
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. F. Eisenbrand, président du jury
Prof. J. Pach, directeur de thèse

Prof. G. Tardos , rapporteur
Prof. A. V. Le, rapporteur

Prof. A. Shokrollahi, rapporteur

Erdos distinct distances problem and extensions over 
finite spaces

THÈSE NO 7787 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 12 JUIN 2017

 À LA FACULTÉ DES SCIENCES DE BASE
CHAIRE DE GÉOMÉTRIE COMBINATOIRE

PROGRAMME DOCTORAL EN MATHÉMATIQUES 

Suisse
2017

PAR

Van Thang PHAM





To my parents





Acknowledgements

I will start by expressing my deepest gratitude and appreciation towards my supervisor

Prof. János Pach for his invaluable support and non-stop encouragement. During

my Phd time, what I have learned from János go much beyond Mathematics. He has

taught me how to be patient and how to do math in an enjoyable way. Words are not

enough to express all my gratitude to Prof. János Pach.

I would like to thank Prof. Gábor Tardos, Prof. Le Anh Vinh, Prof. Doowon Koh, Dr.

Frank de Zeeuw, my co-authors, and all DCG, DISOPT members for many helpful and

thorough discussions about various topics. I would like to express my sincere thanks

to the jury members Prof. Friedrich Eisenbrand and Prof. Amin Shokrollahi.

Un grand "Merci" for Jocelyne, who has helped me so many times since my arrival

in Lausanne. I am very lucky to have had (and still have) friends that made my stay

in Lausanne memorable. Thank you Claudiu Valculescu, Tran The Dung, Hossein

Nassajian Mojarrad, Hoang Duc Trung.

I also take this opportunity to thank the Mathematics Doctoral School at EPFL and

the Swiss National Science Foundation for their support during my four years as a

graduate student.

Above all, I thank my parents for their unconditional support. This thesis is devoted

to them.

Lausanne, 04 May 2017 Pham Van Thang.

i





Abstract
In this thesis we study a number of problems in Discrete Combinatorial Geometry in

finite spaces. The contents in this thesis are structured as follows:

1. In Chapter 1 we will state the main results and the notations which will be used

throughout the thesis.

2. Chapter 2 is a version of the paper entitled "Sumsets of the distance sets in finite

spaces", which has been submitted for publication, (2017).

3. Chapter 3 is a version of the paper entitled "Three-variable expanding polyno-

mials and higher-dimensional distinct distances", which has been submitted

for publication, co-authored with L. A. Vinh and de Zeeuw. The author was one

of the main investigators of this chapter.

4. Chapter 4 is a postprint version of the paper entitled "Distinct distances on

regular varieties over finite fields", Journal of Number Theory, 173 (2017), 602–

613, co-authored with D. D. Hieu. The author was one of the main investigators

of this chapter.

5. Chapter 5 is a postprint version of the paper entitled " Incidences between

points and generalized spheres over finite fields and related problems", Forum

Mathematicum, Volume 29, Issue 2 (Mar 2017), co-authored with N. D. Phuong

and L. A. Vinh. The author was one of the main investigators of this chapter.

6. Chapter 6 is a version of the paper entitled "Distinct spreads in finite spaces",

which has been submitted for publication, co-authored with B. Lund and L. A.

Vinh. The author was one of the main investigators of this chapter.

7. Chapter 7 is a version of the paper entitled "Paths in pseudo-random graphs",

which has been submitted for publication, co-authored with L. A. Vinh. The

author was one of the main investigators of this chapter.

8. Chapter 8 is a version of the paper entitled "Conditional expanding bounds

for two-variable functions over arbitrary fields", which has been submitted for

iii



Acknowledgements

publication, co-authored with Hossein Nassajian Mojarrad. The author was one

of the main investigators of this chapter.

9. Chapter 9 is a postprint version of the paper entitled "A Szemerédi-Trotter

type theorem, sum-product estimates in finite quasifields, and related results",

Journal of Combinatorial Theory Series A, 147 (2017), 55–74, co-authored with

Michael Tait, Craig Timmons, Le Anh Vinh. The author was one of the main

investigators of this chapter. The content of this chapter also appears in Michael

Tait’s Phd thesis.

10. In Chapter 10, we will mention some open problems on Erdős distinct distances

problem and generalizations.

Key words: Finite fields, quasifields, incidence geometry, simplex, sumset, additive

energy, spreads, angles, expanders, distinct distances, pseudo-random graphs, sum-

product estimates.
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Résumé
Dans cette thèse on étudie certains problèmes de géométrie discrète dans des espaces

finis. Le contenu est structuré de la manière suivante :

1. Dans le premier chapitre on énonce les principaux résultats et les notations

qu’on va utiliser au long de la thèse.

2. Le deuxième chapitre est une variante d’un article intitulé "Sumsets of the

distance sets in finite spaces", qui a été soumis pour publication en 2017.

3. Le troisième chapitre est une variante d’un article intitulé "Three-variable expan-

ding polynomials and higher-dimensional distinct distances", qui a été soumis

pour publication, et qui a été coécrit avec L. A. Vinh et de Zeeuw. L’auteur a été

l’un des Investigateurs Principaux.

4. Le quatrième chapitre est un post-print d’un article intitulé "Distinct distances

on regular varieties over finite fields", publié dans le Journal of Number Theory,

173 (2017), 602–613., coécrit avec D. D. Hieu. L’auteur a été l’un des Investiga-

teurs Principaux.

5. Le cinquième chapitre est une version postèrieure à l’impression d’un article

intitulé " Incidences between points and generalized spheres over finite fields

and related problems", Forum Mathematicum, Volume 29, Issue 2 (Mar 2017),

coécrit avec N. D. Phuong et L. A. Vinh. L’auteur a été l’un des Investigateurs

Principaux.

6. Le sixième chapitre est une version postèrieure à l’impression d’un article in-

titulé "Distinct spreads in finite spaces", qui a èté soumis pour publication et

coécrit avec B. Lund et L. A. Vinh. L’auteur a été l’un des Investigateurs Princi-

paux.

7. Le septième chapitre est une variante d’un article intitulé "Paths in pseudo-

random graphs", soumis pour publication, et coécrit avec L. A. Vinh. L’auteur a

été l’un des Investigateurs Principaux.
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8. Le huitième chapitre est une variante d’un article intitulé "Conditional expan-

ding bounds for two-variable functions over arbitrary fields", soumis pour pu-

blication, et coécrit avec Hossein Nassajian Mojarrad. L’auteur a été l’un des

Investigateurs Principaux.

9. Le neuvième chapitre est une version postèrieure à l’impression d’un article

intitulé "A Szemerédi-Trotter type theorem, sum-product estimates in finite

quasifields, and related results", publié dans Journal of Combinatorial Theory

Series A, 147 (2017), 55–74, coécrit avec Michael Tait, Craig Timmons, Le Anh

Vinh. L’auteur a été l’un des Investigateurs Principaux. Le contenu de ce chapitre

apparaît aussi dans la thèse de doctorat de Michael Tait.

10. Dans le dixième chapitre, on présente des problèmes ouvertes reliés au pro-

blème des distances distinctes d’Erdős, ainsi que des généralisations en ce

sense.

Mots-clés : corps finis, quasifields, géometrie d’incidence, simplexe, sumset, énergie

additive, spreads, angles, graphe expanseur, distances distinctes, graphes pseudo-

aléatoires, estimations somme-produit.
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1 Introduction

The classical Erdős distinct distances problem asks for the minimum number of

distinct distances determined by a set of n points in the plane R2. In 1946, Erdős [25]

showed that a [
�

n]× [
�

n] integer lattice generates Θ(n/
√

logn) distinct distances.

From this construction, he conjectured that any set of n points in R2 spans at least

Ω
(
n/
√

logn
)

distinct distances. In 2010, this conjecture has been proved by Guth and

Katz [29] using algebraic methods. They showed that a set of n points in R2 has at least

cn/logn distinct distances for some positive constant c.

Let Fq be a finite field of order q , where q is an odd prime power. We denote the set of

units in Fq by F∗q . For any two points x and y in Fd
q , we define the distance function

between them as

||x−y|| := (x1 − y1)2 +·· ·+ (xd − yd )2.

Although this distance function is not a metric in Fd
q , it has some properties which

are similar to the Euclidean distance function in Rd for example, it is preserved under

orthogonal matrices and translations.

For a set E ⊆ Fd
q , we denote the set of distances determined by points in E by Δ(E ).

In 2004, Bourgain, Katz, and Tao [9] made the first investigation on the prime field

analogue of the Erdős distinct distances problem. More precisely, they proved that

for any set E ⊆ F2
p with |E | = pα, 0 <α< 2, the distance set satisfies |Δ(E )| ≥ |E | 1

2+ε for

some ε> 0 depending on α. In the case when |E |� p15/11, Stevens and de Zeeuw [76]

improved this exponent to |E |8/15. This is the current best bound in the literature.

Here, and throughout the thesis, we use the following notations: X ≈ Y means that

there exist positive absolute constants C1 and C2 which do not depend on X ,Y , and q

such that C1Y < X <C2Y ; X � Y means that there exists a positive absolute constant

C that does not depend on X ,Y and q such that X ≤C Y ; and X = o(Y ) means that

1



1. Introduction

X /Y → 0 as q →∞, where X ,Y are viewed as functions in q .

For the case of large sets, the first explicit exponent for |Δ(E )| was given by Iosevich

and Rudnev [44] in 2007 by using Fourier analytic methods. In particular, they proved

that for E ⊆ Fd
q with |E | ≥ q

d
2 , the distance set satisfies |Δ(E )| ≥ c ·min

{
q, |E |/q (d−1)/2

}
,

for some positive constant c . This result leads to that if |E | ≥ q (d+1)/2 then |Δ(E )| ≥ cq .

Hart, Iosevich, Koh, Rudnev [35] indicated that the threshold q
d+1

2 can not be improved

in odd dimensional spaces. There are several improvements on the exponent (d +1)/2

in even dimensional cases over recent years, for instance, see [6, 12, 32]. When E is

a set in the unit sphere S1 ⊂ Fd
q , d ≥ 3, i.e. the set of points x ∈ Fd

q with ||x|| = 1, the

authors of [35] showed that if |E |  qd/2 then |Δ(E )|  q , but in odd dimensional

cases, in order to get all distances, we still need the exponent (d +1)/2.

In this thesis, we consider variants of the Erdős distinct distances problem and related

problems by using a wide range of mathematical tools and techniques including

algebraic methods, spectral graph-theoretic techniques, and the probabilistic method.

More precisely, we deal with the following problems: sumsets of the distance sets,

three-variable expanding polynomials, distinct distances on regular varieties, point-

sphere incidences, distinct spreads, paths in pseudo-random graphs, sum-product

estimates over arbitrary fields, sum-product estimates over finite quasifields. For the

sake of completeness, in each chapter, we give its own introduction and its relevant

literature. The main purpose of this chapter is to briefly present the main results

contained in this thesis, and the basic definitions required for each problem.

1.1 Main results

Sumsets of the distance sets

For a set E ⊂ Fd
q and an integer k ≥ 1, the k-additive energy of the distance set corre-

sponding to E , which is denoted by E k+(E ), is defined as the cardinality of{
(xi ,yi )2k

i=1 ∈ (E 2)2k : ||x1 −y1||+ · · ·+ ||xk −yk || = ||xk+1 −yk+1||+ · · ·+ ||x2k −y2k ||
}

.

In Chapter 2 we derive some improvements of results due to Shparlinski [71] as follows.

Theorem 1.1.1. Let Fq be a finite field of order q with q ≡ 3 mod 4. Let k ≥ 2 be an

integer, and E be a set in F2
q . Suppose that |E | q, then we have

∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� q2k−1|E |2k+ 1
2 .

2



1.1. Main results

Theorem 1.1.2. Let k ≥ 2 be an integer, and E be a set in Fd
q , d ≥ 3. We have the

following ∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� qdk |E |2k .

As consequences of Theorems 1.1.1 and 1.1.2, we obtain the following theorems on

sumsets of the distance set.

Theorem 1.1.3. Let Fq be a finite field of order q with q ≡ 3 mod 4. Let k ≥ 2 be an

integer, and E be a set in F2
q . Suppose that q1+ 1

4k−1 = o(|E |), then we have

|kΔ(E )| = (1−o(1))q.

Theorem 1.1.4. Let k ≥ 2 be an integer, and E be a set in Fd
q with d ≥ 3. Suppose that

q
d
2 + 1

2k = o(|E |), then we have

|kΔ(E )| = (1−o(1))q.

Three-variable expanding polynomials

Let F be an arbitrary field. In this section, we use the convention that if F has positive

characteristic, we denote the characteristic by p, while if F has characteristic zero, we

set p =∞. Thus, a condition like N < p5/8 is restrictive in positive characteristic, but

is vacuous in characteristic zero.

A polynomial f ∈ F[x1, . . . , xk ] is an expander if there are α> 1,β> 0 such that for all

sets A1, . . . ,Ak ⊂ F of size N � pβ we have

| f (A1 ×·· ·×Ak )| Nα.

In Chapter 3 we prove that any quadratic polynomial over arbitrary fields that is not of

the form g (h(x)+k(y)+ l (z)) is an expander. The precise statement is as follows.

Theorem 1.1.5. Let f ∈ F[x, y, z] be a quadratic polynomial that depends on each

variable and that does not have the form g (h(x)+k(y)+ l (z)). Let A ,B,C ⊂ F with

|A | = |B| = |C | = N . Then

| f (A ×B×C )| min
{

N 3/2, p
}

.

Note that Theorem 1.1.5 can also viewed as Elekes-Rónyai’s conjecture [24] for quadratic

polynomials in three variables over arbitrary fields. As a consequence of Theorem

3



1. Introduction

1.1.5, we obtain new bounds on Erdős distinct distances problem over arbitrary fields

for Cartesian product structure sets.

Theorem 1.1.6. For A ⊂ F we have∣∣∣Δ(A d )
∣∣∣ min

{
|A |2−

1
2d−1 , p

}
.

In Chapter 3 we also derive some results on sum-product estimates which are im-

provements of Yazici et al.’s results [1].

Theorem 1.1.7. For A ⊂ F with |A |� p5/8 we have

|A +A 2| |A |6/5, max{|A +A |, |A 2 +A 2|} |A |6/5.

Distinct distances on regular varieties

Definition 1. For E ⊆ Fd
q , let 1E denote the characteristic function on E . Let F (x) ∈

Fq [x1, . . . , xd ] be a polynomial. The variety V := {x ∈ Fd
q : F (x) = 0} is called a regular

variety if |V | ≈ qd−1 and 
1V (m) � q−(d+1)/2 for all m ∈ Fd
q \ 0, where


1V (m) = 1

qd

∑
x∈Fd

q

χ(−m ·x)1V (x),

where χ is a non-trivial additive character of Fq .

In Chapter 4 we prove some results on the number of distinct generalized distances

in a set on a regular variety. These results are generalizations of recent results due to

Covert, Koh, and Pi [19].

Theorem 1.1.8. Let Q be a non-degenerate quadratic form on Fd
q . Suppose that V ⊂ Fd

q

is a regular variety, and assume that k ≥ 2 is an integer and E ⊆ V . If q
d−1

2 + 1
k−1 = o(|E |),

then we have
{
Q(x1 +·· ·+xk ) : xi ∈ E ,1 ≤ i ≤ k

}⊇ F∗q .

Theorem 1.1.9. Let P (x) =
d∑

j=1
a j x

s j

j ∈ Fq [x1, . . . , xd ] with s j ≥ 2,gcd(s j , q) = 1 and a j �=
0 for all j = 1, . . . ,d. Suppose that V ⊂ Fd

q is a regular variety, and assume that k ≥ 2 is an

integer and E ⊆ V . If q
d−1

2 + 1
k−1 = o(|E |), we have |{P (x1 +·· ·+xk ) : xi ∈ E ,1 ≤ i ≤ k}| =

(1−o(1))q.

4



1.1. Main results

Point-sphere incidence bounds

Let P = a1xc1
1 +·· ·+ad xcd

d ∈ Fq [x1, . . . , xd ], where 2 ≤ ci ≤ N , for some constant N > 0,

gcd(ci , q) = 1, and ai ∈ Fq for all 1 ≤ i ≤ d . We define the generalized sphere, or

P-sphere, centered at b = (b1, . . . ,bd ) of radius r ∈ Fq to be the set {x ∈ Fd
q | P (x−b) = r }.

Figure 1.1 – The circle x2 + y2 = 2 in F2
19

Let E be a set of points in Fd
q and S be a set of P-spheres with arbitrary radii in Fd

q .

The number of incidences between E and S , denoted by I (E ,S ), is the cardinality of

{(p, s) ∈ E ×S : p ∈ s}.

In Chapter 5 we give the first result on the number of point-generalized sphere inci-

dences in vector spaces over finite fields. Precisely, we prove the following theorem.

Theorem 1.1.10. Let E be a set of points and S a set of P-spheres with arbitrary radii

in Fd
q . Then the number of incidences between points and spheres satisfies∣∣∣∣I (E ,S )− |E ||S |

q

∣∣∣∣≤ qd/2
√

|E ||S |.

Given x ∈ Fd
q , we denote the pinned P-distance set determined by E and x by

ΔP (E ,x) := {P (y−x) ∈ Fq | y ∈ E }.

As an application of Theorem 1.1.10, we obtain the following result on the number of

distinct pinned generalized distances.

Theorem 1.1.11. Let E ⊂ Fd
q with |E | >

√
(1−c2)/c4 ·q (d+1)/2 for some 0 < c < 1. Then

the number of points p ∈ E satisfying |ΔP (E , p)| > (1−c)q is at least (1−c)|E |.

5



1. Introduction

Distinct spreads

For three points a,b,c ∈ Fd
q , the spread between two vectors

−→
ab and −→ac in Fd

q , which is

denoted by S(
−→
ab,−→ac) (or S(b,a,c) for simplicity), is defined as

S
(−→
ab,−→ac

)
:= 1−

(−→
ab ·−→ac

)2

‖−→ab‖ ·‖−→ac‖
,

where ‖−→x ‖ = x2
1 + ·· · + x2

d . If either term in the denominator is 0, then S(
−→
ab,−→ac) is

undefined.

It is clear that this definition is consistent with the square of the sine of the angle

between two vectors
−→
ab and −→ac in Euclidean space

sin(θ)2 = 1−
(−→
ab ·−→ac

)2

‖−→ab‖ ·‖−→ac‖
.

In Chapter 6 we prove the following results on the number of distinct spreads gen-

erated by a point set in Fd
q . These results can be viewed as applications of incidence

bounds and distance results.

Theorem 1.1.12. For any ε> 0, there exists c > 0 such that the following holds. Let E

be a set of points in Fd
q with d ≥ 2 even. If |E | ≥ (1+ε)qd/2, then the number of distinct

spreads determined by E is at least cq.

Theorem 1.1.13. For any ε> 0, there exists c > 0 such that the following holds. Let E be

a set of points in Fd
q with d ≥ 3 odd. If |E | ≥ (1+ε)q (d+1)/2, then the number of distinct

spreads determined by E is at least cq.

In Chapter 6 we also show that the conditions on the size of E in Theorem 1.1.12 and

Theorem 1.1.13 are sharp.

Paths in pseudo-random graphs

For a graph G , suppose that γ1 ≥ γ2 ≥ . . . ≥ γn are the eigenvalues of its adjacency

matrix. The second eigenvalue of G is defined as γ(G) := max{γ2,−γn}.

A graph G = (V ,E) is called an (n,d ,γ)-graph if it is d-regular, has n vertices, and the

second eigenvalue of G is at most γ. It is well known that G has certain random-like

properties when γ is much smaller than the degree d . Noga Alon [49] established that

6



1.1. Main results

the number of copies of any fixed graph in every large subset of vertices in (n,d ,γ)-

graphs is close to the expected value.

Theorem 1.1.14 (Alon, Theorem 4.10 [49]). Let H be a fixed graph with r edges, s

vertices, and maximum degreeΔ, and let G = (V ,E ) be an (n,d ,γ)-graph where d ≤ 0.9n.

Let m < n satisfy γ(n/d)Δ = o(m). Then, for every subset U ⊂ V of cardinality m, the

number of (not necessarily induced) copies of H in U is

(1+o(1))
|U |s

|Aut(H)|
(

d

n

)r

.

In Chapter 7 we give an asymptotically tight condition on the size of U ⊂V such that

the number of paths of length k in U is close to the expected number for arbitrary

k ≥ 1. Our main results are as follows.

Theorem 1.1.15. Let G = (V ,E ) be an (n,d ,γ)-graph. Suppose that U ⊆V with γ
(n

d

)=
o(|U |). For an integer k ≥ 1, let Pk (U ) be the number of paths of length k in U , i. e.

Pk (U ) = #
{

(u1, . . . ,uk+1) ∈U k+1 : ui ui+1 ∈ E(G),1 ≤ i ≤ k
}

.

Then we have

Pk (U ) = (1+o(1))|U |k+1
(

d

n

)k

.

Theorem 1.1.16. Let G = (V ,E) be an (n,d ,γ) graph. Suppose that U ⊆V with γ
(n

d

)=
o(|U |) and k

(n
d

) = o(|U |). For an integer k ≥ 1, let Dk (U ) be the number of paths of

length k in U with distinct vertices, i.e.

Dk (U ) = #
{

(u1, . . . ,uk+1) ∈U k+1 : ui ui+1 ∈ E(G),1 ≤ i ≤ k, ui �= u j ,∀i �= j
}

.

Then we have

Dk (U ) = (1−o(1))|U |k+1
(

d

n

)k

.

As applications, we obtain generalizations of the Erdős distinct distances problem

in Fd
q , which are improvements of results due to Bennett, Chapman, Covert, Hart,

Iosevich, and Pakianathan [5].

Theorem 1.1.17. Let Q be a non-degenerate quadratic form on Fd
q . Let E be a set in

Fd
q ,d ≥ 2, and k ≥ 1 be an integer. Let t = (t1, . . . , tk ) ∈ Ft

q with ti �= 0, 1 ≤ i ≤ k, we define

P t
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : Q(pi −pi+1) = ti , 1 ≤ i ≤ k}|.

7



1. Introduction

Suppose that q
d+1

2 = o(|E |), then we have

P t
k (E ) = (1+o(1))

|E |k+1

qk
.

Theorem 1.1.18. Let Q be a non-degenerate quadratic form on Fd
q . Let E be a set in

Fd
q ,d ≥ 2, and k ≥ 1 be an integer. Let t = (t1, . . . , tk ) ∈ Ft

q with ti �= 0, 1 ≤ i ≤ k, we define

Dt
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : Q(pi −pi+1) = ti , 1 ≤ i ≤ k, pi �= p j ,∀i �= j }|.

Suppose that kq = o(|E |) and q
d+1

2 = o(|E |), then we have

Dt
k (E ) = (1+o(1))

|E |k+1

qk
.

Sum-product estimates over arbitrary fields

Let F be an arbitrary field. In this section, we use the convention that if F has positive

characteristic, we denote the characteristic by p, while if F has characteristic zero, we

set p =∞. Thus, a condition like N < p5/8 is restrictive in positive characteristic, but

is vacuous in characteristic zero. We denote the set of non-zero elements in F by F∗.

Let G be a subgroup of F∗, and g : G → F∗ be an arbitrary function. We define

μ(g ) := max
t∈F∗

∣∣{x ∈G : g (x) = t
}∣∣ .

For A ,B ⊂ Fp and two-variable functions f (x, y) and g (x, y) in Fp [x, y], Hegyvári and

Hennecart [39], using graph theoretic techniques, proved that if |A | = |B| = pα, then

max
{| f (A ,B)|, |g (A ,B)|}|A |1+Δ(α),

for some Δ(α) > 0. More precisely, they established the following results.

Theorem 1.1.19 (Hegyvári and Hennecart, [39]). Let G be a subgroup of F∗p . Con-

sider the function f (x, y) = g (x)(h(x)+ y) on G ×F∗p , where g ,h : G → F∗p are arbitrary

functions. Define m :=μ(g ·h). For any subsets A ⊂G and B,C ⊂ F∗p , we have

∣∣ f (A ,B)
∣∣ |B ·C | min

{ |A ||B|2|C |
pm2

,
p|B|

m

}
.

Theorem 1.1.20 (Hegyvári and Hennecart, [39]). Let G be a subgroup of F∗p . Con-

sider the function f (x, y) = g (x)(h(x)+ y) on G ×F∗p , where g ,h : G → F∗p are arbitrary

8



1.1. Main results

functions. Define m :=μ(g ). For any subsets A ⊂G, B,C ⊂ F∗p , we have

| f (A ,B)||B+C | min

{ |A ||B|2|C |
pm2

,
p|B|

m

}
.

Suppose f (x, y) = g (x)(h(x)+ y) with μ(g ),μ(h) = O(1) and A = B = C . Then, it

follows from Theorems 1.1.19 and 1.1.20 that

1. If |A | p2/3, then we have

| f (A ,A )||A ·A |, | f (A ,A )||A +A | p|A |.

2. If |A |� p2/3, then we have

| f (A ,A )||A ·A |, | f (A ,A )||A +A | |A |4/p. (1.1.1)

In Chapter 8 we derive improvements and generalizations of Theorems 1.1.19 and

1.1.20 over arbitrary fields. Our first result is an improvement of Theorem 1.1.19.

Theorem 1.1.21. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g ,h : F∗ → F∗ are arbitrary functions. Define m :=μ(g ·h). For any subsets A ,B,C ⊂ F∗

with |A |, |B|, |C | ≤ p5/8, we have

max
{| f (A ,B)|, |B ·C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5

m
4
5

,
|B||C | 1

2

m
,
|B||A | 1

2

m
,
|B|2/3|C |1/3|A |1/3

m
2
3

}
.

Corollary 1.1.22. For A ,B,C ⊂ F∗ with |A |, |B|, |C | ≤ p5/8.

1. Suppose that g (x) = 1 and h(x) = 1/x, then we have

max
{|A −1 +B|, |B ·C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

2. Suppose that g (x) = x and h(x) = 1, then we have

max{|A (B+1)|, |B ·C |}  min
{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

This corollary is also an improvement of a recent result due to Zhelezov [96]. It follows

from Corollary 1.1.22(2) that if B =A and C =A+1 then we have |A (A+1)| |A |6/5,

which recovers the result of Stevens and de Zeeuw [76]. Our next result is the additive

version of Theorem 1.1.21, which improves Theorem 1.1.20.

9
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Theorem 1.1.23. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g : F∗ → F∗ are arbitrary functions. Define m := μ(g ). For any subsets A ,B,C ⊂ F∗

with |A |, |B|, |C | ≤ p5/8, we have

max
{| f (A ,B)|, |B+C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5

m
4
5

,
|B||C | 1

2

m
,
|B||A | 1

2

m
,
|B|2/3|C |1/3|A |1/3

m
2
3

}
.

In the case g (x) = x and h(x) = 0, we have the following result.

Corollary 1.1.24. For A ,B,C ⊂ F with |A |, |B|, |C |� p5/8, we have

max{|A ·B|, |B+C |}  min
{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

When A =B =C , we recover a result of Roche-Newton, Rudnev, and Shkredov [64],

which states that max{|A +A |, |A ·A |} |A |6/5.

Sum-product estimates over finite quasifields

A set L with a binary operation · is called a loop if

1. the equation a · x = b has a unique solution in x for every a,b ∈ L,

2. the equation y ·a = b has a unique solution in y for every a,b ∈ L, and

3. there is an element e ∈ L such that e · x = x ·e = x for all x ∈ L.

A (left) quasifield Q is a set with two binary operations + and · such that (Q,+) is a

group with additive identity 0, (Q∗, ·) is a loop where Q∗ =Q\{0}, and the following

three conditions hold:

1. a · (b +c) = a ·b +a · c for all a,b,c ∈Q,

2. 0 · x = 0 for all x ∈Q, and

3. the equation a · x = b · x + c has exactly one solution for every a,b,c ∈ Q with

a �= b.

The kernel K of a quasifield Q is the set of all elements k ∈Q that satisfy

1. (x + y) ·k = x ·k + y ·k for all x, y ∈Q, and

10



1.1. Main results

2. (x · y) ·k = x · (y ·k) for all x, y ∈Q.

Note that (K ,+) is an abelian subgroup of (Q,+) and (K ∗, ·) is a group.

Note that any finite field is a quasifield. There are many examples of quasifields which

are not fields; see for example, Chapter 5 of [21] or Chapter 9 of [42]. Quasifields

appear extensively in the theory of projective planes. We note that in particular, in

a quasifield multiplication need not be commutative nor associative. Throughout

the chapter we must be careful about which side multiplication takes place on, and

be wary that multiplicative inverses need not exist on both sides. Nonassociativity

of multiplication is a bigger problem. Previous research on sum-product estimates

requires associativity of multiplication for tools such as Plünnecke’s inequality (see for

example, [79] for the most general known sum-product theorem, the proof of which

uses associativity of multiplication throughout).

In Chapter 9 we prove sum-product estimates in the setting of finite quasifields. These

estimates generalize results of Vinh [85], of Garaev [27], and of Vu [95]. We also

generalize results of Gyarmati and Sárközy [30] on the solvability of the equations

a +b = cd and ab +1 = cd over a finite field. Other analogous results that are known

to hold in finite fields are generalized to finite quasifields. The precise statements of

our results are as follows.

Theorem 1.1.25. Let Q be a finite quasifield with q elements and A ⊂Q\{0}. There is

a positive constant c such that the following hold.

If q1/2 �|A | < q2/3, then

max{|A +A |, |A ·A |} ≥ c
|A |2
q1/2

.

If q2/3 ≤ |A |� q, then

max{|A +A |, |A ·A |} ≥ c(q|A |)1/2.

Theorem 1.1.26. If Q is a finite quasifield with q elements and A ⊂Q, then there is a

positive constant c such that

|A · (A +A )| ≥ c min

{
q,

|A |3
q

}
.

Further, if |A | q2/3, then one may take c = 1+o(1).

11
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Theorem 1.1.27. Let Q be a finite quasifield with q elements. If A ,B,C ⊂Q, then

|A +B ·C | ≥ q − q3

|A ||B||C |+q2

Theorem 1.1.28. Let Q be a finite quasifield with q elements and let A ,B,C ,D ⊂Q.

If γ ∈Q and Nγ(A ,B,C ,D) is the number of solutions to a +b +γ= c ·d with a ∈A ,

b ∈B, c ∈C , and d ∈D, then∣∣∣∣Nγ(A ,B,C ,D)− (q +1)|A ||B||C ||D|
q2 +q +1

∣∣∣∣≤ q1/2
√
|A ||B||C ||D|.

Theorem 1.1.29. Let d ≥ 1 be an integer. If Q is a finite quasifield with q elements and

A ⊂Q with |A | ≥ 2q
d+2

2d+2 , then

Q =A +A +A ·A +·· ·+A ·A︸ ︷︷ ︸
d terms

.

For the sake of following the content in each chapter easily, we repeat the statements

of Expander mixing lemmas and the (n,d ,γ)-form of some graphs in several chapters.
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2 Sumsets of the distance sets in finite
spaces

2.1 Introduction

For E ,F ⊂ Fd
q and an integer k ≥ 1, the k-additive energy of the distance set corre-

sponding to E and F , which is denoted by E k+(E ,F ), is defined as the cardinality

of{
(xi ,yi )2k

i=1 ∈ (E ×F )2k : ||x1 −y1||+ · · ·+ ||xk −yk || = ||xk+1 −yk+1||+ · · ·+ ||x2k −y2k ||
}

.

When E =F , we will use the notation E k+(E ) instead of E k+(E ,F ).

Recently Shparlinski [71] used character sum techniques to discover properties of

E 2+(E ,F ). More precisely, he proved the following theorem.

Theorem 2.1.1 (Shparlinski, [71]). For E ,F ⊆ Fd
q , we have

∣∣∣∣E 2
+(E ,F )− |E |4|F |4

q

∣∣∣∣≤ qd−1|E |3|F |3 +q
3d
2 |E |3|F |2.

As a consequence of Theorem 2.1.1, the author of [71] obtained the following result

on a sumset of the distance set.

Theorem 2.1.2 (Shparlinski, [71]). For E ,F ⊆ Fd
q , we have

|Δ(E ,F )+Δ(E ,F )| ≥ 1

3
min

{
q,

|E ||F |2
q3d/2

,
|E ||F |
qd−1

}
,

where Δ(E ,F ) = {||x−y|| : x ∈ E ,y ∈F
}
.

Corollary 2.1.3 (Shparlinski, [71]). Let E be a set in Fd
q . Suppose that q

d
2 + 1

3 = o(|E |),

13



2. Sumsets of the distance sets in finite spaces

then we have

|Δ(E )+Δ(E )| = (1−o(1))q.

The main purpose of this chapter is to give improvements of Theorems 2.1.1 and 2.1.2

by using methods from spectral graph theory. For the sake of simplicity of this chapter,

we will consider the case E =F . We will give some discussions at the end of Section 3

for the case E �=F . Our first result is the following.

Theorem 2.1.4. Let Fq be a finite field of order q with q ≡ 3 mod 4. Let k ≥ 2 be an

integer, and E be a set in F2
q with |E | q. We have

∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� q2k−1|E |2k+ 1
2 .

Our next theorem is a result on sumsets of the distance set.

Theorem 2.1.5. Let Fq be a finite field of order q with q ≡ 3 mod 4. Let k ≥ 2 be an

integer, and E be a set in F2
q . Suppose that q1+ 1

4k−1 = o(|E |), then we have

|kΔ(E )| = (1−o(1))q.

As consequences of Theorem 2.1.4 and Theorem 2.1.5, we are able to improve Theorem

2.1.1 and Corollary 2.1.3 in the case d = 2.

Corollary 2.1.6. Let Fq be a finite field of order q with q ≡ 3 mod 4. Let E be a set in

F2
q . Suppose that |E | q, then we have

∣∣∣∣E 2
+(E )− |E |8

q

∣∣∣∣� q3|E |9/2.

Corollary 2.1.7. Let Fq be a finite field of order q with q ≡ 3 mod 4. Let E be a set in

F2
q . Suppose that q8/7 = o(|E |), then we have

|Δ(E )+Δ(E )| = (1−o(1))q.

When E is a subset in Fd
q with d ≥ 3, by using the same techniques, we obtain a similar

result as follows.

Theorem 2.1.8. Let Fq be a finite field of order q. Let k ≥ 2 be an integer, and E be a set

14
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in Fd
q , d ≥ 3. We have the following

∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� qdk |E |2k .

As an application of Theorem 2.1.8, we are able to improve Corollary 2.1.3 in the case

d ≥ 3.

Theorem 2.1.9. Let Fq be a finite field of order q. Let k ≥ 2 be an integer, and E be a set

in Fd
q with d ≥ 3. Suppose that q

d
2 + 1

2k = o(|E |), then we have

|kΔ(E )| = (1−o(1))q.

The rest of this chapter is organized as follows: in Section 2, we recall some graph-

theoretic tools; proofs of Theorems 2.1.4, 2.1.5, 2.1.8, and 2.1.9 are given in Section

3.

2.2 Graph-theoretic tools

Let G be a graph with n vertices. Suppose that γ1 ≥ γ2 ≥ . . . ≥ γn are the eigenvalues of

its adjacency matrix. The second eigenvalue of G is defined as γ(G) := max{γ2,−γn}.

We say that a graph G = (V ,E ) is an (n,d ,γ)-graph if it is d-regular, has n vertices, and

γ(G) ≤ γ.

Suppose that B and C are two multi-sets of vertices in an (n,d ,γ)-graph. Let mX (x) de-

note the multiplicity of x in X , and em(B ,C ) be the number of edges with multiplicity

between B and C in G , by multiplicity we mean that if there is an edge between b ∈ B

and c ∈C , then this edge will be counted mB (b) ·mC (c) times in em(B ,C ). Recently,

Hanson et al. [32] gave the following estimate on em(B ,C ) in an (n,d ,γ)-graph.

Lemma 2.2.1 ([32]). Let G = (V ,E ) be an (n,d ,γ)-graph. The number of edges between

two multi-sets of vertices B and C in G satisfies:∣∣∣∣em(B ,C )− d
(∑

b∈B mB (b)
)(∑

c∈C mC (c)
)

n

∣∣∣∣≤ γ
√∑

b∈B
mB (b)2

√∑
c∈C

mC (c)2,

where mX (x) is the multiplicity of x in X .

Sum-product graphs: We now define the sum-product graph, which is denoted by

SPq,d , as follows. The vertex set of SPq,d is the set Fd
q ×Fq . There is an edge between

15
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two vertices U = (a,b) and V = (c,d) ∈ V (SPq,d ) if and only if a ·c = b +d . Vinh [93]

proved the following lemma on the (n,d ,γ) form of SPq,d .

Lemma 2.2.2 (Vinh, [93]). For any d ≥ 1, the sum-product graph SPq,d is an

(qd+1, qd ,
√

2qd )−graph.

2.3 Proofs of the main theorems

For E ⊆ Fd
q and λ ∈ Fq , we define

νE (λ) := ∣∣{(x,y) ∈ E ×E : ||x−y|| =λ
}∣∣ .

In order to prove Theorems 2.1.4–2.1.9, we need the following lemmas, where the first

one follows from the proof of [45, Theorem 3.5].

Lemma 2.3.1 (Koh-Sun, [46]). Let Fq be a finite field of order q with q ≡ 3 mod 4. Let

E be a set in F2
q with |E | q. Then we have

E 1
+(E ) = ∑

λ∈Fq

νE (λ)2 ≤ |E |4
q

+ (1+�
3)q|E |5/2.

For higher dimensional cases, the authors of [45] also proved a similar result for both

cases q ≡ 3 mod 4 and q ≡ 1 mod 4, which can be found in [45, Propositions 2.3, 2.6]

Lemma 2.3.2 (Koh-Sun, [46]). Let E be a set in Fd
q with d ≥ 3. Then we have

E 1
+(E ) = ∑

λ∈Fq

νE (λ)2 ≤ |E |4
q

+qd |E |2.

We will use the following lemma to prove Theorem 2.1.4 and Theorem 2.1.8.

Lemma 2.3.3. Let k ≥ 2 be an integer, and E be a set in Fd
q . We have

∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� qd |E |2E k−1
+ (E ).

Proof. We first define two multi-sets of vertices in the sum-product graph SPq,2d as

follows:

B := {(−2x1,−2x2,−||x1||− ||x2||− ||x3 −y3||− · · ·− ||xk −yk ||+ ||xk+1 −yk+1||
)

: xi ,yi ∈ E
}

,
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C := {(y1,y2,−||y1||− ||y2||+ ||xk+2 −yk+2||+ · · ·+ ||x2k −y2k ||
)

: xi ,yi ∈ E
}

.

For (xi ,yi )2k
i=1 ∈ (E ×E )2k , if we have

||x1 −y1||+ · · ·+ ||xk −yk || = ||xk+1 −yk+1||+ · · ·+ ||x2k −y2k ||,

then there is an edge between(−2x1,−2x2,−||x1||− ||x2||− ||x3 −y3||− · · ·− ||xk −yk ||+ ||xk+1 −yk+1||
) ∈B

and (
y1,y2,−||y1||− ||y2||+ ||xk+2 −yk+2||+ · · ·+ ||x2k −y2k ||

) ∈C

in the sum-product graph SPq,2d . Therefore E k+(E ) is equal to the number of edges

between B and C in SPq,2d . In order to apply Lemma 2.2.1, we need to estimate

upper bounds of
∑

b∈B mB(b)2 and
∑

c∈C mC (c)2. One can check that∑
b∈B

mB(b)2 ≤ |E |2E k−1
+ (E ),

∑
c∈C

mC (c)2 ≤ |E |2E k−1
+ (E ), and |B| = |C | = |E |2k .

It follows from Lemmas 2.2.1 and 2.2.2 that the number of edges between B and C in

the sum-product graph SPq,2d satisfies∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� qd |E |2E k−1
+ (E ),

which concludes the proof of the lemma.

Proof of Theorem 2.1.4: The proof proceeds by induction on k. The base case k = 2

follows from Lemma 2.3.1 and Lemma 2.3.3 with d = 2. Suppose that the claim holds

for k −1 ≥ 2, we show that it also holds for k. Indeed, it follows from Lemma 2.3.3 with

d = 2 that∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� q2|E |2E k−1
+ (E ). (2.3.1)

By induction hypothesis, we have

E k−1
+ (E ) � |E |4(k−1)

q
+q2(k−1)−1|E |2(k−1)+ 1

2 . (2.3.2)
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Putting (2.3.1) and (2.3.2) together gives us∣∣∣∣E k
+(E )− |E |4k

q

∣∣∣∣� q2k−1|E |2k+ 1
2 ,

which ends the proof of the theorem. �

Proof of Theorem 2.1.5: For eachλ ∈ Fq , let Nλ be the number of tuples (x1,y1, . . . ,xk ,yk )

in E 2k satisfying ||x1 −y1||+ ||x2 −y2||+ · · ·+ ||xk −yk || = λ. We have
∑

λ∈Fq Nλ = |E |2k .

It is easy to check that
∑

λ∈Fq N 2
λ
= E k+(E ). By applying the Cauchy-Schwarz inequality,

we obtain the following

∑
λ∈Fq

Nλ ≤
√
|kΔ(E )|

(
E k
+(E )

)1/2
.

This implies that

|kΔ(E )| ≥ |E |4k

E k+(E )
.

Thus the theorem follows immediately from Theorem 2.1.4. �

Proof of Theorem 2.1.8: The proof of Theorem 2.1.8 is as similar as that of Theorem

2.1.4 except that we use Lemma 2.3.2 instead of Lemma 2.3.1. �

Proof of Theorem 2.1.9: The proof of Theorem 2.1.9 is as similar as that of Theorem

2.1.5 except that we use Theorem 2.1.8 instead of Theorem 2.1.4. �
Remarks: We conclude this chapter with some discussions on E 2+(E ,F ) for E ,F ⊆ Fd

q

satisfying |E | < |F |. The main steps in our approach are Lemma 2.3.3 and upper

bounds of E 1+(E ,F ). For two sets E and F in F2
q with q ≡ 3 mod 4, it has been shown

in [45] that

E 1
+(E ,F ) � |E |2|F |2

q
+q|E |3/2|F | for d = 2, (2.3.3)

and

E 1
+(E ,F ) � |E |2|F |2

q
+q

d−1
2 |E |2|F | for odd d ≥ 3. (2.3.4)
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For E ,F ⊆ Fd
q , one can follow the proof of Lemma 2.3.3 to obtain the following

∣∣∣∣E k
+(E ,F )− |E |2k |F |2k

q

∣∣∣∣� qd |E ||F |E k−1
+ (E ,F ). (2.3.5)

If we put (2.3.3), (2.3.4), and (2.3.5) together, then we have∣∣∣∣E 2
+(E ,F )− |E |4|F |4

q

∣∣∣∣≤ q|E |3|F |3 +q3|E | 5
2 |F |2 for d = 2,

∣∣∣∣E 2
+(E ,F )− |E |4|F |4

q

∣∣∣∣≤ qd−1|E |3|F |3 +q
3d−1

2 |E |3|F |2 for odd d ≥ 3.

These results are also improvements of Theorem 2.1.1.
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3 Three-variable expanding polynomials

3.1 Introduction

Let F be an arbitrary field. We use the convention that if F has positive characteristic,

we denote the characteristic by p, while if F has characteristic zero, we set p = ∞.

Thus, a condition like N < p5/8 is restrictive in positive characteristic, but vacuous in

characteristic zero.

Our aim in this chapter is to study the expansion behavior of polynomials, i.e., to

determine when the value set of a polynomial on any finite set is significantly larger

than the input. We wish to classify the polynomials that have this expanding property,

and then to quantify the expansion. The following definition captures this property.

Definition 2. A polynomial f ∈ F[x1, . . . , xk ] is an expander if there are α> 1,β> 0 such

that for all sets A1, . . . ,Ak ⊂F of size N � pβ we have

| f (A1 ×·· ·×Ak )| Nα.

Note that other sources may have slightly different definitions of expanders, but the

essence is usually the same. One distinctive aspect is that we allow the sets Ai to

be distinct; if one requires them to be the same, one obtains a strictly larger class of

polynomials. Also note that if A is a subfield of F of size N , then | f (A ×·· ·×A )| = N ,

so in positive characteristic we must have β< 1. In characteristic zero, β plays no role.

In the wake of a recent result of Rudnev [66] (see Theorem 8.2.1), based on work of

Guth and Katz [29], several expansion bounds for polynomials over arbitrary fields

have been improved. Barak, Impagliazzo, and Wigderson [3] had proved that f = x y+z

is an expander over any prime field Fp , with an unspecified α > 1. Roche-Newton,

Rudnev, and Shkredov [64] used [66] to improve the exponent to α= 3/2 with β= 2/3,
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3. Three-variable expanding polynomials

over any field F. In other words, they proved

|A B+C | N 3/2

for A ,B,C ⊂ F with |A | = |B| = |C | = N � p2/3. Aksoy-Yazici et al. [1] proved the

same for f = x(y + z). There are similar results for expanders in more than three

variables, but establishing two-variable expanders over finite fields seems to be con-

siderably harder. Essentially the only known example is f (x, y) = x2 + x y , which

Bourgain [8] proved to be an expander; Hegyvári and Hennecart [38] generalized this

to polynomials of the form f (x)+ xk g (y) (with certain exceptions). Stevens and De

Zeeuw [76] improved the exponent for x2 + x y to α= 5/4 with β= 2/3, again using

[66].

Over R, expanders are better understood. Elekes and Rónyai [24] discovered that over

R the two-variable expanders are exactly those polynomials f (x, y) ∈R[x, y] that do

not have the additive form g (h(x)+k(y)) or the multiplicative form g (h(x)k(y)). Raz,

Sharir, and Solymosi [63] improved the exponent to α= 4/3. For three-variable poly-

nomials, Schwartz, Solymosi, and De Zeeuw [69] proved that the only non-expanders

over R have the form g (h(x)+k(y)+ l (z)) or g (h(x)k(y)l (z)), and Raz, Sharir, and De

Zeeuw [62] proved a quantitative version with α= 3/2.

It is natural to conjecture that the same classification of expanders holds over arbitrary

fields. Bukh and Tsimerman [11] and Tao [80] proved results in this direction for

two-variable polynomials on large subsets of finite fields, but in general the expander

question remains open for two-variable polynomials. We use the result of Rudnev [66]

to make a first step towards classifying three-variable expanders over arbitrary fields,

by determining which quadratic polynomials are expanders. The expanders x y + z

and x(y + z), mentioned above, are special cases. Note that for quadratic polynomials

the exceptional form g (h(x)k(y)l (z)) does not occur (if the polynomial depends on

each variable).

Theorem 3.1.1. Let f ∈ F[x, y, z] be a quadratic polynomial that depends on each

variable and that does not have the form g (h(x)+k(y)+ l (z)). Let A ,B,C ⊂ F with

|A | = |B| = |C | = N . Then

| f (A ×B×C )| min
{

N 3/2, p
}

.

In terms of our definition, this theorem says that if a quadratic f ∈ F[x, y, z] does not

have the multiplicative form g (h(x)+k(y)+ l (z)), then it is an expander with α= 3/2

and β= 2/3. The theorem also gives expansion for 2/3 <β< 1, with α shrinking as β

approaches 1.
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3.1. Introduction

Consequences. One new expander included in our theorem is f (x, y, z) = (x−y)2+z;

all our applications rely on this special case of our main theorem.

We will show that we can use this expander to obtain a new bound on the expression

|A +A 2|. This expression was first considered by Elekes, Nathanson, and Ruzsa [23],

who observed that it has an expansion-like property, even though f (x, y) = x + y2 is

not an expander in the definition above (one could call it a “weak expander”). They

showed that |A +A 2| |A |5/4 for A ⊂R, and the exponent was improved by Li and

Roche-Newton [52] to 24/19 (up to a logarithmic factor in the bound). For A ⊂Fp ,

Hart, Li, and Shen [37] proved that |A +A 2| |A |147/146 for |A |� p1/2, which was

improved by Aksoy Yazici et al. [1] to |A +A 2|  |A |11/10 for |A | � p5/8. Here we

improve this bound further.

Theorem 3.1.2. For A ⊂ F with |A |� p5/8 we have

|A +A 2| |A |6/5.

A closely related expression is |A 2 +A 2|, for which there are expansion-like bounds

that are conditional on |A+A |being small. OverR, [23] proved max
{|A +A |, |A 2 +A 2|}

|A |5/4, and the exponent was improved to 24/19 in [52] (up to logarithms). Over Fp ,

[11] proved a quantitatively weaker version, and [1] proved that max
{|A +A |, |A 2 +A 2|}

|A |8/7 for |A |� p3/5. We improve this bound as well.

Theorem 3.1.3. For A ⊂ F with |A |� p5/8 we have

max
{|A +A |, |A 2 +A 2|}|A |6/5.

It is worth noting that the bounds in Theorems 3.1.2 and 3.1.3 are numerically the

same as the best known bounds for max{|A +A |, |A ·A |} [64] and |A · (A +1)| [76];

in each case the lower bound is |A |6/5 under the condition |A |� p5/8.

Our expansion bound for f (x, y, z) = (x− y)2+z also allows us to give inductive proofs

of expansion bounds for the algebraic distance function in any number of variables.

This idea is due to Hieu and Vinh [41] and Vinh [89], who used it to prove expansion

bounds on large subsets of finite fields. Given P ⊂ Fd , we define its distance set by

Δ(P ) :=
{

d∑
i=1

(xi − yi )2 : (x1, . . . , xd ), (y1, . . . , yd ) ∈ P

}

Obtaining good expansion bounds for this function in R2 is the well-known distinct

distances problem of Erdős [25], which is a central question in combinatorial geometry.
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3. Three-variable expanding polynomials

Here we prove a general bound for the number of distinct distances determined by a

higher-dimensional Cartesian product. Note that as d increases this bound converges

to |A |2 (up to constants).

Theorem 3.1.4. For A ⊂ F we have∣∣∣Δ(A d )
∣∣∣ min

{
|A |2−

1
2d−1 , p

}
.

For d = 2 we recover the result of Petridis [60] that |Δ(A 2)| min{|A |3/2, p}, which is

the current best bound for distinct distances on Cartesian products over general fields.

For large subsets of prime fields, we recover a result of Hieu and Vinh [41].

Finally, we consider F=R, which is of course the field for which Erdős [25] introduced

the distinct distances problem. He observed that for A = {1, . . . , N } we have |Δ(A 2)|�
|A |2/

√
log |A | and |Δ(A d )| � |A |2 = (|A d |)2/d for d ≥ 3. He later conjectured that

these bounds are optimal for arbitrary point sets, i.e., that |Δ(P )| |P |/√log |P | for all

P ⊂R2, and |Δ(P )| |P |2/d for all P ⊂Rd with d ≥ 3. Guth and Katz [29] almost solved

this for d = 2, by proving that

|Δ(P )| |P |/log |P | (3.1.1)

for any P ⊂ R2. For d ≥ 3, the best lower bound is due to Solymosi and Vu [74]. It is

roughly speaking of the form

|Δ(P )| |P | 2
d − 1

d2 ;

see Sheffer [70] for the exact expression (incorporating [29]).

It follows from [29] that for any A ⊂R we have |Δ(A d )| |A |2/log |A |, since the set

(A −A )2 + (A −A )2 is contained in any set of the form (A −A )2 +·· ·+ (A −A )2. By

taking the distinct distances bound of [29] as the base case for the inductive argument

with (x − y)2 + z that we used to prove Theorem 3.1.4, we obtain an improvement on

the exponent of the logarithm.

Theorem 3.1.5. For A ⊂R and d ≥ 2 we have∣∣∣Δ(A d )
∣∣∣ |A |2

log1/2d−2 |A |
.

We note that this theorem can also be proved without Rudnev’s theorem [66], by using

only the Szemerédi–Trotter theorem [77] and the Guth–Katz bound [29]; see Section

3.3.
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3.2. Three-variable expanding polynomials

3.2 Three-variable expanding polynomials

Our main tool is a point-plane incidence bound of Rudnev [66]. We use the follow-

ing slightly strengthened version proved by De Zeeuw [20] (and our proof relies on

this strengthening). We write I (R,S ) = |{(r, s) ∈ R ×S : r ∈ s}| for the number of

incidences of R and S .

Theorem 3.2.1 (Rudnev). Let R be a set of points in F3 and let S be a set of planes in

F3, with |R|� |S | and |R|� p2. Suppose that there is no line that contains k points

of R and is contained in k planes of S . Then

I (R,S ) �|R|1/2|S |+k|S |.

To prove Theorem 3.1.1, we divide the quadratic polynomials into two types: those

with only one or two of the mixed terms x y, xz, y z, and those with all three. Our

approach to both types is similar, but it appears technically simpler to treat these

types separately.

Lemma 3.2.2. Consider a polynomial

f (x, y, z) = ax y +bxz + r (x)+ s(y)+ t (z),

for polynomials r, s, t ∈ F[u] of degree at most two, with a �= 0 and t (z) not constant. Let

A ,B,C ⊂ F with |A |, |B| ≤ |C |. Then

| f (A ×B×C )| min
{|A |1/2|B|1/2|C |1/2, p

}
.

Proof. We may assume |A ||B||C | � p2. Otherwise, we can remove elements from

the sets, while preserving |A |, |B| ≤ |C |, until we have sets A ′,B′,C ′ that do satisfy

|A ′||B′||C ′|� p2. The proof below then gives | f (A ′×B′×C ′)| |A ′|1/2|B′|1/2|C ′|1/2 =
p.

We let E be the number of solutions (x, y, z, x ′, y ′, z ′) ∈ (A ×B×C )2 of

f (x, y, z) = f (x ′, y ′, z ′).

We can rewrite this equation to

ayx −ax ′y ′ + (bxz + r (x)+ t (z)− s(y ′)) = bx ′z ′ + r (x ′)+ t (z ′)− s(y).
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3. Three-variable expanding polynomials

We define a point set

R := {(x, y ′,bxz + r (x)+ t (z)− s(y ′)) : (x, y ′, z) ∈A ×B×C }

and a plane set

S = {ay X −ax ′Y +Z = bx ′z ′ + r (x ′)+ t (z ′)− s(y) : (x ′, y, z ′) ∈A ×B×C }.

A point in R corresponds to at most two points (x, y ′, z) ∈A ×B×C , since x and y ′ are

determined by the first two coordinates, and z is then determined with multiplicity

at most two by the quadratic expression in the third coordinate. Here we use the

assumption that t(z) is not constant; the only exception occurs when t(z) is linear

and its main term is cancelled out by bxz; this is negligible since it only occurs for one

value of x. The same argument shows that a plane in S corresponds to at most two

points (x ′, y, z ′) ∈A ×B×C . Thus we have |R|, |S | ≈ |A ||B||C |.

A solution of f (x, y, z) = f (x ′, y ′, z ′) corresponds to an incidence between a point in

R and a plane in S . Conversely, an incidence corresponds to at most four solutions,

since the point and the plane have multiplicity at most two. Hence I (R,S ) ≈ E . By

assumption we have |R| ≈ |A ||B||C |� p2, which allows us to apply Theorem 8.2.1.

We need to prove an upper bound on the k such that there is a line containing k points

of R and contained in k planes of S .

The projection of R to the first two coordinates is A ×B, so a line contains at most

max{|A |, |B|} points of R, unless it is vertical, in which case it could contain |C |
points of R. However, the planes in S contain no vertical lines (since they are defined

by equations in which the coefficient of Z is non-zero), so in this case the condition of

Theorem 8.2.1 holds with k = max{|A |, |B|} ≤ |A |1/2|B|1/2|C |1/2.

Thus we get

E ≈I (R,S ) �|A |3/2|B|3/2|C |3/2.

By the Cauchy-Schwartz inequality we have |A |2|B|2|C |2 ≤ E · | f (A ×B×C )|, so we

get

| f (A ×B×C )| |A |1/2|B|1/2|C |1/2.

This finishes the proof.

It would not be hard to generalize Lemma 3.2.2 to polynomials of the form

f (x, y, z) = g (x)h(y)+k(x)l (z)+ r (x)+ s(y)+ t (z),
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3.2. Three-variable expanding polynomials

with the resulting bound depending on the degrees of g ,h,k, l ,r, s, t .

Lemma 3.2.3. Let f ∈ F[x, y, z] be a polynomial of the form

f (x, y, z) = ax y +bxz +c y z +d x2 +e y2 + g z2,

with none of a,b,c zero, and with 4eg �= c2. Let A ,B,C ⊂ F with |A | = |B| = |C | = N .

Then

| f (A ×B×C )| min
{

N 3/2, p
}

.

Proof. We may assume |A ||B||C | � p2 as in the proof of Lemma 3.2.2. We again

bound the number E of solutions (x, y, z, x ′, y ′, z ′) ∈ (A×B×C )2 of f (x, y, z) = f (x ′, y ′, z ′).

We rewrite the equation to

(ay +bz)x −x ′(ay ′ +bz ′)+ (d x2 − (e(y ′)2 +c y ′z ′ +g (z ′)2) = d(x ′)2 − (e y2 +c y z +g z2).

We define a point set

R := {(x, ay ′ +bz ′,d x2 − (e(y ′)2 +c y ′z ′ + g (z ′)2) : (x, y ′, z ′) ∈A ×B×C }

and a plane set

S = {(ay +bz)X −x ′Y +Z = d(x ′)2 − (e y2 +c y z + g z2) : (x ′, y, z) ∈A ×B×C }.

We show that a point (u, v, w) ∈ R corresponds to at most two points (x, y ′, z ′) ∈
A ×B×C . Suppose that we have u = x, v = ay ′ +bz ′, w = d x2−e(y ′)2−c y ′z ′ −g (z ′)2.

Then

w = du2 −e(y ′)2 −c y ′ v −ay ′

b
− g

(
v −ay ′

b

)2

,

or equivalently(
b2d −abc +a2g

)
(y ′)2 + (bcv −2ag v

)
y ′ +b2w −b2du2 + g v2 = 0.

We do not have both b2d −abc +a2g = 0 and bc −2ag = 0, since these two equations

would imply 4eg = c2, contradicting the assumption of the lemma. Hence there are at

most two values of y ′ corresponding to (u, v, w), with unique corresponding x, z ′.

The same argument shows that a plane in S corresponds to at most two points

(x ′, y, z). Hence we have |R|, |S | ≈ |A ||B||C | and I (R,S ) ≈ E . By the assumption at

the start of the proof we have |R| ≈ |A ||B||C |� p2. This allows us to apply Theorem

8.2.1, if we find an upper bound on the maximum number of collinear points in R.

27



3. Three-variable expanding polynomials

The point set R is covered by |A | planes of the form x = x0. If a line is not in one of

these planes, then it intersects R in at most |A | = N points. Let 
 be a line contained

in a plane x = x0. The points of R in this plane lie on a curve which is either a parabola

or a line. In the first case, 
 intersects the parabola in at most two points. In the second

case, 
 either intersects the line in one point, or it equals that line, which contains |C |
points. It is easy to see from the equations that for distinct y ′ we get distinct curves, so

the case where the curve equals 
 occurs at most once. This implies that 
 contains at

most 2|B|+ |C |� N points of R.

With k = N we get E ≈I (R,S ) � (N 3)3/2 +N ·N 3 � N 9/2, and again using Cauchy-

Schwartz we get | f (A ×B×C )| N 3/2. This finishes the proof.

We now combine the two lemmas to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let f (x, y, z) be a quadratic polynomial that is not of the form

g (h(x)+k(y)+ l (z)). In particular, f has at least one of the mixed terms x y, xz, y z,

since otherwise it would be of the form h(x)+k(y)+ l (z). If one of the terms x y, xz, y z

does not occur in f , then Lemma 3.2.2 proves the theorem.

Thus we can assume that f has the form

f (x, y, z) = ax y +bxz +c y z + r (x)+ s(y)+ t (z),

with a,b,c non-zero and r, s, t polynomials of degree at most two. We may assume

that r, s, t have no constant or linear terms. Indeed, any constant term can be removed

immediately, and any linear terms can be removed by a change of variables of the

form x̃ = p1x +q1, ỹ = p2 y +q2, z̃ = p3z +q3. Thus we assume that f has the form

f (x, y, z) = ax y +bxz +c y z +d x2 +e y2 + g z2.

The assumption that f is not of the form g (h(x)+k(y)+ l (z)), which still holds after

the linear change of variables, implies that the equations 4de = a2,4d g = b2,4eg = c2

do not all hold. Otherwise, we could write f = (
�

d x +�
e y +�

g z)2 (if d ,e, g are not

squares in F, we can write f = (d
�

eg x +e
√

d g y + g
�

dez)2/deg ). By permuting the

variables, we can assume that 4eg �= c2. Then we can apply Theorem 3.2.3, which

finishes the proof.
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3.3. Consequences of Theorem 3.1.1

3.3 Consequences of Theorem 3.1.1

Proof of Theorem 3.1.2. We consider the equation

(x − y)2 + z = t . (3.3.1)

Observe that for any a,b,c ∈A , a solution of (3.3.1) is given by x = a +b2 ∈A +A 2,

y = b2 ∈A 2, z = c ∈A , and t = c +a2 ∈A +A 2. Thus we have

|A |3 ≤ ∣∣{(x, y, z, t ) ∈ (A +A 2)×A 2 ×A × (A +A 2) : (x − y)2 + z = t
}∣∣ . (3.3.2)

If we set

E = ∣∣{(x, y, z, x ′, y ′, z ′) ∈ ((A +A 2)×A 2 ×A )2 : (x − y)2 + z = (x ′ − y ′)2 + z ′}∣∣ ,
then (3.3.2) and the Cauchy-Schwarz inequality give

|A |6
|A +A 2| ≤ E . (3.3.3)

We now partly follow the proof of Lemma 3.2.2 for f (x, y, z) = (x − y)2 + z. We define a

point set

R := {(x, y ′, x2 + z − (y ′)2) : (x, y ′, z) ∈ (A +A 2)×A 2 ×A }

and a plane set

S := {−2y X +2x ′Y +Z = (x ′)2 + z ′ − y2 : (x ′, y, z ′) ∈ (A +A 2)×A 2 ×A }.

We are already done if |A +A 2| |A |6/5, so we can assume that |A +A 2|� |A |6/5,

which gives |R| ≈ |A +A 2||A 2||A |� |A |16/5 � p2, using the assumption |A |� p5/8.

Thus we can apply Theorem 8.2.1. By the same argument as in the proof of Lemma

3.2.2, we can use k = max{|A +A 2|, |A 2|} = |A +A 2|, so we get

E �|A +A 2|3/2|A |3 +|A +A 2|2|A |2. (3.3.4)

If the second term is larger than the first, then we have |A +A 2| |A |2, and we would

be done. Otherwise, the first term is larger, so combining (3.3.3) and (3.3.4) gives

|A |6
|A +A 2| � |A +A 2|3/2|A |3,
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3. Three-variable expanding polynomials

which implies that

|A +A 2| |A |6/5.

This completes the proof of the theorem.

Proof of Theorem 3.1.3. The proof is very similar to that of Theorem 3.1.2, and we

omit most of the details. The key observation, analogous to (3.3.2), is

|A |3 ≤ ∣∣{(x, y, z, t ) ∈ (A +A )×A ×A 2 × (A 2 +A 2) : (x − y)2 + z = t
}∣∣ .

By following the steps in the proof of Theorem 3.1.2 we now obtain

|A |6
|A 2 +A 2| � |A +A |3/2|A |3

under the condition |A |� p5/8, which gives

|A +A |3|A 2 +A 2|2 |A |6.

This proves the theorem.

To prove (a generalization of) Theorem 3.1.4, we use a special case of Lemma 3.2.2.

Corollary 3.3.1. Let g ∈ F[x, y] be a quadratic polynomial with a non-zero x y-term.

Let A ,C ⊂ F with |A | ≤ |C |. Then

|g (A ×A )+C | min
{|A ||C |1/2, p

}
.

Theorem 3.3.2. Let g1, . . . , gd ∈ F[x, y] be quadratic polynomials, each of which has a

non-zero x y-term. Then for A ⊂ F we have∣∣∣∣∣ d∑
i=1

gi (A ×A )

∣∣∣∣∣ min
{
|A |2−

1
2d−1 , p

}
.

Proof. Set Gk (x1, y1 . . . , xk , yk ) =∑k
i=1 gi (xi , yi ). We prove by induction on k that∣∣∣Gk (A 2k )
∣∣∣ min

{
|A |2−

1
2k−1 , p

}
.

The base case k = 1 holds trivially. Suppose that the claim holds for some k with

1 ≤ k < d . Applying Corollary 3.3.1 with g = gk+1 and C =Gk (A 2k ) gives

|Gk+1(A 2(k+1))| min

{
|A |

(
|A |2−

1
2k−1

)1/2
, p

}
= min

{
|A |2−

1
2(k+1)−1 , p

}
.
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3.3. Consequences of Theorem 3.1.1

This proves the theorem.

Theorem 3.1.4 follows immediately by setting gi = (x− y)2 for every i in Theorem 3.3.2.

To prove Theorem 3.1.5, we merely have to start the induction at k = 2, and plug in the

result of Guth and Katz [29].

Proof of Theorem 3.1.5. Set F = R. We prove |Δ(A d )|  |A |2/log1/2d−2 |A | by induc-

tion on d . The base case d = 2 follows from the main result of [29], stated here as

(3.1.1) in Section 3.1. Suppose that the claim holds for some d > 2. Applying Corollary

3.3.1 with g = (x − y)2 and C =Δ(A d ) gives

|Δ(A d+1)| |A ||Δ(A d )|1/2 |A |
(

|A |2
log1/2d−2 |A |

)1/2

= |A |2
log1/2(d+1)−2 |A |

.

This proves the theorem.

Although this proof arose naturally from our general approach, it is worth noting

that over R it is possible to prove the relevant case of Corollary 3.3.1 using only the

Szemerédi-Trotter theorem [77], which leads to a proof of Theorem 3.1.5 without

Theorem 8.2.1.

Alternative proof of Theorem 3.1.5. We define a point set and curve set by

P :=A × ((A −A )2 +C ), S := {Y = (X −a)2 +c : (a,c) ∈A ×C }.

The curves in S are parabolas, but we can apply the bijection ϕ : (X ,Y ) �→ (X ,Y −X 2),

which sends the parabola Y = X 2−2aX+a2+c to the line Y ′ = −2aX ′+a2+c . Applying

the Szemerédi-Trotter theorem [77] to the points ϕ(P ) and the lines ϕ(S ) gives

|A |2|C | ≤I (ϕ(P ),ϕ(S )) � (|A ||(A−A )2+C |)2/3(|A ||C |)2/3+|A ||(A−A )2+C |+|A ||C |.

It follows that |(A −A )2 +C | |A ||C |1/2.

We can now prove the theorem by induction exactly as in the previous proof.

We are finished proving the main theorems in Section 3.1, but we give one more

application that we find interesting.
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3. Three-variable expanding polynomials

Another polynomial in the form of Theorem 3.3.2 is the dot product function. For

P ⊂ Fd , define its dot product set by

Π(P ) :=
{

d∑
i=1

xi yi : (x1, . . . , xd ), (y1, . . . , yd ) ∈ P

}
.

Choosing gi = x y for every i in Theorem 3.3.2 gives |Π(A d )| min{|A |2−
1

2d−1 , p} for

A ⊂ F. This bound was proved for d = 2,3 in [64]. More interestingly, we can prove

that a better expansion bound holds for distances or for dot products (or for both).

Theorem 3.3.3. For A ⊂ F with |A |� p
1
2+ 1

5·2d−1−2 we have

max
{
|Π(A d )|, |Δ(A d )|

}
|A |2−

1
5·2d−3 .

Proof. We prove the theorem by induction on d . For d = 1, we have |Δ(A )| |A −A |,
so the statement follows from the sum-product bound

max{|A −A |, |A ·A |} |A |6/5,

which was proved in [64] (also as a consequence of [66]). Assume that the claim

holds for d > 1. If |Δ(A d )| ≥ |Π(A d )|, then we set g = (x − y)2 and C =Δ(A d ), so that

Corollary 3.3.1 gives

|Δ(A d+1)| = |g (A ×A )+Δ(A d )| |A |
(
|A |2−

1
5·2d−3

)1/2
= |A |2−

1
5·2(d+1)−3 .

If |Π(A d )| ≥ |Δ(A d )|, then we set g = x y and C =Π(A d ), and do the same calculation.
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4 Distinct distances on regular varieties
in finite spaces

4.1 Introduction

Let Fq be a finite field of order q , where q is a prime power. We denote the set of non-

zero elements in Fq by F∗q . Let E be a set in Fd
q . For a polynomial F (x) ∈ Fq [x1, . . . , xd ]

and an integer k ≥ 2, we define

Δk,F (E ) := {F (x1 ±·· ·±xk ) : xi ∈ E , 1 ≤ i ≤ k} .

When k = 2 and F (x) = x2
1 + ·· ·+ x2

d , for the sake of simplicity, we use the notation

Δ2(E ) instead of Δ2,F (E ). In this chapter, we are interested in the case when E is a

subset in a regular variety. Let us first start with a definition of regular varieties which

is taken from [19]

Definition 3. For E ⊆ Fd
q , let 1E denote the characteristic function on E . Let F (x) ∈

Fq [x1, . . . , xd ] be a polynomial. The variety V := {x ∈ Fd
q : F (x) = 0} is called a regular

variety if |V | ≈ qd−1 and 
1V (m) � q−(d+1)/2 for all m ∈ Fd
q \ 0, where


1V (m) = 1

qd

∑
x∈Fd

q

χ(−m ·x)1V (x).

There are several examples of regular varieties as follows:

1. Spheres of nonzero radii:

S j =
{

x ∈ Fd
q : ||x|| = j

}
, j ∈ F∗q := Fq \ {0} [44]

2. A paraboloid:

P =
{

x ∈ Fd
q : x2

1 +·· ·+x2
d−1 = xd

}
[54]
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4. Distinct distances on regular varieties in finite spaces

3. Spheres defined by "Minkowski distance" with nonzero radii:

M j =
{

x ∈ Fd
q : x1 · x2 · · ·xd = j

}
, j ∈ F∗q [36].

In 2007, Hart et al. [35], using Fourier analytic methods, made the first investigation

on the distinct distances problem on the unit sphere in Fd
q . In particular, they obtained

the following.

Theorem 4.1.1 (Hart et al., [35]). For E ⊆ S1 in Fd
q with d ≥ 3.

1. If |E | ≥C q
d
2 with a sufficiently large constant C , then there exists c > 0 such that

|Δ2(E )| ≥ cq.

2. If d is even and |E | ≥C q
d
2 with a sufficiently large constant C , then Δ2(E ) = Fq .

3. If d is even, there exist c > 0 and E ⊂ S1 such that |E | ≥ cq
d
2 and Δ2(E ) �= Fq .

4. If d is odd and |E | ≥C q
d+1

2 with a sufficiently large constant C > 0, then Δ2(E ) =
Fq .

5. If d is odd, there exist c > 0 and E ⊂ S1 such that |E | ≥ cq
d+1

2 and Δ2(E ) �= Fq .

Recently, Covert, Koh, and Pi [19] studied a generalization of Theorem 4.1.1, namely

they dealt with the following question: How large does a subset E in a regular variety

V need to be to make sure that Δk (E ) = Fq or |Δk (E )| q .

The main idea in the proof of Theorem 4.1.1 is to reduce the distance problem to the

dot product problem since the distance between two points x and y in S1 is 2−2x ·y,

where x ·y = x1 y1 +·· ·+xd yd . Therefore

|Δ2(E )| = |Π2(E )| := ∣∣{x ·y : x,y ∈ E
}∣∣ . (4.1.1)

For the case k ≥ 3 and E ⊂ S1, one can check that

|Δk (E )| = |Πk (E )| :=
∣∣∣∣∣
{

k∑
i=1

k∑
j=1

ai j ·bi j ·xi ·x j : xl ∈ E ,1 ≤ l ≤ k

}∣∣∣∣∣ ,
where ai j = 1 if i < j and 0 otherwise, and bi j = 1 for i = 1 and −1 otherwise.

However, it seems hard to get a good estimate on |Πk (E )| when k ≥ 3, and if the unit

sphere S1 is replaced by a general regular variety V , there is no guarantee that the
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4.1. Introduction

equality (4.1.1) will be satisfied. Thus, in general, we can not apply the approach of

the proof of Theorem 4.1.1 to estimate the cardinality of Δk (E ).

Using a new approach with Fourier analytic techniques, Covert, Koh and Pi [19] estab-

lished that the condition on the cardinality of E in Theorem 4.1.1 can be improved to

get Δk (E ) = Fq with k ≥ 3. The precise statement of their result is as follows.

Theorem 4.1.2 (Covert et al., [19]). Suppose that V ⊂ Fd
q is a regular variety, and

assume that k ≥ 3 is an integer and E ⊆ V . If q
d−1

2 + 1
k−1 = o(|E |), then we have

Δk (E ) ⊇ F∗q for even d ≥ 2,

and

Δk (E ) = Fq for odd d ≥ 3.

It follows from Theorem 4.1.1 that in order to get Δ2(E ) = Fq , the sharp exponent of

the sets E of S1 must be d/2 for even d ≥ 4, and (d +1)/2 for odd d ≥ 3. Theorem 4.1.2

implies that the exponent d/2 can be decreased to d−1
2 + 1

k−1 for k ≥ 3 and any regular

variety V ⊆ Fd
q .

The main purpose of this chapter is to prove two generalizations of Theorem 4.1.2 by

employing techniques from spectral graph theory. Our first result is the following.

Theorem 4.1.3. Let Q be a non-degenerate quadratic form on Fd
q . Suppose that V ⊂ Fd

q

is a regular variety, and assume that k ≥ 3 is an integer and E ⊆ V . If q
d−1

2 + 1
k−1 = o(|E |),

then for any t ∈ F∗q we have

∣∣∣{(x1, . . . ,xk ) ∈ E k : Q(x1 +·· ·+xk ) = t
}∣∣∣= (1−o(1))

|E |k
q

.

Corollary 4.1.4. Let Q be a non-degenerate quadratic form on Fd
q . Suppose that V ⊂ Fd

q

is a regular variety, and assume that k ≥ 3 is an integer and E ⊆ V . If q
d−1

2 + 1
k−1 = o(|E |),

then we have

Δk,Q (E ) ⊇ F∗q .

Let P (x) =
d∑

j=1
a j x

s j

j be a diagonal polynomial in Fq [x1, . . . , xd ] with s j ≥ 2,gcd(s j , q) = 1

and a j �= 0 for all j = 1, . . . ,d . We obtain the following generalization of Theorem 4.1.2,

which is inspired by [90].
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4. Distinct distances on regular varieties in finite spaces

Theorem 4.1.5. Suppose that V ⊂ Fd
q is a regular variety, and assume that k ≥ 3 is an

integer and E ⊆ V . For X ⊆ Fq , if |X ||E |2k−2  q (d−1)(k−1)+2, we have

|X +Δk,P (E )| q.

Corollary 4.1.6. Suppose that V ⊂ Fd
q is a regular variety, and assume that k ≥ 3 is an

integer and E ⊆V . If |E | q
d−1

2 + 1
k−1 , we have

|Δk,P (E )| q.

The rest of this chapter is organized as follows: the proofs of Theorems 4.1.3 and 4.1.5

are presented in Sections 3 and 4, respectively.

4.2 Graph-theoretic tools

The following is the Expander Mixing Lemma which was mentioned in Chapter 2.

Lemma 4.2.1 ([32]). Let G = (V ,E ) be an (n,d ,γ)-graph. The number of edges between

two multi-sets of vertices B and C in G satisfies:∣∣∣∣em(B ,C )− d |B ||C |
n

∣∣∣∣≤ γ
√∑

b∈B
mB (b)2

√∑
c∈C

mC (c)2,

where mX (x) is the multiplicity of x in X .

Finite Euclidean graphs: Suppose Q is a non-degenerate quadratic form on Fd
q . For

any λ ∈ Fq \ {0}, we define the finite Euclidean distance graph Eq (d ,Q,λ) = (V ,E) as

follows:

V
(
Eq (d ,Q,λ)

)= Fd
q , (x,y) ∈ E

(
Eq (d ,Q,λ)

)⇔ Q(x−y) =λ.

The (n,d ,γ) form of the graph Eq (d ,Q,λ) is estimated in the following theorem.

Theorem 4.2.2. [Bannai et al. [2], Kwok [50]] Let Q be a non-degenerate quadratic

form on Fd
q . For any λ ∈ Fq \ {0}, the graph Eq (d ,Q,λ) is an (qd , (1+o(1))qd−1,2q

d−1
2 )-

graph.

For a directed graph G on n vertices, such that both the inner and outer degree of

each vertex are d , we denote its adjacency matrix by AG . Recall that AG is defined
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4.3. Proof of Theorem 4.1.3

as the matrix with entries ai j , where ai j = 1 if there is a directed edge from i to j ,

and zero otherwise. We denote by γ1(G), . . . ,γn(G) the eigenvalues of AG . Since the

eigenvalues of G might have complex values, we cannot order them. However, for any

1 ≤ i ≤ n, |γi | ≤ d . Define γ1(G) := d ,γ(G) := max|γi (G)|�=d |γi (G)|. We will use the term

of digraph for a directed graph.

We say that an n ×n matrix A is normal if At A = A At , where At is the transpose of A.

Let G be a digraph, we say that G is normal if AG is a normal matrix. One can easily

check that G is normal if and only if |N+(u, v)| = |N−(u, v)| for any two vertices u and

v , where N+(u, v) is the set of vertices w such that −−→uw ,−−→v w are edges, and N−(u, v) is

the set of vertices w such that −−→wu,−−→w v are edges.

We say that a directed graph G is an (n,d ,γ)-digraph if it has n vertices, both the inner

and the outer degree of each vertex are d , γ(G) ≤ γ, and it is normal.

Let G be an (n,d ,γ)-digraph. For any two vertex subsets U and W of G , let e(U ,W )

be the number of ordered pairs (u, w) ∈U ×W such that −−→uw is an edge of G . Vu [95]

developed a directed version of the Expander Mixing Lemma as follows.

Lemma 4.2.3 (Vu, [95]). Let G = (V ,E ) be an (n,d ,γ)-digraph. For any two sets B ,C ⊂V ,

we have ∣∣∣∣e(B ,C )− d

n
|B ||C |

∣∣∣∣≤ γ
√

|B ||C |.

By using similar arguments as in the proofs of [32, Lemma 16] and [95, Lemma 3.1],

we obtain the multiplicity version of Lemma 4.2.3.

Lemma 4.2.4 (Multiplicity version). Let G = (V ,E ) be an (n,d ,γ)-digraph. For any two

multi-sets B and C of vertices , we have∣∣∣∣e(B ,C )− d

n
|B ||C |

∣∣∣∣≤ γ
√∑

b∈B
mB (b)2

√∑
c∈C

mC (c)2,

where mX (x) is the multiplicity of x in X .

We leave the proof of Lemma 4.2.4 to the interested reader.

4.3 Proof of Theorem 4.1.3

Let H be a finite (additive) abelian group and S be a subset of H . Define a directed

Cayley graph CS as follows. The vertex set of CS is H . There is a directed edge from x
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4. Distinct distances on regular varieties in finite spaces

to y if and only if y − x ∈ S. It is clear that every vertex CS has out-degree |S|. Let ϕα,

α ∈ H , be the additive charaters of H . It is well known that for any α ∈ H ,
∑

s∈S ϕα(s) is

an eigenvalue of CS , with respect the eigenvector (ϕα(x))x∈H .

Let V be a regular variety defined by

V := {x ∈ Fd
q : F (x) = 0},

for some polynomial F ∈ Fq [x1, . . . , xd ].

The Cayley graph CV is defined with H = Fd
q and S = V . In particular, the edge set of

the Cayley graph CV is defined by

E(CV ) = {
−−−→
(u, v) ∈ H ×H : v −u ∈ V }.

For any two vertices u and v in H , we have

|N+(u, v)| = |N−(u, v)| = |(u +V )∩ (v +V )|,

which implies that CV is normal. We now study the (n,d ,γ) form of this digraph in the

next theorem.

Theorem 4.3.1. The Cayley graph CV is an
(
qd , |V |,cq

d−1
2

)
-digraph for some positive

constant c.

Proof. It is clear that the graph CV has qd vertices and the in-degree and out-degree

of each vertex are both |V |. Next, we will estimate eigenvalues of the graph CV . It is

well-known that the exponentials (or characters of the additive group Fd
q )

ϕm(x) =ϕ(x ·m), (4.3.1)

for x,m ∈ Fd
q , are eigenfunctions of the adjacency operator for the graph CV corre-

sponding to the eigenvalue

λm = ∑
x∈V

ϕm(x)

= ∑
x∈V

ϕ(x ·m)

= qd �1V (−m)

� q (d−1)/2,
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4.3. Proof of Theorem 4.1.3

when m �= 0. If m = 0, then λ0 = |V |, which is the largest eigenvalue of CV . In other

words, CV is an
(
qd , |V |,cq

d−1
2

)
-digraph for some positive constant c.

In order to prove Theorem 4.1.3, we need the following notations.

For an even integer k = 2m ≥ 2 and E ⊂ Fd
q , the k-energy is defined by

Λk (E )L =
∣∣∣{(x1, . . . ,xk ) ∈ E k : x1 +·· ·+xm = xm+1 +·· ·+xk

}∣∣∣ .
For E ⊆ Fd

q , we define

νk (t ) :=
∣∣∣{(x1, . . . ,xk ) ∈ E k : Q(x1 +·· ·+xk ) = t

}∣∣∣ .
In our next lemmas, we give estimates on the magnitude of νk (t ).

Lemma 4.3.2. For E ⊂ Fd
q and k ≥ 2 even, we have

∣∣∣∣νk (t )− (1+o(1))
|E |k

q

∣∣∣∣≤ q (d−1)/2Λk (E )

.

Proof. Suppose that k = 2m. Let A and B be multi-sets of points in Fd
q defined as

follows

A := {x1 +·· ·+xm : xi ∈ E ,1 ≤ i ≤ m}, B := {−xm+1 −·· ·−xk : xi ∈ E ,m +1 ≤ i ≤ k}.

It is easy to check that∑
a∈A

mA (a)2 =Λk (E ),
∑

b∈B

mB(b)2 =Λk (E ),

and νk (t ) is equal to the number of edges between A and B in the graph Eq (d ,Q, t ).

Thus the lemma follows immediately from Lemma 4.2.1 and Theorem 4.2.2.

By using the same techniques, we get a similar result for the case k odd.

Lemma 4.3.3. For E ⊂ Fd
q and k ≥ 3 odd, we have

∣∣∣∣νk (t )− (1+o(1))
|E |k

q

∣∣∣∣≤ 2q (d−1)/2 (Λk−1(E ))1/2 (Λk+1(E ))1/2 .
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4. Distinct distances on regular varieties in finite spaces

Combining Lemmas 4.3.2 and 4.3.3 leads to the following theorem.

Theorem 4.3.4. Let E be a set in Fd
q . Then we have

1. If q
d+1

2 Λk (E ) = o(|E |k ) and k is even, then

∣∣∣{(x1, . . . ,xk ) ∈ E k : Q(x1 +·· ·+xk ) = t
}∣∣∣= (1+o(1))

|E |k
q

.

2. If q
d+1

2 (Λk−1(E ))1/2(Λk+1(E ))1/2 = o(|E |k ) and k is odd, then

∣∣∣{(x1, . . . ,xk ) ∈ E k : Q(x1 +·· ·+xk ) = t
}∣∣∣= (1+o(1))

|E |k
q

.

Theorem 4.3.4 implies that in order to prove Theorem 4.1.3, it is sufficient to bound

Λk (E ).

Lemma 4.3.5. For a regular variety V ⊂ Fd
q . If k ≥ 4 is even, and E ⊂ V , we have

∣∣∣∣Λk (E )− (1+o(1))
|E |k−1

q

∣∣∣∣� q (d−1)/2(Λk−2(E ))1/2(Λk (E ))1/2.

Proof. Since E is a subset in the variety V , we have the following estimate

Λk (E ) ≤ ∑
x1,...,xk−1∈E

1V (x1 +·· ·+xk/2 −xk/2+1 −·· ·−xk−1).

Let A and B be two multi-sets defined by

A := {x1 +·· ·+xk/2 : xi ∈ E ,1 ≤ i ≤ k/2},

and

B := {−xk/2+1 −·· ·−xk−1 : xi ∈ E ,k/2+1 ≤ i ≤ k −1}.

It is clear that ∑
a∈A

mA (a)2 =Λk (E ),
∑

b∈B

mB(b)2 =Λk−2(E ).

On the other hand, Λk (E ) is equal to the number of edges between A and B in the

Cayley graph CV . Thus the lemma follows from Lemmas 4.2.4 and 4.3.1.
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4.3. Proof of Theorem 4.1.3

For E ⊆ V and k ≥ 4 even, it follows from Lemma 4.3.5 that

Λk (E ) � |E |k−1

q
+q (d−1)/2(Λk−2(E ))1/2(Λk (E ))1/2.

Solving this inequality in terms of Λk (E ) gives us

Λk (E ) � qd−1Λk−2(E )+ |E |k−1

q
.

Using inductive arguments, we obtain the following estimate for E ⊆ V and k ≥ 4 even

Λk (E ) � q
(d−1)(k−2)

2 Λ2(E )+ |E |k−1

q

(k−4)/2∑
j=0

(
qd−1

|E |2
) j

. (4.3.2)

If we assume that |E | > q (d−1)/2, then the inequality (4.3.2) implies the following

theorem.

Theorem 4.3.6. Let E be a subset of a regular variety V in Fd
q with |E | > q (d−1)/2.

1. If k ≥ 2 is even, then

Λk (E ) � q
(d−1)(k−2)

2 |E |+ |E |k−1

q
.

2. If k ≥ 3 is odd, then

Λk−1(E )Λk+1(E ) � q (d−1)(k−2)|E |2 +q
(d−1)(k−3)−2

2 |E |k+1 + |E |2k−2

q2
.

Note that the first statement of Theorem 4.3.6 follows from (4.3.2) with the facts that

Λ2(E ) = |E | and qd−1

|E |2 < 1, and the second is a consequence of the first one.

We are now ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. We now consider two following cases:

Case 1: If k ≥ 2 is even and q
d−1

2 + 1
k−1 = o(|E |), then it follows from Theorem 4.3.6 that

q
d+1

2 Λk (E ) = o(|E |k ).
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Case 2: If k ≥ 3 is odd and q
d−1

2 + 1
k−1 = o(|E |), then it follows from Theorem 4.3.6 that

q
d+1

2 (Λk−1(E ))1/2(Λk+1(E ))1/2 = o(|E |k ).

In other words, Theorem 4.1.3 follows immediately from Theorem 4.3.4.

4.4 Proof of Theorem 4.1.5

To prove Theorem 4.1.5, we need to construct a new Cayley graph as follows.

Let P (x) =
d∑

j=1
a j x

s j

j be a diagonal polynomial in Fq [x1, . . . , xd ] with s j ≥ 2,gcd(s j , q) = 1

and a j �= 0 for all j = 1, . . . ,d , and

P ′(x1, . . . , x2d ) = P (x1, . . . , xd )−P (xd+1, . . . , x2d ) ∈ Fq [x1, . . . , x2d ].

We define the graph CP ′(F2d+1
q ) to be the Cayley graph with H = Fq × F2d

q and S =
{(x0,x) ∈ Fq ×F2d

q | x0 +P ′(x) = 0}, i.e.

E(CP ′(F2d+1
q )) =

{−−−−−−−−−−−→
((x0,x), (y0,y)) ∈ H ×H : y0 −x0 +P ′(y−x) = 0

}
.

The (n,d ,γ) form of CP ′(F2d+1
q ) was studied in [90].

Lemma 4.4.1 ([90]). For any odd prime power q, d ≥ 1, then CP ′(F2d+1
q ) is an(

q2d+1, q2d , qd
)
−digraph.

For E ⊆ Fd
q and X ⊆ Fq , define

νP,k (t ) :=
∣∣∣{(a,x1, . . . ,xk ) ∈ X ×E k : a +P (x1 +·· ·+xk ) = t }

∣∣∣ .
Our next lemmas are the main steps in the proof of Theorem 4.1.5.

Lemma 4.4.2. For E ⊆ Fd
q and k ≥ 2 even, we have the following estimate

∑
t∈Fq

νP,k (t )2 ≤ |E |2k |X |2
q

+qd |X |Λk (E )2.
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Proof. Let A and B be multi-sets defined by:

A := {(a,−x1 −·· ·−xk/2,−y1 −·· ·−yk/2) : a ∈ X ,xi ,yi ∈ E },

and

B := {(b,xk/2+1 +·· ·+xk ,yk/2+1 +·· ·+yk/2+1) : b ∈ X ,xi ,yi ∈ E }.

One can check that∑
x∈A

mA (x)2 = |X |Λk (E )2,
∑

x∈B

mB(x)2 = |X |Λk (E )2, |A | = |B| = |X ||E |k .

On the other hand, it is clear that
∑

t∈Fq ν
2
P,k is equal to the number of edges from A to

B in the graph CP ′(F2d+1
q ). Thus it follows from Lemma 4.2.4 and Theorem 4.4.1 that

∑
t∈Fq

νP,k (t )2 ≤ |E |2k |X |2
q

+qd |X |Λk (E )2.

This ends the proof of the lemma.

By employing the same techniques, we get a similar result for the case k ≥ 3 odd.

Lemma 4.4.3. For E ⊆ Fd
q and k ≥ 3 odd, we have the following estimate

∑
t∈Fq

νP,k (t )2 ≤ |E |2k |X |2
q

+qd |X |Λk−1(E )Λk+1(E ).

We are now ready to prove Theorem 4.1.5.

Proof of Theorem 4.1.5. It follows from the proof of Theorem 2.6 in [90] that

|X +Δk,P (E )| |X |2|E |2k∑
t∈Fq νP,k (t )2

.

Therefore from Lemma 4.4.2 and Lemma 4.4.3, we get two following cases:

1. If k ≥ 2 is even, we obtain

|X +Δk,P (E )| min

{ |X ||E |2k

qdΛk (E )2
, q

}
.
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4. Distinct distances on regular varieties in finite spaces

2. If k ≥ 3 is odd, we obtain

|X +Δk,P (E )| min

{ |X ||E |2k

qdΛk (E )Λk−1(E )
, q

}
.

Thus Theorem 4.1.5 follows immediately from Theorem 4.3.6, which concludes the

proof of the theorem.
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5 Point-sphere incidences in finite
spaces

5.1 Introduction

Let Fq be a finite field of q elements where q is a large odd prime power. Let P be a

set of points, L a set of lines over Fd
q , and I (P,L) the number of incidences between P

and L. Bourgain, Katz, and Tao [9] proved that for any 0 <α< 2 and |P |, |L| ≤ N = qα,

I (P,L) � N 3/2−ε, where ε = ε(α). By employing the Erdős-Rényi graph (see 2.1 for

the definition), Vinh [85] improved this bound in the case 1 ≤ α ≤ 2, and gave the

following estimate.

Theorem 5.1.1. Let P be a set of points and L a set of lines in F2
q . Then we have

I (P ,L ) ≤ |P ||L |
q

+q1/2
√
|P ||L |.

The above result was also proved for points and hyperplanes, and for points and

k-subspaces (see [7, 85] for more details).

Let P = a1xc1
1 +·· ·+ad xcd

d ∈ Fq [x1, . . . , xd ], where 2 ≤ ci ≤ N , for some constant N > 0,

gcd(ci , q) = 1, and ai ∈ Fq for all 1 ≤ i ≤ d . We define the generalized sphere, or P-

sphere, centered at b = (b1, . . . ,bd ) of radius r ∈ Fq to be the set {x ∈ Fd
q | P (x −b) = r }.

Let P be a set of points in Fd
q and S be a set of P-spheres with arbitrary radii in Fd

q .

The number of incidences between P and S , which is denoted by I (P ,S ), is the

cardinality of {(p, s) ∈P ×S : p ∈ s}.

The main purpose of this chapter is to give a similar bound on the number of in-

cidences between points and generalized spheres by employing the spectral graph

method. With the same method, we also consider some related problems in Sections

4 and 5. Our main result is the following.
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5. Point-sphere incidences in finite spaces

Theorem 5.1.2. Let P be a set of points and S a set of P-spheres with arbitrary radii

in Fd
q . Then the number of incidences between points and spheres satisfies∣∣∣∣I (P ,S )− |P ||S |

q

∣∣∣∣≤ qd/2
√

|P ||S |. (5.1.1)

In the case P (x) =∑d
i=1 x2

i , Cilleruelo et al. [15] have independently proved (5.1.1). In

this case, we also obtain a similar estimate over finite rings (see [82] for the Szemerédi-

Trotter theorem over finite rings).

Theorem 5.1.3. Let P be a set of points and S a set of spheres with arbitrary radii in

Zd
q , q is an odd integer. Then the number of incidences between points and spheres

satisfies ∣∣∣∣I (P ,S )− |P ||S |
q

∣∣∣∣≤√2τ(q)
qd

γ(q)d/2

√
|P ||S |,

where γ(q) is the smallest prime divisor of q, and τ(q) the number of divisors of q.

Generalized pinned distances: Let F (x) ∈ Fq [x1, . . . , xd ] be a polynomial and E ⊂ Fd
q .

Given x ∈ Fd
q , we denote the pinned F -distance set determined by E and x by

ΔF (E , x) = {F (y −x) ∈ Fq | y ∈ E }.

We are interested in finding the elements x ∈ Fd
q and the size of E ⊂ Fd

q such that

ΔF (E , x)� q . In the case F (x) = x2
1 +·· ·+x2

d , Chapman et al. [12] proved that for any

subset E ⊂ Fd
q such that |E | ≥ q (d+1)/2, there exists a subset E ′ ⊂ E such that |E ′| ∼ |E |,

and for every y ∈ E ′ we have |ΔF (E , y)| > q
2 . Cilleruelo et al. [15] reproved the same

result using their bound on number of incidences between points and spheres.

In this general setting, the main difficulty in this problem is that we do not know the

explicit form of the polynomial F (x). Koh and Shen [45] found some conditions on

F (x) to obtain the desired bound. We remark that if F is a diagonal polynomial of the

form
∑d

j=1 a j xs
j , the conditions of Koh and Shen are satisfied. However, if we consider

the polynomial F (x) = P (x) =∑d
j=1 a j x

c j

j , where the exponents c j are distinct, then

we have not found any reference which shows that those conditions are satisfied.

As a consequence of Theorem 5.1.2, the following result can be derived in a similar

way to how [15] derived their result from their bound on the number of incidences

between points and spheres. It generalizes the pinned distance results of [12].

Theorem 5.1.4. Let E ⊂ Fd
q with |E | >

√
(1−c2)/c4 ·q (d+1)/2 for some 0 < c < 1. Then

the number of points p ∈ E satisfying |ΔP (E , p)| > (1−c)q is at least (1−c)|E |.
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5.1. Introduction

Incidences between a random point set and a random P-sphere set: It follows

from Theorem 5.1.2 that if P is a set of points and S is a set of P-spheres such

that |P ||S | > qd+2, then there exists at least one incidence pair (p, s) ∈P ×S with

p ∈ s. We improve the bound qd+2 in the sense that for any α ∈ (0,1) it suffices to take

t ≥Cαq randomly chosen points and spheres over Fd
q to guarantee that the probability

of no incidences is exponentially small, namely αt , when q is large enough. We remark

that the ideas in this part are similar to the case between points and lines in [91]. More

precisely, our result is the following.

Theorem 5.1.5. For any α> 0, there exists an integer q0 = q0(α) and a number Cα > 0

with the following property. When a point set P and a P-sphere set S where |P | =
|S | = t ≥Cαq are chosen randomly in Fd

q , the probability of {(p, s) ∈P ×S : p ∈ s} =�
is at most αt , provided that q ≥ q0.

Generalized isosceles triangles: Given a set E of n points in R2, let h(E ) be the

number of isosceles triangles determined by E . Define h(n) = min|E |=n h(E ). Pach

and Tardos [59] proved that h(n) = O(n2.136). In this chapter, we consider the finite

field version of this problem. Let us give some notation: A P-isosceles triangle at a

vertex x is a triple of distinct elements (x, y, z) ∈ Fd
q×Fd

q×Fd
q such that P (x−y) = P (x−z).

We will show that for any subset E in Fd
q such that its cardinality is large enough, the

number of isosceles triangles determined by E is (1+o(1))|E |3/q .

Theorem 5.1.6. Given a set of n points E in Fd
q , d ≥ 2. If |E | q

2(d+1)
3 , then the number

of isosceles triangles determined by E is (1+o(1))|E |3/q.

Distinct distances subset: Given a set E of n points in R2, let g (E ) be the maximal

cardinality of a subset U in E such that no distance determined by U occurs twice.

Define g (n) = min|E |=n g (E ). Charalambides [13] proved that n1/3/(logn) � g (n) �
n1/2/(logn)1/4, where the upper bound is obtained from the Erdős distinct distances

problem (see [16, 51] for more details, earlier results, and results in higher dimensions).

In this chapter, we study the finite field analogue of this problem.

Given a set of n points E ⊂ Fd
q , a subset U ⊂ E is called a distinct P-distances subset if

there are no four distinct points x, y, z, t ∈U such that P (x − y) = P (z − t). Using the

same method that Thiele used in R2 (see [58, p.191] for more details), we show that for

any large enough set E in Fd
q , there exists a distinct P-distances subset of cardinality

at least C q1/3, for some constant C . More precisely, we have the following estimate.

Theorem 5.1.7. Let E ⊂ Fd
q , d ≥ 2, |E |  q2(d+1)/3. If UP ⊂ E is a maximal distinct

P-distances subset of E , then q1/3 �|UP |� q1/2.
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5. Point-sphere incidences in finite spaces

5.2 Graph-theoretic tools

The following is the Expander Mixing Lemma for (n,d ,γ)-graph, which has been

mentioned in Chapter 2.

Lemma 5.2.1. Let G = (V ,E) be an (n,d ,γ)-graph. For any two sets B ,C ⊂V , we have∣∣∣∣e(B ,C )− d |B ||C |
n

∣∣∣∣≤ γ
√
|B ||C |.

In order to prove Theorem 5.1.3, we use the sum-product graph defined as the follow-

ing. The vertex set of the sum-product graph S P (Zd+1
q ) is the set V (S P (Zd+1

q )) =
Zq ×Zd

q . Two vertices U = (a,b) and V = (c,d) ∈V (S P (Zd+1
q )) are connected by an

edge, (U ,V ) ∈ E(S P (Zd+1
q )), if and only if a + c = b ·d. Our construction is similar

to that of Solymosi in [73]. We have the following lemma about the spectrum of the

sum-product graph S P (Zd+1
q ) (see [94, Lemma 4.1] for the proof).

Lemma 5.2.2. For any d ≥ 1, the sum-product graph S P (Zd+1
q ) is an

(
qd+1, qd ,

√
2τ(q)

qd

γ(q)d/2

)
−graph.

However, it seems difficult to use the spectrum of an undirected graph to analyze the

number of incidences between points and P-spheres, where Q(x) ∈ Fq [x1, . . . , xd ] is

an arbitrary diagonal polynomial. We will introduce some Cayley graphs to deal with

this problem. First we have to recall the Expander Mixing Lemma for directed graphs,

which was presented in Chapter 4.

Lemma 5.2.3. Let G = (V ,E) be a (n,d ,γ)-digraph. For any two sets B ,C ⊂V , we have∣∣∣∣e(B ,C )− d |B ||C |
n

∣∣∣∣≤ γ
√
|B ||C |.

Let H be a finite abelian group and S a subset of H . The Cayley graph is the digraph

CS(H) = (H ,E), where the vertex set is H , and there is a directed edge from vertex

x to vertex y if and only if y − x ∈ S. It is clear that every vertex of CS(H) has out-

degree |S|. We define the graph CP (Fd+1
q ) to be the Cayley graph with H = Fq ×Fd

q and

S = {(x0, x) ∈ Fq ×Fd
q | x0 +P (x) = 0}, i.e.

E(CP (Fd+1
q )) = {((x0, x), (y0, y)) ∈ H ×H | x0 − y0 +P (x − y) = 0}.

We have the following result on the spectrum of CP (Fd+1
q ).
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5.3. Proofs of Theorems 5.1.2 and 5.1.3

Lemma 5.2.4 (Vinh, [90]). For any odd prime power q, d ≥ 1, then CP (Fd+1
q ) is an

(qd+1, qd , qd/2)−digraph.

Let P ′(x1, . . . , x2d ) be a polynomial in Fq [x1, . . . , x2d ] defined by P ′ = P (x1, . . . , xd )−
P (xd+1, . . . , x2d ). As a consequence of Lemma 5.2.4, we obtain the following lemma.

Lemma 5.2.5 (Vinh, [90]). For any odd prime power q, d ≥ 1, let P ′(x1, . . . , x2d ) be

a polynomial in Fq [x1, . . . , x2d ] defined by P ′ = P (x1, . . . , xd )−P (xd+1, . . . , x2d ). Then

CP ′(F2d+1
q ) is an

(q2d+1, q2d , qd )−digraph.

5.3 Proofs of Theorems 5.1.2 and 5.1.3

Proof of Theorem 5.1.2 We use the Cayley graph CP (Fd+1
q ) to prove Theorem 5.1.2.

Let P = {(xi 1, . . . , xi d )}i be a set of n points in Fd
q , and S = {(ri , (yi 1, . . . , yi d ))}i a set of

pairs of radii and centers representing P-spheres in S . Let U = {(0, xi 1, . . . , xi d )}i ⊂
Fd+1

q and W = {
(ri , yi 1, . . . , yi d )

}
i ⊂ Fd+1

q . Then the number of incidences between

points and P-spheres is the number of edges between U and W in CP (Fd+1
q ). Using

Lemma 5.2.3 and 5.2.4, Theorem 5.1.2 follows.

Proof of Theorem 5.1.3 We use the sum-product graph S P (Zd+1
q ) to prove Theo-

rem 5.1.3. We identify each point (b1, . . . ,bd ) in P with a vertex (−b2
1−·· ·−b2

d ,b1, . . . ,bd ) ∈
Zd+1

q of S P (Zd+1
q ), and each sphere (x1 −a1)2 +·· ·+ (xd −ad )2 = r in S with a vertex

(r−a2
1−·· ·−a2

d ,−2a1, . . . ,−2ad ) ∈Zd+1
q of S P (Zd+1

q ). Let U ⊂Zd+1
q be the set of points

corresponding to P , and W ⊂Zd+1
q the set of points corresponding to S . Then the

number of incidences between points and spheres is the number of edges between

U and W in the sum-product graph S P (Zd+1
q ). By Lemma 5.2.1 and Lemma 5.2.2,

Theorem 5.1.3 follows.

5.4 Generalized pinned distance problem

Proof of Theorem 5.1.4: First we prove that

1

|E |
∑

p∈E

|ΔP (E , p)| > (1−c2)q.
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5. Point-sphere incidences in finite spaces

We identify each point p = (b1, . . . ,bd ) ∈ E with a point (0,b1, . . . ,bd ) ∈ Fd+1
q , and

each pair (p = (b1, . . . ,bd ), t) where t ∈ΔP (E , p) with a point (t ,b1, . . . ,bd ) ∈ Fd+1
q . Let

U ⊂ Fd+1
q be the set of points corresponding to E , and W ⊂ Fd+1

q the set of points cor-

responding to point-distance pairs. Then |U | = |E |, |W | =∑p∈E |ΔP (E , p)|. Moreover,

one can easily see that U ,W are vertex subsets of the Cayley digraph CP (Fd+1
q ). The

number of edges between U and W is |E |2, since each point in E contributes |E | edges

between U and W . It follows from Lemmas 5.2.3 and 5.2.4 that

|E |2 ≤ e(U ,W ) ≤ |U ||W |
q

+qd/2
√
|U ||W |.

= |E |∑p∈E |ΔP (E , p)|
q

+qd/2
√

|E | ∑
p∈E

|ΔP (E , p)|. (5.4.1)

If 1
|E |
∑

p∈E |ΔP (E , p)| ≤ (1−c2)q , it follows from (5.4.1) that

|E |2 ≤ |E |2(1−c2)+q (d+1)/2|E |
√

(1−c2)

|E | ≤
√

(1−c2)

c4
q (d+1)/2.

This would be a contradiction. Therefore,∑
p∈E

|ΔP (E , p)| > (1−c2)q|E |. (5.4.2)

Let us define E ′ := {p ∈ E : |ΔQ (E , p)| > (1−c)q}. Suppose that |E ′| < (1−c)|E |, so∑
p∈E \E ′

|ΔP (E , p)| ≤ (|E |− |E ′|)(1−c)q, (5.4.3)

and ∑
p∈E ′

|ΔP (E , p)| ≤ q|E ′|. (5.4.4)

Putting (5.4.3) and (5.4.4) together, we obtain∑
p∈E

|ΔP (E , p)| ≤ (1−c)q|E |+ cq|E ′| < (1−c)q|E |+ cq(1−c)|E | = (1−c2)q|E |.

The theorem follows because this contradicts (5.4.2).
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5.5. Related Problems

5.5 Related Problems

Incidences between random points and P-spheres: To prove Theorem 5.1.5, we

need the following lemma (see [57, Lemma 8], and [91, Lemma 2.3] for more details).

Lemma 5.5.1. Let {Gn = G(Un ,Vn)}∞n=1 be a sequence of bipartite graphs with |Vn | =
|Un | →∞ as n →∞, and let d̄(Gn) be the average degree of Gn. Assume that for any

ε> 0, there exists an integer v(ε) and a number c(ε) > 0 such that

e(A,B) ≥ c(ε)|A||B | d̄(Gn)

|Vn |
,

for all |Vn | = |Un | ≥ v(ε) and all A ⊂Vn ,B ⊂Un satisfying |A||B | ≥ ε|Vn |2. Then for any

α> 0, there exist an integer v(α) and a number C (α) with the following property: if one

chooses a random subset S of Vn of cardinality t and a random subset T of Un of the

same cardinality t , then the probability of G(S,T ) being empty is at most αt provided

that t ≥C (α)|Vn |/d̄(Gn) and |Vn | ≥ v(α).

We notice that the Lemma 5.5.1 also holds when {Gn}n is a sequence of digraphs.

Proof of Theorem 5.1.5: Let Bq,d be a bipartite digraph with vertex set V (CP (Fd+1
q ))×

V (CP (Fd+1
q )), where CP (Fd+1

q ) is the Cayley graph defined as in Lemma 5.2.4 and the

edge set

{
(
(x0, x), (y0, y)

) ∈ Fd+1
q ×Fd+1

q | (x0 − y0)+P (x − y) = 0}.

With the same identification of the point set and the P-sphere set as in proof of

Theorem 5.1.2, we obtain two corresponding sets U and W , where |U | = |P |, |W | =
|S |. Thus, the number of incidences between points and spheres is the number of

edges between U and W . By Lemma 5.2.3 and 5.2.4, we obtain∣∣∣∣e(U ,W )− |U ||W |
q

∣∣∣∣≤ qd/2
√
|U ||W |. (5.5.1)

For any ε> 0 such that |U ||W | ≥ εq2d+2 and qd ≥ 4
ε , we have from (5.5.1) that

e(U ,W ) ≥ qd

2qd+1
|U ||W | = d̄(Bq,d )

|V (Bq,d )| |U ||W |.

Let c(ε) = 1, v(ε) ≥ ( 4
ε )(d+1)/d , then the theorem follows from Lemma 5.5.1.

Generalized isosceles triangles:
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5. Point-sphere incidences in finite spaces

Proof of Theorem 5.1.6: Let

U = {(1, x, x) ∈ 1×E ×E }, W = {(1, y, z) ∈ 1×E ×E }.

One can easily see that |U | = |E |, |W | = |E |2. Let

T1 = {(1, x, x,1, y, z) ∈ 1×E ×E ×1×E ×E : P (x − y) = P (x − z)}.

Then the cardinality of T1 is the number of edges between the sets U and W in the

graph CP ′(F2d+1
q ) (defined as in Lemma 5.2.5). It follows from Lemma 5.2.3 and 5.2.5

that ∣∣∣∣|T1|− |U ||W |
q

∣∣∣∣≤ qd
√
|U ||W |.

Thus, if |E |  q2(d+1)/3 then |T1| = (1+o(1))|E |3/q . We notice that T1 also contains

the tuples (1, x, x,1, x, y) with P (x − y) = 0 which correspond to the edges between the

vertices (1, x, x) ∈U and (1, x, y) ∈W . Let us denote the set of such tuples by Ter r , then

one can easily see that 1
2 |Ter r | is the number of pairs (x, y) ∈ E×E such that P (x−y) = 0,

since each pair (x, y) with P (x − y) = 0 contributes two edges ((1, x, x), (1, x, y)) and

((1, x, x), (1, y, x)). It follows from Lemma 5.2.3 and 5.2.4 that∣∣∣∣|Ter r |− |E |2
q

∣∣∣∣≤ qd/2
√
|E |2.

Thus, if |E |  q2(d+1)/3 with d ≥ 2, then |Ter r | = |E |2/q = o(1)|E |3/q . Therefore, the

number of P-isosceles triangles determined by E is (1+o(1))|E |3/q .

Distinct distances subset: In order to prove Theorem 5.1.7, we need the following

theorem on the cardinality of a maximal independent set of a hypergraph due to

Spencer [75].

Theorem 5.5.2. Let H be a k-uniform hypergraph with n vertices and m ≥ n/k edges,

and let α(H) denote the independence number of H. Then

α(H) ≥
(
1− 1

k

)   !(1

k

nk

m

) 1
k−1

"""# .

Proof of Theorem 5.1.7: Let

T2 = {(1, p1, q1,1, p2, q2) ∈ 1×E ×E ×1×E ×E : P (p1 −q1) = P (p2 −q2)}.
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With the same arguments in the proof of Theorem 5.1.6, we obtain |T2| ≤ |E |4
q +qd |E |2.

Thus, if |E | q (d+1)/2, then

|T2| = (1+o(1))
|E |4

q
.

A 4-tuple of distinct elements in E 4 is called regular if all six generalized distances

determined are distinct. Otherwise, it is called singular. Let H be the 4-uniform

hypergraph on the vertex set V (H) = E , whose edges are the singular 4-tuples of E .

It follows from Theorem 5.1.6 that the number of 4-tuples containing a triple induced

an isosceles triangle is at most ((1+o(1))|E |3/q) · |E | = (1+o(1))|E |4/q when |E | 
q2(d+1)/3. Thus the number of edges of H containing a triple induced an isosceles

triangle is at most (1+o(1))|E |4/q . On the other hand, since T2 = (1+o(1))|E |4/q when

|E |  q (d+1)/2, the number of 4-tuples (p1, q1, p2, q2) in E 4 satisfying P (p1 − q1) =
P (p2 − q2) equals (1+o(1))|E |4/q when |E |  q (d+1)/2. Thus, if |E |  q2(d+1)/3 with

d ≥ 2, then

|E(H)| ≤ 2|E |4
q

.

It follows from Theorem 5.5.2 that

α(H) ≥C

⎧⎪⎪⎩ |E |4
|E(H)|

⎫⎪⎪⎭1/3

=C q1/3,

for some positive constant C . Since there is no repeated generalized distance deter-

mined by the independent set of H , we have |UQ | ≥α(H) ≥C q1/3.

Moreover, it is easy to see that there is at least one repeated generalized distance

determined by any set of
�

2q1/2 +1 elements since there are only q = |Fq | distances

over Fd
q . Thus, the theorem follows.
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6 Distinct spreads in finite spaces

6.1 Introduction

Let q = pr be a large odd prime power, and Fq be a finite field of order q . For three

points a,b,c ∈ Fd
q , the spread between two vectors

−→
ab and −→ac in Fd

q , which is denoted

by S(
−→
ab,−→ac) (or S(b,a,c) for simplicity), is defined as

S
(−→
ab,−→ac

)
:= 1−

(−→
ab ·−→ac

)2

‖−→ab‖ ·‖−→ac‖
,

where ‖−→x ‖ = x2
1 + ·· · + x2

d . If either term in the denominator is 0, then S(
−→
ab,−→ac) is

undefined.

It is clear that this definition is consistent with the square of the sine of the angle

between two vectors
−→
ab and −→ac in Euclidean space

sin(θ)2 = 1−
(−→
ab ·−→ac

)2

‖−→ab‖ ·‖−→ac‖
.

The following are some properties of the spread between two vectors
−→
ab and −→ac:

(i) S
(−→
ab,−→ac

)
= S

(
r (
−→
ab), s(

−→
ab)

)
for any r, s ∈ F∗q ,

(ii) S
(−→
ab,−→ac

)
= S

(−→ac,
−→
ab
)
,

(iii) S
(−→
ab,−→ac

)
= S

(
M ·−→ab, M ·−→ac

)
, where M is an orthogonal matrix.
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6. Distinct spreads in finite spaces

In 2015, Bennett [4] made the first investigation on the number of distinct spreads

determined by points in P ⊆ Fd
q . In particular, he obtained the following.

Theorem 6.1.1 (Theorem 6.5, [4]). Let P be a set of points in F2
q . If |P | ≥ 2q −1 then

the number of distinct spreads generated by points in P is q.

It is clear that Theorem 6.1.1 is sharp up to the coefficient of q , since the number of

spreads spanned by points in a line of q points is at most one. For higher dimensional

cases, Bennett [4] had an observation on a connection between spreads and distances:

A connection between spreads and distances on a sphere: Suppose P1 is a subset

in the unit sphere S1, it is easily to check that S
(−→
0a,

−→
0b
)
= S

(−→
0c,

−→
0d
)

with a,b,c,d ∈P1

if and only if either ‖a−b‖ = ‖c−d‖ or ‖a−b‖ = ‖c+d‖. Thus if P1 determines a

positive proportion of all distances then P1 generates a positive proportion of all

spreads. Therefore if we have a set P ⊂ Fd
q satisfying |P |  q

d+2
2 then there exists a

sphere of radius t �= 0 such that |St ∩P |  qd/2. From the first property of spread,

we may assume that St is the unit sphere. It follows from Theorem 6.2.1 below that

S1 ∩P determines a positive proportion of all distances, therefore S1 ∩P generates a

positive proportion of all spreads. In other words, we have proved the following.

Theorem 6.1.2 (Theorem 6.3, [4]). Let P be a set of points in Fd
q , with d ≥ 3. If |P |

q (d+2)/2 then P generates a positive proportion of all spreads.

We remark here that if P is a subset in the unit sphere S1, Vinh [88] showed that for

P ⊆ F3
q with |P | q3/2, the number of occurrences of a fixed spread γ among P is

Θ
( |P |2

q

)
if 1−γ is not a square in Fq .

The main purpose of this chapter is to give sharp results on the number of distinct

spreads generated by a large set in Fd
q . Our first result gives us the number of distinct

spreads generated by P ⊆ Fd
q with d even.

Theorem 6.1.3. For any ε> 0, there exists c > 0 such that the following holds. Let P be

a set of points in Fd
q with d ≥ 2 even. If |P | ≥ (1+ε)qd/2, then the number of distinct

spreads determined by P is at least cq.

If P be a subset in Fd
q with d odd, then we can embed P in Fd+1

q with the last coordi-

nate of 0. Therefore, as a direct consequence of Theorem 6.1.3, we obtain the following

result.

Theorem 6.1.4. For any ε> 0, there exists c > 0 such that the following holds. Let P be

a set of points in Fd
q with d ≥ 3 odd. If |P | ≥ (1+ε)q (d+1)/2, then the number of distinct

spreads determined by P is at least cq.
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6.2. Proof of Theorem 6.1.3

We now show that the conditions on the size of P in Theorem 6.1.3 and Theorem 6.1.4

are sharp.

Theorem 6.1.5. Let Fq be a finite field of order q with q ≡ 1 mod 4. Then there exists a

subset P in Fd
q with d ≥ 4 even such that |P | = qd/2 and there is no spread determined

by points in P .

Theorem 6.1.6. Let Fq be a finite field of order q with q ≡ 1 mod 4. Then there exists

a subset P in Fd
q with d ≥ 3 odd such that |P | = q (d+1)/2 and the number of distinct

spreads determined by points in P is at most one.

6.2 Proof of Theorem 6.1.3

For the convenience, we recall the following theorem on the number of distinct

distances on the unit sphere due to Hart et al. [35].

Theorem 6.2.1 (Hart et al., [35]). For P ⊆ S1 in Fd
q with d ≥ 3. Suppose that |P | ≥C q

d
2

for some positive constant C , then the number of distinct distances determined by points

in P is at least min{q/2,C q/4}.

To prove Theorem 6.1.3, we make use of the following theorem due to Lund and Saraf

in [53].

Theorem 6.2.2 (Corollary 5, [53]). For any ε> 0 and P ⊆ Fd
q with |P | ≥ (1+ε)qd−1, the

number of lines spanned by P is bounded below by αεq2d−2, where αε = ε2(1+ε+ε2)−1.

By using Theorem 6.2.2, we are able to show in our following theorem that if the

cardinality of P is much smaller than qd−1, we still have many distinct lines spanned

by P .

Theorem 6.2.3. For any 0 < ε < q −1, let P ⊆ Fd
q with |P | ≥ (1+ ε)qk−1. Then, the

number of lines spanned by P is bounded below by (1−o(1))αεq2k−2.

Proof. Assume that (1+ε)|P | is an integer, and remove all but exactly (1+ε)|P | points

from P . Error introduced by assuming that (1+ε)|P | is an integer will only affect the

o(1) term in the result, and removing points from P only decreases the number of

lines spanned by P .

Let π′ be a uniformly random projection from Fd
q to Fk

q .

Let a,b be two arbitrary distinct points in Fd
q . We claim that the probability that

π′(a) = π′(b) is less than q−k . Note that, if π′(a) = π′(b), then π′(a−x) = π′(b−x) for
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6. Distinct spreads in finite spaces

an arbitrary translation vector x. Hence, we may without loss of generality assume

that a = 0. Then, the quesiton of whether π′(a) = π′(b) reduces to the question of

whether b lies in the kernel of π′, which is a uniformly random (d −k)-dimensional

linear subspace. This probability is (qd−k −1)/qd < q−k .

Hence, by linearity of expectation, the expected number of pairs a,b ∈ P such that

π′(a) =π′(b), denoted by Ecoll , is Ecoll <
(|P |

2

)
q−k = (1−o(1))(1+ε)2qk−2/2. In partic-

ular, there exists a projection π from Fd
q to Fk

q such that the number of such collisions

is at most Ecoll . By a Bonferroni inequality, the image π(P ) of P has size at least

|π(P )| ≥ |P | −Ecoll . Thus |π(P )| = (1− o(1))|P |. The conclusion of the theorem

follows from Theorem 6.2.2, and the observation that π(P ) does not span more lines

than P .

Corollary 6.2.4. Let P be a set of points in Fd
q with d even, and L be the set of spanned

lines by P . Suppose that |P | = (1+ε)qd/2, ε> 0, then there exists a point p in P such

that it is incident to at least (1−o(1)) αε

1+εqd/2 lines from L .

Proof. It follows from Theorem 6.2.3 that the number of lines spanned by P is

bounded below by (1−o(1))αεqd . By the pigeonhole-principle, there exists a point

p in P such that it is incident to at least (1− o(1)) αε

1+εqd/2 lines, and the corollary

follows.

Proof of Theorem 6.1.3: By Corollary 6.2.4, if |P | ≥ (1+ε)qd/2, then there exists a

point p in P such that it is incident to at least cqd/2 lines that are spanned by P for

some positive constant c depending on ε.

Suppose d = 2. Then, if
�−1 ∈ Fq , then there are q −1 points of F2

q at distance 0 from

p, lying on a single isotropic line with slope
�−1. If

�−1 ∉ Fq , then there is no point

distinct from p at zero distance from p. If a,b,c ∈P such are in three distinct, non-

isotropic lines incident to p, then an easy calculation shows that S(a,p,b) �= S(a,p,c),

which proves Theorem 6.1.3 in the case d = 2.

Suppose d > 2. We denote the set of lines incident to p by L ′. One can check that there

exists a sphere St of radius t �= 0 such that |St ∩L ′| ≥ cqd/2

2 . Without loss of generality,

we assume that p = 0 and t = 1. Theorem 6.2.1 implies that S1 ∩L ′ determines a

positive proportion of all distances. Thus Theorem 6.1.3 follows from the connection

between spreads and distances given in the introduction. �
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6.3. Proofs of Theorems 6.1.5 and 6.1.6

6.3 Proofs of Theorems 6.1.5 and 6.1.6

In this section, we will use the construction given in [35, Lemma 5.1]. We denote

i =�−1, which is guaranteed to exist since we assume that q ≡ 1 mod 4.

Proof of Theorem 6.1.5: Suppose d = 2m with m ≥ 2. Let P be the subspace

spanned by v1, . . . ,vm , where

v1 = (1, i ,0, . . . ,0),v2 = (0,0,1, i ,0 . . . ,0), . . . ,vm = (0, . . . ,0,1, i ).

It is easy to check that all vectors vi are null orthogonal, i.e. vi ·v j = 0 for all 1 ≤ i , j ≤ m.

Since ‖vi‖ = 0 for all 1 ≤ i ≤ m, it follows from the definition of spread that there is no

spread determined by three vectors in P . On the other hand, the size of P is qd/2,

which ends the proof of the theorem. �

Proof of Theorem 6.1.6: Suppose d = 2m +1 with m ≥ 2. Let P be the subspace

spanned by v1, . . . ,vm+1, where

v1 = (1, i ,0, . . . ,0),v2 = (0,0,1, i ,0 . . . ,0), . . . ,vm = (0, . . . ,0,1, i ,0),vm+1 = (0, . . . ,0,1).

We have the size of P is q (d+1)/2. It is easy to check that the spread spanned by any

triple of points in P is either undefined or one. Thus the number of distinct spreads

spanned by P is at most one. This concludes the proof of the theorem. �
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7 Paths in pseudo-random graphs and
applications

7.1 Introduction

Let G =G(n, p) be a random graph. For a fixed graph H with s ≤ n vertices, r edges,

and automorphism group Aut(H ), it is well-known that the number of induced copies

of H in G is

(1+o(1)) pr (1−p)(s
2)−r ns

|Aut(H)| .

Let G be a graph, and γ1 ≥ γ2 ≥ . . . ≥ γn be the eigenvalues of the adjacency matrix

AG . The second eigenvalue of G is defined as γ(G) := max{γ2,−γn}. We say that G is

an (n,d ,γ)-graph if the size of V (G) is n, the degree of each vertex is d , and γ(G) is

bounded from above by γ. Noga Alon [49] established that the number of copies of

any fixed graph in a large vertex set of an (n,d ,γ)-graph is close to the expected value.

In particular, the precise statement is as follows.

Theorem 7.1.1 (Alon, Theorem 4.10 [49]). Let H be a fixed graph with r edges, s vertices,

and maximum degree Δ, and let G = (V ,E) be an (n,d ,γ)-graph where d ≤ 0.9n. Let

m < n satisfy γ(n/d)Δ = o(m). Then, for every subset U ⊂ V of cardinality m, the

number of (not necessarily induced) copies of H in U is

(1+o(1))
|U |s

|Aut(H)|
(

d

n

)r

.

Note that if one takes the ordering of vertex set into account in Theorem 7.1.1, then the

number of copies of H in U is (1+o(1))|U |s (d/n)r . In the case H is a complete bipartite

graph Ks,t , it has been shown by Vinh [93] that the conditions on d and γ in Theorem

7.1.1 can be improved. Before presenting that result, we first need to introduce the

following notations. Let G ×G = (V1 ∪V2,E(G ×G)) be the bipartite graph with the
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7. Paths in pseudo-random graphs and applications

vertex sets V1 and V2, and the edge set E (G ×G), which are defined as: V1 =V2 =V (G),

(u, v) ∈V1×V2 ∈ E (G×G) if (u, v) ∈ E (G). For any two subsets U1,U2 ⊂V (G), we denote

the induced bipartite subgraph of G ×G on U1 ×U2 by G(U1,U2).

Theorem 7.1.2 (Theorem 2.2, [93]). Let t and s be integers with t ≥ s and t ≥ 2, and

G = (V ,E) be an (n,d ,γ)-graph. For U1,U2 ⊂V , suppose that

|U1||U2| ≥ γ2(n/d)t+s ,

then G(U1,U2) contains

(1+o(1))
|U1|s |U2|t

s!t !

(
d

n

)st

copies of Ks,t .

When either s or t is very small, one can also improve the bound in Theorem 7.1.2,

for instance, in the case s = 2 and t ≥ 1, the author of [93] indicated that under

the condition |U1||U2| ≥ γ2(n/d)t+1, the induced subgraph G(U1,U2) contains (1+
o(1)) |U1|s |U2|t

2!t !

(
d
n

)st
copies of K2,t .

Suppose U is a set of vertices in an (n,d ,γ)-graph G , and H is a path of length k. It

follows from Theorem 7.1.1 that if γ(n/d)2 = o(|U |), then the number of copies of H

in U is

(1+o(1))|U |k+1
(

d

n

)k

.

Our main purpose of this chapter is to give an asymptotically tight condition on

the size of U ⊂ V such that the number of paths of length k in U is close to the

expected number for arbitrary k ≥ 1. As applications, we obtain improvements and

generalizations of results in [5]. Our first main result is as follows.

Theorem 7.1.3. Let G = (V ,E) be an (n,d ,γ)-graph. Suppose that U ⊆V with γ
(n

d

)=
o(|U |). For an integer k ≥ 1, let Pk (U ) be the number of paths of length k in U , i. e.

Pk (U ) = #
{

(u1, . . . ,uk+1) ∈U k+1 : ui ui+1 ∈ E(G),1 ≤ i ≤ k
}

.

Then we have

Pk (U ) = (1+o(1))|U |k+1
(

d

n

)k

.

On the sharpness of Theorem 7.1.3, we have the following.

Theorem 7.1.4. There exist an (n,d ,γ)-graph G and a set U of vertices with |U | = cγ
(n

d

)
for some 0 < c < 1 such that Pk (U ) = 0 for arbitrary k ≥ 1.
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7.1. Introduction

We say that a path (u1, . . . ,uk+1) ∈U k+1 of length k is non-overlapping if ui �= u j for

all i �= j . For a set U of vertices in an (n,d ,γ)-graph G , let Dk (U ) be the number of

non-overlapping paths of length k in U , i.e.

Dk (U ) = #
{

(u1, . . . ,uk+1) ∈U k+1 : ui ui+1 ∈ E(G),1 ≤ i ≤ k, ui �= u j ,∀i �= j
}

.

In the following theorem, we show that under similar conditions on the size of U , the

number of non-overlapping paths of length k in U is (1−o(1))|U |k+1
(

d
n

)k
.

Theorem 7.1.5. Let G = (V ,E) be an (n,d ,γ)-graph. Suppose that U ⊆V with γ
(n

d

)=
o(|U |) and k

(n
d

)= o(|U |), then we have

Dk (U ) = (1−o(1))|U |k+1
(

d

n

)k

.

Note that Theorems 7.1.4 and 7.1.5 could be presented in multi-color variants, which

will be used for our later applications. Let G be a graph, we color its edges by a

set of finite colors. The graph G is called an (n,d ,γ)-colored graph if for each color,

the corresponding subgraph of G is an (n, (1+o(1))d ,γ)-graph. Our next results are

multi-color variants of Theorem 7.1.3 and Theorem 7.1.5.

Theorem 7.1.6. Suppose G = (V ,E) is an (n,d ,γ)-colored graph. For a sequence c =
(c1, . . . ,ck ) of k colors, and U ⊆V , we define

P c
k (U ) := #

{
(u1, . . . ,uk+1) ∈U k+1 : the edge ui ui+1 is colored by ci ,1 ≤ i ≤ k

}
.

If U satisfies γ
(n

d

)= o(|U |), then we have

P c
k (U ) = (1+o(1))|U |k+1

(
d

n

)k

.

Theorem 7.1.7. Suppose G = (V ,E) is an (n,d ,γ)-colored graph. For a sequence c =
(c1, . . . ,ck ) of k colors, and U ⊆V , we define

Dc
k (U ) := #

{
(u1, . . . ,uk+1) ∈ P c

k (U ) : ui �= u j ∀i �= j
}

.

If U satisfies γ
(n

d

)= o(|U |) and k
(n

d

)= o(|U |), then we have

Dc
k (U ) = (1+o(1))|U |k+1

(
d

n

)k

.
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For the sake of simplicity of this chapter we are only presenting the proofs of Theorems

7.1.3 and 7.1.5, since those of Theorems 7.1.6 and 7.1.7 are almost identical.

Applications: Let E be a set in Fd
q ,d ≥ 2, and k ≥ 1 be an integer. Let t = (t1, . . . , tk ) ∈

Fk
q with ti �= 0, 1 ≤ i ≤ k, we define

P t
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : ||pi −pi+1|| = ti , 1 ≤ i ≤ k}|

as the number of paths of length k in E with given distances (t1, . . . , tk ) ∈ Fk
q . In the

case k = 1, we have P t
1(E ) is the number of pairs (x, y) ∈ E 2 of distance t1. In a recent

work, Bennett, Chapman, Covert, Hart, Iosevich and Pakianathan [5], using Fourier

analytic techniques, studied the magnitude of P t
k (E ) for arbitrary k ≥ 1 as follows.

Theorem 7.1.8 (Bennett et al., [5]). For E ⊂ Fd
q , d ≥ 2 and an integer k ≥ 1. Suppose

that 2k
ln2 q

d+1
2 = o(|E |) then we have

P t
k (E ) = (1+o(1))

|E |k+1

qk
.

As a consequence of Theorem 7.1.8, the authors of [5] indicated that under the same

condition as in Theorem 7.1.8, there exist non-overlapping paths of length k in E with

arbitrary k ≥ 1. The precise statement is as follows.

Theorem 7.1.9 (Bennett et al., [5]). Let E be a set in Fd
q ,d ≥ 2, and k ≥ 1 be an integer.

Let t = (t1, . . . , tk ) with ti �= 0, 1 ≤ i ≤ k, we define

Dt
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : ||pi −pi+1|| = ti , 1 ≤ i ≤ k, pi �= p j ,∀i �= j }|.

Suppose that |E | ≥ 2k
ln2 q

d+1
2 then we have Dt

k (E ) > 0.

Note that in the case k = 1, Theorem 7.1.9 implies the main result in [44]. In this

section, we will present some improvements and generalizations of Theorems 7.1.8

and 7.1.9.

The finite Euclidean distance graphs: Suppose Q is a non-degenerate quadratic

form on Fd
q , and λ ∈ Fq \ {0}, the finite Euclidean distance graph Eq (d ,Q,λ) is defined

as follows:

V (Eq (d ,Q,λ)) = Fd
q , E

(
Eq (d ,Q,λ)

)= {(x, y) ∈V ×V : Q(x − y) =λ.}
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The (n,d ,γ)-form of Eq (d ,Q,λ) has been studied in [2, 50].

Theorem 7.1.10 ([2, 50]). Suppose Q is a non-degenerate quadratic form on Fd
q . For

any λ ∈ Fq \ {0}, the graph Eq (d ,Q,λ) is an(
qd , (1+o(1))qd−1,2q

d−1
2

)
−graph.

Let G be a graph with V (G) = Fd
q , and we color the edge between two vertices x and y

by the color λ ∈ Fq \ {0} if Q(x − y) =λ. Theorem 7.1.10 implies that the graph G is an

(qd , (1+o(1))qd−1,2q
d−1

2 )-colored graph with (q −1) colors. Thus as consequences of

Theorems 7.1.6 and 7.1.7, we are able to improve Theorems 7.1.8 and 7.1.9 as follows.

Theorem 7.1.11. Let E be a set in Fd
q ,d ≥ 2, and k ≥ 1 be an integer. Let t = (t1, . . . , tk )

with ti �= 0, 1 ≤ i ≤ k, we define

P t
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : Q(pi −pi+1) = ti , 1 ≤ i ≤ k}|.

Suppose that q
d+1

2 = o(|E |), then we have

P t
k (E ) = (1+o(1))

|E |k+1

qk
.

Theorem 7.1.12. Let E be a set in Fd
q ,d ≥ 2, and k ≥ 1 be an integer. Let t = (t1, . . . , tk )

with ti �= 0, 1 ≤ i ≤ k, we define

Dt
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : Q(pi −pi+1) = ti , 1 ≤ i ≤ k, pi �= p j ,∀i �= j }|.

Suppose that kq = o(|E |) and q
d+1

2 = o(|E |), then we have

Dt
k (E ) = (1+o(1))

|E |k+1

qk
.

The finite upper half-plane graphs: For a finite field Fq , the upper half plane, which

is denoted by Hq , is defined as

Hq := {z = x + y
�
σ : x, y ∈ Fq and y �= 0}, (7.1.1)

where σ is a non-square in Fq . For any two points z = u + v
�
σ and w = x + y

�
σ in

Hq , the distance between two points is defined by

d(z, w) := (u −x)2 −σ(v − y)2

v y
.
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7. Paths in pseudo-random graphs and applications

Although this distance function is not a metric, it has a property which is the same as

the Euclidean distance function, namely it is GL(2,Fq )-invariant: d(g z, g w) = d(z, w)

for all g ∈GL(2,Fq ) and all z, w ∈ Hq .

For λ ∈ Fq \{0,4σ}, the finite upper half-plane graph P (σ,λ) is defined by: V (P (σ,λ)) =
Hq and (z, w) ∈ E(P (σ,λ)) if d(z, w) =λ. The (n,d ,γ)-form of P (σ,λ) has been estab-

lished by Terras in [81].

Theorem 7.1.13 ([81]). Let λ be an element in Fq \ {0,4σ}, the finite upper half-plane

graph P (σ,λ) is (
q2 −q, q +1,2q1/2)−graph.

Let G be a graph with V (G) = Fd
q , and we color the edge between two vertices z and w

by the color λ ∈ Fq \ {0,4σ} if d(z, w) = a. Theorem 7.1.13 implies that the graph G is

an (q2 −q, q +1,2q1/2)-colored graph with (q −2) colors. Therefore, as a consequence

of Theorem 7.1.6, we have the following result.

Theorem 7.1.14. Let E be a set in Hq , and k ≥ 1 be an integer. Let t = (t1, . . . , tk ) with

ti �= 0, 1 ≤ i ≤ k, we define

P t
k (E ) := |{(p1, . . . , pk+1) ∈ E ×·· ·×E : d(pi , pi+1) = ti , 1 ≤ i ≤ k}|.

Suppose that q
3
2 = o(|E |), then we have

P t
k (E ) = (1+o(1))

|E |k+1

qk
.

7.2 Proofs of Theorems 7.1.3–7.1.5

To prove Theorems 7.1.3–7.1.5, we will use the following lemmas.

Lemma 7.2.1 ([32]). Let G = (V ,E ) be an (n,d ,γ)-graph. The number of edges between

two multi-sets of vertices B and C in G satisfies:∣∣∣∣em(B ,C )− d |B ||C |
n

∣∣∣∣≤ γ
√∑

b∈B
mB (b)2

√∑
c∈C

mC (c)2,

where mX (x) is the multiplicity of x in X .

As a consequence of Lemma 7.2.1, we obtain the following recurrence relation between

paths in U .
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Lemma 7.2.2. Let G be an (n,d ,γ)-graph. For a subset U of vertices, let Pk (U ) be the

number of paths of length k with vertices in U . Then we have the following∣∣∣∣P2k+1(U )− dPk (U )2

n

∣∣∣∣≤ γP2k (U ),

∣∣∣∣P2k (U )− dPk (U )Pk−1(U )

n

∣∣∣∣≤ γ
√

P2k (U )P2k−2(U ).

Proof. Let B and C be multi-sets defined as follows:

B := {uk+1 : (u1, . . . ,uk+1) is a path of length k in U },

C := {vk+2 : (vk+2, . . . , v2k+2) is a path of length k in U }.

One can check that P2k+1 is equal to the number of edges between B and C in the

graph G . Thus it follows from Lemma 7.2.1 that∣∣∣∣P2k+1(U )− dPk (U )2

n

∣∣∣∣≤ γ
√∑

b∈B
mB (b)2

√∑
c∈C

mC (c)2.

It is easy to see that
∑

b∈B mB (b)2 =∑c∈C mC (c)2 = P2k (U ). This implies that∣∣∣∣P2k+1(U )− dPk (U )2

n

∣∣∣∣≤ γP2k (U ).

By using the same arguments, we obtain∣∣∣∣P2k (U )− dPk (U )Pk−1(U )

n

∣∣∣∣≤ γ
√

P2k (U )P2k−2(U ),

which completes the proof of the lemma.

We will prove Theorem 7.1.3 by using induction on k, so we need the following theo-

rems for the base cases k = 1 and k = 2.

Theorem 7.2.3. Let G = (V ,E) be an (n,d ,γ)-graph. Suppose that U ⊆V with γ
(n

d

)=
o(|U |), then the number of paths of length one in U is (1+o(1))|U |2 d

n .

Proof. The number of paths of length one is the number of edges between U and U

in G . Thus the theorem follows directly from Lemma 7.2.1.

Theorem 7.2.4 (Theorem 3.3, [83]). Suppose G = (V ,E) is an (n,d ,γ)-graph. For U ⊆
V with γ

(n
d

) = o(|U |), we have that the number of paths of length two in U is (1+
o(1))|U |3

(
d
n

)2
.
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We are now ready to prove Theorem 7.1.3.

Proof of Theorem 7.1.3. We first prove the upper bound of Theorem 7.1.3 by induction

on k. The base cases k = 1 and k = 2 follow from Theorems 7.2.3 and 7.2.4. Suppose

that the statement holds for all 2k ≥ 1. We now show that it also holds for 2k +1 and

2k +2. Indeed, it follows from Lemma 7.2.2 and induction hypothesis that

P2k+1(U ) ≤ d

n
Pk (U )2 +γP2k (U ) ≤ (1+o(1))

(
d

n

)2k+1

|U |2k+2 + (1+o(1))γ

(
d

n

)2k

|U |2k+1

= (1+o(1))

(
d

n

)2k+1

|U |2k+2,

when γ
(n

d

)= o(|U |).

For the case 2k +2, it also follows from Lemma 7.2.2 that

P2k+2(U ) ≤ dPk (U )Pk+1(U )

n
+γ

√
P2k (U )P2k+2(U ).

Solving this inequality in x =�
P2k+2, we obtain

P2k+2(U ) ≤
(
γ
√

P2k (U )+
(

dPk (U )Pk+1(U )

n

)1/2
)2

.

By using the induction hypothesis, we have

P2k+2(U ) ≤ (1+o(1))

(
d

n

)2k+2

|U |2k+3.

In other words, we have proved that for all k ≥ 1 and γ
(n

d

)= o(|U |)

Pk (U ) ≤ (1+o(1))|U |k+1
(

d

n

)k

.

By using the lower bounds of Lemma 7.2.2 and a nearly identical argument, we also

obtain

Pk (U ) ≥ (1−o(1))|U |k+1
(

d

n

)k

,

under the condition γ
(n

d

)= o(|U |). This completes the proof of the theorem.

Proof of Theorem 7.1.4. Let d ≥ 3 be an odd integer. From Theorem 7.1.10 we have
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7.2. Proofs of Theorems 7.1.3–7.1.5

that for any λ ∈ F∗q , the graph Eq (d ,Q,λ) is an(
qd , (1+o(1))qd−1,2q (d−1)/2

)
−graph.

Suppose Q(x) = x2
1 +·· ·+x2

d . It has been shown in [35, Theorem 2.7] that there exist a

set U ⊂ Fd
q with |U | = cq (d+1)/2 = cγn

d for some constant 0 < c < 1 and β ∈ F∗q such that

there are no two points in U of distance β. This implies that there is no path of length

k with arbitrary k > 1 in U in the graph Eq (d ,Q,β).

In the proof of Theorem 7.1.5, we will use ideas given in [5, Corollary 1.3].

Proof of Theorem 7.1.5. Since the upper bound of Theorem 7.1.5 follows from Theo-

rem 7.1.3, it suffices to prove that

Dk (U ) ≥ (1−o(1))|U |k+1
(

d

n

)k

. (7.2.1)

For u ∈U , let fk (u) be the number of non-overlapping paths of length k in U beginning

at u ∈U . Then we have

Dk (U ) = ∑
u∈U

fk (u).

We now prove (7.2.1) by induction on k. The base case k = 1 follows directly from

Lemma 7.2.1. Suppose that the statement is true for all k −1 ≥ 1, we now show that it

also holds for k. Indeed, one can check easily that

Dk+1(U ) ≥ ∑
u∈U

fk (u) (dU (u)−k) =−kDk (U )+ ∑
u∈U

fk (u)dU (u). (7.2.2)

On the other hand, by using the same arguments as in the proof of Lemma 7.2.2, we

have ∣∣∣∣∣ ∑u∈U
fk (u)dU (u)− dDk (U )|U |

n

∣∣∣∣∣≤ γ|U |1/2
√∑

u∈U
fk (u)2 ≤ γ|U |1/2

√
P2k (U ),

where we use the estimate
∑

u∈U fk (u)2 ≤ P2k (U ). This implies that

∑
u∈U

fk (u)dU (u) ≥ dDk (U )|U |
n

−γ|U |1/2
√

P2k (U ) ≥ dDk (U )|U |
n

−γ(1+o(1))|U |k+1
(

d

n

)k

.

(7.2.3)
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7. Paths in pseudo-random graphs and applications

Putting (7.2.2) and (7.2.3) together gives us

Dk+1(U ) ≥ Dk (U )|U |d
n

−kDk (U )−γ(1+o(1))|U |k+1
(

d

n

)k

.

By using the induction hypothesis and the conditions γ
(n

d

)= o(|U |) and k
(n

d

)= o(|U |),

we obtain

Dk+1(U ) ≥ (1−o(1))|U |k+1
(

d

n

)k

,

which completes the proof of the theorem.

7.3 Concluding remarks

We conclude this chapter with some remarks. Let Eq (d ,Q,λ) be the finite Euclidean

distance graph defined in the introduction. It follows from Theorem 7.1.1 that for

E ⊂ Fd
q , if q

d+3
2 = o(|E |) then E contains many copies of a fixed triangle. Note that

Theorem 7.1.1 can also be stated for (n,d ,γ)-colored graphs, and in this form we

have that the number of congruence classes of triangles in E is (1−o(1))q3 under the

condition q
d+3

2 = o(|E |). However, this condition is only non-trivial when d ≥ 4. If one

can prove that under the same condition as in Theorem 7.1.3, i.e. γ(n/d) = o(|E |), E

contains many copies of a fixed triangle, then this will imply that in the case d = 2,

we only need the condition q3/2 = o(|E |) to get almost all of congruence classes of

triangles, which matches Iosevich’s conjecture [43] and the construction in [6]. Thus

we are led to the following conjecture.

Conjecture 7.3.1. Suppose G = (V ,E) is an (n,d ,γ) graph. For U ⊆ V with γ
(n

d

) =
o(|U |), we have that the number of copies of a fixed cycle C of length 3 in U is (1+
o(1))|U |3

(
d
n

)3
.
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8 Sum-product estimates over arbitrary
fields

8.1 Introduction

Let F be an arbitrary field. We use the convention that if F has positive characteristic,

we denote the characteristic by p, while if F has characteristic zero, we set p = ∞.

Thus, a condition like N < p5/8 is restrictive in positive characteristic, but vacuous in

characteristic zero. We denote the set of non-zero elements in F by F∗.

For A ⊂ F, the sum and the product sets are defined as follows:

A +A = {a +a′ : a, a′ ∈A }, A ·A = {a ·a′ : a, a′ ∈A }.

For A ⊂ Fp , Bourgain, Katz and Tao ([9]) proved that if pδ < |A | < p1−δ for some δ> 0,

then we have

max{|A +A |, |A ·A |} |A |1+ε,

for some ε= ε(δ) > 0.

In a breakthrough paper [64], Roche-Newton, Rudnev, and Shkredov improved and

generalized this result to arbitrary fields. More precisely, they showed that for A ⊂ F,

the sum set and the product set satisfy

max{|A ±A |, |A ·A |} |A |6/5, max{|A ±A |, |A : A |} |A |6/5.

Note that the same bound also holds for |A +A 2|, max
{|A +A |, |A 2 +A 2|} [61], and

|A (1+A )| [76]. We refer the reader to [1, 11, 64, 56] and references therein for recent

results on the sum-product topic.
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8. Sum-product estimates over arbitrary fields

Let G be a subgroup of F∗, and g : G → F∗ be an arbitrary function. We define

μ(g ) := max
t∈F∗

∣∣{x ∈G : g (x) = t
}∣∣ .

For A ,B ⊂ Fp and two-variable functions f (x, y) and g (x, y) in Fp [x, y], Hegyvári and

Hennecart [39], using graph theoretic techniques, proved that if |A | = |B| = pα, then

max
{| f (A ,B)|, |g (A ,B)|}|A |1+Δ(α),

for some Δ(α) > 0. More precisely, they established the following results.

Theorem 8.1.1 (Hegyvári and Hennecart, [39]). Let G be a subgroup of F∗p . Consider

the function f (x, y) = g (x)(h(x)+ y) on G ×F∗p , where g ,h : G → F∗p are arbitrary func-

tions. Define m =μ(g ·h). For any subsets A ⊂G and B,C ⊂ F∗p , we have

∣∣ f (A ,B)
∣∣ |B ·C | min

{ |A ||B|2|C |
pm2

,
p|B|

m

}
.

Theorem 8.1.2 (Hegyvári and Hennecart, [39]). Let G be a subgroup of F∗p . Consider

the function f (x, y) = g (x)(h(x)+ y) on G ×F∗p , where g ,h : G → F∗p are arbitrary func-

tions. Define m =μ(g ). For any subsets A ⊂G, B,C ⊂ F∗p , we have

| f (A ,B)||B+C | min

{ |A ||B|2|C |
pm2

,
p|B|

m

}
.

It is worth noting that Theorem 6 established by Bukh and Tsimerman [11] does

not cover such a function defined in Theorem 8.1.2. The reader can also find the

generalizations of Theorems 8.1.1 and 8.1.2 in the setting of finite valuation rings in

[31].

Suppose f (x, y) = g (x)(h(x)+ y) with μ(g ),μ(h) = O(1) and A = B = C . Then, it

follows from Theorems 8.1.1 and 8.1.2 that

1. If |A | p2/3, then we have

| f (A ,A )||A ·A |, | f (A ,A )||A +A | p|A |.

2. If |A |� p2/3, then we have

| f (A ,A )||A ·A |, | f (A ,A )||A +A | |A |4/p. (8.1.1)
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8.1. Introduction

The main goal of this chapter is to improve and generalize Theorems 8.1.1 and 8.1.2 to

arbitrary fields for small sets. Our first result is an improvement of Theorem 8.1.1.

Theorem 8.1.3. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g ,h : F∗ → F∗ are arbitrary functions. Define m =μ(g ·h). For any subsets A ,B,C ⊂ F∗

with |A |, |B|, |C | ≤ p5/8, we have

max
{| f (A ,B)|, |B ·C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5

m
4
5

,
|B||C | 1

2

m
,
|B||A | 1

2

m
,
|B|2/3|C |1/3|A |1/3

m
2
3

}
.

The following are consequences of Theorem 8.1.3.

Corollary 8.1.4. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g ,h : F∗ → F∗ are arbitrary functions with μ(g ·h) =O(1). For any subset A ⊂ F∗ with

|A | ≤ p5/8, we have

max
{| f (A ,A )|, |A ·A |}|A | 6

5 .

Corollary 8.1.5. For A ,B,C ⊂ F with |A |, |B|, |C | ≤ p5/8.

1. Suppose that g (x) = 1 and h(x) = 1/x, then we have

max
{|A −1 +B|, |B ·C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

2. Suppose that g (x) = x and h(x) = 1, then we have

max{|A (B+1)|, |B ·C |}  min
{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

This corollary is also an improvement of a recent result due to Zhelezov [96]. It follows

from Corollary 8.1.5(2) that if B =A and C =A +1 then we have |A (A +1)| |A |6/5,

which recovers the result of Stevens and de Zeeuw [76].

Our next result is the additive version of Theorem 8.1.3, which improves Theorem

8.1.2.

Theorem 8.1.6. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g ,h : F∗ → F∗ are arbitrary functions. Define m = μ(g ). For any subsets A ,B,C ⊂ F∗

with |A |, |B|, |C | ≤ p5/8, we have

max
{| f (A ,B)|, |B+C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5

m
4
5

,
|B||C | 1

2

m
,
|B||A | 1

2

m
,
|B|2/3|C |1/3|A |1/3

m
2
3

}
.
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8. Sum-product estimates over arbitrary fields

Corollary 8.1.7. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g : F∗ → F∗ are arbitrary functions with μ(g ) = O(1). For any subset A ⊂ F∗ with

|A | ≤ p5/8, we have

max
{| f (A ,A )|, |A +A |}|A | 6

5 .

Let g (x) = x and h(x) = 1, we have the following corollary.

Corollary 8.1.8. For A ,B,C ⊂ F with |A |, |B|, |C | ≤ p5/8, we have

max{|A (B+1)|, |B+C |}  min
{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

In the case g (x) = x and h(x) = 0, we have the following result.

Corollary 8.1.9. For A ,B,C ⊂ F with |A |, |B|, |C |� p5/8, we have

max{|A ·B|, |B+C |}  min
{
|A | 1

5 |B| 4
5 |C | 1

5 , |B||C | 1
2 , |B||A | 1

2 , |B|2/3|C |1/3|A |1/3
}

.

In the case A =B =C , we recover the following result due to Roche-Newton, Rudnev,

and Shkredov [64], which says that max{|A +A |, |A ·A |} |A |6/5.

It has been shown in [76] that if f (x, y) = x(x + y), then | f (A ,A )|  |A |5/4 under

the condtion |A | ≤ p2/3. In the following theorem, we show that if either |A +A | or

|A ·A | is sufficiently small, the exponent 5/4 can be improved from the polynomials

to a larger family of function on F∗×F∗

Theorem 8.1.10. Let f (x, y) = g (x)(h(x)+ y) be a function defined on F∗ ×F∗, where

g ,h : F∗ → F∗ are arbitrary functions with μ( f ),μ(g ) =O(1). Consider the subset A ⊂ F∗

with |A | ≤ p5/8, satisfying

min{|A +A |, |A ·A |} ≤ |A | 9
8−ε,

for some ε> 0. Then, we have

| f (A ,A )| |A | 5
4+ 2ε

3 .

8.2 Proofs of Theorems 8.1.3, 8.1.6, and 8.1.10

Let R be a set of points in F3 and S be a set of planes in F3. We write I (R,S ) =
|{(r, s) ∈ R ×S : r ∈ s}| for the number of incidences between R and S . To prove

Theorems 8.1.3 and 8.1.6, we make use of the following point-plane incidence bound

due to Rudnev [66]. A short proof can be found in [20].

74



8.2. Proofs of Theorems 8.1.3, 8.1.6, and 8.1.10

Theorem 8.2.1 (Rudnev, [66]). Let R be a set of points in F3 and let S be a set of planes

in F3, with |R|� |S | and |R|� p2. Assume that there is no line containing k points

of R. Then

I (R,S ) �|R|1/2|S |+k|S |.

Proof of Theorem 8.1.3: Define f (A ,B) = { f (a,b) : a ∈A ,b ∈B}, g (A ) = {g (a) : a ∈
A }, h(A ) = {h(a) : a ∈A }. For λ ∈B ·C , let

Eλ =
∣∣{( f (a,b),c · g (a)−1,c ·h(a)

)
: (a,b,c) ∈A ×B×C , f (a,b) · c · g (a)−1 −c ·h(a) =λ

}∣∣ ,
where by g (a)−1 we mean the multiplicative inverse of g (a) in F∗. For a given triple

(x, y, z) ∈ (F∗)3, we count the number of solutions (a,b,c) ∈A ×B×C to the following

system

g (a)(h(a)+b) = x, c · g (a)−1 = y, c ·h(a) = z.

This implies that

g (a)h(a) = z y−1.

Since μ(g ·h) = m, there are at most m different values of a satisfying the equation

g (a)h(a) = z y−1, and b,c are uniquely determined in term of a by the first and second

equations of the system. This implies that

|A ||B||C |/m ≤ ∑
λ∈B·C

Eλ.

By the Cauchy-Schwarz inequality, we get

(|A ||B||C |/m)2 ≤
( ∑
λ∈B·C

Eλ

)2

≤ E · |B ·C |, (8.2.1)

where E =∑λ∈B·C E 2
λ

.

Define the point set R as

R := {(c · g (a)−1,c ·h(a), g (a′)(h(a′)+b′)
)

: a, a′ ∈A ,b′ ∈B,c ∈C
}

and the set of planes S as

S := {g (a)(h(a)+b)X −Y −c ′g (a′)−1Z =−c ′ ·h(a′) : a, a′ ∈A ,b ∈B,c ′ ∈C
}

.

We have E ≤ I (R,S ), and |R| = |S | ≤ | f (A ,B)||A ||C |. To apply Theorem 8.2.1, we

need to find an upper bound on k which is the maximum number of collinear points
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8. Sum-product estimates over arbitrary fields

in R. The projection of R into the first two coordinates is the set T = {(c · g (a)−1,c ·
h(a)) : a ∈A ,c ∈C }. The set T can be covered by the lines of the form y = g (a)h(a)x

with a ∈A . This implies that T can be covered by at most |A | lines passing through

the origin, with each line containing |C | points of T . Therefore, a line in F3 contains

at most max{|A |, |C |} points of R, unless it is vertical, in which case it contains at

most | f (A ,B)| points. In other words, we get

k ≤ max{|A |, |C |, | f (A ,B)|}.

If |R| p2, then we get | f (A ,B)||A ||C | p2. Since |A |, |C | ≤ p5/8, we have | f (A ,B)|
p3/4  |A | 1

5 |B| 4
5 |C | 1

5 , and we are done in this case. Thus, we can assume that

|R|� p2. Applying Theorem 8.2.1, we obtain

I (R,S ) ≤ | f (A ,B)|3/2|A |3/2|C |3/2 +k| f (A ,B)|A ||C |. (8.2.2)

Putting (8.2.1) and (8.2.2) together gives us

max
{| f (A ,B)|, |B ·C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5

m
4
5

,
|B||C | 1

2

m
,
|B||A | 1

2

m
,
|B|2/3|C |1/3|A |1/3

m
2
3

}
.

This completes the proof of the theorem. �

Proof of Theorem 8.1.6: The proof goes in the same direction as Theorem 8.1.3, but

for the sake of completeness, we include the detailed proof. For λ ∈B+C , let

Eλ =
∣∣{( f (a,b), g (a)−1,c −h(a)

)
: (a,b,c) ∈A ×B×C , f (a,b) · g (a)−1 + (c −h(a)) =λ

}∣∣ .
For a given triple (x, y, z) ∈ (F∗)3, we count the number of solutions (a,b,c) ∈A ×B×C

to the following system

g (a)(h(a)+b) = x, g (a)−1 = y, c −h(a) = z.

Since μ(g ) = m, there are at most m different values of a satisfying the equation g (a) =
y−1, and b,c are uniquely determined in term of a by the first and third equations of

the system. This implies that

|A ||B||C |/m ≤ ∑
λ∈B+C

Eλ.
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8.2. Proofs of Theorems 8.1.3, 8.1.6, and 8.1.10

By the Cauchy-Schwarz inequality, we have

(|A ||B||C |/m)2 ≤
( ∑
λ∈B+C

Eλ

)2

≤ E · |B+C |, (8.2.3)

where E =∑λ∈B+C E 2
λ

. Define the point set R as

R := {(g (a)−1,c −h(a), g (a′)(h(a′)+b′)
)

: a, a′ ∈A ,b′ ∈B,c ∈C
}

,

and the collection of planes S as

S = {g (a)(h(a)+b)X +Y − g (a′)−1Z = c ′ −h(a′) : a, a′ ∈A ,b ∈B,c ′ ∈C
}

.

It is clear that |R| = |S | ≤ | f (A ,B)||A ||C |, and E ≤ I (R,S ). To apply Theorem

8.2.1, we need to find an upper bound on k which is the maximum number of

collinear points in R. The projection of R into the first two coordinates is the set

T = {
(
g (a)−1,c −h(a)

)
: a ∈A ,c ∈C }. The set T can be covered by at most |A | lines

of the form x = g (a)−1 with a ∈A , where each line contains |C | points of T . There-

fore, a line in F3 contains at most max{|A |, |C |} points of R, unless it is vertical, in

which case it contains at most | f (A ,B)| points. So we get

k ≤ max{|A |, |C |, | f (A ,B)|}.

If |R|  p2, this implies that | f (A ,B)||A ||C |  p2. Since |A |, |C | ≤ p5/8, we have

| f (A ,B)|  p3/4  |A | 1
5 |B| 4

5 |C | 1
5 , and we are done. Thus, we can assume that

|R|� p2. Applying Theorem 8.2.1, we obtain

I (R,S ) ≤ | f (A ,B)|3/2|A |3/2|C |3/2 +k| f (A ,B)|A ||C |. (8.2.4)

Putting (8.2.3) and (8.2.4) together gives us

max
{| f (A ,B)|, |B+C |} min

{
|A | 1

5 |B| 4
5 |C | 1

5

m
4
5

,
|B||C | 1

2

m
,
|B||A | 1

2

m
,
|B|2/3|C |1/3|A |1/3

m
2
3

}
.

This completes the proof. �

Proof of Theorem 8.1.10: One can assume that | f (A ,A )| ≤ |A |2, since otherwise

we are done. Now by the proofs of Theorems 8.1.3 and 8.1.6 for A ⊂ F∗ with |A | ≤ p5/8,

we have

| f (A ,A )|3/2|A ·A | |A |3, | f (A ,A )|3/2|A +A | |A |3.
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8. Sum-product estimates over arbitrary fields

Since min{|A +A |, |A ·A |} ≤ |A | 9
8−ε, we get | f (A ,A )|3/2  |A |3− 9

8+ε, which con-

cludes the proof of the theorem. �
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9 Sum-product estimates over finite
quasifields

9.1 Introduction

Let R be a ring and A ⊂ R. The sumset of A is the set A +A = {a +b : a,b ∈A }, and

the product set of A is the set A ·A = {a ·b : a,b ∈ A }. A well-studied problem in

arithmetic combinatorics is to prove non-trivial lower bounds on the quantity

max{|A +A |, |A ·A |}

under suitable hypothesis on R and A . One of the first results of this type is due to

Erdős and Szemerédi [26]. They proved that if R =Z and A is finite, then there are

positive constants c and ε, both independent of A , such that

max{|A +A |, |A ·A |} ≥ c|A |1+ε.

This improves the trivial lower bound of max{|A +A |, |A ·A |} ≥ |A |. Erdős and

Szemerédi conjectured that the correct exponent is 2−o(1) where o(1) → 0 as |A |→∞.

Despite a significant amount of research on this problem, this conjecture is still open.

For some time the best known exponent was 4/3−o(1) due to Solymosi [72] (see also

[47] for similar results) who proved that for any finite set A ⊂R,

max{|A +A |, |A ·A |} ≥ |A |4/3

2(log |A |)1/3
.

Very recently, Konyagin and Shkredov [48] announced an improvement of the expo-

nent to 4/3+c −o(1) for any c < 1
20598 .

Another case that has received attention is when R is a finite field. Let p be a prime

and let A ⊂ Zp . As mentioned in the previous chapter, Bourgain, Katz, and Tao [9]
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9. Sum-product estimates over finite quasifields

proved that if pδ < |A | < p1−δ where 0 < δ< 1/2, then

max{|A +A |, |A ·A |} ≥ c|A |1+ε (9.1.1)

for some positive constants c and ε depending only on δ. The current best bound for

the case |A | ≤ p5/8 was given by Roche-Newton, Rudnev, and Shkredov in [64]. For

the case of large sets, Hart, Iosevich, and Solymosi [36] obtained bounds that give an

explicit dependence of ε on δ. Let q be a power of an odd prime, Fq be the finite field

with q elements, and A ⊂ Fq . In [36], it is shown that if |A +A | = m and |A ·A | = n,

then

|A |3 ≤ cm2n|A |
q

+cq1/2mn (9.1.2)

where c is some positive constant. Inequality (9.1.2) implies a non-trival sum-product

estimate when q1/2 � |A | � q . We write f � g if f = o(g ). Using a graph theoretic

approach, Vinh [85] and Vu [95] improved (9.1.2) and as a result, obtained a better

sum-product estimate.

Theorem 9.1.1 ([85]). Let q be a power of an odd prime. If A ⊂ Fq , |A +A | = m, and

|A ·A | = n, then

|A |2 ≤ mn|A |
q

+q1/2�mn.

Corollary 9.1.2 ([85]). If q is a power of an odd prime and A ⊂ Fq , then there is a

positive constant c such that the following hold. If q1/2 �|A | < q2/3, then

max{|A +A |, |A ·A |} ≥ c|A |2
q1/2

.

If q2/3 ≤ |A |� q, then

max{|A +A |, |A ·A |} ≥ c(q|A |)1/2.

In the case that q is a prime, Corollary 9.1.2 was proved by Garaev [27] using expo-

nential sums and Rudnev gave an estimate for small sets [65]. Cilleruelo [14] also

proved related results using dense Sidon sets in finite groups involving Fq and F∗q . In

particular, versions of Theorem 9.1.3 and (9.1.3) (see below) are proved in [14], as well

as several other results concerning equations in Fq and sum-product estimates.

Theorem 9.1.1 was proved using the following Szemerédi-Trotter type theorem in Fq .

Theorem 9.1.3 ([85]). Let q be a power of an odd prime. If P is a set of points and L is a
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set of lines in F2
q , then

|{(p, l ) ∈ P ×L : p ∈ l }| ≤ |P ||L|
q

+q1/2
√

|P ||L|.

We remark that a Szemerédi-Trotter type theorem in Zp was obtained in [9] using the

sum-product estimate (9.1.1).

In this chapter, we generalize Theorem 9.1.1, Corollary 9.1.2, and Theorem 9.1.3 to

finite quasifields. We recall the definition of a quasifield now: A set L with a binary

operation · is called a loop if

1. the equation a · x = b has a unique solution in x for every a,b ∈ L,

2. the equation y ·a = b has a unique solution in y for every a,b ∈ L, and

3. there is an element e ∈ L such that e · x = x ·e = x for all x ∈ L.

A (left) quasifield Q is a set with two binary operations + and · such that (Q,+) is a

group with additive identity 0, (Q∗, ·) is a loop where Q∗ =Q\{0}, and the following

three conditions hold:

1. a · (b +c) = a ·b +a · c for all a,b,c ∈Q,

2. 0 · x = 0 for all x ∈Q, and

3. the equation a · x = b · x + c has exactly one solution for every a,b,c ∈ Q with

a �= b.

Any finite field is a quasifield. There are many examples of quasifields which are

not fields; see for example, Chapter 5 of [21] or Chapter 9 of [42]. Quasifields appear

extensively in the theory of projective planes. We note that in particular, in a quasifield

multiplication need not be commutative nor associative. Throughout the chapter

we must be careful about which side multiplication takes place on, and be wary that

multiplicative inverses need not exist on both sides. Nonassociativity of multiplication

is a bigger problem. Previous research on sum-product estimates requires associativity

of multiplication for tools such as Plünnecke’s inequality (see for example, [79] for the

most general known sum-product theorem, the proof of which uses associativity of

multiplication throughout).
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9. Sum-product estimates over finite quasifields

Theorem 9.1.4. Let Q be a finite quasifield with q elements. If A ⊂Q\{0}, |A +A | = m,

and |A ·A | = n, then

|A |2 ≤ mn|A |
q

+q1/2�mn.

Theorem 9.1.4 gives the following sum-product estimate.

Corollary 9.1.5. Let Q be a finite quasifield with q elements and A ⊂Q\{0}. There is a

positive constant c such that the following hold.

If q1/2 �|A | < q2/3, then

max{|A +A |, |A ·A |} ≥ c
|A |2
q1/2

.

If q2/3 ≤ |A |� q, then

max{|A +A |, |A ·A |} ≥ c(q|A |)1/2.

From Corollary 9.1.5 we conclude that any algebraic object that is rich enough to coor-

dinatize a projective plane must satisfy a non-trivial sum-product estimate. Following

[85], we prove a Szemerédi-Trotter type theorem and then use it to deduce Theorem

9.1.4. We note that the connection between arithmetic combinatorics and incidence

geometry was studied in a general form in [28]. We also note that many authors

have studied more general incidence theorems and their relationship to arithmetic

combinatorics (cf [35, 40, 17, 18]).

Theorem 9.1.6. Let Q be a finite quasifield with q elements. If P is a set of points and L

is a set of lines in Q2, then

|{(p, l ) ∈ P ×L : p ∈ l }| ≤ |P ||L|
q

+q1/2
√
|P ||L|.

Another consequence of Theorem 9.1.6 is the following corollary.

Corollary 9.1.7. If Q is a finite quasifield with q elements and A ⊂Q, then there is a

positive constant c such that

|A · (A +A )| ≥ c min

{
q,

|A |3
q

}
.

Further, if |A | q2/3, then one may take c = 1+o(1).
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The next result generalizes Theorem 1.1 from [92].

Theorem 9.1.8. Let Q be a finite quasifield with q elements. If A ,B,C ⊂Q, then

|A +B ·C | ≥ q − q3

|A ||B||C |+q2

We note that Corollary 9.1.7 applies to elements of the form a ·b+a ·c where a,b,c ∈A

and Theorem 9.1.8 applies to elements of the form a +b ·c where a ∈A , b ∈B, and

c ∈ C . Theorem 9.1.8 does not use our Szemerédi-Trotter Theorem, and its proof

allows for the more general result of taking three distinct sets, whereas Corollary 9.1.7

is not as flexible, but gives a better estimate when |A | is between q1/3 and q2/3. The

spirit of these two results is similar, though it is not clear in the setting of a quasifield

that the sets A · (A +A ) and A +A ·A should necessarily behave the same way (it is

also not clear that they shouldn’t).

Our methods in proving the above results can be used to generalize theorems con-

cerning the solvability of equations over finite fields. Let p be a prime and let

A ,B,C ,D ⊂ Zp . Sárközy [67] proved that if N (A ,B,C ,D) is the number of solu-

tions to a +b = cd with (a,b,c,d) ∈A ×B×C ×D, then∣∣∣∣N (A ,B,C ,D)− |A ||B||C ||D|
p

∣∣∣∣≤ p1/2
√
|A ||B||C ||D|. (9.1.3)

In particular, if |A ||B||C ||D| > p3, then there is an (a,b,c,d) ∈A×B×C ×D such that

a+b = cd . This is best possible up to a constant factor (see [67]). It was generalized to

finite fields of odd prime power order by Gyarmati and Sárközy [30], and then by the

fourth author [84] to systems of equations over Fq . Here we generalize the result of

Gyarmati and Sárközy to finite quasifields.

Theorem 9.1.9. Let Q be a finite quasifield with q elements and let A ,B,C ,D ⊂ Q.

If γ ∈Q and Nγ(A ,B,C ,D) is the number of solutions to a +b +γ= c ·d with a ∈A ,

b ∈B, c ∈C , and d ∈D, then∣∣∣∣Nγ(A ,B,C ,D)− (q +1)|A ||B||C ||D|
q2 +q +1

∣∣∣∣≤ q1/2
√

|A ||B||C ||D|.

Theorem 9.1.9 implies the following Corollary which generalizes Corollary 3.5 in [87].

Corollary 9.1.10. If Q is a finite quasifield with q elements and A ,B,C ,D ⊂Q with

|A ||B||C ||D| > q3, then

Q =A +B+C ·D.
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9. Sum-product estimates over finite quasifields

We also prove a higher dimensional version of Theorem 9.1.9.

Theorem 9.1.11. Let d ≥ 1 be an integer. If Q is a finite quasifield with q elements and

A ⊂Q with |A | ≥ 2q
d+2

2d+2 , then

Q =A +A +A ·A +·· ·+A ·A︸ ︷︷ ︸
d terms

.

Another problem considered by Sárközy was the solvability of the equation ab+1 = cd

over Zp . Sárközy [68] proved a result in Zp which was later generalized to the finite

field setting in [30].

Theorem 9.1.12 (Gyarmati, Sárközy). Let q be a power of a prime and A ,B,C ,D ⊂ Fq .

If N (A ,B,C ,D) is the number of solutions to ab +1 = cd with a ∈ A , b ∈ B, c ∈ C ,

and d ∈D, then∣∣∣∣N (A ,B,C ,D)− |A ||B||C ||D|
q

∣∣∣∣≤ 8q1/2(|A ||B||C ||D|)1/2 +4q2.

Our generalization to quasifields is as follows.

Theorem 9.1.13. Let Q be a finite quasifield with q elements and kernel K . Let γ ∈
Q\{0}, and A ,B,C ,D ⊂Q. If Nγ(A ,B,C ,D) is the number of solutions to a ·b+c ·d =
γ, then ∣∣∣∣Nγ(A ,B,C ,D)− |A ||B||C ||D|

q

∣∣∣∣≤ q

( |A ||B||C ||D|
|K |−1

)1/2

.

Corollary 9.1.14. Let Q be a quasifield with q elements whose kernel is K . If A ,B,C ,D ⊂
Q and |A ||B||C ||D| > q4(|K |−1)−1, then

Q\{0} ⊂A ·B+C ·D.

By appropriately modifying the argument used to prove Theorem 9.1.13, we can prove

a higher dimensional version.

Theorem 9.1.15. Let Q be a finite quasifield with q elements whose kernel is K . If

A ⊂Q and |A | > q
1
2+ 1

d (|K |−1)−1/2d , then

Q\{0} ⊂A ·A +·· ·+A ·A︸ ︷︷ ︸
d terms

.

If Q is a finite field, then |K | = q , and the bounds of Theorems 9.1.13 and 9.1.15 match

the bounds obtained by Hart and Iosevich in [33].
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Finally, we note that our theorems are proved using spectral techniques. In the proofs,

if the size of the set is small, the error term from spectral estimates will dominate.

Therefore, the results presented are only nontrivial if the size of the set is large enough.

Sum-product estimates for small sets have been given (for example in [9, 47, 79]). We

also note that it is not hard to show that one may find a set A in either a field, general

ring, or quasifield, where both |A +A | and |A ·A | are of order |A |2.

The rest of the chapter is organized as follows. In Section 2 we collect some preliminary

results. Section 3 contains the proof of Theorem 9.1.4, 9.1.6, and 9.1.9, as well as

Corollary 9.1.5, 9.1.7, and 9.1.10. Section 4 contains the proof of Theorem 9.1.8 and

9.1.11. Section 5 contains the proof of Theorem 9.1.13 and 9.1.15.

9.2 Preliminaries

We begin this section by giving some preliminary results on quasifields. Let Q denote a

finite quasifield. We use 1 to denote the identity in the loop (Q∗, ·). It is a consequence

of the definition that (Q,+) must be an abelian group. One also has x · 0 = 0 and

x · (−y) =−(x · y) for all x, y ∈Q (see [42], Lemma 7.1). For more on quasifields, see

Chapter 9 of [42]. A (right) quasifield is required to satisfy the right distributive law

instead of the left distributive law. The kernel K of a quasifield Q is the set of all

elements k ∈Q that satisfy

1. (x + y) ·k = x ·k + y ·k for all x, y ∈Q, and

2. (x · y) ·k = x · (y ·k) for all x, y ∈Q.

Note that (K ,+) is an abelian subgroup of (Q,+) and (K ∗, ·) is a group.

Lemma 9.2.1. If a ∈Q and λ ∈ K , then −(a ·λ) = (−a) ·λ.

Proof. First we show that a·(−1) =−a. Indeed, a·(1+(−1)) = a·0 = 0 and so a+a·(−1) =
0. We conclude that −a = a · (−1). If λ ∈ K , then

−(a ·λ) = a · (−λ) = a · (0−λ) = a · ((0−1) ·λ)

= (a · (0−1)) ·λ= (0+a · (−1)) ·λ= (−a) ·λ.

For the rest of this section, we assume that Q is a finite quasifield with |Q| = q . We can

construct a projective planeΠ= (P ,L ,I ) that is coordinatized by Q. Here I ⊂P ×L
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9. Sum-product estimates over finite quasifields

is the set of incidences between points and lines. If p ∈P and l ∈L , we write pI l to

denote that (p, l ) ∈I , ie that p is incident with l . We will follow the notation of [42]

and refer the reader to Chapter 5 of [42] for more details. Let ∞ be a symbol not in Q.

The points of Π are defined as

P = {(x, y) : x, y ∈Q}∪ {(x) : x ∈Q}∪ {(∞)}.

The lines of Π are defined as

L = {[m,k] : m,k ∈Q}∪ {[m] : m ∈Q}∪ {[∞]}.

The incidence relation I is defined according to the following rules:

1. (x, y)I [m,k] if and only if m · x + y = k,

2. (x, y)I [k] if and only if x = k,

3. (x)I [m,k] if and only if x = m,

4. (x)I [∞] for all x ∈Q, (∞)I [k] for all k ∈Q, and (∞)I [∞].

Since |Q| = q , the plane Π has order q .

Next we associate a graph to the plane Π. Let G (Π) be the bipartite graph with parts

P and L where p ∈P is adjacent to l ∈L if and only if pI l in Π. The first lemma is

known (see [10], page 432).

Lemma 9.2.2. The graph G (Π) has eigenvalues q+1 and−(q+1), each with multiplicity

one. All other eigenvalues of G (Π) are ±q1/2.

The next lemma is a bipartite version of the well-known Expander Mixing Lemma.

Lemma 9.2.3 (Bipartite Expander Mixing Lemma). Let G be a d-regular bipartite

graph on 2n vertices with parts X and Y . Let M be the adjacency matrix of G. Let

d =λ1 ≥λ2 ≥ ·· · ≥λ2n =−d be the eigenvalues of M and define λ= maxi �=1,2n |λi |. Let

S ⊂ X and T ⊂ Y , and let e(S,T ) denote the number of edges with one endpoint in S

and the other in T . Then ∣∣∣∣e(S,T )− d |S||T |
n

∣∣∣∣≤λ
√

|S||T |.

Proof. Assume that the columns of M have been been ordered so that the columns

corresponding to the vertices of X come before the columns corresponding to the
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vertices of Y . For a subset B ⊂ V (G), let χB be the characteristic vector for B. Let

{x1, . . . , x2n} be an orthonormal set of eigenvectors for M . Note that since G is a d-

regular bipartite graph, we have

x1 = 1�
2n

(
χX +χY

)
, (9.2.1)

x2n = 1�
2n

(
χX −χY

)
. (9.2.2)

Now χT
S MχT = e(S,T ). Expanding χS and χT as linear combinations of eigenvectors

yields

e(S,T ) =
(

2n∑
i=1

〈χS , xi 〉xi

)T

M

(
2n∑

i=1
〈χT , xi 〉xi

)
=

2n∑
i=1

〈χS , xi 〉〈χT , xi 〉λi .

Now by (9.2.1) and (9.2.2), 〈χS , x1〉 = 〈χS , x2n〉 = 1�
2n

|S| and 〈χT , x1〉 = −〈χT , x2n〉 =
1�
2n

|T |. Since λ1 =−λ2n = d , we have

∣∣∣∣e(S,T )− 2d |S||T |
2n

∣∣∣∣=
∣∣∣∣∣2n−1∑

i=2
〈χS , xi 〉〈χT , xi 〉λi

∣∣∣∣∣
≤λ

2n−1∑
i=2

∣∣〈χS , xi 〉〈χT , xi 〉
∣∣

≤λ

(
2n−1∑
i=2

〈χS , xi 〉2

)1/2 (2n−1∑
i=2

〈χT , xi 〉2

)1/2

(by Cauchy-Schwarz).

Finally by the Pythagorean Theorem,

2n−1∑
i=2

〈χS , xi 〉2 = |S|− 2|S|2
2n

< |S|

and
2n−1∑
i=2

〈χT , xi 〉2 = |T |− 2|T |2
2n

< |T |.

Combining Lemmas 9.2.2 and 9.2.3 gives the next lemma.

Lemma 9.2.4. For any S ⊂P and T ⊂L ,∣∣∣∣e(S,T )− (q +1)|S||T |
q2 +q +1

∣∣∣∣≤ q1/2
√
|S||T |
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where e(S,T ) is the number of edges in G (Π) with one endpoint in S and the other in T .

We now state precisely what we mean by a line in Q2.

Definition 4. Given a,b ∈Q, a line in Q2 is a set of the form

{(x, y) ∈Q2 : y = b · x +a} or {(a, y) : y ∈Q}.

When multiplication is commutative, b·x+a = x ·b+a. In general, the binary operation

· need not be commutative and so we write our lines with the slope on the left.

The next lemma is due to Elekes [22] (see also [78], page 315). In working in a (left)

quasifield, which is not required to satisfy the right distributive law, some care must

be taken with algebraic manipulations.

Lemma 9.2.5. Let A ⊂Q∗. There is a set P of |A +A ||A ·A | points and a set L of |A |2
lines in Q2 such that there are at least |A |3 incidences between P and L.

Proof. Let P = (A +A )× (A ·A ) and

l (a,b) = {(x, y) ∈Q2 : y = b · x −b ·a}.

Let L = {l (a,b) : a,b ∈A }. The statement that |P | = |A +A ||A ·A | is clear from the

definition of P . Suppose l (a,b) and l (c,d) are elements of L and l (a,b) = l (c,d). We

claim that (a,b) = (c,d). In a quasifield, one has x ·0 = 0 for every x, and x · (−y) =
−(x · y) for every x and y ([42], Lemma 7.1). The line l (a,b) contains the points

(0,−b · a) and (1,b −b · a). Furthermore, these are the unique points in l (a,b) with

first coordinate 0 and 1, respectively. Similarly, the line l (c,d) contains the points

(0,−d · c) and (1,d −d · c). Since l (a,b) = l (c,d), we must have that −b ·a =−d · c and

b −b · a = d −d · c. Thus, b = d and so b · a = b · c. We can rewrite this equation as

b ·a −b · c = 0. Since −x · y = x · (−y) and Q satisfies the left distributive law, we have

b · (a − c) = 0. If a = c, then (a,b) = (c,d) and we are done. Assume that a �= c so that

a − c �= 0. Then we must have b = 0 for if b �= 0, then the product b · (a − c) would

be contained in Q∗ as multiplication is a binary operation on Q∗. Since A ⊂Q∗, we

have b �= 0. It must be the case that a = c. We conclude that each pair (a,b) ∈ A 2

determines a unique line in L and so |L| = |A |2.

Consider a triple (a,b,c) ∈A 3. The point (a +c,b · c) belongs to P and is incident to

l (a,b) ∈ L since

b · (a +c)−b ·a = b ·a +b · c −b ·a = b · c.
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Each triple in A 3 generates an incidence and so there are at least |A |3 incidences

between P and L.

9.3 Proofs of Theorems 9.1.4, 9.1.6, and 9.1.9

Throughout this section, Q is a finite quasifield with q elements, Π = (P ,L ,I ) is

the the projective plane coordinatized by Q as in Section 2. The graph G (Π) is the

bipartite graph defined before Lemma 9.2.2 in Section 2.

Proof of Theorem 9.1.6. Let P ⊂Q2 be a set of points and view P as a subset of P . Let

r (a,b) = {(x, y) ∈Q2 : y = b · x +a}, R ⊂Q2, and let

L = {r (a,b) : (a,b) ∈ R}

be a collection of lines in Q2. The point p = (p1, p2) in P is incident to the line r (a,b)

in L if and only if p2 = b ·p1 +a. This however is equivalent to (p1,−p2)I [b,−a] in Π.

If S = {(p1,−p2) : (p1, p2) ∈ P } and T = {[b,−a] : (a,b) ∈ R}, then

|{(p, l ) ∈ P ×L : p ∈ l }| = e(S,T )

where e(S,T ) is the number of edges in G (Π) with one endpoint in S and the other in

T . By Lemma 9.2.4,

|{(p, l ) ∈ P ×L : p ∈ l }| ≤ |S||T |
q

+q1/2
√

|S||T |

which proves Theorem 9.1.6.

Proof of Theorem 9.1.4 and Corollary 9.1.5. Let A ⊂Q∗. Let S = (A +A )×(A ·A ). We

view S as a subset of P . Let s(a,b) = {(x, y) ∈Q2 : y = b · x −b ·a} and

L = {s(a,b) : a,b ∈A }.

By Lemma 9.2.5, |L| = |A |2 and there are at least |A |3 incidences between S and L. Let

T = {[−b,−b ·a] : a,b ∈A } so T is a subset of L . By Lemma 9.2.4,

e(S,T ) ≤ |S||T |
q

+q1/2
√
|S||T |.
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9. Sum-product estimates over finite quasifields

We have |L| = |T | = |A |2. If m = |A +A | and n = |A ·A |, then

e(S,T ) ≤ mn|A |2
q

+q1/2|A |�mn.

Next we find a lower bound on e(S,T ). By construction, an incidence between S and

L corresponds to an edge between S and T in G (Π). To see this, note that (x, y) ∈ S is

incident to s(a,b) ∈ L if and only if y = b · x −b ·a. This is equivalent to the equation

−b · x + y = −b · a which holds if and only if (x, y) is adjacent to [−b,−b · a] in G (Π).

Thus,

|A |3 ≤ e(S,T ) ≤ mn|A |2
q

+q1/2|A |�mn. (9.3.1)

To prove Corollary 9.1.5, observe that from (9.3.1), we have

|A +A ||A ·A | ≥ min

{
cq |A |, c|A |4

q

}
where c is any real number with c + c1/2 < 1. If x = max{|A +A |, |A ·A |}, then x ≥
min{(cq |A |)1/2, c1/2|A |2

q1/2 } and Corollary 9.1.5 follows from this inequality.

Proof of Corollary 9.1.7. Let A ⊂Q, P =A × (A · (A +A )),

l (b,c) = {(x, y) ∈Q2 : y = b · (x +c)},

and L = {l (b,c) : b,c ∈ A }. Then |P | = |A ||A · (A +A )|, |L| = |A |2, and L is a set of

lines in Q2. Let z = |A · (A +A )|. Observe that each l (b,c) ∈ L contains at least |A |
points from P . By Theorem 9.1.6,

|A |3 ≤ |P ||L|
q

+q1/2
√

|P ||L| = |A |3z

q
+q1/2|A |3/2z1/2.

This implies that q|A |3/2 ≤ |A |3/2z +q3/2�z. Therefore, we obtain

�
z ≥ −q3/2 +√q3 +4|A |3q

2|A |3/2
= 4|A |3q

2|A |3/2(q3/2 +√q3 +4|A |3q)
,

which implies that

|A · (A +A )| ≥ c min

{
q,

|A |3
q

}
.

We note that if |A | q2/3 then we can take c = 1+o(1).
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Proof of Theorem 9.1.9 and Corollary 9.1.10. Let A ,B,C ,D ⊂ Q. Consider the sets

P = {(d ,−a) : d ∈D, a ∈A } and L = {[c,b +γ] : c ∈C ,b ∈B}. An edge between P and L

in G (Π) corresponds to a solution to c ·d + (−a) = b +γ with c ∈C , d ∈D, a ∈A , and

b ∈B. Therefore, e(P,L) is precisely the number of solutions to a +b +γ= c ·d with

(a,b,c,d) ∈ A ×B×C ×D. Observe that |P | = |D||A | and |L| = |C ||B|. By Lemma

9.2.4, ∣∣∣∣Nγ(A ,B,C ,D)− (q +1)|A ||B||C ||D|
q2 +q +1

∣∣∣∣≤ q1/2
√

|A ||B||C ||D|.

To obtain Corollary 9.1.10, apply Theorem 9.1.9 with A , B, C , and −D. For any

−γ ∈ Q, the number of (a,b,c,−d) ∈ A ×B×C × (−D) with a +b −γ = c · (−d) is at

least

(q +1)|A ||B||C ||−D|
q2 +q +1

−q1/2
√

|A ||B||C ||−D|. (9.3.2)

When |A ||B||C ||D| > q3, (9.3.2) is positive and so we have a solution to a +b −γ=
c · (−d). Since this equation is equivalent to a+b+c ·d = γ and γ was arbitrary, we get

Q =A +B+C ·D.

9.4 Proofs of Theorems 9.1.8 and 9.1.11

Let γ ∈ Q and d ≥ 1 be an integer. In order to prove Theorems 9.1.11 and 9.1.8, we

will need to consider a graph that is different from G (Π). Define the product graph

S P Q (γ) to be the bipartite graph with parts X and Y where X and Y are disjoint

copies of Qd+1. The vertex (x1, . . . , xd+1)X ∈ X is adjacent to the vertex (y1, . . . , yd+1)Y ∈
Y if and only if

x1 + y1 +γ= x2 · y2 +·· ·+xd+1 · yd+1. (9.4.1)

Lemma 9.4.1. For any γ ∈Q and integer d ≥ 1, the graph S P Q (γ) is qd -regular.

Proof. Let (x1, . . . , xd+1)X be a vertex in X . Choose y2, . . . , yd+1 ∈Q arbitrarily. Equation

(9.4.1) has a unique solution for y1 and so the degree of (x1, . . . , xd+1)X is qd . A similar

argument applies to the vertices in Y .

Lemma 9.4.2. Let γ ∈Q and d ≥ 1 be an integer. Ifλ1 ≥λ2 ≥ ·· · ≥λn are the eigenvalues

of S P Q (γ), then λ≤ qd/2(1+q−2)1/2 where λ= maxi �=1,n |λi |.
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9. Sum-product estimates over finite quasifields

Proof. Let M be the adjacency matrix for S P Q (γ) where the first qd+1 rows/columns

are indexed by the elements of X . We can write

M =
(

0 N

N T 0

)

where N is the qd+1 ×qd+1 matrix whose (x1, . . . , xd+1)X × (y1, . . . , yd+1)Y entry is 1 if

x1 + y1 +γ= x2 · y2 +·· ·+xd+1 · yd+1

and is 0 otherwise.

Let x = (x1, . . . , xd+1)X and x ′ = (x ′
1, . . . , x ′

d+1)X be distinct vertices in X . The number of

common neighbors of x and x ′ is the number of vertices (y1, . . . , yd+1)Y such that

x1 + y1 +γ= x2 · y2 +·· ·+xd+1 · yd+1 (9.4.2)

and

x ′
1 + y1 +γ= x ′

2 · y2 +·· ·+x ′
d+1 · yd+1. (9.4.3)

Subtracting (9.4.3) from (9.4.2) gives

x1 −x ′
1 = x2 · y2 +·· ·+xd+1 · yd+1 −x ′

2 · y2 −·· ·−x ′
d+1 · yd+1. (9.4.4)

If xi = x ′
i for 2 ≤ i ≤ d + 1, then the right hand side of (9.4.4) is 0 so that x1 = x ′

1.

This contradicts our assumption that x and x ′ are distinct vertices. Thus, there is an

i ∈ {2,3, . . . ,d+1} for which xi �= x ′
i . There are qd−2 choices for y2, . . . , yi−1, yi+1, . . . yd+1.

Once these y j ’s have been chosen, (9.4.4) uniquely determines yi since xi − x ′
i �= 0.

Equation (9.4.2) then uniquely determines y1. Therefore, x and x ′ have exactly qd−2

common neighbors when x �= x ′. A similar argument applies to the vertices in Y so

that any two distinct vertices y and y ′ in Y have qd−2 common neighbors.

Let J be the qd+1×qd+1 matrix of all 1’s and I be the 2qd+1×2qd+1 identity matrix. Let

BE be the graph whose vertex set is X ∪Y and two vertices v and y in BE are adjacent

if and only if they are both in X or both in Y , and they have no common neighbor

in the graph S P Q (γ). The graph BE is (q −1)-regular since given any (d +1)-tuple

(z1, . . . , zd+1) ∈Qd+1, there are exactly q−1 (d+1)-tuples (z ′
1, . . . , z ′

d+1) ∈Qd+1 for which

z1 �= z ′
1 and zi = z ′

i for 2 ≤ i ≤ d +1. It follows that

M 2 = qd−2

(
J 0

0 J

)
+ (qd −qd−2)I −qd−2E (9.4.5)
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where E is the adjacency matrix of BE .

By Lemma 9.4.1, the graph S P Q (γ) is a qd -regular bipartite graph so λ1 = qd ,

λn =−qd , and the corresponding eigenvectors are qd/2(χX +χY ) and qd/2(χX −χY ),

respectively. Here χZ denotes the characteristic vector for the set of vertices Z . Let λ j

be an eigenvalue of S P Q (γ) with j �= 1 and j �= n. Assume that v j is an eigenvector

for λ j . Since v j is orthogonal to both χX +χY and χX −χY , we have(
J 0

0 J

)
v j = 0.

By (9.4.5), M 2v j = (qd −qd−2)v j −qd−2Ev j which can be rewritten as

Ev j =
(

q2 −1−
λ2

j

qd−2

)
v j .

Thus, q2 −1− λ2
j

qd−2 is an eigenvalue of E . Recall that BE is a (q −1)-regular graph so

∣∣∣∣∣q2 −1−
λ2

j

qd−2

∣∣∣∣∣≤ q −1.

This inequality implies that |λ j | ≤ qd/2(1+q−2)1/2 ≤ 2qd/2.

Proof of Theorem 9.1.8. Let A ,B,C ⊂Q where Q is a finite quasifield with q elements.

Given γ ∈Q, let

Zγ = {(a,b,c) ∈A ×B×C : a +b · c = γ}.

We have
∑

γ |Zγ| = |A ||B||C | so by the Cauchy-Schwarz inequality,

|A |2|B|2|C |2 =
(∑

γ

|Zγ|
)2

≤ |A +B ·C | ∑
γ∈Q

|Zγ|2. (9.4.6)

Let x =∑γ |Zγ|2. By (9.4.6),

|A +B ·C | ≥ |A |2|B|2|C |2
x

. (9.4.7)

The integer x is the number of ordered triples (a,b,c), (a′,b′,c ′) in A ×B×C such

that a +b · c = a′ +b′ · c ′. This equation can be rewritten as

a −a′ = −b · c +b′ · c ′ = b · (−c)+b′ · c ′.
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9. Sum-product estimates over finite quasifields

Thus, x is the number of edges between the sets

S = {(a,b,b′)X : a ∈A ,b,b′ ∈B}

and

T = {(−a′,−c,c ′)Y : a′ ∈A ,c,c ′ ∈C }

in the graph S P Q (0). By Lemma 9.2.4,

x = e(S,T ) ≤ |S||T |
q

+q1/2
√
|S||T |.

This inequality together with (9.4.7) gives

|A |2|B|2|C |2
|A +B ·C | = x ≤ |A |2|B|2|C |2

q
+q|A ||B||C |

from which we deduce that

|A +B ·C | ≥ q − q3

|A ||B||C |+q2

We note that as a corollary, if |A ||B||C | > q3 −q2 then A +B ·C =Q.

Proof of Theorem 9.1.11. Let A ⊂ Q, S = −A ×A d , T = −A ×A d , and view S as a

subset of X and T as a subset of Y in the graph S P Q (γ). By Lemmas 9.2.4 and 9.4.2,∣∣∣∣e(S,T )− qd |S||T |
qd+1

∣∣∣∣≤ 2qd/2
√
|S||T |.

An edge between S and T corresponds to a solution to

−a1 −a′
1 +γ= a2 ·a′

2 +·· ·+ad+1 ·a′
d+1

with ai , a′
i ∈A . If |A | ≥ 2q

d+2
2d+2 , then e(S,T ) > 0. Since γ is an arbitrary element of Q,

we get

Q =A +A +A ·A +·· ·+A ·A︸ ︷︷ ︸
d terms

which completes the proof of Theorem 9.1.11.
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9.5 Proofs of Theorems 9.1.13 and 9.1.15

Let Q be a finite quasifield with q elements and let K be the kernel of Q. The product

graph, denoted DP Q , is the bipartite graph with parts X and Y where X and Y are

disjoint copies of Q3. The vertex (x1, x2, x3)X ∈ X is adjacent to (y1, y2, y3)Y ∈ Y if and

only if

x3 = x1 · y1 +x2 · y2 + y3. (9.5.1)

Lemma 9.5.1. The graph DP Q is q2-regular.

Proof. Fix a vertex (x1, x2, x3)X ∈ X . We can choose y1 and y2 arbitrarily and then

(9.5.1) gives a unique solution for y3. Therefore, (x1, x2, x3)X has degree q2. A similar

argument shows that every vertex in Y has degree q2.

Lemma 9.5.2. If λ1 ≥ λ2 ≥ ·· · ≥ λn are the eigenvalues of DP Q , then |λ| ≤ q where

λ= maxi �=1,n |λi |.

Proof. Let M be the adjacency matrix of DP Q . Assume that the first q3 rows/columns

of M correspond to the vertices of X . We can write

M =
(

0 N

N T 0

)

where N is the q3×q3 matrix whose (x1, x2, x3)X ×(y1, y2, y3)Y -entry is 1 if (9.5.1) holds

and is 0 otherwise. Let J be the q3 ×q3 matrix of all 1’s and let

P =
(

0 J

J 0

)
.

We claim that

M 3 = q2M +q(q2 −1)P. (9.5.2)

The (x, y)-entry of M 3 is the number of walks of length 3 from x = (x1, x2, x3)X to

y = (y1, y2, y3)Y . Suppose that x y ′x ′y is such a walk where y ′ = (y ′
1, y ′

2, y ′
3)Y and x ′ =

(x ′
1, x ′

2, x ′
3)X . By Lemma 9.5.1, there are q2 vertices x ′ ∈ X such that x ′ is adjacent to y .

In order for x y ′x ′y to be a walk of length 3, y ′ must be adjacent to both x and x ′ so we

need

x3 = x1 · y ′
1 +x2 · y ′

2 + y ′
3 (9.5.3)
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and

x ′
3 = x ′

1 · y ′
1 +x ′

2 · y ′
2 + y ′

3. (9.5.4)

We want to count the number of y ′ that satisfy both (9.5.3) and (9.5.4). We consider

two cases.

Case 1: x is not adjacent to y .

If x1 = x ′
1 and x2 = x ′

2, then (9.5.3) and (9.5.4) imply that x3 = x ′
3. This implies x = x ′

and so x is adjacent to y but this contradicts our assumption that x is not adjacent

to y . Therefore, x1 �= x ′
1 or x2 �= x ′

2. Without loss of generality, assume that x1 �= x ′
1.

Subtracting (9.5.4) from (9.5.3) gives

x3 −x ′
3 +x ′

1 · y ′
1 +x ′

2 · y ′
2 = x1 · y ′

1 +x2 · y ′
2. (9.5.5)

Choose y ′
2 ∈Q. Since Q is a quasifield and x1 − x ′

1 �= 0, there is a unique solution for

y ′
1 in (9.5.5). Equation (9.5.3) then gives a unique solution for y ′

3 and so there are q

choices for y ′ = (y ′
1, y ′

2, y ′
3)Y for which both (9.5.3) and (9.5.4) hold. In this case, the

number of walks of length 3 from x to y is (q2 −1)q since x ′ may be chosen in q2 −1

ways as we require (x ′
1, x ′

2) �= (x1, x2).

Case 2: x is adjacent to y .

The same counting as in Case 1 shows that there are (q2−1)q paths x y ′x ′y with x �= x ′.
By Lemma 9.5.1, there are q2 paths of the form x y ′x y since the degree of x is q2.

From the two cases, we deduce that

M 3 = q2M +q(q2 −1)P.

Let λ j be an eigenvalue of M with j �= 1 and j �= n. Let v j be an eigenvector for λ j .

Since v j is orthogonal to χX +χY and χX −χY , we have P v j = 0 and so

M 3v j = q2M v j .

This gives λ3
j = q2λ j so |λ j | ≤ q .

Proof of Theorem 9.1.13. Let γ ∈Q∗ and A ,B,C ,D ⊂Q. For each pair (b,d) ∈B×D,

define

Lγ(b,d) = {(b ·λ,d ·λ,−γ ·λ)Y : λ ∈ K ∗}.
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Claim 1: If (a,c) ∈A ×C and a ·b +c ·d = γ, then (a,c,0)X is adjacent to every vertex

in Lγ(b,d).

Proof. Assume (a,c) ∈A ×C satisfies a ·b +c ·d = γ. If λ ∈ K ∗, then

a · (b ·λ)+c · (d ·λ) = (a ·b) ·λ+ (c ·d) ·λ= (a ·b +c ·d) ·λ= γ ·λ.

Therefore, 0 = a · (b ·λ)+ c · (d ·λ)−γ ·λ which shows that (a,c,0)X is adjacent to

(b ·λ,d ·λ,−γ ·λ)Y .

Claim 2: If (b1,d1) �= (b2,d2), then Lγ(b1,d1)∩Lγ(b2,d2) =�.

Proof. Suppose that Lγ(b1,d1)∩Lγ(b2,d2) �= �. There are elements λ,β ∈ K ∗ such that

(b1 ·λ,d1 ·λ,−γ ·λ)Y = (b2 ·β,d2 ·β,−γ ·β)Y .

This implies

b1 ·λ= b2 ·β, d1 ·λ= d2 ·β, and γ ·λ= γ ·β.

Since γ ·λ= γ ·β, we have γ ·(λ−β) = 0. As γ �= 0, we must have λ=β so b1 ·λ= b2 ·β=
b2 ·λ. Using Lemma 9.2.1,

0 = b1 ·λ− (b2 ·λ) = b1 ·λ+ (−b2) ·λ= (b1 −b2) ·λ.

Since λ �= 0, we have b1 = b2. A similar argument shows that d1 = d2.

Let S = {(a,c,0)X : a ∈A ,c ∈C } and

T = ⋃
(b,d)∈B×D

Lγ(b,d).

The number of edges between S and T in DP Q is Nγ(|K |−1) where Nγ is the number

of 4-tuples (a,b,c,d) ∈A×B×C ×D such that a·b+c ·d = γ. Furthermore |S| = |A ||C |
and |T | = |B||D|(|K |−1) by Claim 2. By Lemmas 9.2.4 and 9.5.2,∣∣∣∣Nγ(|K |−1)− |S||T |

q

∣∣∣∣≤ q
√

|S||T |. (9.5.6)

This equation is equivalent to∣∣∣∣Nγ− |A ||B||C ||D|
q

∣∣∣∣≤ q

( |A ||B||C ||D|
|K |−1

)1/2

which completes the proof of Theorem 9.1.13.
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The proof of Theorem 9.1.15 is similar to the proof of Theorem 9.1.13. Instead of

working with the graph DP Q , one works with the graph DP Q,d which we define to

be the bipartite graph with parts X and Y where these sets are disjoint copies of Qd+1.

The vertex (x1, . . . , xd+1)X ∈ X is adjacent to (y1, . . . , yd+1)Y ∈ Y if and only if

xd+1 = x1 · y1 +·· ·+xd · yd + yd+1.

It is easy to show that DP q,d is qd -regular. Equation (9.5.2) will become

M 3 = qd M +qd−1(qd −1)P

which will lead to the bound of λ≤ qd/2 where λ= maxi �=1,n |λi | and λ1 ≥λ2 ≥ ·· · ≥λn

are the eigenvalues of DP q,d . One then counts edges between the sets

S = {(a′
1, . . . , a′

d ,0)X : a′
i ∈A }

and

T = ⋃
(a1,...,ad )∈A d

Lγ(a1, . . . , ad )

where Lγ(a1, . . . , ad ) = {(a1 ·λ, . . . , ad ·λ,−γ ·λ)Y : λ ∈ K ∗}. The remaining details are

left to the reader.
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10 Open problems

In this chapter, we mention some open problems on Erdős distinct distances problem

and related problems.

10.1 Erdős distinct distances problem in Fd
q

On the Erdős distinct distances problem in Fd
q with d even, the following conjecture

was made by Iosevich [43].

Conjecture 10.1.1 (Iosevich, [43]). Let E be a set in Fd
q with d even. Suppose that

|E | q
d
2 + 1

3 , then E determines a positive proportion of all distances.

We note that in the case d = 2, this conjecture was proved by Bennett, Hart, Iosevich,

Pakianathan and Rudnev [6] in 2013 by using Fourier analytic methods. In 2015,

Hanson, Lund, Roche-Newton [32] reproved this result by using geometric properties

of rotations and reflections in the plane F2
q .

It has been mentioned in Chapter 4 that for a set E ⊆ S1, if |E | q
d
2 , then the distance

set contains a positive proportion of all distances. However, there is no known result

for the case when E is a set on a paraboloid defined as follows:

P :=
{

x ∈ Fd
q : x2

1 +·· ·+x2
d−1 = xd

}
.

Thus we are led to the following question:

Question 10.1.2. Is it true that for a subset E on a paraboloid in Fd
q , d ≥ 3, if |E | qd/2,

then |ΔFq (E )| q?
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10.2 Distribution of simplices

In d-dimensional vector space Fd
q , two k-simplices with vertices (x1, . . . ,xk+1) and

(y1, . . . ,yk+1) are called to be in the same congruence class if there exist an orthogonal

matrix θ ∈O(d ,Fq ) and an element z ∈ Fd
q so that z+θ(xi ) = yi for all i = 1,2, . . . ,k +1,

where O(d ,Fq ) is the orthogonal group in Fd
q . For E ⊆ Fd

q and 1 ≤ k ≤ d , let Tk,d (E ) be

the number of congruence classes of k-simplices generated by E . In the spirit of the

distance results, Hart and Iosevich [34] studied the following question:

Question 10.2.1. For E ⊆ Fd
q , how large does E need to be to guarantee that Tk,d (E ) 

q(k+1
2 ) ?

Hart and Iosevich [34] proved that when |E | q
kd

k+1+ k
2 and d ≥ (k+1

2

)
, we have Tk,d (E ) 

q(k+1
2 ). There were several progresses on improving this result in recent years, for ex-

ample, see [12, 86]. The best known result was established by Bennett, Hart, Iosevich,

Pakianathan, and Rudnev [6] by using Fourier analytic methods and results from group

action theory. Precisely, they proved that for 1 ≤ k ≤ d and |E |  qd− d−1
k+1 , we have

Tk,d (E )  q(k+1
2 ). The authors of [6] also gave a construction of a set E = Fd−1

q ×A ⊆ Fd
q

with |E | = qd−1+ 1
d −ε for some ε> 0 and Td ,d (E ) = o

(
q(d+1

2 )
)
. It follows from this con-

struction that when k < d , we always can find a set E in a k-dimensional subspace

with |E | = qk−1+ 1
k −ε for some ε> 0 and Tk,d (E ) = o

(
q(k+1

2 )
)
. In other words, if we as-

sume that αk,d is the infimum of numbers t > 0 such that when |E | q t the number

of congruence classes of k-simplices in E is cq(k+1
2 ) for some positive constant c , then

we have αk,d ≥ k −1+ 1
k .

In the case d = k = 2, Bennett, Hart, Iosevich, Pakianathan and Rudnev [6] proved

that for E ⊆ F2
q , if |E | q8/5, then E generates a positive proportion of all congruence

classes of triangles. From this result and the construction on k-simplices in [6],

Iosevich [43] conjectured the following.

Conjecture 10.2.2 (Iosevich, [43]). Let E be a set in F2
q . Suppose that |E | q3/2, then

E determines a positive proportion of all congruence classes of triangles.

We conclude this section with some ideas to attack the Conjecture 10.2.2 which come

form the arguments in [6]. For a fixed orthogonal matrix θ, the function wθ(z) in

z ∈ F2
q is defined as wθ(z) := #

{
(u,v) ∈ E 2 : θ ·u+z = v

}
. Let N be the number of pairs

of congruent triangles in E . Then by the Cauchy-Schwarz inequality, we have that

T2,2(E ) ≥ |E |6/N . On the other hand, one can check that N �∑
θ,z wθ(x)3. It has been
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shown in [6] that

∑
θ,z

wθ(x)3 � |E |6
q3

+∑
θ,z

||wθ(z)||∞
(

wθ(z)− |E |2
q2

)2

.

In [6], the authors used a trivial upper bound of ||wθ(z)||∞, i.e. ||wθ(z)||∞ ≤ |E |, to give

an upper bound for
∑

θ,z wθ(x)3. Thus we can expect to improve the exponent 8/5 by

considering ||wθ(z)||∞ carefully. The following question was raised by Gábor Tardos:

Question 10.2.3. Is this true that for almost all of orthogonal matrices θ, there exists a

threshold t = o(|E |) such that the following holds

∑
z∈F2

q ,||wθ(z)||∞<t

t ·wθ(z)2 > 1

2

∑
z∈F2

q

||wθ(z)||∞wθ(z)2 ?

10.3 Schwartz-Zippel lemma and generalizations

A special case of the well-known Schwartz-Zippel lemma states that for an algebraic

curve C ⊂C2 of degree d and two finite sets A ,B ⊂C, we have the cardinality of C ∩
(A ×B) is at most Od (|A |+|B|). In other words, it bounds the size of the intersection

of an algebraic curve with a Cartesian product of one-dimensional sets. In [55], we

proved two generalizations of this result for varieties in C4. More precisely, given

a variety X ⊂ C4 and two finite sets E ,F ⊂ C2, we gave upper bounds on the size

of the intersection X ∩ (E ×F ), and we determine which X can contain a whole

product E ×F . Note that we can not expect a good bound on |X ∩ (E ×F )| for all

varieties. For example, let X = Z (P ) where P =G(x, y)H(x, y, s, t )+K (s, t )L(x, y, s, t ),

with H ,L ∈C[x, y, s, t ] and G ∈C[x, y]\C and K ∈C[s, t ]\C, if E ⊂ Z (G) and F ⊂ Z (K ),

then X contains E ×F . From this example, we are led to the following definition.

Let X be a variety in C4 and I (X ) be its ideal in C[x, y, s, t ]. We say that X is Cartesian if

there exist G ∈C[x, y]\C and K ∈C[s, t ]\C such that for any P ∈ I (X ), P can be written

as

P (x, y, s, t ) =G(x, y)H(x, y, s, t )+K (s, t )L(x, y, s, t ),

where H(x, y, s, t ),L(x, y, s, t ) ∈C[x, y, s, t ]. Our first main result in [55] is for the case

of one or two dimensional non-Cartesian varieties in C4.

Theorem 10.3.1 (Mojarrad-Pham-Valculescu-de Zeeuw, [55]). Let X be a non-Cartesian

variety in C4 of degree d and dimension one or two, and E ,F be finite sets in C2. We

have the cardinality of X ∩ (E ×F ) is at most Od (|E |+ |F |).

Our second main result in [55] is for the case of three dimensional non-Cartesian
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varieties in C4.

Theorem 10.3.2 (Mojarrad-Pham-Valculescu-de Zeeuw, [55]). Let X be a non-Cartesian

variety of degree d and dimension three in C4, and E ,F be finite sets in C2. We have

the cardinality of X ∩ (E ×F ) is at most Od ,ε
(|E |2/3+ε|F |2/3 +|E |+ |F |). Note that if

E ,F ⊂R2, the ε can be omitted.

We note here that the Szemerédi-Trotter theorem [77], which bounds the number of

incidences between points and lines in R2, can be rephrased as the case F = xs − y + t

of Theorem 10.3.2. We refer the reader to [55] for more discussions and for sharpness

of Theorems 10.3.1 and 10.3.2.

We conclude this chapter with the following problem:

Problem 10.3.3. Give generalizations of Theorem 10.3.2 in the setting of arbitrary

fields.
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[44] A. IOSEVICH AND M. RUDNEV, Erdős distance problem in vector spaces over finite

fields, Transactions of the American Mathematical Society, 359 (2007), pp. 6127–

6142.

[45] D. KOH AND C.-Y. SHEN, The generalized erdős–falconer distance problems in
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