Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivation: A theoretical and experimental demonstration
The link between sub-bandgap states and optoelectronic properties is investigated for amorphous zinc tin oxide (a-ZTO) thin films deposited by RF sputtering. a-ZTO samples were annealed up to 500 °C in oxidizing, neutral, and reducing atmospheres before characterizing their structural and optoelectronic properties by photothermal deflection spectroscopy, near-infrared-visible UV spectrophotometry, Hall effect, Rutherford backscattering, hydrogen forward scattering and transmission electron microscopy. By combining the experimental results with density functional theory calculations, oxygen deficiencies and resulting metal atoms clusters are identified as the source of subgap states, some of which act as electron donors but also as free electron scattering centers. The role of hydrogen on the optoelectronic properties is also discussed. Based on this detailed understanding of the different point defects present in a-ZTO, their impact on optoelectronic properties, and how they can be suppressed by postdeposition annealing treatments, an amorphous indium-free transparent conductive oxide,with a high thermal stability and an electron mobility up to 35 cm2 V−1 s−1, is demonstrated by defect passivation
Supp_Material_rucavado.pdf
openaccess
600.86 KB
Adobe PDF
d7e7adb81511e2bc56fc1de93c25f518
paper_867.pdf
openaccess
3.59 MB
Adobe PDF
268481fc4ef4e8c8c3ccc0c2a43baabb