsumc=94.85 lrep=1.68:

(512,79)-sparse-(512,79)-xor(74)-(438,83)-xor(82)-(356,83)-xor(82)-(274,83)-

xor(81)-(193,84)-xor(83)-(110,84)-guess(2,1)-(108,84)-code([15,11,H

][31,26,H][31,20,W][31,20,W])-(77,84)-WHT

k=768 tau=0.050 theta=0.33 precision=1.00 lmaxc=65.98 lsumc=68.15 lrep=58.89:

(768,10)-sparse-(768,8)-xor(1)-(767,14)-xor(12)-(755,15)-xor(14)-(741,15)-

guess(682,2)-(59,15)-code([7,1,r][7,1,r][19,3,rnd150927][7,1,r][19,3,

rnd150927])-(9,15)-drop(8)-(1,7)-WHT

k=768 tau=0.100 theta=0.33 precision=1.00 lmaxc=96.34 lsumc=99.21 lrep=0.76:

(768,82)-sparse-(768,82)-xor(77)-(691,86)-xor(85)-(606,86)-xor(85)-(521,86)-

xor(85)-(436,86)-xor(85)-(351,86)-xor(84)-(267,87)-guess(5,0)-(262,87)-

code([15,5,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927
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][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,

rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927][19,6,rnd150927

][19,6,rnd150927])-(83,87)-WHT

k=768 tau=0.125 theta=0.33 precision=1.00 lmaxc=103.42 lsumc=106.18 lrep=2.44:

(768,89)-sparse-(768,89)-xor(84)-(684,93)-xor(92)-(592,93)-xor(91)-(501,94)-

xor(93)-(408,94)-xor(93)-(315,94)-xor(92)-(223,95)-guess(4,1)-(219,95)-

code([25,15,W][25,15,W][18,6,rnd150926][18,6,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,

rnd150926][19,7,rnd150926])-(88,95)-drop(1)-(87,94)-WHT

k=768 tau=0.200 theta=0.33 precision=1.00 lmaxc=118.57 lsumc=121.12 lrep=0.00:

(768,116)-drop(7)-(761,109)-xor(108)-(653,109)-xor(108)-(545,109)-xor(108)

-(437,109)-xor(108)-(329,109)-xor(107)-(222,110)-xor(109)-(113,110)-drop

(7)-(106,103)-WHT

k=768 tau=0.250 theta=0.33 precision=1.00 lmaxc=125.01 lsumc=127.63 lrep=2.25:

(768,111)-sparse-(768,111)-xor(106)-(662,115)-xor(114)-(548,115)-xor(114)

-(434,115)-xor(113)-(321,116)-xor(115)-(206,116)-guess(3,1)-(203,116)-code

([3,1,r][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W][25,15,W

][25,15,W])-(121,116)-drop(11)-(110,105)-WHT

A.7 Solving LPN512,0.125

We present here the chains for a complete recovery of the secret in the case of LPN512,0.125.

Step 1:

k=512 tau=0.125 theta=0.33 precision=0.10 lmaxc=76.22 lsumc=78.85:

(512,63.3)-sparse-(512,63.3)-xor(59)-(453,66.6)-xor(65)-(388,67.2)-xor(66)

-(322,67.4)-xor(66)-(256,67.8)-xor(67)-(189,67.6)-code([18,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926

])-(64,67.6)-WHT

Step 2:

k=448 tau=0.125 theta=0.11 precision=0.10 lmaxc=69.20 lsumc=71.99:

(448,56.6)-sparse-(448,56.6)-xor(52)-(396,60.2)-xor(59)-(337,60.4)-xor(59)

-(278,60.8)-xor(60)-(218,60.6)-xor(59)-(159,61.2)-code([25,15,W][25,15,W

][14,3,rnd150926][19,4,rnd150926][19,4,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926])-(59,61.2)-drop(1)-(58,60.2)-WHT

Step 3:

k=390 tau=0.125 theta=0.04 precision=0.10 lmaxc=62.70 lsumc=65.39:

(390,50.3)-sparse-(390,50.3)-xor(46)-(344,53.6)-xor(52)-(292,54.2)-xor(53)

-(239,54.4)-xor(53)-(186,54.8)-xor(54)-(132,54.6)-code([25,15,W][13,4,

rnd150926][18,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,7,rnd150926

][19,7,rnd150926])-(51,54.6)-WHT

Step 4:
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k=339 tau=0.125 theta=0.01 precision=0.10 lmaxc=57.06 lsumc=59.78:

(339,44.7)-sparse-(339,44.7)-xor(40)-(299,48.4)-xor(47)-(252,48.8)-xor(48)

-(204,48.6)-xor(47)-(157,49.2)-xor(48)-(109,49.4)-code([3,1,r][25,15,W

][25,15,W][18,5,rnd150926][19,4,rnd150926][19,6,rnd150926])-(46,49.4)-WHT

Step 5:

k=293 tau=0.125 theta=0.00 precision=0.10 lmaxc=51.81 lsumc=54.52:

(293,39.7)-sparse-(293,39.7)-xor(35)-(258,43.4)-xor(42)-(216,43.8)-xor(43)

-(173,43.6)-xor(42)-(131,44.2)-xor(43)-(88,44.4)-code([25,15,W][25,15,W

][19,5,rnd150926][19,6,rnd150926])-(41,44.4)-WHT

Step 6:

k=252 tau=0.125 theta=0.00 precision=0.10 lmaxc=47.00 lsumc=49.61:

(252,34.8)-sparse-(252,34.8)-xor(30)-(222,38.6)-xor(37)-(185,39.2)-xor(38)

-(147,39.4)-xor(38)-(109,39.8)-code([14,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,7,rnd150926][19,7,rnd150926])-(37,39.8)-WHT

Step 7:

k=215 tau=0.125 theta=0.00 precision=0.10 lmaxc=42.36 lsumc=44.86:

(215,30.7)-sparse-(215,30.7)-xor(26)-(189,34.4)-xor(33)-(156,34.8)-xor(34)

-(122,34.6)-xor(33)-(89,35.2)-code([7,1,r][25,15,W][19,6,rnd150926][19,4,

rnd150926][19,6,rnd150926])-(32,35.2)-WHT

Step 8:

k=183 tau=0.125 theta=0.00 precision=0.10 lmaxc=38.35 lsumc=40.76:

(183,27)-sparse-(183,27)-xor(23)-(160,30)-xor(28)-(132,31)-xor(30)-(102,31)-

xor(30)-(72,31)-code([25,15,W][13,4,rnd150926][16,5,rnd150926][18,5,

rnd150926])-(29,31)-WHT

Step 9:

k=154 tau=0.125 theta=0.00 precision=0.10 lmaxc=34.38 lsumc=36.94:

(154,23.5)-sparse-(154,23.5)-xor(19)-(135,27)-xor(26)-(109,27)-xor(26)

-(83,27)-xor(25)-(58,28)-code([25,15,W][15,5,rnd150926][18,5,rnd150926])

-(25,28)-WHT

Step 10:

k=129 tau=0.125 theta=0.00 precision=0.10 lmaxc=31.34 lsumc=33.82:

(129,20.6)-sparse-(129,20.6)-xor(16)-(113,24.2)-xor(23)-(90,24.4)-xor(23)

-(67,24.8)-xor(24)-(43,24.6)-code([25,15,W][18,7,rnd150926])-(22,24.6)-WHT

Step 11:

k=107 tau=0.125 theta=0.00 precision=0.10 lmaxc=27.85 lsumc=30.15:

(107,27)-drop(1)-(106,26)-drop(5)-(101,21)-xor(20)-(81,21)-xor(20)-(61,21)-

xor(20)-(41,21)-xor(19)-(22,22)-drop(2)-(20,20)-WHT

Step 12:

k=87 tau=0.125 theta=0.00 precision=0.10 lmaxc=24.54 lsumc=27.05:
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(87,24.1)-drop(1)-(86,23.1)-drop(5)-(81,18.1)-xor(17)-(64,18.2)-xor(17)

-(47,18.4)-xor(17)-(30,18.8)-xor(17)-(13,19.6)-WHT

Step 13:

k=74 tau=0.125 theta=0.00 precision=0.10 lmaxc=23.30 lsumc=25.55:

(74,22.9)-drop(1)-(73,21.9)-drop(5)-(68,16.9)-xor(16)-(52,16.8)-xor(15)

-(37,17.6)-xor(21)-(16,13.2)-WHT

Step 14:

k=58 tau=0.125 theta=0.00 precision=0.10 lmaxc=19.80 lsumc=22.19:

(58,19.8)-drop(1)-(57,18.8)-drop(5)-(52,13.8)-xor(13)-(39,13.6)-xor(12)

-(27,14.2)-xor(13)-(14,14.4)-drop(1)-(13,13.4)-WHT

Step 15:

k=45 tau=0.125 theta=0.00 precision=0.10 lmaxc=17.29 lsumc=19.69:

(45,17)-drop(1)-(44,16)-drop(5)-(39,11)-xor(9)-(30,12)-xor(11)-(19,12)-drop

(1)-(18,11)-xor(8)-(10,13)-WHT

Step 16:

k=35 tau=0.125 theta=0.00 precision=0.10 lmaxc=15.97 lsumc=17.96:

(35,15.7)-drop(1)-(34,14.7)-drop(4)-(30,10.7)-xor(10)-(20,10.4)-xor(9)

-(11,10.8)-drop(1)-(10,9.8)-WHT

Step 17:

k=25 tau=0.125 theta=0.00 precision=0.10 lmaxc=13.30 lsumc=15.33:

(25,12.9)-drop(1)-(24,11.9)-drop(3)-(21,8.9)-xor(8)-(13,8.8)-xor(7)-(6,9.6)-

WHT

Step 18:

k=19 tau=0.125 theta=0.00 precision=0.10 lmaxc=12.21 lsumc=14.30:

(19,11.9)-drop(1)-(18,10.9)-drop(3)-(15,7.9)-xor(9)-(6,5.8)-xor(1)-(5,9.6)-

WHT

Step 19:

k=14 tau=0.125 theta=0.00 precision=0.10 lmaxc=10.93 lsumc=10.93:

(14,4)-sparse-guess(14)

Overall, the complexity of going through all chains is

278.85 + 271.99 + 265.39 + 259.78 + 254.52 + 249.61 + 244.86 + 240.76 + 236.94

+ 233.82 + 230.15 + 227.05 + 225.55 + 222.19 + 219.69 + 217.96 + 215.33

+ 214.30 + 210.93 ≈ 278.86

with a probability of success at least 1
2 .
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A.8 Chains from [GJL14] and [ZJW16]

In this section, we present the analysis on the results from ASIACRYPT’14 [GJL14] and

EUROCRYPT’16 [ZJW16]. We compute complexities and biases following our formulas,

and always use the largest pool of codes that we had to have the most favorable results.

Sometimes, the number of initial queries is either too small or too large to have a failure

probability close to 33% so we correct it to be able to compare chains. Together with

these chains, we provide the best ones that we found.

In the data below, lcomp denotes the logarithmic complexity in each step of the chain,

lbc2 denotes the logarithmic value of δ2s , lr_all denotes the logarithmic number of ne-

cessary average of repetitions of the overall chain for guessing to succeed, lr_wht denotes

the logarithmic number of repetitions which apply to WHT only, lmaxcomp denotes the

logarithmic max-complexity, ltotcomp denotes the logarithmic total complexity of the

chain. The name of the reduction steps differ a bit: sparse denotes sparse-secret , part de-

notes partition-reduce, xor denotes xor -reduce, guess denotes guess-secret , and code denotes

code-reduce. For each chain, we put the computations for the exact chain instead of the

rounded one. Each reduction step is followed by the indication of the vertex (k, log2 n).

A.8.1 Chains for LPN512,1/8

Here is the chain proposed in [GJL14] (proceedings) with a claimed complexity of 279.9:

chain for LPN_{512,0.125} with n=2^66.3000

sparse-(512,66.30) lcomp=79.245 lbc2=-0.830

part(63)-(449,66.15) lcomp=75.300 lbc2=-1.660

part(63)-(386,65.97) lcomp=74.956 lbc2=-3.320

part(63)-(323,65.78) lcomp=74.565 lbc2=-6.641

part(63)-(260,65.55) lcomp=74.111 lbc2=-13.281

part(63)-(197,65.28) lcomp=73.571 lbc2=-26.562

part(63)-(134,64.94) lcomp=72.900 lbc2=-53.125

guess(10u2)-(124,64.94) lcomp=0.000 lbc2=-53.125

code-(64,64.94) lcomp=71.899 lbc2=-65.809

WHT(theta=100.00) lcomp=75.125

lr_all=0.184 lr_wht=5.807

lmaxcomp=81.12

ltotcomp=81.58

for the used code, log_2 bc^2 =-12.684598566058570684917951628899665523

used code family: old+QP+rnd

params=[5,1,r][25,15,W][25,15,W][25,12,FP][25,15,W][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{512,0.125} with n=2^73.2200

sparse-(512,73.22) lcomp=85.769 lbc2=-0.830

part(63)-(449,73.22) lcomp=82.220 lbc2=-1.660

part(63)-(386,73.22) lcomp=82.029 lbc2=-3.320

part(63)-(323,73.22) lcomp=81.810 lbc2=-6.641

part(63)-(260,73.22) lcomp=81.552 lbc2=-13.281
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part(63)-(197,73.21) lcomp=81.238 lbc2=-26.562

part(63)-(134,73.21) lcomp=80.836 lbc2=-53.125

guess(10u2)-(124,73.21) lcomp=0.000 lbc2=-53.125

code-(64,73.21) lcomp=80.167 lbc2=-65.809

WHT(theta=28.00) lcomp=79.300

lr_all=0.184 lr_wht=5.807

lmaxcomp=85.95

ltotcomp=86.96

for the used code, log_2 bc^2 =-12.684598566058570684917951628899665523

used code family: old+QP+rnd

params=[5,1,r][25,15,W][25,15,W][25,12,FP][25,15,W][19,6,rnd150926]

Here is the chain presented by [GJL14] (presented at the conference) with a claimed
complexity of 279.7:

chain for LPN_{512,0.125} with n=2^63.7000

sparse-(512,63.70) lcomp=76.467 lbc2=-0.830

xor(62)-(450,64.40) lcomp=73.400 lbc2=-1.660

xor(62)-(388,65.80) lcomp=74.614 lbc2=-3.320

xor(62)-(326,68.60) lcomp=77.200 lbc2=-6.641

xor(62)-(264,74.20) lcomp=82.549 lbc2=-13.281

xor(62)-(202,85.40) lcomp=93.444 lbc2=-26.562

guess(22u2)-(180,85.40) lcomp=0.000 lbc2=-26.562

code-(60,85.40) lcomp=92.892 lbc2=-58.986

WHT(theta=0.00) lcomp=91.307

lr_all=1.091 lr_wht=7.989

lmaxcomp=100.39

ltotcomp=100.43

for the used code, log_2 bc^2 =-32.423925711598927470606260602594044481

used code family: old+QP+rnd

params=[3,1,r][25,15,W][19,4,rnd150926][19,4,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{512,0.125} with n=2^63.1030

sparse-(512,63.10) lcomp=76.101 lbc2=-0.830

xor(62)-(450,63.21) lcomp=72.206 lbc2=-1.660

xor(62)-(388,63.41) lcomp=72.226 lbc2=-3.320

xor(62)-(326,63.82) lcomp=72.424 lbc2=-6.641

xor(62)-(264,64.65) lcomp=72.997 lbc2=-13.281

xor(62)-(202,66.30) lcomp=74.340 lbc2=-26.562

guess(22u2)-(180,66.30) lcomp=0.000 lbc2=-26.562

code-(60,66.30) lcomp=73.788 lbc2=-58.986

WHT(theta=26.00) lcomp=72.717

lr_all=1.091 lr_wht=7.989

lmaxcomp=81.80

ltotcomp=81.90

for the used code, log_2 bc^2 =-32.423925711598927470606260602594044481

used code family: old+QP+rnd
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params=[3,1,r][25,15,W][19,4,rnd150926][19,4,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the chain from [ZJW16] based on LF1 with a claimed complexity of 275.897:

chain for LPN_{512,0.125} with n=2^71.2910

drop( 5)-(507,66.29) lcomp=72.245 lbc2=-0.830

sparse-(507,66.29) lcomp=79.225 lbc2=-0.830

part(63)-(444,66.14) lcomp=75.277 lbc2=-1.660

part(63)-(381,65.96) lcomp=74.930 lbc2=-3.320

part(63)-(318,65.76) lcomp=74.535 lbc2=-6.641

part(63)-(255,65.53) lcomp=74.076 lbc2=-13.281

part(63)-(192,65.26) lcomp=73.527 lbc2=-26.562

guess(20u1)-(172,65.26) lcomp=0.000 lbc2=-26.562

code-(62,65.26) lcomp=72.686 lbc2=-55.531

WHT(theta=0.00) lcomp=73.371

lr_all=1.905 lr_wht=4.392

lmaxcomp=81.13

ltotcomp=81.79

for the used code, log_2 bc^2 =-28.968290632587130827717807602787613454

used code family: old+QP+rnd

params=[25,15,W][14,5,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{512,0.125} with n=2^70.5660

drop( 5)-(507,65.57) lcomp=71.520 lbc2=-0.830

sparse-(507,65.57) lcomp=78.383 lbc2=-0.830

part(63)-(444,65.30) lcomp=74.552 lbc2=-1.660

part(63)-(381,64.97) lcomp=74.094 lbc2=-3.320

part(63)-(318,64.55) lcomp=73.545 lbc2=-6.641

part(63)-(255,63.94) lcomp=72.860 lbc2=-13.281

part(63)-(192,62.88) lcomp=71.937 lbc2=-26.562

guess(20u1)-(172,62.88) lcomp=0.000 lbc2=-26.562

code-(62,62.88) lcomp=70.309 lbc2=-55.531

WHT(theta=31.00) lcomp=73.032

lr_all=1.905 lr_wht=4.392

lmaxcomp=80.29

ltotcomp=81.07

for the used code, log_2 bc^2 =-28.968290632587130827717807602787613454

used code family: old+QP+rnd

params=[25,15,W][14,5,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

For comparison, here is the same computation using only perfect codes:

chain for LPN_{512,0.125} with n=2^70.8630

drop( 5)-(507,65.86) lcomp=71.817 lbc2=-0.830

sparse-(507,65.86) lcomp=78.578 lbc2=-0.830

part(63)-(444,65.65) lcomp=74.849 lbc2=-1.660
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part(63)-(381,65.40) lcomp=74.444 lbc2=-3.320

part(63)-(318,65.10) lcomp=73.973 lbc2=-6.641

part(63)-(255,64.71) lcomp=73.409 lbc2=-13.281

part(63)-(192,64.19) lcomp=72.706 lbc2=-26.562

guess(20u1)-(172,64.19) lcomp=0.000 lbc2=-26.562

code-(62,64.19) lcomp=71.612 lbc2=-56.834

WHT(theta=31.00) lcomp=73.169

lr_all=1.905 lr_wht=4.392

lmaxcomp=80.48

ltotcomp=81.27

for the used code, log_2 bc^2 =-30.272072056802635203237971232374080351

used code family: old

params=[5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][7,1,r

][7,1,r][7,1,r][7,1,r][7,1,r][23,12,G][23,12,G][23,12,G][23,12,G]

Here is the chain from [ZJW16] based on LF2 with a claimed complexity of 274.732:

chain for LPN_{512,0.125} with n=2^69.9870

drop( 5)-(507,64.99) lcomp=70.941 lbc2=-0.830

sparse-(507,64.99) lcomp=78.045 lbc2=-0.830

xor(64)-(443,64.97) lcomp=73.973 lbc2=-1.660

xor(64)-(379,64.95) lcomp=73.765 lbc2=-3.320

xor(64)-(315,64.90) lcomp=73.514 lbc2=-6.641

xor(64)-(251,64.79) lcomp=73.195 lbc2=-13.281

xor(64)-(187,64.58) lcomp=72.764 lbc2=-26.562

guess(17u1)-(170,64.58) lcomp=0.000 lbc2=-26.562

code-(62,64.58) lcomp=71.993 lbc2=-54.892

WHT(theta=0.00) lcomp=73.232

lr_all=1.497 lr_wht=4.170

lmaxcomp=79.54

ltotcomp=80.45

for the used code, log_2 bc^2 =-28.329845374218742534238304113938514928

used code family: old+QP+rnd

params=[25,15,W][13,4,rnd150926][18,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,7,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{512,0.125} with n=2^69.9140

drop( 5)-(507,64.91) lcomp=70.868 lbc2=-0.830

sparse-(507,64.91) lcomp=77.605 lbc2=-0.830

xor(64)-(443,64.83) lcomp=73.900 lbc2=-1.660

xor(64)-(379,64.66) lcomp=73.619 lbc2=-3.320

xor(64)-(315,64.31) lcomp=73.222 lbc2=-6.641

xor(64)-(251,63.62) lcomp=72.611 lbc2=-13.281

xor(64)-(187,62.25) lcomp=71.596 lbc2=-26.562

guess(17u1)-(170,62.25) lcomp=0.000 lbc2=-26.562

code-(62,62.25) lcomp=69.657 lbc2=-54.892

WHT(theta=28.00) lcomp=72.990

lr_all=1.497 lr_wht=4.170
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lmaxcomp=79.10

ltotcomp=80.09

for the used code, log_2 bc^2 =-28.329845374218742534238304113938514928

used code family: old+QP+rnd

params=[25,15,W][13,4,rnd150926][18,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,7,rnd150926]

For comparison, here is the same computation using only perfect codes:

chain for LPN_{512,0.125} with n=2^69.9540

drop( 5)-(507,64.95) lcomp=70.908 lbc2=-0.830

sparse-(507,64.95) lcomp=78.027 lbc2=-0.830

xor(64)-(443,64.91) lcomp=73.940 lbc2=-1.660

xor(64)-(379,64.82) lcomp=73.699 lbc2=-3.320

xor(64)-(315,64.63) lcomp=73.382 lbc2=-6.641

xor(64)-(251,64.26) lcomp=72.931 lbc2=-13.281

xor(64)-(187,63.53) lcomp=72.236 lbc2=-26.562

guess(17u1)-(170,63.53) lcomp=0.000 lbc2=-26.562

code-(62,63.53) lcomp=70.937 lbc2=-56.158

WHT(theta=20.00) lcomp=73.090

lr_all=1.497 lr_wht=4.170

lmaxcomp=79.52

ltotcomp=80.37

for the used code, log_2 bc^2 =-29.595714087454877581434997641085959931

used code family: old

params=[5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r

][7,1,r][7,1,r][7,1,r][7,1,r][23,12,G][23,12,G][23,12,G][23,12,G]

Here is the chain from [ZJW16] based on LF(4) with a claimed complexity of 272.844:

chain for LPN_{512,0.125} with n=2^63.5260

drop(10)-(502,53.53) lcomp=64.525 lbc2=-0.830

sparse-(502,53.53) lcomp=66.734 lbc2=-0.830

lf4(156)-(346,53.52) lcomp=115.024 lbc2=-3.320

lf4(156)-(190,53.49) lcomp=114.473 lbc2=-13.281

guess(16u1)-(174,53.49) lcomp=0.000 lbc2=-13.281

code-(60,53.49) lcomp=60.934 lbc2=-43.739

WHT(theta=0.00) lcomp=70.675

lr_all=1.366 lr_wht=4.087

lmaxcomp=116.39

ltotcomp=117.14

for the used code, log_2 bc^2 =-30.457352130329587529315901036020611109

used code family: old+QP+rnd

params=[25,15,W][19,4,rnd150926][16,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{512,0.125} with n=2^63.3730

drop(10)-(502,53.37) lcomp=64.372 lbc2=-0.830

sparse-(502,53.37) lcomp=66.329 lbc2=-0.830
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lf4(156)-(346,52.91) lcomp=114.718 lbc2=-3.320

lf4(156)-(190,51.04) lcomp=113.249 lbc2=-13.281

guess(16u1)-(174,51.04) lcomp=0.000 lbc2=-13.281

code-(60,51.04) lcomp=58.486 lbc2=-43.739

WHT(theta=30.00) lcomp=70.609

lr_all=1.366 lr_wht=4.087

lmaxcomp=116.08

ltotcomp=116.53

for the used code, log_2 bc^2 =-30.457352130329587529315901036020611109

used code family: old+QP+rnd

params=[25,15,W][19,4,rnd150926][16,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the chain we obtain by running our algorithm with precision 0.1, after removing
the roundings and adjusting the number of queries:

chain for LPN_{512,0.125} with n=2^63.2990

sparse-(512,63.30) lcomp=76.215 lbc2=-0.830

xor(59)-(453,66.60) lcomp=75.598 lbc2=-1.660

xor(65)-(388,67.20) lcomp=76.019 lbc2=-3.320

xor(66)-(322,67.39) lcomp=75.992 lbc2=-6.641

xor(66)-(256,67.78) lcomp=76.115 lbc2=-13.281

xor(67)-(189,67.57) lcomp=75.784 lbc2=-26.562

code-(64,67.57) lcomp=75.130 lbc2=-60.165

WHT(theta=28.00) lcomp=75.528

lmaxcomp=76.22

ltotcomp=78.84

for the used code, log_2 bc^2 =-33.602837640638774272597586977976944615

used code family: old+QP+rnd

params=[18,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,7,rnd150926][19,7,rnd150926][19,7,rnd150926

][19,7,rnd150926]

For comparison, here is the same computation using only perfect and quasi-perfect
codes:

chain for LPN_{512,0.125} with n=2^63.3400

sparse-(512,63.34) lcomp=76.240 lbc2=-0.830

xor(59)-(453,66.68) lcomp=75.680 lbc2=-1.660

xor(65)-(388,67.36) lcomp=76.183 lbc2=-3.320

xor(66)-(322,67.72) lcomp=76.320 lbc2=-6.641

xor(66)-(256,68.44) lcomp=76.771 lbc2=-13.281

xor(67)-(189,68.88) lcomp=76.880 lbc2=-26.562

code-(64,68.88) lcomp=76.442 lbc2=-61.459

WHT(theta=18.00) lcomp=76.009

lmaxcomp=76.88

ltotcomp=79.36

for the used code, log_2 bc^2 =-34.896841882956364951443303534972935944

used code family: old+QP

params=[7,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r][7,1,r

][8,2,iGop][11,4,S][25,12,FP][25,12,FP][25,12,FP][25,12,FP]
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For comparison, here is the same computation using only perfect codes:

chain for LPN_{512,0.125} with n=2^63.3490

sparse-(512,63.35) lcomp=76.245 lbc2=-0.830

xor(59)-(453,66.70) lcomp=75.698 lbc2=-1.660

xor(65)-(388,67.40) lcomp=76.219 lbc2=-3.320

xor(66)-(322,67.79) lcomp=76.392 lbc2=-6.641

xor(66)-(256,68.58) lcomp=76.915 lbc2=-13.281

xor(67)-(189,69.17) lcomp=77.168 lbc2=-26.562

code-(64,69.17) lcomp=76.730 lbc2=-61.749

WHT(theta=18.00) lcomp=76.150

lmaxcomp=77.17

ltotcomp=79.51

for the used code, log_2 bc^2 =-35.186278395343000828324443022088734514

used code family: old

params=[5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][5,1,r][7,1,r][7,1,r][7,1,r

][7,1,r][7,1,r][6,1,r][7,1,r][7,1,r][7,1,r][23,12,G][23,12,G][23,12,G

][23,12,G]

A.8.2 Chains for LPN532,1/8

Here is the chain proposed in [GJL14] with a claimed complexity of 281.82:

chain for LPN_{532,0.125} with n=2^68.0000

sparse-(532,68.00) lcomp=81.153 lbc2=-0.830

part(65)-(467,67.81) lcomp=77.055 lbc2=-1.660

part(65)-(402,67.58) lcomp=76.675 lbc2=-3.320

part(65)-(337,67.32) lcomp=76.236 lbc2=-6.641

part(65)-(272,67.00) lcomp=75.719 lbc2=-13.281

part(65)-(207,66.58) lcomp=75.087 lbc2=-26.562

part(65)-(142,66.00) lcomp=74.278 lbc2=-53.125

guess(12u2)-(130,66.00) lcomp=0.000 lbc2=-53.125

code-(66,66.00) lcomp=73.022 lbc2=-66.904

WHT(theta=100.00) lcomp=77.153

lr_all=0.290 lr_wht=6.304

lmaxcomp=83.75

ltotcomp=84.06

for the used code, log_2 bc^2 =-13.779193042112753687122226810335264979

used code family: old+QP+rnd

params=[25,15,W][25,15,W][25,15,W][23,12,G][13,4,rnd150926][19,5,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{532,0.125} with n=2^74.3600

sparse-(532,74.36) lcomp=87.314 lbc2=-0.830

part(65)-(467,74.36) lcomp=83.415 lbc2=-1.660

part(65)-(402,74.36) lcomp=83.225 lbc2=-3.320

part(65)-(337,74.35) lcomp=83.007 lbc2=-6.641

part(65)-(272,74.35) lcomp=82.750 lbc2=-13.281

part(65)-(207,74.35) lcomp=82.439 lbc2=-26.562
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part(65)-(142,74.35) lcomp=82.042 lbc2=-53.125

guess(12u2)-(130,74.35) lcomp=0.000 lbc2=-53.125

code-(66,74.35) lcomp=81.369 lbc2=-66.904

WHT(theta=33.00) lcomp=80.549

lr_all=0.290 lr_wht=6.304

lmaxcomp=87.60

ltotcomp=88.62

for the used code, log_2 bc^2 =-13.779193042112753687122226810335264979

used code family: old+QP+rnd

params=[25,15,W][25,15,W][25,15,W][23,12,G][13,4,rnd150926][19,5,rnd150926]

Here is the chain from [ZJW16] based on LF1 with a claimed complexity of 278.182:

chain for LPN_{532,0.125} with n=2^73.5840

drop( 5)-(527,68.58) lcomp=74.538 lbc2=-0.830

sparse-(527,68.58) lcomp=81.476 lbc2=-0.830

part(65)-(462,68.46) lcomp=77.626 lbc2=-1.660

part(65)-(397,68.32) lcomp=77.310 lbc2=-3.320

part(65)-(332,68.17) lcomp=76.954 lbc2=-6.641

part(65)-(267,68.00) lcomp=76.544 lbc2=-13.281

part(65)-(202,67.81) lcomp=76.059 lbc2=-26.562

guess(20u1)-(182,67.81) lcomp=0.000 lbc2=-26.562

code-(64,67.81) lcomp=75.313 lbc2=-57.882

WHT(theta=0.00) lcomp=75.597

lr_all=1.905 lr_wht=4.392

lmaxcomp=83.38

ltotcomp=84.06

for the used code, log_2 bc^2 =-31.319243871934051230338929039571812625

used code family: old+QP+rnd

params=[5,1,r][25,15,W][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{532,0.125} with n=2^72.6360

drop( 5)-(527,67.64) lcomp=73.590 lbc2=-0.830

sparse-(527,67.64) lcomp=80.500 lbc2=-0.830

part(65)-(462,67.38) lcomp=76.678 lbc2=-1.660

part(65)-(397,67.08) lcomp=76.235 lbc2=-3.320

part(65)-(332,66.69) lcomp=75.709 lbc2=-6.641

part(65)-(267,66.15) lcomp=75.060 lbc2=-13.281

part(65)-(202,65.28) lcomp=74.209 lbc2=-26.562

guess(20u1)-(182,65.28) lcomp=0.000 lbc2=-26.562

code-(64,65.28) lcomp=72.790 lbc2=-57.882

WHT(theta=30.00) lcomp=75.153

lr_all=1.905 lr_wht=4.392

lmaxcomp=82.41

ltotcomp=83.19

for the used code, log_2 bc^2 =-31.319243871934051230338929039571812625

used code family: old+QP+rnd
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params=[5,1,r][25,15,W][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the chain from [ZJW16] based on LF2 with a claimed complexity of 276.902:

chain for LPN_{532,0.125} with n=2^73.9830

drop( 7)-(525,66.98) lcomp=74.972 lbc2=-0.830

sparse-(525,66.98) lcomp=80.115 lbc2=-0.830

xor(66)-(459,66.97) lcomp=76.019 lbc2=-1.660

xor(66)-(393,66.93) lcomp=75.808 lbc2=-3.320

xor(66)-(327,66.86) lcomp=75.550 lbc2=-6.641

xor(66)-(261,66.73) lcomp=75.217 lbc2=-13.281

xor(66)-(195,66.46) lcomp=74.756 lbc2=-26.562

guess(17u1)-(178,66.46) lcomp=0.000 lbc2=-26.562

code-(64,66.46) lcomp=73.932 lbc2=-56.630

WHT(theta=0.00) lcomp=75.293

lr_all=1.497 lr_wht=4.170

lmaxcomp=81.61

ltotcomp=82.53

for the used code, log_2 bc^2 =-30.067365090154126592900296031961631480

used code family: old+QP+rnd

params=[3,1,r][25,15,W][18,6,rnd150926][18,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{532,0.125} with n=2^73.9080

drop( 7)-(525,66.91) lcomp=74.897 lbc2=-0.830

sparse-(525,66.91) lcomp=79.666 lbc2=-0.830

xor(66)-(459,66.82) lcomp=75.944 lbc2=-1.660

xor(66)-(393,66.63) lcomp=75.658 lbc2=-3.320

xor(66)-(327,66.26) lcomp=75.250 lbc2=-6.641

xor(66)-(261,65.53) lcomp=74.617 lbc2=-13.281

xor(66)-(195,64.06) lcomp=73.556 lbc2=-26.562

guess(17u1)-(178,64.06) lcomp=0.000 lbc2=-26.562

code-(64,64.06) lcomp=71.532 lbc2=-56.630

WHT(theta=15.00) lcomp=75.069

lr_all=1.497 lr_wht=4.170

lmaxcomp=81.16

ltotcomp=82.17

for the used code, log_2 bc^2 =-30.067365090154126592900296031961631480

used code family: old+QP+rnd

params=[3,1,r][25,15,W][18,6,rnd150926][18,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the chain from [ZJW16] based on LF(4) with a claimed complexity of 274.709:

chain for LPN_{532,0.125} with n=2^70.5040

drop(15)-(517,55.50) lcomp=71.504 lbc2=-0.830

sparse-(517,55.50) lcomp=68.792 lbc2=-0.830

lf4(162)-(355,55.43) lcomp=119.022 lbc2=-3.320
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lf4(162)-(193,55.14) lcomp=118.334 lbc2=-13.281

guess(13u1)-(180,55.14) lcomp=0.000 lbc2=-13.281

code-(61,55.14) lcomp=62.631 lbc2=-45.275

WHT(theta=0.00) lcomp=71.743

lr_all=0.990 lr_wht=3.807

lmaxcomp=120.01

ltotcomp=120.71

for the used code, log_2 bc^2 =-31.994004843189402519390178262046306566

used code family: old+QP+rnd

params=[3,1,r][25,15,W][19,4,rnd150926][19,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{532,0.125} with n=2^70.3460

drop(15)-(517,55.35) lcomp=71.346 lbc2=-0.830

sparse-(517,55.35) lcomp=68.278 lbc2=-0.830

lf4(162)-(355,54.80) lcomp=118.706 lbc2=-3.320

lf4(162)-(193,52.61) lcomp=117.070 lbc2=-13.281

guess(13u1)-(180,52.61) lcomp=0.000 lbc2=-13.281

code-(61,52.61) lcomp=60.103 lbc2=-45.275

WHT(theta=25.00) lcomp=71.675

lr_all=0.990 lr_wht=3.807

lmaxcomp=119.70

ltotcomp=120.10

for the used code, log_2 bc^2 =-31.994004843189402519390178262046306566

used code family: old+QP+rnd

params=[3,1,r][25,15,W][19,4,rnd150926][19,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926]

Here is the chain we obtain by running our algorithm with precision 0.1, after removing
the roundings and adjusting the number of queries:

chain for LPN_{532,0.125} with n=2^65.3000

sparse-(532,65.30) lcomp=78.290 lbc2=-0.830

xor(61)-(471,68.60) lcomp=77.655 lbc2=-1.660

xor(67)-(404,69.20) lcomp=78.080 lbc2=-3.320

xor(68)-(336,69.40) lcomp=78.058 lbc2=-6.641

xor(68)-(268,69.80) lcomp=78.192 lbc2=-13.281

xor(69)-(199,69.60) lcomp=77.866 lbc2=-26.562

code-(67,69.60) lcomp=77.237 lbc2=-62.111

WHT(theta=17.00) lcomp=78.436

lmaxcomp=78.44

ltotcomp=81.02

for the used code, log_2 bc^2 =-35.548346362647631165140054416118030948

used code family: old+QP+rnd

params=[3,1,r][25,15,W][19,4,rnd150926][19,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926]
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A.8.3 Chains for LPN592,1/8

Here is the chain proposed in [GJL14] with a claimed complexity of 288.07:

chain for LPN_{592,0.125} with n=2^72.7000

sparse-(592,72.70) lcomp=85.748 lbc2=-0.830

part(70)-(522,72.46) lcomp=81.909 lbc2=-1.660

part(70)-(452,72.17) lcomp=81.487 lbc2=-3.320

part(70)-(382,71.81) lcomp=80.989 lbc2=-6.641

part(70)-(312,71.32) lcomp=80.384 lbc2=-13.281

part(70)-(242,70.58) lcomp=79.606 lbc2=-26.562

part(70)-(172,68.99) lcomp=78.502 lbc2=-53.125

guess(35u3)-(137,68.99) lcomp=0.000 lbc2=-53.125

code-(64,68.99) lcomp=76.092 lbc2=-69.942

WHT(theta=100.00) lcomp=76.063

lr_all=1.524 lr_wht=12.809

lmaxcomp=90.40

ltotcomp=90.58

for the used code, log_2 bc^2 =-16.816717432567051155707898232895271319

used code family: old+QP+rnd

params=[5,1,r][25,15,W][25,15,W][25,15,W][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{592,0.125} with n=2^77.3910

sparse-(592,77.39) lcomp=90.513 lbc2=-0.830

part(70)-(522,77.38) lcomp=86.600 lbc2=-1.660

part(70)-(452,77.37) lcomp=86.410 lbc2=-3.320

part(70)-(382,77.36) lcomp=86.194 lbc2=-6.641

part(70)-(312,77.36) lcomp=85.942 lbc2=-13.281

part(70)-(242,77.35) lcomp=85.642 lbc2=-26.562

part(70)-(172,77.34) lcomp=85.266 lbc2=-53.125

guess(35u3)-(137,77.34) lcomp=0.000 lbc2=-53.125

code-(64,77.34) lcomp=84.437 lbc2=-69.942

WHT(theta=33.00) lcomp=83.344

lr_all=1.524 lr_wht=12.809

lmaxcomp=97.68

ltotcomp=97.71

for the used code, log_2 bc^2 =-16.816717432567051155707898232895271319

used code family: old+QP+rnd

params=[5,1,r][25,15,W][25,15,W][25,15,W][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926]

Here is the chain from [ZJW16] based on LF1 with a claimed complexity of 284.715:

chain for LPN_{592,0.125} with n=2^79.5570

drop( 4)-(588,75.56) lcomp=80.464 lbc2=-0.830

sparse-(588,75.56) lcomp=88.675 lbc2=-0.830

part(73)-(515,75.29) lcomp=84.757 lbc2=-1.660

part(73)-(442,74.96) lcomp=84.297 lbc2=-3.320
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part(73)-(369,74.53) lcomp=83.746 lbc2=-6.641

part(73)-(296,73.91) lcomp=83.056 lbc2=-13.281

part(73)-(223,72.82) lcomp=82.124 lbc2=-26.562

guess(16u1)-(207,72.82) lcomp=0.000 lbc2=-26.562

code-(72,72.82) lcomp=80.517 lbc2=-62.542

WHT(theta=0.00) lcomp=83.443

lr_all=1.366 lr_wht=4.087

lmaxcomp=90.04

ltotcomp=90.75

for the used code, log_2 bc^2 =-35.979931993882924904548450029191500372

used code family: old+QP+rnd

params=[18,6,rnd150926][25,15,W][13,4,rnd150926][18,5,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{592,0.125} with n=2^79.3610

drop( 4)-(588,75.36) lcomp=80.268 lbc2=-0.830

sparse-(588,75.36) lcomp=88.561 lbc2=-0.830

part(73)-(515,75.05) lcomp=84.561 lbc2=-1.660

part(73)-(442,74.65) lcomp=84.057 lbc2=-3.320

part(73)-(369,74.10) lcomp=83.437 lbc2=-6.641

part(73)-(296,73.19) lcomp=82.623 lbc2=-13.281

part(73)-(223,70.14) lcomp=81.395 lbc2=-26.562

guess(16u1)-(207,70.14) lcomp=0.000 lbc2=-26.562

code-(72,70.14) lcomp=77.829 lbc2=-62.542

WHT(theta=19.00) lcomp=83.334

lr_all=1.366 lr_wht=4.087

lmaxcomp=89.93

ltotcomp=90.62

for the used code, log_2 bc^2 =-35.979931993882924904548450029191500372

used code family: old+QP+rnd

params=[18,6,rnd150926][25,15,W][13,4,rnd150926][18,5,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926]

Here is the chain from [ZJW16] based on LF2 with a claimed complexity of 283.843:

chain for LPN_{592,0.125} with n=2^77.9850

drop( 4)-(588,73.99) lcomp=78.892 lbc2=-0.830

sparse-(588,73.98) lcomp=86.931 lbc2=-0.830

xor(73)-(515,73.97) lcomp=83.185 lbc2=-1.660

xor(73)-(442,73.94) lcomp=82.978 lbc2=-3.320

xor(73)-(369,73.88) lcomp=82.728 lbc2=-6.641

xor(73)-(296,73.76) lcomp=82.407 lbc2=-13.281

xor(73)-(223,73.52) lcomp=81.969 lbc2=-26.562

guess(14u1)-(209,73.52) lcomp=0.000 lbc2=-26.562

code-(72,73.52) lcomp=81.227 lbc2=-63.159

WHT(theta=0.00) lcomp=83.496
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lr_all=1.112 lr_wht=3.907

lmaxcomp=88.52

ltotcomp=89.46

for the used code, log_2 bc^2 =-36.596897467910004630929717148293030280

used code family: old+QP+rnd

params=[25,15,W][13,4,rnd150926][19,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:

chain for LPN_{592,0.125} with n=2^77.8980

drop( 4)-(588,73.90) lcomp=78.805 lbc2=-0.830

sparse-(588,73.90) lcomp=86.873 lbc2=-0.830

xor(73)-(515,73.80) lcomp=83.098 lbc2=-1.660

xor(73)-(442,73.59) lcomp=82.804 lbc2=-3.320

xor(73)-(369,73.18) lcomp=82.380 lbc2=-6.641

xor(73)-(296,72.37) lcomp=81.711 lbc2=-13.281

xor(73)-(223,70.74) lcomp=80.577 lbc2=-26.562

guess(14u1)-(209,70.74) lcomp=0.000 lbc2=-26.562

code-(72,70.74) lcomp=78.443 lbc2=-63.159

WHT(theta=30.00) lcomp=83.351

lr_all=1.112 lr_wht=3.907

lmaxcomp=88.37

ltotcomp=89.32

for the used code, log_2 bc^2 =-36.596897467910004630929717148293030280

used code family: old+QP+rnd

params=[25,15,W][13,4,rnd150926][19,5,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926]

Here is the chain from [ZJW16] based on LF(4) with a claimed complexity of 281.963:

chain for LPN_{592,0.125} with n=2^78.5130

drop(18)-(574,60.51) lcomp=79.513 lbc2=-0.830

sparse-(574,60.51) lcomp=73.677 lbc2=-0.830

lf4(177)-(397,60.47) lcomp=129.191 lbc2=-3.320

lf4(177)-(220,60.28) lcomp=128.567 lbc2=-13.281

guess(16u1)-(204,60.28) lcomp=0.000 lbc2=-13.281

code-(68,60.28) lcomp=67.956 lbc2=-50.044

WHT(theta=0.00) lcomp=79.025

lr_all=1.366 lr_wht=4.087

lmaxcomp=130.56

ltotcomp=131.28

for the used code, log_2 bc^2 =-36.762390670153894058017705531513633529

used code family: old+QP+rnd

params=[19,5,rnd150926][8,2,iGop][25,15,W][19,4,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926]

Here is the corrected one to reach θ = 33%:
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chain for LPN_{592,0.125} with n=2^78.3410

drop(18)-(574,60.34) lcomp=79.341 lbc2=-0.830

sparse-(574,60.34) lcomp=73.561 lbc2=-0.830

lf4(177)-(397,59.78) lcomp=128.847 lbc2=-3.320

lf4(177)-(220,57.53) lcomp=127.191 lbc2=-13.281

guess(16u1)-(204,57.53) lcomp=0.000 lbc2=-13.281

code-(68,57.53) lcomp=65.204 lbc2=-50.044

WHT(theta=33.00) lcomp=78.959

lr_all=1.366 lr_wht=4.087

lmaxcomp=130.21

ltotcomp=130.61

for the used code, log_2 bc^2 =-36.762390670153894058017705531513633529

used code family: old+QP+rnd

params=[19,5,rnd150926][8,2,iGop][25,15,W][19,4,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926]

Here is the chain we obtain by running our algorithm with precision 0.1, after removing
the roundings and adjusting the number of queries:

chain for LPN_{592,0.125} with n=2^71.6910

sparse-(592,71.69) lcomp=84.735 lbc2=-0.830

xor(67)-(525,75.38) lcomp=84.591 lbc2=-1.660

xor(74)-(451,75.76) lcomp=84.800 lbc2=-3.320

xor(75)-(376,75.53) lcomp=84.581 lbc2=-6.641

xor(74)-(302,76.06) lcomp=84.611 lbc2=-13.281

xor(75)-(227,76.11) lcomp=84.350 lbc2=-26.562

code-(73,76.11) lcomp=83.939 lbc2=-68.504

WHT(theta=22.00) lcomp=84.751

lmaxcomp=84.80

ltotcomp=87.57

for the used code, log_2 bc^2 =-41.941549516941019516761621630448187382

used code family: old+QP+rnd

params=[18,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,

rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926][19,6,rnd150926

][19,6,rnd150926][19,6,rnd150926][19,7,rnd150926]
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