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Abstract
Traditional approaches to analysing functional data typically follow a two-step procedure,

consisting in first smoothing and then carrying out a functional principal component analysis.

The idea underlying this procedure is that functional data are well approximated by smooth

functions, and that rough variations are due to noise. However, it may very well happen

that localised features are rough at a global scale but still smooth at some finer scale. In this

thesis we put forward a new statistical approach for functional data arising as the sum of two

uncorrelated components: one smooth plus one rough. We give non-parametric conditions

under which the covariance operators of the smooth and of the rough components are jointly

identifiable on the basis of discretely observed data: the covariance operator corresponding to

the smooth component must be of finite rank and have real analytic eigenfunctions, while

the one corresponding to the rough component must have a banded covariance function. We

construct consistent estimators of both covariance operators without assuming knowledge of

the true rank or bandwidth. We then use them to estimate the best linear predictors of the the

smooth and the rough components of each functional datum. In both the identifiability and

the inference part, we do not follow the usual strategy used in functional data analysis which

is to first employ smoothing and work with continuous estimate of the covariance operator.

Instead, we work directly with the covariance matrix of the discretely observed data, which

allows us to use results and tools from linear algebra. In fact, we show that the whole problem

of uniquely recovering the covariance operator of the smooth component given the one of the

raw data can be seen as a low-rank matrix completion problem, and we make great use of a

classical relation between the rank and the minors of a matrix to solve this matrix completion

problem. The finite-sample performance of our approach is studied by means of simulation

study.

Key words: analyticity, banded covariance function, functional principal component analysis,

low-rank, matrix completion, scale, smoothing.
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Introduction

Functional data analysis (FDA) is a branch of statistics concerned with complex data objects,

such as curves and surfaces, that can be seen as realizations of a random function. Functional

data arise naturally in many applications, and are becoming more and more accessible and

consequently prevalent, due to the advances of technology in the last decades. Growth curves

and temperature curves are two classical examples of functional data defined on an interval,

while satellite images are examples of functional data defined on a surface, which in this case

would be a subset of the sphere. The two main features of functional data are that they belong

to an infinite-dimensional space, and that they are assumed to have some smoothness proper-

ties. The second feature compensates for the first in the sense that smoothness transforms

the curse of dimensionality induced by the intrinsic infinite nature of the data to a blessing of

dimensionality. The term functional data analysis was introduced by Ramsay [Ram82] and

Ramsay and Dalzell [RD91], but its origin can be traced back to Grenander [Gre50] and Rao

[Rao58].

The classical setup in FDA is to suppose that we have a collection of independent realizations

of an L2([0,1])-valued random function X , and that each of these realizations is observed at

discrete points with measurement errors. The standard model for the measurements errors

is to consider them as i.i.d. random variables, or equivalently as the discrete observations

of a white noise process. There exist two main traditional approaches to estimating the

covariance operator (or equivalently the covariance function) of the random function X from

such a sample. Both consist in a two-step procedure, where the first step is a smoothing step

to transform the discretely observed data into functions, and the second step carries out a

functional principal component analysis in order to approximate each curve of the sample

by its r -term Karhunen-Loève expansion. The idea underlying this two-step procedure is

that the observed random function X arises as the sum of two processes: a true signal Y

which is a process of smoothness class C k ,k ≥ 2, having essentially a finite rank r , plus a noise

component W which is essentially a white noise process. This means that any variations

that are not at least of smoothness class C 2 or that correspond to fluctuations around the

eigenfunctions of order at least r +1 are attributed to the noise component and thus discarded.

However, it might very well happen that a rough process is not pure noise but has some

structure at a finer scale which represents local variations in the data.

In this thesis, we want to take into account such rough variations, and not simply consider
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Introduction

them as noise, as is usually done in FDA. We thus introduce a new model where the random

function X is equal to the sum of two uncorrelated processes: a process Y which is smooth and

represents the global variations of the data, and a process W which is rough and represents

the local variations, or equivalently the variations at scale at most δ ∈ (0,1), of the data. It turns

out that to handle this new model, a new statistical approach is needed (Section 1.3). The

main contribution of this thesis is to develop such a new approach in terms of both theoretical

(Chapter 2) and practical (Chapter 3) aspects. These results, as presented in Chapter 2 and 3,

are largely based on Descary and Panaretos [DP16].

In Chapter 1, we give an overview of functional data analysis. We first formally define random

variables taking values in a function space, and we then draw the connection between random

functions and continuous stochastic processes (Section 1.1.2). In Section 1.1.3, we define the

basic objects of FDA such as the mean function and the covariance operator of a random

function, and its most important tool, the functional principal component analysis which

is based on the celebrated Karhunen–Loève expansion. The problem of statistical inference

based on a sample of fully observed curves is presented in Section 1.1.4. Section 1.2 is devoted

to the presentation of the standard model for discretely observed data and of two main

approaches to carry out statistical inference based on a sample of densely or sparsely observed

curves. We conclude the chapter with a discussion on the limits of the standard model, which

highlights the need for a more flexible model and for a new approach to analyzing functional

data (Section 1.3).

In the second chapter of this thesis, we treat theoretical aspects, which are two-fold. We first

determine nonparametric conditions under which the smooth and the rough variations of the

data are jointly identifiable, given a K -resolution version of X , i.e., given K measurements on

the function X (Section 2.2). Once we have a well-posed problem, we consider the statistical

inference part, which is done given a sample of n independent realizations of X , each observed

on the same grid of K points. In Section 2.3, we define consistent estimators of the covariance

operators of Y and W . Using their spectral decomposition then allows us to separate the

smooth part Y from the rough part W of the data (Section 2.4). In both the identifiability and

the inference part, we do not follow the usual strategy used in FDA, which is to first employ

smoothing and work with a continuous estimate of the covariance operator. Instead, we work

directly with the covariance matrix of the discretely observed data, which allows us to use

results and tools from linear algebra. In fact, we show that the whole problem of uniquely

recovering the covariance operator of Y given the one of X can be seen as a low-rank matrix

completion problem, and we make great use of a classical relation between the rank and the

minors of a matrix to solve this problem.

Chapter 3 is devoted to the practical aspects and to the study of the performance of our

new approach. We first describe how our new method can be implemented in practice to

analyse functional data (Section 3.1). The estimator of the covariance of Y is obtained with a

two-step procedure: we first select its rank with a scree plot approach, and we then compute

the estimator using a minimisation problem easily solved in MATLAB. On the other hand,

2



the estimator for the covariance operator of W is obtained using an alternating projection

algorithm. In Section 3.2, we study the finite-sample performance of our method. On the

one hand, we carry out a sensitivity analysis to probe the effect of the starting value on the

minimisation algorithm used to compute the estimator of the covariance of Y , study the effect

of the sample size n and of the grid size K on the performance of our method, and study the

performance of the scree plot approach for the selection of the rank. On the other hand, we

study the performance of our method by comparing our results with those obtained by three

other methods used in FDA. We conclude the chapter with the analysis of a real dataset.
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1 Functional Data Analysis

In this chapter we give a succinct overview of some key aspects of Functional Data Analysis.

We first introduce the basic concepts and tools in Section 1.1, we then present two general

approaches to analyzing discretely observed functional data (Section 1.2). In Section 1.3, we

conclude the chapter with a discussion on the restrictions of the standard model in FDA,

which leads to the formulation of a new model for functional data, for which a novel approach

will be developed in this thesis. The literature on functional data analysis has now become

very rich, and for a detailed presentation of the subject one can consult, for example, Ramsay

and Silverman [RS05], Ferraty and Vieu [FV06], Horvath and Kokoszka [HK12] and Hsing and

Eubank [HE15]; for a brief review one can consult Wang et al. [WCM16].

1.1 The basis of FDA

Functional data analysis is concerned with observations that can be seen as arising from a

random variable which takes its values in a function space which is typically the separable

Hilbert space L2([0,1]). In Section 1.1.1 we give a brief overview of operator theory in a

Hilbert space, we then give the formal definition of random functions in L2([0,1]) and draw

the connection between them and continuous time stochastic processes (Section 1.1.2). In

Sections 1.1.3 and 1.1.4, we define the functional version of Principal Component Analysis and

its empirical counterpart, which play a far more important role in FDA than in multivariate

analysis.

1.1.1 Brief overview of operator theory in Hilbert spaces

Let H be a separable Hilbert space with the inner product 〈·, ·〉H which induces the norm

‖ ·‖H . A linear operator T : H →H is said to be bounded, or equivalently continuous, if

‖T ‖B := sup{‖T x‖H : x ∈H and ‖x‖H ≤ 1} <∞.

5



Chapter 1. Functional Data Analysis

The space of bounded operators on H equipped with the norm ‖ ·‖B forms a Banach space,

which we denote by B(H ). An operator T ∈ B(H ) is called

1. self-adjoint if it is equal to its adjoint T ∗ ∈ B(H ) defined as the unique operator such

that

〈T f , g 〉H = 〈 f ,T ∗g 〉H , for any f , g ∈H ,

2. positive semidefinite if

〈T f , f 〉H ≥ 0, for any f ∈H ,

3. compact if for any bounded sequence { fn} in H , there exists a convergent subsequence

of {T fn}.

The eigen-decomposition of a self-adjoint, positive semidefinite and compact operator T ∈
B(H ) is defined in the following proposition.

Proposition 1.1.1. Let T ∈ B(H ) be self-adjoint, positive semidefinite and compact. Then its

spectral decomposition is given by

T =
∞∑

i=1
λi (vi ⊗ vi ) =

∞∑
i=1

λi 〈vi , ·〉vi , (1.1.1)

where {λi }∞i=1 is the set of eigenvalues of T such that λ1 ≥ λ2 ≥ ·· · ≥ 0, and {vi }∞i=1 is the set

containing the corresponding orthonormal eigenfunctions, i.e., T vi =λi vi for any i . Moreover,

the set of non-zero eigenvalues is either finite or forms a sequence that decreases toward zero

and the associated set of eigenvalues form a basis for Im(T ) .

An important subclass of the collection of bounded and compact operators is the Hilbert–

Schmidt operators, where an operator T ∈ B(H ) is Hilbert-Schmidt (HS) if it satisfies the

inequality

‖T ‖2
HS :=

∞∑
i=1

‖T ei‖2
H <∞,

for an arbitrary orthonormal basis {ei } of H . The space of Hilbert–Schmidt operators, denoted

by BHS(H ), is itself a separable Hilbert space when equipped with the inner product defined

as

〈T1,T2〉HS =
∞∑

i=1
〈T1ei ,T2ei 〉H ,

where again {ei } can be taken as any orthonormal basis of H .

Moreover, a HS operator T is said to be a trace class operator, or a nuclear operator, if it

satisfies the inequality

‖T ‖T R :=
∞∑

i=1
〈(T ∗T )1/2ei ,ei 〉H <∞,

6



1.1. The basis of FDA

for an arbitrary orthonormal basis {ei } of H , where the square root of the positive semidefinite

operator T ∗T ∈ B(H ) is defined as the unique positive semidefinite operator A ∈ B(H ),

such that A 2 =T ∗T . The space of trace class operators, denoted by BT R (H ), equipped with

the norm ‖T ‖T R forms a Banach space.

The relations between the three spaces of operators described in this section and their asso-

ciated norm are given respectively by BT R (H ) ⊂ BHS(H ) ⊂ B(H ) and ‖T ‖T R ≥ ‖T ‖HS ≥
‖T ‖B . Note that if T can be written as in (1.1.1), then taking the set of eigenfunctions {vi } as

the orthonormal basis {ei } yields ‖T ‖HS =
√∑∞

i=1λ
2
i and ‖T ‖T R =∑∞

i=1λi .

1.1.2 The space L2 and its random elements

As already mentioned, the typical approach in FDA is to assume that the random variables

of interest are random elements of the separable Hilbert space L2([0,1]), which we recall is

the space of real-valued measurable and square integrable functions on [0,1], with the inner

product defined as 〈 f , g 〉L2 = ∫ 1
0 f (t )g (t )d t . An L2([0,1])-valued random element X is defined

formally as a measurable map from a probability space (Ω,A ,P) to L2([0,1],B([0,1]),µ), with

B([0,1]) the Borel σ-field and µ the Lebesgue measure. Recall that the space L2 is in fact a

quotient space, which means that f ∈ L2([0,1]) represents an equivalence class of functions

and thus that f = g in L2([0,1]) means that

‖ f − g‖2
L2 = 〈 f − g , f − g 〉L2 =

∫ 1

0
[ f (t )− g (t )]2d t = 0.

We thus have that an L2([0,1])-valued random function X is an abstract object for which it

does not make sense to consider its evaluation X (t) for a specific point t ∈ [0,1]. For the

expression X (t) to make sense, i.e., to have well-defined point evaluations of X , one needs

to either assume that X belongs to a Reproducing Kernel Hilbert Space (RKHS) (Berlinet and

Thomas-Agnan [BTA11]), or to consider the function X as a stochastic process, which is the

approach that we adopt and that we now describe.

Let X : Ω→ L2([0,1]) be a continuous stochastic process on a probability space (Ω,A ,P),

such that X (ω) = {Xω(t) : t ∈ [0,1]}. We say that X is a second-order process if its mean and

covariance functions, defined respectively by

m(t ) = E[X (t )], ρ(s, t ) = E[(X (t )−m(t ))(X (s)−m(s))], s, t ∈ [0,1], (1.1.2)

are well-defined. A second-order process X is said to be mean-square continuous if

lim
n→∞E[X (tn)−X (t )]2 = 0,

for any t ∈ [0,1] and any sequence {tn} in [0,1] converging to t , or equivalently, if its mean

and covariance functions are continuous. Note that X being a stochastic process implies

that X (t) is a random variable for any t ∈ [0,1], but does not imply that X is itself a random

7
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element of the function space L2([0,1]) equipped with the Borel σ-algebra. However, if X is

a mean-square continuous stochastic process with continuous sample paths t → Xω(t) for

any ω ∈Ω, then X is jointly measurable, and by Hsing and Eubank ([HE15, Theorem 7.4.1]) we

know that X is a random element of L2([0,1]).

In the remainder of this thesis, we always suppose that an L2([0,1])-valued random function

can also be seen as a second-order mean-square continuous process with continuous sample

paths. This means that point evaluation of a L2([0,1])-valued random function X is well

defined, and thus that its mean and covariance functions can be expressed as in (1.1.2),

where m ∈ L2([0,1]) and ρ ∈ L2([0,1]× [0,1]) are continuous functions. Note that X being a

second-order process implies that E‖X ‖2
L2 <∞.

1.1.3 Functional principal component analysis

Principal Component Analysis (Jolliffe [Jol02]) is a common and useful tool used in multi-

variate analysis to explain the principal modes of variation of a random vector. The idea of

a functional analogue, called functional PCA (fPCA), was introduced by Grenander [Gre50],

Karhunen [Kar46], Loève [Loe46] and Rao [Rao58] and developed in a statistical framework

in Dauxois [DPR82]. Besides explaining the main sources of variation of a random function,

fPCA is mainly used as a dimension reduction tool, and as such plays a central role in FDA. In

an analoguous way to multivariate PCA, which is based on the eigenstructure of a covariance

matrix, fPCA is based on the eigenstructure of a covariance operator. This object thus plays a

very important role in FDA and is defined as follow.

Definition 1.1.1. Let X be an L2([0,1])-valued random variable (E‖X ‖2
L2 < ∞) with mean

function m and covariance function ρ. Then the covariance operator R of X is the integral

operator

R : L2([0,1]) → L2([0,1])

f →
∫ 1

0
ρ(·, s) f (s)d s,

where the covariance function ρ plays the role of a kernel function. We can also express it as

R = E[(X −m)⊗ (X −m)], where (u ⊗ v) f = 〈u, f 〉L2 v, for u, v, f ∈ L2([0,1]).

The operator R is compact (e.g., Hsing and Eubank [HE15, Theorem 4.6.2]). Moreover, since

the covariance function ρ is positive semidefinite (
∫ 1

0

∫ 1
0 ρ(s, t) f (s) f (t)d td s ≥ 0 for any f ∈

L2([0,1])) and symmetric (ρ(s, t ) = ρ(t , s)), R is positive semidefinite and self-adjoint. Using

Proposition 1.1.1, we can write

R =
∞∑

i=1
θi (φi ⊗φi ) =

∞∑
i=1

θi 〈φi , ·〉φi , (1.1.3)

8
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where {θi ,φi } is the set of eigenvalues and eigenvectors of R. The following result is known as

Mercer’s Theorem, and tells us that we can write the covariance function ρ with an expansion

similar as the one for R, in a strong uniform convergence sense.

Proposition 1.1.2 (Mercer’s Theorem, e.g., Grenander [Gre81]). Let R be the covariance oper-

ator associated with the continuous covariance function ρ, and let {θi ,φi }∞i=1 be its spectrum.

Then

ρ(s, t ) =
∞∑

i=1
θiφi (s)φi (t ), s, t ∈ [0,1],

where the convergence of the sum holds uniformly and absolutely on [0,1]2.

For simplicity of notation and since we will be primarily interested in second-order structure,

from now on we will assume without lost of generality that the mean function m is equal

to zero. Using the representation given in Proposition 1.1.2 for ρ, one can show easily that

‖R‖2
HS =∑∞

i=1θ
2
i = ∫ 1

0

∫ 1
0 ρ

2(s, t )d sd t , and from E‖X ‖2
L2 <∞, we have that the right hand side

of this expression is finite, and then that R is a Hilbert–Schmidt operator. Moreover, since

Rφi = θiφi , the eigenvalues can be written as θi = 〈Rφi ,φi 〉L2 = E[〈X ,φi 〉2
L2 ] and then

∞∑
i=1

θi =
∞∑

i=1
E[〈X ,φi 〉2

L2 ] = E‖X ‖2
L2 <∞,

where the last equality comes from Parseval’s identity. The covariance operator R is thus a

trace-class operator.

We are now ready to construct a PCA version for L2([0,1])-valued random variables, which is

given by the celebrated Karhunen–Loève expansion (Karhunen [Kar46] and Loève [Loe46]).

Proposition 1.1.3 (Karhunen–Loève expansion). Let X be a mean zero mean-square contin-

uous stochastic process with continuous sample paths, or equivalently an L2([0,1])-valued

random function of mean zero, with a covariance operator R that can be written as in (1.1.3).

Then

X (t ) =
∞∑

i=1
〈X ,φi 〉L2φi (t ) =

∞∑
i=1

ξiφi (t ), (1.1.4)

where the ξi are mean zero random variables such that E[ξiξ j ] =λiδi j , with δi j = 1 if i = j and

zero otherwise. The above expansion converges uniformly in mean-square, i.e.,

lim
n→∞ sup

t∈[0,1]
E

[
X (t )−

n∑
i=1

ξiφi (t )

]2

= 0. (1.1.5)

The expansion in (1.1.4) is interesting for many reasons. It gives an elegant representation of

the data, where the random part, encapsulated in the principal component scores ξi , is sepa-

rated from the deterministic part, encapsulated in the principal components φi . Moreover,

the shape and the smoothness of the first principal components (the ones with the largest
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impact) give information on the shape that we are expecting from a realization of X . Perhaps,

though, the more useful fact about it is the following. The r -term Karhunen–Loève expansion

defined as the truncated sum
∑r

i=1 ξiφi , is the best r -dimensional linear approximation of X

in the following mean-square sense

E

[∥∥∥X −
r∑

i=1
〈X ,ei 〉ei

∥∥∥2

L2

]
≥ E

[∥∥∥X −
r∑

i=1
〈X ,φi 〉φi

∥∥∥2

L2

]
,

for any orthonormal basis {ei }∞i=1 of L2([0,1]). This last result is very important, since in

practice we have to work with finite representations of random functions, it is thus common

practice to approximate a function X by its r -term Karhunen–Loève expansion. It is the

case for example in functional linear model (see e.g. Müller [Mul05] and Morris [Mor15]), in

classification and clustering problems (see e.g. Leng and Muller [LM06], Peng and Müller

[PM08] and Chiou and Li [CL08]), and in hypothesis testing for two sample tests for covariance

function (see e.g. Panaretos et al. 2010 [PKM10]). In the next subsection we explain how to

estimate this decomposition from a sample of random curves and we also mention different

techniques to choose the value of r .

1.1.4 Statistical inference

Let X1, . . . , Xn be a sample of independent realizations of an L2([0,1])-valued random function

X of mean and covariance functions m and ρ, with E‖X ‖2
L2 <∞. Using such a sample, the

mean and covariance functions of X are estimated respectively by

mn(t ) = 1

n

n∑
i=1

Xi (t ), ρn(s, t ) = 1

n

n∑
i=1

(Xi (t )−mn(t ))(Xi (s)−mn(s)),

and the estimator Rn of the covariance operator R of X is the integral operator defined

through the kernel function ρn .

The consistency and the asymptotic normality of the estimators mn and Rn can be derived

directly from the functional version of the strong law of large numbers and of the central limit

theorem. These two important results are presented in Proposition 1.1.4.

Proposition 1.1.4 (e.g. Bosq [Bos00]). Let Y1, . . . ,Yn be independent copies of Y , a random

element of a separable Hilbert space H with mean µ and covariance operator F . If E‖Y ‖H <
∞, then by the strong law of large numbers

1

n

n∑
i=1

Yi
a.s.−→µ, as n →∞.

If moreover E‖Y ‖2
H <∞, then by the central limit theorem

n1/2

(
1

n

n∑
i=1

Yi −µ
)

d−→ Z , as n →∞,
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where Z is a Gaussian random element of H with mean µ and covariance operator F .

First, recall that Z is said to be a Gaussian random element of H if the random variable

〈Z , f 〉H ∈ R has a Gaussian distribution for every f ∈ H (as a convention, a degenerate

distribution at zero is considered as a centred Gaussian variable of variance zero). By letting

H be the space L2([0,1]), and by setting µ = m and F = R in Proposition 1.1.4, we obtain

that mn converges almost surely to m, and is asymptotically distributed as a Gaussian random

variable when suitably normalised. In a similar way, if we let H be the space BHS(L2([0,1]))

and set Y = (X −m)⊗ (X −m), we obtain that Rn converges almost surely to R if E‖X ‖2
L2 <∞,

and if moreover E‖X ‖4
L2 <∞, that n1/2(Rn −R) is asymptotically distributed as a mean zero

Gaussian random element Z in BHS(L2([0,1])), with covariance operator

E[Z ⊗Z ] = E[{((X −m)⊗ (X −m))−R}⊗̃{((X −m)⊗ (X −m))−R}],

where ⊗̃ is the tensor product on BHS(L2([0,1])), which for A ,B and C ∈ BHS(L2([0,1])), is

defined as (A ⊗̃B)C = 〈A ,C 〉HSB.

Now that we have defined consistent estimators for the mean and the covariance operator

of a random function, we are interested in finding estimators for the eigenvalues and the

eigenfunctions {θi ,φi } of R. A natural choice is to use the spectrum {θ̂i , φ̂i }n
i=1 of Rn , which is

defined as ∫ 1

0
ρn(s, t )φ̂i (s)d s = θ̂i φ̂i (t ), i = 1, . . . ,n.

Note however that the estimation of the j -th eigenfunction of R only makes sense if the corre-

sponding eigenvalue θ j has multiplicity one, since otherwise the j -th eigenfunction would

not be identifiable (since there is no ordering of the eigenfunctions within an eigenspace).

This is why instead of trying to estimate the eigenfunctions themselves, we estimate the eigen-

projections P j by P̂ j , where P j (resp. P̂ j ) is the projection operator onto the eigenspace

spanned by the eigenfunctions of R (resp. Rn) associated with the eigenvalue θ j (resp. θ̂ j ). By

combining results from perturbation theory (Kato [Kat80]) and results from the convergence

of Rn , it can be shown (Dauxois et al. [DPR82], Bosq [Bos00] and Hall and Hosseini-Nasab

[HHN06]) that n1/2(θ̂ j −θ j ) and n1/2(P̂ j −P j ) are asymptotically distributed as mean-zero

Gaussian random elements. Note that the variance of both limiting Gaussian random ele-

ments depends on the spacing of the distinct eigenvalues of R. The impact of these spacings

have been studied in Hall and Hosseini-Nasab [HHN06] for the case where all the eigenvalues

of R are distinct (i.e. P j =φ j ⊗φ j ), and they show that eigenvalues spacings have a first order

effect on the estimators of the eigenfunctions but only a second order effect on eigenvalue

estimators.

Note that if we assume that the eigenvalues of a covariance operator up to a certain order p

are all distinct, then we obtain that the corresponding eigenfunctions are identifiable up to a

sign change. The following proposition is very useful to prove consistency of eigenvalues and

eigenfunctions estimators in this context, and will be of great use in the next chapter.
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Proposition 1.1.5 (e.g. Hall and Hosseini-Nasab [HHN06], Horváth and Kokoszka [HK12]). Let

R be the covariance operator of an L2([0,1])-valued random variable X such that E‖X ‖2
L2 <∞,

and Rn be an estimator of it based on a sample of n independent copies of X . Let {θi ,φi } be the

eigenvalues and eigenfunctions of R where the first p eigenvalues are distinct and bigger than

zero, and let {θ̂i , φ̂i } be the eigenvalues and eigenfunctions of Rn . Then

|θi − θ̂i | ≤ ‖R−Rn‖HS

and

‖sign(〈φi , φ̂i 〉L2 )φi − φ̂i‖L2 ≤ 2
p

2

αi
‖R−Rn‖HS ,

for i = 1, . . . , p and where α1 = θ1 −θ2 and α j = min{θ j−1 −θ j ,θ j −θ j+1} for 2 ≤ j ≤ p.

To simplify the presentation, we will now assume that the eigenfunctions of R are identifiable

up to their sign, i.e. that θ1 < θ2 < . . ., and to avoid dealing with this sign issue, we will suppose

that the eigenfunctions of Rn are correctly estimating this sign, i.e., that 〈φi , φ̂i 〉L2 ≥ 0. We will

moreover assume that X has mean zero, or equivalently that the mean mn has been subtracted

from the curves X1, . . . , Xn . The empirical version of the Karhunen–Loève expansion for a

function Xi is given by

Xi (t ) =
n∑

j=1
〈Xi , φ̂ j 〉L2φ̂ j (t ) =

n∑
j=1

ξ̂i j φ̂ j (t ),

where the eigenfunctions {φ̂i }n
i=1 of Rn are called the empirical principal components and the

inner product ξ̂i j = 〈Xi , φ̂ j 〉L2 the empirical j -th score of Xi , where as before ξ̂i j represents the

amplitude of the contribution of φ̂ j to the curve Xi . As discussed in Section 1.1.3, in practice

we use a truncation of the Karhunen-Loève expansion at a level r (usually much smaller than

n) to obtain a concise, but accurate approximation of the data X1, . . . , Xn . There are many

possible procedures to choose the level of truncation r . A popular one is the graphical method

based on the so-called scree plot, which consists in plotting the eigenvalues θ̂i against i , and

selecting r as the value i beyond which the decrease of the eigenvalues levels off. Another

method is based on the cumulative percentage of total variance (CPV) explained by the first p

empirical principal components which is given by C PV (p) =∑p
i=1 θ̂i /

∑n
i=1 θ̂i . The idea is to

choose r such that C PV (r ) is bigger than a certain threshold, and the recommended value for

this threshold is usually 85%. It is also possible to use approaches based on pseudo-versions

of AIC and BIC (Yao et al. [YMW05]) and on cross-validation (Rice and Silverman [RS91]).

We conclude this section by pointing out that the empirical principal components φ̂i have

behaviour similar to the principal components φi , in the sense that they form the optimal

empirical orthonormal basis to represent the functions X1, . . . , Xn . In fact, if we minimize the

function

f (v1, v2, . . . , vr ) =
n∑

i=1

∥∥∥∥∥Xi −
r∑

j=1
〈Xi , v j 〉L2 v j

∥∥∥∥∥
2

L2

,
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over the set of orthonormal basis {v j }r
j=1, then the minimum is attained by letting {v j }r

j=1 =
{φ̂ j }r

j=1.

1.2 How to deal with discrete measurements?

In the previous section, we introduced the basic objects and concepts of functional data

analysis, and also their empirical counterparts based on a sample formed by independent

realizations of a random function. These realizations were assumed to be fully observed, i.e.

we were observing the whole functions on the interval [0,1]. However, it is clearly impossible to

observe a whole function in practice, and thus one has to deal with discrete measurements, i.e,

to deal with the fact that every function in the sample is observed on a discrete grid of points.

Moreover, it is common to assume that what we observed has been corrupted by random

noise, resulting, for example, from measurement errors. The following model is commonly

adopted to deal with functional data (e.g., Shi et al. [SWT96], Staniswalis and Lee [SL98], James

and Hastie [JH01], Diggle et al. [DHLZ02], Müller [Mul05]). We observe a sample of vectors

X1, . . . , Xn where the entries of the vector Xi of dimension ni are such that

Xi [ j ] = Yi (ti j )+εi j , for ti 1, . . . , ti ni ∈ [0,1], (1.2.1)

where the random variables εi j have mean zero, variance σ2, are independent across i and j

and are uncorrelated with the Yi ’s. The functions Y1, . . . ,Yn are independent copies of Y , an

L2([0,1])-valued random variable, and the grid of points {ti j }ni

j=1 on which the function Yi is

observed can be random or deterministic. Even if the model (1.2.1) gives the appearance of a

model for multivariate data, it is far from being one. In fact, the vectors Xi ’s can be vectors of

different length, and even if they were of same length, it does not mean that their respective

component would represent a realization of the same part of the curve Y , since the grid of

points on which the functions Yi ’s are observed can be different for every curve. The main

difference comes from the fact that each observed vector Xi is assumed to be the noisy discrete

realization of an underlying continuous process Yi , where this latter is assumed to have a

certain degree of smoothness. Indeed, this smoothness is a key feature of FDA.

As we already emphasized in Section 1.1, covariance operators, or equivalently covariance

functions, are key objects in FDA, since they allow us to carry out functional PCA. In this

subsection, we will mainly focus on how to estimate them from a sample of vectors defined

as in (1.2.1). There are two main general approaches to do that , namely the "smooth-then-

estimate" and the "estimate-then-smooth" approaches. The two approaches are respectively

introduced in Section 1.2.1 and in Section 1.2.2.

1.2.1 "Smooth-then-estimate" approach

The "smooth-then-estimate" approach has been popularised by Ramsay and Silverman [RS05],

and consists in first carrying out a preprocessing step where one smooths the data, i.e.,

13
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transforms the raw data into smooth functions, and then uses the resulting functions to

estimate the mean and covariance functions as explained in Section 1.1.4. This approach is

most suitable for densely-observed data, i.e. when the numbers n1, . . . ,nn of observations per

curve are relatively large and well-dispersed in [0,1].

The objective of preprocessing the data is to recover the whole function Yi from the observed

vector Xi . Since this preprocessing step is done independently for each curve, we will now drop

the index i , and consider only the problem of recovering a function Y , from the observed vector

X of length K , with entries X [ j ] = Y (t j )+ε j , for a grid t1, . . . , tK ∈ [0,1]. A common method to

estimate Y from the vector X is to approximate the function Y by a linear combination of a

finite number p of basis functions v1, . . . , vp :

Ỹ (t ) =
p∑

i=1
ci vi (t ). (1.2.2)

The choice of the basis is quite important here since the estimate Ỹ will inherit of the charac-

teristics, such as continuity and differentiability, of the chosen basis. A common approach is

to use a Fourier basis if the data are periodic, and to use B-spline bases otherwise. Wavelet

bases have also gained in popularity in the last years, since they are fast to compute and allow

one to capture local features in the data with only a few basis elements (e.g. Mallat [Mal09]).

The classical method to determinate the coefficients ci in (1.2.2) is to choose them such that

they minimize the least squares criterion

K∑
j=1

(
X [ j ]−

p∑
i=1

ci vi (t j )

)2

= (X −V c)>(X −V c),

where V is the K × p matrix such that V ( j , i ) = vi (t j ) and c is the vector containing the p

coefficients to estimate. Such coefficients are given by c̃ = (V >V )−1V >X , which leads to

Ỹ (t ) =∑p
i=1 c̃i vi (t ). Note that choosing p is not easy and it leads to the classical bias/variance

trade-off. If p is too large then Ỹ (t ) will fit the data well but will certainly have a high variance

and a wiggly appearance since it will likely be affected by the noise observed in the data.

On the other hand, if p is too small, then there is a risk that Ỹ (t) will be too smooth (small

variance) to capture local features of the data that could be of interest. In summary, the value

of p controls the degree of smoothness of our estimator Ỹ .

The least squares method that we just described provides the basis of many other smoothing

methods such as weighted least squares and localized least squares methods. We will now

briefly present the penalized least squares method, since according to Ramsay and Silverman

[RS05], adding a roughness penalty to the least squares criterion usually gives better results,

and has the advantage that the degree of smoothing is controlled in a continuous manner

instead of with a discrete parameter (p). This method consists of estimating Y by the function
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Ỹ that minimizes the penalized least squares criterion

Ỹ = argmin
f ∈C 2([0,1])

K∑
j=1

(
X [ j ]− f (t j )

)2 +λ
∫ 1

0

(
d 2 f (t )

d t 2

)2

d t . (1.2.3)

The integral of the second derivative of f is used here to characterize its roughness, since it

is a measure of the total curvature of f (for a discussion on the use of roughness penalty in

statistics, see, e.g., Green and Silverman [GS94]). The parameter λ≥ 0 is called a smoothing

parameter and as its name suggests, it controls the degree of smoothing or equivalently the

tradeoff between the bias and the variance of the estimator. Indeed, if λ is big then Ỹ will

be smooth but will not necessary fit the data well, whereas if λ is very small, Ỹ will be an

approximate twice differentiable interpolant. Remarkably it turns out that the function Ỹ

defined in (1.2.3) is a cubic spline (de Boor [dB01]).

As we already mentioned, once we have the smoothed data Ỹ1, . . . , Ỹn , we can obtain an esti-

mator R̃ of the covariance operator of Y . Using this estimator we can carry out a functional

principal components analysis as explained in Section 1.1.4, and then approximate the func-

tions {Yi } by their r -term Karhunen-Loève expansion. This approach of smoothing first the

data, and then doing an fPCA has been studied in Besse and Ramsay [BR86], Ramsay and

Dalzell [RD91] and Besse, Cardot and Ferraty [BCF97]. In Hall et al. 2006 [HMW06], they show

that if the numbers n1, . . . ,nn of observations per curve are such that ni À n1/4 as n →∞,

and if each curve has been smoothed with a local linear smoother (Fan and Gijbels [FG96]),

then the estimators of the mean function, of the covariance function, of the eigenfunctions

and of the eigenvalues are
p

n-consistent. On the other hand, Paul and Peng [PP11] show

that if the number of observations per curve is not sufficiently large, then the diagonal of

the covariance function obtained with this approach will suffer of an intrinsic bias. In Rice

and Silverman [RS91], Pezzuli and Silverman [PS93] and Silverman [Sil96], it is suggested to

incorporate the smoothing part into the fPCA procedure by imposing a roughness penalty on

the eigenfunctions, though this is done when considering a fully-observed curves setup.

1.2.2 "Estimate-then-smooth" approach

The "estimate-then-smooth" approach consists of using the raw data to obtain an estimator

of the discrete (multivariate) version of the mean and covariance functions, and then to

smooth these discrete objects using a nonparametric method in order to transform them into

functions. As for the previous approach, once we have an estimator of the covariance operator,

we can do fPCA in order to estimate the eigenfunctions and then predict the functions {Yi }.

If the data are densely observed, the procedure is quite straightforward, as we present below.

However, if the data fall into the category of longitudinal data, i.e. when each underlying curve

Yi is only observed on a sparse and irregular grid, the procedure has to be slightly modified. In

this case, one needs to pool all the curves together in order to construct scatter plots that are

used as surrogates of the empirical multivariate mean and covariance function (Staniswalis
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and Lee [SL98], Yao et al. (2003) [YM+03] and Yao et al. (2005) [YMW05]).

We first consider the case where all the curves of the sample are observed on the same dense

grid of points t1, . . . , tK . Let X1, . . . , Xn be a sample of vectors where each vector is defined as

Xi = (Xi [1], . . . , Xi [K ]), with Xi [ j ] = Yi (t j )+εi j and let m,` and L be respectively the mean

function, the covariance function and the covariance operator of the random function Y .

Since the sample we are working with is actually constructed as a multivariate sample, we can

calculate its empirical mean vector and covariance matrix, respectively given by

mK
n [a] = 1

n

n∑
i=1

Xi [a], RK
n [a,b] = 1

n

n∑
i=1

(
Xi [a]−mK

n [a]
)(

Xi [b]−mK
n [b]

)
, for 1 ≤ a,b ≤ K .

By smoothing these estimators, with a kernel smoothing technique for example, we can obtain

an estimator of m on the interval [0,1] and of ` on the interval [0,1]2. This procedure works

well to obtain an estimator of the mean function, however, we have to be careful when we

consider transforming RK
n into a surface, since the effect of the measurement errors is different

on the diagonal than it is elsewhere on [0,1]2. In fact, we have that

Cov(Xi [ j ], Xi [l ]) = Cov(Yi (t j ),Yi (tl ))+Cov(εi j ,εi l )

=
{

Cov(Yi (t j ),Yi (tl )), j 6= l ,

Cov(Yi (t j ),Yi (tl ))+σ2, j = l ,

and thus RK
n [a, a], 1 ≤ a ≤ K , is a biased estimator of Var[Y (a)], since E

[(
Xi [a]−mK

n [a]
)2]≈

Var[Y (a)]+σ2. The strategy to obtain a good estimator of the covariance function of Y is then

to remove the diagonal of RK
n before smoothing it. This diagonal removal procedure has been

first introduced in Staniswalis and Lee [SL98]. The estimators of the mean and covariance

functions obtained with this approach can achieve consistency only if K = Kn , the number of

observations per curve, grows with the sample size n.

Let’s now consider the more challenging setup where each underlying curve Yi is observed on

a sparse and irregular grid. The objective is again to estimate the mean function m and the

covariance function ` of the L2([0,1])-valued random function Y from the sample X1, . . . , Xn

defined as in (1.2.1). Since the functions Y1, . . . ,Yn are not necessarily observed on the same

points, we cannot calculate an empirical multivariate version of the mean (respectively covari-

ance) function as before, and even if the curves were all observed on the same grid of points,

since the grid is sparse we could not obtain good estimates on the whole interval [0,1] (resp.

[0,1]2) by applying a smoothing technique. The idea is then to pool all the curves together in

order to borrow information from neighbors of a given point from all the curves in the sample.

More precisely, the estimator m̂ of the mean function is obtained by smoothing the scatter

plot

{(Xi [ j ], ti j ), i = 1, . . . ,n,and j = 1, . . . ,ni },

across time. This smoothing can be done with a nonparametric smoother such as a local
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polynomial smoother. Similarly, the estimator ˆ̀ of the covariance function is obtained by

smoothing the 2D scatter plot

{((Xi [ j ]−m̂(ti j )(Xi [k]−m̂(ti k )), ti j , ti k ), i = 1, . . . ,n, and j ,k = 1, . . . ,ni , j 6= k},

from which we have removed the diagonal since, as in the dense case, it is contaminated

by the variance of the noise component. The asymptotic setup in sparse sampling is that

max1≤i≤n ni ≤ C , where C is a constant, as n → ∞. Both estimators m̂ and ˆ̀ can achieve

consistency only if the grid of pooled points {ti j , i = 1, . . . ,n and j = 1, . . . ,n j } is getting dense

in [0,1] as n →∞, and if so, their rate of convergence will be nonparametric.

In the scatter plot procedure that we just described, each curve does not have the same

weight in the smoothing step, since this weight is proportional to the number of points on

which a curve is observed. Li and Hsing [LH10] studied an alternative method that unifies

the dense and the sparse framework by assigning to each curve the same weight. Zhang and

Wang [ZW16] push this work forward by studying in greater depth the effect of either putting

the same weight on each curve or on each observation. Their work yields a classification of

sampling schemes into three categories, namely ultra dense sampling, dense sampling and

sparse sampling, accordingly to the bias and the rate of convergence of the corresponding

mean and covariance function estimators. More work has been done to study the effect of

the sampling scheme in FDA. For example, Cai and Yuan [CY11] study the effect of the design

of the grid (deterministic or random) on the convergence rate of the estimator of the mean

function obtained with a nonparametric approach. On the other hand, Amini and Wainwright

[AW12] study the effect of the sample size n and functional size (number of grid points) on the

estimation of the subspace span by the eigenfunctions of the covariance operator of Y , where

it is assumed that the curves Y1, . . . ,Yn lie in a RKHS.

We conclude this subsection by describing the Principal components Analysis through Con-

ditional Expectation (PACE) method introduced in Yao et al. (2005) [YMW05]. This method

has been developed to extend fPCA to longitudinal data but can also be used with densely

observed data. Its main novelty is to use conditional expectation to provide estimators of

the principal component scores of the random functions Y1, . . . ,Yn . Using these scores, it is

then possible to predict the curves themselves by estimating their r -term Karhunen–Loève

expansion.

The setting is as before, i.e., we observe a sample of vectors X1, . . . , Xn , where Xi [ j ] = Yi (t j )+εi j ,

where Var(εi j ) =σ2. The estimators of the mean and covariance functions m and ` of Y are

obtained using local linear smoothers as follows. For each t ∈ [0,1], m̂PAC E (t ) = β̂0, where β̂0

is such that

(β̂0, β̂1) = argmin
β0,β1

n∑
i=1

ni∑
j=1

k1

(
t − ti j

h1

)
(Xi [ j ]−β0 −β1(t − ti j ))2,

where k1 is a kernel and h1 is a bandwidth. For each (s, t ) ∈ [0,1]2, ˆ̀PAC E (s, t ) = γ̂0, where γ̂0 is
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such that

(γ̂0, γ̂1, γ̂2) = argmin
γ0,γ1,γ2

n∑
i=1

ni∑
1≤ j 6=l≤ni

k2

(
s − ti j

h2
,

t − ti l

h2

)
{Gi (ti j , ti l )−γ0 −γ1(s − ti j )−γ2(t − ti l )}2,

where Gi (ti j , ti l ) = {Xi [ j ]−m̂PAC E (ti j )}{Xi [l ]−m̂PAC E (ti l )}, k2 is a bivariate kernel and h2 is a

bandwidth. The estimator of σ2 is defined as

σ̂2 = 2
∫ 3/4

1/4
(V̂ (t )− ˆ̀

PAC E (t , t ))d t ,

where V̂ (t ) is an estimator of the diagonal `(t , t )+σ2 obtained by using a local linear smoother

on {Gi (ti j , ti j )|1 ≤ i ≤ n,1 ≤ j ≤ ni }, and the integral is not defined on the entire interval [0,1]

to avoid boundary issues.

Let the Karhunen–Loève expansion of Yi be Yi (t) = m(t)+∑∞
a=1〈Yi ,ηa〉L2ηa(t), and denote

the a-th principal component score of Yi by ξi a . The best linear prediction of ξi a given the

vector Xi is

E[ξi a |Xi ] =λaη
>
i aΣ

−1
Xi

(Xi −mi ),

whereλa is the eigenvalue associated with the eigenfunctionηa of L , η>i a = (ηa(ti 1), . . . ,ηa(ti ni )),

ΣXi [ j , l ] = Cov(Xi [ j ], Xi [l ]) and mi = (m(ti 1), . . . ,m(ti ni ))>. From the covariance operator de-

fined through ˆ̀
PAC E , one can obtain the estimators {λ̂a} and {η̂a} of the eigenvalues and

eigenfunctions of L , and then the estimator of the best linear prediction of ξi a is given by

ξ̂i a = λ̂a η̂
>
i aΣ̂

−1
Xi

(Xi −m̂i )

where Σ̂Xi [ j , l ] = ˆ̀PAC E (ti j , ti l )+ σ̂2. Finally, the estimator of the curve Yi is given by

Ŷi (t ) = m̂(t )+
r∑

a=1
ξ̂i a η̂a(t ),

where the number r is chosen by cross-validation.

1.3 What if roughness is not just pure noise?

In this section, we first discuss the assumptions and the limits of the standard model for

discretely observed data (Section 1.3.1). We then study in Section 1.3.2 the effects of including

the variations of a random function at finer scales into the standard model on the two main

approaches that have been introduced in the previous section. We conclude the section with

a description of the objective of this thesis (Section 1.3.3).
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1.3.1 Limits of the standard model

Let’s first recall the classical setup in FDA. We are interested in carrying out statistical inferences

on an L2([0,1])-valued random function Y using a collection of independent realizations

Y1, . . . ,Yn . Since in practice we cannot observe the complete functions Yi , we have to work

with a sample of vectors X1, . . . , Xn , for which we assume the following model:

Xi [ j ] = Yi (t j )+εi j , j = 1, . . . ,K . (1.3.1)

For simplicity we have assumed that each function Yi is observed on the same deterministic

grid of K points (t1, . . . , tK ). The εi j are identically and independently distributed (i.i.d) random

variables of mean zero and varianceσ2, and they are uncorrelated with the functions Y1, . . . ,Yn .

Note that as K increases, the vector εi = (εi 1, . . . ,εi K )> is becoming a white noise process. In

fact, the model (1.3.1) is equivalent to the following model where each random variable εi j is

viewed as the realization of a white noise process Wi at time t j as follows

Xi [ j ] = Yi (t j )+Wi (t j ), j = 1, . . . ,K . (1.3.2)

We are committing a slight abuse by calling the process W white noise. In fact, we know

that such a process is not realizable as a proper stochastic process, as it would not be trace

class (Ramsay and Silverman [RS05, Section 3.2.4]). This means that W must have some

dependence structure at some very fine scale, so its covariance function is supported on a

band {|s − t | < δ} for some infinitesimally small δ.

As explained in the previous section, there are two general approaches to deal with such

discretely observed data. While different, these approaches share the same two-step structure:

a smoothing step followed by a step consisting in doing fPCA, or equivalently a step consisting

in approximating the functions {Yi } by a r -term Karhunen–Loève expansion. Moreover, they

both make the same implicit assumption in the smoothing step, which is that the random

function Y in which we are interested (the "true" signal) is of smoothness class C k with k ≥ 2,

while in the fPCA step, they both assume that Y can be well-approximated by a process of rank

r . It follows that any variations that are of smoothness class less than C 2, or that correspond to

fluctuations around eigenfunctions of order at least r +1, are consigned to the noise process W .

However it seems restrictive to consider any rough variation in the data as noise, since a rough

process could still have some structure, but at a finer scale. This observation is confirmed

by the discussion of Ramsay and Silverman [RS05, Section 3.2.4] on the standard model for

the errors εi j . They claim that the assumption that W has a covariance function with only

a σ2-ridge on the diagonal is often too restrictive to hold with functional data. In fact, it is

really common to see autocorrelation in the functional residuals {Wi }, which indicates that the

process W is probably smooth at some fine resolution. This means that instead of modeling

W as a white noise process, we should probably consider it as a mean-square continuous

process having a banded covariance function b(s, t ) = b(s, t )1{|s − t | < δ}, for b a non-constant

continuous function and δ> 0 non-negligible. In this case, W would be a rough process that
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captures the local variations, or equivalently the variations at scale at most δ, of the data. As

stated by Ramsay and Silverman [RS05, Section 3.2.4], this modification to the standard model

is worthy of consideration:

"Nevertheless, a model specifically for variance heterogeneity and/or autocorrelation can pay off

in terms of better estimation, and this type of structure may be in itself interesting. A thoughtful

application of functional data analysis will always be open to these possibilities".

1.3.2 Effects of a less restrictive model on the two main approaches in FDA

We now study the consequences of allowing the covariance function b of W to be banded

(instead of having a trivial structure as in the standard model) on the two approaches described

in the previous section.

We first investigate the effect on the smoothing step. To accommodate for this new definition

of the process W , we would need to modify the "smooth-then-estimate" approach (Section

1.2.1) by replacing the objective function (1.2.3) by a weighted penalized least square criterion:

Ỹi = argmin
f ∈C 2([0,1])

(Xi − fv )TΩ(Xi − fv )T +λ
∫ 1

0
( f ′′(t ))2d t ,

where fv = ( f (t1), . . . , f (tK ))T and Ω = Σ−1
ε , with Σε the covariance matrix of the vector ε =

(W (t1), . . . ,W (tK ))>. However, there are two problems that arise with this new formulation of

the objective function. First, the matrix Σε is unknown, and second, we would need to add

some parametric assumption for the processes Yi and Wi to be jointly identifiable (Opsomer

et al. [OWY01]). On the other hand, for the "estimate-then-smooth" approach (Section 1.2.2),

instead of removing the diagonal of the empirical covariance matrix RK
n before smoothing it,

we would now need to remove a band {(s, t ) ∈ [0,1]2 : |s − t | < δ}. As with the other approach,

this would again lead to identifiability issues.

To study the effect of the new model for W on the fPCA step, we first study its consequences at

the population level. Let X = Y +W , and {θi ,φi }∞i=1, {λi ,ηi }r
i=1 and {βi ,ψi }∞i=1 be the respective

spectrum of the covariance operator R of X , L of Y and B of W , where we assumed L to be

of rank r <∞. We are interested in the relationship between the set of eigenfunctions {φi }∞i=1,

{ηi }r
i=1 and {ψi }∞i=1, since we want to study when it is possible to separate the processes Y

and W from X using its Karhunen–Loève expansion, or to simply recover the eigenfunctions

of L . This is a relevant question, because now that we do not consider W as a white noise

process, it is not necessarily true that the first r eigenfunctions of R and L will be equal. With

the standard model, this was not a problem because we know that if R = L +D, with D a

covariance operator defined through the covariance function d(s, t ) =σ21{|s− t | ≤ δ} for δ= 0,

then the first eigenfunctions of R and L will be exactly the same.
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To help clarify things, let’s write the Karhunen–Loève expansion of X = Y +W :

X =
∞∑

i=1
〈X ,φi 〉φi =

r∑
i=1

〈Y ,ηi 〉ηi +
∞∑

i=1
〈W,ψi 〉ψi ,

and the Mercer decomposition of its covariance function r :

r (s, t ) =
∞∑

i=1
θiφi (s)φi (t ) =

r∑
i=1

λiηi (s)ηi (t )+
∞∑

i=1
βiψi (s)ψi (t ).

If the systems {ηi }r
i=1 and {ψi }∞i=1 are orthogonal, then we can recover the expected principal

components of variation since the set {φi }∞i=1 will be equal to {ηi }r
i=1 ∪ {ψi }∞i=1. If moreover the

eigenvalues are "well-ordered", i.e. λr >β1, then {φi }r
i=1 = {ηi }r

i=1, and since W is orthogonal

to the functions {ηi }r
i=1, we obtain that Y is exactly equal to the r -term Karhunen–Loève

expansion of X , which means that for this particular case, the process W does not affect

the fPCA step. However, there is no reason why the systems {ηi }r
i=1 and {ψi }∞i=1 should be

orthogonal or "well-ordered", and if they are not, then it might well happen that neither {ηi }

nor {ψi } are eigenfunctions of R. Assuming for example that no pair {ηi ,ψ j } is orthogonal,

then even in the "well-ordered" situation where λr >β1, it is not necessarily true that φi = ηi

for i = 1, . . . ,r . In fact depending on the spacings of {λi }r
i=1 ∪ {βi }∞i=1, it could happen that

φi , i ≤ r, is a linear combination of some η j and ψ j . A similar situation is illustrated in Figure

1.1 with a simulated example. We have simulated data such that X = Y +W , where the

covariance operator L of Y is of rank 5 and has trigonometric eigenfunctions, and where

the eigenfunctions of B are locally supported on non-overlapping intervals of length δ =
0.05 (which implies that the covariance function b has a banded structure). Moreover, the

eigenvalues have been chosen such that λ4 >β1 >λ5. The figure shows 10 realizations of Y ,

W and X ((a) to (c)), the covariance functions `, b and ρ ((d) to (f)) and the eigenfunctions of

each operator ((g) to (i)). In graph (i) we can see that φ5 (green) has been affected by ψ1, since

it is clearly a distorted version of η5. But it is not the only eigenfunction of R that has been

affected, since in fact, even if β1 < λ4 < λ3, we can see that eigenfunctions φ3 (blue) and φ4

(yellow) are slightly modified versions of η3 and η4 .

The smoothing step which is taken before the fPCA step can also have some confounding

effects in practice. In fact, since spline smoothing is approximately equivalent to kernel

smoothing (Silverman [Sil84]), smoothing either using spline bases or a local linear smoother

implies approximately convolving the discrete data with a kernel of bandwidth h. If this

bandwidth is comparable with δ, then the variation of W would propagate to larger scales,

and then it would be impossible to separate the covariance operators L and B from R.

1.3.3 Objective of the thesis

It seems clear from the discussion of Section 1.3.2 that the two common approaches in FDA

cannot handle, without major modifications, a model where the rough part (variations at fine

scales) of a random function is not considered as white noise, and thus there is a need for
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a new approach. Developing the theory and the practical implementation of such a novel

approach is the main objective of this thesis.

In Chapter 2, we formulate the new model rigorously, and we then find nonparametric con-

ditions under which there exists a unique decomposition of the covariance operator R into

L +B, or equivalently under which L and B are jointly identifiable. We then consider the

more challenging problem of finding conditions to ensure the uniqueness of the discrete

analogue of this decomposition, i.e., of the decomposition RK =L K +BK , where RK is the

K -resolution version of R obtained from the evaluation of the curve X on a grid of K points.

The idea is to translate the discrete version of the decomposition into a matrix completion

problem, and then translate the identifiability conditions at the continuum level into condi-

tions ensuring the uniqueness of the matrix completion problem. Once we have conditions

ensuring that our problem is well-posed, we define consistent estimators of the covariance

operators L and B, without assuming knowledge of the rank r of L or of the bandwidth δ of

B. Using these estimators, we then define consistent estimators of the best linear predictors

of Y and W respectively. In Chapter 3, we describe how to obtain in practice the estimators

defined in Chapter 2, and we study the finite-sample performance of our new approach by

means of a simulation study and on a real dataset.
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Figure 1.1 – Ten smooth curves Y1, . . . ,Y10 (plot (a)), ten rough curves W1, . . . ,W10 (plot (b))
and their sum resulting in ten observations X1, . . . , X10 (plot (c)). The kernel of the smooth
operator L of rank 5 is illustrated in plot (d) with eigenfunctions η j (plot (g)), that of B in
plot (e) with eigenfunctions ψ j (plot (h)) and finally that of R =L +B in plot (f) with its first
5 eigenfunctions φ j represented in plot (i). The first 5 eigenfunctions of each operator are
represented respectively in black, red, blue, yellow and green.
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2 A new approach to analysing func-
tional data

In this chapter we develop a new approach to analyze functional data that allows the possibility

that the rough part observed in a random curve is not simply due to random noise, but is

due to a rough process that has a smooth structure at some fine scale and thus that is itself a

signal. We first introduce our new model and the practical setup under consideration (Section

2.1), then in Section 2.2 we give conditions under which our model is unique and identifiable

for both continuous and discrete versions of the covariance operators of the smooth and the

rough processes. We then define estimators of these covariance operators and prove their

consistency (Section 2.3), and we conclude the chapter by separating the smooth part from

the rough part of the data in Section 2.4 by estimating the best linear unbiased predictors of

these two processes.

2.1 The model : smooth plus rough components

As we already mentioned, we want to develop a model that can deal with data that arise as

the sum of a smooth process and a rough process where this latter is not necessary a noise

component. Our new model is defined as follows. We assume that X ∈ L2([0,1]) is a mean-zero

mean square continuous random function that can be decomposed as

X (t ) = Y (t )+W (t ), t ∈ [0,1], (2.1.1)

where Y and W are two uncorrelated processes. From Equation (2.1.1) and the fact that Y

and W are uncorrelated random variables we obtain the following additive structure of the

covariance operator R of X and of its covariance function ρ(s, t ) = E[X (s)X (t )], s, t ∈ [0,1]

R = L +B

ρ(s, t ) = `(s, t )+b(s, t ), t , s ∈ [0,1],
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where L and B are the covariance operators of Y and W , respectively defined by the covari-

ance functions

`(s, t ) = E[Y (s)Y (t )]−E[Y (s)]E[Y (t )], b(s, t ) = E[W (s)W (t )]−E[W (s)]E[W (t )].

In this model, the process Y represents the smooth part of X and the process W represents its

rough part. Smooth versus rough processes can be interpreted as having variation of coarse

scale or fine scale respectively. Let {λ j ,η j }r
j=1 be the spectrum of the operator L , which leads

to the following Mercer decomposition of `

`(s, t ) =
r∑

j=1
λ jη j (s)η j (t ).

To ensure that Y represents variations that occur at a global scale, we will assume that the

eigenfunctions {η j }r
j=1 are smooth and finite in number, i.e., that L is of finite rank (r <∞).

We assume that r is finite because it is usual in FDA to suppose that there are finitely many

non-negligable modes of variation, and also to ensure that the process Y is smooth. We will

specify later (Section 2.2.1) what precise smoothness conditions we need to impose on the

eigenfunctions of L . From now on we will refer to L as the smooth operator.

Another way to think of a process representing variations that occur at local scale is to see it as

a short-range dependence process. Letting the range of dependence of W be of order δ ∈ (0,1),

we expect its covariance function b to have a δ-banded structure, i.e.

b(s, t ) = 0 for s, t ∈ [0,1] such that |s − t | > δ, (2.1.2)

with Mercer decomposition given by

b(s, t ) =
∞∑

j=1
β jψ j (s)ψ j (t ) = 1{|t − s| < δ}

∞∑
j=1

β jψ j (s)ψ j (t ),

where {β j }∞j=1 and {ψ j }∞j=1 are respectively the eigenvalues and the eigenfunctions of B. Note

that in the sequel we will refer to B as the banded operator and to b as the δ-banded function.

The main objective of this chapter is to estimate L and B based on a sample of curves

observed discretely. Throughout the chapter, we will work with a sample X1, . . . , Xn of n iid

random functions defined as in (2.1.1), where each function Xi is observed on the grid of K

points

(t1, . . . , tK ) ∈TK = {
(x1, . . . , xK ) ∈RK : x1 ∈ I1,K , . . . , xK ∈ IK ,K

}
,

where {I j ,K }K
j=1 is the partition of [0,1] into intervals of length 1/K . We consider the set of grids

TK because it imposes a regularity on the grid that will be very helpful when we will work with

the discrete version of the covariance function b, and this without being too restrictive (the

points of the grid don’t have to be equally-spaced for example). Using this kind of sample, we

will derive estimators of the covariance operators L and B and prove their consistency in
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Section 2.3. We will then work on the second objective of the chapter which is to recover the

curves Y and W from X , and to do this we will define consistent estimators of the best linear

unbiased predictors for both curves Y and W (Section 2.4). But before doing all this, we study

in the next section the well-posedness of the decomposition of R into L +B, i.e. we study

if the decomposition is unique and if it is identifiable given a sample of discretely observed

curves constructed as we just described.

2.2 Well-Posedness : uniqueness and identifiability

In this section, we first study under which conditions the decomposition R =L +B is unique

(Section 2.2.1). We then study in Section 2.2.2 the uniqueness of the discrete version of this

decomposition, which is defined using the K -resolution version of the covariance operators.

2.2.1 Uniqueness of the decomposition R =L +B

Recall that we have a covariance operator R that can be decomposed as the sum of a smooth

operator L and a banded operator B, and we would like to estimate these two latter operators.

It is clear that we need to make more assumptions on at least one of them if we want the

decomposition to be unique, since a priori there is no reason to suspect that only two operators

sum up to R.

It turns out that the key assumption we need to make for this decomposition to be unique is

that the covariance function ` of L is a bivariate real analytic function. Recall that a function

f : U →R, where U is an open subset of Rk , is analytic if for each α ∈U the function may be

represented by a convergent power series in some neighborhood V ofα, i.e. f (x) =∑∞
n=0 Pn(x−

α),∀x ∈V , where Pn is a homogeneous polynomial of degree n in k variables. Using analytic

continuation, we know that if the function ` is analytic on an open subset U containing the

band {(s, t) ∈ [0,1]2 : |s − t | ≤ δ}, then knowing ` on the domain {(s, t) ∈ [0,1]2 : |s − t | > δ} is

equivalent to knowing it on the whole domain [0,1]2. This last fact is sufficient to obtain

uniqueness of the decomposition, as stated in the following theorem.

Theorem 2.2.1 (Uniqueness). Let L1,L2 : L2[0,1] → L2[0,1] be trace-class covariance operators

of rank r1 <∞ and r2 <∞, respectively. Let B1,B2 : L2[0,1] → L2[0,1] be banded trace-class

covariance operators of bandwidth δ1 < 1 and δ2 < 1 respectively. If the eigenfunctions of L1

and L2 are real analytic, then we have the equivalence

L1 +B1 =L2 +B2 ⇐⇒ L1 =L2 & B1 =B2.

Proof. Since the eigenfunctions of L1 and L2 are analytic and max{r1,r2} <∞, it follows that

the corresponding covariance functions `1 and `2 are bivariate analytic functions on [0,1]2

(Krantz and Parks [KP02]).

The zero set of a real bivariate analytic function is at most 1-dimensional, unless the function is
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Figure 2.1 – Schematic illustration of the idea underlying the proof of Theorem 2.2.1.

uniformly zero (Krantz and Parks [KP02, Thm 6.33]). Since analytic functions are closed under

subtraction, this implies that if `1 and `2 coincide on an open subset U of [0,1]2, then the

function `1−`2 has to be uniformly zero, which implies that `1 and `2 coincide everywhere on

(0,1)2, and thus on [0,1]2 by continuity. This will in turn imply that B1 and B2 also coincide.

Finding such a subset U will then conclude the proof.

Without lost of generality, assume that δ1 ≥ δ2. Define

U =
(
δ1,1

)
×

(
0,1−δ1

)
.

Since L1 +B1 =L2 +B2, but B1 =B2 = 0 on U , it must be that the covariance functions of

L1 and L2 coincide on the open set U , and the proof is complete.

An schematic illustration of the idea of the proof is presented on Figure 2.1; the squares

represent covariance functions and the white color is used to represent zero values.

In the previous theorem, it would have sufficed to assume that the covariance function ` is

a real analytic function on some open subset U ⊃ {(s, t) ∈ [0,1]2 : |s − t | ≤ δ}. We present the

theorem with the stronger assumption that the smooth operator L is of finite rank and has

real analytic eigenfunctions since this stronger assumption will be required when we will

consider the discrete version of this decomposition problem in the next subsection.

It is interesting to note that the condition of the analyticity of ` on an open subset U containing

the δ-band is essentially a necessary condition. Indeed, it is impossible to relax it without

stronger assumptions on the covariance operator B, since even assuming that ` is C∞ on the

whole domain [0,1]2 is not sufficient to guarantee the uniqueness of the decomposition. This

follows from the fact that it is possible to construct δ-banded functions that are C∞. Let s be

C∞, h be a δ-banded function and m be C∞ and δ-banded. Then if we consider the function
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r (s, t ) = c(s, t )+h(s, t )+m(s, t ), we have more than one way to write it as a smooth component

plus a banded one. We can either set `= c +m and b = h or `= c and b = h +m. An example

of a C∞ and δ-banded function is given by the self-convolution of the bump function defined

as

b(s, t ) =

 exp

(
− 1

1−
(

s−t
2δ

)2

)
if |s − t | < 2δ,

0 otherwise.

On the other hand, the assumptions of finite rank and real analytic eigenfunctions that we

make on L are not as restrictive as they may seem. Indeed, the class of real analytic func-

tions includes polynomials, trigonometric functions, exponential and logarithmic functions,

and it is closed under the most common operations such as linear combinations, products,

compositions and differentiation. Moreover, the following proposition tells us that the set

of finite rank r covariance operators with analytic eigenfunctions is dense in the set of all

finite rank r covariance operators. This means that the rank r Mercer approximation of the

covariance function, which is optimal in a mean-square sense, can be approximated at any

level of precision by a rank r covariance operator with analytic eigenfunctions. Consequently,

if we do believe that a covariance operator is approximately of finite rank, then it can be very

well approximated by an operator of the same rank having analytic eigenfunctions:

Proposition 2.2.1. Let Z be an L2[0,1]-valued random function with a trace class covariance

G of rank r <∞. Then, for any ε> 0 there exists a random function Y whose covariance L has

analytic eigenfunctions and rank q ≤ r , such that

E‖Z −Y ‖2
L2 < ε and ‖G −L ‖T R < ε.

If additionally G has C 1 eigenfunctions on [0,1], then we have the stronger result that for any

ε> 0, there exists a random function Y whose covariance L has analytic eigenfunctions and

rank q ≤ r , such that

sup
t∈[0,1]

E|Z (t )−Y (t )|2 < ε and sup
s,t∈[0,1]

∣∣g (s, t )−`(s, t )
∣∣< ε,

where g and ` are the kernels of G and L , respectively.

Proof. We will first prove the results referring to the processes Z and Y , and then those

referring to their covariances, G and L . Let µ be the mean function of Z and G =∑r
n=1θnφn ⊗

φn , be the spectral representation of its covariance operator, with {θn ,φn} the corresponding

eigenvalues/eigenfunctions. The Karhunen-Loève expansion of Z is given by

Z =µ+
r∑

n=1
〈Z −µ,φn〉L2φn .

Now let ε> 0 be arbitrary, and define γ= ε/‖{G ‖T R . Define the function fn,J to be the order
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J Fourier series approximation of φn , and note that this is an analytic function for all J <∞
(and of course all n). Since Fourier series are dense in L2, we know that there exists J1, ..., Jr

such that

‖φn − fn,Jn‖L2 < γ.

In particular, if we we pick J∗ = max{J1, ..., Jr } and define fn = fn,J∗ , we have that

sup
1≤n≤r

‖φn − fn‖L2 < γ.

The functions fn are, of course, analytic. Finally, define a new random function Y via the

random series

Y =µ+
r∑

n=1
〈Z −µ,φn〉L2︸ ︷︷ ︸

=ξn

fn = Z +
r∑

n=1
ξnen ,

where en = fn −φn satisfies ‖en‖L2 < γ. Note that since the { fn}r
n=1 are analytic and finitely

many, their span consists of analytic functions. Thus the eigenfunctions of the covariance

of Y (which are not necessarily exactly equal to the fn) are analytic too. Furthermore, the

rank of Y can clearly not exceed r , whatever the value of ε. Now, since the {ξn} are mean-zero

uncorrelated random variables of variance {θn}, we may write

E‖Z −Y ‖2
L2 = E

∫ 1

0

( r∑
n=1

ξne(t )

)2

d t =
∫ 1

0
E

( r∑
n=1

ξne(t )

)2

d t =
∫ 1

0

r∑
n=1

θne2
n(t )d t

=
r∑

n=1
θn‖en‖2

L2 < γ
r∑

n=1
θn = γ‖G ‖T R = ε.

If we happen to know that {φn} are C 1, we may define again γ= ε/‖G ‖T R , but now re-define

fn to be trigonometric functions such that

sup
1≤n≤r

‖φn − fn‖∞ < γ1/2,

where ‖φn‖∞ = sup{|φn(t)| : t ∈ [0,1]}. This is possible, since the eigenfunctions {φn} are C 1,

and thus can be uniformly approximated by Fourier series. Define Y and en as before, but

with the new definition of fn in place. Once again, since the {ξn} are mean-zero uncorrelated

random variables of variance {θn}, we have that for any t ∈ [0,1],

E(Z (t )−Y (t ))2 = E
[ r∑

n=1
ξnen(t )

]2

=
r∑

i=1
θne2

n(t ) < γ‖G ‖T R = ε.

Now let us focus on the approximation of G itself. Let ε> 0, and define γ= ε/(2‖G ‖T R ). Define

the function fn,J to be the order J Fourier series approximation of the eigenfunction φn , as

before. Again, there exist J1, ..., Jr such that

‖φn − fn,Jn‖L2 < γ.
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Set J∗ = max{J1, ..., Jr } and define fn = fn,J∗ , so that

sup
1≤n≤r

‖φn − fn‖L2 < γ.

The functions fn are, of course, analytic. Now define the operator L to be

L =
r∑

n=1
θn fn ⊗ fn .

This operator is analytic and has rank at most r . Furthermore, its eigenfunctions are analytic

since they lie in the range of L , which is spanned by the analytic functions fn . We now have:

‖G −L ‖T R ≤
r∑

n=1
θn‖φn ⊗φn − fn ⊗ fn‖T R

=
r∑

n=1
θn‖φn ⊗φn −φn ⊗ fn +φn ⊗ fn − fn ⊗ fn‖T R

≤
r∑

n=1
θn

{‖φn ⊗ (φn − fn)‖T R +‖(φn − fn)⊗ fn‖T R
}

=
r∑

n=1
θn

{‖φn‖L2‖φn − fn‖L2 +‖φn − fn‖L2‖ fn‖L2

}
=

r∑
n=1

θn(1+‖ fn‖L2 )‖φn − fn‖L2

< 2γ‖G ‖T R = ε,

where we used the fact that ‖ fn‖L2 < 1 and where the fourth line is obtained from the equality

‖u ⊗ v‖T R =
∞∑

i=1
〈(u ⊗ v)∗(u ⊗ v)1/2ei ,ei 〉L2

=
∞∑

i=1
〈‖v‖L2‖u‖−1

L2 (u ⊗u)ei ,ei 〉L2

=
∞∑

i=1
‖v‖L2‖u‖−1

L2 〈u,ei 〉2
L2 = ‖v‖L2‖u‖L2 ,

where {ei } is an arbitrary orthonormal basis of L2([0,1]). If we know that the eigenfunctions

{φn} of G are C 1, the Fourier series expansion of eachφn(t ) converges uniformly and absolutely.

Let c1 <∞ be the maximum of the `1 norms of the Fourier coefficients of φ1, ...,φr (c1 <∞ by

absolute convergence of the respective Fourier series). Re-define

γ= ε×
[(

c1 + sup
1≤n≤r

‖φn‖∞)

)
‖G ‖T R

]−1

.

Following the same steps as before, we can choose a J∗ sufficiently large, such that setting
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fn = fn,J∗ we have

sup
1≤n≤r

‖φn − fn‖∞ < γ.

It now follows that

‖g −`‖∞ ≤
r∑

n=1
θn sup

s,t
|φn(s)φn(t )− fn(s) fn(t )|

=
r∑

n=1
θn sup

s,t
|φn(s)φn(t )−φn(s) fn(t )+φn(s) fn(t )− fn(s) fn(t )|

≤
r∑

n=1
θn

{
sup

t
sup

s
|φn(s)| ∣∣φn(t )− fn(t )

∣∣+ sup
s

sup
t

| fn(t )| ∣∣φn(s)− fn(s)
∣∣}

≤
r∑

n=1
θn(c1 + sup

t
|φn(t )|)‖φn − fn‖∞

<
(
c1 + sup

1≤n≤r
‖φn‖∞

)
γ‖G ‖T R = ε.

Finally, for any ε> 0, we can replace the specific truncation J∗(ε) used in each of the four parts

of the proof, by the largest of all these J∗(ε), and so ε can be chosen to be the same in all the

approximation results. This concludes the proof.

2.2.2 Uniqueness of the decomposition RK =L K +BK

As we already mentioned, in practice we can’t observe the function X on the whole interval

[0,1] but only on a grid (t1, . . . , tK ) ∈TK of K points. This means that we need to work with a

discrete version of the objects R,L and B, i.e., with their K -resolution representations that

is denoted respectively by RK ,L K and BK , and defined respectively through the covariance

functions

ρK (x, y) =
K∑

i , j=1
ρ(ti , t j )1{(x, y) ∈ Ii ,K × I j ,K },

`K (x, y) =
K∑

i , j=1
`(ti , t j )1{(x, y) ∈ Ii ,K × I j ,K },

bK (x, y) =
K∑

i , j=1
b(ti , t j )1{(x, y) ∈ Ii ,K × I j ,K }.

Since these three K -resolution covariance functions are uniquely defined by K ×K coefficients,

we use the following matrices to represent them

RK (i , j ) = ρ(ti , t j ), LK (i , j ) = `(ti , t j ), B K (i , j ) = b(ti , t j ).
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Figure 2.2 – Illustration of a K-resolution covariance function and of its matrix representation
for the case K = 4

Figure 2.2 illustrates the concept of a K -resolution covariance function and of its matrix

representation. Note that the Hilbert–Schmidt norm of a K-resolution covariance operator

can be written in terms of the Frobenius norm of its matrix representation as

‖RK ‖2
HS =

∫ 1

0

∫ 1

0
(ρK (s, t ))2d td s =

K∑
i=1

K∑
j=1

∫
Ii ,K

∫
I j ,K

(ρ(ti , t j ))2d td s

=
K∑

i=1

K∑
j=1

1

K 2 (ρ(ti , t j ))2 = 1

K 2 ‖RK ‖2
F .

We are now interested in finding conditions under which the decomposition RK =L K +BK

is identifiable, and for this, we will work with the equivalent matrix decomposition given by

RK = LK +B K . From the assumption rank(L ) = r , we have that the matrix LK is at most of

rank r . On the other hand, since the covariance function b of B is δ-banded and due to the

regularity of the grids contain in TK , we have that the matrix B K is a banded matrix such

that B K (i , j ) = 0 if |i − j | > dδ ·K e, and from now on we will refer to it as the δ-banded matrix.

To sum up, we are looking for conditions under which it is possible to uniquely recover the

matrices LK and B K from RK , when LK is at most of rank r and B K is δ-banded, which is

a particular case of a sparse structure. We are essentially dealing with a decomposition of

the type "low-rank + sparse". This kind of problem has received a lot of attention in recent

years, see Remark 2.2.1 below, and it is also related to low-rank matrix completion. In fact, an

appealing aspect of our problem is that we know the sparsity pattern of the matrix B K exactly,

so we can translate our "low-rank + sparse" decomposition into a low-rank matrix completion

problem in the following way. Define the matrix RK
sδ as the matrix RK from which we have

removed the values on the band sδ = {(i , j ) ∈ {1, . . . ,K }2||i − j | ≤ dδ ·K e} (by removing the values

we mean that we now consider them as unknown). We are then looking for conditions under

which a completion of RK
sδ of at most rank r will be unique and equal to LK . It turns out
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that the conditions to ensure such a unique completion are those that ensure the unique

decomposition of R =L +B, plus a condition on the relation between the resolution K , the

rank r of the smooth operator and the bandwidth δ of the banded operator. The result is

stated in Theorem 2.2.2 below .

Remark 2.2.1. In recent years, considerable attention has been dedicated to two statistical prob-

lems involving the estimation of a low-rank matrix from partial or contaminated information:

namely the low-rank matrix completion problem and the low-rank plus sparse decomposition

problem. In the first problem, some entries of the data matrix are unobserved and in the second

one, some of its entries have been corrupted by noise of arbitrary magnitude. The classical

example of an incompletely observed low-rank matrix is the matrix obtained from users ranking

of movies on Netflix ([Net]) and examples of data that can be effectively modelled as the sum of

a low-rank matrix plus a sparse one are abundant in imaging data (Basri and Jacobs [BJ03],

Candès et al. [CLMW11]).

The problem of low-rank matrix completion can be translated into mathematical terms as

follows. Let M0 be a n ×n low-rank matrix and let M be equal to M0 for the entries (i , j ) ∈Ω,

whereΩ is a subset of [n]× [n], with [n] = {1,2, . . . ,n}, and be unobserved for the other entries.

The goal is to recover M0 from M, and for this one would like to solve the optimisation problem

min
θ∈Rn×n

rank(θ) subject to Mi j = θi j ∀(i , j ) ∈Ω, (2.2.1)

and hope that there is a unique solution which is equal to M0. Unfortunately, this problem is

computationally intractable. But we know from the work of Fazel [Faz02] that the nuclear norm

of a matrix gives a good approximation of its rank (more precisely that the nuclear norm is the

convex envelope of the rank function), where we recall that the nuclear norm of a matrix A is

the sum of its singular values and is denoted by ‖A‖∗. Using the nuclear norm as a surrogate of

the rank in (2.2.1) gives a convex relaxed version of the low-rank matrix completion problem

and this version has received considerable attention. A key contribution on this subject is that of

Candès and Recht [CR09], who give conditions to ensure that the solution of the relaxed problem

is unique and equal to M0 with high probability. These conditions can be summarised as follows.

The low rank matrix M0 has to satisfy the standard and strong incoherence properties which

among other things, imply that M0 is not sparse. Moreover the number m of missing values

has to be smaller than a given bound and the subsetΩ has to be uniformly distributed over all

subset of m values of [n]× [n]. Using these assumptions, considerable work has been done to

improve the bound on m (Candès and Tao [CT10], Recht [Rec11], Gross [Gro11]) and to extend

the model to the case where the observed entries of M are corrupted versions of those of M0

(Candès and Plan [CP10], Chen at al. [CJSC13]). On the other hand, Chen [Che15] shows that

strong incoherence is not a necessary condition. More importantly still, Chen et al. [CBSW14]

show that neither incoherence property (standard or strong) is necessary if, instead of being

chosen uniformly at random, the revealed entries are chosen proportionally to the local row

and column coherence of the matrix, which roughly speaking means that the more a row or a

column is sparse, the more of its entries should be revealed.
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Let’s now focus on the decomposition of a matrix into a low-rank matrix plus a sparse matrix.

Let M be a n ×n matrix equal to L0 +S0 where L0 is a low-rank matrix and S0 is a sparse one.

Using the observed matrix M, the goal is to recover both L0 and S0, and to do this one would

like to solve the optimisation problem

min
L,S∈Rn×n

rank(L)+λ‖S‖0 subject to M = L+S, (2.2.2)

where λ is a tuning parameter and the pseudo-norm ‖S‖0 yields the number of non-zero entries

of S. Again this problem is computationally intractable, so a common approach is to work with

the relaxed version given as follows. The rank is replaced by the nuclear norm as before, and

the `0 pseudo-norm is replaced by the `1-norm. Note that the `1-norm is known to be a good

surrogate when dealing with cardinality minimisation since it is the convex envelope of the `0

pseudo norm. Recall that the `1-norm of a n ×n matrix A is given by ‖A‖1 = ∑n
i , j=1 |ai j |. In

Candès et al. [CLMW11], conditions on L0 and B0 that guarantee that the solution (L̂, Ŝ) of the

convex relaxed version of (2.2.2) is unique and such that (L̂, Ŝ) = (L0,S0) with high probability

are provided. These conditions are quite similar to those for the low-rank matrix completion

problem, namely the matrix L0 has to satisfy the standard and the strong incoherence properties

and the sparsity pattern of S0 has to be selected uniformly at random. An extension of this paper

is Zhou et al. [ZLW+10], which considers the more general model M = L0 +S0 +Z , where Z is a

noise matrix. Instead of assuming that the sparsity pattern of S0 is random, Chandrasekaran et

al. [CaSPW11] develop deterministic conditions to ensure that the non-zero entries are "well

spread". The work in Chen et al. [CJSC13] unifies the low-rank matrix completion and the

low-rank plus sparse decomposition problems where both the missing values (the erasures)

pattern and the sparsity pattern of the errors can be either random or deterministic. Particular

cases of their main unified result recover the results of Candès and Recht [CR09], Candès and

Tao [CT10], Chandrasekaran et al. [CaSPW11] and Candès et al. [CLMW11].

Theorem 2.2.2 (Discrete Identifiability). Let L1 and L2 be covariance operators of finite

ranks r1 < ∞ and r2 < ∞, respectively, and assume without loss of generality that r1 ≥ r2.

Let B1 and B1 be two banded continuous covariance operators of bandwidth δ1 < 1/2 and

δ2 < 1/2 respectively. Given (t1, . . . , tK ) ∈TK , define their K -resolution matrix coefficients to be

(LK
1 ,B K

1 ,LK
2 ,B K

2 ) ∈RK×K ,

LK
m(i , j ) = `m(ti , t j ) and B K

m(i , j ) = bm(ti , t j ), i , j ∈ {1, . . . ,K }, for m = 1,2.

If the eigenfunctions of L1 and L2 are all real analytic, and

K ≥ K ∗ = max

(
2r1 +2

1−2δ1
,

2r1 +2

1−2δ2

)
,

then we have the equivalence

LK
1 +B K

2 = LK
2 +B K

2 ⇐⇒ LK
1 = LK

2 & B K
1 = B K

2 ,

almost everywhere on TK with respect to Lebesgue measure.
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We now have a result that holds almost everywhere on TK but not pointwise on it. This means

that it is valid for almost all grids in TK , or equivalently, that if we choose a grid uniformly at

random in TK , then the result hold with probability one. This restriction comes from the key

result stated in the following theorem, which is fundamental in proving Theorem 2.2.2.

Theorem 2.2.3. Let L be a covariance operator associated with the covariance function `(s, t ) =∑r
i=1λiηi (s)ηi (t ) with r <∞ and real analytic orthonormal eigenfunctions {η1, . . . ,ηr }. If K > r ,

then the minors of order r of the matrix LK = {`(ti , t j )}K
i , j=1 are all non-zero, almost everywhere

on TK .

Proof. First notice that from `(s, t ) =∑r
i=1λiηi (s)ηi (t ), we have

LK ( j , l ) =
r∑

i=1
λiηi (t j )ηi (tl ).

Thus, LK can be written as U KΣ(U K )>, where

U K =


η1(t1) η2(t1) · · · ηr (t1)

η1(t2) η2(t2) · · · ηr (t2)
...

...
...

η1(tK ) η2(tK ) · · · ηr (tK )

 and Σ=


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λr

 .

Any r × r submatrix of LK obtained by deleting rows and columns, can then be written as

U K
F Σ(U K

F ′)>,

where U K
F (resp. U K

F ′) is an r × r matrix obtained by deleting rows of U K whose indices are not

included in F ⊆ {1, . . . ,K } (resp. F ′). The condition that any minor of order r of LK be non-zero

is then equivalent to the condition that

det
[
U K

F Σ(U K
F ′)>

]
= det[U K

F ]det[Σ]det[U K
F ′ ] 6= 0,

for any subset F,F ′ ⊆ {1, . . . ,K } of cardinality r . By construction det(Σ) 6= 0, so the minor

condition is then equivalent to requiring that det(U K
F ) 6= 0 for any subset F ⊆ {1, . . . ,K } of

cardinality r .

We will show that this is indeed the case almost everywhere on TK . Note first that TK can be

seen as a hypercube of dimension K with side length 1/K , where each point in the hypercube

represents a different grid, and so we can define the Lebesgue measure µ on TK . Let F =
{1, . . . ,r }, without loss of generality (so that U K

F is formed by keeping the first r rows of U K ).

Using the Leibniz formula, we have that det(U K
F ) can be written as the function

D(t1, . . . , tr ) = ∑
σ∈Sr

ε(σ)
r∏

i=1
ηi (tσ(i )),
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where Sr is the symmetric group on r elements and ε(σ) is the signature of the permutation σ.

The function D is real analytic on (0,1)r , by virtue of each ηi being real analytic on (0,1).

We will now proceed by contradiction. Assume that

µ{(x1, . . . , xK ) ∈TK : D(x1, . . . , xr ) = 0} > 0.

Sinceµ is Lebesgue measure, it follows that the Hausdorff dimension of the set A = {(x1, . . . , xr ) ∈
(0,1)r : D(x1, . . . , xr ) = 0} is equal to r . However, since D is analytic, Theorem 6.33 of Krantz

and Parks [KP02] implies the dichotomy: either D is constant everywhere on (0,1)r , or the set

A is at most of dimension r −1. Thus it must be that D is everywhere constant on (0,1)r , the

constant being of course zero:

D(x1, . . . , xr ) = ∑
σ∈Sr

ε(σ)
r∏

i=1
ηi (xσ(i )) = 0, ∀ (x1, . . . , xr ) ∈ (0,1)r .

Now fix (x1, . . . , xr−1) and apply to D (viewed as a function of xr only) the continuous linear

functional Tηr ( f ) = 〈 f ,ηr 〉. We obtain that for all (x1, . . . , xr−1) ∈ (0,1)r :

0 = 〈D,ηr 〉 = ∑
σ∈Sr

ε(σ)

[ ∏
i :σ(i )6=r

ηi (xσ(i ))

]
〈ησ−1(r ),ηr 〉

= ∑
σ∈Sr−1

ε(σ)
r−1∏
i=1

ηi (xσ(i )).

Applying the continuous linear functionals Tη j ( f ) = 〈 f ,η j 〉 iteratively to D while keeping

(x1, . . . , x j−1) fixed then leads to

η1(y) = 0, ∀ y ∈ (0,1).

This last equality contradicts the fact that η1 is of norm one, and allows us to conclude that

µ{(x1, . . . , xK ) ∈TK : D(x1, . . . , xr ) = 0} = 0.

The proof of Theorem 2.2.2 below is inspired by Proposition 2.12 of Király and Tomioka [KT12]

and makes great use of Theorem 2.2.3.

Proof of Theorem 2.2.2. Let δ= max{δ1,δ2} and assume without loss of generality that r1 ≥ r2.

Let Ω be the set of indices on which both B1 and B2 vanish, which is Ω= {(i , j ) ∈ {1, . . . ,K }2 :

|i − j | > dδ ·K e} due to the bandwidth assumption imposed on B1 and B2 and the fact that

(t1, . . . , tK ) ∈ TK . From L1 +B1 = L2 +B2, we obtain that L1(i , j ) = L2(i , j ),∀(i , j ) ∈Ω. Let ΩA

be the set of indices of a submatrix formed by the first r1 rows and the last r1 columns of a

K ×K matrix, the condition K ≥ K ∗ = 2r1+2
1−2δ implies that ΩA ⊂Ω, which in turn implies that

the matrices L1 and L2 contain a common submatrix A of dimension r1 × r1 .
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1

?

Step 1

1

?

Step 2

Figure 2.3 – Illustration of two possible first steps of the iterative procedure explained in
the proof of Theorem 2.2.2. The gray squares represent known entries and the white ones
unknown entries. In this example, K = 10,δ= 0.2 and r1 = 2 and the red squares represent a
r1 × r1 matrix with only one unknown entry.

Assume that all minors of order r1 of L1 are non-zero. Then, the determinant of A is non-zero,

which implies that the rank of L2 is also r1. We thus establish that L1 and L2 are two rank r1

matrices equal onΩ. Let L∗ be a matrix equal to L1 onΩ, but unknown at those indices that

do not belong toΩ. We will now show that there exists a unique rank r1 completion of L∗. Due

to the banded pattern of the unobserved entries of L∗ and the inequality K ≥ K ∗ = 2r1+2
1−2δ , it is

possible to find a submatrix of L∗ of dimension (r1 +1)× (r1 +1) with only one unobserved

entry, denoted x∗. Using the fact that the determinant of any square submatrix of dimension

bigger than r1 +1 is zero, we obtain a linear equation of the form ax∗+b = 0, where a is equal

to the determinant of a submatrix of dimension r1 × r1. Since we assume that any minor of

order r1 is non-zero, we have that a 6= 0 and the previous equation has a unique solution. It is

then possible to impute the value of x∗. Applying this procedure iteratively until all missing

entries are determined allows us to uniquely complete the matrix L∗ into a rank r1 matrix.

Note that this iterative procedure is illustrated in Figure 2.3 .

In summary, we have demonstrated that when all minors of order r1 of L1 are non-zero,

L∗ = L1 = L2 and hence B1 = B2. Theorem 2.2.3 assures us that L1 indeed has non-vanishing

minors of order r1 almost everywhere on TK , and so we conclude that it must be that L1 = L2

and B1 = B2 almost everywhere on TK .

We now comment in more detail on the result stated in Theorem 2.2.2. As already mentioned,

when we pass from the continuous to the discrete case, we still have a unique decomposition,

but this time for almost every grid in TK and only if this following relation between the number
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Figure 2.4 – Illustration of the relation between the resolution K , the rank r of the smooth
operator and the bandwidth δ of the rough operator. For different values of δ, the maximal
possible rank r is plotted as a function of the resolution K .

of grid points K , the rank r of L and the bandwidth δ of B holds:

r ≤ K

(
1

2
−δ

)
−1.

As depicted in Figure 2.4, we can see that this last condition is not very restrictive, since in

the practice of FDA, one almost always assumes that the rank of the smooth operator is quite

small (≤ 5), so it allows us to have identifiability for quite large values of δ and modest values

of K .

Another interesting aspect of this theorem is that we can use it to derive directly an optimi-

sation problem in order to uniquely recover LK and B K from RK . This result is presented in

Corollary 2.2.1 and will be very helpful in the next section in order to define estimators of L

and B.

Corollary 2.2.1. Let L be a rank r <∞ covariance operator with analytic eigenfunctions and

kernel `, and B a banded continuous covariance operator of bandwidth δ with kernel b. For

(t1, . . . , tK ) ∈TK , let

LK = {`(ti , t j )}i j , B K = {b(ti , t j )}i j ,

and RK = LK +B K . Assume that

δ< 1

4
and K ≥ 4r +4.

Define the matrix P K ∈RK×K by P K (i , j ) = 1
{|i − j | > dK /4e}. Then, for almost all grids in TK :

1. The matrix LK is the unique solution to the optimisation problem

min
θ∈RK×K

rank{θ} subject to
∥∥P K ◦ (RK −θ)

∥∥2
F = 0. (2.2.3)
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2. Equivalently, in penalised form,

LK = argmin
θ∈RK×K

{∥∥P K ◦ (RK −θ)
∥∥2

F +τrank(θ)
}

, (2.2.4)

for all τ> 0 sufficiently small.

Here “◦" denotes the Hadamard product (entrywise product).

Instead of letting δ< 1/2 and K ≥ (2r +2)/(1−2δ) as in Theorem 2.2.2, we have made the more

restrictive assumption that δ< 1/4 and K ≥ 4r +4. Passing from δ< 1/2 to δ< 1/4 allows us to

uniquely solve the optimisation problems (2.2.3) and (2.2.4) without knowing neither r nor δ,

which is very appealing. Note also that the minimisation problem (2.2.3) is exactly a low-rank

matrix completion. Indeed, it asks to find the matrix with the smallest rank that is equal to

RK everywhere except on the band s1/4 = {(i , j ) ∈ {1, . . . ,K }2||i − j | ≤ d K /4e}, and this is exactly

equivalent to seeking to complete the matrix RK
s1/4

(RK without the band s1/4) such that it has

the smallest possible rank.

Proof. Since δ< 1/4 and K ≥ 4r +4 implies K ≥ 2r+2
1−2δ , we can directly use Theorem 2.2.2, which

tells us that LK is the only matrix of rank at most r such that P K ◦RK = P K ◦LK , and then such

that ‖PK ◦ (RK −LK )‖2
F = 0. The objective function (2.2.3) thus achieves its minimal value of r

at LK . We now prove that

LK = argmin
θ∈RK×K

{∥∥P K ◦ (RK −θ)
∥∥2

F +τrank(θ)
}

,

for all τ> 0 sufficiently small. Since we have established that LK uniquely solves

min
θ∈RK×K

rank{θ} subject to
∥∥P K ◦ (RK −θ)

∥∥2
F = 0,

it follows that for all τ> 0 and any θ ∈RK×K of rank greater or equal to r , we have that∥∥P K ◦ (RK −LK )
∥∥2

F +τrank(LK ) < ∥∥P K ◦ (RK −θ)
∥∥2

F +τrank(θ).

We thus concentrate on matrices θ ∈RK×K of rank at most r −1, for r > 1. Let

µ= min
θ∈RK×K , rank(θ)≤r−1

{∥∥P K ◦ (RK −θ)
∥∥2

F

}
> 0.

Now let τ∗ = µ
r−1 . Then, for any τ< τ∗, and any θ of rank less than r ,

∥∥P K ◦ (RK −LK )
∥∥2

F +τrank(LK ) = τr <µ+τ≤ ∥∥P K ◦ (RK −θ)
∥∥2

F +τrank(θ).
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In summary, putting our results together, we have shown that for all τ ∈ (0,τ∗),

LK = argmin
θ∈RK×K

{∥∥P K ◦ (RK −θ)
∥∥2

F +τrank(θ)
}

.

Finally, it is worth pointing out that although τ∗ depends on r , this does not mean that the

objective function depends on unknowns: r can be shown (using Theorem 2.2.3) to be equal

to the rank of the submatrix formed by the first dK /4e rows and the last dK /4e columns of RK ,

and thus we can determine τ∗ directly from the matrix RK . This completes the proof.

2.3 Estimation of L and B

In this section we will define estimators of L and B, and we will prove that they are consistent.

In order to do this, we will first define estimators of the matrices LK and B K . In the previous

section, we gave conditions under which there exists a unique decomposition of the matrix RK

into a low-rank matrix LK plus a banded matrix B K , and Corollary 2.2.1 gave us two equivalent

optimisation problems that one can solve to recover LK from RK . The idea to define our

estimator of LK is simply to use the optimisation problem (2.2.4) but where we have replaced

the unknown matrix RK by its empirical version as it is presented in the following definition.

Definition 2.3.1. Let (X1, . . . , Xn) be i.i.d. copies of X = Y +W . Let (t1, . . . , tK ) ∈TK and assume

we observe

Xi (t j ) = Yi (t j )+Wi (t j ), for i = 1, . . . ,n and j = 1, . . . ,K .

Let RK
n ∈RK×K be the empirical covariance matrix of our sample, i.e.

RK
n (i , j ) = 1

n

n∑
a=1

(Xa(ti )− µ̂(ti ))(Xa(t j )− µ̂(t j )), where µ̂(ti ) = 1

n

n∑
a=1

Xa(ti ).

We define the estimator L̂K
n of LK to be an approximate minimum of

min
0¹θ∈RK×K

1

K 2

{∥∥P K ◦ (RK
n −θ)

∥∥2
F +τnrank(θ)

}
, (2.3.1)

where P K ∈ RK×K is defined as P K (i , j ) = 1
{|i − j | > dK /4e} and τn > 0 is a tuning parameter

such that τn → 0 as n → ∞. By approximate minimum it is meant that the value of the

functional at L̂K
n is within OP(n−1) of the value of the overall minimum.

Since the function to be minimized in (2.3.1) is not convex, it is not immediately clear how to

solve the optimisation problem in practice, and it is also not clear how to choose the tuning

parameter τn . We will discuss in detail how to get around these issues in Section 3.1. Now that

we have an estimator of LK , we could simply define the estimator of B K as being∆K
n = RK

n − L̂K
n .

However, we have no guarantee that this matrix will be positive definite or banded. We thus

define our estimator of B K as follows.
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Chapter 2. A new approach to analysing functional data

Definition 2.3.2. Let RK
n and L̂K

n be as in Definition 2.3.1. We define the estimator B̂ K
n of B K

n to

be the projection of ∆K
n = RK

n − L̂K
n onto the convex set of non-negative banded K ×K matrices of

bandwidth at most dK /4e.

Once again, we will discuss how to obtain this estimator in practice in Section 3.1. Now that

we have the estimators L̂K
n and B̂ K

n , we define their sum to be an estimator of RK :

Definition 2.3.3. Let L̂K
n and B̂ K

n be as in Definitions 2.3.1 and 2.3.2. We define the plug-in

estimator R̂K
n of RK to be R̂K

n = L̂K
n + B̂ K

n .

The estimator R̂K
n should be preferred to the raw empirical estimator RK

n , since due to the way

we constructed it, it should be less noisy. Now that we have the estimators (L̂K
n , B̂ K

n , R̂K
n ), we

can define the K -resolution estimators (L̂ K
n , B̂K

n , R̂K
n ) of (L , B, R) to have respectively the

covariance functions

ˆ̀K
n (x, y) =

K∑
j=1

L̂K
n (i , j )1{(x, y) ∈ Ii ,K × I j ,K },

b̂K
n (x, y) =

K∑
j=1

B̂ K
n (i , j )1{(x, y) ∈ Ii ,K × I j ,K },

ρ̂K
n (x, y) =

K∑
j=1

R̂K
n (i , j )1{(x, y) ∈ Ii ,K × I j ,K },

and the spectral decompositions

L̂ K
n =

r̂∑
j=1

λ̂ j η̂
K
j ⊗ η̂K

j , B̂K
n =

K∑
j=1

β̂ j ψ̂
K
j ⊗ ψ̂K

j , R̂K
n =

K∑
j=1

θ̂ j ϕ̂
K
j ⊗ ϕ̂K

j ,

where r̂ is the rank of L̂ K
n . We place the subscript K on the eigenfunctions to emphasize

that these functions are K -resolution estimators, i.e., piecewise constant functions, of the

original eigenfunctions. In particular, the functions η̂K
j , j = 1, . . . ,r are estimators of analytic

functions, so if one wishes to have smoother estimators than piecewise constant functions,

two strategies are possible. One could either smooth directly the eigenfunctions η̂K
j , j = 1, . . . ,r ,

but there would be no guarantee that the resulting functions would be orthogonal to each

other. Another possibility is to smooth the covariance function `K
n , and then to work with

the eigenfunctions of the resulting smooth operator (these will inherit the corresponding

smoothness properties).

In the rest of this section we will establish the consistency of the estimators L̂ K
n , B̂K

n and

R̂K
n and of their corresponding spectra. Of course our asymptotic framework will be that

the number of observed curves is growing to infinity (n →∞), and that the grid of points

on which we observe each curve is getting dense (K →∞). However to simplify the proof
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of the consistency of L̂ K
n (which is quite subtle), we will consider nested grids of points

obtained from refinement of a grid of critical resolution K ∗ = 4r +4. Moreover, we will use the

convention that the signs of the eigenfunctions are correctly identified. Our main consistency

result, which is the consistency of our estimator of L and of its spectrum is presented in

Theorem 2.3.1.

Theorem 2.3.1. Let X = Y +W , R = L +B be defined as in Section 2.1, and let the r <∞
eigenvalues of L be of multiplicity one, and the corresponding eigenfunctions be real analytic.

Let E‖X ‖4
L2 <∞, δ< 1

4 , and define K ∗ = 4r +4 to be the critical resolution. Provided that τn → 0,

it holds almost everywhere on TK that

∥∥∥L̂ K
n −L

∥∥∥2

HS
≤ OP(n−1)+4K −2 sup

x,y∈[0,1]
‖∇`(x, y)‖2

2, (2.3.2)∥∥∥η̂K
j −η j

∥∥∥2

L2
≤ OP(n−1)+2K −2‖η′j‖2

∞, j ∈ {1, . . . ,r }, (2.3.3)

sup
j≥1

|λ̂K
j −λ j |2 = OP(n−1)+4K −2 sup

x,y∈[0,1]
‖∇`(x, y)‖2

2, (2.3.4)

for any refinement K = m ×K ∗, m ≥ 1. All three OP(n−1) terms are uniform in K . Furthermore,

the rank of L̂ K
n satisfies,

nτnK −2|rank(L̂ K
n )− r | =OP(1). (2.3.5)

This theorem tells us that we obtain a parametric rate of convergence for L̂ K
n , irrespective

of the convergence rate of τn to zero, if the number of grid points K is at least of the orderp
n. On the other hand, if we want the rank estimator rank(L̂ K

n ) to be consistent, K has to be

o(
p

nτn) with nτn →∞. The take home message then seems to be that dense grids will lead

to accurate estimation of the covariance operator but that sparse grid are more appropriate to

accurately estimate the rank.

Proof. We begin by the usual bias/variance decomposition

∥∥∥L̂ K
n −L

∥∥∥2

HS
≤ 2

∥∥∥L̂ K
n −L K

∥∥∥2

HS
+2

∥∥L K −L
∥∥2

HS

= 2K −2
∥∥L̂K

n −LK
∥∥2

F +2
∥∥L K −L

∥∥2
HS .
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Figure 2.5 – Illustration of how to obtain a grid tK ∗ from tK , for K ∗ = 4, and K = 3 ·K ∗ = 12.

For the second term (bias), we note that by a Taylor expansion

∫ 1

0

∫ 1

0
(`(x, y)−`K (x, y))2d xd y =

K∑
i , j=1

∫
Ii ,K

∫
I j ,K

(`(x, y)−`(ti , t j ))2d xd y

≤
K∑

i , j=1

∫
Ii ,K

∫
I j ,K

2K −2 sup
(x,y)∈Ii ,K ×I j ,K

‖∇`(x, y)‖2
2

=
K∑

i , j=1
2K −4 sup

(x,y)∈Ii ,K ×I j ,K

‖∇`(x, y)‖2
2

≤ 2K −2 sup
(x,y)∈[0,1]2

‖∇`(x, y)‖2
2.

It now remains to be shown that K −2
∥∥L̂K

n −LK
∥∥2

F =OP(n−1), and that the OP(n−1) is uniform

in K . To show that this is valid almost everywhere on TK with respect to the Lebesgue measure,

we will show equivalently that it is valid almost surely, when choosing a grid uniformly at

random from TK . Using the fact that K = m ×K ∗, m ≥ 1,we consider a simple coupling

construction, as this will be convenient for our proof:

1. Choose t j ,K uniformly at random from I j ,K , independently for all j = 1, . . . ,K , writing

tK = {t j ,K }K
j=1.

2. Choose t j ,K ∗ uniformly at random among the m elements of tK ∩ I j ,K ∗ , and write tK ∗ =
{t j ,K ∗}K ∗

j=1.

3. Define the set q = { j ∈ {1, . . . ,K } : t j ,K ∈ tK ∗} of cardinality K ∗.

Figure 2.5 illustrates how a grid tK ∗ with K ∗ = 4 is constructed from a grid tK with K = 12. In

this particular example q = {2,4,9,11}. Note that our construction guarantees that tK ∗ ⊆ tK ,

with tK ∗ being marginally uniformly distributed on TK ∗ . DefineΘK to be the space of K ×K

covariance operators of rank smaller than K /4. We consider the functionals

Sn,K :ΘK → [0,∞), Sn,K (θ) = K −2‖P K ◦ (θ−RK
n )‖2

F︸ ︷︷ ︸
Mn,K (θ)

+τnK −2rank(θ),
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Sn,K :ΘK → [0,∞), Sn,K (θ) = K −2‖P K ◦ (θ−RK )‖2
F︸ ︷︷ ︸

MK (θ)

+τnK −2rank(θ),

where PK (i , j ) = 1{|i − j | > dK /4e}. We will show that for n sufficiently large, LK is the unique

minimizer of Sn,K (·) on ΘK . Note that, since K ≥ 4r + 4, Theorem 2.2.2 implies that LK is

(almost surely) the unique matrix for which the functional MK (θ) attains the minimal value of

zero onΘr
K , whereΘr

K is defined as the space of K ×K covariance operators of rank at most r .

It follows that for any H ∈ΘK different than LK and of rank p ∈ {r, . . . ,K /4−1},

Sn,K (LK ) = MK (LK )+ rτn

K 2 = rτn

K 2 ≤ pτn

K 2 < MK (H)+ pτn

K 2 = Sn,K (H),

for all n ≥ 1, almost surely. Thus the addition of the penalty term distinguishes LK as the

unique minimizer among all matrices of rank in {r, . . . ,K /4}, almost surely. We will now show

that for n sufficiently large, LK almost surely uniquely minimises Sn,K , even when considering

matrices of rank in {1, . . . ,r −1}.

Let θ ∈ RK×K , and θq ∈ RK ∗×K ∗
be a matrix obtained by keeping only rows and columns of

θ with indices in the index set q and define the function τ : [K ∗] → q such that θq (i , j ) =
θ(τ(i ),τ( j )). Then, by the coupling construction of tK and tK ∗ , it almost surely holds that

MK (θ) = ∑
i , j∈[K ]

|i− j |>dK /4e

K −2
∣∣∣θ(i , j )− r (ti ,K , t j ,K )]

∣∣∣2

= ∑
i , j∈q

|τ−1(i )−τ−1( j )|>dK ∗/4e

K −2
∣∣∣θ(i , j )− r (ti ,K , t j ,K )]

∣∣∣2 +

∑
i , j∈q

|τ−1(i )−τ−1( j )|≤dK ∗/4e
|i− j |>dK /4e

K −2
∣∣∣θ(i , j )− r (ti ,K , t j ,K )]

∣∣∣2 +

+ ∑
i , j∉q

|i− j |>dK /4e

K −2
∣∣∣θ(i , j )− r (ti ,K , t j ,K )]

∣∣∣2

≥ ∑
a,b∈[K ∗]:|a−b|>dK ∗/4e

K −2
∣∣∣θq (a,b)− r (ta,K ∗ , tb,K ∗)]

∣∣∣2

=
(

K ∗

K

)2

MK ∗(θq ).

As θ ranges over RK×K matrices of rank at most r −1, the sub-matrix θq ranges over RK ∗×K ∗

matrices of rank at most r −1. It follows that

inf
θ∈ΘK

rank(θ)<r

MK (θ) ≥
(

K ∗

K

)2

inf
θ∈ΘK∗

rank(θ)<r

MK ∗(θ) =
(

K ∗

K

)2

ε(tK ∗), almost surely.

45



Chapter 2. A new approach to analysing functional data

Since K ∗ = 4r +4, ε(tK ∗) > 0 almost surely, as tK ∗ is uniformly distributed on TK ∗ . Thus, if n is

sufficiently large so that τn < (K ∗)2ε(tK ∗)/r a.s., it holds that(
K ∗

K

)2

ε(tK ∗) > rτnK −2, almost surely.

Note that the critical N (tK ∗) that n needs to surpass for this to hold true does not depend on

K , but only on the distribution of tK ∗ , which is the uniform distribution on TK ∗ , and on the

precise rate of convergence of τn to zero (which is for us to choose). Consequently, N (tK ∗)

does not grow with K . Summarising, provided that n is sufficiently large,

inf
θ∈ΘK

rank(θ)<r

MK (θ) > rτnK −2 = Sn,K (LK ), almost surely.

But

inf
θ∈ΘK

rank(θ)<r

Sn,K (θ) = inf
θ∈ΘK

rank(θ)<r

{
MK (θ)+τnK −2rank(θ)

}> inf
θ∈ΘK

rank(θ)<r

MK (θ), almost surely,

which shows LK to be the unique minimizer of Sn,K (·) onΘK almost surely, for n sufficiently

large. Rephrasing, we have shown that for almost any grid tK ∈TK , there exists an N (indepen-

dent of K ), such for all n ≥ N , the matrix LK is the unique minimum of Sn,K .

From now on, take n ≥ N (tK ∗), and note that all statements are valid almost surely with respect

to the random grid tK . Our strategy will be to make use of Theorem 3.4.1 of van der Vaart and

Wellner [vdVW96]. To this aim, define dn :ΘK ×ΘK → [0,∞) as

dn(θ1,θ2) =
√

K −2‖θ1 −θ2‖2
F +τnK −2|rank(θ1)− rank(θ2)|,

noting that dn does not need to be a metric. To obtain the result, we need to show that for

γ> 0,

(i) supθ∈ΘK :dn (LK ,θ)<γ |∆(θ)| ≤ γ2, with ∆(θ) = Sn,K (θ)−Sn,K (LK ),

(ii) E
{p

n supθ∈ΘK :dn (θ,LK )<γ |D(θ)|
}
. γ, with D(θ) =Sn,K (θ)−Sn,K (θ)−Sn,K (LK )+Sn,K (LK ).

To simplify the proof, we will work with vector representations of the matrices involved in

the functions ∆ and D , and we will indicate this modification at the level of the matrices and

of the functions themselves by the addition of a tilde in the notation. Recall that the vector

representation of a K ×K matrix is obtained by serially stacking its columns over each other.

Let’s first show (i). Consider the difference

∆̃(θ̃) = S̃n,K (θ̃)− S̃n,K (L̃K ) = M̃K (θ̃)− M̃K (L̃K )+τnrank(θ)K −2 −τnr K −2.

By doing a second order Taylor expansion with Lagrange remainder of the function M̃K around
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L̃K , we obtain that for some p∗ ∈ [0,1] and θ̃∗ = p∗L̃K + (1−p∗)θ̃ we have

∆̃(θ̃) = 〈M̃ ′
K (L̃K ), (θ̃− L̃K )〉+ 1

2
(θ̃− L̃K )>M̃ ′′

K (θ̃∗)(θ̃− L̃K )+τnK −2(rank(θ)− r ),

where M̃ ′
K (θ̃) = 2K −2P̃ K ◦ (θ̃− R̃K ) and M̃ ′′

K (θ̃∗)(θ̃− L̃K ) = 2K −2P̃ K ◦ (θ̃− L̃K ). Noticing that

M̃ ′
K (L̃K ) = 0 (by Theorem 2.2.2), we have

∆̃(θ̃) = K −2〈P̃ K ◦ (θ̃− L̃K ), θ̃− L̃K 〉+τnK −2(rank(θ)− r )

= K −2〈P̃ K ◦ (θ̃− L̃K ), P̃ K ◦ (θ̃− L̃K )〉+τnK −2(rank(θ)− r )

= K −2‖P K ◦ (θ−LK )‖2
F +τnK −2(rank(θ)− r )

≤ K −2‖θ−LK ‖2
F +τnK −2|rank(θ)− r |.

It follows that supθ∈ΘK :dn (LK ,θ)<γ |∆(θ)| ≤ γ2. To prove (ii), consider:

D(θ) = Sn,K (θ)−Sn,K (θ)−Sn,K (LK )+Sn,K (LK )

= Mn,K (θ)−MK (θ)−Mn,K (LK )+MK (LK ).

We expand (M̃n,K − M̃K ) in a first order Taylor expansion with Lagrange remainder, around L̃K ,

which gives for a certain p∗ ∈ [0,1] and θ̃∗ = p∗L̃K + (1−p∗)θ̃:

D̃(θ̃) = 〈M̃′
n,K (θ̃∗), θ̃− L̃K 〉−〈M̃ ′

K (θ̃∗), θ̃− L̃K 〉
= K −2〈2P̃ K ◦ (θ̃∗− R̃K

n ), θ̃− L̃K 〉−K −2〈2P̃ K ◦ (θ̃∗− R̃K ), (θ̃− L̃K )〉
= K −2〈2P̃ K ◦ θ̃∗−2P̃ K ◦ θ̃∗−2P̃ K ◦ R̃K

n +2P̃ K ◦ R̃K , θ̃− L̃K 〉
≤ K −2‖2P K ◦ (RK

n −RK )‖F‖θ−LK ‖F ≤ 2K −1‖RK
n −RK ‖FK −1‖θ−LK ‖F.

Since X is a process with continuous sample paths, E‖X ‖4
L2 <∞ implies that the variance of

X (s)X (t) is finite for all (s, t) ∈ [0,1]2. Assume without loss of generality that EX = 0. Since

the observations Xi (t j ) are independent for distinct i , and since Xm(t j )Xm(t j ) is an unbiased

estimator of E[X (t j )X (t j )], we have

K −2E‖RK
n −RK ‖2

F =
K∑

i=1

K∑
j=1

K −2E

[
1

n

n∑
m=1

Xm(ti ,K )Xm(t j ,K )−E[
X (ti ,K )X (t j ,K )

]]2

= K −2

n

K∑
i=1

K∑
j=1

Var[X (ti ,K )X (t j ,K )]

≤ 1

n
sup

(s,t )∈[0,1]2
Var[X (s)X (t )] = C

n
,

and C = sup[0,1]2 Var[X (s)X (t)] <∞. Note that C is uniform in K . In summary we may con-
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clude that

E

{
sup

θ∈ΘK :dn (θ,LK )<γ
|D(θ)|

}
≤ 2γK −1E‖RK

n −RK ‖F ≤ 2γ
√

K −2E‖RK
n −RK ‖2

F = 2γ

√
C

n
.

Now that we have proved (i) and (ii), we use Theorem 3.4.1 of van der Vaart and Wellner

[vdVW96] with rn =p
n and φn(β) =β for β ∈ (0,∞) = (δn ,η). It follows that if L̂K

n is such that

Sn,K (L̂K
n ) ≤Sn,K (LK )+OP(n−1), which is guaranteed by our definition of L̂K

n as an approximate

minimiser of Sn,K , then it holds that

n d 2
n(L̂K

n ,LK ) = nK −2‖L̂K
n −LK ‖2

F +n
(
τnK −2|rank(L̂K

n )− r |)=OP(1),

where the OP(1) term does not depend on K . We may conclude that

n‖L̂ K
n −L K ‖2

HS = nK −2‖L̂K
n −LK ‖2

F =OP(1),

nτnK −2|rank(L̂ K
n )− r | = OP(1),

where OP(1) is uniform in K .

We now turn our attention to the estimated eigenfunctions. Since these are finitely many,

we will omit the index indicating the order of an eigenfunction for tidiness, and consider an

eigenfunction η. Let ηK be the K -resolution step function approximation of η,

ηK (x) =
K∑

j=1
η(t j ,K )1{x ∈ I j ,K }.

Then, by Taylor expansion,

∫ 1

0

(
η(x)−ηK (x)

)2
d x =

K∑
j=1

∫
I j ,K

(
η(x)−η(t j ,K )

)2 d x ≤
K∑

j=1
K −3‖η′‖2

∞ = ‖η′‖2∞
K 2 .

It follows that

∥∥η̂K −η∥∥2
L2 ≤ 2

∥∥η̂K −ηK
∥∥2

L2 +2
∥∥ηK −η∥∥2

L2

≤ c‖L̂ K
n −L K ‖2

HS +
2‖η′‖2∞

K 2 =OP(n−1)+ 2‖η′‖2∞
K 2 ,

and the OP(n−1) has been shown to be uniform in K . The constant c can be chosen uniformly

over the order of eigenfunction, since there are only r <∞ eigenfunctions to consider. The

convergence rate for sup j |λ̂K
j −λ j | follows from the inequality sup j |λ̂K

j −λ j | ≤ ‖L̂ K
n −L ‖HS

(Proposition 1.1.5).
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The consistency of B̂K
n is implied directly by that of L̂ K

n . However, if we want to have con-

vergence rates, we need to assume more than only continuity of the kernel b. For example, if

we assume that b is C 1 on the band {|t − s| < δ} or on the whole domain [0,1]2, we obtain the

convergence rates that are presented in Corollary 2.3.1.

Corollary 2.3.1. Let the first p+1 eigenvalues of B be such that β1 >β2 > . . . ,βp >βp+1. Under

the same conditions as in Theorem 2.3.1, and for any ε,γ> 0 there exist M1(ε,γ) > 0 such that

P
{∥∥∥B̂K

n −B
∥∥∥

HS
> ε

}
< γ, and P

{
sup
j≥1

|β̂K
j −β j | > ε

}
< γ ∀K ,n > M1(ε,γ),

and M2(ε,γ, j ) > 0 such that

P
{∥∥∥ψ̂K

j −ψ j

∥∥∥
L2

> ε
}
< γ, j = 1, . . . , p, ∀K ,n > M2(ε,γ, j ),

for almost every grid (t1, . . . , tK ) ∈TK . If the covariance function b(s, t) : [0,1]2 →R associated

with B is additionally assumed to be continuously differentiable on {|t − s| < δ}, we obtain the

rates of convergence

∥∥∥B̂K
n −B

∥∥∥2

HS
= OP(n−1)+O(K −1), (2.3.6)∥∥∥ψ̂K

j −ψ j

∥∥∥2

L2
= OP(n−1)+O(K −1)

σ2
j

, j = 1, . . . , p, (2.3.7)

sup
j≥1

|β̂K
j −β j |2 = OP(n−1)+O(K −1), (2.3.8)

for any refinement K = m ×K ∗, m ≥ 1, and almost every grid (t1, . . . , tK ) ∈TK , where

σ1 =β1 −β2, & σ j = min{β j−1 −β j ,β j −β j+1}, 2 ≤ j ≤ p,

and all three OP(n−1) terms are uniform in K . If b is continuously differentiable on the whole

unit square [0,1]2, then the O(K −1) terms in Equations (2.3.6), (2.3.7), and (2.3.8) can be

improved to O(K −2).

Proof. We have

∥∥∥B̂K
n −B

∥∥∥
HS

≤
∥∥∥B̂K

n −BK
∥∥∥

HS
+∥∥BK −B

∥∥
HS

= K −1
∥∥B̂ K

n −B K
∥∥

F +
∥∥BK −B

∥∥
HS , (2.3.9)

where the second term on the right hand side converges in probability to zero as K goes

to infinity. Let P be the projection onto the set of non-negative banded K ×K matrices of

bandwidth at most dK /4e. The first term on the right hand side of equality (2.3.9) can be
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written as

K −1
∥∥B̂ K

n −B K
∥∥

F = K −1
∥∥P (RK

n − L̂K
n )−P (RK −LK )

∥∥
F

≤ K −1
∥∥(RK

n − L̂K
n )− (RK −LK )

∥∥
F ,

where from the consistency of L̂K
n and the definition of RK

n we obtain that the right hand

side term of the last inequality converge to zero as n goes to infinity. The consistency of the

eigenfunctions ψ̂m follows directly from the consistency of B̂K
n . This completes the first part

of the theorem. Now assume that b is continuously differentiable on the δ-band. In what

follows, we will write Ii j = Ii ,K × I j ,K for tidiness. We start with the decomposition:

∥∥∥B̂K
n −B

∥∥∥2

HS
≤ 2

∥∥∥B̂K
n −BK

∥∥∥2

HS
+2

∥∥BK −B
∥∥2

HS .

Since the kernel b is C 1 inside the δ-band and zero outside it, we write,

∫ 1

0

∫ 1

0
(b(x, y)−bK (x, y))2d xd y =

Ï
A

(b(x, y)−bK (x, y))2d xd y

+
Ï
Ac

(b(x, y)−bK (x, y))2d xd y,

where A =⋃
i , j

{
Ii j : {|x − y | = δ}∩ Ii j 6= ;}

is the union of rectangles Ii j that intersect with the

boundary of the δ-band. On this set, (b −bK )2 is bounded by supx,y,z,w |b(x, y)−bK (z, w)|2 =
C <∞, and so

Î
A(b(x, y)−bK (x, y))2d xd y is bounded by |A|K −2C , where |A| = #{(i , j ) : Ii j ⊂

A}. Noting that |A| is of the order of K , we haveÏ
A

(b(x, y)−bK (x, y))2d xd y =O(K −1).

For the other term, we decompose the integral and use Taylor’s theorem to see that

Ï
Ac

(b(x, y)−bK (x, y))2d xd y =
Ï

{|x−y |≤δ}∩Ac

(b(x, y)−bK (x, y))2d xd y

+
Ï

{|x−y |≥δ}∩Ac

(b(x, y)−bK (x, y))2d xd y
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=
Ï

{|x−y |≤δ}∩Ac

(b(x, y)−bK (x, y))2d xd y

≤
K∑

i , j=1
1
{

Ii j ⊂
{
{|x − y | ≤ δ}∩ Ac}}Ï

Ii j

2K −2 sup
(x,y)∈Ii j

‖∇b(x, y)‖2
2d xd y

≤ ν(K )2K −4 sup
|x−y |<δ

‖∇b(x, y)‖2
2 =O(K −2),

where ν(K ) is the number of rectangles within the δ-band, and thus satisfies ν(K ) =O(K 2). In

conclusion, ∥∥BK −B
∥∥2

HS =O(K −1).

For the other term, we note that, almost everywhere on TK ,

‖B̂K
n −BK ‖2

HS ≤ ‖DK
n −BK ‖2

HS ≤ 2‖L̂ K
n −L K ‖2

HS +2‖RK
n −RK ‖2

HS =OP(n−1),

where DK
n is the operator corresponding to the matrix ∆K

n = RK
n − L̂K

n and, with the OP(n−1)

being uniform in K (as has been shown in the proof of Theorem 2.3.1). The convergence rate

for the estimated eigenfunctions is now obtained by the fact that ‖ψ̂K
j −ψ j‖L2 ≤ 2

p
2σ−1

j ‖B̂K
n −

B‖HS (Proposition 1.1.5).

To complete the proof, we need to show that if b ∈C 1([0,1]2), then
∥∥BK −B

∥∥2
HS =O(K −2). In

this case we may Taylor expand to write

∫ 1

0

∫ 1

0
(b(x, y)−bK (x, y))2d xd y ≤

K∑
i , j=1

Ï
Ii j

2K −2 sup
(x,y)∈Ii j

‖∇b(x, y)‖2
2d xd y

=
K∑

i , j=1
2K −4 sup

(x,y)∈Ii j

‖∇b(x, y)‖2
2 =O(K −2),

since there are at most order K 2 terms of the form sup(x,y)∈Ii j
‖∇b(x, y)‖2

2 that are non-zero, by

the bandedness of the kernel b.

The convergence rates for sup j |β̂K
j −β j | follow from the inequality sup j |β̂K

j −β j | ≤ ‖B̂K
n −

B‖HS (Proposition 1.1.5).

We state the following result without proof since it is derived directly from Theorem 2.3.1 and

Corollary 2.3.1.

Corollary 2.3.2. Under the same conditions as in Theorem 2.3.1, and if the kernel b(s, t) :

[0,1]2 →R of B is assumed to be continuously differentiable on {|t − s| < δ}, we obtain the rate

of convergence

∥∥∥R̂K
n −R

∥∥∥2

HS
= OP(n−1)+O(K −1), (2.3.10)
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for any refinement K = m×K ∗, m ≥ 1, and almost all grids in TK . The OP(n−1) term is uniform

in K . If b is continuously differentiable on the whole unit square [0,1]2, then the O(K −1) term

in Equation (2.3.10) can be improved to O(K −2).

2.4 Prediction of the smooth curves

In this section we want to make use of the estimators defined in the previous section in order

to recover the smooth part Yi and the rough part Wi from the function Xi , for i = 1, . . . ,n. In

the rest of the section we will drop the index i since we are working with only one curve at

a time. In order for this curve decomposition to be identifiable, we need to assume that the

mean function of at least one of the two random variables Y and W is equal to zero. We will

thus suppose that the rough process W has mean zero, and that the mean of Y , which is in

this case equal to the mean of X , has been subtracted from the data, so at the end we have

E[Y ] = E[W ] = 0.

Since in practice we only observe a discrete version of X , i.e. X (t1), . . . , X (tK ) for {t j }K
j=1 ∈TK ,

we will work with the piecewise constant function X K defined from these observations as

follows

X K (t ) =
K∑

j=1
1(t ∈ I j ,K )X (t j ).

Using the function X K , our goal is to find predictors of Y K =∑K
j=1 1(t ∈ I j ,K )Y (t j ) and W K =∑K

j=1 1(t ∈ I j ,K )W (t j ).

Let RK =∑q
i=1θ

K
i ϕ

K
i ⊗ϕK

i be the covariance operator of X K and L K =∑r
j=1λ

K
j η

K
j ⊗ηK

j that

of Y K . From [Bos14, Prop. 3.1], we know that the best linear predictor of Y K given X K , i.e. the

linear functionΠ(X K ) that minimises E‖Y K −Π0(X K )‖2
L2 , is given by

Π(X K ) = E[Y K |X K ] =
r∑

j=1

q∑
i=1

γi j (ϕK
i ⊗ηK

j )X K , (2.4.1)

where

γi j =
E〈X K ,ϕK

i 〉〈Y K ,ηK
j 〉

E〈X K ,ϕK
i 〉2

=
〈
E〈Y K +W K ,ϕK

i 〉Y K ,ηK
j

〉
θK

i

=
〈L KϕK

i ,ηK
j 〉

θK
i

=
〈ϕK

i ,L KηK
j 〉

θK
i

=
λK

j 〈ϕK
i ,ηK

j 〉
θK

i

.

The third equality in the previous equation comes from the fact that Y K and W K are uncor-

related, thus E〈W K ,ϕK
i 〉Y K = 0. By plugging the expression of γi j in (2.4.1), we obtain the
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following expression forΠ

Π(X K ) =
r∑

j=1

q∑
i=1

λK
j

θK
i

〈ϕK
i ,ηK

j 〉〈ϕK
i , X K 〉ηK

j =
r∑

j=1
ξ jη

K
j .

Since the Karhunen–Loève representation of Y K is given by
∑r

j=1〈Y K ,ηK
j 〉ηK

j , we can see that

ξ j is in fact a predictor of the j th functional principal component score of Y K . We will now

show how close this predictor is to the one defined in Yao et al. [YMW05]. Manipulating the

term ξ j , we obtain

ξ j =
〈
λK

j

q∑
i=1

1

θK
i

(ϕK
i ⊗ϕK

i )ηK
j , X K

〉
=

〈
λK

j

(
RK

)†
ηK

j , X K
〉

,

where
(
RK

)†
is the generalised inverse of RK . Translating this latter expression of the predictor

into matrix notation, we obtain

ξ j = 1

K
λK

j (X̃ K )>
(
RK

)†
η̃K

j = 1

K
λK

j (X̃ K )>
(
LK +B K

)†
η̃K

j ,

where X̃ K = [X K (t1), . . . , X K (tK )]> and η̃K
j = [ηK

j (t1), . . . ,ηK
j (tK )]>. We thus obtain almost the

same expression as in Yao et al. [YMW05], except that here instead of having a diagonal matrix

of the form σ2IK as the covariance matrix of the rough process, we have the banded matrix

B K .

Now that we have defined the best linear predictor of Y K given X K , we obtain directly the best

linear predictor of W K given X K which is defined by

Ψ(X K ) = E[W K |X K ] = E[X K −Y K |X K ] = X K −E[Y K |X K ] = X K −Π(X K ). (2.4.2)

We finally estimate the predictorsΠ andΨ by plugging our estimators L̂ K
n =∑r

j=1 λ̂
K
j η̂

K
j ⊗ η̂K

j

and R̂K
n =∑q̂

i=1 θ̂
K
i ϕ̂

K
i ⊗ ϕ̂K

i of L K and RK in equations (2.4.1) and (2.4.2), which gives

Ŷ K
n =

r̂∑
j=1

q̂∑
i=1

λ̂K
j

θ̂K
i

〈ϕ̂K
i , η̂K

j 〉〈ϕ̂K
i , X K 〉η̂K

j and Ŵ K
n = X K − Ŷ K

n .

The consistency of these two estimators is stated in the following corollary.

Corollary 2.4.1. Let X = Y +W and R =L +B be defined as in Section 2.1 and let the r <∞
eigenfunctions of L be real analytic. Let K = m ×K ∗ (m ≥ 1) be a refinement of the critical grid

size K ∗ = 4r +4. If RK is of rank K , and if the kernel b(s, t) : [0,1]2 → R of B is continuously

differentiable on {|t − s| < δ}, then

‖Ŷ K
n −Π(X K )‖L2 =OP(n−1/2), and ‖Ŵ K

n −Ψ(X K )‖L2 =OP(n−1/2),
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almost everywhere on TK .

Proof. Since K ≥ K ∗, it must be that

‖L̂ K
n −L K ‖HS =OP(n−1/2), & ‖B̂K

n −BK ‖HS =OP(n−1/2),

almost everywhere on TK (as has been shown in the proof of Theorem 2.3.1 and of Corollary

2.3.1). Consequently, for almost all grids in TK ,

‖R̂K
n −RK ‖HS ≤ ‖L̂ K

n −L K ‖HS +‖B̂K
n −BK ‖HS =OP(n−1/2).

It thus holds true that, for almost all grids in TK ,

|θ̂K
i −θK

i | =OP(n−1/2), i = 1, . . . ,K ,

where θ̂K
i (resp. θK

i ) is the i th eigenvalue of R̂K
n (resp. RK ). Since rank(RK ) = K , it must be

that θK
1 , . . . ,θK

K > 0. Letting g (x) = x−11{x > 0}, and noting that g is differentiable at {θK
i }K

i=1,

the delta method thus implies∣∣∣∣∣1{θ̂K
i > 0}

θ̂K
i

− 1{θK
i > 0}

θK
i

∣∣∣∣∣=
∣∣∣∣∣1{θ̂K

i > 0}

θ̂K
i

− 1

θK
i

∣∣∣∣∣=OP(n−1/2), i = 1, . . . ,K ,

for almost all grids in TK . Now observe that

Ŷ K
n := Π̂n(X K ) =

r̂∑
j=1

K∑
i=1

1{θ̂K
i > 0}

λ̂K
j

θ̂K
i

〈ϕ̂K
i , η̂K

j 〉〈ϕ̂K
i , X K 〉η̂K

j =
K∑

i=1
1{θ̂K

i > 0}

( 〈ϕ̂K
i , X K 〉
θ̂K

i

)
L̂ K

n ϕ̂K
i .

(2.4.3)

By the continuous mapping theorem, we know that the right hand side converges in probability

to
K∑

i=1

( 〈ϕK
i , X K 〉
θK

i

)
L KϕK

i =
r∑

j=1

K∑
i=1

λK
j

θK
i

〈ϕK
i ,ηK

j 〉〈ϕK
i , X K 〉ηK

j =Π(X K ),

for almost all grids in TK , as n →∞. The fact that the rate of convergence is OP(n−1/2) follows

directly from the fact that each term of the summands in the right hand side of Equation

(2.4.3) has been shown to converge at the rate OP(n−1/2). The corresponding result follows for

‖Ŵ K
n −Ψ(X K )‖L2 by writing

‖Ŵ K
n −Ψ(X K )‖L2 = ‖X K − Ŷ K

n − (X K −Π(X K ))‖L2 = ‖Ŷ K
n −Π(X K )‖L2 .
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3 Implementation and simulation study

The purpose of this chapter is to present how our new approach to analyse functional data can

be implemented in practice, and to study its finite-sample performance. We first present in

Section 3.1 how to obtain in practice the estimators L̂ K
n and B̂K

n defined in Section 2.3. Using

simulated data, we then study the performance of our method in Section 3.2; we investigate

our rank selection procedure (Section 3.2.4), compare our estimator of L to the one obtained

with three other classical methods (Section 3.2.5), and probe the predictive accuracy of our

estimator of the smooth part of the data (Section 3.2.6). In section 3.3, we conclude the chapter

with an illustration of our method on a real dataset.

3.1 Practical implementation

In this section, we will present how to obtain the estimators L̂K
n and B̂ K

n that have been

introduced in Section 2.3, in practice. We first consider the estimator L̂K
n that was defined in

Definition 2.3.1 as an approximate minimiser of

min
0¹θ∈RK×K

1

K 2 ‖P K ◦ (RK
n −θ)‖2

F +τnrank(θ). (3.1.1)

Solving this minimisation problem is equivalent to the following two-step procedure:

(i) Solve the minimisation problem

min
0¹θ∈RK×K

‖P K ◦ (RK
n −θ)‖2

F such that rank(θ) ≤ω, (3.1.2)

for ω= 1, . . . ,K , obtaining minimisers θ̂1, . . . , θ̂K .

(ii) Let f̃ : {1, . . . ,K } →R be the function that gives the minimum attained by every minimiser,

i.e. f̃ (ω) = ‖P K ◦ (RK
n − θ̂ω)‖2

F . Define functions f , g : {1, . . . ,K } → R such that f (ω) =
f̃ (ω)− f̃ (K ) and g (ω) = f (ω)+ τω. Set the matrix L̂K

n equal to θ̂ω∗ , where ω∗ is the
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minimiser of the function g over ω= 1, . . . ,K . In other words, ω∗ is such that

ω∗ = argmin
ω∈{1,...,K }

{ f (ω)+τω}. (3.1.3)

There are some comments to be made about this new formulation of (3.1.1). First we have

removed the coefficient K −2 since its purpose is to obtain a consistent estimator, but for a fixed

K , the absence or presence of this factor is inconsequential. Secondly, step (ii) can be seen as

the step where we pick the rank r̂ =ω∗ of our estimator for a given τ, since by construction

the matrix θ̂ω will have the biggest possible rank which is here equal to ω. We will show below

that this step is in fact equivalent to choosing the rank in the following way, which as we will

see later can be seen as a scree plot approach:

(ii’) Let c be a given constant. Set the matrix L̂K
n equal to θ̂ω∗′ , where ω∗′

is the smallest value

for which f (ω∗′
) < c. In other words, ω∗′

is such that

ω∗′ =
 argmin

ω∈{1,...,K }
ω

s.t. f (ω) < c

=
 argmin

ω∈{1,...,K }
f (ω)

s.t. ω≤ f −1(c)

 , (3.1.4)

where f −1(c) = min{x ∈ {1, . . . ,K }| f (x) ≤ c}.

Steps (ii) and (ii’) are equivalent, i.e. they lead to the same rank ω∗ =ω∗′
and then to the same

estimator, for certain values of τ and c, as it is presented in the following lemma.

Lemma 3.1.1. Extend the function f defined in step (ii) to the interval [1,K ] by linear interpo-

lation and call this new function f̄ . If x 7→ f̄ (x) is strictly convex, then, for any constant c > 0,

the problem (3.1.4) with constraint parameter c is equivalent to (3.1.3) with a tuning parameter

in the range

max{∆ j : j ≥ f −1(c)} < τ< min{∆ j : j ≤ f −1(c)−1},

where ∆i := f (i )− f (i +1) ≥ 0, for i = 1, . . . ,K −1. Furthermore, τ can be made arbitrarily small

by choosing c to be arbitrarily small.

Proof. Choose c > 0 and let q = f −1(c). If we can choose a value of τ that simultaneously

satisfies

τ(q − j )+ f (q − j ) > τq + f (q), ∀ j ∈ {1, . . . , q −1} and

τ(q + j )+ f (q + j ) > τq + f (q), ∀ j ∈ {1, . . . ,K −q},

then the function g (ω) reaches its minimal value at ω = q and so ω∗ = q . Moreover, since

the function f is decreasing, it will imply that it reaches its minimal value at ω= q when ω is

constrained to be smaller than q , and then that ω∗′ = q . If such a τ exists, it then means that

the problem (3.1.4) with constraint parameter c is equivalent to (3.1.3).
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3.1. Practical implementation

Let’s now examine when choosing such a τ is feasible. Notice that the two conditions that τ

must satisfy are equivalent to:

τ< f (q − j )− f (q)

j
, ∀1 ≤ j < q & τ> f (q)− f (q + j )

j
, ∀1 ≤ j ≤ K −q.

And so, by telescoping,

f (q − j )− f (q)

j
= f (q − j )− f (q − j +1)

j
+·· ·+ f (q −1)− f (q)

j︸ ︷︷ ︸
j terms

,

and
f (q)− f (q + j )

j
= f (q)− f (q +1)

j
+·· ·+ f (q + j −1)− f (q + j )

j︸ ︷︷ ︸
j terms

.

We may thus re-write the conditions on τ as

τ < f (q − j )− f (q − j +1)

j
+·· ·+ f (q −1)− f (q)

j
, ∀1 ≤ j < q,

τ > f (q)− f (q +1)

j
+·· ·+ f (q + j −1)− f (q + j )

j
, ∀1 ≤ j ≤ K −q.

By convexity of arithmetic averaging, a sufficient condition for the above to be true is to require

τ < f (i )− f (i +1) :=∆i , ∀1 ≤ i < q,

τ > f (i )− f (i +1) =∆i , ∀q ≤ i ≤ K −1.

Since x 7→ f̄ (x) is strictly convex, the sequence ∆i is strictly decreasing in i . It follows that the

last two conditions are compatible, and we may choose any τ in the range

max{∆ j : j ≥ f −1(c)} < τ< min{∆ j : j ≤ f −1(c)−1},

while retaining the same optima for the two problems. Furthermore, since ∆ j can be made

arbitrarily small for j ≥ f −1(c) by choosing c to be sufficiently small, we see that τ can be taken

to be arbitrarily small by appropriate choice of c.

Note that if x 7→ f̄ (x) is convex, then it will almost surely be strictly convex since { f (i )}i≥1 are

continuous random variables.

As we already mentioned, step (ii’) can be seen as a scree plot approach. Indeed it consists

in plotting the function f and picking the rank ω∗ as the first value for which the function f
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is below a given threshold c. We will now discuss how we can choose c (or equivalently r̂ ) in

practice. The idea is based on the following fact: if instead of observing f , we were able to

observe f0(ω) = ‖P K ◦ (RK − Θ̂ω)‖2
F , where Θ̂ω is a minimiser of

min
0¹Θ∈RK×K

‖P K ◦ (RK −Θ)‖2
F , such that rank(Θ) ≤ω,

for ω= 1, . . . ,K , then we would have by Corollary 2.2.1 that

f0(ω) > 0 for ω= 1, . . . ,r −1 and f0(ω) = 0 for ω≥ r, (3.1.5)

where r is the rank of LK . Since the function f can be seen as an approximation of f0, we

expect it to have a similar behaviour to the one described in (3.1.5), and then to level out

beyond r . In practice, we will then plot the function f , and we will set r̂ to be the point where

f is levelling out, or equivalently to be the point representing the "elbow" of the function. The

next lemma tells us that this procedure is consistent, which means that r̂ converges to r as

n →∞.

Lemma 3.1.2. Assume the same conditions and context as in Lemma 3.1.1 and Corollary 2.2.1.

Then for almost all grids in TK it holds that

limsup
n→∞

f (i ) = 0 almost surely,

for all i ≥ r whereas

liminf
n→∞ f (i ) > 1

2

r∑
j=i+1

ζ2
j > 0 almost surely,

for all i < r , whenever r > 1. Here r = rank(LK ) is the true rank of L , and {ζi }r
i=1 are non-

zero eigenvalues of the symmetric K ×K matrix U K , obtained by retaining the top-right and

bottom-left r × r submatrices of LK , and setting all other entries equal to zero.

Proof. We will write fn(i ) instead of f (i ) in order to highlight the dependence on n. Let

AK ⊆TK be the set of grids for which Corollary 2.2.1 is valid, and fix a grid tK ∈AK . Note that

this suffices for the purposes of the proof, since AK is of full Lebesgue measure. Now, note that

fn(r ) ≤ ∥∥P K ◦ (RK
n −LK )

∥∥2
F

a.s.−→ ∥∥P K ◦ (RK −LK )
∥∥2

F = 0,

where r = rank(LK ). Consequently, fn( j ) ≤ fn(r )
a.s.→ 0 for all j ≥ r , and obviously

limsup
n→∞

fn(i ) = 0 almost surely,

for all i ≥ r . We now turn to the second assertion. We will consider the case i = r −1 (the

remaining cases follow similarly). Write ζ = ζr > 0 for the smallest eigenvalue of U K . First,

note that this must be non-zero, since Theorem 2.2.2 implies that all r × r minors of LK are of

full rank r .

58



3.1. Practical implementation

We will argue by contradiction: suppose that the event { fn(r −1) < ζ2/2 infinitely often} has

positive probability. It follows that there exists a sequence θk of rank r −1 random matrices

and a subsequence {RK
nk

} of {RK
n } such that

∥∥P K ◦ (RK
nk

−θk )
∥∥2

F
= ∥∥P K ◦RK

nk
−P K ◦θk

∥∥2

F
< ζ2/2, ∀k ≥ 1,

with positive probability. On the other hand, we know that∥∥P K ◦RK
nk

−P K ◦RK
∥∥2

F
a.s.−→ 0.

Consequently, since P K ◦ (LK −RK ) = 0, it follows that for all k sufficiently large,∥∥P K ◦θk −P K ◦LK
∥∥2

F < ζ2/2+ζ2/2 = ζ2,

with positive probability. Now let ϑk denote the symmetric matrix formed by retaining the

bottom-left and top-right r × r minors of θk , and setting the remaining elements equal to zero.

Since our assumptions entail that K ≥ K ∗ = 4r +4, we now have:

1. By Theorem 2.2.3, U K is of rank r , and of course ϑk is of rank at most r −1, for all k, with

probability 1.

2. The event
∥∥P K ◦θk −P K ◦LK

∥∥2
F < ζ2 has positive probability, and thus the event ‖ϑk −

U K ‖2
F < ζ2 also has positive probability.

These two conclusions constitute a contradiction: the closest element to U K from within the

set {θ : rank(θ) = r −1} is the (r −1)-spectral truncation of U K , and this has squared Frobenius

distance from U K equal to ζ2. This concludes the proof.

Now that we have explained how to deal with the second step of our procedure, we need

to discuss how to solve the minimisation problem in step (i). If we had to exactly solve the

same problem but without the presence of the matrix P K in the norm, then we would have a

classical PCA problem, and we would know that the minimiser is given by a truncated version

of the singular value representation of RK
n . However, due to the presence of the matrix P K ,

we are looking for a rank ω matrix that fits best the matrix RK
n outside a given band, and this

complicates the problem — in particular the problem no longer has a closed form solution. To

circumvent this problem, we use the fact that any K ×K positive semidefinite matrix A of rank

smaller or equal to ω can be written as A =CC>, where C is a K ×ω matrix. The optimisation

problem (3.1.2) in step (i) can then be written as

θ̂ω = ĈωĈ>
ω , where Ĉω ∈ argmin

C∈RK×ω
‖P K ◦ (RK

n −CC>)‖2
F , (3.1.6)
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where we solve the latter problem using the function fminunc of the optimisation toolbox in

MATLAB [MAT12]. This uses a subspace trust-region method based on the interior-reflective

Newton method described in Coleman and Li ([CL94] and [CL96]) to perform the optimisation.

The drawback with this procedure is that the minimisation problem is not convex in C , and

so we don’t have guarantees that the algorithm will converge to a global optimum. However,

note that our problem can be seen as factorized matrix completion, and Chen and Wainwright

[CW15] recently showed that projected descent algorithms have a high probability of yielding

a "good" local optimum in this kind of problem, if the starting value is reasonable. Although

we are not using the same exact optimisation method, we are in a similar setup and thus

expect to obtain good results in practice. Our stating value C0 is constructed such that C0C>
0 is

the projection of RK
n into the space of matrices of rank ω (i.e. C0 =UiΣ

1/2
i , where: UΣU> is

the singular value decomposition of RK
n ; Ui is the n × i matrix obtained by keeping the first

i columns of U ; and Σi is the i × i matrix obtained by keeping the first i lines and columns

of Σ), which seems to be the natural choice of starting value for this problem. In fact we

perform a sensitivity analysis in Section 3.2.3, and it seems that our minimisation method is

not particularly sensitive to the choice of starting value.

Now that we have described how to obtain L̂K
n in practice, we will discuss the case of B̂ K

n

defined in Definition 2.3.2. We don’t have a closed form for the projection P of ∆K
n = RK

n − L̂K
n

onto C ∩D, where C is the set of banded K ×K matrices of bandwidth at most dK /4e and D

is the set of non-negative definite K ×K matrices, but we can approximate it using either an

alternating projection algorithm (also called projections onto convex sets) (Bauschke and

Borwein [BB96]) or the Dykstra’s projection algorithm (Boyle and Dykstra [BD86]), since we

have a closed form for the projections PC and PD and the sets C and D are closed and convex.

In the results presented in the following sections, we used an alternating projection algorithm

to obtain B̂ K
n .

3.2 Simulation study

In this section we present a simulation study designed to study the performance of our

methodology for a broad class of setups, and also to compare our results to those obtained

with three classical methods. We first present the different types of data we are considering. We

then carry out a sensitivity analysis to probe the effect of the starting value on the algorithm

used to solve (3.1.6), study the effect of the sample size n and of the grid size K on the

performance of our method and study the performance of our scree plot approach to estimate

the rank of the matrix L . We conclude the section by presenting the results of our comparison

study with existing methods and some results related to the prediction part.

Note that in the rest of this section, we consider the maximal value of the bandwidth δ to be

1/10 and not 1/4 as in the theory, since we rarely expect a rough process to have such a long

memory. The matrix P K is then now constructed as P K (i , j ) = 1{|i − j | > dK /10e}.
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3.2. Simulation study

3.2.1 Simulation of the data

To test our method on a variety of data, we consider 3 different ways to simulate the smooth

curve Y and 3 different ways to simulate the rough curve W , which leads to 9 different

scenarios. For each of these scenarios, we simulate samples of n iid mean-zero functions Yi

and n iid mean-zero functions Wi on the grid T = {1/2K ,3/2K , . . . , (2K −1)/2K } of K equally

spaced points on the interval [0,1]. For each sample, we compute the empirical covariance

matrix for the smooth and the rough curves, which are respectively given by :

LK
n (a,b)

1

n

n∑
i=1

Yi (ta)Yi (tb) and B K
n (a,b)

1

n

n∑
i=1

Wi (ta)Wi (tb),

for a,b ∈ {1, . . . ,K }, and then set RK
n = LK

n +B K
n .

The smooth curves Yi are constructed as independent copies of the random function Y

which is defined such that its covariance function given by `(s, t ) =∑r
j=1λ jη j (s)η j (t ) has real

analytic eigenfunctions η1, . . . ,ηr . For this, we set Y (t) = ∑r
j=1 c jλ

1/2
j η j (t), where λ1, . . . ,λr

are positive scalars and c j ∼ N(0,1). The eigenfunctions are constructed in one of the three

following ways :

(FB) as the first r Fourier basis elements, except for the special case r = 1, where instead of

using η1(t ) = 1, we use η1(t ) = sin(2πt );

(AC) as being the Gram-Schmidt orthogonalisation of the first r analytic functions from the

following list:

η1(t ) = 5t sin(2πt ), η3(t ) = 5t + sin(2πt )−2, η5(t ) = Γ(4)
Γ(2)Γ(2) t (1− t ).

η2(t ) = t cos(2πt )−3, η4(t ) = cos(4πt )+ (t/2)2,

(LP) as the first r shifted Legendre polynomials P̃i (x) defined as :

P̃0(t ) = 1, P̃2(t ) = 6t 2 −6t +1, P̃4(t ) = 70t 4 −140t 3 +90t 2 −20t +1.

P̃1(t ) = 2t −1 P̃3(t ) = 20t 3 −30t 2 +12t −1,

except for the special case r = 1, where instead of using η1(t) = P̃0(t) = 1, we use

η1(t ) = P̃3(t ).

The rough curves Wi are constructed as independent copies of the random function W which

is defined such that its covariance function b(s, t ) =∑d
j=1β jψ j (s)ψ j (t ) is δ-banded. For this,

we set W (t) = ∑d
j=1 b jβ

1/2
j ψ j (t) where the eigenfunctions ψ1, . . . ,ψd are supported on non

overlapping intervals of length at most δ (and then d is at most δ−1), β1, . . . ,βd are positive

scalars and b j ∼ N(0,1). The eigenfunctions are constructed in one of the two following ways :

(TRI) each function ψ j is defined as a triangular function of norm 1 with support [( j −1)δ, jδ]

which attains its maximal value at ( j −1/2)δ.
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(RBB) each function ψ j is a realisation of a reflected Brownian bridge defined on [( j −1)δ, jδ].

For simplicity of presentation, we define the third way we used to construct a rough process

W directly at a discretised level :

(MA) For each t j ∈ T , we set W (t j ) = ∑q
a=0θaε j−a , where q = dKδe, θ0 = 1, θ1 . . . ,θq ∈ (−1,1)

are scalars and ε j
i i d∼ N (0,1).

Note that a vector (W (t1), . . . ,W (tK )) generated as described in (MA) has a banded covariance

matrix since it is in fact a moving average of order q .

The 9 scenarios resulting from our different ways to construct the smooth and the rough

functions are described in Table 3.1.

Scenario A B C D E F G H I

Yi FB AC LP FB AC LP FB AC LP
Wi MA MA MA TRI TRI TRI RBB RBB RBB

Table 3.1 – Scenarios for the simulation study.

For each of these 9 scenarios, we consider 6 different combinations for the value of the rank

parameter r and of the bandwidth parameter δ that are summarised in Table 3.2.

Combination 1 2 3 4 5 6

r 1 1 3 3 5 5
δ 0.05 0.1 0.05 0.1 0.05 0.1

Table 3.2 – Different values of the rank and bandwidth parameter.

Finally, we also consider two different regimes for the choice of the eigenvalues λ1 < ·· · <λr

of L and β1 < ·· · < βd of B; the first one can be seen as the easier case where there is a

clear ordering distinction between the two sets, i.e. λr > β1 (Regime 1); the second one is

the interlaced case, when λr < β1 < λr−1 (Regime 2). In regime 1, the r eigenvalues λ are

equally spaced between λ1 = 1.45 and λr = 0.25, and we use λ1 = 0.25 for r = 1. In regime 2,

the eigenvalues {λ1, . . . ,λr } are equally spaced between λ1 = 1 and λr = 0.04. In both regimes,

the rough processes are simulated with β1 = 0.09. The remaining eigenvalues for the scenarios

(TRI) or (RBB) are smaller than 0.04 and decreasing toward zero, while those for the scenario

(MA) are slowly decreasing toward zero, which yields to a challenging situation in the regime

2 since in this case there is more than one eigenvalue of the rough process that exceeds the

smallest eigenvalue of the smooth process. For each combination (r,δ) with r > 1 of Table 3.2,

we consider each of the two regimes and for the particular case r = 1, we consider only regime

1. In total, we consider 10 different cases in each of the nine simulation scenarios.
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3.2.2 Impact of the sample size and of the resolution

As we just mentioned in Subsection 3.2.1, in our simulation study we consider 10 different cases

(rank/bandwidth/regime) for every of our nine scenarios (A-I) which leads to 90 simulation

setups. Still, we need to consider the effect of the sample size n and grid resolution K . Since

we already have a fair number of simulation setups, we first studied the impact of different

values of n and K on the performance of our method for the 10 different cases of Scenario A.

To study the impact of n and K we consider the 7 different combinations given in Table 3.3.

For every possible combination of parameters n and K , of parameters r and δ and of regime,

we simulated 100 samples from Scenario A. For each of these 100 samples we calculated the

relative error

RE(u) = ‖u −LK ‖F

‖LK ‖F
,

of our estimator L̂K
n , and we reporte the median, the first and the third quartiles of these errors

in Table 3.4. The rank of LK is assumed to be known in these simulations. By looking at Table

3.4, we see that our method works quite well (less than 15% error) for the majority of the setups.

In fact we only have unsatisfactory results in the cases with K = 25 and r = 5, and this makes

sense since in these cases we barely satisfy the condition K ≥ 4r +4 = 24, which is necessary

to recover LK uniquely (Corollary 2.2.1). Moreover this condition applies to the population

version, so in a finite sample, we can imagine that K would have to be much bigger than 4r +4

to obtain good results. For the rest of this section, we have chosen to work with n = 300 and

K = 100.

n 100 100 100 300 300 300 300
K 25 50 100 25 50 100 150

Table 3.3 – Different values of the sample size and the grid size.

3.2.3 Sensitivity analysis

In this section we carry out a sensitivity analysis in order to probe the effect of the starting

value on the algorithm we use to solve the minimisation problem (3.1.6). The idea is to solve

the same optimisation problem several times but with different starting values and to look

at the variance of the resulting optima. To do so, we consider the 10 possible combinations

of rank (1,3 and 5), bandwidth (0.05 and 0.1) and regime (1 and 2) of Scenario A. For each

combination i ∈ {1, . . . ,10}, we have simulated 100 samples which gave us 100 empirical

covariance matrices Ri 1, . . . ,Ri 100. Let ri be the true rank associated with the combination i ,

and let Si j for j = 1, . . . ,100 be a K × ri matrix such that Si j S>
i j is the projection of the matrix

Ri j into the space of matrices of rank ri . For each combination i and sample j , we executed

the following two steps.

63



Chapter 3. Implementation and simulation study

Scenario A
(n,K ) (r,δ) Regime 1 Regime 2

n = 100,K = 25

(1,0.05) 0.14 (0.10,0.20)
(1,0.10) 0.15 (0.12,0.19)
(3,0.05) 0.15 (0.13,0.19) 0.18 (0.13,0.21)
(3,0.10) 0.15 (0.12,0.19) 0.18 (0.14,0.23)
(5,0.05) 0.30 (0.24,0.37) 0.30 (0.24,0.37)
(5,0.10) 0.27 (0.24,0.31) 0.27 (0.23,0.32)

n = 100,K = 50

(1,0.05) 0.10 (0.07,0.16)
(1,0.10) 0.15 (0.10,0.22)
(3,0.05) 0.17 (0.13,0.22) 0.17 (0.14,0.22)
(3,0.10) 0.17 (0.12,0.21) 0.21 (0.19,0.26)
(5,0.05) 0.21 (0.18,0.24) 0.21 (0.18,0.25)
(5,0.10) 0.31 (0.23,0.34) 0.32 (0.29,0.35)

n = 100,K = 100

(1,0.05) 0.12 (0.06,0.19)
(1,0.10) 0.14 (0.09,0.20)
(3,0.05) 0.15 (0.12,0.19) 0.19 (0.16,0.23)
(3,0.10) 0.16 (0.13,0.22) 0.18 (0.15,0.22)
(5,0.05) 0.21 (0.18,0.24) 0.25 (0.21,0.29)
(5,0.10) 0.22 (0.18,0.24) 0.22 (0.19,0.25)

n = 300,K = 25

(1,0.05) 0.08 (0.06,0.11)
(1,0.10) 0.09 (0.07,0.12)
(3,0.05) 0.08 (0.07,0.11) 0.11 (0.09,0.15)
(3,0.10) 0.10 (0.08,0.13) 0.11 (0.09,0.14)
(5,0.05) 0.15 (0.14,0.18) 0.19 (0.16,1.41)
(5,0.10) 0.15 (0.13,0.18) 0.19 (0.15,0.82)

n = 300,K = 50

(1,0.05) 0.07 (0.04,0.11)
(1,0.10) 0.07 (0.05,0.10)
(3,0.05) 0.11 (0.08,0.13) 0.10 (0.09,0.13)
(3,0.10) 0.09 (0.07,0.12) 0.14 (0.12,0.16)
(5,0.05) 0.12 (0.10,0.14) 0.14 (0.12,0.15)
(5,0.10) 0.13 (0.11,0.15) 0.15 (0.13,0.17)

n = 300,K = 100

(1,0.05) 0.05 (0.03,0.09)
(1,0.10) 0.06 (0.05,0.10)
(3,0.05) 0.09 (0.07,0.12) 0.11 (0.10,0.13)
(3,0.10) 0.08 (0.06,0.11) 0.11 (0.09,0.13)
(5,0.05) 0.12 (0.10,0.14) 0.14 (0.12,0.15)
(5,0.10) 0.12 (0.10,0.14) 0.13 (0.12,0.15)

n = 300,K = 150

(1,0.05) 0.13 (0.12,0.16)
(1,0.10) 0.08 (0.06,0.11)
(3,0.05) 0.10 (0.08,0.12) 0.12 (0.10,0.14)
(3,0.10) 0.10 (0.07,0.12) 0.10 (0.09,0.13)
(5,0.05) 0.13 (0.11,0.15) 0.15 (0.13,0.17)
(5,0.10) 0.13 (0.10,0.14) 0.13 (0.12,0.15)

Table 3.4 – Table containing the median (the first and third quartiles are in parentheses) of the
relative errors of our method for different combinations of n and K .
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1. Find the optima Oi j 1, . . . ,Oi j 100, where Oi j k is obtained by solving the problem

min
C∈RK×r j

‖P K ◦ (Ri j −CC>)‖2
F ,

using the starting value Si k .

2. Calculate the relative standard deviation (Rstd), also called coefficient of variation, of

the optima Oi j 1, . . . ,Oi j 100

Rstdi j = 1

Ōi j

√√√√ 1

100

100∑
k=1

(Oi j k −Ōi j )2,

where Ōi j = 1/100
∑100

k=1 Oi j k .

This gave us 100 relative standard errors for each combination, and the distribution of these

errors are illustrated using boxplots in Figure 3.1. It seems that the only parameter that has an

effect on the convergence behaviour of our algorithm is the regime. In fact, the choice of the

starting value seems to have no effect in Regime 1 while it has a small effect in Regime 2.

3.2.4 Rank selection with the scree plot approach

As discussed in Section 3.1, in order to select the rank r̂ of our estimator L̂K
n we use a scree plot

approach, i.e., we plot the function f (ω) = ‖P K ◦ (RK
n − ĈωĈ>

ω )‖2
F , where Ĉω is defined as in

(3.1.6), and we pick r̂ such that the function levels out beyond it. In this subsection we study

the performance of this procedure on one sample from each of the 90 possible combinations

of scenario/combination/regime. For each sample, we have to evaluate the function f (·) at

ω= 1, . . . ,K , which is quite computationally intensive, especially for high value of ω. Since in

practice we expect the rank of L to be low, we only calculate f (ω) for ω= 1, . . . ,10. We can

see on the resulting plots of f that doing this is not restrictive since the functions become

flat much before reaching ω = 10. Figure 3.2 presents the results for scenarios A to E and

Figure 3.3 those for F to I, where each graph represents a different combination of scenario

and regime. Since we want the functions f (·) for different values of r and δ to appear on a

same graph, we normalised each function f (·) by ‖P K ◦RK
n ‖ in order to put them on the same

scale. The functions associated with a true rank of 1 (respectively of 3 and 5) are represented

in blue (respectively in red and in black). To help analysing whether the results obtain with

our method are accurate, a red vertical dotted line has been drawn at ω= 3 and a black one at

ω= 5. We would then pick the right rank if the elbow of a curve (red or black) is located at the

intersection with the vertical line matching its colour. In the case of a blue curve (rank equals

to 1), we would select the right rank if the curve is flat.

By looking at the plots on the left of Figures 3.2 and 3.3, we see that in the Regime 1 we would

select the right rank for all scenarios, except maybe for Scenario C, when the true rank r is

either 1 or 3. For r = 5, we do well for scenarios A, D and G, which correspond to scenarios
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C
b. 6, reg 2

Figure 3.1 – Each boxplot is constructed from the 100 relative standard deviations obtained
for a given combination of rank/bandwidh (1-6) and of regime (1 : top six, 2: bottom four) of
Scenario A.

where the eigenfunctions of the operator L are Fourier bases, but we slightly underestimate

the rank (by choosing 3 or 4 instead of 5) for the other scenarios. When we look at the plots on

the right of the two figures, we notice that for the Regime 2 we underestimate the real rank for

almost all cases.

In order to study the impact of rank misspecification, we carried out the following simula-

tion study. We have simulated 100 samples of every possible combination of scenario A, of

combinations 3 to 6 of Table 3.2 and of the two regimes. For every sample coming from a

combination with r = 3, we have run our method 4 times, i.e., we have solved the problem

(3.1.6) for ω = 2,3,4 and 5, which gave us the corresponding estimators L̂ω3 . We calculated

the relative error RE(u) = ‖u −LK ‖F /‖LK ‖F of each of the 4 resulting estimators, and then
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Figure 3.2 – Plots of the function f (·) normalised by ‖P K ◦RK
n ‖ for a given scenario (A-F), a

given combination of parameters and a given regime. The curves in black correspond to a
setting with r = 5, those in red to a setting with r = 3 and those in blue to a setting with r = 1.
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Figure 3.3 – Plots of the function f (·) normalised by ‖P K ◦RK
n ‖ for a given scenario (G-I), a

given combination of parameters and a given regime. The curves in black correspond to a
setting with r = 5, those in red to a setting with r = 3 and those in blue to a setting with r = 1.

construct the relative error ratio

RRE(u) = RE(u)

RE(L̂3
3)

= ‖u −LK ‖F

‖L̂3
3 −LK ‖F

,

for u = L̂2
3, L̂4

3 and L̂5
3, which indicates the performance of the estimators obtained with a

misspecified rank compared to the one obtains with the rank specified correctly. If this ratio

is smaller than or equal to 1, the misspecification does not have a negative impact on our

estimation, and otherwise it means that indeed the estimators obtained with a misspecified

rank are not as good as those obtained with the rank specified correctly. We applied exactly

the same procedure for the samples coming from a combination with r = 5, except that this

time we solved the problem (3.1.6) for ω= 3,4,5,6 and 7. For each simulation setup with r = 3

we then have 3×100 relative error ratios, and for the one with r = 5 we have 4×100 relative

error ratios. We illustrate the distribution of these ratios on Figure 3.4 using boxplots. For

every setup with the regime 1, we see that underestimation has much more negative impacts

than overestimation, while for the setups with the regime 2, an error of ±1 on the rank choice

is not very impactful, we thus recommend to chose a larger rank when in doubt.
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Figure 3.4 – Illustration of the impact of rank misspecification using Scenario A, combinations
3-6 of regime 1 (top four) and of regime 2 (bottom four). The impact is negative for values
smaller than 1 (this threshold is represented by the red horizontal line). 69
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3.2.5 Comparison with existing methods

In this subsection we study the performance of our methodology by comparing our results to

those obtained with the three following methods:

1. The method popularised by Ramsay and Silverman [RS05] of smoothing first the data

which leads to a sample of curves X̃1, . . . , X̃n , and then to set the estimator of LK to be

L̂K
RS(a,b) = 1

n

∑n
i=1 X̃i (a)X̃i (b). The smoothing is done with Fourier basis for scenarios A,

D and G since for these scenarios the data are periodic, and with B-splines for all the

other scenarios (for more details look at Section 1.2.1).

2. The PACE method (Yao et al. [YMW05]) where the estimator L̂K
PAC E of LK is obtained by

local polynomial smoothing of the covariance matrix RK
n from which we have removed

the diagonal (for more details look at Section 1.2.2).

3. The naive method consisting in truncating the empirical Karhunen-Loève (KL) expan-

sion, i.e. we calculate the spectral decomposition of RK
n and we set the estimator L̂K

K L of

LK to be the truncation of the above decomposition at a level rK , where rK is chosen

such that the variance explained is at least of 95%.

Before performing our comparison study, let’s first mention that throughout this subsection

we use the real rank r of L K when we apply our method. We justify this choice by the fact that

as we have shown in the previous subsection, our scree plot approach gives reasonable results

and moreover, since the simulations are computationally intensive, it would be impossible to

use an automatic selection method. Furthermore, since we have a huge number of replications,

it would also be impossible to make a choice based on the inspection of the scree plot.

We are now ready to present our comparison study. For every possible combination of scenario

(A-I), of combination of r and δ (1-6) and of regime (1 or 2), we have simulated 100 samples

of n = 300 curves evaluated on a grid T of K = 100 points. For each of these 100 samples, we

have obtained our estimator L̂K
n and the estimators L̂K

RS , L̂K
PAC E and L̂K

K L . We then do a two fold

comparison, i.e. we compare the resulting estimators through their capacity to recover

1. the population covariance matrix LK ;

2. the empirical covariance matrix LK
n .

We are interested in the recovery of the matrix LK
n since besides being the best unbiased

estimator of LK that we could hope for if we could observed the functions Y1, . . . ,Yn on the

grid T , it is in fact the target of our method since we are not including any smoothing step

in our procedure. For this reason, when we consider the recovery of LK , instead of using our

estimator L̂K
n , we use a very slightly smoothed version thereof, denoted by L̃K

n . We compare

the estimators on their performance to recover LK through the relative error RE, and to recover
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LK
n through the empirical relative error

REn(u) = ‖u −LK
n ‖F

‖LK
n ‖F

.

Once we have calculated RE and REn for the four estimators, we construct the ratios

RRE(u) = RE(u)

RE(L̃K
n )

= ‖u −LK ‖F

‖L̂K
n −LK ‖F

, RREn(u) = REn(u)

REn(L̂K
n )

= ‖u −LK
n ‖F

‖L̂K
n −LK

n ‖F
,

for u = L̂K
RS , L̂K

PAC E and L̂K
K L . For each of the simulation setups, we then have 100 ratios RRE

and 100 ratios RREn for each of the three methods of comparison, and we have reported the

median, the first and the third quartiles of the ratios RRE in Tables 3.5, 3.6 and 3.7 and of the

ratios RREn in Tables 3.8, 3.9 and 3.10. All the median values exceeding 1 (in bold in the tables)

indicate that our method works at least as well as the method of comparison at least 50% of

the time. The distribution of the relative errors RE and REn for every simulation setup are

illustrated using boxplots in Appendix A.

By looking at Tables 3.5, 3.6 and 3.7, we notice that our method works better than the other

methods when the real rank of the smooth covariance operator is 1 and better or comparably

well in the other cases, except for the case where the smooth components were simulated

with the first 5 Legendre polynomials (scenarios C, F and I with r = 5). In this case, due to the

particular shape of the matrix LK , which has values of large magnitude on the band compared

to the ones outside it, our optimisation procedure was unstable and then sometimes led to

poor estimates, as it is indicated in our tables by the very small values of the first quartiles.

Tables 3.8, 3.9 and 3.10 indicate that our method performs typically much better or comparably

well than the other methods, except in two situations. The first is the same as we explained

before i.e., for scenarios C, F and I with r = 5, and the second is for scenarios A and B with

regime 2 where the estimator LRS outperforms ours. However, by looking at Figures A.3 and

A.6 in Appendix A, we can see that in fact our method works quite well in these setups, having

a median relative error smaller than 0.05 for almost all of them, and that it is really the other

method that is giving surprisingly outstanding results.

All these "good" results must be taken with a grain of salt, since we are comparing our method

that has been especially designed to deal with the kind of data we have simulated, to methods

that assume that the rough part of the data can be seen as white noise. Moreover, let’s not

forget that we have assumed that we knew the real rank of the matrix LK , and that the other

methods also have tuning parameters that affect their performance. These comparisons

should thus be viewed more as a benchmark, than as claim to superiority.

As we already mentioned, our method has been designed to deal with the case where the

rough part of the data is not simply due to pure noise. However, we would like it to still work

well when the rough process is indeed pure noise, since in practice it might be difficult to

know in which situation we are. We thus finish this subsection by comparing the performance
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of our method using samples containing 300 curves Xi = Yi +Wi evaluated on a grid T of

100 points, where the smooth functions Y are simulated with r Fourier basis (FB) and the

rough processes W such that W (t) iid∼ N(0,σ2), for t ∈ T . The results are presented in Table

3.11 for two different values of σ2. We can see that even now our method performs at least

as well as the other methods. We were expecting our method to give reasonable results also

in this situation since the model considered here is that the matrix B K is diagonal which is

a particular case of being banded, but it seems at first a bit surprising that it works so well

compared to the other methods, since one would expect that we are losing information by

doing the completion of the matrix RK
n to which we have removed a band instead of only

the diagonal like in the PACE method for example. However, in practice we deal with B K
n the

empirical version of B K , which won’t be exactly diagonal, and it might explain why our method

still gives interesting results for this scenario.

3.2.6 Prediction of the smooth curves

In this subsection we want to probe the performance of our estimator Ŷ K
n of the best linear

unbiased predictorΠ(X K ). To do this, for every possible combination of r and δ and of regime

(1 or 2) of Scenario E, we have simulated 100 samples of n = 300 curves evaluated on a grid T

of K = 100 points. For each of these samples, we calculated the average of the approximation

of the normalised mean integrated squared error of Ŷ K
n :

relMISE = 1

n

n∑
i=1

∑K
j=1[Ŷ K

n,i (t j )−Π(X K
i )(t j )]2∑K

j=1[Π(X K
i )(t j )]2

.

The distribution of the resulting 100 values are illustrated using boxplots in Figure 3.5. We can

see that the results seem satisfactory and that not surprisingly, the method performs a little bit

better for regime 1 than regime 2.

3.3 Application to real data

We illustrate our method using data related to the air quality in the city of Geneva, Switzerland

(the data can be found at the address "http://ge.ch/air/qualite-de-lair/requete-de-donnees").

Measurements of the quantity of nitrogen dioxide (NO2) in the air (in micrograms per cubic

meter) have been recorded every hour at the station L’Ile from the second Monday of Septem-

ber to the second Sunday of November from 2005 to 2011. Our dataset is then composed of

n = 62 curves corresponding to the different weeks, and each curve is evaluated at K = 168

points, corresponding to 7 days (from Monday to Sunday) times 24 hours. The raw dataset

and its empirical covariance function are presented in Figure 3.6.

For these particular data, we are expecting the covariance function ` of our model to capture

the variation at the time-scale of a week, and the banded covariance function b to capture

the variation at the time-scale of a day. We thus decided to choose an upper bound of 0.14
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Regime 1
Scenario (r,δ) PACE KL RS

A

(1,0.05) 6.55 (3.67,11.2) 3.30 (1.94,5.71) 1.01 (0.92,1.07)
(1,0.10) 3.98 (2.64,5.70) 3.12 (2.08,4.32) 1.38 (1.15,1.88)
(3,0.05) 1.22 (1.05,1.41) 1.14 (1.01,1.25) 1.00 (0.98,1.01)
(3,0.10) 1.13 (1.06,1.30) 1.13 (1.02,1.23) 1.00 (0.95,1.04)
(5,0.05) 1.16 (1.07,1.23) 1.11 (1.05,1.22) 1.00 (0.98,1.02)
(5,0.10) 1.09 (1.02,1.14) 1.07 (1.03,1.18) 1.00 (0.98,1.04)

B

(1,0.05) 6.03 (3.33,8.66) 2.95 (1.99,4.67) 1.87 (1.34,2.60)
(1,0.10) 3.36 (2.35,4.13) 2.67 (1.76,3.28) 1.68 (1.39,2.26)
(3,0.05) 1.36 (1.08,1.49) 1.19 (0.89,1.31) 1.02 (1.00,1.05)
(3,0.10) 1.17 (1.01,1.31) 1.11 (0.91,1.25) 1.04 (0.99,1.08)
(5,0.05) 1.15 (1.05,1.24) 1.10 (1.00,1.17) 1.00 (0.98,1.02)
(5,0.10) 1.08 (0.99,1.16) 1.04 (0.95,1.10) 1.00 (0.98,1.03)

C

(1,0.05) 1.59 (1.57,1.62) 0.58 (0.52,0.63) 0.47 (0.45,0.48)
(1,0.10) 1.65 (0.75,6.26) 0.68 (0.41,2.79) 1.08 (0.53,4.94)
(3,0.05) 1.45 (1.07,1.76) 1.19 (1.01,1.43) 1.03 (0.77,1.12)
(3,0.10) 1.25 (1.11,1.48) 1.12 (1.03,1.27) 1.12 (1.02,1.21)
(5,0.05) 0.78 (0.71,0.86) 0.79 (0.69,0.85) 0.64 (0.53,0.76)
(5,0.10) 0.67 (0.58,0.76) 0.73 (0.67,0.83) 0.63 (0.55,0.75)

D

(1,0.05) 5.21 (3.04,7.67) 5.20 (3.03,7.66) 3.75 (2.23,5.65)
(1,0.10) 6.12 (4.26,10.6) 6.09 (4.24,10.6) 3.74 (2.66,6.37)
(3,0.05) 1.18 (1.09,1.32) 1.21 (1.07,1.35) 1.11 (1.02,1.23)
(3,0.10) 1.24 (1.11,1.42) 1.23 (1.10,1.40) 1.08 (1.00,1.22)
(5,0.05) 1.08 (1.04,1.12) 1.08 (1.01,1.13) 1.05 (0.99,1.09)
(5,0.10) 1.12 (1.07,1.18) 1.11 (1.06,1.18) 1.06 (1.01,1.11)

E

(1,0.05) 4.32 (3.04,6.50) 4.31 (3.04,6.51) 3.88 (2.73,5.67)
(1,0.10) 6.51 (4.51,11.2) 6.48 (4.49,11.2) 4.74 (3.43,8.12)
(3,0.05) 1.18 (1.06,1.30) 1.18 (1.05,1.32) 1.15 (1.01,1.26)
(3,0.10) 1.24 (1.15,1.40) 1.23 (1.13,1.44) 1.11 (1.05,1.27)
(5,0.05) 1.06 (1.00,1.13) 1.07 (0.98,1.16) 1.04 (0.98,1.12)
(5,0.10) 1.11 (1.05,1.16) 1.11 (1.04,1.20) 1.06 (1.01,1.13)

F

(1,0.05) 8.05 (6.29,9.41) 8.21 (6.40,9.56) 7.11 (5.60,8.24)
(1,0.10) 14.4 (12.3,19.1) 14.4 (12.3,19.2) 10.6 (8.90,13.9)
(3,0.05) 1.58 (1.30,1.88) 1.63 (1.34,1.96) 1.45 (1.23,1.73)
(3,0.10) 1.85 (1.51,2.21) 1.86 (1.54,2.26) 1.45 (1.27,1.81)
(5,0.05) 0.67 (0.25,0.92) 0.68 (0.26,0.97) 0.60 (0.23,0.89)
(5,0.10) 0.97 (0.59,1.25) 0.96 (0.58,1.27) 0.89 (0.53,1.14)

G

(1,0.05) 2.74 (1.69,5.85) 2.70 (1.71,5.82) 1.90 (1.33,4.05)
(1,0.10) 8.16 (4.56,13.0) 8.12 (4.55,13.1) 6.01 (3.35,9.43)
(3,0.05) 1.06 (1.03,1.12) 1.06 (0.99,1.13) 1.02 (0.98,1.07)
(3,0.10) 1.37 (1.17,1.68) 1.40 (1.15,1.66) 1.25 (1.07,1.43)
(5,0.05) 1.02 (1.00,1.05) 1.03 (0.99,1.06) 1.01 (0.99,1.04)
(5,0.10) 1.14 (1.08,1.29) 1.13 (1.07,1.27) 1.08 (1.02,1.19)

Table 3.5 – Table containing the median (the first and third quartiles are in parentheses) of the
ratios for the three methods we compared our method with and for scenarios A-G with the
regime 1. We highlight in bold the medians that exceed 1.
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Regime 1
Scenario (r,δ) PACE KL RS

H

(1,0.05) 2.94 (1.90,6.05) 2.92 (1.89,6.08) 2.43 (1.79,5.41)
(1,0.10) 7.85 (4.72,12.3) 7.97 (4.72,12.3) 7.02 (3.97,10.6)
(3,0.05) 1.05 (1.01,1.12) 1.05 (1.00,1.12) 1.04 (0.99,1.10)
(3,0.10) 1.32 (1.14,1.90) 1.29 (1.14,1.97) 1.26 (1.12,1.85)
(5,0.05) 1.02 (1.00,1.06) 1.04 (0.99,1.08) 1.01 (0.99,1.05)
(5,0.10) 1.13 (1.05,1.29) 1.13 (1.04,1.28) 1.12 (1.02,1.23)

I

(1,0.05) 8.18 (5.87,10.6) 8.42 (6.09,10.9) 7.51 (5.07,9.31)
(1,0.10) 13.6 (9.71,17.7) 13.7 (9.82,17.8) 11.8 (8.31,15.0)
(3,0.05) 1.14 (1.05,1.32) 1.16 (1.03,1.31) 1.09 (1.02,1.22)
(3,0.10) 1.93 (1.36,2.90) 1.98 (1.40,3.07) 1.93 (1.28,2.53)
(5,0.05) 0.98 (0.85,1.08) 1.03 (0.86,1.12) 0.96 (0.80,1.05)
(5,0.10) 0.93 (0.25,1.20) 0.96 (0.26,1.26) 0.84 (0.24,1.14)

Table 3.6 – Table containing the median (the first and third quartiles are in parentheses) of
the ratios for the three methods we compared our method with and for scenarios H-I with the
regime 1. We highlight in bold the medians that exceed 1.

for δ, since it corresponds to removing a band of width dδK e = 24 hours in the discrete setup.

In order to pick the rank r , we solved the optimisation problem (3.1.6) for ω = 1, . . . ,7, and

we plotted the functions f (ω) = ‖P K ◦ (RK
n − ĈωĈ

>
ω)‖2

F and the ratio r ( j ) = f ( j )/ f ( j +1), for

j = 1, . . . ,6 on Figure 3.7. Our estimated rank should be the point i where the function f

levels out, or equivalently, the point j for which the ratio r becomes a constant close to 1.

After inspection of the Figure 3.7, we picked r̂ = 3 and our estimator of LK is then given by

L̂K
n = Ĉ3Ĉ

>
3 .

A slightly smoothed version L̃ of L̂K
n is illustrated on Figure 3.8, as well as its three correspond-

ing eigenfunctions that represent variation that propagates globally throughout the week.

Since the first principal eigenfunction is negative throughout the week, it seems to indicate

fluctuation of the overall level of NO2 on a weekly basis. Moreover, since the negative weight

put on the afternoon of every day is around three times bigger than that put on every morning,

it seems that the quantity of NO2 in the air is more variable during the afternoon. The second

eigenfunction puts a negative weight on the first days of the week and a positive one on the

last days, it then appears to capture early/late week effects. Similarly, the third eigenfunction

is positive on periods corresponding to the day, and negative on periods corresponding to the

night, so it can be seen as capturing the periodic day/night effects, interpreted as a measure

of uniformity of the quantity of NO2 between the day and the night. The estimation of the

covariance function b and of its three first eigenfunctions are presented in Figure 3.9. We can

notice that as expected they are locally supported even if we didn’t enforce this behaviour in

our method. They can be interpreted as follows, the first represents the mode of variation

during the weekend, the second that during the beginning of the week, and finally the last

represents the variability of the middle of the week. Note that their corresponding eigenvalues
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3.3. Application to real data

Regime 2
Scenario (r,δ) PACE KL RS

A

(3,0.05) 1.27 (1.14,1.41) 1.12 (0.99,1.23) 0.88 (0.82,0.92)
(3,0.10) 1.09 (1.01,1.20) 1.09 (0.99,1.21) 0.92 (0.86,1.02)
(5,0.05) 1.22 (1.12,1.30) 1.18 (1.07,1.25) 0.92 (0.87,0.96)
(5,0.10) 1.09 (1.01,1.17) 1.09 (1.01,1.16) 0.94 (0.89,1.00)

B

(3,0.05) 1.45 (1.21,1.74) 1.32 (0.90,1.45) 0.91 (0.82,0.97)
(3,0.10) 1.29 (0.84,1.49) 1.26 (0.78,1.47) 0.94 (0.85,1.01)
(5,0.05) 1.14 (0.98,1.33) 1.07 (0.88,1.23) 0.89 (0.82,0.96)
(5,0.10) 1.05 (0.89,1.18) 1.02 (0.89,1.13) 0.88 (0.79,0.94)

C

(3,0.05) 2.36 (1.93,2.98) 1.40 (1.04,1.76) 1.17 (1.08,1.32)
(3,0.10) 1.52 (1.30,1.76) 1.20 (1.02,1.42) 1.26 (1.08,1.49)
(5,0.05) 1.32 (1.19,1.44) 1.05 (0.93,1.15) 0.85 (0.76,0.94)
(5,0.10) 0.97 (0.87,1.08) 0.92 (0.83,1.00) 0.87 (0.77,1.00)

D

(3,0.05) 1.40 (1.24,1.65) 1.42 (1.22,1.67) 1.23 (1.06,1.39)
(3,0.10) 1.59 (1.33,2.05) 1.57 (1.33,2.03) 1.27 (1.12,1.54)
(5,0.05) 1.21 (1.12,1.29) 1.18 (1.11,1.29) 1.09 (1.02,1.18)
(5,0.10) 1.27 (1.16,1.40) 1.26 (1.13,1.39) 1.08 (1.02,1.20)

E

(3,0.05) 1.39 (1.21,1.61) 1.36 (1.20,1.62) 1.29 (1.10,1.53)
(3,0.10) 1.58 (1.31,1.88) 1.58 (1.33,1.87) 1.34 (1.15,1.59)
(5,0.05) 1.07 (0.95,1.18) 1.05 (0.90,1.17) 1.02 (0.88,1.12)
(5,0.10) 1.26 (1.16,1.40) 1.29 (1.16,1.48) 1.16 (1.04,1.28)

F

(3,0.05) 1.46 (0.18,2.13) 1.49 (0.19,2.25) 1.35 (0.16,1.93)
(3,0.10) 1.96 (0.33,2.88) 1.99 (0.34,2.95) 1.52 (0.27,2.22)
(5,0.05) 1.07 (0.14,1.41) 1.08 (0.15,1.45) 0.98 (0.13,1.31)
(5,0.10) 1.10 (0.18,1.72) 1.11 (0.18,1.75) 0.89 (0.13,1.43)

G

(3,0.05) 1.12 (1.03,1.24) 1.12 (1.02,1.27) 1.06 (0.98,1.13)
(3,0.10) 2.14 (1.50,3.04) 2.18 (1.50,3.01) 1.67 (1.30,2.21)
(5,0.05) 1.06 (1.01,1.11) 1.10 (1.05,1.16) 1.03 (0.99,1.07)
(5,0.10) 1.49 (1.26,1.76) 1.49 (1.25,1.76) 1.25 (1.10,1.45)

H

(3,0.05) 1.12 (1.04,1.22) 1.12 (1.01,1.23) 1.07 (0.99,1.20)
(3,0.10) 1.78 (1.38,2.51) 1.78 (1.39,2.56) 1.60 (1.30,2.25)
(5,0.05) 1.04 (1.00,1.13) 1.08 (1.01,1.18) 1.03 (0.99,1.09)
(5,0.10) 1.29 (1.05,1.62) 1.31 (1.05,1.65) 1.23 (1.01,1.49)

I

(3,0.05) 1.35 (1.16,1.78) 1.37 (1.14,1.92) 1.27 (1.07,1.61)
(3,0.10) 2.25 (0.38,3.54) 2.31 (0.39,3.64) 2.01 (0.34,3.10)
(5,0.05) 0.93 (0.25,1.15) 0.93 (0.27,1.19) 0.90 (0.23,1.12)
(5,0.10) 1.29 (0.34,1.74) 1.33 (0.35,1.79) 1.16 (0.27,1.58)

Table 3.7 – Table containing the median (the first and third quartiles are in parentheses) of
the ratios for the three methods we compared our method with and for the 9 scenarios we
considered with the regime 2. We highlight in bold the medians that exceed 1.
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Regime 1
Scenario (r,δ) PACE KL RS

A

(1,0.05) 16.2 (15.2,17.3) 8.02 (7.53,8.72) 1.03 (0.93,1.14)
(1,0.10) 5.53 (5.13,6.11) 4.23 (3.91,4.71) 1.70 (1.56,1.90)
(3,0.05) 8.09 (7.63,8.50) 6.04 (5.62,6.34) 0.94 (0.80,1.07)
(3,0.10) 4.12 (3.88,4.47) 3.46 (3.22,3.74) 1.59 (1.41,1.78)
(5,0.05) 4.55 (4.17,5.04) 3.72 (3.32,4.31) 0.53 (0.45,0.60)
(5,0.10) 3.28 (3.08,3.51) 2.89 (2.63,3.14) 1.09 (0.98,1.25)

B

(1,0.05) 13.4 (12.5,14.1) 6.74 (6.24,7.06) 3.85 (3.52,4.18)
(1,0.10) 5.13 (4.79,5.65) 3.97 (3.56,4.39) 2.64 (2.37,2.83)
(3,0.05) 7.70 (7.23,8.16) 4.85 (4.47,5.28) 2.25 (1.96,2.55)
(3,0.10) 4.40 (4.09,4.65) 3.26 (2.93,3.56) 2.22 (2.02,2.38)
(5,0.05) 3.26 (2.86,3.76) 2.33 (2.03,2.77) 1.03 (0.84,1.13)
(5,0.10) 2.61 (2.23,2.88) 2.02 (1.72,2.29) 1.28 (1.13,1.45)

C

(1,0.05) 1.60 (1.54,1.68) 0.58 (0.54,0.61) 0.47 (0.43,0.50)
(1,0.10) 1.85 (0.77,8.53) 0.84 (0.36,4.15) 1.37 (0.57,6.35)
(3,0.05) 6.25 (1.12,8.22) 3.64 (1.05,5.03) 2.20 (0.41,3.01)
(3,0.10) 4.66 (3.93,5.58) 3.02 (2.62,3.79) 3.59 (2.97,4.05)
(5,0.05) 0.63 (0.60,0.66) 0.61 (0.58,0.63) 0.23 (0.21,0.26)
(5,0.10) 0.41 (0.38,0.44) 0.56 (0.54,0.59) 0.30 (0.27,0.32)

D

(1,0.05) 11.7 (9.89,12.8) 11.7 (9.89,12.8) 6.61 (5.62,7.25)
(1,0.10) 21.0 (18.3,26.5) 21.9 (18.2,26.4) 10.5 (8.78,12.5)
(3,0.05) 6.83 (5.98,7.41) 6.66 (5.85,7.33) 5.29 (4.40,5.72)
(3,0.10) 11.2 (9.62,12.9) 10.8 (9.10,12.4) 7.85 (6.56,9.20)
(5,0.05) 4.51 (3.91,5.18) 4.27 (3.68,4.95) 3.86 (3.20,4.59)
(5,0.10) 7.50 (6.20,8.65) 7.11 (5.65,8.24) 6.16 (4.80,7.18)

E

(1,0.05) 7.77 (6.97,9.13) 7.76 (6.97,9.12) 7.03 (6.17,8.01)
(1,0.10) 15.1 (12.6,18.0) 15.0 (12.6,18.0) 11.0 (9.41,13.4)
(3,0.05) 5.55 (5.05,6.31) 5.73 (5.15,6.61) 4.88 (4.45,5.60)
(3,0.10) 9.15 (7.81,10.7) 9.36 (8.00,11.0) 7.08 (5.98,8.25)
(5,0.05) 2.83 (2.26,3.62) 3.03 (2.39,3.95) 2.54 (1.95,3.12)
(5,0.10) 5.40 (4.31,6.71) 5.55 (4.56,7.09) 4.30 (3.34,5.30)

F

(1,0.05) 8.91 (7.56,10.2) 9.05 (7.69,10.3) 7.78 (6.77,9.08)
(1,0.10) 18.2 (14.6,24.5) 18.3 (14.7,24.6) 13.3 (10.9,17.9)
(3,0.05) 5.43 (4.58,6.31) 5.67 (4.82,6.67) 4.69 (3.89,5.51)
(3,0.10) 9.84 (8.83,11.2) 10.2 (9.12,11.5) 7.47 (6.51,8.43)
(5,0.05) 0.51 (0.18,0.86) 0.52 (0.19,0.91) 0.44 (0.15,0.72)
(5,0.10) 1.03 (0.47,2.11) 1.07 (0.49,2.20) 0.73 (0.36,1.57)

G

(1,0.05) 13.5 (10.2,17.0) 13.4 (10.2,16.8) 7.45 (5.69,9.11)
(1,0.10) 17.2 (13.0,24.6) 17.2 (13.0,25.0) 9.95 (7.57,13.5)
(3,0.05) 9.78 (8.17,11.8) 9.21 (7.38,11.2) 6.99 (5.93,8.65)
(3,0.10) 9.76 (7.94,12.2) 9.34 (7.58,12.2) 7.80 (6.34,9.47)
(5,0.05) 7.05 (6.07,8.36) 7.15 (5.93,8.67) 5.64 (4.52,7.21)
(5,0.10) 6.93 (5.68,8.23) 6.44 (5.37,8.03) 6.26 (5.06,7.55)

Table 3.8 – Table containing the median (the first and third quartiles are in parentheses) of the
empirical ratios for the three methods we compared our method with and for scenarios A-G
with the regime 1. We highlight in bold the medians that exceed 1.
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3.3. Application to real data

Regime 1
Scenario (r,δ) PACE KL RS

H

(1,0.05) 11.0 (8.29,13.8) 10.9 (8.49,13.8) 9.29 (7.66,11.8)
(1,0.10) 14.2 (10.4,18.2) 14.2 (10.5,18.2) 11.7 (8.96,16.0)
(3,0.05) 7.76 (6.74,9.89) 8.72 (7.00,10.2) 6.89 (5.65,7.85)
(3,0.10) 8.67 (6.83,11.2) 8.63 (6.88,11.3) 7.95 (6.19,10.2)
(5,0.05) 4.80 (3.41,6.20) 6.01 (4.49,8.14) 4.03 (2.94,5.44)
(5,0.10) 5.36 (3.82,6.89) 5.60 (3.89,7.17) 4.67 (3.38,5.95)

I

(1,0.05) 11.1 (9.31,13.7) 11.7 (9.68,14.2) 9.87 (8.21,12.4)
(1,0.10) 16.0 (11.4,20.6) 16.2 (11.5,20.7) 13.8 (9.87,17.4)
(3,0.05) 7.13 (6.00,9.25) 7.61 (6.49,10.0) 6.03 (5.21,7.29)
(3,0.10) 7.72 (6.29,9.58) 8.17 (6.49,9.99) 6.76 (5.46,8.43)
(5,0.05) 1.06 (0.65,1.53) 1.33 (0.72,1.92) 0.88 (0.53,1.27)
(5,0.10) 0.94 (0.18,1.77) 0.99 (0.19,1.82) 0.78 (0.15,1.54)

Table 3.9 – Table containing the median (the first and third quartiles are in parentheses) of the
empirical ratios for the three methods we compared our method with and for scenarios H-I
with the regime 1. We highlight in bold the medians that exceed 1.

are of the same order of magnitude, so their effects should also be of the same order.

We also analyse the dataset using the classical approach of first smoothing the curves, and

then calculating the empirical covariance function and its spectrum from these smoothed

curves. Since the data are periodic we use a Fourier basis smoothing with a roughness penalty

approach to smooth the original data. The six leading eigenfunctions of the resulting estimated

covariance function are plotted in Figure 3.10. We can see that the first three eigenfunctions

are very similar to that obtained by our method. However, since the three subsequent eigen-

functions need to be orthogonal to the three first ones, they are not locally supported and are

very difficult to interpret. Moreover, the first three eigenfunctions only account for 52% of the

total variance explained, and the three subsequent ones for 16%, meaning that one needs to

consider at least all of them to perform the analysis.
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Regime 2
Scenario (r,δ) PACE KL RS

A

(3,0.05) 2.05 (1.93,2.20) 1.53 (1.47,1.61) 0.23 (0.19,0.26)
(3,0.10) 1.44 (1.35,1.52) 1.41 (1.32,1.49) 0.56 (0.50,0.63)
(5,0.05) 2.06 (1.94,2.18) 1.83 (1.72,1.93) 0.22 (0.19,0.25)
(5,0.10) 1.62 (1.52,1.73) 1.58 (1.48,1.67) 0.54 (0.48,0.59)

B

(3,0.05) 2.12 (2.08,2.25) 1.71 (1.48,1.84) 0.57 (0.53,0.61)
(3,0.10) 1.67 (1.54,1.79) 1.59 (1.50,1.70) 0.72 (0.66,0.79)
(5,0.05) 1.38 (1.29,1.45) 1.07 (0.95,1.21) 0.39 (0.35,0.42)
(5,0.10) 1.15 (1.06,1.22) 1.06 (0.98,1.10) 0.48 (0.45,0.53)

C

(3,0.05) 5.88 (5.61,6.23) 2.89 (2.69,3.14) 1.90 (1.74,2.12)
(3,0.10) 3.06 (2.87,3.35) 2.00 (1.79,2.18) 2.17 (2.02,2.35)
(5,0.05) 1.68 (1.59,1.76) 1.05 (0.99,1.11) 0.57 (0.53,0.61)
(5,0.10) 0.94 (0.87,1.02) 0.76 (0.71,0.82) 0.69 (0.65,0.74)

D

(3,0.05) 5.70 (5.06,6.62) 5.59 (5.03,6.65) 4.12 (3.54,4.94)
(3,0.10) 10.7 (8.66,12.2) 10.5 (8.48,12.2) 6.89 (5.45,8.07)
(5,0.05) 3.58 (3.10,4.18) 3.48 (3.05,4.03) 2.79 (2.33,3.36)
(5,0.10) 6.81 (5.64,8.09) 6.63 (5.54,7.72) 4.90 (4.04,5.83)

E

(3,0.05) 4.60 (3.89,5.43) 4.66 (3.96,5.45) 4.16 (3.60,4.81)
(3,0.10) 8.59 (6.96,10.2) 8.65 (7.00,10.2) 6.51 (5.22,7.80)
(5,0.05) 2.09 (1.11,2.76) 2.14 (1.13,2.82) 1.84 (0.94,2.45)
(5,0.10) 3.96 (3.15,5.46) 4.24 (3.33,5.72) 3.12 (2.42,4.27)

F

(3,0.05) 1.13 (0.06,2.74) 1.17 (0.07,2.83) 0.99 (0.06,2.47)
(3,0.10) 3.45 (0.16,7.03) 3.55 (0.16,7.20) 2.61 (0.11,5.21)
(5,0.05) 0.78 (0.07,1.43) 0.81 (0.07,1.50) 0.66 (0.06,1.27)
(5,0.10) 0.70 (0.09,2.85) 0.71 (0.09,2.95) 0.52 (0.07,2.13)

G

(3,0.05) 7.87 (6.60,9.69) 7.31 (6.22,9.55) 5.30 (4.43,6.77)
(3,0.10) 8.05 (6.46,9.91) 8.02 (6.41,9.92) 5.95 (4.92,7.42)
(5,0.05) 5.73 (4.73,6.52) 7.03 (5.95,8.53) 4.45 (3.53,5.20)
(5,0.10) 5.87 (4.77,7.88) 5.75 (4.69,7.92) 5.01 (3.86,6.49)

H

(3,0.05) 7.10 (6.07,8.22) 6.99 (5.73,8.16) 6.06 (5.13,7.17)
(3,0.10) 7.51 (6.03,9.43) 7.61 (6.09,9.53) 6.74 (5.63,8.19)
(5,0.05) 3.84 (3.16,4.91) 5.26 (4.11,6.90) 3.40 (2.64,4.14)
(5,0.10) 3.89 (1.76,5.46) 4.30 (1.82,5.84) 3.53 (1.47,5.02)

I

(3,0.05) 4.94 (3.27,6.13) 5.32 (3.48,6.54) 4.41 (3.12,5.30)
(3,0.10) 3.11 (0.20,6.11) 3.16 (0.20,6.24) 2.87 (0.17,5.12)
(5,0.05) 0.59 (0.06,1.47) 0.67 (0.07,1.58) 0.49 (0.05,1.24)
(5,0.10) 1.16 (0.14,2.54) 1.20 (0.15,2.60) 1.02 (0.11,2.38)

Table 3.10 – Table containing the median (the first and third quartiles are in parentheses) of the
empirical ratios for the three methods we compared our method with and for the 9 scenarios
we considered with the regime 2. We highlight in bold the medians that exceed 1.
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3.3. Application to real data

regime 1 and σ2 = 1
r PACE KL RS
1 1.41 (1.08,1.78) 1.36 (1.05,1.68) 2.05 (1.36,2.68)
3 1.04 (1.00,1.11) 1.06 (0.97,1.16) 1.04 (0.97,1.09)
5 1.03 (0.99,1.07) 1.03 (0.99,1.07) 1.01 (0.97,1.06)

Regime 2 and σ2 = 1.7
r PACE KL RS
3 1.06 (0.98,1.18) 1.13 (1.04,1.28) 1.11 (0.97,1.27)
5 1.01 (0.97,1.08) 1.06 (1.00,1.13) 1.03 (0.94,1.10)

Table 3.11 – Table containing the median (the first and third quartiles are in parentheses) of the
ratios for the three methods we compared our method with for the classical scenario where
the rough component is a white noise. We highlight in bold the results that exceed 1.
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Chapter 3. Implementation and simulation study
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Figure 3.5 – Distributions of relMISE for Scenario E. The first 3 rows represent results for
combination with r = 1,3 and 5 (from top to bottom) of regime 1, and the 2 last rows represent
combination with r = 3 and 5 (from top to bottom) of regime 2. For each row, the boxplot on
the left correponds to δ= 0.05 and on the right to δ= 0.1.
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3.3. Application to real data

Figure 3.6 – Illustration of the dataset on the left, and of its empirical covariance function on
the right.
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Figure 3.7 – Illustration of the scree plot approach to pick the rank. On the left we plotted
the function f (ω) = ‖P K ◦ (RK

n − ĈωĈ
>
ω)‖2

F for ω = 1, . . . ,7, and on the right the ratio r ( j ) =
f ( j )/ f ( j +1) for j = 1, . . . ,6.
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Chapter 3. Implementation and simulation study

Figure 3.8 – Smoothed estimation of the covariance function ` and of its three eigenfunctions.
On each plot of the eigenfunction, the dotted lines indicate the different days of the week.
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3.3. Application to real data

Figure 3.9 – Estimation of the covariance function b and of its first three eigenfunctions. On
each plot of the eigenfunction, the dotted lines indicate the different days of the week.
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Chapter 3. Implementation and simulation study
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Figure 3.10 – The first six eigenfunctions of the estimate of l obtained by smoothing with a
roughness penalty the empirical covariance matrix. The dotted lines indicate the different
days of the week.
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A Detailed results of the comparison
study

This section contains boxplots of the distribution of the relative errors RE(u) = ‖u−LK ‖F /‖LK ‖F

and of the empirical relative errors REn(u) = ‖u − LK
n ‖F /‖LK

n ‖F for our method, the PACE

method, the truncation of the Karhunen-Loève (KL) expansion method and the spline/Fourier

smoothing method. These results are complementary to those in Tables 3.5, 3.6, 3.7, 3.8, 3.9

and 3.10 of Section 3.2.5. In each of figures A.1 to A.27, the distributions of the relative errors

are plotted on the left and the distributions of the empirical relative errors on the right. The

horizontal lines on the graphics indicate the level 0.05.
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Figure A.1 – Scenario A, combinations 1 and 2 (from top to bottom) of regime 1.
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Appendix A. Detailed results of the comparison study
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Figure A.2 – Scenario A, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.3 – Scenario A, combinations 3 to 6 (from top to bottom) of regime 2.
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Appendix A. Detailed results of the comparison study
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Figure A.4 – Scenario B, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.5 – Scenario B, combinations 3 to 6 (from top to bottom) of regime 1.
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Appendix A. Detailed results of the comparison study
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Figure A.6 – Scenario B, combinations 3 to 6 (from top to bottom) of regime 2.
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Figure A.7 – Scenario C, combinations 1 and 2 (from top to bottom) of regime 1.
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Appendix A. Detailed results of the comparison study
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Figure A.8 – Scenario C, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.9 – Scenario C, combinations 3 to 6 (from top to bottom) of regime 2.
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Appendix A. Detailed results of the comparison study
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Figure A.10 – Scenario D, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.11 – Scenario D, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.12 – Scenario D, combinations 3 to 6 (from top to bottom) of regime 2.
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Figure A.13 – Scenario E, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.14 – Scenario E, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.15 – Scenario E, combinations 3 to 6 (from top to bottom) of regime 2.
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Figure A.16 – Scenario F, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.17 – Scenario F, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.18 – Scenario F, combinations 3 to 6 (from top to bottom) of regime 2.
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Figure A.19 – Scenario G, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.20 – Scenario G, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.21 – Scenario G, combinations 3 to 6 (from top to bottom) of regime 2.
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Figure A.22 – Scenario H, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.23 – Scenario H, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.24 – Scenario H, combinations 3 to 6 (from top to bottom) of regime 2.
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Figure A.25 – Scenario I, combinations 1 and 2 (from top to bottom) of regime 1.
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Figure A.26 – Scenario I, combinations 3 to 6 (from top to bottom) of regime 1.
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Figure A.27 – Scenario I, combinations 3 to 6 (from top to bottom) of regime 2.
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