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Abstract

Understanding the physical mechanisms at play in the interaction between turbulent

plasma and neutral particles is a crucial issue that we approach in this Thesis by using

a first-principles self-consistent model of the tokamak periphery implemented in

the GBS code. While the plasma is modeled by the drift-reduced two-fluid Braginskii

equations, a kinetic model for the neutrals is developed, valid in short and in long

mean free path scenarios. The model includes ionization, charge-exchange, recom-

bination, and elastic collisional processes. The neutral kinetic equation is solved by

using the method of characteristics.

We identify the key elements determining the interaction between neutrals and the

turbulent plasma focusing on a tokamak with a toroidal rail limiter on the high-

field side equatorial midplane. For this purpose, we simulate the dynamics of the

plasma and the neutrals in a domain that includes both the confined edge region

and the scrape-off layer (SOL). It turns out that, in the considered plasma conditions,

neither the fluctuations of the neutral moments, nor the friction between neutrals

and the plasma impact the time-averaged plasma profiles significantly. Thanks to this

study, we derive a simple model for the neutral-plasma interaction, which is helpful

to identify and understand the principal physical processes at play in the tokamak

periphery.

By studying the dynamics of the neutral-plasma interplay along the magnetic field

lines in the SOL, we derive a refined two-point model from the drift-reduced Braginskii

equations that balances the parallel and perpendicular transport of plasma and heat,

and takes into account the plasma-neutral interaction. The model estimates the

electron temperature drop along a field line, from a region far from the limiter to the

limiter plates. The refined two-point model is shown to be in very good agreement

with the simulation results.

Finally, we self-consistently simulate a diagnostic neutral gas puff, which is often

used experimentally as a tool to learn about the turbulence properties in the tokamak

periphery. In particular, we investigate the impact of neutral density fluctuations

on the Dα light emission, finding that at a radial distance from the gas puff smaller

than the neutral mean free path, neutral density fluctuations are anti-correlated

with plasma density, electron temperature, and Dα fluctuations, while at distances
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from the gas puff larger than the neutral mean free path, a non-local shadowing effect

influences the neutrals, and the Dα fluctuations are correlated with the neutral density

fluctuations.

Keywords:
plasma physics, controlled fusion, scrape-off layer, turbulence, kinetic neutral atom
dynamics, fluid simulations, kinetic simulations, drift-reduced Braginskii model,
limiter configuration, two-point model, gas puff imaging, neutral fluctuations
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Zusammenfassung

Das Verständnis der physikalischen Mechanismen im Zusammenspiel von turbulen-

tem Plasma und Neutralteilchen ist ein wichtiges Thema, das wir in dieser Dissertati-

on mithilfe eines selbstkonsistenten Modells der Tokamakperipherie angehen. Das

Modell ist von physikalischen Grundprinzipien abgeleitet und im GBS-Code imple-

mentiert. Das Plasma wird mit den drift-reduzierten Braginskii-Gleichungen zweier

Fluide beschrieben. Für die Neutralteilchen entwickeln wir ein kinetisches Modell,

anwendbar in Szenarien sowohl mit kurzen als auch mit langen freien Weglängen der

Neutralteilchen. Das Modell beschreibt Ionisation, Ladungsaustausch, Rekombina-

tion und elastische Kollisionen. Die kinetische Gleichung der Neutralteilchen wird

mittels der Methode der Charakteristiken gelöst.

Wir identifizieren die Schlüsselelemente der Interaktion zwischen Neutralteilchen und

dem turbulenten Plasma in einem Tokamak mit einem toroidalen Begrenzer (“Limi-

ter”) auf der hochfeldseitigen äquatorialen Mittelebene. Zu diesem Zweck simulieren

wir die Dynamik des Plasmas und der Neutralteilchen sowohl im Randbereich des ein-

geschlossenen Plasmas als auch in der Abschälschicht (“Scrape-Off-Layer”). Es stellt

sich heraus, dass bei den betrachteten Plasmabedingungen weder die Fluktuationen

der Neutralteilchen noch die Reibung zwischen Neutralteilchen und dem Plasma die

zeitlich gemittelten Plasmaprofile signifikant beeinflussen. Dank dieser Erkenntnisse

entwickeln wir ein einfaches Modell für die Interaktion zwischen Neutralteilchen und

dem Plasma, das es erleichtert die physikalischen Prozesse in der Tokamakperipherie

zu identifizieren und zu verstehen.

Mithilfe der Betrachtung der Wechselwirkung zwischen Neutralteilchen und dem Plas-

ma entlang der Magnetfeldlinien in der Abschälschicht entwickeln wir – ausgehend

von den drift-reduzierten Braginskii-Gleichungen – ein verbessertes Zwei-Punkte-

Modell, das das Zusammenspiel von parallelem und senkrechtem Transport von

Plasmateilchen und Wärme und die Interaktion zwischen Neutralteilchen und dem

Plasma beschreibt. Das Modell schätzt die Abnahme der Elektronentemperatur ent-

lang einer magnetischen Feldlinie von einer Region weit entfernt vom Begrenzer zu

den Begrenzerplatten ab. Das verbesserte Zwei-Punkte-Modell stimmt sehr gut mit

den Simulationsergebnissen überein.

Zuletzt simulieren wir selbstkonsistent einen diagnostischen Neutralteilchen-Gasstoß,
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der experimentell oft eingesetzt wird um mehr über die Eigenschaften der Turbulenz

in der Tokamakperipherie zu erfahren. Wir untersuchen die Auswirkungen der Fluk-

tuationen in der Neutralteilchendichte auf die lokale Dα-Lichtemission. Es stellt sich

heraus, dass in der Nähe des Gasstoßes – bis zu einem radialen Abstand der ungefähr

der mittleren freien Weglänge der Neutralteilchen entspricht – die Fluktuationen der

Neutralteilchendichte mit den Fluktuationen in Plasmadichte, Elektronentemperatur

und Dα-Emission anti-korreliert sind. In größeren Abständen vom Gasstoß beein-

flusst eine nicht-lokale Schattenwirkung die Neutralteilchen und die Fluktuationen

der Dα-Emission sind mit den Fluktuationen der Neutralteilchendichte korreliert.

Stichwörter:
Plasmaphysik, kontrollierte Fusion, Abschälschicht, Turbulenz, kinetische Neutral-
teilchendynamik, Fluidsimulationen, kinetische Simulationen, drift-reduziertes
Braginskii Modell, Limiter, Zwei-Punkt-Modell, Gasstoß-Bildgebung, Neutralteil-
chen-Fluktuationen
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Chapter 1

Introduction

1.1 Electricity production and fusion

The ever increasing demand for energy is one of the big challenges humanity faces in

the 21st century. Currently, electricity accounts for about one quarter of the world’s

total final energy consumption, and its share is expected to increase significantly in

the next decades [1]. While technological advances are increasing the efficiency of

electricity usage, they cannot cover its raising demand due to the growing world pop-

ulation and the increasing fraction of people with access to electricity. The demand

has to be met under consideration of the power plants’ ecological impact, especially

the release of carbon-dioxide and air pollutants. While, in principle, a mix of renew-

able energy sources and nuclear fission power plants could meet the demand for

a significantly carbon-dioxide reduced electricity production, the implementation

of such an electricity production scenario faces several challenges. Wind and solar

electricity production depend on the weather and the regional climate, and they

have to be complemented with large energy storage facilities whose development

still requires a breakthrough. At the same time, today’s nuclear fission power plants

produce long-lasting radioactive waste, lack inherent safety against accidents, and

increase the availability of potentially dangerous nuclear fission materials, which

raises proliferation issues. Furthermore, the amount of nuclear fission fuel available

on Earth is limited. The development of a carbon-dioxide-free source of electricity

that avoids these issues would be an extremely valuable addition to our capabilities to

produce electricity. Fusion power plants may provide this source of energy.

Fusion power plants are expected to use nuclear reactions similar to the ones occurring

in the stars, which are their mechanism to release energy. In the stars, hydrogen
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Chapter 1. Introduction

nuclei fuse together to form helium (alpha particles) via either the proton-proton

chain reaction (dominant in the Sun), or the catalytic carbon-nitrogen-oxygen cycle

(dominant in massive stars) [2]. Since both of these processes involve two beta decays

(two protons become neutrons), they are very slow and cannot be used in fusion

power plants on Earth. The most promising nuclear reaction for fusion power plants

is the one between deuterium and tritium,

2
1D+3

1 T →4
2 He(3.5MeV)+1

0 n(14.1MeV). (1.1)

A large amount of energy (approximately 17.6MeV) is released as kinetic energy of

the fusion products in this reaction, with the neutron carrying approximately 80%

and the alpha particle approximately 20% of the released energy. Deuterium and

tritium energies of the order of 10-100keV are necessary for the reaction to happen,

because both nuclei are positively charged and the electrostatic Coulomb repulsion

between the two has to be overcome, such that the nuclei can get close enough for

the attracting strong nuclear force to dominate. In thermonuclear fusion devices,

these high energies are achieved by confining and heating the deuterium-tritium

fuel to temperatures of 20-30keV. At this temperature, the fusion fuel is ionized and

therefore in the plasma state [3]. While initially the plasma requires external heating

sources, it has to self-sustain the high temperature during the steady-state to achieve

a positive net energy gain. In the foreseen fusion reactor operation, the produced fast

neutrons leave the plasma without interacting and release their kinetic energy to a

blanket surrounding the plasma. (The heat is then removed from the blanket and

used in conventional steam generators to obtain electricity.) On the other hand, the

alpha particles provide the steady-state plasma heating. The condition necessary for

a sufficient number of fusion reactions to occur, in order to keep the fusion process

going without external heating, is given by the Lawson triple product criterion [4],

nTτE � 1020s m3keV, (1.2)

where n is the plasma density, T the plasma temperature, and τE the energy confine-

ment time (i.e. the ratio between energy loss rate and the total plasma energy).

While several paths are being explored to achieve the condition in Eq. 1.2, currently,

the most promising design of a future fusion power plant is based on confining the

hot plasma in a toroidal magnetic cage, where on top of a toroidal magnetic field a

poloidal component is superimposed, leading to helical magnetic field lines that lie

on closed flux-surfaces. In fact, due to the Lorenz force ions and electrons of a plasma

gyrate around the magnetic field, and therefore they are confined in the directions

perpendicular to it. On the other hand, these particles move freely along the magnetic

2



1.1. Electricity production and fusion

Figure 1.1 – Schematic of a tokamak. The pink volume depicts the hot confined plasma.
The blue coils produce the toroidal magnetic field. The green central transformer
coil induces the plasma current, which produces the poloidal magnetic field. Image
source: euro-fusion.org

field lines, which, as a consequence, should not intersect a solid wall. The need of both

a toroidal and poloidal component of the magnetic field is due to the fact that charged

particles in a purely toroidal magnetic field are not confined, even though the field

lines do not intersect a solid wall, because of vertical curvature drifts originating from

the magnetic field curvature and gradients [5]. Fusion research has now converged to

the development of two devices to confine a hot plasma in such a toroidal magnetic

cage: the tokamak [5] and the stellarator [6]. In a stellarator, both field components

are created by external magnetic coils, requiring complicated three-dimensionally

shaped magnets. In a tokamak, a toroidal plasma current is induced by a central

coil, which acts as a primary circuit of a transformer, creating the necessary poloidal

component of the magnetic field that is superimposed to a toroidal field, created by a

set of poloidal coils. A schematic view of the coils in a tokamak is shown in Fig. 1.1.

The present Thesis focuses on the dynamics in the periphery of a tokamak.

3



Chapter 1. Introduction

Core

Edge

SOL

Limiter

(a) Tokamak regions

Plasma
Neutrals

Ionization

(b) Limiter recycling

Figure 1.2 – Schematic poloidal cross-section of a tokamak with a toroidal rail limiter
on the high-field side midplane. (a) The three main plasma regions, i.e. core, edge,
and SOL are indicated. (b) Recycling process: Plasma is transported radially outward
from the core and edge into the SOL, where it flows along the field lines to the limiter
(black arrows). There, the plasma is recycled and the recycled neutrals (blue arrows)
are ionized by the hot plasma (mostly in the red region).

1.2 The periphery of a tokamak

Three main plasma regions can be identified in a tokamak, as shown in the schematic

poloidal cross-section in Fig. 1.2a. The core is the central region where the plasma

is far from the wall, hottest and densest, and where the fusion reactions take place.

Due to the high temperatures, the collisionality in the core is rather low [7], such

that for its description and numerical modeling a kinetic model is necessary. In the

core, magnetic field lines lie on toroidal nested closed flux-surfaces. The region that

encloses the core is called the edge region. In the edge, the field lines also lie on

closed flux-surfaces, but the plasma temperature and density decrease rapidly in the

direction radially outwards from the core and, in general, the equilibrium gradients

become larger than in the core. Since the temperature is lower in the edge than in the

core, the collisionality can sometimes be sufficiently high for a fluid description of

the plasma dynamics to become applicable. While the separation between the core

and edge regions, which form together the confined region, is not clearly defined, we

will denote as edge region the outermost part of the confined region of the plasma.

Finally, the third, outermost, plasma region is called the Scrape-Off Layer (SOL). The

4



1.2. The periphery of a tokamak

SOL is separated from the edge by the last closed flux surface (LCFS or separatrix). In

the SOL, the field lines do not lie on closed flux-surfaces, but they intersect the solid

walls and, for this reason, they are referred to as open field lines. The intersection of

the field lines with the solid wall can occur at the main vessel wall, at the surface of a

limiter, or at the divertor [8]. A limiter is a structure that is built into the vessel wall to

precisely define the extend of the SOL and it can be designed to withstand high heat

loads from the plasma, e.g., with active cooling. In Fig. 1.2a a toroidal rail limiter is

shown on the high-field side equatorial midplane of the torus. We note that poloidal

limiters also exist, and the main wall can be used as a limiter, which is often the case

during the initial ramp-up phase in machines that have a divertor, when the magnetic

flux-surfaces are pushed against a defined section of the wall [9]. In a diverted plasma,

external poloidal magnetic field coils are used to shape the plasma so that the strike

points (the points where the LCFS touches the wall) are at a certain distance from

the confined plasma region. This is in contrast to the limited configuration, where

the strike points are at the limiter corners and, therefore, in direct contact with the

confined region (see Fig. 1.2a). The divertor is the part of the vessel wall, typically

designed to withstand high heat loads, where the strike points lay. Since it is spatially

separated from the confined region, the plasma conditions at the strike points can

be very different from the ones in the edge. In fact, it is advantageous to have rather

cold plasma in front of the solid wall, since the plasma temperature sets the drop of

the electrostatic potential at the wall, which accelerates ions towards the wall [8]. Fast

ions lead to sputtering of wall material, and ultimately to impurities in the plasma

core and fast degradation of the wall. Since the temperatures in the SOL are lower than

in the core and edge regions, the collisionality is higher, and a fluid description of the

plasma is often applicable. The SOL and edge regions, together, form the periphery of

the fusion plasma.

While single charged particles are well confined by the twisted magnetic field lines,

their collective dynamics degrade the confinement. Particles are radially transported

due to collisions (classical and neo-classical transport) and due to plasma turbulence,

which is driven by steep radial plasma gradients (e.g., Te � 10keV in the core and Te �
10eV in the far SOL). Despite this, particles still move along the field lines generally

much faster than radially. Therefore, ions and electrons that leave the confined region

and enter in the SOL region are more likely to arrive at the limiter or divertor by flowing

along the field lines, than to travel radially to the main part of the vessel wall. The

electrons and ions impacting the solid walls recombine on its surface. The resulting

neutral atoms are either reflected following the ion impact, or stick to the wall and

combine among themselves to form molecules, which are thermally released from

the wall when its surface is saturated. The neutral molecules and atoms are then

dissociated and ionized inside the plasma, fueling it. If the ionization takes place

5



Chapter 1. Introduction

in the SOL, the newly ionized plasma most likely flows back to the wall, where it is

recycled again. On the other hand, if the neutrals are ionized in the confined region,

the recycled particles can redistribute themselves on the flux-surface before being

radially transported out again into the SOL. This recycling process for a tokamak with

a toroidal rail limiter on the high-field side midplane is depicted in Fig. 1.2b. In the

limited configuration, the strike point, where a large fraction of the recycling occurs,

is in direct contact with the confined region, and therefore a large fraction of recycled

neutrals are ionized inside the LCFS. In diverted configurations, on the other hand, a

large fraction of the recycled neutrals can be ionized close to the strike point in the

SOL. In this case, the plasma is said to be in a high-recycling regime.

1.3 Outline of the present Thesis

In this Thesis we present the results of our study on the interaction between neutral

atom dynamics and turbulent plasma in the tokamak SOL and edge regions. The

study was carried out with the three-dimensional turbulence code GBS [10, 11], which

evolves the drift-reduced two-fluid Braginskii equations for the plasma, coupled to a

kinetic model for the neutral atoms [12].

In Chapter 2 we present the derivation of the model equations, starting from kinetic

equations for electrons, ions, and neutral atoms. For the plasma species, we derive a

set of fluid equations with the Braginskii closure and apply the drift-reduction valid

in typical SOL conditions. The kinetic neutral equation is simplified by assuming

simple collision operators and separating time and spatial scales, leading to a formal

analytical solution that can be evaluated numerically. We also present numerical

convergence test of the solution of the neutral model.

In order to study the importance of the different mechanisms at play in the interaction

between neutrals and plasma, in Chapter 3 we present a simulation of the tokamak

SOL and edge regions with self-consistent fueling due to neutral gas puffs. We investi-

gate the influence of neutral atom fluctuations on the plasma equilibrium profiles,

and we highlight what are the most important terms that set the interaction of the

neutrals with the plasma.

In Chapter 4 we present a set of self-consistent turbulence simulations of the tokamak

SOL. In these simulations, the plasma density is observed to affect the drop in electron

temperature from the low-field side midplane to the region in front of the limiter. We

derive a refined two-point model including the neutral-plasma interaction terms as

well as the plasma compressibility from the parallel electron heat balance. This model

6



1.3. Outline of the present Thesis

is in very good agreement with the turbulent simulation results of such an electron

temperature drop.

In Chapter 5 we investigate the influence of neutral density fluctuations on Dα emis-

sion, which is often used experimentally to obtain information about plasma turbu-

lence by gas puff imaging (GPI) diagnostics. We include a diagnostic gas puff in a

simulation of the tokamak SOL and edge regions to evolve the neutral fluctuations

self-consistently with the turbulent plasma structures.

We summarize our findings in Chapter 6 and give an outlook on future work that can

be carried out with the neutral atoms model developed in the present Thesis and the

GBS code.

7





Chapter 2

A self-consistent model of plasma
turbulence and neutral atom dynamics

In this Chapter we present the model that is used throughout this Thesis to simulate

the interaction of neutral atom dynamics and plasma turbulence in the tokamak

periphery. We also provide a short description of the GBS code that implements this

model. The two-fluid drift-reduced Braginskii equations to model plasma turbulence

are derived in Refs. [13, 14] and discussed in former publications about the GBS

code [10, 11, 15, 16]. The description of the kinetic neutral model and its coupling

to the plasma equations is published in Ref. [12]. In fact, this Chapter represents an

updated and more detailed version of the model description reported in Ref. [12].

This Chapter is structured as follows. After the Introduction, in Section 2.2 we intro-

duce the model for neutral atoms and in Section 2.3 we introduce the drift-reduced

Braginskii equations suitable to describe plasma turbulence in the SOL including the

interaction of the plasma with the neutrals. The method to solve the kinetic equation

for neutrals is discussed in Section 2.4 and the description of the numerical imple-

mentation of the neutral and plasma equations follows in Section 2.5. In Section 2.6,

first results of self-consistent simulations of plasma turbulence and neutral dynamics

are presented. The numerical convergence properties of the solver are studied in

Section 2.7.

9



Chapter 2. Model

2.1 Introduction

The first-principles understanding of the processes occurring in the tokamak SOL and

edge regions remains an outstanding open issue in the way towards the construction

of a fusion reactor. The SOL physics sets the boundary conditions for the plasma core,

influencing the performance of the entire device, and it regulates the interaction of

the plasma with the solid wall, determining the particle and power flux to the vessel.

These have to stay within the material limits to prevent damage to the wall [17, 18].

When ions and electrons outflowing from the SOL impact the solid walls, they recom-

bine and they are re-emitted into the tokamak as neutral atoms and molecules that

can penetrate into the SOL and edge region. These recycled neutrals, which interact

with the plasma through a number of collisional processes, play an important role in

the SOL dynamics, and in regulating the heat and particle flux to the first wall.

To study the interplay between the neutral and the plasma dynamics in the toka-

mak periphery, plasma simulation codes based on phenomenological models for

the turbulent transport are coupled to kinetic Monte Carlo codes that describe the

behavior of the neutrals in the SOL (e.g., EIRENE [19, 20], DEGAS 2 [21], NIMBUS [22],

and others). The resulting codes (e.g., SOLEDGE2D-EIRENE [23], SOLPS, formerly

B2-EIRENE, [24, 25, 20], EMC3-EIRENE [26], UEDGE [27], and others) are the tool of

reference for the design of tokamak divertors and they have been used for the ITER

divertor [28]. Fluid descriptions of the neutrals were also developed for plasma trans-

port codes [27, 29, 30], which are applicable in cases where the distribution function

of the neutrals is close to a Maxwellian through a high collisionality of the neutrals.

It was shown that fluid neutral models give similar results as kinetic simulations in

some scenarios (e.g., in the detachment regime inside a divertor leg [31]).

Only recently, attempts have been made to include the neutral dynamics in today’s

SOL codes that are derived from first-principles, i.e., that do not make use of empir-

ical models or experimentally fitted parameters to describe SOL turbulence, such

as BOUT++ [32], GBS [10, 11] TOKAM3X [33], HESEL [34], and GRILLIX [35]. In

the two-dimensional turbulence simulation code TOKAM2D [36], the ionization of

mono-energetic neutrals flying along the radial direction is self-consistently described

within a plasma model that evolves the plasma density and the electrostatic poten-

tial. Within a simple two-dimensional fluid plasma description, the use of a fluid

neutral model was recently reported [37]. A fluid-diffusive neutral model was also

developed for BOUT++, being applied to study the interaction of neutrals with three-

dimensional plasma turbulence in a linear device [38], and for the two-dimensional

HESEL code [39]. The coupling of both BOUT++ and TOKAM3X with the kinetic

10



2.2. The neutral model

EIRENE Monte Carlo code for neutral particles is being attempted.

In the present Thesis, we introduce a kinetic model for neutral atoms in the tokamak

periphery, self-consistently evolved with the drift-reduced Braginskii equations [13,

14] that describe the plasma dynamics in typical SOL conditions. The neutral kinetic

model allows us to consider both short and long neutral mean free paths. We con-

sider one mono-atomic neutral species, which is subject to four effective collision

processes: charge-exchange (that includes elastic ion-neutral collisions), ionization,

recombination, and elastic electron-neutral collisions. Although they may become

important in detached scenarios, we neglect neutral-neutral collisions, which have

a lower reaction rate than charge-exchange and ionization processes in the typical

attached SOL parameter regime. We note that additional neutral species, such as

molecules, can be included using the same model presented in this Thesis - this might

become necessary to consider detachment conditions, or to include the details of the

recycling from the main vessel wall.

The model is implemented and numerically solved within the GBS code [10, 11], a

three-dimensional numerical code developed to simulate SOL plasma turbulence. By

solving the drift-reduced Braginskii equations coupled to the kinetic neutral atom

equation, GBS evolves the full plasma and neutral profiles without separation into an

equilibrium and fluctuating part, enabling the study of the self-consistent formation of

the plasma profiles as the interplay of the plasma outflowing from the core, turbulent

transport, the parallel flow towards the limiter, the sheath losses, and the plasma

recycling and the neutrals’ ionization. GBS uses a proper set of boundary conditions at

the presheath entrance [40], and it is able to treat electromagnetic perturbations [41].

2.2 The neutral model

We describe the dynamics of the distribution function of a single mono-atomic neutral

species, fn, by using the following kinetic equation

∂ fn

∂t
+v · ∂ fn

∂x
=−νiz fn −νcx

(
fn − nn

ni
fi

)
+νrec fi (2.1)

being fi, nn, and ni the ion distribution function, the neutral density, and the ion den-

sity, respectively. The ionization, charge-exchange, and recombination processes are

described, respectively, through the use of Krook operators with collision frequencies

11



Chapter 2. Model
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Figure 2.1 – The values of the collision rates, 〈vσ〉v , for ionization, charge-exchange,
recombination, and elastic electron-neutral collisions for n0 = 5 ·1019m−3.

defined as

νiz = ne〈veσiz(ve)〉v (2.2)

νrec = ne〈veσrec(ve)〉v (2.3)

νcx = ni〈viσcx(vi)〉v (2.4)

where σiz, σrec, and σcx are the ionization, recombination, and charge-exchange

cross-sections, and ve and vi are the electron and ion velocities. The collision frequen-

cies, νiz and νrec, result from the averaging over the electron distribution function,

neglecting therefore the neutral atom velocity, with respect to the electron one, in

the evaluation of the relative velocity between the colliding particles. Regarding the

charge-exchange collision frequency, νcx, we note that it depends weakly on the rel-

ative velocity between neutrals and ions [8], thus we neglect the neutral velocity in

Eq. (2.4) when evaluating the relative velocity of the colliding particles, and we average

the cross-section over the ion distribution function. The elastic electron-neutral colli-

sions are neglected in the neutral equation, because of the electron to neutral mass

ratio. In the present work, we use effective reaction rates for the ionization, charge-

exchange, and recombination 〈vσ〉v terms, which are taken from the OpenADAS1

database, where they have been calculated using a collisional-radiative model [42].

The cross-sections for the elastic electron-neutral collisions are taken from Ref. [43].

The values of the collision rates, 〈vσ〉v , used in this work are shown in Fig. 2.1 and

Table 2.1.

1OpenADAS - http://open.adas.ac.uk
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2.2. The neutral model

Te,Ti [eV] 1 10 100

〈veσiz〉 [m3/s] 5.97 ·10−20 9.88 ·10−15 4.17 ·10−14

〈viσcx〉 [m3/s] 6.90 ·10−15 1.78 ·10−14 4.23 ·10−14

〈veσrec〉 [m3/s] 1.28 ·10−18 6.57 ·10−20 5.99 ·10−21

〈veσen〉 [m3/s] 1.29 ·10−13 1.03 ·10−13 3.01 ·10−14

Table 2.1 – The values of the collision rates, 〈vσ〉v , for ionization, charge-exchange,
recombination, and elastic electron-neutral collisions for n0 = 5 ·1019m−3.

Since Eq. (2.1) has to be solved in the bounded domain of the tokamak periphery,

we now describe its boundary conditions. Being a kinetic advection equation, the

boundary conditions for fn have to be specified for the inward pointing velocities,

that is for v such that vp = v · n̂ > 0, with n̂ the normal vector perpendicular to the

boundary and pointing into the plasma region. At the limiter or divertor plates, the

boundary of the domain over which Eq. (2.1) is solved coincides with the wall. We

assume that the wall is saturated, i.e. that all impacting particles, neutrals and ions,

are re-emitted from the wall instantly. A fraction of the particles impacting the wall,

αrefl, is reflected as neutrals, the rest is absorbed and released, again as neutrals, with a

velocity that depends on the wall properties and that is independent of the impacting

velocities. The parameter αrefl depends on the wall material and the SOL conditions

(see, e.g, page 113 in Ref. [8]). We assume αrefl = 0.8 for both neutrals and ions in the

simulations in this Thesis. The distribution function of the inflowing neutrals, vp > 0,

is therefore

fn(xb,v) =(1−αrefl)Γout(xb)χin(xb,v) (2.5)

+αrefl[ fn(xb,v−2vp)+ fi(xb,v−2vp)],

where xb is the vector position of a point on the boundary, specifically on the limiter

or divertor plates in this case, and Γout =
∫

vp<0 |vp| fndv3 +Γout,i the flux of ions and

neutrals outflowing towards the limiter or divertor plates. In particular, Γout,i is the

outflowing perpendicular ion flux, where we only include the perpendicular part

of the parallel ion flow and neglect ion drifts, and vp = vpn̂ is the perpendicular

neutral velocity with respect to the boundary. For the reflected part of the inflowing

neutral distribution, we use spectral reflexion at the magnetic pre-sheath entrance.

In particular, for simplicity, we neglect the acceleration of the ions in the sheath, and

we assume unitary energy reflection coefficients (see, e.g., Eq. (3.2) in Ref. [8]). We

note that these assumptions can be replaced in future efforts with a kinetic model of

the ions in the sheath (see, e.g., Ref. [44]), which might be necessary for quantitative

comparison to experimental results. The inflowing velocity distribution, χin, is set

13
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according to the Knudsen Cosine Law [45] to

χin(xb,v) = 3

4π

m2

T 2
b

cos(θ)exp

(
−mv2

2Tb

)
, (2.6)

being θ = arccos(Ω̂ · n̂), Ω̂ = v/v , and Tb the temperature of the inflowing neutrals

from the boundary. Often, we use Tb = 3eV to mimic typical energies of neutral atoms

after Frank-Condon dissociation [46, 8, 47]. The function χin satisfies the property∫
vp>0 vpχindv3 = 1.

For the sake of simplicity, we place the outer boundary of the computational domain

between the LCFS and the vessel wall. We remark that this boundary does not coincide

with a physical surface. Particles that flow out through this boundary therefore travel

towards the outer vessel wall, impact it, recycle, and then they re-enter the simulation

domain. As particles can spread while moving towards the outer vessel wall and

re-entering the domain, we evaluate the inflowing distribution function of the neutral

atoms by using a local averaging procedure to redistribute the particles outflowing

through the surface S that surrounds the position xb as

fn(xb,v) = χin(xb,v)

S

∫
S
ΓoutdS (2.7)

for v such that vp > 0. The surface S can depend on xb. We remark that, as at the

limiter, we neglect ion drifts at the outer boundary in the current implementation of

the boundary conditions.

At the boundary towards the tokamak core, we assume that no neutral atoms enter the

tokamak periphery, thus fn(xb,v) = 0 for v such that vp > 0. Neutral atoms outflowing

from the periphery into the core are assumed to be ionized therein, and the ionized

plasma is modeled by a source of plasma density at the boundary towards the core

(see Section 2.3).

2.3 The plasma model

For simplicity, we consider a single ion species plasma. We start our derivation of

the drift-reduced Braginskii equations from the kinetic Boltzmann equation of ions

and electrons, where we include collision terms in the form of Krook operators to

describe the interaction with the neutrals. For the ion species we consider ionization,

recombination, and charge-exchange processes, while for the electrons, we consider

ionization, recombination, and elastic collision processes. Therefore, the kinetic
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2.3. The plasma model

equation for the ions is

∂ fi

∂t
+v · ∂ fi

∂x
+a · ∂ fi

∂v
= νiz fn −νcx

(
nn

ni
fi − fn

)
−νrec fi +Ci( fi, fe), (2.8)

while the kinetic equation for the electrons is

∂ fe

∂t
+v · ∂ fe

∂x
+a · ∂ fe

∂v
=νiznn

[
2Φe(vn,Te,iz)− fe

ne

]
(2.9)

+νennn

[
Φe(vn,Te,en)− fe

ne

]
−νrec fe +Ce( fe, fi),

where a is the particle acceleration due to the Lorentz force, Φe(v,T ) is a Maxwellian

velocity distribution function for electrons, Ci( fi, fe) and Ce( fe, fi) are the Coulomb

collision operators including both inter- and intra-species collisions for ions and

electrons respectively, and the elastic electron-neutral collision frequency is νen =
ne〈veσen(ve)〉v .

While the interpretation of the collision terms in the ion kinetic equation is straightfor-

ward, as they correspond (with opposite sign) to those of the neutral equation, Eq. (2.1),

the collision operators in the electron kinetic equation deserve a longer discussion.

When a neutral atom is ionized, the impacting fast electron is removed from the sys-

tem, while two slower electrons appear. As a Krook collision term is used in Eq. (2.9),

the loss rate of the fast electrons is proportional to the electron distribution function.

Although it is not taken into account that the two resulting electrons might be emit-

ted according to different distribution functions, the model can be reliably used to

derive a fluid plasma description, as we do in the following. The two lower-energy

electrons appear with a Maxwellian distribution function, Φe(vn,Te,iz), of average

velocity vn =∫
v fndv/

∫
fndv and temperature Te,iz = Te/2−Eiz/3+mev2

e /6−mev2
n/3,

where Te and ve are the local electron temperature and fluid velocity respectively. This

is deduced by assuming that the electrons are released isotropically in the neutrals’

frame of reference, and that the total electron kinetic energy is reduced by the effective

ionization energy, Eiz, when an ionization process occurs. We note that the ionization

term in Eq. (2.9) takes into account the different paths to ionization (direct or through

excited states), by using an effective ionization coefficient. (We also note that Te,iz can

formally become negative, since the finite electron energy threshold for ionization

processes is included inside the averaged collisionality νiz. This means that fast and

slow electrons have the same probability of ionizing neutral atoms in our simplified

description. For low electron temperatures νiz vanishes, which prevents negative

electron temperatures in the fluid model that is derived in the following.)

The electron-neutral collisions are modeled in Eq. (2.9) through a loss term pro-
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Chapter 2. Model

portional to the electron distribution function and a source with a Maxwellian dis-

tribution, Φe(vn,Te,en). In fact, similarly to the ionization process, we impose that

the electrons are scattered isotropically in the neutrals’ frame of reference. More-

over, assuming that during the elastic electron-neutral collisions the electron ki-

netic energy is conserved during collisions with much heavier neutrals, one obtains

Te,en = Te +me(v2
e − v2

n)/3. We note that the electron-neutral elastic collision term is

neglected in the neutral kinetic equation, Eq. (2.1), because of the small electron to

neutral mass ratio.

Following the work of Braginskii [13], we now take the first three moments of the

electron and ion kinetic equations, Eqs. (2.8) and (2.9), in the limit ωcτ� 1, where

ωc = qB/m is the gyro-frequency and τ the typical Coulomb collision time, and with

the assumption λmfp/L � 1, where λmfp is the mean free path, and L the characteristic

length of the field lines. In typical SOL conditions, the ion-neutral and electron-neutral

collision time is much larger than the electron and ion Coulomb collision time, thus

the presence of these collisions does not affect the closure derived in Ref. [13]. In the

case of high ion-neutral collisionality, ωciτi−n ≤ 1, the closure terms have been derived

by Helander et al. in Ref. [48].

The Braginskii equations for the electron and ion densities, fluid velocities, and tem-

peratures, derived in Ref. [13], including the additional plasma-neutral interaction

terms are

∂ne

∂t
+∇· (neve) =nnνiz −niνrec (2.10)

∂ni

∂t
+∇· (nivi) =nnνiz −niνrec (2.11)

mene
deveα

dt
=− ∂pe

∂xβ
− ∂Πeαβ

∂xβ
−ene [Eα+ (ve ×B)α]+Rα (2.12)

+menn(νen +2νiz)(vnα− veα)

mini
diviα

dt
=− ∂pi

∂xβ
− ∂Πiαβ

∂xβ
+Z eni [Eα+ (vi ×B)α]−Rα (2.13)

+minn(νiz +νcx)(vnα− viα)

3

2
ne

deTe

dt
+pe∇·ve =−∇·qe −Πeαβ

∂veα

∂xβ
+Qe (2.14)

+nnνiz

[
−Eiz − 3

2
Te + 3

2
meve ·

(
ve − 4

3
vn

)]
−nnνenmeve · (vn −ve)
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3

2
ni

diTi

dt
+pi∇·vi =−∇·qi −Πiαβ

∂viα

∂xβ
+Qi (2.15)

+nn(νiz +νcx)

[
3

2
(Tn −Ti)+ mi

2
(vn −vi)

2
]

where Παβ is the αβ component of the stress tensor, R is the friction force between

electrons and ions, p is the pressure, q is the heat flux density, Q is the heat generated

by Coulomb collisions, Z is the ion charge, E and B are the electric and magnetic

fields, de/dt = ∂/∂t + (ve ·∇) and di/dt = ∂/∂t + (vi ·∇) are the electron and ion advec-

tive derivatives, and the subscripts e and i stand for electrons and the ion species

respectively. The detailed definitions of all fluid quantities can be found in the paper

by Braginskii [13].

Despite their simplicity with respect to the kinetic equations, Braginskii’s equations,

Eqs. (2.10)-(2.15), are not yet suitable to describe the plasma turbulence in the SOL,

mainly due to the high computational cost of numerically resolving the electron

cyclotron motion. Therefore, we simplify the Braginskii equations in the drift limit, ob-

serving that d/dt �ωci for typical SOL turbulence. We follow the procedure described

by, e.g., Zeiler [14].

To obtain the perpendicular ion velocity, we cross the ion momentum equation,

Eq. (2.13), with B and rearrange the terms according to their order, writing v⊥i =
v⊥i0 +vi−n +vpol. The leading order term v⊥i0 = vE +vdi is the sum of the E×B drift,

vE = (E×B)/B 2, and the diamagnetic drift, vdi = (B×∇pi)/(enB 2), where we assume

quasi-neutrality, ni = ne = n, and Z = 1. The drift arising from ion-neutral friction

due to charge-exchange and elastic collisions, vi−n = (nn/n)(νcx/ωci)(v⊥n −v⊥i)× b̂,

and the polarization drift, vpol, due to the ion inertia [14], are assumed to be of higher

order in (1/ωci)d/dt with respect to v⊥i0. While the ordering and the expression of vpol

have been discussed in detail by many authors (see, e.g., Ref. [14]), we note that vi−n is

much smaller than the leading order term v⊥i0, as vi−n � v⊥iνcx/ωci � v⊥i0 in typical

SOL conditions, where we assume that νcx �ωci and v⊥n � v⊥i. On the other hand,

applying the same procedure to the electron momentum equation, Eq. (2.12), leads to

v⊥e = vE +vde, with vde =−(B×∇pe)/(enB 2), where the terms proportional to me are

neglected.

17



Chapter 2. Model

The resulting drift-reduced Braginskii equations in the electrostatic limit are

∂n

∂t
=− 1

B
[φ,n]−∇‖(nv‖e)+ 2

eB

[
C (pe)−enC (φ)

]+Dn(n)+Sn (2.16)

+nnνiz −nνrec

∂ω̃

∂t
=− 1

B
[φ,ω̃]− v‖i∇‖ω̃+ B 2

min
∇‖ j‖ + 2B

min
C (p)+ B

3min
C (Gi) (2.17)

+Dω̃(ω̃)− nn

n
νcxω̃

∂v‖e

∂t
=− 1

B
[φ, v‖e]− v‖e∇‖v‖e + e

σ‖me
j‖ + e

me
∇‖φ− Te

men
∇‖n (2.18)

− 1.71

me
∇‖Te − 2

3men
∇‖Ge +Dv‖e (v‖e)+ nn

n
(νen +2νiz)(v‖n − v‖e)

∂v‖i

∂t
=− 1

B
[φ, v‖i]− v‖i∇‖v‖i − 1

min
∇‖p − 2

3min
∇‖Gi +Dv‖i (v‖i) (2.19)

+ nn

n
(νiz +νcx)(v‖n − v‖i)

∂Te

∂t
=− 1

B
[φ,Te]− v‖e∇‖Te + 4Te

3eB

[
Te

n
C (n)+ 7

2
C (Te)−eC (φ)

]
(2.20)

+ 2Te

3n

[
0.71

e
∇‖ j‖ −n∇‖v‖e

]
+DTe (Te)+κ‖e∇‖

(
T 5/2

e ∇‖Te
)+STe

+ nn

n
νiz

[
−2

3
Eiz −Te +mev‖e

(
v‖e − 4

3
v‖n

)]
− nn

n
νenme

2

3
v‖e(v‖n − v‖e)

∂Ti

∂t
=− 1

B
[φ,Ti]− v‖i∇‖Ti + 4Ti

3eB

[
C (Te)+ Te

n
C (n)− 5

2
C (Ti)−eC (φ)

]
(2.21)

+ 2Ti

3n

[
1

e
∇‖ j‖ −n∇‖v‖i

]
+DTi (Ti)+κ‖i∇‖

(
T 5/2

i ∇‖Ti
)+STi

+ nn

n
(νiz +νcx)

[
Tn −Ti + 1

3
(v‖n − v‖i)

2
]

with p = n(Te +Ti), the total pressure, j‖ = en(v‖i − v‖e) the parallel current, κ‖e and

κ‖i the Spitzer heat conduction coefficients, and σ‖ = 1.96e2nτe/me, the parallel

conductivity, where τe is the electron collision time. The gyro-viscous contribu-

tions are included through the terms Gi =−η0i[2∇‖v‖i +C (pi)/(enB)+C (φ)/B ] and

Ge =−η0e[2∇‖v‖e−C (pe)/(enB)+C (φ)/B ], where η0i and η0e are the gyro-viscous coef-

ficients [13]. The source terms (Sn , STe , STi ) mimic the outflow of hot plasma from the

confined region to the SOL. The small perpendicular diffusion terms, DA(A) = D A∇2
⊥A,

with the diffusivity D A, are included mainly for numerical reasons. The general-

ized vorticity, ω̃ = ω+1/e∇2
⊥Ti, is related to the electrostatic potential by ∇2

⊥φ = ω,

where we use the Boussinesq approximation. The following operators are introduced:

∇‖A = b̂ ·∇A, [A1, A2] = b̂ · (∇A1 ×∇A2), and C (A) = B/2[∇× (b̂/B)] ·∇A, with b̂ = B/B .

In this work, we solve the electrostatic equations for circular magnetic flux surfaces in
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2.3. The plasma model

the large aspect ratio limit, ε= a0/R0 � 0, where a0 and R0 are the minor and major

radius. The effects of finite aspect ratio on the presented equations were previously

discussed in Ref. [49], and the electromagnetic effects in Ref. [41].

We note that the density equation, Eq. (2.16) is derived from the electron density

equation, Eq. (2.10), and that the vorticity equation, Eq. (2.17), is obtained by subtract-

ing Eq. (2.10) from Eq. (2.11), applying quasi-neutrality, ni = ne = n, and using the

Boussinesq-approximation. The term resulting from the ion-neutral friction drift in

Eq. (2.17) has been evaluated by approximating vi−n � (nn/n)(νcx/ωci)(v⊥n −v⊥i0)× b̂
and assuming ∇·v⊥n �∇·v⊥i0, which is true for ρs0/λmfp,n � 1. (ρs0 = cs0/ωci is the

ion sound Larmor radius, cs0 =
�

Te0/mi is the plasma sound speed, Te0 is the electron

temperature at the LCFS, and λmfp,n is the mean free path of the neutrals.) The contri-

bution of the electron-neutral friction drift in the vorticity equation, Eq. (2.17), has

been neglected due to the small electron to ion mass ratio. We remark that we neglect

vpol and vi−n in the advective derivative d/dt . We also remark that, for simplicity, we

neglect the collisional heat transfer between electrons and ions and the ohmic heating

from plasma currents in the Qi and Qe terms due to the small electron to ion mass

ratio. This assumption might have to be removed in future efforts for quantitative

comparison to experimental results, especially in high density scenarios. It has been

verified a posteriori (using the simulation discussed in Section 3.2) that the parallel

heat conduction, which is modeled through the Spitzer conductivity, does not exceed

the free streaming limit [50], qFS
e,i � 0.8nTe,ivth e,i, in the quasi-steady state. Therefore,

heat flux limiters (as discussed, e.g., in Ref.[50]) are not presently implemented in the

GBS code, but will be considered for future simulations with higher temperatures.

The boundary conditions at the magnetic presheath entrance of the limiter plates for

the drift-reduced Braginskii equations are discussed in Ref. [40], where a set of first-

principles boundary conditions was derived. We remark that the boundary conditions

of the kinetic neutral equation, Eq. (2.1), at the limiter or divertor plates, Eq. (2.5), are

specified at the solid wall. However, since the neutral mean free path is typically much

longer than the width of the magnetic presheath, we will assume that the boundary

conditions of the neutral kinetic equation at the wall coincide with the ones at the

magnetic presheath entrance.

Equations (2.16)-(2.21), in the limit of nn → 0, have been implemented in the GBS

code [10] and used in the past to study the main properties of plasma turbulence in

the tokamak SOL. Investigations carried out with GBS have significantly advanced

our understanding of, e.g., the turbulent saturation mechanisms in the SOL [51],

the SOL turbulent regimes [52], the phenomena behind the generation of intrinsic

rotation [53], the scaling of the SOL width in inner-wall limited tokamak plasma [54],
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and the equilibrium electrostatic potential [55].

2.4 Formal solution of the neutral kinetic equation

We now solve the kinetic advection equation for the neutrals, Eq. (2.1), by using the

method of characteristics, under the assumption that plasma-related quantities are

known. We remark that, similarly to iterative methods to solve the kinetic neutral

equation (see, e.g., Ref. [56]), this method allows to obtain the neutral moments

without the statistical noise that is inherent to the Monte Carlo method. The formal

solution of Eq. (2.1) is

fn(x,v, t ) =
∫r ′

b

0

[
S(x′,v, t ′)

v
+δ(r ′ − r ′

b) fn(x′
b,v, t ′b)

]
(2.22)

×exp

[
−1

v

∫r ′

0
νeff(x′′, t ′′)dr ′′

]
dr ′

where x′ = x− r ′Ω̂, t ′ = t − r ′/v , v = |v|, and Ω̂ = v/v . (The single prime is used to

indicate the source location of neutrals.) Similar definitions apply to x′′ and t ′′. (The

double prime is used for locations along the path integral between the source, x′, and

the observed location, x.) Moreover, the subscript b is used as an indication for a

position on the boundary. Therefore, x′
b = x− r ′

bΩ̂ is the intersection of the vector

parallel to Ω̂, starting at x, with the boundary, and t ′b = t − r ′
b/v . The neutral source

term consists of a volumetric source, S(x′,v, t ′), resulting from charge-exchange and

recombination processes, given by

S(x′,v, t ′) = νcx(x′, t ′)nn(x′, t ′)Φi(x′,v, t ′)+νrec(x′, t ′) fi(x′,v, t ′), (2.23)

where Φi = fi/ni is the ion velocity distribution, and of the δ(r ′ − r ′
b) fn(x′

b,v, t ′b) term,

which is localized at the boundary of the domain, where fn(x′
b,v, t ′b) is given by the

boundary conditions, Eqs. (2.5) and (2.7). The effective cross-section for the removal

of the neutrals is given by νeff(x′′, t ′′) = νiz(x′′, t ′′)+νcx(x′′, t ′′). We remark that we split

the charge exchange term in Eq. (2.1) into a source and sink term, which are, together,

still particle conserving. Because S(x′,v, t ′) depends on nn(x′, t ′) =∫
fn(x′,v, t ′)dv [see

Eq. (2.23)], Eq. (2.22) is an integral equation for fn in the spatial and velocity domain

that involves plasma and neutral quantities at past times.

We now consider two approximations, valid in the typical SOL parameter regime,

which considerably simplify Eq. (2.22) and therefore the numerical investigation

of the neutral dynamics. First, we Taylor expand the source term S and the other
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time-dependent quantities appearing in the integral in Eq. (2.22) about time t ′ = t , i.e.

S(x′, t ′) = S

(
x′, t − r ′

v

)
= S(x′, t )− ∂S(x′, t ′)

∂t ′
∣∣∣

t ′=t

r ′

v
+o

(
r ′

v

)
. (2.24)

We now note that S varies in time on the typical plasma turbulent time scale, τturb,

while r ′/v constitutes the typical flight time of the neutrals, τn, which can be estimated

as τn ∼ ν−1
eff . For typical SOL and edge parameters τn < τturb. It follows therefore that

we can approximate S(x′, t ′) � S(x′, t ), which corresponds to taking ∂t fn = 0 in Eq. (2.1).

This is a commonly used assumption (see, e.g., Ref. [47]), which has been denoted as

the neutral adiabatic regime [57].

Second, we take advantage of the plasma turbulence anisotropy to reduce the solution

of the three-dimensional neutral model to a set of two-dimensional problems. In fact,

turbulent plasma structures are considerably more elongated along the magnetic field

lines than perpendicular to them, k‖ � k⊥, and the neutral mean free path, λmfp,n, is

typically much shorter (of the order of millimeters or centimeters) than the parallel

elongation of the turbulent plasma structures, which is of the order of the machine

size (i.e. of the order of a meter). We therefore have λmfp,n ∼ v/νeff � 1/k‖. (We remark

that neutrals in the tail of the distribution function originating from charge exchange

processes might have much longer mean free paths, but λmfp,n � 1/k‖ is fulfilled for

the bulk of the neutrals in a typical tokamak SOL.) To take advantage of the plasma

anisotropy, we introduce a set of coordinates aligned to B, that is x = (x⊥, x‖), where

x⊥ denotes the coordinates in the direction perpendicular to B, and x‖ parallel to it.

We note that x‖ approximately coincides with the toroidal direction, and x⊥ denotes

the coordinate in the poloidal plane, in the large aspect ratio limit and at the large

value of the safety factor, q , of typical tokamak SOL (R0/a0 � 1, q > 1). We expand the

source S and the other quantities appearing in Eq. (2.22) about x ′
‖ = x‖, that is

S(x′
⊥, x ′

‖, t ) = S(x′⊥, x‖, t )+
∂S(x′

⊥, x ′
‖, t )

∂x ′
‖

∣∣∣
x ′
‖=x‖

(x ′
‖ −x‖)+o(x ′

‖ −x‖). (2.25)

Now, because of the exponential decay due to ionization and charge exchange pro-

cesses, the contribution of S to the integral in Eq. (2.22) becomes small at distances

longer than λmfp,n. Therefore, the expansion in Eq. (2.25) has to be considered for

x ′
‖ −x‖ �λmfp,n. Being ∂x ′

‖S(x′
⊥, x ′

‖, t ) ∼ k‖S(x′
⊥, x ′

‖, t ), and k‖λmfp,n � 1, it follows that

S(x′
⊥, x ′

‖, t ) � S(x′⊥, x‖, t ) in the regime of interest.

Within the adiabatic approximation, τn < τturb, and the assumption of k‖λmfp,n � 1,
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the formal solution of the neutral kinetic equation, Eq. (2.1), becomes

fn(x⊥, x‖,v, t ) =
∫r⊥b

0

[
S(x′

⊥, x‖,v, t )

v⊥
+δ(r ′

⊥ − r⊥b) fn(x′
⊥b , x‖,v, t )

]
(2.26)

×exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥, x‖, t )dr ′′
⊥

]
dr ′

⊥

where r ′
⊥ has been defined through x′

⊥ = x⊥− r ′
⊥Ω̂⊥, Ω̂⊥ = v⊥/v⊥, and v⊥ is the per-

pendicular velocity. Since the dependencies in Eq. (2.26) on the parallel direction and

on time are parametric, in the following, for better readability, we do not carry over

the explicit notation of the t and x‖ dependence.

In Eq. (2.26), the recombination term contained in S [see Eq. (2.23)], as well as the term

associated to ion recycling at the limiter present in the boundary conditions, do not

depend on fn(x⊥,v) and can be evaluated once the plasma quantities are known. On

the other hand, the charge-exchange collision term on the right-hand side of Eq. (2.26)

contained in S, and the reflected or re-emitted neutrals from the walls, which appear

in the boundary term, depend on fn(x⊥,v) through nn(x⊥). This suggests that a linear

integral equation for nn(x⊥) can be obtained by integrating Eq. (2.26) in velocity space,

which is

nn(x⊥) =
∫∞

0
dv⊥v⊥

∫2π

0
dϑ

∫∞

−∞
dv‖

∫r⊥b

0
dr ′

⊥ (2.27){[
S(x′

⊥,v)

v⊥
+δ(r ′

⊥ − r ′
⊥b) fn(x′

⊥,v)

]
exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥)dr ′′
⊥

]}

where we use cylindrical coordinates, (v⊥,ϑ, v‖), in velocity space (also in this case

parallel and perpendicular denote the direction with respect to the magnetic field).

We now describe two properties that help us simplify Eq. (2.27). First, for a generic

function F (x⊥,x′
⊥) we can write

∫r⊥b

0
dr ′

⊥

∫2π

0
dϑF (x⊥,x′

⊥) =
∫

D
dA′ 1

r ′
⊥

F (x⊥,x′⊥), (2.28)

where dA′ is the infinitesimal area of D , which is the part of the plane perpendicular

to the magnetic field, approximatively corresponding to the poloidal plane, that is

optically connected to x⊥. Second, we use the following property,

∫r⊥b

0
dr ′

⊥

∫2π

0
dϑδ(r ′

⊥ − r ′
⊥b)F (x⊥,x′

⊥) =
∫
∂D

da′
b

cosθ′

r ′
⊥b

F (x⊥,x′
⊥b), (2.29)
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2.4. Formal solution of the neutral kinetic equation

Figure 2.2 – Illustration of the transformation from an angular integral (in ϑ) to a line
integral (in a′

b) for neutrals coming from a section of the boundary of length da′
b at

x′
⊥b arriving at x⊥ flying in the direction Ω̂⊥.

where da′
b is the infinitesimal length along ∂D, which is the boundary of D, and

θ′ = arccos |Ω̂⊥ · n̂| is the angle between Ω̂⊥ and n̂ at the boundary location, x′
⊥b. In

fact, the r ′ integral gives

∫r⊥b

0
dr ′

⊥

∫2π

0
dϑδ(r ′

⊥ − r ′
⊥b)F (x⊥,x′⊥) =

∫2π

0
dϑF (x⊥,x′

⊥b), (2.30)

and the ϑ integral is transformed to a line integral along ∂D by using the law of sines

for the triangle in Fig. 2.2, namely

da′
b

dϑ
= r ′

⊥b

sin(α)
= r ′

⊥b

cos(θ′)
, (2.31)

as α=π/2−θ′ for infinitesimal small dϑ.

Now, by rearranging the integrals in Eq. (2.27) and using the two properties, Eqs. (2.28)

23



Chapter 2. Model

and (2.29), we obtain

nn(x⊥) =
∫

D
dA′ 1

r ′
⊥

∫∞

0
dv⊥v⊥

∫∞

−∞
dv‖

{
S(x′⊥,v)

v⊥
exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥)dr ′′
⊥

]}

(2.32)

+
∫
∂D

da′
b

cosθ′

r ′
⊥b

∫∞

0
dv⊥v⊥

∫∞

−∞
dv‖

{
fn(x′

⊥b,v)exp

[
− 1

v⊥

∫r ′
⊥b

0
νeff(x′′

⊥)dr ′′
⊥

]}
.

The quantities that do not depend on velocity, that is nn(x′
⊥), νcx(x′

⊥), and Γout(x′
⊥b)

[inside S(x′
⊥,v), and fn(x′

⊥b,v) respectively], can be taken out of the velocity integrals,

leading to an integral equation for nn(x⊥), which is

nn(x⊥) =
∫

D
nn(x′

⊥)νcx(x′
⊥)Kp→p(x⊥,x′⊥)dA′ (2.33)

+
∫
∂D

Γout(x′
⊥b)Kb→p(x⊥,x′⊥b)da′

b +nn,rec(x⊥),

where Γout, the perpendicular component of neutral and ion flux outflowing into the

boundary, is

Γout(x⊥b) =
∫

v⊥ cosθ fn(x⊥b,v⊥)dv⊥+Γout,i(x⊥b)

=
∫

D
nn(x′

⊥)νcx(x′
⊥)Kp→b(x⊥b,x′

⊥)dA′ (2.34)

+
∫
∂D

Γout(x′
⊥b)Kb→b(x⊥b,x′⊥b)da′

b +Γout,rec(x⊥b)+Γout,i(x⊥b),

and where θ = arccos |Ω̂⊥ · n̂| is the angle between Ω̂⊥ and n̂ at the boundary location,

x⊥b. Moreover, the following kernel functions have been defined

Kp→p(x⊥,x′
⊥) =

∫∞

0

1

r ′
⊥
Φ⊥i(x′

⊥,v⊥)exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥)dr ′′
⊥

]
dv⊥

(2.35)

Kb→p(x⊥,x′
⊥b) =

∫∞

0

v⊥
r ′
⊥b

cosθ′χ⊥in(x′
⊥b,v⊥)exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥)dr ′′
⊥

]
dv⊥

(2.36)

Kp→b(x⊥b,x′
⊥) =

∫∞

0

v⊥
r ′
⊥

cosθΦ⊥i(x′
⊥,v⊥)exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥)dr ′′
⊥

]
dv⊥

(2.37)
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Kb→b(x⊥b,x′
⊥b) =

∫∞

0

v2
⊥

r ′
⊥b

cosθcosθ′χ⊥in(x′
⊥b,v)exp

[
− 1

v⊥

∫r ′
⊥

0
νeff(x′′

⊥)dr ′′
⊥

]
dv⊥,

(2.38)

where we have carried out the integral in v‖ to obtain

Φ⊥i(x⊥,v⊥) =
∫

Φi(x⊥,v)dv‖ = mi

2πTi
exp

(
−miv2

⊥
2Ti

)
(2.39)

and

χ⊥in(x⊥,v⊥) =
∫

χin(x⊥,v)dv‖ (2.40)

= 3m2
i

4πT 2
i

v⊥ cosθexp

(
−miv2

⊥
4Ti

)
K0

[
miv

2
⊥/(4Ti)

]
,

with K0(x) the modified Bessel function of the second kind.

The four kernels, Eqs. (2.35)-(2.38), depict the four different possible paths for neutral

particles: originating from within the plasma or from the boundary, and arriving at

a position in the plasma or on the boundary. All kernels include an exponentially

decaying term, to take into account the loss of neutrals between the origin and ar-

rival positions due to ionization and charge-exchange collisions. Furthermore, we

note that neutrals that are emitted in the plasma region originate from a source pro-

portional to Φ⊥i (see Kp→p and Kp→b), while neutrals are emitted at the boundary

with a source proportional to χ⊥inv⊥ cosθ′ (see Kb→p and Kb→b). Since Γout describes

the perpendicular outflow into the boundary, the kernels Kp→b and Kb→b include a

v⊥ cosθ term. We note that the kernels, Eqs. (2.35)-(2.38), are given in the limit of

αrefl = 0, such that only the neutrals’ direct path from x′
⊥ to x⊥ is taken into account.

In the case of αrefl > 0, the paths over all possible reflection points for the combination

(x′
⊥, x⊥) have to be included in the kernels. In the current implementation of the

kernels, Eqs. (2.35)-(2.38), and the boundary condition, Eq. (2.5), in the GBS code only

reflection at the toroidal rail limiter is included, such that there can only be one or no

reflection point for each (x′
⊥, x⊥).

The neutral density and the neutral outflow caused by volumetric recombination are

evaluated using kernels Kp→p and Kp→b resulting in

nn,rec(x⊥) =
∫

D
ni(x′

⊥)νrec(x′
⊥)Kp→p(x⊥,x′

⊥)dA′ (2.41)
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and

Γout,rec(x⊥b) =
∫

D
ni(x′

⊥)νrec(x′
⊥)Kp→b(x⊥b,x′

⊥)dA′. (2.42)

We remark that the kernel functions, Kp→p, Kb→p, Kp→b, and Kb→b, do neither depend

on fn(x⊥,v), nor on any of its moments. They can be evaluated once the problem

geometry and the plasma state are known.

Having solved Eq. (2.33), therefore once nn(x⊥) is known, the distribution function

of the neutral atoms, fn(x⊥,v), can be readily evaluated by using Eq. (2.26). At that

point, the moments of fn(x⊥,v) that are needed in the neutral-plasma interaction

terms presented in the drift-reduced Braginskii equations, Eqs. (2.16)-(2.21), such as

the fluid parallel neutral velocity, v‖n(x⊥), and the neutral temperature, Tn(x⊥), can be

computed without difficulties. The numerical discretization of the neutral model is

described in Section 2.5, and its convergence properties are discussed in Section 2.7.

2.5 Numerical implementation

In the following we introduce the discretization of Eq. (2.33) necessary for its numerical

solution. The spatial discretization for the neutral equation can be set independently

of the grid on which the plasma quantities are evolved. If the two spatial discretizations

do not match, a linear two-dimensional interpolation routine is used to port the

plasma and neutral fields from one grid to the other. We remark that, while the use

of any grid to solve Eq. (2.33), including unstructured meshes, does not present any

conceptual difficulty, in the current implementation we use an equidistant grid in the

poloidal and radial direction for each poloidal plane.

On a discretized spatial grid, Eqs. (2.33) and (2.34) assume the form

ni
n =∑

j
K i , j

p→pν
j
cxn j

n +
∑

j
K i , j

b→pΓ
j
out +ni

n,rec (2.43)

and

Γi
out =

∑
j

K i , j
p→bν

j
cxn j

n +
∑

j
K i , j

b→bΓ
j
out +Γi

out,rec +Γi
out,i (2.44)

where i and j are grid cell indices (the i -th grid cell is centered around xi
⊥ and has an

26



2.5. Numerical implementation

area ΔAi ), and

K i , j
p→p = ΔA j

r i j

∫∞

0
Φ⊥i(x j

⊥, v⊥r̂i j )exp

[
− 1

v⊥

∫r i j

0
νeff(x j

⊥+ r ′r̂i j )dr ′
]

dv⊥ (2.45)

with ri j = xi
⊥−x j

⊥, and r̂i j = ri j /r i j . Equivalent expressions apply to the other kernels.

In Eq. (2.45), the velocity integral is discretized in equidistant velocity intervals of

size Δv , centered around (iv + 1/2)Δv , usually up to vmax = 5cs0, and computed

by using the rectangle rule. On the other hand, the line integral between xi
⊥ and

x j
⊥,

∫r i j

0 νeff(x j
⊥ + r ′r̂i j )dr ′, is equidistantly discretized into Ninterp +1 intervals, and

integrated using the trapezoidal rule. The values of νeff(x j
⊥+ r ′r̂i j ) required for the

evaluation of the integral are obtained by using linear interpolation from the grid

values.

Equations (2.43) and (2.44) are a system of linear equations that can be recast in matrix

form [
nn

Γout

]
=

[
Kp→p Kb→p

Kp→b Kb→b

]
·
[

nn

Γout

]
+

[
nn,rec

Γout,rec +Γout,i

]
(2.46)

and that can be solved with standard full matrix solvers. We note that, in the simula-

tions presented in this Thesis, the matrix is typically filled by one third, since not every

pair of grid cells is optically connected. The fraction of non-zero entries decreases at

larger system size. As a matter of fact, entries of pairs that are separated by several

λmfp,n could be neglected, making the fraction of non-zero elements even smaller,

leading to faster solutions with sparse matrix solvers and fewer matrix elements that

have to be computed, which is the computationally most expensive part in the current

implementation. While we have verified, a posteriori, that neglecting small matrix

elements does not change the result significantly, it is not straightforward to predict

the matrix elements that can be neglected, because of the evolving turbulent plasma

properties and the related variation of λmfp,n. In the present Thesis, methods to reduce

the number of non-zero elements in the matrix were not developed.

Since the solution of Eq. (2.43) is particularly expensive, we use a short cycling scheme,

as described in Ref. [24] and used, e.g., in Ref. [36]. More precisely, to apply the short

cycle scheme, we recalculate the neutral density every time interval, Δtn, where Δtn is

comparable to the turbulent timescales and longer than the typical time step used

to advance numerically the drift-reduced Braginskii equations. However, the interac-

tion terms in the plasma equations, Eqs. (2.16)-(2.21) (e.g., nnνiz = nnn〈veσiz〉v ) are

recalculated at every time-step, taking into account the changing plasma quantities
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(e.g., n), and the change in reaction rates (e.g., 〈veσiz〉v ), which depend on the plasma

temperatures.

The drift-reduced Braginskii equations, Eqs. (2.16)-(2.21), are solved by the GBS code

on an equidistant three-dimensional grid as described in Refs. [10, 11]. The parallel

and perpendicular operators are discretized using a second order finite difference

scheme, except for the [A1, A2] operators that are discretized by using the Arakawa

scheme [58]. The Laplacian operator in the Poisson equation is also discretized using

the standard centered finite difference scheme, and it is solved with either a sparse

linear algebra solver or a multigrid solver [11]. Time integration of Eqs. (2.16)-(2.21)

is carried out with the classical Runge-Kutta method [59]. We remark that we recast

the equations for plasma density and electron and ion temperatures in terms of

θn = log(n), te = log(Te), and ti = log(Ti) to ensure the positivity of these quantities.

The correctness of the implementation and numerical discretization of Eqs. (2.16)-

(2.21) in the GBS code has been rigorously verified with the method of manufactured

solutions [60].

2.6 First self-consistent plasma turbulence simulations

with neutral atom dynamics

We report here the first simulations carried out with the GBS code [10, 11] extended

by implementing the kinetic neutral atom model and the plasma-neutral interaction

terms in the fluid equations. We compare here a low plasma density simulation,

where the recycled neutrals are mostly ionized in the tokamak core, and therefore

the source of SOL plasma is mainly due to the plasma outflow from the core (this

simulation features the sheath limited regime), with a high plasma density simula-

tion, where SOL plasma is coming partly from the core and partly from the recycling

process occurring inside the SOL (several features of the so-called conduction lim-

ited regime are displayed by this simulation). Both simulations consider a limited

SOL geometry, with a toroidal rail limiter on the high-field side equatorial midplane,

R0/ρs0 = 500, mi/me = 400, 2πa0 = 800ρs0, and Te0 = Ti0 = 10eV. Furthermore, in the

low plasma density simulation, we impose n0 = 5 · 1018m−3, the value of the den-

sity at the LCFS, and ν̃ = R0me/(1.96cs0miτe) = 0.02, the resistivity normalized to

R0/cs0. As a consequence, the dimensionless parallel electron heat conductivity is

κ̃‖e = 3.16×2Te0τe/(3mecs0R0) = 56.0, the dimensionless parallel ion heat conduc-

tivity is κ̃‖i = 3.9×2Ti0τi/(3mics0R0) = 1.6, and the dimensionless electron viscosity

coefficient is η̃e0 = 0.73Te0τe/(meR0cs0) = 20.0. In the high plasma density simulation,
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2.6. First self-consistent simulations with neutral atom dynamics

n0 = 5 ·1019m−3, ν̃ = 0.2, κ̃‖e = 5.6, κ̃‖i = 0.16, and η̃e0 = 2.0 are used. The computa-

tional domain extends radially from rmin = 0 to rmax = 150ρs0. The source terms Sn,

STi , and STe in Eqs. (2.16)-(2.21) are constant in time, poloidally uniform, and radially

Gaussian around rs = 30ρs0, which we interpret as the radial position of the LCFS.

Quantities displayed in the figures are normalized to n0, cs0, and Te0.

In Figs. 2.3 and 2.4 typical snapshots of plasma density, parallel electron and ion

velocities, electron and ion temperatures, electrostatic potential, neutral density, and

ionization source, Siz = nnνiz, are shown on a poloidal cross-section. They display

fully developed turbulence during the quasi-steady state of the two simulations.

The poloidal dependence of the relevant plasma quantities (plasma density, electron

and ion parallel velocities, electron and ion temperatures, electrostatic potential,

neutral density, and Siz) for the low- and high-density simulations are shown in

Fig. 2.5. The displayed profiles are averaged over a time window of 20 R0/cs0, over the

full toroidal angle, and over a radial region extending for 20 ρs0, centered at a distance

of 30 ρs0 from the separatrix.

We point out a few interesting differences between the high- and low-density sim-

ulations. The poloidal density profile in the high-density simulation is flatter than

in the low-density simulation. This is due to the fact that the plasma source due to

the ionizations occurring close to the limiter inside the SOL is much higher in the

high-density simulation, preventing the plasma density to drop when approaching

the sheaths. The parallel velocity profiles (which are expected to be approximately

linear if the plasma source is poloidally constant) are somewhat flatter close to the

limiter in the high-density scenario; however, the flattening is not particularly signifi-

cant, because a relatively large fraction of the plasma density source is still due to the

poloidally constant outflow of particles from the core. Furthermore, both electron

and ion temperature poloidal gradients increase in the high-density scenario, which

is expected while going towards the conduction limited regime. The mechanisms

that lead to this temperature drop include the reduced parallel heat conductivity

(due to lower temperature and higher density), and the direct energy loss due to

ionizations (see, e.g., Ref. [8]). To verify that these are the acting mechanism behind

the temperature drop in the high-density scenario, the balance of the electron tem-

perature equation, Eq. (2.20), in quasi steady state is shown in Fig. 2.6. The terms

on the right hand side of Eq. (2.20) are toroidally, radially, and time averaged, in the

same way as the poloidal profiles in Fig. 2.5. The terms are arranged into four groups,

namely, the parallel advection term, A =−v‖e∇‖Te +2Te/(3n)[0.71/e∇‖ j‖ −n∇‖v‖e],

the parallel diffusion term, D =κ‖e∇‖
(
T 5/2

e ∇‖Te
)
, the plasma-neutral interaction term,

N = nnνiz/n[−2Eiz/3−Te+mev‖e(v‖e−4v‖n/3)]−nnνenme2v‖e/(3n)(v‖n−v‖e), and the
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Figure 2.3 – Snapshots on a poloidal cross-section of plasma density, electric potential,
ion and electron parallel velocities, electron and ion temperatures, neutral density,
and the ionization source term, Siz, for the low-density simulation, n0 = 5 ·1018m−3.
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Figure 2.4 – Snapshots on a poloidal cross-section of plasma density, electric potential,
ion and electron parallel velocities, electron and ion temperatures, neutral density,
and the ionization source term, Siz, for the high-density simulation, n0 = 5 ·1019m−3.
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source term, S =−1/B [φ,Te]+4Te/(3eB)[TeC (n)/n+7C (Te)/2−eC (φ)]+DTe (Te)+STe ,

which includes the divergence of the flow due to the E×B and curvature drifts. It has

been verified that the sum of the four terms converges towards zero as we increase

the time-span over which the average is evaluated. From Fig. 2.6, it is apparent that

both before mentioned mechanisms are important for the steepening of the elec-

tron temperature gradient. While the source term, S, has almost the same shape

in the two scenarios, the plasma-neutral interaction term, N , is clearly important

only in the high-density simulation (the most important contribution to N is due to

the ionization process, −2nnνizEiz/(3n)). The effect of N is to decrease the electron

temperature close to the limiter. Furthermore, the parallel diffusion term, D, has a

larger impact on the low-density simulation, where it flattens the temperature profile.

In the low-density simulation, the importance of the parallel diffusion term arises

from the high parallel electron conductivity, inversely proportional to the plasma

density. In the-high density simulation, the parallel diffusion term plays a significant

role only in proximity of the limiter.

The electron temperature drop along the parallel direction is discussed further in

Chapter 4, where a set of simulations (including the two simulations from this Chapter)

is compared to a simple and a refined two-point model.

2.7 Convergence properties of the neutral model

To illustrate the numerical convergence properties, we consider the relative error in

the conservation of neutral particles, defined as

εrel =
Nin −Nout

Nin
(2.47)

where Nin = ∑
i Γ

i
out,iΔai

b +
∑

i ni
i ν

i
recΔAi is the number of neutrals that are created

in a time unit due to ion recycling and recombination, and Nout = ∑
i ni

nν
i
izΔAi +∑

i Γ
i
out,coreΔai

b is the number of neutrals lost from the system in a time unit due to

ionization and outflow to the core region. For the first two numerical tests in this

Section we consider the low-density plasma scenario described in Section 2.6, the

third convergence test is performed with a smaller simulation domain.

We carry out three convergence tests. We first study the convergence of the numerical

solution with the spatial discretization. We use the radial distance from the LCFS, r ,

and the poloidal angle, ϑ, as coordinates in the poloidal plane, which we discretize

on a grid with equidistant points separated by the normalized distances Δx =Δr /ρs0
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Figure 2.7 – Relative error of the neutral particle conservation, εrel, as a function of the
grid spacing in the radial, Δx, and poloidal, Δy , directions. The low density scenario,
n0 = 5 ·1018m−3, which is presented in Section 2.6, is considered.

in the radial direction and Δy = a0/ρs0Δϑ in the poloidal direction. Figure 2.7 shows

a convergence study on the spatial discretization. The best converged results are

obtained for 2�Δx/Δy � 4. (The variation of the neutral quantities is stronger in the

poloidal than in the radial direction.) Then, we perform a scan of solutions of Eq. (2.46)

by varying the grid spacing and Ninterp independently. The results are presented in

Fig. 2.8. For small Ninterp, the error does not converge to zero, but towards a finite

value that is determined by the error associated with the discretization of the line

integral between x⊥ and x′
⊥. This error decreases with increasing Ninterp as it is shown

in Fig. 2.8. To calculate the order of convergence, we extrapolate the error of the

Ninterp = 80 curve to Δx = 0, to obtain εextrp = ε(Δx = 0), where εextrp includes the

numerical error from the discretization of the line integral between x⊥ and x′
⊥, as well

as the numerical errors from the velocity space discretization. Figure 2.9 shows the

error due to the spatial grid discretization, εrel −εextrp, and reveals that the numerical

algorithm has a linear convergence with respect to the grid spacing. Typically, Δx � 2.5,

Δy � 7.5, and Ninterp = 20 are used in our simulations.

The second test investigates the convergence with respect to the discretization of the

velocity integral inside the kernel functions. Figure 2.10a shows the convergence with

Δv for fixed vmax = 5.0cs0, while Fig. 2.10b shows the convergence with vmax for fixed

Δv = 0.1cs0. Both figures show convergence towards a finite value of εerr, which is the

error due to the spatial discretization. Typically, Δv = 0.1cs0 and vmax = 5cs0 are used

in our simulations.

For the third convergence test, which investigates the short cycle scheme, we perform
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a set of non-linear simulations of SOL plasma dynamics by solving the drift-reduced

Braginskii equations self-consistently with the neutral equation. We set Δtn = 0.01,

0.05, 0.2, 1, and 5 R0/cs0. Since these self-consistent simulations are computational

demanding, we decrease the size of the considered domain to 2πa0 = 400ρs0, rmin = 0,

rmax = 50ρs0, and move the location of density and temperature sources to rs = 0ρs0.

The results of all simulations show no significant nor systematic differences in the

averaged plasma and neutral quantities (see, e.g., the time traces of the neutral density

at the low-field side midplane in Fig. 2.11). We note that even the case Δtn = 5R0/cs0,

in which the neutral density does not follow the initial overshoot, evolves towards the

same quasi-steady state.

We remark that in simulations that include both the SOL and edge region, large

poloidal shear flows form around and inside the LCFS due to large radial electric

fields. Depending on the orientation and magnitude of the shear flow, the plasma

properties and structures below and above the limiter can vary during the simulation,

which raises or lowers the local recycling rate. This has to be captured temporally

in the neutral dynamics. Because of this, we usually choose Δtn = 0.025R0/cs0 in

the simulations including both SOL and edge region, while we usually choose Δtn =
0.1R0/cs0 for simulations including only the SOL.
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Chapter 3

Identification of the key elements of
the neutral-plasma interaction

In this Chapter we identify the key elements determining the interaction between

neutrals and plasma in the tokamak periphery. For this purpose, we use a simulation

of the SOL and edge regions of a tokamak with a toroidal rail limiter on the high-field

side equatorial midplane. We study the importance of the different elements present

in the neutral-plasma interaction by analyzing a number of simulations where we zero

out some of these elements. The ultimate goal of this effort is to derive a simple model

for the neutral-plasma interaction, by neglecting the less important terms, so that the

computational cost of the simulations can be reduced. At the same time, a simpler

model of the plasma-neutral interaction can help us to identify and understand the

principal physical processes at play in the tokamak periphery.

This Chapter is structured as follows. After the Introduction, in Section 3.2 we present

the simulation of the tokamak periphery that we use to identify the key elements of

the neutral-plasma interaction. In Section 3.3, we investigate the impact of the neutral

fluctuations on the time-averaged plasma profiles. In Section 3.4, we focus on the

impact of the different plasma-neutral interaction terms. Further considerations,

namely concerning the time-averaged plasma-neutral interaction terms and the

impact of the poloidal localization of the ionization density source term, are presented

in Section 3.5.

39



Chapter 3. Identification of the key elements of the neutral-plasma interaction

3.1 Introduction

While it has been pointed out that turbulence might significantly affect the neutral

properties [57, 61], the self-consistent interaction of plasma turbulence and neu-

trals remains largely unexplored. More in general, despite recent progress in the

simulations, the basic understanding of the physical mechanisms at play in the self-

consistent interaction of turbulent plasma and neutral particles is still missing. The

goal of the present Chapter is to identify the key elements of the neutral-plasma in-

teraction by using self-consistent turbulent simulations of the tokamak periphery. In

particular, we point out the role of neutral fluctuations, friction and energy sink terms,

and the poloidal asymmetry of the ionization source. The investigation is carried

out on the basis of one simulation, described in Section 3.2, that includes the SOL

and edge regions of a limited tokamak. Starting point of the analysis is the kinetic

model, which enables us to consider scenarios with both long and short neutral mean

free paths, described in Section 2.2. The model includes ionization, charge-exchange,

recombination, and elastic electron-neutral collisions, described by Krook collision

operators. This relatively simple model facilitates the understanding of the basic phys-

ical processes at play in the neutral-plasma interaction. However, our investigation

cannot validate the assumptions of our neutral model, such as neglecting the effects

of molecules.

To identify the key elements of the neutral-plasma interaction, we first analyze the

role of neutral fluctuations. It turns out that they do not affect significantly the

time-averaged plasma profiles in the considered plasma conditions. The friction

terms between the plasma species and the neutrals are also found not to play a

significant role in setting the plasma profiles. On the other hand, the analysis of the

role of the temperature equilibration term between ions and neutrals and the electron

energy sink due to ionizations shows that they significantly affect the time-averaged

plasma profiles, whereby we identify the interaction terms in the plasma temperature

equations as being essential to the model within the investigated plasma conditions.

Finally, we show that it is not possible to average the whole plasma-neutral interaction

terms, and we present a brief investigation of the effects of the poloidal asymmetry in

the plasma density source due to ionization processes.

We remark that our observations cannot be directly extrapolated to other regimes.

In scenarios with higher plasma density and lower plasma temperatures, such as in

detachment scenarios, the ionization and recombination regions and the detachment

front might move, leading to substantial temporal variations in the neutral density,

which can be much larger than in the present simulation. This is expected to enhance

the importance of the neutral fluctuations. On the other hand, at low densities,
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the neutrals penetrate far into the core before being ionized, leading to very few

plasma-neutral interactions in the periphery. This might reduce the importance of

the ionization energy sink terms.

3.2 Simulation of the tokamak periphery

The simulation used for the present study considers a limited tokamak with a toroidal

rail limiter on the high-field side equatorial midplane and circular flux surfaces. The

simulation includes the SOL and part of the edge region, where the magnetic field

lines lie on closed flux surfaces without intersecting the wall, similarly to Ref. [62].

(We remark that the GBS simulation presented here is the first to include the SOL

and edge regions, as well as the self-consistent neutral-plasma interaction terms.)

The normalized dimensions of the simulated tokamak are R0 = 500ρs0 and a0 =
800ρs0/2π. The poloidal direction is described by the coordinate y , with y = 0 at the

lower side of the limiter, y = 400ρs0 at the low-field side equatorial midplane, and

y = 800ρs0 at the upper side of the limiter. The radial extents of the simulated SOL

and edge regions are 75ρs0 each and the separatrix is located at r = 0. The resistivity,

normalized to R0/cs0, is defined as ν̃= ν̃0(Te/Te0)−3/2, taking into account the Spitzer

dependency and being ν̃0 = R0me/(1.96cs0miτe), the dimensionless parallel electron

heat conductivity is κ̃‖e = 3.16×2Te0τe/(3mecs0R0), and the dimensionless parallel ion

heat conductivity is κ̃‖i = 3.9×2Ti0τi/(3mics0R0). With the normalization parameters

n0 = 2 ·1019m−3, Te0 = Ti0 = 20eV, and B0 = 0.5T, it results ρs0 � 0.9mm, R0 � 44cm,

a0 � 11cm, and R0/cs0 � 10μs. The normalized values for the resistivity and the

parallel heat conductivities calculated from the parameters above (ν̃=0.03, κ̃‖e = 39.6,

and κ̃‖i = 1.1) are modified to ν̃= 0.1, κ̃‖e = 10, and κ̃‖i = 0.5 to reduce the numerical

cost of the simulation. The ion to electron mass ratio is set to mi/me = 200 for the

same reason. We also impose Eiz = 30eV. We note that recombination processes can be

neglected at Te0 = 20eV since νrec/νiz ≈ 10−6 (within our simple atomic neutral model

this assumption holds for Te � 2eV, corresponding to νrec/νiz � 10−2). We remark

that at the boundary of the simulation domain towards the main wall, assumed to be

at a certain location between the separatrix and the solid wall, we apply vanishing

Neumann boundary conditions for n, v‖e, v‖i, Te, and Ti, and ω̃= 0 and φ= 〈ΛTe〉t

(Λ� 3 and 〈 〉t is a moving window time average). We use open boundary conditions

(vanishing Neumann) for all quantities at the boundary towards the tokamak core.

Since there is no separation between equilibrium and fluctuating quantities in the

drift-reduced Braginskii equations, Eqs. (2.16)-(2.21), the plasma profiles result self-

consistently from the interplay between perpendicular and parallel transport, losses

41



Chapter 3. Identification of the key elements of the neutral-plasma interaction

at the sheath, ionization processes, and heat outflowing from the tokamak core to

the edge region. The latter is mimicked by the temperature source terms, STe and

STi , which are constant in time, poloidally uniform, and radially Gaussian with a

width of 5ρs0 centered around rs = −75ρs0, i.e. the location of the boundary of the

simulated domain towards the tokamak core. In the present simulation it is assumed

that the source of plasma density is solely due to ionization of neutral atoms in the

simulated volume, therefore the plasma density source Sn in Eq. (2.16), mimicking

the outflow of plasma density from the core, vanishes. The plasma flowing along

the magnetic field lines and arriving at the limiter plates is recycled, assuming that

80% is reflected specularly and 20% is absorbed on the surface and released with a

thermal distribution of 3eV, mimicking energies of neutral atoms after Frank-Condon

dissociation [46, 8]. We assume the same reflection coefficient for neutrals arriving at

the limiter.

To fuel the plasma and compensate for the radial plasma losses, two gas puffs on the

high-field side, above and below the limiter, and a constant inflow of neutrals from

the main wall (mimicking main wall recycling) are included in the simulation. The

two gas puffs are toroidally constant and, together, account for 41% of the ionization.

The small constant inflow of neutrals from the main wall accounts for 17% of the total

ionization and the recycling at the limiter for 42%.

The gas puff inlets lie outside the simulated domain, since its outer boundary does not

coincide with the physical wall. Therefore, we assume that the hydrogen molecules

from the gas puff are dissociated into atoms and somewhat diffuse before entering the

simulated domain. We account for this by setting the inflowing distribution function

at the outer boundary, xb, to

fn,gp(xb,v) ∝ exp

(
− (yb − y0gp)2

2Δy2
gp

)
χin(xb,v), (3.1)

where yb is the outer boundary poloidal coordinate, y0gp =±40ρs0 is the location and

Δygp = 20ρs0 the width of the gas puff. The inflowing velocity distribution, χin, is

defined in Eq. 2.6, and we impose Tb = 3eV.

After a transient, a quasi-steady state is achieved in our simulation where sources

and losses balance and the total amount of particles in the system is approximately

constant. Our investigation focuses on this quasi-steady state. Poloidal snapshots of

plasma density, electrostatic potential, electron and ion parallel velocities, electron

and ion temperatures, neutral density, and ionization source, Siz, are shown in Fig. 3.1.

Poloidal profiles of the same quantities averaged in time and toroidally are displayed

in Fig. 3.2. We observe strong poloidal asymmetries, particularly visible for the plasma

42



3.2. Simulation of the tokamak periphery

Figure 3.1 – Poloidal snapshots of plasma density, electrostatic potential, electron and
ion parallel velocities, electron and ion temperatures, neutral density, and ionization
rate for the simulation described in Section 3.2.
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Figure 3.2 – Time-averaged poloidal profiles of plasma density, electrostatic potential,
electron and ion parallel velocities, electron and ion temperatures, neutral density,
and ionization rate for the simulation described in Section 3.2.
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Figure 3.3 – Radial profiles of plasma density, electron temperature, and neutral
density on the low-field side equatorial midplane (left, 350ρs0 < y < 450ρs0), and at
the high-field side, in proximity of the limiter (right, |y − ylimiter| < 50ρs0), time and
toroidally averaged. The simulation described in Section 3.2 is considered.

density in the edge region, which is higher on the high-field side than on the low-field

side, and in the electron and ion temperatures, which are higher on the low-field

side than on the high-field side. In the SOL, the electron temperature drop towards

the limiter is due to the balance between radial turbulent transport, parallel heat

conduction and convection, the ionization energy loss close to the limiter, and the

parallel outflow of plasma to the limiter (see, e.g., our work on a refined two-point

model in Chapter 4 or in Ref. [63]).

Time-averaged radial profiles of plasma density, electron temperature, and neutral

density on the low-field side equatorial midplane (350ρs0 < y < 450ρs0) and at the

high-field side, in proximity of the limiter (|y − ylimiter| < 50ρs0) are shown in Figs. 3.3a

and 3.3b, respectively. At the low-field side, the neutral density decays with a scale

length of approximately 80ρs0 from the outer domain boundary, resulting from ioniza-

tion and charge exchange processes. The plasma density decays from the core to the

vessel wall with a scale length comparable to the radial domain size, approximately

180ρs0. The electron temperature has a short decay length in the closed flux-surface

region (approximately 30−40ρs0), and a decay length comparable to the one of the

density in the SOL.

The equilibrium profiles show a more complex behavior around the limiter. The

neutral density is almost constant in the SOL and decays in the closed flux surface

region from the limiter tip towards the core with a decay length of approximately 30ρs0.

The plasma density peaks in the edge region where the amplitude of the ionization

source is largest (see Fig. 3.2). The electron temperature decays with a short scale
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length of approximately 25ρs0 from the core towards the limiter, and it is almost

constant along the limiter with a value of Te � 3eV. We remark that the fast decay in

the edge is partly due to the ionization energy loss (proportional to the ionization

source). We also note that, while the volumetric recombination rate at Te � 3eV is still

quite low, molecules are expected to play an important role at this temperature, which

is not captured by the present model.

In this Chapter, we discuss the impact of neutral fluctuations and the different plasma-

neutral interaction terms on the equilibrium plasma profiles. We identify the interac-

tion terms in the density, vorticity, electron and ion parallel velocity, and electron and

ion temperature equations, Eqs. (2.16)-(2.21), respectively as

In = nnνiz (3.2)

Iω̃ =−nn

n
νcxω̃ (3.3)

Iv‖e =
nn

n
(νen +2νiz)(v‖n − v‖e) (3.4)

Iv‖i =
nn

n
(νiz +νcx)(v‖n − v‖i) (3.5)

ITe =
nn

n
νiz

[
−2

3
Eiz −Te +mev‖e

(
v‖e − 4

3
v‖n

)]
− nn

n
νenme

2

3
v‖e(v‖n − v‖e) (3.6)

ITi =
nn

n
(νiz +νcx)

[
Tn −Ti + 1

3
(v‖n − v‖i)

2
]

, (3.7)

where we neglect the recombination term in In . We remind that the collisionalities

depend on plasma density and electron or ion temperature (see Eqs. (2.2)-(2.4)).

3.3 Fluctuations in the neutral moments

We investigate the impact of neutral fluctuations on the time-averaged plasma profiles.

For this purpose, we select a time window of Δt = 30R0/cs0 during the quasi-steady

state phase of the simulation described in Section 3.2, and we average the neutral

density, velocity, and temperature over this time window and toroidally. We then

repeat the simulation from the checkpoint at the beginning of this time window,

which we define to be at t = 0, replacing the neutral moments with their averages,

46



3.3. Fluctuations in the neutral moments

which results in the plasma-neutral interaction terms

In = 〈nn〉νiz (3.8)

Iω̃ =−〈nn〉
n

νcxω̃ (3.9)

Iv‖e =
〈nn〉

n
(νen +2νiz)(〈v‖n〉− v‖e) (3.10)

Iv‖i =
〈nn〉

n
(νiz +νcx)(〈v‖n〉− v‖i) (3.11)

ITe =
〈nn〉

n
νiz

[
−2

3
Eiz −Te +mev‖e

(
v‖e − 4

3
〈v‖n〉

)]
(3.12)

− 〈nn〉
n

νenme
2

3
v‖e(〈v‖n〉− v‖e)

ITi =
〈nn〉

n
(νiz +νcx)

[
〈Tn〉−Ti + 1

3
(〈v‖n〉− v‖i)

2
]

, (3.13)

where 〈nn〉, 〈v‖n〉, and 〈Tn〉 denote the toroidal and time average of nn, v‖n, and Tn.

We compare the results of this simulation that excludes the neutral fluctuations,

which we label as 〈nn〉 simulation, with the original one, labeled as nn simulation,

in Figs. 3.4-3.6 by analyzing time traces and radial and poloidal profiles of plasma

density, electrostatic potential, electron and ion parallel velocities, and electron and

ion temperatures. The time traces in Fig. 3.4 are evaluated in a region at the low-

field side SOL, averaged over 10ρs0 < r < 20ρs0 and 350ρs0 < y < 450ρs0. The radial

profiles in Fig. 3.5 are also evaluated at the low-field side, 350ρs0 < y < 450ρs0, and

time-averaged over 20R0/cs0 < t < 30R0/cs0. The poloidal profiles in Fig. 3.6 are time-

averaged over the same time window and they are taken in proximity of the LCFS,

i.e., averaged over 10ρs0 < r < 20ρs0. While the fast oscillations present in the time

traces deviate for the two simulations after a short time, as it is expected in a turbulent

system, the quasi-steady state values remain very similar, as confirmed by the radial

and poloidal profiles.

The amplitude of the neutral density fluctuations, which is typically 10−30% in the

region of strong plasma-neutral interactions in front of the limiter, is therefore not

strong enough to influence the plasma profiles significantly. We conclude that, for the

plasma parameters considered in these simulations, the fluctuations of the neutral

moments do not significantly affect the time-averaged profiles.
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Figure 3.4 – Time traces evaluated at the SOL on the low-field side, averaged over
10ρs0 < r < 20ρs0, 350ρs0 < y < 450ρs0, and toroidally, of plasma density, electrostatic
potential, electron and ion parallel velocities, and electron and ion temperatures.
The nn simulation uses the neutral-plasma interaction terms in Eqs. (3.2)-(3.7), the
〈nn〉 simulation the ones in Eqs. (3.8)-(3.13), the ’no friction’ simulation the ones in
Eqs. (3.14)-(3.17), the In simulation the ones in Eqs. (3.18)-(3.19), the 〈In〉 simulation
the ones in Eqs. (3.24)-(3.25), and the 〈In〉θ simulation the ones in Eqs. (3.26)-(3.29).
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Figure 3.5 – Same as in Fig. 3.4, but for the radial profiles, averaged over 350ρs0 <
y < 450ρs0, 20R0/cs0 < t < 30R0/cs0, and toroidally, of plasma density, electrostatic
potential, electron and ion parallel velocities, and electron and ion temperatures.
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Figure 3.6 – Same as in Fig. 3.4, but for the poloidal SOL profiles, averaged over 10ρs0 <
r < 20ρs0, 20R0/cs0 < t < 30R0/cs0, and toroidally, of plasma density, electrostatic
potential, electron and ion parallel velocities, and electron and ion temperatures.
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3.4 The key interaction terms

To identify the plasma-neutral interaction processes that have an important impact in

setting the time-averaged plasma profiles, we now repeat the simulation described in

Section 3.2, by neglecting the plasma-neutral interaction terms related to friction (Sub-

section 3.4.1) and the terms associated with heat losses and temperature equilibration

due to ionization and charge-exchange (Subsection 3.4.2). We use the averaged neu-

tral moments as in Section 3.3, since neutral fluctuations do not significantly affect

the time-averaged plasma profiles in the considered plasma scenario.

3.4.1 Friction interaction terms

Excluding the friction related terms, responsible for momentum transfer between

neutrals and the plasma and for heat generation, the plasma-neutral interaction with

averaged neutral moments is described by

In = 〈nn〉νiz (3.14)

ITe =
〈nn〉

n
νiz

(
−2

3
Eiz −Te

)
(3.15)

ITi =
〈nn〉

n
(νiz +νcx)(〈Tn〉−Ti) (3.16)

Iω̃ = Iv‖e = Iv‖i = 0. (3.17)

The plasma-neutral interaction terms in Eqs. (3.14)-(3.17) take into account the

plasma ionization source and the heat loss and temperature equilibration due to

ionization and charge exchange processes. The original simulation of Section 3.2 is

repeated with the plasma-neutral interaction terms in Eqs. (3.14)-(3.17). The results

of this simulation, labeled as ’no friction’, are shown in Figs. 3.4, 3.5, and 3.6. Remov-

ing the friction related terms affects weakly the simulation results, confirming that

these terms are rather small, and that, therefore, it is a reasonable approximation to

neglect them in the considered plasma scenario. This observation is confirmed by the

estimate of the importance of the friction terms in the electron temperature balance,

presented in Fig. 4.3 for a similar plasma scenario.
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3.4.2 Heat loss and temperature equilibration terms

We now zero out the plasma-neutral interaction terms present in the electron and

ion temperature equations, Eqs. (2.20) and (2.21). We therefore describe the plasma-

neutral interaction only through the ionization source, In , in the plasma density

equation, Eq. (2.16), i.e.

In = 〈nn〉νiz (3.18)

Iω̃ = Iv‖e = Iv‖i = ITe = ITi = 0. (3.19)

The simulation carried out with the interaction terms in Eqs. (3.18)-(3.19), labeled

In , leads to very different results than the previous simulations, as it can be observed

in Figs. 3.4, 3.5, and 3.6. In this simulation, the electron and ion temperatures raise,

since the zeroed out terms describe the plasma cooling due to ionization and charge

exchange processes with the neutrals. The increased electron temperature increases

the ionization rate coefficient, 〈veσiz(ve)〉v , that, as a consequence, enhances the

ionization rate, In . Therefore, the plasma density also increases, which in turn fur-

ther amplifies the ionization term. This self-enhancing feedback would usually be

inhibited by a decreasing neutral density through higher ionization rates but, since

neutral fluctuations are neglected and neutral density is therefore constant in this

simulation, this negative feedback is not available. In fact, the In simulation is not in

a quasi-steady state and, due to the positive feedback loop, one might not even be

reached. The radial and poloidal profiles shown in Figs. 3.5 and 3.6 are taken from

averaged profiles in the time window 20R0/cs0 < t < 30R0/cs0.

3.4.3 Considerations on a simplified neutral model

From the observations in Sections 3.3, 3.4.1, and 3.4.2, we conclude that the mini-

mal set of plasma-neutral interaction terms that result in the time-averaged plasma

profiles of the fully self-consistent simulations, is given by Eqs. (3.14)-(3.17). In fact,

fluctuations of the neutral moments do not affect the plasma profiles significantly for

the considered scenario, and the neutral-plasma interaction terms related to friction

are small, which is shown in Section 3.4.1. On the other hand, the electron energy sink

due to ionization processes and the temperature equilibration term between ions and

neutrals significantly affect the plasma.

Let us point out that this model of the neutral-plasma interaction terms, given by

Eqs. (3.14)-(3.17), cannot be easily used to carry out simulations of the tokamak

periphery, since the averaged neutral moments have to be obtained from a fully
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self-consistent plasma-neutral simulation, such as the one in Section 3.2. Obtain-

ing averaged neutral moments without self-consistent simulations of the coupled

turbulent neutral-plasma system faces a major challenge. In fact, the drift-reduced

Braginskii equations, Eqs. (2.16)-(2.21), we consider, do not separate quantities in an

equilibrium and a fluctuating part. The time-averaged plasma profiles are therefore

not imposed “a priori” and they are not known in advance. Therefore, if one wants to

avoid to take into account the neutral fluctuations, one has to recalculate the neutral

moments periodically to reach iteratively a self-consistent quasi-steady state, similarly

to what is often done when neutral models are coupled to transport codes.

3.5 Further considerations

We would like to conclude the present Chapter with further considerations on the

development of a simplified neutral model. We focus in particular on the averaging of

the plasma-neutral interaction terms and on the poloidal asymmetry of the plasma

density source due to ionization.

3.5.1 Averaged plasma-neutral interaction terms

In order to simplify the description of the plasma-neutral interaction, one can con-

sider to average the complete plasma-interaction terms rather than only the neutral

moments. For this purpose, we consider the two sets of interaction terms discussed in

Section 3.4, Eqs. (3.14)-(3.17) and Eqs. (3.18)-(3.19), which we average, respectively,

as follows:

In = 〈nnνiz〉 (3.20)

ITe =
〈

nn

n
νiz

(
−2

3
Eiz −Te

)〉
(3.21)

ITi =
〈nn

n
(νiz +νcx)(Tn −Ti)

〉
(3.22)

Iω̃ = Iv‖e = Iv‖i = 0, (3.23)

and

In = 〈nnνiz〉 (3.24)

Iω̃ = Iv‖e = Iv‖i = ITe = ITi = 0. (3.25)
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We perform simulations with both sets of interaction terms, repeating the simulation

described in Section 3.2.

The first neutral-plasma description, Eqs. (3.20)-(3.23), which includes all the im-

portant neutral-plasma interaction terms, as discussed in Section 3.4, results in an

inconsistent physical model that leads to the termination of the simulation after a very

short time. (No time traces or profiles are shown for this reason.) This is due to the

nature of the plasma-neutral interaction terms in the temperature equations, espe-

cially ITe . Since electrons are cooled by ionization processes, the ITe term is negative,

ITe < 0. In a self-consistent simulation, such as the one in Section 3.2, the number of

ionization events, and therefore the amount of energy lost due to ionization, decreases

with the electron temperature, since the ionization rate is strongly dependent on the

electron temperature, in particular at low temperatures. However, in the simulation

with the averaged interaction terms given by Eqs. (3.20)-(3.23), the energy sink is con-

stant, and the electron temperature decreases, eventually reaching zero and becoming

negative. The neutral-plasma interaction terms that remove energy from the system,

therefore, cannot be averaged as in Eqs. (3.21)-(3.22). At least the contribution of

the fluctuations in the plasma quantities has to be taken into account. We note that

the same is expected for other plasma energy loss mechanisms, such as impurity

radiation.

Time traces and radial and poloidal profiles of the simulation with the set of interac-

tion terms in Eqs. (3.24)-(3.25), where only the averaged density source term due to

ionization is included, are shown in Figs. 3.4, 3.5, and 3.6. (The simulation is labeled

as 〈In〉.) Similarly to the In simulation described in Section 3.4.2, we observe raising

temperatures, caused by zeroing out the important heat sink terms in the electron and

ion temperature equations. However, in contrast to the In simulation, the plasma den-

sity in this simulation is less affected with respect to the original simulation described

in Section 3.2, since the complete density source term due to ionization is constant

and the increasing temperature cannot lead to an increasing ionization term and the

self-enhancing feedback described in Section 3.4.2. We expect that the raised plasma

density in the edge region, observed in the radial profiles in Fig. 3.5, is due to the

higher plasma temperatures, and not caused by the averaging of the neutral-plasma

interaction term, as one can infer from the simulation in Section 3.5.2.

3.5.2 On the poloidal asymmetry

In the final simulation presented in this Chapter, we investigate the influence of the

poloidal asymmetry in the ionization density source term, In . For this purpose, we
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average the interaction term In not only in time and toroidally, as in Section 3.5.1, but

also poloidally, which is indicated by 〈 〉θ. For the other interaction terms we consider

the same expressions as in Section 3.4.1, i.e.

In = 〈nnνiz〉θ (3.26)

ITe =
〈nn〉

n
νiz

(
−2

3
Eiz −Te

)
(3.27)

ITi =
〈nn〉

n
(νiz +νcx)(〈Tn〉−Ti) (3.28)

Iω̃ = Iv‖e = Iv‖i = 0. (3.29)

We remark that, in Eqs. (3.26)-(3.29), we zero out the friction terms and the fluctuations

in the neutral moments (Sections 3.3 and 3.4.1 show that their influence on the time-

averaged plasma profiles can be neglected). On the other hand, we do not average the

terms ITe and ITi , because, as shown in Section 3.5.1, this is unphysical.

Time traces and radial and poloidal profiles of the present simulation, labeled as 〈In〉θ,

are displayed in Figs. 3.4, 3.5, and 3.6. The time traces and plasma profiles are very

similar to the ones of the original simulation in Section 3.2. We can therefore conclude

that the poloidal shape of the ionization source in the plasma density equation does

not significantly impact the time-averaged plasma profiles. This indicates that the

plasma particles are redistributed on a fast time scale along the magnetic field lines

inside the edge region of the plasma, where the field lines lie on closed magnetic flux

surfaces.
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Chapter 4

Two-point model

In the present Chapter we investigate the electron temperature drop along the SOL

magnetic field lines, and we compare the drop obtained from self-consistent turbulent

simulations to the predictions of a simple two-point model. Since the agreement is

not satisfactory, we then develop a refined two-point model that is shown to be in

much better agreement with the simulation results than the simple model. The work

discussed in the present Chapter is published in Ref. [63].

This Chapter is structured as follows. After the Introduction, in Section 4.2 we describe

a simple two-point model for toroidally limited tokamaks. Section 4.3 compares

the prediction of this model with the SOL turbulence simulations. In Section 4.4

we develop a more accurate two-point model, which we compare to the turbulent

simulations. A discussion follows in Section 4.5.

4.1 Introduction

The level of impurities in the core of a tokamak and the lifetime of the plasma facing

components, two critical issues on the way to fusion energy, depend on the amount

of sputtering of wall material [17]. Sputtering occurs when ions, accelerated in the

sheath, hit the solid wall. The acceleration is directly related to the electron and ion

temperature in front of the divertor or limiter plates [8]. Therefore, understanding the

physical processes that regulate the plasma temperature in front of the solid walls is

of paramount importance.

Predictions of the conditions in front of the solid walls can be obtained by using
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three-dimensional simulations of the SOL. However, turbulence simulations remain

computationally very expensive. For this reason, progress was made in the devel-

opment of simplified models that describe perpendicular turbulent transport as a

diffusive process with diffusion coefficients obtained from fitting experimental data.

Progress has been made to include the effect of turbulent fluctuations on neutral

dynamics in these transport codes by adding stochastic fluctuations to plasma density

and temperature, with characteristics similar to SOL turbulence [57, 61]. Further

simplifications of these transport models lead to the so-called two-point models [8],

which are widely used to obtain fast, although rough, estimates of plasma parameters

in front of the solid walls. Two-point models can be used to understand basic trends

of the parallel transport in the tokamak SOL. They use assumptions about the per-

pendicular heat and particle fluxes and a one-dimensional description of the plasma

dynamics along the field lines to obtain relations between the plasma parameters at

the target (the divertor or limiter plates) and upstream (a location far from the target

and in contact with the core, e.g., close to the X-point, where the divertor legs begin, or

at the low-field side midplane). While a number of two-point models were developed

in the past for different magnetic geometries, varying in their assumptions and inclu-

sion of different physical processes (see, e.g., Refs. [64, 65, 66, 8]), to our knowledge

no direct comparison of two-point models with the results of turbulence codes was

carried out. The goal of the present Chapter is to perform such a comparison between

fluid turbulent simulation results and two-point models in a rather low temperature

regime (Te ≈ 3−15eV), and develop a two-point model that can well represent the sim-

ulation results. A two-point model that successfully predicts features of self-consistent

turbulence simulations has the possibility to guide the decision about parameters of

new simulations or even experiments, while reducing the number of computationally

expensive turbulence simulations.

The comparison between two-point models and simulation results is performed by

evaluating the electron temperature drop from the upstream to the target regions in a

very simple magnetic configuration, i.e. a tokamak with circular magnetic flux surfaces

and a toroidal rail limiter on the high-field side equatorial midplane. In this case, the

targets are the lower and upper sides of the limiter, while the upstream location is at

the low-field side equatorial midplane, halfway between the two targets. Since in the

limited configuration the target location is next to the confined region, a large fraction

of the recycled neutral atoms are ionized inside the LCFS, even in high density plasmas,

where the ionization mean free path is short. The plasma can redistribute itself

poloidally in the closed flux surface region, by moving along the magnetic field lines,

and it flows back out to the SOL also at locations far from the limiter. Therefore, plasma

parallel flows towards the limiter are important and, contrary to what is often done for

high-density divertor configurations [8], the parallel convective heat flux cannot be

58



4.2. A simple two-point model for the limited SOL

neglected. Therefore, the simplest two-point model in limited configuration is derived

from the balance between perpendicular heat transport, parallel heat conduction, and

parallel heat convection (used as the basic model where plasma-neutral interactions

are not important in [65], or as a starting point to derive the basic divertor two-point

model in [8]). In this Chapter, we compare the predictions of the simplest two-point

model to first-principles turbulence simulations carried out with the GBS code. Since

the comparison is not completely satisfactory, we derive a more refined two-point

model rigorously from the fluid drift-reduced Braginskii equations, which are coupled

to a kinetic equation for neutral atoms. The comparison of this refined model with

the turbulence simulations shows very good agreement.

4.2 A simple two-point model for the limited SOL

In this Section we describe a simple two-point model for an axisymmetric tokamak

with a toroidal limiter. We consider one flux tube, which spans along a magnetic field

line from one side to the other side of the limiter. We assume that the limiter is located

at the high-field side equatorial midplane. We label the direction along the flux tube

with the coordinate s, which spans from s = −L at the lower side of the limiter, to

s =+L at its upper side, with the upstream location, s = 0, located at the low-field side

equatorial midplane.

Since in the limited configuration the target location is next to the confined region, a

large fraction of the recycled neutral atoms is ionized, even in high density plasmas,

inside the closed flux surface region, where the ionized particles can redistribute

poloidally before they flow back into the SOL. As a consequence, large plasma flows

towards the limiter are present (even far from the limiter) and the parallel convective

heat flux cannot be neglected. Therefore, the simplest two-point model in limited

configuration is derived from the balance between the heat deposited in the flux tube

due to the radial heat transport, SQ⊥, the parallel heat conduction, Qcond, and the

parallel heat convection, Qconv, i.e.

Qcond(s)+Qconv(s) =
∫s

0
SQ⊥(s′)d s′. (4.1)

In Eq. (4.1) we impose Qcond(0) =Qconv(0) = 0 because the upstream location, s = 0, is

both a symmetry and a stagnation point in this simple model. The conductive heat

flux is modeled by using the Spitzer heat flux coefficient, Qcond = −χ‖eT 5/2
e dTe/d s,

and the convective heat flux is estimated by taking the third-order moment of a shifted

Maxwellian velocity distribution and neglecting the fluid kinetic energy contribution
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as Qconv = ce0ΓTe, where ce0 = 5/2, and Γ=∫
Sn⊥d s is the parallel particle flux, with

Sn⊥ being the particle source due to radial transport into the flux tube. Assuming

SQ⊥ and Sn⊥ constant along the flux tube in a limited geometry (corresponding to

poloidally uniform outflow of plasma and heat), the equation that determines the

electron temperature is

−χ‖eT 5/2
e

dTe

d s
+ce0sSn⊥Te = sSQ⊥. (4.2)

The solution of Eq. (4.2) requires a boundary condition that we apply at the magnetic

pre-sheath entrance by writing the electron heat flux through the sheath entrance as

Qt = γeΓt Te,t, where the subscript t indicates the target location, which is the magnetic

pre-sheath entrance, and the coefficient γe ≈ 5 is the electron sheath transmission

coefficient [8].

Equation (4.2) can be integrated numerically for a given SQ⊥ and Sn⊥ by imposing the

sheath boundary condition. An implicit analytical expression to relate the electron

temperature at the target, Te,t, to its upstream value, Te,u , can also be obtained [65]

and evaluated numerically.

The simplest two-point model we describe here, Eq. (4.2), is often used in the literature,

e.g. as a starting point to derive the simple divertor two-point model in [8] or as a

basic model in regions where plasma-neutral interactions are not important in [65].

4.3 Turbulent SOL simulations and comparison with the

simple two-point model

To compare the simple two-point model with results from the GBS code, we con-

sider six simulations, with a toroidal limiter on the high-field equatorial midplane,

R0 = 500ρs0, 2πa0 = 800ρs0, and mi/me = 400. With Te0 = Ti0 = 10eV and B0 = 0.5T,

it results R0 � 31cm and a0 � 8cm. The six simulations are variants of the two ba-

sic configurations, characterized by two different plasma densities, presented in

Section 2.6 and in Ref. [12]. In the low plasma density configuration, we impose

n0 = 5 ·1018m−3. As a consequence, the resistivity normalized to R0/cs0 is ν̃= 0.02, the

dimensionless parallel electron heat conductivity is κ̃‖e = 56.0, and the dimensionless

parallel ion heat conductivity is κ̃‖i = 1.6. In the high plasma density configuration,

n0 = 5 ·1019m−3, ν̃= 0.2, κ̃‖e = 5.6, and κ̃‖i = 0.16 are used. In addition to these two

basic simulations, we repeat both simulations zeroing out the plasma interaction

terms with the neutral atoms. These simulations are labeled as ’no nn’ in the fol-
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lowing. For the high density case, we also carry out a simulation where we change

the energy removed by each ionization to include the increased energy loss due to

multiple impact ionizations, labeled as ’Eiz = 30eV’ (in the other cases Eiz = 13.6eV)

and a simulation labeled ’high ST ’, where we increase the temperature sources STe

and STi by a factor of four and the density source Sn by 30%, which results in twice the

temperature and about the same density as in the basic high density simulation. (The

electron temperature increases at the target from 3.8eV to 7.2eV and at the low-field

side midplane from 6.4eV to 13.8eV in the closest flux-tube to the core, centered

around r − rLCFS = 15ρs0.) The computational domain extends for all six simulations

from rmin = 0 to rmax = 150ρs0. The source terms Sn , STi , and STe in Eqs. (2.16-2.21),

which mimic the outflow of hot plasma from the confined region to the SOL, are

constant in time, poloidally uniform, and radially Gaussian around rs = 30ρs0 with a

width of 5ρs0. We interpret their location as the radial position of the LCFS.

The comparison with the simple two-point model is performed for five different

flux tubes extending radially over 10ρs0 centered at r − rLCFS = 15,25,35,45,55ρs0. To

calculate the particle and heat deposited into each flux tube, Sn⊥ and SQ⊥, we combine

the perpendicular drift terms in the GBS equations (as explained in Section 4.4), and

we average them over time and over the poloidal direction.

The two-point model estimates of the temperature ratio, Te,u/Te,t, are then compared

to the temperature ratio in the simulations. The results are shown in Fig. 4.1. While

the general trend for the different radial locations in each simulation is captured by

the simple two-point model, the agreement with the turbulent simulations shows

relative errors that are up to 50% for this set of simulations.

4.4 A refined two-point model for limited SOL

In this Section, we derive a refined two-point model rigorously from the drift-reduced

Braginskii equations for plasma density, Eq. (2.16), and electron temperature, Eq. (2.20).

The perpendicular diffusive terms, Dn(n) and DTe (Te), included mostly for numerical

reasons, can be neglected, since they are small. For typical parameters of limited

tokamaks, the SOL plasma temperature is sufficiently high to neglect recombination

processes. Furthermore, we neglect the terms in the electron temperature equation,

Eq. (2.20), associated with the difference between parallel electron and neutral veloci-

ties since they are small compared to the other plasma-neutral interaction terms. We

also assume j‖ = 0 in Eq. (2.20). The validity of these assumptions is shown in Figs. 4.2

and 4.3. By making use of these assumptions, we obtain
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Figure 4.1 – Comparison of the ratio between the electron temperature at the upstream
and target locations, Te,u/Te,t, predicted by the simple two-point model, Eq. (4.2),
(tpm), with the results of a set of GBS simulations. For each simulation (different
colors) we consider five flux tubes of width 10ρs0 centered at radial locations r−rLCFS =
15,25,35,45,55ρs0.

∂n

∂t
+∇‖(nv‖e) = S̃n⊥+ S̃n,nn (4.3)

∂Te

∂t
+ v‖e∇‖Te + 2Te

3
∇‖v‖e −κ‖e∇‖(T 5/2

e ∇‖Te) = S̃Te⊥+ S̃Te,nn (4.4)

where we combine the perpendicular transport terms (the terms related to the E×B
and diamagnetic drifts as well as the Sn and STe terms) into effective perpendicular

source terms,

S̃n⊥ =− 1

B
[φ,n]+ 2

eB

[
C (pe)−enC (φ)

]+Sn (4.5)

S̃Te⊥ =− 1

B
[φ,Te]+ 4Te

3eB

[
Te

n
C (n)+ 7

2
C (Te)−eC (φ)

]
+STe , (4.6)
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Figure 4.2 – Time-averaged plasma density balance along the field lines between
the two limiter plates for the high density simulation for a flux tube with a width
of 10ρs0 centered at r − rLCFS = 25ρs0. The contributions are NL = −[φ,n]/B (E×B
advection), CU = 2[C (pe)− enC (φ)]/eB (divergence of diamagnetic and E×B flow
due to curvature), PA = −∇‖(nv‖e) (parallel advection), DI = Dn(n) (perpendicular
diffusion), and NN = nnνiz (plasma-neutral interaction term). The sum in black shows
the quasi steady state balance is almost exact. It does not vanish perfectly because of
the finite time-average and the finite sampling rate of the simulation results.

and we do the same for the plasma-neutral interaction terms:

S̃n,nn =nnνiz (4.7)

S̃Te,nn =
nn

n
νiz

(
−2

3
Eiz −Te

)
. (4.8)

To obtain an equation for the parallel electron heat flux, we multiply Eq. (4.3) by 3Te/2,

and Eq. (4.4) by 3n/2 and we sum the two resulting equations:

3

2

∂(nTe)

∂t
+ 3

2
Te∇‖(nv‖e)+ 3

2
nv‖e∇‖Te +nTe∇‖v‖e − 3

2
nκ‖e∇‖(T 5/2

e ∇‖Te) (4.9)

= 3

2
TeS̃n⊥+ 3

2
nS̃Te⊥+ 3

2
TeS̃n,nn +

3

2
nS̃Te,nn .

We now time-average Eqs. (4.3) and (4.9) and, rearranging the terms, we obtain

∇‖
(
nv‖e

)≈ Sn⊥+Sn,nn (4.10)

∇‖
(

5

2
nv‖eTe

)
− v‖e∇‖ (nTe)−χ‖e∇‖

(
T 5/2

e ∇‖Te
)≈ SQ⊥−Sn,nn Eiz, (4.11)
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Figure 4.3 – Time-averaged electron temperature balance for the same case as in
Fig. 4.2. The contributions are NL =−[φ,Te]/B (E×B advection), CU = 4Te[TeC (n)/n+
7C (Te)/2−eC (φ)]/3eB (curvature), PA =−v‖e∇‖Te +2Te∇‖v‖e/3 (parallel advection),
JP = 0.47Te∇‖ j‖/en (parallel current term), DI = DTe (Te) (perpendicular diffusion),
NNk = nnνiz(−2Eiz/3−Te)/n (plasma-neutral interaction terms that we keep in the
analysis), NNr = nnνizmev‖e(v‖e − 4v‖n/3)/n −nnνenme2v‖e(v‖n − v‖e)/3n (plasma-
neutral interaction terms that we neglect), and PD = κ‖e∇‖

(
T 5/2

e ∇‖Te
)

(parallel con-
duction). The sum in black shows the quasi steady state balance is almost exact. It
does not vanish perfectly because of the finite time-average and the finite sampling
rate of the simulation results.

with Sn⊥ and SQ⊥ being the time average of S̃n⊥ and 3/2(TeS̃n⊥+nS̃Te⊥) respectively,

and all quantities appearing in Eqs. (4.10-4.11) being time averaged. We note that, in

agreement with simulation results, the contribution due to the correlation between

fluctuations can be neglected when time-averaging the parallel transport terms and

the neutral-plasma interaction terms (i.e., the terms that are the product of two or

more fluctuating quantities can be evaluated as the product of the time-averaged

multiplicands). On the other hand, the fluctuations have to be included in the time-

averaging of the perpendicular turbulent transport terms to obtain Sn⊥ and SQ⊥.

Moreover, the coefficient in the parallel Spitzer heat conductivity is defined as χ‖e =
3
2 nftκ‖e, where nft is the average density in the flux tube.

To derive the electron temperature drop along the field lines from Eq. (4.11), we

estimate the variation of the parallel electron velocity, plasma density, and neutral

density along the field line. We assume that the parallel velocity varies linearly between
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the two limiters, where Bohm boundary conditions are valid, i.e.

v‖e(±L) =±cs =±
√

Te +Ti

mi
≈±

√
2Te

mi
, (4.12)

obtaining therefore

v‖e(s) = cs s

L
. (4.13)

To estimate the plasma density profile, we integrate Eq. (4.10), that is

Γ= nv‖e =
∫

Sn⊥+Sn,nn d s. (4.14)

The profile of the plasma density is then n = Γ/v‖e. The neutral density is assumed to

decay exponentially from the two limiters, i.e.

nn(s) = nn(−L)exp[(−s −L)/λmfp,n]+nn(L)exp[(s −L)/λmfp,n], (4.15)

with the decaying scale length given by λmfp,n = αr cs/(νiz + νcx), where αr is the

reflection coefficient of the neutrals on the limiter (the velocity of the thermal neutrals

from the wall is much smaller and can be neglected when estimating the effective

neutral mean free path). The collision frequencies νiz and νcx are evaluated with the

electron temperature and plasma density averaged around the target (from the limiter

to a distance λmfp,n from the limiter). The target density, nn(±L), is chosen to match

the total amount of ionization in the considered flux tube. This is an input for an

one-dimensional model, since neutral particles are not bound to flow along a field

line and can move easily across the flux surfaces before being ionized. The ionization

inside each flux tube amounts for about 5% to 20% of the recycled particles at its ends,

depending mainly on plasma density and radial location of the considered flux tube.

The perpendicular source terms, Sn⊥ and SQ⊥, are approximated to have a cosine

distribution due to the ballooning character of the perpendicular transport, which is

confirmed by the turbulence simulations.

Finally, to solve (4.11) for the electron temperature, we impose symmetry around the

upstream location s = 0, where the parallel derivative of Te vanishes. We also ensure

that the velocity profile is self-consistently evaluated with Te(±L) by enforcing that
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Figure 4.4 – Comparison of the ratio between the electron temperature at the upstream
and target locations, Te,u/Te,t, as provided by the refined two-point model, Eqs. (4.10-
4.11), (tpm), with the same set of GBS simulations considered in Fig. 4.1 and described
in Section 4.3.

the integral of the parallel electron heat equation, Eq. (4.11), along s is satisfied, i.e.

[
5

2
nv‖eTe

]L

−L
= 5LΓ(±L)Te(±L) (4.16)

=
∫L

−L

[
SQ⊥−Sn,nn Eiz + v‖e∇‖(nTe)+χ‖e∇‖(T 5/2

e ∇‖Te)
]

d s,

which describes the total heat balance in the flux tube.

With these constraints, for a given density source strength, heat source strength, and

total amount of ionization in the observed flux tube, the refined two-point model,

consisting of Eqs. (4.10,4.11,4.13,4.15), can be solved self-consistently. We compare its

results to the set of simulations described in Section 4.3 in Fig. 4.4. The results obtained

with the refined two-point model and the simulations show very good agreement.
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4.5 Discussion

We test separately the main differences between the simple and the refined two-point

model to determine the reason behind the significantly better agreement of the latter

with the turbulence simulations. We observe that the shape of the source terms Sn⊥
and SQ⊥ (from constant to a cosine poloidal dependence) does not improve signifi-

cantly the agreement of the simple two-point model. On the other hand, a significant

effect can be observed by including the plasma-neutral interaction terms. This was

also observed by Tokar et al. [65], where an improved two-point model is described in

which the neutrals are modeled as exponentially decaying from the limiter, similarly

to the approach in the present paper, and charge-exchange collisions are taken into

account through a diffusive model. To show the impact of the plasma-neutral interac-

tion on the two-point model, we repeat the comparison between simulation results

and the simple two-point model, but we include the plasma-neutral interaction terms

(we assume a linear velocity profile to obtain the density, which is only needed in

Sn,nn ). The results, shown in Fig. 4.5 (left), reveal that, while the trend shown by the

simulations is recovered, there is still a significant offset from GBS results, which

disappears in the refined model (Fig. 4.4), where the compressional term, v‖e∇‖ (nTe)

[Eq. (4.11)], originating from the plasma compressibility in the Braginskii equations,

is included.

To investigate the effect of the compressional term, we repeat the comparison between

simulation results and the refined two-point model, but we neglect the plasma-neutral

interaction term. The result is shown in Fig. 4.5 (right). While for the simulations with

low density and without neutrals we observe the same level of agreement between

turbulence simulation and this two-point model as in the complete refined two-point

model (Fig. 4.4), the same is not true for high density simulations, where the neutral

mean free path is short.

From these observations we can draw two conclusions. First, when considering

simulations with short neutral mean free path, it is important to account for the

plasma-neutral interaction terms, and second, throughout the parameter regime

explored in our simulations, the compressional term has to be taken into account for

good quantitative agreement. We note that for significantly higher temperatures the

impact of the compressional term might be reduced, since the parallel electron heat

conductivity, increasing proportional to T 5/2
e , might dominate the heat equation. This

has to be investigated with future simulations.

We can conclude that, by taking into account these two effects, the refined two-point

model that we derived from the drift-reduced Braginskii equations for the limited
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Figure 4.5 – Comparison of the ratio between the electron temperature at the upstream
and target locations, Te,u/Te,t, for two intermediate models between the refined model
(Fig. 4.4) and the simple model (Fig. 4.1). On the left, results from the the simple two-
point model (Section 4.2) are shown, where the plasma-neutral interaction terms have
been included to otherwise constant source terms Sn and SQ . On the right, results
from the refined model are shown, where the plasma-neutral interaction terms have
been omitted.

tokamak SOL predicts accurately the ratio between upstream and target electron

temperatures along a flux tube given three input parameters, namely the particle and

heat sources due to perpendicular turbulent transport, and the ionization in the flux

tube.

In the present work, we focus our attention on the electron temperature drop. We

would like to remark that evaluating the same drop for the ion temperature brings

additional difficulties. In fact, using quasi-neutrality to derive the drift-reduced Bra-

ginskii equations, we choose the electron density equation to evolve the plasma

density. Therefore, identifying the parallel and perpendicular transport terms in the

electron heat equation, Eq. (4.9), which is a combination of the density and electron

temperature equation [Eq. (2.16) and Eq. (2.20)], is straightforward. Applying the same

procedure to separate the parallel and perpendicular dynamics in an ion heat equa-

tion requires the use of the ion density equation, that involves the ion polarization

velocity (see, e.g., [14]), which is more challenging. Furthermore, while neglecting

the plasma current term in the electron equation is a good assumption (the ’JP’ term

in Fig. 4.3 is always smaller than several other dominant terms), we have observed

that in the ion temperature balance (not shown) the current term can dominate the
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balance at certain locations. In general, it is difficult to estimate the magnitude of

the parallel current. Additionally, the complexity of the plasma-neutral interaction

increases for the ions due to charge-exchange collisions, whose evaluation needs an

approximation of the neutral temperature, while the neutral density suffices for the

electron equations. On the other hand, the parallel heat conduction is much smaller

for the ions than for the electrons, and can be neglected in most cases.
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Chapter 5

Gas Puff Imaging

In the present Chapter, we investigate the impact of neutral density fluctuations on Dα

light emission, often used experimentally to study plasma structures and turbulence

properties in the tokamak periphery. Our study is motivated by the fact that it is not

easy experimentally to separate the contributions of neutral density, plasma density,

and electron temperature fluctuations to the Dα emission. The interpretation of this

emission relies therefore on simulations, such as the one carried out in the present

Chapter. The content of this Chapter has been submitted for publication to the

Nuclear Fusion journal.

The present Chapter is structured as follows. After the Introduction, in Section 5.2 we

describe the simulation that we consider for the present study and we introduce the

synthetic GPI diagnostic. We describe the influence of neutral fluctuations on the Dα

emission in Section 5.3. A discussion follows in Section 5.4.

5.1 Introduction

The dynamics in the tokamak periphery results from the interplay and balance of

perpendicular and parallel transport, plasma sink at the solid walls, and neutral recy-

cling. Since radial transport is dominated by turbulent transport, measurements of

the turbulent dynamics in the SOL and edge regions are of fundamental significance.

Among the different experimental techniques available to study edge and SOL turbu-

lence, we focus here on the Gas Puff Imaging (GPI) diagnostics [67, 68, 69, 70], where

neutral gas is puffed into the SOL and light emission is recorded by one or several fast

cameras with high temporal and spatial resolution. The local light emission stems
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from atomic processes due to the interaction between the injected neutrals and the

plasma, which is optically thin in typical tokamak conditions, so that most emitted

photons leave the plasma without further interactions. The cameras measure the

integrated local light emission along their lines of sight. The light emission is mostly

toroidally localized around the gas puff valve. Therefore, using a fast camera with a

tangential view, two-dimensional poloidal snapshots of the local light emission rates

are approximately obtained.

While fast cameras can record the whole integrated visible spectrum, single spectral

lines are usually selected by optical filters to facilitate the interpretation of the mea-

surements. In particular, the Hα line of the Balmer series is often used in hydrogen

plasmas (respectively the Dα line in deuterium plasmas) [67, 69, 71, 72]. It corre-

sponds to the transition of an excited hydrogen atom in the third state, H∗(n = 3), to

the second state. The H∗(n = 3) excited state can originate from various atomic and

molecular processes, such as molecular dissociation or electron impact excitation. (An

exhaustive list of atomic and molecular processes in hydrogen plasma can be found

in Ref. [46].) Due to this large variety of atomic processes and due to the difficulty

to separately measure the parameters relevant to the emission process (e.g., plasma

density, plasma temperature, atomic and molecular densities of the neutrals), it is

not straightforward to interpret the GPI measurements. Assumptions or numerical

simulations are necessary.

To interpret GPI measurements, it is often assumed that the emission rate can be

estimated by [68, 69, 72]

Dα = nnnrα(n,Te), (5.1)

where n is the electron density (we assume unitary ion charge, Z = 1, in the present

work), nn is the atomic neutral density, and rα(n,Te) is the emission rate coefficient

of the Dα line, which depends on the electron density and temperature and which is

obtained from collisional-radiative modeling (see, e.g., Ref. [42]). The contribution

of molecular dissociation is therefore neglected in Eq. (5.1). Then, two assumptions

to interpret GPI images are typically made, i.e. that the structures visible in the

light emission are mostly due to the plasma fluctuations, neglecting consequently

the fluctuations of the neutral density, and that the plasma density and electron

temperature are correlated in the tokamak SOL, which is supported by numerical

turbulence simulations [71, 73]. This allows interpreting the GPI measurements and

deduce properties of the SOL and edge plasma turbulence, such as spectra, spatial

scales, relative fluctuation amplitudes, or blob propagation speed [67, 69, 71]. In order

to reduce the number of assumptions, the contribution of plasma and neutral density
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and electron temperature fluctuations to the light emission have to be measured

separately. Experimentally, this is achieved by recording multiple spectral lines for the

same lines of sight, taking advantage of the fact that the dependency of the emission

rate coefficient, r (n,Te), on plasma density and electron temperature can be different

for different spectral lines. This was done with helium gas puffs and different spectral

He-lines, e.g., for a few lines of sight in the Alcator C-Mod tokamak [67] or, more

recently, with two-dimensional images from high-speed cameras and two spectral He-

lines in the TJ-II stellarator, which allowed estimating independently plasma density

and neutral density fluctuations, showing the impact of neutral density fluctuations

on light emission [74].

Despite the progress made on the experimental techniques, because of the complexity

of the physics processes involved in the GPI measurements, numerical simulations

of the turbulent plasma and the neutral particles are still necessary to confirm the

validity of the used assumptions and to guide the interpretation of experimental

measurements. Different types of simulations were carried out in the past for this

purpose, with various assumptions, taking into account either plasma turbulence,

while neglecting neutral fluctuations [71, 72, 73, 75], or simulating neutral density

fluctuations, while taking averaged plasma profiles or artificial plasma fluctuations [69,

47, 57, 61]. Initial attempts to simulate plasma turbulence and fluctuating neutrals

self-consistently were made with two-dimensional plasma simulations and mono-

energetic neutrals [36], or with a diffusive neutral model without the back-reaction on

the plasma [39].

Our goal is to investigate the impact of neutral density fluctuations on the light emis-

sion around the diagnostic gas puff, in particular we focus on the Balmer Dα line. For

this purpose, we use a three-dimensional turbulence simulation of a limited tokamak

SOL and edge. The simulation includes two gas puffs around the toroidal rail limiter

on the high-field side that fuel the plasma, and a small diagnostic gas puff on the

low-field side equatorial midplane.

5.2 Simulation and GPI diagnostics

The simulation considered in this study is based on the simulation presented in Sec-

tion 3.2, where we include a small diagnostic gas puff on the low-field side equatorial

midplane. To simplify the geometry of our simulation, we assume that the diagnos-

tic gas puff is toroidally constant. Moreover, we impose that it injects neutrals with

the same distribution function as the two fueling gas puffs, Eq. (3.1), but with lower
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Figure 5.1 – Poloidal snapshots of plasma density, electron temperature, neutral
density, and ionization rate, for the simulation considered in the present Chapter and
described in Section 5.2.

amplitude. This diagnostic gas puff does not contribute significantly to the plasma

fueling (it accounts for approximately 5% of the ionization in the simulation), as we

verified by comparing the simulation to the one in Section 3.2. The same can also

be inferred from Fig. 5.1, where we show poloidal snapshots of plasma density, elec-

tron temperature, neutral density, and ionization source, Siz. One can observe that

Siz is rather small at the low-field side around the diagnostic gas puff. We note that

toroidally constant gas puffs are atypical in experiments. However, our results are not

significantly affected by the geometrical details of the gas puff since, in the present

work, we do not address the issue of the integration of the signal along the lines of

sight of a camera, for which a toroidally localized gas puff is needed, but we analyze

the local light emission.

Radial profiles at the low-field side equatorial midplane, where the subsequent in-

vestigations on plasma and neutral fluctuations are performed, are shown in Fig. 5.2

for plasma density, electron temperature, and neutral density. The neutral density

decays approximately exponentially with a scale length of 60ρs0 from the outer do-
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Figure 5.2 – Radial profiles of plasma density, electron temperature, and neutral
density at the low-field side equatorial midplane, time and toroidally averaged.

Te [eV] 1 10 100

rDα , n0 = 5 ·1018m−3 [m3/s] 2.64 ·10−20 8.89 ·10−16 2.25 ·10−15

rDα , n0 = 5 ·1019m−3 [m3/s] 1.89 ·10−16 4.39 ·10−16 1.27 ·10−15

Table 5.1 – Values of the emission coefficient rDα for n0 = 5 · 1018m−3 and n0 = 5 ·
1019m−3.

main boundary, resulting from ionization and charge exchange processes. We define

this scale length as the effective mean free path of the neutrals, λmfp,n. On the other

hand, the plasma density decays from the core to the vessel wall with a scale length

of approximately 180ρs0. The electron temperature has a shorter decay length in

the closed flux-surface region closest to the core (approximately 20−30ρs0), which

becomes comparable to the one of the density in the SOL.

We focus on the local emission rate of the Balmer Dα line, which we calculate as

Dα = ne nnrDα(ne ,Te ), (5.2)

where rDα is the emission coefficient that depends on electron density and tem-

perature as tabulated in the OpenADAS database [42]. Values of the rDα emission

coefficient are shown in Fig. 5.4 and Table 5.1. A snapshot of the Dα emission rate is

shown in Fig. 5.3 on the full poloidal cross-section. Figure 5.5 displays the temporal

evolution of the normalized Dα fluctuations in the region in front of the diagnostic

gas puff around the low-field side equatorial midplane. (This region is indicated by a

yellow dotted contour in Fig. 5.3.) Normalized Dα emission fluctuations are defined
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Figure 5.3 – Poloidal snapshot of the Dα emission rate. The large yellow dotted area
indicates the spatial region shown in Figs. 5.5, 5.6, and 5.12. The smaller red dotted
areas indicate the spatial regions where the joint probabilities shown in Figs. 5.9
and 5.10 are calculated.
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Figure 5.4 – Values of the emission coefficient rDα for n0 = 5 · 1018m−3 and n0 =
5 ·1019m−3.
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Figure 5.5 – Five snapshots, separated by 0.3R0/cs0 � 3μs, representing normalized
fluctuations of Dα light emission, (Dα− 〈Dα〉)/〈Dα〉, in front of the gas puff. The
considered spatial domain is indicated by a yellow dotted contour in Fig. 5.3. The
LCFS is located at r = 0 and the low-field side equatorial midplane is at y = 400ρs0.
The snapshots in Figs. 5.1, 5.3, 5.6, and 5.12 are evaluated at t = 0.

as (Dα−〈Dα〉)/〈Dα〉, where 〈Dα〉 denotes the toroidal and time average of Dα. We

note that the toroidal average can be performed since an axisymmetric system is

investigated, and the time average is taken over a time window of Δt = 40R0/ρs0 that

covers several fluctuation times during the quasi-steady state phase of the simulation.

Similar definitions apply to other quantities.

5.3 Impact of neutral fluctuations on GPI

The neutral density in the SOL and edge regions is not easily measured experimentally.

It is therefore difficult to disentangle the contributions of plasma density, electron

temperature, and neutral density fluctuations to the fluctuations in the Dα emission,

Eq. (5.2). To investigate the impact of neutral density fluctuations on the Dα emission,

we evaluate it by using the averaged neutral density:

Dα〈nn〉 = ne〈nn〉rDα(ne,Te), (5.3)

removing thereby the neutral density fluctuations, while keeping plasma density and

electron temperature fluctuations.

We show Dα and Dα〈nn〉 in Fig. 5.6 (left and middle panels) and their normalized

difference in Fig. 5.6 (right panel). While Dα and Dα〈nn〉 show similar spatial patterns,

neglecting neutral density fluctuations leads to errors of the order of 30% in the inten-

sity of the light emission, in particular in the closed flux-surface region. This therefore

shows that the local Dα emission amplitude might be significantly influenced by

neutral fluctuations.
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Figure 5.6 – Snapshots of Dα emission (left) and Dα〈nn〉 emission, evaluated by re-
moving the contribution of neutral density fluctuations (middle), and their relative
difference (right).
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Figure 5.7 – Radial profiles of standard deviation (left), skewness (middle), and kur-
tosis (right) of normalized plasma and neutral density, electron temperature, and
Dα fluctuations with and without neutral density fluctuations at the low-field side
midplane.

To investigate the impact of neutral fluctuations on other typical quantities obtained

from GPI diagnostics, we evaluate the standard deviation, the skewness, the kurtosis,

the autocorrelation time (τauto), and the radial and poloidal correlation lengths (Lrad

and Lpol) from the normalized Dα and Dα〈nn〉 fluctuations respectively. These are

shown in Figs. 5.7 and 5.8.

The standard deviation of the normalized Dα〈nn〉 emission in Fig. 5.7 (left panel) is up

to 20% larger than the standard deviation of the Dα emission in the SOL and their dif-

ference decreases when approaching the core. In addition, in the SOL we also observe

that Dα fluctuations are larger than n, nn , and Te fluctuations, displaying also a dif-

ferent radial dependence. The skewness of the turbulent fields is analysed in Fig. 5.7,

middle panel. We note that the skewness of Dα and Dα〈nn〉 are very similar in the SOL,

and both of them follow the skewness of plasma density and electron temperature
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Figure 5.8 – Radial dependence of autocorrelation time and correlation lengths along
the radial and poloidal direction for the Dα emission with and without neutral fluctu-
ations.

and increase radially. On the other hand, we observe a difference between the Dα

and Dα〈nn〉 skewness in the confined region, where they are also quite different with

respect to the skewness of plasma density and electron temperature. The skewness of

the neutral density decreases radially and is negative in the SOL and positive in the

edge. Similar remarks can be made for the kurtosis, Fig. 5.7 (right panel), namely, Dα

and Dα〈nn〉 show similar behavior in the SOL region, and a discrepancy in the confined

region.

To evaluate τauto, Lrad, and Lpol, we use the definitions in Refs. [71] and [72], i.e.

L = 1.66
δ√

−lnCi j

(5.4)

and

Ci i (τauto) = 1

2
, (5.5)

where δ is the distance between the two positions (experimentally the lines of sight) i

and j , and Ci j is the zero-time-delay cross-correlation function between the signals

at the same positions. For our analysis we choose δ= 3ρs0 (the results do not depend

on the choice of δ for 1.5ρs0 � δ� 10ρs0).

Radial profiles of τauto, Lrad, and Lpol are shown in Fig. 5.8. Neutral density fluctuations

do not have a large impact on these measurements in the SOL. On the other hand, an

effect of neutral density fluctuations can be observed in the confined region towards

the core, similarly to what is observed for the statistical moments in Fig. 5.7. We

note that converting normalized to dimensional units reveals τauto ≈ 3−8μs, Lrad ≈
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Figure 5.9 – Joint probability function between fluctuations of plasma density, electron
temperature, neutral density, and Dα emission in front of the low-field side diagnostic
gas puff in the SOL (25ρs0 < r < 50ρs0, right red dotted region in Fig. 5.3).

1.5−2cm, and Lpol ≈ 2cm, values that are similar to the ones found in the C-Mod

tokamak [71, 72].

5.4 Discussion

We analyze the link between neutral and plasma fluctuations to explain the impact of

neutral density fluctuations on the Dα emission rate. We first study the correlations

and anti-correlations between n, nn, Te, and Dα by evaluating their joint-probability

functions. These are presented for the SOL (25ρs0 < r < 50ρs0) in Fig. 5.9, and for

the edge (−50ρs0 < r <−25ρs0) in Fig. 5.10. Both regions (SOL and edge) show that

plasma density and electron temperature fluctuations are correlated (an observation

made also in other SOL turbulence simulations [71, 73]). On the other hand, the

neutral density is anti-correlated with both plasma density and electron temperature,

particularly in the SOL. The anti-correlation between Dα emission and neutral density,

observed in the SOL, disappears in the confined region, and the correlation between

Dα emission and both plasma density and electron temperature is much sharper in

the SOL than in the edge.

To quantify the correlations, we introduce Spearman’s rank correlation coefficient [76],

rs , which indicates if a correlation between two quantities is monotonically increasing

(in this case rs = 1, and the two quantities are correlated), decreasing (in this case

80



5.4. Discussion

Figure 5.10 – Same plots as in Fig. 5.9 in the edge (−50ρs0 < r <−25ρs0, left red dotted
region in Fig. 5.3).

rs =−1, and the two quantities are anti-correlated), or it is somewhere in-between

(−1 < rs < 1), independently of the type of correlation (e.g., linear or quadratic).

Radial profiles of rs evaluated at the low-field side equatorial midplane are shown in

Fig. 5.11 for the six combinations of neutral and plasma density, electron temperature,

and Dα emission. In the SOL, a clear correlation between plasma density, electron

temperature, and Dα emission is visible, while one observes anti-correlation between

the neutral density and the other three quantities. All correlation and anti-correlation

coefficients decrease towards the core, and the anti-correlation of neutral density and

Dα emission in the SOL even turns into a correlation in the confined region. This

transition happens at r � −35ρs0, which is also, approximately, the radial location

inside which the skewness (Fig. 5.7, middle panel) and the correlation quantities

(τauto, Lrad, and Lpol, Fig. 5.8) differ if they are evaluated from Dα or Dα〈nn〉. In fact, for

r �−35ρs0 neutral fluctuations impact not only the Dα fluctuation amplitude, but

also their spatial structures and fluctuation properties, as it can be observed in the

skewness and in the correlation lengths profiles.

These observations can be explained by the analysis of typical turbulence snapshots.

The normalized fluctuations of plasma density, electron temperature, neutral density,

and Dα emission, in the region in front of the diagnostic gas puff, are shown in

Fig. 5.12. First, we observe very similar spatial structures in plasma density and

electron temperature, confirming that these two quantities are strongly correlated in

the whole considered region. Second, for the correlation between the neutrals and the

plasma quantities, we distinguish two regions, the region r �−35ρs0 (approximately
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Figure 5.11 – Radial profiles of the Spearman correlation coefficient between plasma
and neutral density, electron temperature, and Dα emission.

the SOL), which is closer to the outer boundary than the effective neutral mean free

path, λmfp,n � 60ρs0, and the region r �−35ρs0, which is further away from the outer

boundary than λmfp,n. In the r � −35ρs0 region, positive fluctuations in plasma

density and electron temperature (yellow structures) clearly correlate with negative

fluctuations in the neutral density (blue structures). This anti-correlation is due to

the fact that, while the diagnostic gas puff, the main source of neutral particles at the

low-field side midplane, is constant and independent of the local plasma parameters,

neutral particles are lost because of ionization processes, which occur with higher

probability in regions where the plasma is denser and hotter. Therefore, regions of high

plasma density and electron temperature correspond to regions of low neutral density.

On the other hand, in the r �−35ρs0 region, the neutral density is determined not

only by the local plasma properties (a weak anti-correlation between nn and both n

and Te is visible), but also by the plasma properties in the SOL region radially outward

from the edge location where the observations are made. In Fig. 5.12, the enhanced

SOL plasma density and electron temperature, observed at y � 400ρs0, reduce the

neutral density not only in the SOL, but also radially inward. This phenomenon is

referred to as shadowing [47, 69]. On the other hand, for y � 350ρs0, n and Te are

rather low and let the neutrals penetrate much further than on average. This leads to

positive fluctuations in neutral density close to the core, a sort of inverse shadowing

event. Because of the non-locality of the shadowing, the neutral density fluctuations

in the confined region close to the core are not as anti-correlated with the plasma

density and temperature as in the SOL (see Fig. 5.11). In fact, the Dα emission close
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5.4. Discussion

Figure 5.12 – Poloidal snapshots in front of the low-field side gas puff (this region is
contoured by a yellow dotted line in Fig. 5.3) of the normalized fluctuations of plasma
density (top left), electron temperature (top right), neutral density (bottom left), and
Dα emission (bottom right).

to the core is larger when neutrals can penetrate further into the plasma than on

average, which is seen in the correlation between nn and Dα in the inner part of the

edge region (see Fig. 5.11). As a consequence, at a distance larger than λmfp,n from the

outer boundary, neutral density fluctuations can have a significant influence on the

statistical moments and turbulence properties evaluated from Dα emission.

We have applied the same synthetic GPI diagnostics to a similar simulation with

approximately twice the plasma density, and therefore with approximately half the

neutral mean free path, λmfp,n � 30ρs0. In this simulation, we observe that the tran-

sition from the region where neutrals and Dα emission are clearly anti-correlated

to the region where the two quantities are correlated, observed in the radial plot of

the Spearman correlation coefficients (similar to Fig. 5.11), occurs approximately at

a distance of 40ρs0 from the outer domain boundary. This confirms that λmfp,n is a
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dominating factor in setting the region where the shadowing effect occurs and has a

significant impact on GPI measurements.

The relevance of the shadowing effect in interpreting the GPI measurements depends

on the experimental set-up and the sensitivity and dynamic range of the cameras. In

fact, the location where the shadowing becomes important is related to λmfp,n, which

depends on the experimental conditions. At the same time, the average intensity of

the Dα emission decreases significantly at distances larger than λmfp,n (see Fig. 5.6,

left panel) and therefore it might be recordable only by sensitive cameras with a high

dynamic range.
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Chapter 6

Summary and outlook

The understanding of the interaction between neutral atoms and turbulent plasma in

the tokamak periphery, focus of the present Thesis, is a crucial step in the development

of fusion reactors. In fact, this interaction sets the boundary conditions for the burning

plasma in the tokamak core, determining the overall performances of the machine.

In this Thesis, we present a first-principles self-consistent model suitable to simu-

late the coupled plasma turbulent and neutral dynamics in the tokamak periphery.

The model, described in Chapter 2, assumes high plasma collisionality, λmfp/L � 1,

magnetized plasma, ωcτ� 1, drift ordering, d/dt �ωci, adiabatic neutrals, τn < τturb,

and elongated turbulent plasma structures, k‖λmfp,n � 1. The plasma is modeled by

the drift-reduced two-fluid Braginskii equations, Eqs. (2.16)-(2.21), and the neutral

physics is described by a kinetic equation with Krook operators for ionization, recom-

bination, and charge-exchange processes, Eq. (2.1). The neutral kinetic equation is

solved in the adiabatic limit using decoupled poloidal planes and a short cycle scheme.

The kinetic equation is hereby reduced to a linear integral equation for the neutral

density, Eq. (2.33). The solution of Eq. (2.33) enables the straightforward computation

of the neutral distribution function, fn, by evaluating Eq. (2.26), and any of its higher

order moments, needed in the plasma-neutral interaction terms.

In Chapter 3, a simulation of the tokamak SOL and edge region is presented, where the

plasma density source is solely described by the self-consistent ionization of neutral

atoms. This simulation is then used as a basis to identify the key elements of the

neutral-plasma interaction, with the goal of obtaining the simplest possible model for

its description. In Section 3.3 part of the simulation is repeated with averaged neutral

moments, showing that, in the presented plasma conditions, neutral fluctuations

do not impact the equilibrium plasma profiles significantly. Zeroing out the terms
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related to friction between the plasma species and the neutrals in Section 3.4.1, also

results in very similar plasma profiles, confirming that these small terms do not impact

the plasma profiles significantly in the considered plasma conditions. On the other

hand, removing the interaction terms in the electron and ion temperature equations

completely, as presented in Section 3.4.2, affects significantly the simulation. This

points out that the temperature interaction terms, Eqs. (3.15) and (3.16), are important.

Therefore, the simplest neutral model that can be used, in the plasma scenarios

under consideration, includes the ionization term in the plasma density equation,

the corresponding energy sink terms in the electron temperature equation, and the

temperature equilibration terms related to ionization and charge exchange processes

in the ion temperature equation.

A refined two-point model that includes plasma-neutral interactions is presented

in Chapter 4. The model is derived from the drift-reduced Braginskii equations. It

reproduces well the simulation results, as verified by a comparison with a set of self-

consistent turbulence simulations of the tokamak SOL. Two conclusions can be drawn

from the comparison. First, when considering simulations with short neutral mean

free path, it is important to account for the plasma-neutral interaction terms and,

second, throughout the parameter regime explored in the considered set of simu-

lations, the compressional term has to be taken into account for good quantitative

agreement. By taking into account these two effects, the refined two-point model

that we derived from the drift-reduced Braginskii equations for the limited tokamak

SOL predicts accurately the ratio between upstream and target electron temperatures

along a flux tube given three input parameters, namely the particle and heat sources

due to perpendicular turbulent transport, and the ionization in the flux tube. The

refined two-point model can be used, in the parameter regime investigated through

our simulations, to approximately predict the outcome of computationally expen-

sive turbulence simulations, guiding the decision about input parameters of such

simulations or experiments. As progress in the development of three-dimensional

turbulence codes evolves, the two-point model can be further improved for more

advanced tokamak exhaust configurations.

In Chapter 5, a self-consistent simulation of plasma turbulence and neutral atom

dynamics in the SOL and edge regions of a limited tokamak is discussed. This simula-

tion includes two fueling gas puffs on the high-field side and a diagnostic gas puff on

the low-field side equatorial midplane. The local Dα emission is evaluated and the

effect of neutral density fluctuations on GPI measurements is investigated. It turns

out that neutral density fluctuations and plasma fluctuations (for both plasma density

and electron temperature) are strongly anti-correlated at distances from the gas puff

smaller than the neutral mean free path, λmfp,n, which leads to a systematic influence

86



of neutral density fluctuations on the Dα emission amplitude. On the other hand,

statistical moments and turbulence characteristics of the Dα fluctuations, such as

skewness, kurtosis, autocorrelation time, and perpendicular correlation lengths, are

not affected significantly in this region, at least in the parameter regime investigated in

the presented simulation. The assumption to neglect neutral fluctuations to interpret

the characteristics of Dα emission as being very similar to the characteristics of the

plasma, which is often used to interpret experimental GPI measurements, is therefore

justified at distances from the gas puff smaller than λmfp,n. Particular care has to be

taken in the analysis of GPI measurements, if regions closer to the core are included

in the observations, where the neutrals have traversed distances longer than λmfp,n

from their source, the diagnostic gas puff. In these regions, in fact, the neutrals have

interacted with plasma structures at different radial locations and the Dα emission is

strongly influenced by non-local shadowing events. This is particularly true for the

skewness, kurtosis, autocorrelation time, and radial and poloidal correlation lengths,

that are significantly affected by the neutral density fluctuations.

The inclusion of the kinetic neutral model into the drift-fluid plasma turbulence code

GBS is a step in the path leading from the description of simple linear basic plasma

physics experiments [77] to the completely self-consistent simulation of the complex

processes in the periphery of a future fusion power plant. While in the present Thesis

the focus lies on limited tokamaks, work is being carried out to enable the GBS code to

simulate plasmas in arbitrary magnetic geometries, therefore allowing also diverted

plasma configurations. Since in diverted configurations the strike points are far from

the confined plasma region, neutral-plasma interactions are even more important

than in limited plasmas. Simulating plasma turbulence and neutral atom dynamics

self-consistently in diverted plasma configurations is one of the next steps for the GBS

code. The initial work on the transition between a sheath limited to a conduction

limited regime, presented in Section 2.6, can then be extended in future efforts towards

the high-recycling and detached regimes, using divertor configurations. To fully self-

consistently simulate the physical processes in the turbulent detached divertor, the

neutral atom model most likely has to be extended to include molecular physics, the

presence of impurities, and a model for power radiation.
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