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Abstract

A fundamental goal of population genetics is to determine and quantify the interplay of mutation,
natural selection, genetic drift and migration in shaping allelic frequency changes that underpin evolution-
ary change. In this dissertation, | present computational, empirical and experimental approaches to address
this goal. In the first chapter, | develop an approximate Bayesian computation (ABC) approach that co-
estimates the selection strength and age of fixed beneficial mutations in single populations, by integrating a
range of existing diversity, site frequency spectrum, haplotype and linkage disequilibrium based summary
statistics. This approach is then extended to models of selection on standing variation in order to co-infer
the frequency at which positive selection began to act upon the mutation. In the second chapter, | apply
this method to an empirical study of convergent adaptation of blanched dorsal phenotypes in two lizard
species to the newly formed White Sands system of New Mexico. Estimates of the age of the beneficial
mutations underpinning the evolution of cryptic coloration are younger than the related geological shift
and support a model of adaptation from de novo mutation. In the third chapter, | analyze the experimental
evolution of HIN1 influenza virus populations under a combined protocol of two drugs with different
modes of action: oseltamivir and favipiravir. Results indicate a complex interplay of mutation, selection
and genetic drift, where selective sweeps around oseltamivir resistance mutations hitchhike deleterious
mutations owing to the mutagenic effect of favipiravir to fixation. This effect reduces viral fitness and ac-
celerates extinction via Muller’s ratchet, but at the risk of spreading both established and newly emerging
oseltamivir resistance mutations.

Keywords

Positive selection, allele age, Approximate Bayesian Computation, adaptation, convergent adaptation,
experimental evolution, influenza H1N1, drug resistance, genetic hitchhiking, Muller’s ratchet, Hill Rob-
ertson interference
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Résumé

Un des objectifs principaux de la génétique des populations est d’identifier et de quantifier les in-
teractions entre mutation, sélection naturelle, dérive génétique et migration, c’est a dire les quatre forces
évolutives déterminant les changements de fréquences alléliques a la base du processus évolutif. Dans
cette these de doctorat, je présente de nouvelles approches statistiques empiriques et experimentales qui
permettent de répondre a cet objectif. Dans le premier chapitre, je développe une méthode ABC (ap-
proximate Bayesian computation) permettant I'estimation conjointe du coefficient de sélection et de I'adge
des mutations avantageuses dans des populations seules. Cette approche se base sur une simplification des
données brutes a I'aide de statistiques décrivants le spectre de fréquences alléliques, la diversité haploty-
pique et le déséquilibre de liaison. Cette méthode ABC est ensuite adaptée pour I'analyse d’'un modele de
sélection dit « SGV » (standing genetic variation) dans lequel I'apparition de I'allele avantageux précede
I'apparition de la contrainte sélective, dans le but d’estimer la fréquence initiale de I'allele avantageux.
Dans le deuxieme chapitre, japplique cette méthode a une étude empirique sur I'adaptation convergente
de phénotypes de camouflage a un nouvel environnement dans deux espéces de lézards du Nouveau
Mexique. Les estimations obtenues avec cette nouvelle méthode suggerent que les alleles avantageux
responsables de I'évolution du camouflage sont survenus aprés les modifications environnementales cor-
respondantes et suggerent donc une histoire adaptative caractérisée par I'apparition de nouvelles muta-
tions bénéfiques. Dans le troisieme chapitre, j’analyse I’évolution expérimentale de populations du virus de
la grippe (influenza) HIN1 soumis a deux traitements différent: I'oseltamivir et le favipiravir. Les résultats
indiquent une interaction complexe entre mutation, sélection et dérive génétique, et mettent en évidence
un balayage sélectif, du aux mutations de résistance a I'oseltamivir, qui porte et fixe les mutations délé-
teres causées par 'action mutagénique du favipiravir. Cet effet nuit a la capacité réplicative du virus et
accélere le processus d’extinction via un processus connu sous le nom de « Cliquet de Muller » (Muller’s
ratchet), mais avec un risque accru de transmission de mutations de résistance a |’oseltamivir repandues et
nouvellement emergentes.

Mots-clés

Sélection avantageuse, age de I'allele, ABC, adaptation, adaptation convergente, évolution expérimen-
tale, influenza H1N1, balayage sélectif, cliquet de Muller, interférence Hill Robertson
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Chapter 1 Introduction

Evolution represents the “cumulative change over time in the characteristics of a population of
living organisms” (Charlesworth & Charlesworth 2010). Some of these changes may be very rapid, such as
the evolution of drug resistance in a virus or bacterial population. Other evolutionary changes, such as the
modification in physical traits of a species, may extend over much longer time scales. Evolutionary change
pre-supposes the existence of variability within populations generated by mutation, which, along with ge-
netic drift, natural selection, and migration, all serve to shape the frequency of such genetic variation.
Population genetics is the study of this allele frequency change, with the goal of quantifying the relative
contribution and interplay of these forces. In this dissertation, | present computational, empirical, and ex-
perimental approaches for addressing this fundamental question.

Computational: One approach to understand the frequency at which positive selection acts, is to estimate
the age and strength of beneficial alleles, with these ages providing a proxy for rate. In the first chapter, |
develop an Approximate Bayesian Computation (ABC) approach to estimate these parameters in single
populations. While many tests have been designed to identify beneficial mutations (see reviews of
Thornton et al. (2007), Bank et al. (2014)) , comparatively few approaches exist to infer the age of these
variants. Despite the rapid sojourn time to fixation of beneficial mutations, existing methods primarily es-
timate age and selection parameters using haplotype-based approaches tailored to the case of mutations
segregating at low or intermediate frequency (Slatkin 2008; Peter et al. 2012; Chen & Slatkin 2013; Chen et
al. 2015). In addition, many of the approaches developed rely on time-sampled data. However, apart from
experimental population or ancient genomic data, most data is a collected at a single time point. Thus,
there is a gap for methods that co-estimate age and selection parameters for fixed beneficial mutations
using single time point, single population data.

Our method addresses that gap, integrating a range of existing diversity, site frequency spectrum, haplo-
type and linkage disequilibrium based summary statistics. It builds on the ABC method previously devel-
oped by Przeworski (2003) which is used as a benchmark to assess performance. We show that for strong
selective sweeps on de novo mutations the method can estimate allele age and selection strength even in
non-equilibrium demographic scenarios. We extend our approach to models of selection on standing varia-
tion, and co-infer the frequency at which positive selection began to act upon the mutation. This work was
published in Molecular Ecology in 2016. Code for implementing the method is available through
http://jensenlab.epfl.ch/.

Empirical: In the second chapter, | utilize this method in an application to ecology: namely, to estimate the
age of beneficial alleles underpinning cryptic coloration in a newly evolved habitat. The study of popula-
tions that have recently colonized new environments is of interest because environmental changes can
generate strong signatures of selection that are within the time limits of detection from polymorphism
data. The recently formed White Sands system of southern New Mexico offers an outstanding example of
rapid and convergent adaptation, with a variety of species having evolved blanched forms on the dunes
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that contrast with their close relatives in the surrounding dark soil habitat. In this study, we focus on two of
the White Sands lizard species, Sceloporus cowlesi and Aspidoscelis inornata, for which previous research
has linked different mutations in the melanocortin-1 receptor gene (Mc1r) to the parallel evolution of
blanched coloration. In such studies, establishing whether a mutation pre-dates or post-dates a known
environmental change provides an indication of whether positive selection operated on new (de novo) or
pre-existing (standing) variation, a fundamental question underlying the nature of adaptation which can be
addressed using our method. Importantly, the colonization of new environments frequently entails demo-
graphic changes that may confound signatures of selection. Here, the advantage of our ABC approach is
that it can be applied to the Mc1r mutations which are segregating at a high frequency in the light pheno-
type populations, and that both the different colonization histories and dominance effects can be explicitly
modelled when co-estimating allele age and selection strength.

For both species, we find that the estimates of allele age are consistent with the respective colonization
histories of the two species. In both cases these indicate an age younger than the White Sands (2,000-7000
years), supporting a model of converging adaption from de novo mutation. This work was also published in
Molecular Ecology in 2016.

Experimental: Apart from ecological applications, the study of population dynamics has important implica-
tions in medicine. For example, the evolution of drug resistance is a critical public health problem. Influen-
za in particular inflicts a heavy death toll annually, with approximately 36,000 deaths in the United States
alone. Widespread resistance to the most frequently administered drug, oseltamivir, has focused interest
in developing therapeutics with novel mechanisms of action that are less susceptible to resistance. Favipi-
ravir is a new compound that is currently in phase three clinical trials. It acts by increasing the genome
wide mutation rate of influenza virus (IAV). Combining oseltamivir and favipiravir is a clinically proposed
strategy with demonstrated synergies in mouse models of influenza, but the effects of combining the two
drugs on virus population evolution are unknown. In chapter 4, | analyse experimental populations of IAV
subject to a combined protocol of oseltamivir and favipiravir. To the best of our knowledge, this is the first
study attempting to elucidate the underlying evolutionary processes behind the synergistic effects of osel-
tamivir and favipiravir in HIN1 virus populations.

We describe an interplay between mutation, selection, and genetic drift, which ultimately leads to muta-
tional meltdown. In particular, we find that selective sweeps around oseltamivir resistance mutations re-
duce genome-wide variation but also hitchhike deleterious mutations to fixation owing to the increased
mutational load generated by favipiravir. This latter effect reduces viral fitness and accelerates extinction
via Muller’s ratchet, but at the risk of spreading both established and newly emerging oseltamivir re-
sistance mutations, if transmission occurs before the virus populations are eradicated. The analysis portion
of this work is currently in preparation for submission to PLoS Genetics, and the consideration of the under-
lying models of mutational meltdown, lethal mutagenesis, and error catastrophe resulted in an opinion
piece that has been accepted for publication at Virus Evolution.

Thus, the work presented in this thesis illustrates how the combination of approaches and questions from
population genetics, statistical inference, ecology, and medicine may all serve to illuminate fundamental
principles of evolutionary biology.
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Chapter 2 Inferring the Age of a Fixed Bene-
ficial Allele

Ormond L, Foll M, Ewing GB, Pfeifer SP, Jensen JD. Mol Ecol. 2016 Jan;25(1):157-69.
doi:10.1111/mec.13478

2.1 Introduction

Selective sweeps are believed to have played a role in shaping genomic patterns of variation across
a wide range of species. Estimating the parameters underlying this process, including the beneficial allele
age and associated selection strength, can provide deeper insights into the mode and tempo of adaptation.
With regards to allele age in particular, one question that has remained of particular focus is whether spe-
cifically identified beneficial mutations correspond with the timing of an environmental change experi-
enced by the population in question — be it the colonization of a novel habitat or a sudden geological event.
This question is often posed in the context of whether adaptive events more commonly draw on new or
standing genetic variation — and indeed significant debate remains around this topic (Jensen 2014). Adapta-
tion from new mutations may be said to be “mutation limited”, in that the appropriate mutation would
need to occur after the shift in selective pressure. Thus, the ability to accurately infer the age and the start-
ing frequency at the onset of selection of identified beneficial mutations relative to known environmental
shifts will be key for advancing this debate.

Many tests have been designed to identify the action of selection in the genome from patterns of
polymorphism (see review of Thornton et al. (2007) and Bank et al. (2014)). These rely on frequency
changes in linked neutral sites induced by a selective sweep, a process known as “genetic hitchhiking”
(Kaplan et al. 1989). Polymorphism based signals are relatively fleeting and are typically visible only on a
time scale of 0.1 N, generations or less, for an effective population size N, (Przeworski 2003). Yet the ma-
jority of approaches are intended to only identify beneficial fixations, and comparatively few approaches
exist for inferring the age of these variants. Over the last few years, method development has largely fo-
cused on time-sampled datasets, and much progress has been made in this area (e.g. McVean 2002;
Malaspinas et al. 2012; Mathieson & McVean 2013; Foll et al. 2014; Steinricken et al. 2014). However,
apart from experimentally evolved or clinical populations, or the handful of ancient genomes, the great
majority of available data is collected at a single time point (i.e., present), and there is thus a compelling
incentive to improve single time point methods.

Despite the fast transit time characterizing beneficial fixations, the majority of single time point
methods to date have aimed to estimate these parameters for segregating, rather than fixed, beneficial
mutations using haplotype structure (e.g. Slatkin 2008; Peter et al. 2012; Chen & Slatkin 2013; Chen et al.
2015) . Most recently, Chen et al. (2015) used a Hidden Markov Model to explore haplotype structure, and
developed a likelihood estimation approach assuming strong selection (and thus a deterministic allele tra-
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jectory) for currently segregating beneficial mutations. For fixed mutations, the state-of-the-art approach
was proposed by Przeworski (2003) to estimate the age of a fixed beneficial mutation in an approximate
Bayesian (ABC) framework based on a combination of diversity, site frequency spectrum (SFS) and haplo-
type statistics. We continue this focus in order to develop an improved estimator for the age of fixed bene-
ficial mutations using the past decade of statistical method development, and utilize the Przeworski (2003)
estimator as a performance benchmark.

Most notably, the characteristic pattern of linkage disequilibrium (LD) generated by a complete
selective sweep suggests the opportunity to utilize this in an ABC framework. Simulation and theoretical
studies (e.g. Stephan et al. 2006; Jensen et al. 2007; McVean 2007; Pavlidis et al. 2010) have described
strong LD at linked sites on either side of the beneficial fixation, but not spanning the selected site. In addi-
tion, there is a reduction in LD across the target of selection. Kim & Nielsen (2004) designed a statistic Wmax
that captures this complex pattern, with Jensen et al. (2007) subsequently demonstrating that wmax exhibits
different density distributions under selective sweep models in both equilibrium and non-equilibrium popu-
lations.

Here, we explore the combination of frequency spectrum- and linkage disequilibrium-based expec-
tations as an approach to improve our ability to estimate the age of a fixed beneficial mutation based on
observed patterns of polymorphism. We develop an ABC-based method that is demonstrated to outper-
form existing approaches. This approach is not intended to identify loci under selection from genome-wide
scans: rather, it is applicable to previously identified loci. We extend this approach to co-estimate allele age
and selection strength assuming that selection acts on a de novo mutation. Next, we relax the assumption
of selection on a de novo mutation in order to co-estimate the starting frequency of the segregating allele
with allele age and selection strength. Finally, we apply these developed methodologies to explore the se-
lective history of cryptic coloration in a wild deer mouse population, and compare our newly developed
estimates with previous published inference.

2.2 Methods

We present three sets of methods. Firstly, we infer allele age T (the time since the allele fixed)
alone assuming that the selection coefficient s is known and that a model of selection on de novo muta-
tions applies. Secondly, s and T are co-estimated while continuing to assume a model of selection from de
novo mutation. Thirdly, we co-infer the starting frequency f at which the previously neutral allele was seg-
regating in the population at the onset of selection s and the age at which selection begins T,. Although the
underlying assumption is that a test of selection has been applied using other tools, we demonstrate that
this approach has power to correctly infer neutrality as well.

Approximate Bayesian Computation (ABC)

A standard ABC approach was applied following Tavaré et al. (1997) and Beaumont et al. (2002).
We used the R package abc (Csillery et al. 2012) and implemented the method in the following series of
steps:
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1. Simulations

For each scenario considered, 5 x 105 simulations were generated using the program msms (Ewing &
Hermisson 2010). Briefly, neutral genealogies are traced backwards in time for a random sample of alleles
using standard coalescent theory, incorporating recombination and demographic changes where applica-
ble. Selection is modeled at a single pre-determined locus by applying forward simulations. In this study,
selection is assumed to be additive such that genotypes that are homozygous and heterozygous for the
selected derived allele have fitness 1+s and 1+s/2 respectively, whereas genotypes that are homozygous for
the ancestral allele have fitness 1. For a sample of n chromosomes of length L, and assuming an effective
diploid population size N = 10,000, a coalescent history was constructed assuming a population scaled mu-
tation rate 6 = 4N.Lu with mutation rate u = 107 per base pair per generation, and a population scaled re-
combination rate p = 4N Lr with recombination rate r = 107 per base pair per generation. Unless a model
of selection from standing variation is stipulated, simulations are designed to model selective sweeps from
de novo mutations arising on a single chromosome in the population, which have ultimately fixed. The
strength of selective sweeps is determined using the population scaled parameter a = 2N.s. Unless speci-
fied otherwise, simulations were run using L = 20kb for the inference of T alone and using L = 10kb for the
co-estimation of s and T, and the selected mutation is positioned in the center of the region. These lengths
were chosen to capture the full signature of the selective sweep for the parameters used, based on theo-
retical results demonstrating an effect over L = 0.01 x s/r = 10kb for a selective sweep of coefficient s = 0.1
and recombination rate r = 107 crossovers per base pair per generation (Kaplan et al. 1989).

Equilibrium populations are modeled as panmictic diploid populations of constant size N. = 10,000.
Allele age T is taken to be the time since the allele fixed, using the —SF option in msms simulations. For
equilibrium demographic scenarios, the prior distributions for s and T were log;y(s) ~ U(-4, -0.5) and logo(T)
~ U(-4, -0.5) where U is a uniform distribution. T is reported in units of 4N, generations in keeping with
standard coalescent theory. These distributions were chosen in order to span different orders of magnitude
from neutrality (where N,s < 1) to strong selection (s = 0.3), and from very recent to distant ages of the
selected allele. Przeworski (2002) have shown that T = 0.1 x 4N, is approximately the upper limit for
detecting selective sweeps, after which the signature in polymorphism data becomes rapidly obscured
by subsequent mutation, recombination, and genetic drift.

2. Choice of summary statistics

We used the program msstats (Thornton 2003) to calculate a panel of 21 frequently used summary statis-
tics (see Supp. Table 1 for details of statistics) from the standard msms Single Nucleotide Polymorphism
(SNP) output simulated in step 1 above. Supp. Fig. 1 shows the correlation of a range of informative diver-
sity, SFS and LD based statistics with s for recent sweeps (T = 0.01 x 4N, generations). For older sweeps (T =
0.1 x 4N, generations), we find that the signature of selection becomes rapidly obscured (data not shown).
Following Wegmann et al. (2009), we employ a partial least squares method (PLS) to incorporate the most
informative statistics into our method. PLS is similar to Principal Component Analysis, but determines or-
thogonal components from a high dimensional set of statistics by maximizing the covariance between the
statistics and the variables. Applying PLS has been shown to improve the performance of ABC methods,
partly by reducing the dimensionality of the set of summary statistics and partly by removing noise from
uninformative statistics (Joyce & Marjoram 2008). Wegmann et al. (2009) have shown that incorporating a
large number of non-informative summary statistics may bias the resulting posteriors. The pls package in R
(Bjorn-Helge & Wehrens 2007) was used to calculate PLS components based on a subset of size 104 out of
the total 5 x 105 simulations. Prior to implementing PLS we apply a Box-Cox transformation (Box & Cox
1964) to normalize the statistics. We adapted a script available through ABC Toolbox for this purpose

17



(Wegmann et al. 2010). Incorporating PLS into our ABC method was shown to reduce relative bias and root
mean square error (RMSE), and was therefore used in all ABC calculations.

3. ABCinference of sand T
In order to evaluate the performance of our ABC method, we selected values of T only, or of s and T over

different orders of magnitude, and ran 100 simulations for each selected pair of values that we considered
as pseudo-observables. Summary statistics were calculated from the SNP output using msstats and trans-
formed into PLS components using the same loadings as in step 2 above.

Posterior distributions for the parameters were generated using an ABC rejection algorithm and a tolerance
level of 0.005, which was found to be optimal. 2,500 simulations were therefore retained out of the total
number of simulations of 5 x 10°. Using local linear or ridge regression ABC methods did not significantly
improve results (data not shown).

Point estimates for s and T were calculated from the mode of the joint density posterior distribution using
the two-dimensional kernel density function in the MASS package in R (Venables & Ripley 2002). For esti-
mating allele age alone, the mode of the posterior distribution for T was calculated to give a point estimate.
Relative bias and RMSEs were calculated between these predicted values and the true pseudo-observable
values for s and T (Supp. Tables 2 and 3). Relative bias is defined as the mean difference between the pre-
dicted value y and the true pseudo-observable y; divided by the value of the true pseudo-observable ..
RMSE is defined as the square root of the squared difference between the predicted value y and the true
pseudo-observable y; divided by the number of observations n:

RMSE — ’2711(3’”—%)2 '

Non-equilibrium demographic scenarios

For non-equilibrium populations, allele age is taken to be the time since the onset of selection (Ty)
by applying the =Sl option in msms. It is not possible in the current version of msms (or in other simulation
programs) to model the time since the allele fixed T under changing demographic parameters, but only to
model the time T since the onset of selection. To ensure that the selected allele fixes in simulations, the —
SFC option is used to prevent loss owing to genetic drift, and the —oTrace switch is applied to track the fre-
guency of the selected allele in the population through time using a python script. Only simulations where
the frequency of the selected mutation is above 0.99 at the time of sampling are retained.

The demographic models are assumed to have been inferred using other methods (e.g., 6adi
(Gutenkunst et al. 2009), fastsimcoal (Excoffier et al. 2013)), and are incorporated in the simulations in step
1 above to run 5 x 10° simulations. The selection coefficient s is drawn from a log uniform prior as for equi-
librium scenarios: log;y(s) ~ U(-4, -0.5), and the prior for allele age T; is adjusted to account for the allele’s
sojourn time and to ensure that the selected mutation has sufficient time to fix. Based on the analytical
derivation of the sojourn time T,,; provided by (Stephan et al. 1992) of

__ 2In(2N,)
Tsoj - s ,

we adjust the prior for T to logio(T) ~ U(log10(Ts), 0g10(0.3+Ts,)). Ts; as calculated here represents the
expected sojourn time under equilibrium demography, and is therefore an approximation of the sojourn
time under non-equilibrium demography.
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Two scenarios were chosen to model size-change events. In both cases, bottlenecks are assumed
to occur relatively recently at 0.01 x 4N, in the past. Firstly, we model a shallow and long bottleneck of
length 0.02 x 4N, with a 95% reduction in population size, and secondly we model a narrow and severe
bottleneck of length 0.002 x 4N, with a 99.8% reduction in population size. These parameters were chosen
to be consistent with other studies (Pavlidis et al. 2010). In addition, a growth scenario was modeled as-
suming exponential growth following a bottleneck at 0.01 x 4N, pastward which reduced the population
size to 1% of its current size, with a calculated a = 460.5. This last scenario was chosen for its similarity to
the demographic parameters inferred for P. maniculatus deer mice in the Nebraska Sand Hills for the data
application presented here (Linnen et al. 2013).

Co-estimating allele starting frequency f

The previous sections assume a model of selection acting on a de novo mutation. In the third part of
our method, we relax this assumption and extend our approach to co-infer the allele frequency f when
selection begins, along with Ts and s. The same steps as for the joint inference of s and Ts in non-
equilibrium scenarios described above were applied, but with the additional specification of f. The
software msms allows for fto be input using the -SI switch. In simulated samples, s is drawn from a
log uniform prior log;e(s) ~ U(-4, -0.5), and the prior for T; is adjusted to take account of sojourn time, to
10g10(Ts) ~ U(log10(Ts0)), 10810(0.3+Tsy)), to give the selected allele sufficient time to fix in the population, as
before. The starting frequency fis drawn from a log uniform prior log;o(f) ~ U(-4, -0.5) spanning the case of
selection on a de novo mutation (with N,=10%) to selection on a previously neutral segregating mutation
with a frequency of 30%. Point estimates for s, Ts and f were calculated using the three-dimensional
kernel density estimate of the joint posterior mode in the misc3d package (Feng & Tierney 2015).

wWmax-ABC methodology

In addition to the msstats-based ABC methodology described above, we also derived a methodolo-
gy to incorporate the statistic wmq. The same steps as for msstats-ABC were implemented with the adjust-
ments detailed in this section.

As described in the introduction, wm. was designed by Kim & Nielsen (2004) to capture the specific
LD pattern associated with selective sweeps, and in particular the reduction in LD that occurs across the
selected site after a sweep. The statistic w is defined as

-1
((é) + (52_ l)) Eijerr + ZijerTd)
(1/l(5 - l) ZieL,jeR 7'5'

w =

At each site I of S polymorphic sites, the statistic splits sites into two groups, from the first to the [t
polymorphic site to the left, and from (I+1)t to S polymorphic sites to the right. Within each group,
singletons are excluded and the correlation coefficient rZ; is calculated between the it and jt sites. The
value of [ that maximizes w (wmax) can also be obtained.
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Under equilibrium demography, and assuming T = 0.01x4N,, simulations for different selection co-
efficients generate limited differences in distributions of wnm.y overall, but do produce a skewed distribution
for the top 5% values in selection scenarios compared to neutral simulations (Supp. Fig. 2). This observa-
tion holds over different sequence lengths (L = 10%, 5x10" and 10° bps). This result is consistent with the
findings of Jensen et al. (2007), who demonstrated via simulation that for large sample sizes (n = 50, as in
our simulation study) in equilibrium populations, w. distributions are characterized by a tail of large val-
ues in selection scenarios, which increases with the size of selection coefficients.

To incorporate wm,e into an ABC framework, 100 simulations were generated in msms for each
pair of values of s and T drawn from the priors, but only the top 5% by value of wnm. Were retained; these
were combined with the msstats statistics calculated for those simulations. Taking the top 5% of simula-
tions by value of w,,q for both the prior and for pseudo-observables replicates the ascertainment process
(i.e., significant p-values). Not correcting for such ascertainment in multi-locus genome scans has been
shown to generate a high rate of false positives (Thornton & Jensen 2007). The approach of retaining the
top 5% simulations by value of w4 is consistent with the idea of an outlier approach where 100 loci are
scanned, as done here, and only extreme values in the tails of distributions are retained as possible candi-
dates for sites under selection.

Values of w and wn,y for each simulation were calculated using OmegaPlus (Pavlidis et al. 2010).

Application to data on cryptic color adaptation in deer mice

Data on 91 Peromyscus maniculatus deer mice was obtained from a previous study by Linnen et al.
(2013). Briefly, mutations associated with traits underpinning cryptic color adaptation to a light phenotype
have been identified in mice living in the Nebraska Sand Hills. A serine deletion at position 128150 on exon
2 has been shown to be associated with several potentially adaptive traits, with a previously estimated
selection coefficient of 0.126. Enrichment, sequencing and genotyping are described in Linnen et al.
(2013). The sequence data was partitioned according to phenotype, and alleles with the serine deletion
were extracted from the data set. The data was adjusted to cover a region of 20kb on either side of the
deletion. Of the 100 alleles with the serine deletion, 36 were discarded based on a threshold of more than
15% unknown sites. Of the remaining 64 alleles, all cases where the site was unknown for at least one indi-
vidual were removed. The filtered data contained 418 segregating sites in the 40kb region surrounding the
deletion. We explored the impact of changing the filtering to 25% or 10% of individuals with more than
25% unknown sites, but this did not markedly change the results. We applied the ABC method described
above for estimating s and T conditioning on the number of segregating sites S as well as 8 and p. PLS was
used to generate components to drive the inference procedure from the msstats statistics after excluding S
and any invariant statistics. We verified the accuracy of our ABC estimator using simulations with the
mouse parameters. Point estimates for T and s were calculated from the mode of the joint density posteri-
or distribution as before. A point estimate for T alone (assuming the previously published estimate of s =
0.126) was also derived for comparison purposes. We then explicitly incorporate into our simulations the
previously inferred demographic scenario - a bottleneck 2,900 years ago that reduced the population to
0.004 of its original size, followed by an exponential recovery to 65% of its original size (Linnen et al. 2013)
and estimate s and the time of the onset of selection T;. Finally we co-estimate the starting frequency f of
the serine deletion with s and T;. We analyzed the data over one additional length, 80kb, with the selected
mutation positioned centrally. We obtained a slightly lower sample sizes after applying the filtering process
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described above of 48 alleles for the 80kb region. Simulations for the ABC calculation were run assuming
N.=53,080, a mutation rate u = 3.62 x 10® and a recombination rate r = 0.62 x 10°® per base pair per genera-
tion (all assumptions are from Linnen et al. (2013).

Code for implementing the method is available through http://jensenlab.epfl.ch/.

2.3 Results

Inference of allele age (T) alone

Initially, we fixed the selection coefficient s to be 0.1 (strong selection), 0.01 (moderately strong se-
lection) or 0.001 (weak selection) and we replicated previous results for the inference of allele age only
using three statistics (the number of segregating sites S, Tajima’s D and the number of haplotypes), follow-
ing Przeworski (2003). We sought to improve on these by using the statistics available through msstats
(msstats-ABC) and by incorporating the w gy statistic (wmex -ABC). All ages T are in units of 4Ne generations.
The choice of whether wm,—ABC or msstats-ABC is used will depend on how the location of the mutation
has been established, and therefore whether a method that corrects for ascertainment (w,.x—ABC) or one
that does not correct for ascertainment (msstats-ABC) is appropriate (see Discussion). Figure 1A shows the
results of inferring allele age T for 6 cases (T = 0.001, 0.01, 0.05, 0.1, 0.2 and 0.3) assuming strong selection
(s = 0.1) and a sequence of 20kb. Boxplots represent the distribution of point estimates, which are the
modes of posterior distributions. Both msstats-ABC and w.-ABC differentiate age well for 3 orders of
magnitude, for T=0.001, T=0.01 and T =0.1, and outperform the previously implemented summary statis-
tics in (Przeworski 2003). Above T = 0.05, the age of sweeps is inferred with high accuracy. Relative bias
and RMSE estimates support this conclusion (Supp. Table 2). The age of very young sweeps (T = 0.001) is
underestimated, presumably because the signature of the selective sweeps is not yet apparent in all of the
statistics utilized.

For moderate selection (s = 0.01), both msstats-ABC and w.-ABC differentiate T well between two
orders of magnitude rather than three, effectively separating old sweeps (T = 0.1) from young sweeps (T <
0.01) (Fig. 1B). In this case, the estimators significantly improve performance over the statistics employed
by Przeworski (2003). In contrast, for weak selection (s=0.001), we find that the estimators perform poorly
and identify all sweeps as very young (Supp. Fig. 3). Thus, the estimator for T alone works well only for
strong and moderately strong selection.

We additionally explored the impact of choosing different window sizes surrounding a selected mu-
tation (L = 20, 40 and 80 kb) (Supp. Fig. 4). We find that window sizes of 10kb or 20kb provide the best es-
timates for the parameter ranges investigated here, and that larger window sizes slightly underestimate
allele age, due to a dilution of the statistics. This result is in line with theoretical results estimating the size
of a swept region subject to a reduction of diversity as L = 0.01 x s/r (Kaplan et al. 1989).

Joint inference of s and T under equilibrium demography

Here we extended our approach to jointly infer s and T for fixed mutations using a simple and com-
putationally efficient approach. Simulations demonstrate that for young sweeps (T = 0.01) and old sweeps
(T=0.1), neutral scenarios (where N.s < 1, i.e. s = 0.0001 and s = 0) can be readily differentiated from selec-

21



tion scenarios, for both young and old sweeps, using either msstats-ABC (Fig. 2C and 2D, Supp. Fig. 5) or
Wmax—ABC (Supp. Fig. 6 and 7). Additionally, we can infer strong and moderately strong selection (s = 0.1
and s = 0.01) well (Figures 2A and 2B, Supp. Fig. 5-9) using either methodology. One of the weaknesses of
both methods is that weak selection (s = 0.001), whether for old or young sweeps, can be misinferred as
stronger, older selection (s = 0.01 or s = 0.1) (Fig. 2C and Supp. Fig. 5C). This limitation owes to the fact that
the patterns of polymorphism for weak sweeps resemble that of older, stronger sweeps. We find that
wmax—ABC is a more accurate estimator of weak selection than msstats-ABC (Supp. Table 3 and Supp. Fig. 9).

With regards to allele age, both methods are able to differentiate old sweeps (T = 0.1) from young
sweeps (T = 0.01). We find that the methods do not have the power to accurately infer the age of young
sweeps but only to establish whether sweeps are either T = 0.01 or younger. Results of inference for very
young sweeps (7=0.001) are similar to the results of inference for moderately young sweeps (7=0.01) (data
not shown). In contrast, for older sweeps, the additional time may enable different statistics to be impacted
at different rates, and for a subset of these statistics to return towards equilibrium. Simulation studies
have shown that statistics reliant on intermediate frequency alleles such as Fay and Wu’s H decay rapidly
after a selective sweep and retain very little signal at 0.1 x 4N,, whereas statistics reliant on singletons such
as Tajima’s D retain a signal longer (Przeworski 2002). The decay of both of these types of statistics at dif-
ferent rates most likely underpins the accuracy of both estimators to infer T and s for sweeps of T=0.1.

If a model of de novo mutation is assumed (f=1/2N,), a pseudo-observable of selection from a rare
mutation (f<0.01) will have an inferred allele age as the time at which selection starts to act on that muta-
tion. In contrast, inference from a pseudo-observable of selection from high levels of standing variation
(f>0.01) will be erroneous and usually indicate an older age (data not shown).

Co-estimating allele starting frequency f under equilibrium demography

In this section, we relax the assumption that selection proceeds from de novo mutation, and allow
the frequency of the selected allele to be co-inferred along with the time at which selection starts T (in
contrast to the previous section, in which the time T since fixation is inferred), and the selection coefficient
s. Analytical derivations by Stephan et al. (1992) predict that if f <1/2N.s and selection is strong, the reduc-
tion in linked neutral diversity associated with selection from rare mutations should resemble that from
selection on de novo mutations. Subsequent analysis has shown that selection from either a de novo muta-
tion or from a rare mutation results in a classical “hard sweep” pattern where a single copy of the mutation
is swept to fixation (Orr & Betancourt 2001; Hermisson & Pennings 2005). In contrast, selection from high
levels of standing variation (f >>1/2N.s) results in the fixation of multiple haplotypes in a “soft sweep” pat-
tern (the other common definition of a soft sweep, in which haplotype diversity is the result of multiple
beneficials, is not considered here). In line with theoretical expectations, simulations by Przeworski et al.
(2005) showed similar patterns of reduction in diversity for f=1/2N.,, f=0.001 and f=0.01 (where N,=10* and
5=0.05), but almost no reduction in diversity for selection from high levels of standing variation (f=0.05 and
f=0.20). Here we show results that are consistent with these previous findings. For strong and moderately
strong selection (s=0.1 and s=0.01) in equilibrium populations, we find that the ABC estimator performs
well for inferring f, s and T, as long as the pseudo-observable satisfies the condition f<1/2N,s, (i.e., the cases
where f=1/2N,, f=0.001, f=0.01) (Fig. 3 and Suppl. Fig. 10). We find marginally better inference for s=0.1
than for s=0.01 right up to f=0.01, which appears to be the cut-off for accurate inference. For weak selec-
tion (s=0.001), T;and s are well inferred but fis not (Supp. Fig. 10D).

22



In contrast, when the pseudo-observable sweep is characterized by f>>1/N,s, we generally identify
that f>>1/2N,s - but with the drawback that s and T, are poorly co-estimated. As levels of standing variation
increase, rising haplotype diversity means the method infers older, weaker sweeps than are the case for
the pseudo-observables.

Robustness to non-equilibrium demography

Non-equilibrium demography can mimic signatures of selection (e.g. Przeworski 2002; Jensen et al.
2005) and compromise inference. However, an advantage of the ABC approach is that demographic pa-
rameters can be explicitly modeled in simulations, and therefore demography can be taken into account in
the inference method. We explored the robustness of the method for inferring firstly, s and T, and second-
ly s, T; and f under three non-equilibrium scenarios where demographic parameters are explicitly known
and modeled: 1) a shallow and long bottleneck of length 0.02 x 4N, with a 95% reduction in population size,
2) a narrow and severe bottleneck of length 0.002 with a 99.8% reduction in population size, and 3) an ex-
ponential growth scenario following a sharp 99% reduction in population size with a = 460.5. The bottle-
necks are modeled to occur at T = 0.01 x4N,.. Our results are described for msstats-ABC but similar results
were obtained for w,,—ABC.

In the case of inferring s and T, Fig. 4 and Supp. Fig. 13 show the results for the third scenario of a
bottleneck followed by exponential growth. We find that for old (Fig. 4A and Supp. Fig. 11A), young (Fig. 4B
and Supp. Fig. 11B) and very young (Fig. 4C and Supp. Fig. 11C) sweeps, both T, and s are well inferred. We
note that it is difficult to distinguish weak sweeps, where s=0.001 (Supp. Fig 11D and E), from neutral sce-
narios (Fig. 4D and Supp. Fig. 11F). Similar results were obtained for the two bottlenecks scenarios (data
not shown). One of the reasons for the estimator’s strong results in non-equilibrium populations — and
indeed its limitation - is that T rather than T is inferred. In our methodology the prior for T is set as a func-
tion of s by using an estimate of sojourn time T, in equilibrium populations. This analytical derivation most
likely overestimates T, for alleles fixing in bottlenecked populations, and therefore, the full potential pa-
rameter space for T is not covered by our adjusted prior. This shortcoming could be corrected by using
another set of simulations, rather than the analytical derivation of Stephan et al. 1992, to estimate the min-
imum T,; under a specific demographic scenario for a mutation of strength s. This would give a broader
and more accurate prior from which to draw T..

When co-inferring f with T, and s, we find the performance of the estimator deteriorates under
non-equilibrium demography (Suppl. Fig. 12). For both young and old sweeps, inference is only reliable if
the method correctly identifies a de novo or very rare mutation (f<0.001). It is difficult to correctly infer f
and therefore to establish whether co-estimates of T, and s are robust. As for equilibrium populations, a
high level of standing variation is inferred as an older, weaker sweep than is the case for the pseudo-
observable, due to high levels of diversity.

Data Application: mouse coat color evolution

We applied our methods to a previously published data set for 91 P. maniculatus deer mice living in
the recently formed Nebraska Sand Hills (estimated age 8,000 years) (Linnen et al. 2013). The data set was
adjusted to cover SNPs over 20kb on either side of a serine deletion on exon 2 which has been implicated in
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several traits associated with cryptic color adaptation to a light phenotype for predator avoidance. After
filtering for the serine deletion and genotyping quality, we retain SNP data from 64 alleles for analysis, and
remove any further unknown sites. Firstly, our aim was to co-estimate s and T assuming an equilibrium
population of 53,080. Secondly, we estimate allele age T alone assuming a previously published estimate
of s=0.126 (Linnen et al. 2013). Thirdly, we explicitly model the demographic scenario that had been previ-
ously inferred in our simulations (of a bottleneck 2,900 years ago which reduced the population to 0.04%
followed by an exponential recovery to 0.65% of the original population size). Lastly, we co-estimate f with
s and T,. We used msstats-ABC as this is consistent with the initial identification of the selected site de-
scribed in Linnen et al. (2013). We simulated pseudo-observables with the specific mouse parameters to
establish how well our methods work before applying these to the data set.

Assuming an equilibrium population, the joint inference of s and T showed a young, moderately
strong selective sweep, with an inferred s of 8.7 x 10® (1.1 x 10— 3.3 x 10) and T = 0.01 (Fig. 5A), using a
window size of 80kb to ensure that diversity patterns are fully captured. Applying a window of 40kb re-
duced the signal of the sweep (Suppl. Fig. 13A). If s is assumed to be 0.126, as estimated in Linnen et al.
(2013), the inference of allele age alone gives the same result of a young or very young sweep with T<0.01
(Supp. Fig. 14).

If the demography inferred in Linnen et al. (2013) is explicitly included in the simulations for the
ABC calculation, simulations using pseudo-observables show that signals from selective sweeps with T; co-
incident with or older than the bottleneck are usually quenched, leading to the inference of neutral scenar-
ios (data not shown). In contrast, s and T, for strong sweeps that are younger than the bottleneck (of the
order of T,=0.005) are accurately inferred. This result illustrates the importance of using simulations to
establish the limits of inference for specific scenarios. In applying our method to the mouse data, we infer a
strong, recent sweep, with s = 1.7 x 10" (1.5 x 10*- 3.0 x 10") and T,= 1.1 x 10> (5.8 x 10" - 8.8 x 10™") (Fig.
5B). These results are consistent with those obtained under equilibrium demography but with a stronger
estimate of s. Using a length of 40kb, we find the qualitatively similar result of a strong recent sweep (Supp.
Fig. 13B). We also find that simulated pseudo-observable sweeps that are either coincident or older than
the mouse bottleneck are sometimes correctly inferred over this length, which is an improvement over the
80kb length (data not shown), but are mostly inferred as neutral.

Our method is subject to the limitation that an estimate of sojourn time under equilibrium demog-
raphy is used to set the prior for T, under the assumption that the mutation fixes. In our simulations, very
recent values of T are therefore only associated with strong s. Here, we have checked with simulations that
sojourn time is longer than under the equilibrium scenario, and therefore that the prior for T, is broader
than required, to reduce this source of error.

Co-inferring f, s and T; jointly supports a recent, strong sweep acting on a de novo or rare mutation
(s=8.6x102(1.5x10%-2.9x10™), T,=2.1x103(7.5x10%-9.0x10™) and f=2.6x10°(1.1x10-1.9x10™)) (Fig. 5C). Sim-
ulations underpinning this estimate incorporate the demographic scenario from Linnen et al. (2013). In
comparison with the age of the Sand Hills (i.e., 0.075 in units of 4Ne generations, assuming one generation
every 6 months), these results support previous claims of selection acting on a young de novo mutation
subsequent to the environmental change.
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2.4 Discussion

We present ABC methods that estimate allele age, selection strength and starting frequency for
fixed mutations using single population, single time-point datasets. We demonstrate that it is possible to
distinguish between different orders of magnitude of the selection coefficient s, between old and young
sweeps, and between de novo/rare and common starting frequencies. There are significant differences
between the ABC method that integrates w . and the msstats-ABC, which undermine a direct comparison
between the two methods. Namely, one takes account of ascertainment bias while the other does not.
The wne approach was designed to be consistent with an approach for identifying sites under selection
using the top wme values. Our simulations show that w,,.x marginally outperforms a simple msstats-ABC
approach, particularly in estimating parameters for weak sweeps, as it is able to leverage a statistic that
captures the specific LD pattern existing immediately after a selective fixation, but this is conditional on it
being the appropriate method for the data analyzed.

One of the major advantages of an ABC approach is that demography can be explicitly accounted
for in simulations, which removes a source of error in estimating the strength of selective sweeps. Here we
illustrate this by explicitly including the previously estimated demographic model for our ABC estimation of
sand T in deer mice. We find results that are consistent with those obtained under the assumption of an
equilibrium population, but with slightly stronger estimates of selection. We also find that we can distin-
guish cases of selection on de novo and rare mutations from selection on common standing variation re-
sulting in soft sweeps, and in the first case we are able to co-infer T; and s to within an order of magnitude,
assuming equilibrium demography. Here, we find the most likely model to be one of selection on de novo
or rare mutation. This is consistent with our estimates of allele age and provides support for the previously
published notion of mutation-limited adaptation underpinning cryptic coloration in deer mice (Linnen et al.
2009; Linnen et al. 2013; Poh et al. 2014).

Many haplotype methods such as iHS rely on a comparison between haplotype lengths for ances-
tral and derived alleles, and therefore have power to detect selected mutations at low or intermediate fre-
quencies (Voight et al. 2006). Beyond this frequency level, power declines because these methods depend
on a comparison with alternative allele haplotype structure. For example, the method published by Chen et
al. (2015) applies to alleles under strong selection that are not yet fixed. Peter et al. (2012) use a range of
haplotype and SFS based statistics including EHH and iHS to estimate allele age and selection coefficients
for segregating mutations in models of de novo mutation and standing variation. The importance sampling
method developed by Slatkin (2008) is specifically designed to identify s and T for low frequency alleles
such as the A-allele of G6PD in Africa. In contrast to these methods predicated mainly on haplotype struc-
ture, our methods use SFS based statistics that are sensitive to different parts of the SFS, as well as LD- and
haplotype-based statistics that recover to equilibrium at different rates. Our methods thus fit an important
niche, and may be utilized to infer the relative age, strength and frequency of fixed beneficial mutations
relative to the timing of environmental shifts — in order to quantify, for example, the age of variants confer-
ring cryptic coloration following the last ice age, as seen here in the mouse example and in the Laurent,
Pfeifer et al. example in lizard populations also appearing in this issue.
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2.5

Fig. 1 Inference of allele age T alone. Boxplots compare results from msstats-ABC (marked M) and wmax —
ABC (marked O) with the Przeworski 2003 ABC method (marked P).
terior distributions for inferring T alone for 100 pseudo-observables. The value of s is assumed to be
known: A. s=0.1 (@ = 2N.s = 2000) and B. s=0.01 (a = 2N.s = 200). T is drawn from a log uniform prior:
log1o(T) ~ U(-4, -0.5). Other parameters are as described in methods, with L = 20kb. Red diamonds indicate
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Fig. 2 Joint inference of s and T in equilibrium populations for old sweeps (T=0.1) (msstats-ABC). Figures
show the cumulative joint posterior density plots for 100 pseudo-observable simulations over different
orders of magnitude of the selection coefficient s, for old sweeps (T=0.1) and A. s = 0.1 (a=N,s=10%); B.
$=0.01(x=N.s=10%); C. s= 0.001(a=N.s=10). The bottom two panels represent neutral scenarios with D.
5=0.0001 (a=N.s=1); and E. s=0. The white, yellow and red colors mark areas of high, moderate and low
joint density respectively. Black crosses indicate the true values of pseudo-observables. s and T are drawn
from log uniform priors: log;o(s) ~ U(-4, -0.5) and log;o(T) ~ U(-4, -0.5). Other parameters are as described

in methods.
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Fig. 3 Joint inference of s, T, and f in equilibrium populations. Figures show the predicted values for 100
pseudo-observables for the example of s=0.01, T,=0.060 and f=0.0001, 0.001, 0.01, 0.05, 0.1. Estimates of s,
Ts and f were obtained from the mode of the joint posterior density. Red lines indicate the known values

of the pseudo-observables.
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Fig. 4 Joint inference of s and T; in demographic model for a strong bottleneck followed by exponential
growth (demographic model 3) using msstats -ABC. Figures show the cumulative joint posterior density
plots for 100 pseudo-observable simulations. s is drawn from a log uniform prior: logio(s) ~ U(-4, -0.5) and T
from an adjusted log uniform prior: logo(Ts) ~ U(l0g10(Ts0)), 10810(0.3+Ts)). For the pseudo-observables, T is
calculated from T,=T+T,, where T is the time since fixation and the sojourn time T,,=(2In(2N,)/s)/4N.. The
white, yellow and red colors mark areas of high, moderate and low joint density respectively. Black crosses
indicate the true values of pseudo-observables.

A. Inference for a moderately strong, old sweep with pseudo-observable values s=0.01 and T,=0.15
(calculated from T=T+T,, where T=0.1). B. Inference of a strong, very recent sweep with pseudo-
observable values s=0.01, T,=0.006 (calculated from T;=T+T,,; where T=0.001) C. Inference of a strong, very
recent sweep with pseudo-observable values s=0.01, T,=0.006 (calculated from T,=T+T,, where T=0.001). D.
Results of inference where no selected mutation was included in simulations.
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Fig. 5 Joint inference of allele age, selection coefficient and starting frequency for P. maniculatus

The joint density plots in A and B represent the results of the joint inference for the serine deletion at posi-
tion 128,150 on exon 2, in A) for s and Tassuming an equilibrium population with N.= 53,080 and in B) for s
and T, with the demographic scenario inferred in (Linnen et al. 2013) explicitly included in simula-
tions. In C) fis co-inferred with Ts and s also assuming the demographic scenario inferred in (Linnen et
al. 2013); histograms represent the posterior distributions from the ABC inference, with the red lines
indicating the mode of the joint posterior density for the three parameters. The density plots are shown
for L=80kb, with the mutation positioned centrally (x=0.5). Other parameters for deer mice simulations are
as described in methods.

For A, the mode of the joint density occurs at s=8.7x10>(1.1x10™-3.4x10%) and T=7.7x10(1.2x10*-1.0x10™)
For B, the mode occurs at s=1.7x10™(1.5x10-3.0x10") and T,=1.1x10(5.8x10*-8.8x10™")

For C, the mode occurs at s=8.6x1072(1.5x10-2.9x10), T.=2.1x10(7.5x10™-9.0x10™) and f=2.6x10°(1.1x10°
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Chapter 3 The Population Genomics of Rapid
Adaptation: Disentangling Signatures of Selec-
tion and Demography in White Sands Lizards

Laurent S, Pfeifer SP, Settles ML, Hunter SS, Hardwick KM, Ormond L, Sousa VC, Jensen JD, Rosenblum EB.
Mol Ecol. 2016 Jan;25(1):306-23. doi: 10.1111/mec.13385

3.1 Introduction

The study of populations that have recently colonized novel environments has remained an area of
particular interest in evolutionary biology - both because newly encountered environmental pressures can
generate strong natural selection, and because adaptation over short time scales can be detectable on the
genomic level. However, recent and rapid colonization events are also frequently characterized by severe
demographic perturbations (e.g., in population size and migration rates), which may obscure genomic pat-
terns of selection (e.g., Przeworski 2002; Jensen et al. 2005; Thornton & Jensen 2007). Although various
test statistics have been developed to circumvent this challenge (e.g., Nielsen et al. 2005; Jensen et al.
2007; Pavlidis et al. 2012), the performance of these approaches is often poor under the demographic sce-
narios underlying colonization, particularly for cases of severe population bottlenecks and ongoing gene
flow (Crisci et al. 2013; Poh et al. 2014). As a result, the underlying demographic history of a population
should be explicitly modeled when searching for targets of natural selection.

Although disentangling selection and demography remains difficult, the use of population-level,
genome-scale data from recently diverged natural populations can help to discern the relative impact of
these factors. The advent of next-generation sequencing technologies together with new computational
and statistical techniques to model demographic histories (Thornton & Andolfatto 2006; Gutenkunst et al.
2009; Naduvilezhath et al. 2011; Excoffier & Foll 2011; Mathew & Jensen 2015) have enabled more accu-
rate inference of demographic history, which can then be used as a null model when scanning for genomic
targets of selection. As a result, substantial advances have been made in detecting genes contributing to
phenotypic changes in populations that have undergone recent adaptation in the wild such as Drosophila,
stickleback, mice, and humans (e.g., Reusch et al. 2001; Ihle et al. 2006; Domingues et al. 2012; Linnen et
al. 2013) and during domestication (e.g., Doebley 2004; Pollinger et al. 2005; reviewed in Stinchcombe &
Hoekstra 2008; Ellegren & Sheldon 2008; Mackay et al. 2009; Stapley et al. 2010). However, even in these
cases, the underlying genetic variants responsible for the observed changes often remain difficult to identi-
fy (Chan et al. 2010).

Melanin-based pigmentation has long been studied as a model for understanding adaptive evolu-
tion (Cott 1940; Norris & Lowe 1964), and pigmentation phenotypes are some of the best examples of ad-

aptation where the underlying genetic variants are well characterized. Coloration is involved in a range of
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different biological processes from crypsis to mimicry to thermoregulation to sexual signaling, and melanin-
based coloration is conserved across many taxa (Thayer 1909; Cott 1940; Norris 1967; Kettlewell 1973;
Majerus 1998; Bittner et al. 2002; Caro 2005). Although there are a number of genes that affect melanin-
based phenotypes, functional changes in the 1kb coding region of the melanocortin-1 receptor gene (Mc1r)
are responsible for color variation in many species. The melanocortin-1 receptor is an important compo-
nent of the melanin-synthesis signal transduction pathway in vertebrates (Barsh 1996) and mutations in
Mc1r, which are responsible for color variation, have been studied extensively in domesticated animals
(e.g., dogs (Newton et al. 2000), pigs (Kijas et al. 1998), horses (Marklund et al. 1996), chickens (Takeuchi et
al. 1996)) and in wild populations (e.g., mice (Nachman et al. 2003; Hoekstra et al. 2006), birds (Theron et
al. 2001; Mundy et al. 2004), felines (Eizirik et al. 2003), reptiles (Rosenblum et al. 2004)). However, in
many of the studied species, observed color variation does not correspond to specific environmental pres-
sures, making the connection of Mc1r variants to fitness unclear.

The White Sands system in southern New Mexico provides an opportunity to link color variation in
wild populations with adaptation to their habitats, and thus to understand the interplay between natural
selection and population demography. White Sands is a distinctive landscape of stark white gypsum dunes
(~275 square miles), which contrast dramatically with the dark substrate of the surrounding Chihuahuan
Desert. There has been dramatic convergence in dorsal color morphology by the White Sands fauna. All of
the lizard species that inhabit White Sands and a subset of arthropods and mammals exhibit blanched
forms on the gypsum dunes that contrast with dark forms in the rest of their ranges (Smith 1943; Lowe &
Norris 1956; Rosenblum 2006). The light coloration of White Sands animals is likely an adaptation for cryp-
sis to avoid detection by visually hunting avian predators, which preferentially predate on poorly back-
ground-matched prey (e.g., Dice 1947; Kaufman 1974; Luke 1989).

The demographic context in which natural selection has operated at White Sands has also been dy-
namic. The white habitat represents a geologically recent change in selective environment, with the bulk of
the gypsum deposition having occurred within the last 2,000-7,000 years (Kocurek et al. 2007; S. Fryberger
unpublished manuscript). Therefore, White Sands populations are expected to result from relatively recent
colonizations. Moreover, there are no physical barriers separating the white sands from the surrounding
dark desert soils, and the transition between white sand and dark soil habitats occurs abruptly. Thus, adap-
tation appears to have occurred in many species despite ongoing gene flow (Rosenblum & Harmon 2011).

Here we use population-level genomic data to understand the demographic history and dynamics
of natural selection at the genome level for dark and light populations of two White Sands lizards, the
Southwestern Fence Lizard (Sceloporus cowlesi) and the Little Striped Whiptail (Aspidoscelis inornata). In
each species, a single Mc1r amino acid substitution associated with blanched coloration has been identified
through candidate gene studies and functional assays (Rosenblum et al. 2004; Rosenblum et al. 2010). Pop-
ulation studies and functional assays have also demonstrated that the mutations have different dominance
effects in the two species: the blanched allele appears to be dominant in S. cowlesi but recessive in A. inor-
nata (Rosenblum et al. 2010). As a result, this system represents one of the first examples from a natural
population where differing predictions regarding hitchhiking effects of recessive and dominant mutations
may be directly studied by comparing molecular signatures of natural selection for alleles of the same gene
with different dominance effects in two species inhabiting the same novel environment.

In this study, we constructed fosmid libraries and developed a sequence capture approach to ob-
tain >50kb of sequence around Mc1r and hundreds of other random genomic locations in each species. We
then use model-based statistical inference methods to infer the demographic history of the two popula-
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tions using randomly selected genomic regions, investigate the evidence of selection around the candidate
sites in Mc1r, estimate the age of these mutations relative to the geological age of White Sands, and finally
discuss these results in the light of existing population genetic theory. We find that white and dark soil
populations show only weak background genomic differentiation but display striking genetic differences in
the Mcl1r gene region. The patterns of variation that we observe at and around the Mclr gene are con-
sistent with strong selective sweeps caused by the non-synonymous mutations previously associated with
the blanched phenotype. Furthermore, the signatures of selection at Mc1r are consistent with the inferred
dominance of the two beneficial mutations.

3.2 Methods

Population Sampling

For both target species, we sampled populations from the two contrasting habitats (white sands
and dark soils) at the same localities for both A. inornata and S. cowlesi to enable demographic inference
across the same spatial scale (Figure 1). Populations are not polymorphic for color, therefore all individuals
from the White Sands sites exhibited the blanched phenotype, and all individuals from the dark soil sites
exhibited the ancestral dark phenotype. We sampled White Sands individuals (referred to as "WS"
throughout) from White Sands National Monument (WSNM, Otero County, New Mexico), within an approx-
imately 2km radius along two neighboring trails (Alkali Flat Trail and Backcountry Trail). We sampled dark
soil individuals from two localities: 1) a Bureau of Land Management site northeast of white sands (BLM,
Otero County, New Mexico; referred to as "DS1" throughout), located ~85 km from WSNM with no separat-
ing geographic barrier in between, and 2) from Jornada Long-term Ecological Research Station southwest of
White Sands (JLTER, Dona Ana County, New Mexico; referred to as "DS2" throughout), located ~50km from
White Sands but separated from WSNM by the San Andres Mountains. The two focal species are patchily
distributed in the Tularosa Basin, and the two dark soil sites represent the geographically closest localities
where dark color morphs of both species could reliably be sampled. We sampled approximately ten indi-
viduals per species per population.

Sequence Capture Assay

For each target lizard species, we first generated a fosmid library from high-quality DNA from a sin-
gle White Sands individual. We used the diTag fosmid vector pFosDTx. The average E. coli insert size was
approximately 40kb and each fosmid library contained ~5 million individual constructs. The fosmids were
then colony-amplified, and we used homologous recombination to screen the fosmid libraries for the Mc1r
gene. We isolated clones that spanned a region up to 100kb around the Mc1r gene and characterized these
clones for insert size and target sequence presence. We also chose 96 random clones in each species. Fos-
mid library preparation and screening was done at the BACPAC Resources Center (Oakland, CA).

We used both Roche 454 FLX+ pyrosequencing and lllumina MiSeq 2x150bp sequencing to se-
quence the four Mcl1r clones and the 96 random clones in each species. We processed raw sequences by
removing any potential PCR duplicates, non-target species sequence (e.g., from sequence adapters, PhiX
spike-in, E. coli and fosmid vector), and by trimming low quality ends. We merged lllumina paired-end reads
with FLASH (Magoc & Salzberg 2011) and performed a hybrid (454 + lllumina) assembly using Roche gsAs-
sembler 2.6 (Roche 454, 2011). We retained contigs greater than 2kb in length for further analysis resulting
in 364 contigs for A. inornata (ranging from 2,011bp to 67,990bp in length) and 290 contigs for S. cowlesi
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(ranging from 2,309bp to 54,334bp in length). We combined the contigs into reference sequences, which
we used to design capture probes for a custom Roche NimbleGen Capture Assay. The resulting probes cov-
ered more than 96% of our reference sequence contigs.

We extracted DNA from liver and tail samples using a DNeasy Blood and Tissue Kit (Qiagen). We
generated Illumina TruSeq barcoded libraries for all individuals from each species, performed capture pro-
tocols according to the Roche NimbleGen specifications, and sequenced using the lllumina MiSeq 2x150bp
and Illlumina HiSeq 2x100bp platforms.

Sequence Alignment

Raw sequence reads (fastq files) were first preprocessed using a custom in-house pipeline including
removal of PCR duplicates, contaminants (phiX), and lllumina sequencing adapters, and trimming of low
quality bases (seqyclean parameter —qual 24 24) [GRC_Scripts, http://github.com/ibest/GRC_Scripts; Se-
gyclean, https://bitbucket.org/izhbannikov/seqyclean]. Preprocessed reads were aligned to the reference
assembly for each lane separately using Stampy (version 1.0.22) (Lunter & Goodson 2011). For every indi-
vidual, aligned reads were merged across different lanes, proper pairs were extracted, and duplicate reads
were removed using SAMtools (Li et al. 2009), retaining only the read pair with the highest mapping quali-
ty. After mapping, the mean coverage across individuals was 112X in A. inornata (n = 32; Table S1a) and
115X in S. cowlesi (n = 28; Table S1b). The data set was limited to individuals with >20X coverage; this level
of coverage has previously been shown to give good resolution for genotyping heterozygous sites within
individual samples (The 1000 Genomes Project Consortium 2010). The resulting data set included 24 indi-
viduals for each species (i.e. A. inornata: 9 WS; 9 DS1; 6 DS2 and S. cowlesi: 9 WS; 9 DS1; 6 DS2). Because
single nucleotide variants occur much more frequently than indels in the genomes of most species, most
alignment algorithms annotate a single nucleotide variant rather than an indel at positions mismatching the
reference genome when mapping individual reads. At positions of true indels, local misalignment of reads
can produce an excess of false-positive SNP calls. To identify these positions and to improve variant calls,
especially in low-complexity regions of the genome, a multiple sequence alignment was performed using
the Genome Analysis Toolkit (GATK) IndelRealigner (McKenna et al. 2010; DePristo et al. 2011; Van der
Auwera et al. 2013) to locally realign reads such that the number of mismatching bases is minimized across
all reads spanning this locus.

Variant Calling and Filtering

Initial variant calls were made using GATK’s HaplotypeCaller via local de novo assembly of haplo-
types in an active region. Samples were genotyped jointly using GATK’s GenotypeGVCFs tool. Besides true
variation, these initial variant calls contain false positives due to systematic sequencing artifacts, mis-
mapped reads, and misaligned indels. Such false-positive calls often (i) exhibit excessive depth of read cov-
erage, (ii) show an allelic imbalance, (iii) occur preferentially on a single strand, (iv) appear in regions of
poor read alignment, and (v) arise in unusual close proximity to multiple other variants. Thus, the majority
of such calls can be detected and rejected using filters based on the above observations. Specifically, initial
variant calls were filtered post-genotyping using GATK’s VariantFiltration. Variants were removed using the
following set of criteria (with acronyms as defined by the GATK package): (i) Three or more variants were
found within 10bp (clusterWindowSize=10). (ii) The depth of coverage at the given position (summed
across individuals) was <500 or >3000 (DP<500; DP>3000). (iii) There was evidence of a strand bias as esti-
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mated by Fisher's exact test (F$>60.0) or the Symmetric Odds Ratio test (SOR>1.0). (iv) The read mapping
quality was low (MQ<80). (v) At least one of the samples was not called (NCC>0).

After applying the initial filter criteria, the variant data set was limited to biallelic sites using
VCFtools (Danecek et al. 2011). Genomic positions that fell within repeat regions of the reference assembly
were excluded because erroneous alignment of reads to these regions often leads to an increased frequen-
cy of heterozygous genotype calls. In particular, five different classes of repeats (i.e., LINE, LTR, DNA, simple
repeats, and low complexity regions) were annotated using RepeatMasker (Smit et al. 2013-2015) and vari-
ants within these regions were excluded from further analyses. To minimize genotyping errors, all variants
with either missing data for any individual or genotype quality of less than 20 (corresponding to P[error] =
0.01) for any individual were excluded using VCFtools. Although hard genotype quality thresholds might
cause an undercalling of heterozygotes in samples with low or moderate coverage, they have previously
been shown to perform well in samples with >20X coverage (Nielsen et al. 2011). Variants were also filtered
on the basis of Hardy Weinberg Equilibrium (HWE). A p-value for HWE was calculated for each variant using
VCFtools, and variants with p < 0.01 were removed. Sites for which all individuals were fixed for the non-
reference allele were excluded using VCFtools. The resulting call sets contained 13,960 variants (407 SNPs
within Mc1r and 13,553 within the random contigs) for A. inornata and 20,782 variants (691 SNPs within
Mc1r and 20,091 within the random contigs) for S. cowlesi. Genotypes were phased using BEAGLE (version
4; Browning & Browning 2007).

Candidate variants were subject to several filter criteria in order to avoid false positives. As the ap-
plied filter metrics can lead to the exclusion of a substantial fraction of sites in the genome, mask files de-
fining which nucleotides were accessible to variant discovery were generated in order to obtain the exact
number of monomorphic sites in the reference assembly of each species (used in the demographic estima-
tion) and to avoid biases when calculating summary statistics (e.g., m, Tajima's D, and weighted F). Mask
files were created using the GATK pipeline described in the section 'Variant Calling and Filtering' with the
exception that the '-allSites' flag was switched on when running GATK's GenotypeGVCFs tool to include all
non-variant loci for which there was data available. The same filter criteria were used with the exception of
the variant cluster filter criteria, as this metric cannot be applied in cases of calls at every site in the ge-
nome. The filtering resulted in 58% and 45% of the reference assembly being accessible for A. inornata and
S. cowlesi, respectively.

PCA, Population Structure, and Heterozygosity

For both species, variant data sets for the three populations were pruned for linkage, removing
SNPs within a 50 SNP window that had r* > 0.2 (using '-indep 50 5 0.2" in plink) because both PCA (Zheng et
al. 2012) and the inference of population structure require a set of independent SNPs. Population structure
was studied using structure (Pritchard et al. 2000; Falush et al. 2003; Evanno et al. 2005; Falush et al. 2007,
Hubisz et al. 2009), a software that identifies clusters of related individuals from multi-locus genotyping
data. structure analysis was performed with K= 1-5 (the number of clusters), using an admixture model with
correlated allele frequencies. For each K, structure was run ten times for 10,000 steps after a burn-in period
of 10,000 steps. The best K was chosen such that it maximized the marginal likelihood of the data. Previous
work has shown that structure is able to identify isolated and relatively homogeneous groups even if they
exhibit short divergence times or exchanges with other groups; this is because small, isolated populations
often exhibit distinctive allele frequencies due to the fact that genetic drift occurs rapidly (Rosenberg et al.
2001). As a result, identified clusters often correspond well to geographically distinct population groups.
Finally, heterozygosity was estimated based on the number of heterozygous SNPs per individual.
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Demographic Analyses

Population modeling was done using two likelihood methods for comparison: 1) an approach that
infers demographic parameters from the joint site frequency spectrum (SFS) using coalescent simulation
(fastsimcoal2; Excoffier & Foll 2011; Excoffier et al. 2013), and 2) a method in which the likelihood is calcu-
lated using a diffusion approximation (6adi; Gutenkunst et al. 2009). SFS for all populations were directly
generated from the final variant calls (vcf files) using an in-house script. Since outgroup sequences were
unavailable for A. inornata and S. cowlesi, we used the distribution of minor allele frequencies (i.e., the
folded SFS) where the minor allele was considered to be the allele with the lowest frequency across all
three populations. Monomorphic sites (defined as the set of all sites that passed all filtering criteria but for
which no variants were called using GATK) were included in the analyses. For both species, we maximized
the likelihood of the observed SFS under six complex demographic scenarios (parameters shown in Table 2)
and identified the best fitting demographic model on the basis of their Akaike's information criterion (AIC)
score (Akaike 1974).

Given the genetic differentiation between populations identified by the PCA and structure analyses,
for each species we tested the three possible tree topologies for the population set including WS, DS1, and
DS2. Topologies were tested both without migration and with asymmetrical migration between all popula-
tion pairs. In the migration models, gene flow was only considered between T1 (the time of the most recent
population split) and present. Additionally, admixture models were evaluated but in no case better fit the
data. Effective population sizes were directly estimated by fixing the mutation rate to 1.5 x 10° (Olave et al.
2014).

Fastsimcoal2 and 6adi were used on the folded SFS based on 13,553 SNPs and 20,091 SNPs outside
Meclr in A. inornata and S. cowlesi, respectively. For fastsimcoal2 the following options were used: -N
100000 (max. number of simulations) -L 40 (max. number of EM cycles) -M 0.001 (min. relative difference
in parameter values for the stopping criterion). For every demographic model, 20 independent estimations
with different initial parameter values were run and results for the estimation with the highest likelihood
are reported. For 6adi, 50 independent runs at different starting points were executed for each model.
Generations were converted to years assuming a generation time of 1.5 years, a reasonable average esti-
mate for this taxonomic group (e.g., Crenshaw 1955).

Selective Sweep Mapping in the Mc1r Region

To test for a selective sweep around the Mcl1r gene, we used the modification of the Kim & Steph-
an (2002) composite likelihood ratio (CLR) test proposed by Nielsen et al. (2005) as implemented in the
software SweeD (Pavlidis et al. 2013). For each species, the folded SFS for all contigs except Mc1r was used
as a neutral background reference and the CLR statistic was calculated at 10,000 grid points across the con-
tig containing Mc1r. The CLR test assumes that the data was sampled at the end of the selective sweep,
thus, following Meiklejohn et al. (2004), we excluded all WS individuals that were homozygous or heterozy-
gous for the dark allele (as identified by Rosenblum et al. (2010)) from the analysis. The statistical thresh-
olds for the test were defined as recommended by Nielsen et al. (2005). For each species, we simulated
polymorphism data under our best demographic models (as estimated by fastsimcoal2) for the WS popula-
tion and defined the threshold as the 95" percentile of the distribution of highest simulated CLR values.
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Additionally, classical summaries of genetic diversity were calculated using a sliding window ap-
proach along the Mc1r region. We calculated n (nucleotide diversity), Tajima’s D (Tajima 1989), and Weir
and Cockerham’s F,; (1984) using VCFtools (Danecek et al. 2011) taking into account the information about
monomorphic sites (using the ‘--mask’ option).

ABC Estimation of Selection Coefficients and Allele Ages

To estimate selection coefficients and allele ages for the putatively selected mutations in A. inorna-
ta and S. cowlesi, we use the approximate Bayesian (ABC) approach of Ormond et al. (appearing in this is-
sue). In summary, an approximate Bayesian computation (ABC) approach was applied using a standard
rejection algorithm and tolerance threshold of 0.01, implemented in the R program abc (Csillery et al.
2012), to estimate posterior distributions for selection strength s and allele age T in both WS populations.
100,000 neutral and non-neutral simulations of the genealogies for White Sands populations in both spe-
cies were generated using msms (Ewing & Hermisson 2010). Simulations used the demographically in-
ferred N, values, as well as the p and u values used in demographic inference. The lengths L of the simu-
lated sequences were taken to match the SNP data available around the region of the putatively selected
mutation (a 65kb region for A. inornata and a 54kb region for S. cowlesi). The positions of the simulated
selected mutations in both populations were chosen to match the position of the putative selection targets
in the data sets. The prior distributions for the selection coefficient s and allele age T were log;o(s) ~ U(-4, -
0.5) and log1o(T) ~ U(-4, -0.5), where U is a uniform distribution.

Simulated SNP patterns were output to the program msstats to calculate a panel of known sum-
mary statistics that are commonly used to characterize selective sweeps. Following Wegmann et al. (2009),
a partial least squares (PLS) approach was applied to incorporate the most informative summary statistics
from msstats into the ABC calculation and to filter out noise from uninformative statistics. Summary statis-
tics were also calculated from the actual SNP data for White Sands populations in both species and trans-
formed into PLS components using the same loadings as described above. Point estimates for s and T were
calculated from the mode of the joint density posterior distribution using the two-dimensional kernel den-
sity function in the MASS package in R (Venables & Ripley 2002). Finally, credibility intervals were calculat-
ed using 95% of the marginal posterior distributions for s and T.

3.3 Results

Sequence Capture

Our sequence capture approach resulted in a high quality population-level data set. We recovered a
large contig containing Mc1r for both species. The Mc1r contig was 54kb long and contained 691 SNPs in S.
cowlesi and was 68kb long and contained 407 SNPs in A. inornata. We also recovered 289 additional ge-
nomic contigs with an average length of 11.3kb in S. cowlesi and 363 additional genomic contigs with an
average length of 8.6kb in A. inornata. These genomic contigs contained 20,091 SNPs in S. cowlesi and
13,553 SNPs in A. inornata.

Demographic Analysis of the A. inornata Populations
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All three A. inornata populations exhibited similar levels of nucleotide diversity (0.15% - 0.18%, Ta-
ble 1) and Tajima’s D values (0.11 — 0.80) (calculated based on the genetic variation observed outside
Mc1r). Weighted F; values ranging from 0.11 (WS-DS2) to 0.15 (DS1-DS2) outside of Mc1r indicated genetic
structure between populations. Genetic structure was also identified by the structure analysis - supporting
the existence of three clusters, which exactly corresponded to the three sampled localities (Figure 2, Figure
Sla). The PCA analysis also showed clear separation of all three populations (Figure 3). Notably, weighted
Fs: values were greatly elevated within Mc1r in comparisons between White Sands and dark soil popula-
tions (0.28 (WS-DS1), 0.36 (WS-DS2)), but not between the two dark soil populations (0.12 (DS1-DS2)).

The demographic model inferred as best fitting the data was the same in both fastsimcoal2 and
6adi (Figure 4), with concordant parameter estimates between the two methods (Table 2). This model sug-
gests a young divergence between WS and DS1 and an older split with DS2, as well as an absence of gene
flow between populations. Predictive simulations were generated to test whether the demographic param-
eters inferred with the two methods were able to correctly predict the patterns of genetic variation ob-
served in the A. inornata data set. The results of this analysis demonstrated that both models were well
calibrated, predicting i, Tajima’s D, and F; correctly in all three populations (Figure S2) and the SFS of each
individual population (Figure S3).

Demographic Analysis of the S. cowlesi Populations

All three S. cowlesi populations exhibited similar levels of nucleotide diversity (0.25% - 0.27%, Table
1), with roughly 1.5-fold higher genetic variation than observed in A. inornata. Tajima’s D values ranged
from -0.17 to 0.25. The range of pairwise weighted F values was similar to that found in A. inornata (from
0.10 in WS-DS2 to 0.15 in WS-DS1). The structure results reported two or three clusters depending on
which criterion was used to identify the best value of K (Figure 2 and Figure S1B, respectively), highlighting
the lower level of differentiation between WS and DS2. However, the three-cluster grouping correctly as-
signed all individuals to their respective sampling localities. The same pattern of differentiation was ob-
served in the PCA analysis (Figure 3) where WS and DS2 could only be differentiated on the second princi-
pal component. As in A. inornata, weighted F,; was notably higher within the Mc1r region relative to the
genomic background in comparisons between White Sands and dark soil populations (0.31 (WS-DS1), 0.20
(WS-DS2)), but not between the two dark soil populations (0.16 (DS1-DS2)).

Both fastsimcoal2 and 6adi analyses predicted the same general demographic model as best fitting
the data (Figure 4), a model with a closer relationship between WS and DS2 and presence of gene flow be-
tween the three populations. Although both methods agreed on the tree topology and on the presence of
gene flow, there are, unlike in the case of A. inornata, notable differences between the parameters esti-
mated by the two methods (Table 2). To test whether these different parameter estimates affected the
predictive power of the model, we conducted predictive simulations using both the fastsimcoal2 and &aéi
estimates and compared their ability to predict the observed data (Figure S4 and S5). The results demon-
strated that both methods were indeed equally well-calibrated as they correctly predicted the distribution
of i, Tajima’s D, and Fy in all three populations (Figure S4). Additionally, both approaches predicted similar
single population SFS that matched the observed data well (Figure S5). It is important to additionally note
that when scaling to calendar years the uncertainty in mutation rate, recombination rate, and generation
time in these non-model organisms has important implications (see Supp Table 2 for an example, consider-
ing two possible mutation rates and three possible generation times, for both species).
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Selection Analysis at the Mc1r Locus in A. inornata

Several aspects of the genetic variation observed at the Mc1r locus in A. inornata stand in sharp
contrast with the diversity observed in the species’ genomic background and are consistent with recent and
strong positive selection. First, as noted above, the level of genetic differentiation among populations at
Mc1r was very high compared to the differentiation observed at neutral fragments (Figure 5). Second, the
nucleotide diversity at the Mc1r locus in the WS population was below the genome-wide average over a
region of about 50kb encompassing the Mc1r gene (Figure 6). Furthermore, only two out of nine individuals
contributed to most of the variation in this region (CP4 and CP34). If these two individuals are discarded,
the seven remaining individuals are almost entirely monomorphic over ~35kb region (Figure S6). This re-
duction of diversity at Mc1r is not observed in the dark soil populations (Figure 6) and is consistent with the
expected local reduction of neutral diversity predicted by the selective sweep model (Maynard-Smith and
Haig 1974). Note that the estimated and observed neutral diversity indices are very similar between all
three populations (Table 1), so we do not expect higher levels of genetic drift in WS to be responsible for
the lower variation at Mc1r. Third, as expected in a region that experienced recent strong positive selec-
tion, Tajima's D values in the WS population were negative and below the genomic background average.
This was not observed in the dark soil populations where D profiles were above average (DS1) or in-line
(DS2) with their respective background distributions (Figure 6). To test whether patterns of variation were
consistent with a recent event of strong positive selection, we applied the CLR test (Kim & Stephan 2002;
Nielsen et al. 2005) (Figure 7). The test was only significant for the WS population and yielded an estimated
selection coefficient for the advantageous allele of 9 x 10™. This estimation was obtained assuming a re-
combination rate of 1.5 x 10° and an effective population size for WS of 23,392 individuals (Table 2). This
newly identified selective sweep co-localized with a non-synonymous mutation responsible for a polarity-

changing replacement in Mc1r (THR170

ILE; Mc1r amino acid residue 170 and contig position 27,132) that has
been previously associated with blanched coloration in A. inornata (Rosenblum et al. 2010). Consistent with
the hypothesis that this mutation plays a major role in the local adaptation of the WS population, we found
the frequency of the white allele (T) to be 0.83 (i.e., 15 out of 18 gene copies) in WS and absent in DS1 and
DS2. This represented the largest difference in allele frequencies between populations in the Mc1r region
for the WS-DS1 comparison (F;; = 0.82) and the second largest for WS-DS2 (F; = 0.78) (Figure S7). The three
copies of the dark allele (C) were found in CP34 (homozygote) and CP4 (heterozygote), the two individuals
contributing to most of the residual variation in the sweep region. Interestingly, these two individuals ap-
pear to share the same blanched phenotype as the other samples from the WS population, suggesting the
existence of additional loci contributing to the genetic basis of this adaptive trait.

Selection Analysis at the Mc1r Locus in S. cowlesi

In S. cowlesi, the Mc1r region does not contain a signal for selection as strong as that in A. inornata,
but several aspects of diversity still suggest a strong selective sweep of the putatively beneficial mutation
identified by Rosenblum et al. (2010). Inspection of polymorphism patterns revealed the presence of strong
haplotypic structure in the Mc1r alignment (Figure S7). The four WS individuals that were homozygous for
the white allele exhibited dramatically reduced genetic variation across the entire contig (55kb) compared
to individuals homozygous for the dark allele. Heterozygotes were found in WS only, which stands in
agreement with the expected dominance of the white allele. F; values only marginally reflected this strong
haplotypic differentiation as the white haplotype was not fixed in WS (Figure S7). The results of the CLR test
on this white haplotype subset of WS yielded significant values over the whole sequenced region (Figure 7).
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The selection coefficient estimated by the CLR method was 1.1 x 10, assuming a recombination rate of 1.5
x 10°and an effective population size of 20,237 (Table 2).

2%8TYR) that induces the
blanched phenotype in individuals that are homozygotes or heterozygotes for the white allele (Rosenblum

The putatively beneficial mutation leads to an amino acid replacement (HIS

et al. 2010). This dominant allele has been shown to have a frequency of 0.46 in the White Sands popula-
tion but to be absent in the dark soil populations. In agreement with the study of Rosenblum et al. (2010),
this mutation occurred with a frequency of 0.61 in our WS sample (four individuals were homozygotes and
three heterozygous) but was absent from both DS1 and DS2. Interestingly, two WS individuals who were
homozygous for the dark allele had a light phenotype, suggesting other loci besides Mc1r contribute to the
blanched phenotype in S. cowlesi as well.

ABC Estimation of Selection Coefficients and Allele Ages

Using an ABC-based approach, we estimated selection coefficients for the putative target of 0.19
based on the inferred fastsimcoal2 model and 0.15 based on the inferred 6adi model in A. inornata. In S.
cowlesi, we estimated selection coefficients for the putative target of 0.12 based on the fastsimcoal2 model
and 0.05 based on the 6adi model (Figure 8). Interestingly, the age of the beneficial mutation was inferred
to be young in both species, with estimates ranging from 0.0002 to 0.003 4N generations in A. inornata
(mean estimate of 900 years), and from 0.01 to 0.001 4N generations in S. cowlesi (mean estimate of 1200
years). However, the posteriors suggest that it may be difficult to distinguish between the ages of these
two relatively young sweeps — rather, it is simply possible to distinguish between young and old. Given the
estimates of effective population sizes however, both sweep patterns are inferred to be significantly
younger than the geological age of the White Sands.

3.4 Discussion

The White Sands lizards of southern New Mexico offer an outstanding system to understand the
demographic and adaptive history associated with colonization of young and novel habitats. Given that
multiple species have independently and convergently adapted to the light colored sand, and that the ge-
netic basis of adaptation is known in some species, this system offers insight into the topology of the adap-
tive landscape and the interplay between selection and demography during colonization.

Demography

Our findings using hundreds of anonymous loci to estimate the neutral demographic history of the
two species pairs investigated here provide insight into both shared and unique aspects of colonization of a
novel habitat. In both A. inornata and S. cowlesi, all populations sampled were distinguishable from each
other, indicating that there is genetic structure over this habitat gradient at a fine spatial scale. In both spe-
cies, the White Sands populations also showed a comparable amount of genetic diversity as dark soil popu-
lations. There is evidence in both species for population size reductions relative to the ancestral population,
but this effect was no stronger in White Sands populations than in dark soil populations. Thus, we did not
find evidence for dramatic genetic bottlenecks at White Sands, consistent with earlier work in this system
that drew from more limited genetic data (Rosenblum et al. 2007).
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We inferred recent divergence times between White Sands and dark soil populations in both spe-
cies, consistent with the known geological history of the formation. However, the inferred split time of light
and dark populations of A. inornata (in which the most recent split was between WS and DS1 ~4,500 years
ago) was considerably younger than in S. cowlesi (in which the most recent split was between WS and DS2
~7,400 years ago). The difference in divergence time estimates between the two species might reflect a
more recent colonization of the dunes by A. inornata or a limited sampling of dark soil populations for this
study. Finally, patterns of gene flow differed between the two focal species. In the species with the more
recent split, A. inornata, no migration was detected, while in S. cowlesi there was strong evidence for on-
going migration.

It is additionally of note that while the two commonly used demographic estimators utilized here
agree on important features of tree topology and the presence/absence of migration, there are notable
differences particularly in S. cowlesi with regards to specific parameter estimates. Perhaps the most im-
portant of which is the age of the WS population divergence, with §aédi inferring a more recent split (post-
dune formation) from DS2, and fastsimcoal2 inferring a more ancient split (prior to dune formation). By
conducting simulations of the best estimated models of the two approaches, we have demonstrated that
both well-explain the observed data — highlighting the fact that there are areas of the demographic param-
eter space that are equally able to predict our observations. Future work will focus on a more comprehen-
sive sampling of dark soil populations to better understand the ancestry of White Sands populations and
refine divergence time estimates.

Selection

Apart from the inherent interest in characterizing the demographic history of colonization in the
White Sands lizards, our demographic estimates also provide an important null model for tests of positive
selection. We evaluated patterns of molecular evolution around the Mcl1r gene, a region hypothesized to
be under selection, relative to the genomic background. Based on F analyses, it was clear that Mcl1r is
much more strongly differentiated between light and dark individuals than was expected based on differ-
entiation across the rest of the genome. In addition to F;analyses, we also took a CLR approach to evaluate
the likelihood of selection across the Mc1r region. In the two dark soil populations sampled for each spe-
cies, no significant test value was found. However, in light populations of both A. inornata and S. cowlesi,
strongly significant rejections of neutrality were identified. Interestingly, in both cases, the likelihood sur-
face peaks were centered around two previously described functional variants proposed to play a role in
the light phenotype (Rosenblum et al. 2010).

Given the differing colonization histories of these species, it was next of interest to infer the age of
the putatively beneficial mutations highlighted by the CLR approach. Taking a newly proposed approximate
Bayesian methodology (presented in this issue, see Ormond et al.), we inferred the strength of selection
and the age of the light alleles in both species taking in to account both the inferred effective population
size and the dominance of the underlying mutations. The strength of selection was estimated to be roughly
equally strong in both species, and the ages of both beneficial mutations were estimated to be considerably
younger than the age of the White Sands formation itself. This result is highly consistent with the demo-
graphic results in A. inornata, in which the WS has a recent population split time, consistent with the bene-
ficial allele age. While there is a discrepancy in estimated population split time in S. cowlesi between our
two inference methods as discussed above, the estimated age of the beneficial allele is indeed young —
suggesting that the adaptive event in both species occurred considerably after the formation of the dunes.
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Establishing the frequency with which selection acts on rare vs. common variants has become an
important focal point in evolutionary genetics. Our results suggest adaptation on de novo or rare mutations
in both White Sands species. This result is of particular interest given prior theoretical work suggesting that
adaptation from standing genetic variation is more likely at White Sands, particularly for the recessive case
(Nuismer et al. 2012). However, our approach, which leveraged hundreds of SNPs over more than 50kb in
the Mcl1r gene region, provides a more robust analysis of strength of selection and allele age than has been
previously possible. Our inference of selection on rare mutations is based on: 1) the strong CLR signal in
both light populations, a test which only has power to detect hard selective sweeps, 2) the inferred allele
ages being considerably younger than the age of the White Sand formation (i.e., the timing of the shift in
selection pressure), and 3) the light allele not being observed as segregating in the dark populations. As it is
likely that the light phenotype would indeed be deleterious on the dark soil, it is likely segregating at muta-
tion-selection balance in the dark populations. Given the necessary frequency at which selection on a
standing variant results in a soft sweep (i.e., a multiple haplotype fixation) versus a hard sweep (i.e., a sin-
gle haplotype fixation) as described by Orr & Betancourt (2001) and Jensen (2014), a soft sweep model is
thus unlikely in these populations. However, we have reason to believe that there are as-of-yet unknown
variants contributing to the phenotype; therefore, a model of polygenic adaptation can not be ruled out.

Given the inference of selection around previously identified and functionally validated variants,
along with the in-depth demographic estimates, this system provides another unique perspective — namely,
the role of dominance. The beneficial light allele appears to be dominant in S. cowlesi but recessive in A.
inornata. Though the mean fixation time of both a recessive and dominant favored allele is similar for large
N and Ns (van Herwaarden & van der Wal 2002), the impact of a selective sweep in both cases is expected
to differ. When selection acts on a recessive beneficial mutation, genetic drift dominates the early phase of
the allele trajectory, as the mutation remains invisible to selection until it reaches a frequency via genetic
drift at which it may appear in a homozygous recessive state. However, once achieving that frequency, a
deterministic trajectory may be entered bringing the allele to fixation. Conversely, for selection acting on a
dominant beneficial mutation, the variant may be visible to selection immediately and begin sweeping,
however genetic drift will dominate the later phases of the trajectory as the wild type recessive allele will
be invisible to selection when in the heterozygous state. As described by Teshima & Przeworski (2006),
these dynamics result in a stronger reduction in diversity near the selected site for recessive mutations, but
a wider reduction for dominant mutations. Figure 9 presents simulation results for these two models, for
the species-specific parameters estimated here. Though this analysis only represents a single example, our
results are indeed qualitatively consistent with theoretical predictions - particularly when considering the
width of the significant likelihood surface.

Conclusion

Our study provides a number of important insights into the process of parallel ecological adaptation
in a novel and geologically young environment. While the times of colonization may differ between the
focal species, both appear to have colonized the White Sands area after their geological formation, utilizing
different genetic mechanisms within Mc1r. Importantly, while both functional and population genetic evi-
dence strongly support the role of these two identified variants in shaping the light phenotype, our results
also suggest that other as-of-yet unknown mutations likely play a role in the light adaptation. Thus, future
research will seek to identify these additional mutational targets, and will expand to other light/dark spe-
cies pairs across this ecotone in order to more fully characterize the generality of these conclusions.
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3.5 Tables

Table 1
A. inornata S. cowlesi
Length (bp) 1,776,757 1,429,855
WS n 9 9
S 9,983 12,308
T 0.0018 0.0025
D 0.31 -0.01
DS1 n 9 9
S 7,750 11,693
Tt 0.0015 0.0025
D 0.80 0.25
DS2 n 6 6
S 9,497 11,946
T 0.0018 0.0027
D 0.11 -0.17
Fst  WS-DS1 0.13 0.15
WS-DS2 0.11 0.10
DS1-DS2 0.15 0.13

Table 1: Summary statistics of the genetic variation observed in the set of genome-wide random contigs. All
statistics were calculated directly from the joint site frequency spectra (sites that did not pass quality con-
trol were masked out).
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Table 2

A. inornata S. cowlesi
fsc2 6abi fsc2 6abi
N_ANC 327,022 324,114 394,383 420,678
N_WS_DS1 46,478 123,264 - -
N_WS 49,586 23,392 173,803 20,237
N_DS1 16,104 7,443 58,323 15,232
N_DS2 83,463 87,418 256,011 32,068
T1 9,627 4,538 435,660 7,401
T2 15,462 18,168 453,086 254,652
T_SIZE_DS1 . - 10,656 7,401
NE_BOT_DS1 - - 308,492 1,076,768
NE_WS_DS2 - - 66,690 1,515,572
M_WS_DS1 -- 4.01E-06 2.95E-05
M_WS_DS2 - - 2.73E-06 3.02E-06
M_DS1_WsS -- - 9.30E-07 1.75E-05
M_DS1_DS2 - - 2.59E-06 2.75E-05
M_DS2_WS - - 5.74E-06 3.09E-06
M_DS2_DS1 - - 2.99E-06 2.75E-05

Table 2: Parameter estimates inferred by fastsimcoal2 and 6adi under the best demographic models for A.

inornata and S. cowlesi. Times are given in years and sizes in number of individuals. A graphical representa-

tion of these two demographic models (and parameter definitions) can be found in Figure 4.
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3.6 Figures

Figure 1: Map of study area

Photographs and sampling localities for Aspidoscelis inornata and Sceloporus cowlesi from contrasting habi-
tats. Blanched colour morphs are found at White Sands (indicated by the white bar) and dark colour
morphs are found in the rest of the species’ ranges (indicated by the black bar). Both species were sampled
from the same three localities in New Mexico: White Sands National Monument (WS) in Otero County
(blue), a dark soil Bureau of Land Management site (DS1) in Lincoln County (red) and a dark soil Jornada

Long-term Ecological Research site (DS2) in Dofia Ana County (green).
Sceloporus cowlesi Aspidoscelis inornata

o)
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Figure 2: structure results for the three lizard populations. Estimated population structure as inferred by
structure in A. inornata (top) and S. cowlesi (bottom). Each individual is represented by a bar partitioned
into K colored segments; the color of each bar’s label indicates the source population, blue for WS, red for
DS1, and green for DS2. These segments represent the estimated membership fractions of the individual in
K clusters. At each K, ten structure runs were performed which generated nearly identical individual mem-
bership coefficients. Figures shown for a given K are based on the highest probability run.
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Figure 3: PCA of the three lizard populations (corresponding to the colors in Figure 2; WS (blue), DS1 (red),
and DS2 (green)) for A. inornata (left) and S. cowlesi (right). Data was thinned to exclude SNPs with an >
0.2 in order to avoid a strong influence of SNP clusters in the PCA. Percentages indicate the percent of vari-

ance explain by each principle component.
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Figure 4: Best demographic model for A. inornata and S. cowlesi as inferred by both 6aéi and fastsimcoal2,

with parameters defined.
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Figure 5: Genetic differentiation at the Mc1r locus in A. inornata. Sliding window profile of Weir and Cock-
erham's (1984) estimator of F; for all pairs of populations as calculated by VCFtools. Window size was
1,000bp and step size 250bp. Sites that did not pass quality control were masked (using the ‘--mask’ op-
tion). The solid horizontal lines represent the average weighted F; across all windows in the genomic back-
ground. The dashed horizontal line represents the .975" quantile of the same distribution. The red vertical
solid line indicates the position of the non-synonymous putatively beneficial Mc1r mutation reported by
Rosenblum et al. (2010).
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Figure 6: Nucleotide diversity (i) and Tajima's D at the Mc1r locus in A. inornata populations. Sliding win-
dow profile of nucleotide diversity (1) and Tajima's D in the Mc1r region as calculated by VCFtools (window
size 1,000bp and step size 250bp). Sites that did not pass quality control were masked (using the ‘--mask’
option). The solid horizontal lines represent the average values of these statistic calculated across all win-
dows in the genomic background. The dashed horizontal lines represent the 0.025" and 0.975™ quantile of
the same distribution. The red vertical solid line indicates the position of the candidate non-synonymous
Mc1r mutation reported by Rosenblum et al. (2010).
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Figure 7: Likelihood surfaces of the CLR test calculated by SweeD for A. inornata and S. cowlesi. The dashed

horizontal line is the significance threshold of the test for WS (see materials and methods). The red vertical

solid line indicates the position of the non-synonymous Mc1r mutations reported by Rosenblum et al.

(2010). Individuals that were homozygous for the dark allele of this mutation were excluded from the anal-

ysis (see main text).
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Figure 8: Estimation of selection coefficient s and allele ages T. Figures show the joint posterior density
plots for s and T. Given somewhat different demographic histories estimated between the fastsimcoal2
(Panel A & C) and éaéi (panel B & D) software, both results are shown in each species. The white, yellow
and red colors indicate areas of high, moderate, and low joint density, respectively. s and T are drawn from
log uniform priors: logso(s) ~ U(-4, -0.5) and logo(T) ~ U(-4, -0.5). Black crosses indicate the modes of the
joint posterior distributions, which are at s=0.19 (Cl: 0.006 — 0.3), T=0.00025 x 4N, generations (Cl: 0.0001 —
0.002) based on fastsimcoal2 estimates and s=0.16 (Cl: 0.0009 — 0.3), 7=0.0034 x 4N, generations (Cl:
0.0001 — 0.002) based on éadi estimates for A. inornata; and s=0.13 (Cl: 0.0002 — 0.2), 7=0.014 x 4N, gener-
ations (Cl: 0.0001 — 0.003) based on fastsimcoal2 estimates and s=0.05 (Cl: 0.0003 — 0.2), T=0.001 x 4N,
generations (Cl: 0.0001 — 0.004) based on 6aédi estimates for S. cowlesi.
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Figure 9: Predictive simulations under the sweep models inferred in this study by the ABC method of Or-

mond et al. (this issue). The missing values for S. cowlesi in the right part of the graph are due to different
contig length for the Mc1r region between the two species. Simulations were performed using the msms

program (Ewing & Hermisson 2010)
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Chapter 4 On the Combined Effect of Osel-
tamivir and Favipiravir in Treating Influenza

Virus

Ormond L, Liu P, Matuszewski S, Renzette N, Bank C, Zeldovich K, Bolon DN, Kowalik TK, Finberg RW,
Jensen JD, and Wang JP. 2017. The combined effect of oseltamivir and favipiravir on influenza A virus
evolution. Manuscript in preparation.

4.1 Introduction

Influenza A virus (IAV) inflicts a heavy disease burden worldwide, including 36,000 deaths in
the United States annually. Developing effective drugs to combat this burden is a public health priori-
ty. The most frequently used drug, oseltamivir, was designed as a competitive inhibitor of the viral
surface neuraminidase (NA) glycoprotein responsible for binding host cell sialic acid to enable the re-
lease of virus progeny (Moscona 2005). Oseltamivir binding requires altering a hydrophobic pocket in
the NA region and can be destabilised by a single mutation near the active site, of which several are
possible (Varghese et al. 1998; Collins et al. 2008). Early studies in vitro and in vivo identified high fit-
ness costs associated with these mutations and lent support to the view that the development of re-
sistance was unlikely in clinical settings (lves et al. 2002). The most common resistance mutation in
H1IN1 strains, H275Y, was observed infrequently during clinical testing (Gubareva et al. 2001) but
spread rapidly worldwide during the 2007/2008 influenza season (Moscona 2009) and remains a
clinical concern (Ghedin et al. 2012; Meijer et al. 2014; Takashita et al. 2015). H275Y confers re-
sistance to oseltamivir but lowers virus fitness by reducing the amount of neuraminidase that reaches
the cell surface (Bloom et al. 2010). The higher than expected fitness of mutants carrying H275Y is
likely due to the presence of compensatory mutations that increase cell surface expression and enzy-
matic activity of neuraminidase (Bloom et al. 2010; Bouvier et al. 2012; Ginting et al. 2012; Butler et al.
2014)

The rapid spread of oseltamivir resistance has increased interest in developing drugs with an
alternative mechanism of action and lower susceptibility to resistance. Favipiravir is a mutagenic drug,
which inhibits viral RNA-dependent RNA polymerase (RdRp) and dramatically increases the IAV muta-
tion rate (Fig. 1), potentially pushing the virus towards extinction (Baranovich et al. 2013; Furuta et al.
2013). Favipiravir is effective against a range of RNA viruses including influenza and is currently in
phase 3 clinical trials. It is safe for use in humans as human cells do not have RdRp domains, and it has
a distinct mode of action from both oseltamivir and M2 drugs. Most importantly, to date no resistance
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mutations have been identified, either because the process may be biologically complex or because
viral extinction occurs too rapidly for resistance to evolve.

Previous work in the Jensen laboratory has analysed the evolution of IAV experimental popula-
tions treated with oseltamivir only (Foll et al. 2014) or with favipiravir only (Bank et al. 2016). Foll et al.
(2014) developed a time-sampled approach (WFABC) to identify targets of selection in oseltamivir
treated IAV populations, and to distinguish these from genetic drift (Fig. 2). Results confirmed that
resistance to oseltamivir could be readily achieved in a single mutational step and re-identified the NA
H275Y mutation. A number of other previously described (e.g., HA D112N mutations) and novel (e.g.,
MP1 E23Q and A41V) mutations were found to have roles in improving cell infectivity and virion bud-
ding, and with potential epistatic interactions with H275Y. E23Q was highlighted as a possible compen-
satory mutation, off-setting the cost of adaptation of H275Y reflected in the reduced amount of neu-
roaminidase to reach the cell surface. In addition, Foll et al. (2014) analysed the distribution of fitness
effects in the absence and presence of oseltamivir. A heavy tail of beneficial mutations in the pres-
ence of the drug reflects the presence of resistance and compensatory mutations, underpinning the
rapid adaptive potential of IAV under treatment with oseltamivir (Fig. 3).

Bank et al. (2016) describe the accumulation of deleterious mutations in experimental 1AV
populations treated with escalating doses of favipiravir over 15 passages. Beyond a critical threshold,
the viral population proceeds into a phase of rapid decline and escalating mutation load that ultimate-
ly leads to extinction (Fig. 4). This outcome depends on a high dosage of favipiravir. In two replicates
where the drug dosage was held constant or withdrawn after passage 10, a reduction in the negative
growth rate (relative to the no drug control) was observed, providing the first evidence of viral adapta-
tion to low concentrations of favipiravir (Fig. 5).

Using drugs in combination is an established clinical strategy aimed at preventing or delaying
resistance by rapidly depleting pathogen populations before resistance can emerge (e.g., against tu-
berculosis (Mitchison 2012)). Thus, there is interest in combining oseltamivir and favipiravir in the
treatment of influenza. Synergistic benefits have been obtained using favipiravir and oseltamivir in
combination against influenza A HIN1pdm in in vivo studies in mice, as well as against an H275Y osel-
tamivir resistant model of infection in mice (Smee et al. 2013). The two drugs have very different
mechanisms of action and the effects of combining these are unknown.

Over the past few decades, a number of studies have shown the impact of mutagenic drugs on
RNA virus extinction (e.g. foot-and-mouth disease virus (FMDV) (Sierra et al. 2000; Pariente et al.
2001) HIV-1 (Loeb et al. 1999; Loeb & Mullins 2000) and lymphocytic choriomeningitis (LCMV)
(Grande-Pérez et al. 2002)). Different hypotheses have been evoked to explain these effects. RNA
viruses, including the H1N1 virus studied here, are frequently cited as being subject to an error thresh-
old, as they are characterized by high mutation rates, short replication times and large populations
sizes. The error catastrophe model (Eigen 1971, 2002; Holmes 2003) that this set of characteristics
invokes, postulating a distinct mutational threshold above which replication is no longer possible and
extinction occurs, implies an upper limit on genome size and mutation rate. In keeping with this expec-
tation, most RNA viruses are characterized by very short genomes (3000-30,000bps, Domingo et al.
2001), and evidence is indeed accumulating that mutation rates in these viruses may rest very near the
error threshold. As a means of explaining the extinction process upon crossing this limit, models of
lethal mutagenesis have been proposed (Bull et al. 2007; Wylie & Shakhnovich 2012), in which this
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extinction is described as a deterministic (and thus population size-independent) process of accumula-
tion of deleterious mutations which erode viral fitness until a point of population collapse is reached.
As a separate literature, the population genetics community has developed models of mutational
meltdown (Lynch & Gabriel 1990), rather focusing on finite population processes governing extinction,
including Muller’s ratchet (a stochastic process (Muller 1964; Felsenstein 1974)) and Hill-Robertson
interference (a deterministic process, (Hill & Robertson 1966; McVean & Charlesworth 2000)).

Muller’s ratchet describes the stepwise loss of the fittest class of individuals (the “least loaded”
class) in a non-recombining population due to genetic drift, and thus the reduction in absolute fitness
due to the accumulation of deleterious alleles, or drift load (Whitlock & Bourguet 2000). In a finite
population, Muller’s ratchet eventually results in the extinction of the population, if it is not opposed
by compensatory or beneficial mutations. The ratchet operates at a speed that depends on the effec-
tive population size, the selection coefficient of deleterious mutations and the size of the least loaded
class at mutation-selection equilibrium and accelerates exponentially with an increasing mutation rate
(Haigh 1978; Gordo & Charlesworth 2000a, b). Hill-Robertson interference (Hill & Robertson 1966)
describes the reduction in the efficacy of selection owing to linkage between selected alleles and their
genetic backgrounds. In an effect known as weak-selection Hill-Robertson interference (WSHRI)
(McVean & Charlesworth 2000), the spread of weakly beneficial mutations may be slowed by linkage
with weakly deleterious mutations. In another form of interference, beneficial mutations arising on
different backgrounds will compete for fixation. In small, non-recombining experimental viral popula-
tions subject to an increasing mutation rate, both Muller’s ratchet and Hill-Robertson interference are
likely to be significant, in addition to the deterministic erosion of viral fitness owing to the accumula-
tion of deleterious mutations.

To evaluate these processes and assess the clinical advantage of a combined protocol, we
treated IAV populations with escalating doses of oseltamivir and favipiravir (“combined drug” popula-
tions) over 10 passages, and compared these with three control-paired replicate IAV populations
treated with oseltamivir only, as well as with results from the earlier favipiravir and no drug treated
populations. This experimental set-up offers an excellent platform to dissect the complex dynamics
contributing to meltdown, and in particular the roles of genetic hitchhiking, Muller’s ratchet and Hill-
Robertson interference. The oseltamivir-only replicates and favipiravir population provide a way of
separating out these components and of identifying the dynamics that are particular to the combina-
tion. The availability of multiple replicates affords our study additional power.

Our results demonstrate that the combined drug populations become extinct or nearly extinct
in ten passages, but with some important differences in the underlying dynamics compared to the
favipiravir-alone population. Viral growth in oseltamivir-treated replicates remained high and stable
throughout all passages, due to the emergence of resistance mutations. In the combined drug repli-
cates, we observe an accumulation of deleterious and neutral mutations that lead to viral extinction.
Intriguingly, extinction proceeded at a faster rate than for the favipiravir population, despite a lower
number of segregating mutations. We find evidence that deleterious mutations hitchhike to fixation
with strongly selected oseltamivir resistance mutations, a process that reduces viral fitness and accel-
erates extinction. The selective sweeps depress genetic variation and explain the lower number of
segregating mutations. Additionally, evidence of a small and rapidly declining effective population size
support a role for Muller’s ratchet. Finally, Hill-Robertson interference patterns specific to the com-
bined drug (clonal competition between beneficial mutations) and favipiravir populations (WSHRI)
emerge.
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There is no evidence that the oseltamivir resistance mutation NA H275Y arises earlier in com-
bined drug replicates than in oseltamivir replicates. In two out of three combined drug replicates,
H275Y fixed during the same passage as in the corresponding oseltamivir control. Interestingly, two
other putative NA resistance mutations were identified that fixed rapidly in combined drug replicates 2
and 3. Our results suggest that the mutational effect of favipiravir combined with oseltamivir rapidly
explores sequence space, generating other possible NA resistance mutations and clustering beneficial
mutations on the same haplotype, although at the cost of a high linked deleterious mutation load that
ultimately drives viral extinction. Thus, we find that the combined drug protocol potentially drives an
earlier extinction point for viral populations than the favipiravir protocol alone, but at the risk of
spreading both established and new oseltamivir resistance mutations.

4.2 Background : Two sides of the same coin: a population genetics
perspective on lethal mutagenesis and mutational meltdown

Matuszewski S, Ormond L, Bank C, & Jensen JD. Virus Evolution, accepted.

Fisher (1930) argued that an intermediate mutation rate is likely optimal for populations to
survive, as it ensures a constant input of beneficial mutations providing the ‘fuel’ for adaptation, while
limiting the impact of accumulating deleterious mutations. Subsequently, the effects of high popula-
tion mutation rates and the related risk of population extinction have been explored heavily in the
theory literature, spanning the fields of population genetics as well as virology.

This literature has spawned a number of concepts describing the extinction of populations ow-
ing to the excessive fixation of deleterious mutations. From population genetics, the mutational melt-
down model (Lynch & Gabriel 1990) has been proposed, invoking previously developed evolutionary
processes including Muller’s ratchet (Muller 1964; Felsenstein 1974) and Hill-Robertson interference
(Hill & Robertson 1966; McVean 2000). Relatedly, from the study of viral evolution, the models of error
catastrophe (Eigen 1971; Eigen 2002; Holmes 2003) and lethal mutagenesis (Bull et al. 2007; Wylie &
Shakhnovich 2012) have emerged.

Despite the different fields in which these ideas were developed, there is a considerable
amount of parallelism between these notions. For example, mutational meltdown is generally dis-
cussed within the context of ‘small’ population sizes in which stochastic effects play an important role,
whereas lethal mutagenesis is generally discussed within the context of ‘large’ population sizes driven
by deterministic factors, though recent extensions of the latter model have relaxed this assumption to
incorporate stochastic effects (Wylie & Shakhnovich 2012). Hence, the extent to which these models
are overlapping descriptions of related processes or events, or are even subsets of one another, is
unclear. This has resulted in an inherent confusion when invoking these models to describe biological
observations.

We here seek firstly to clearly define and review these models in terms of parameter require-
ments, predicted effects, and biological relevance, and then compare them side-by-side in the light of
their similarities and differences. Fundamentally, we propose that the notion of lethal mutagenesis
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largely describes the deterministic subset of the dynamics of mutational meltdown, and thus call for a
more integrated focus on the underlying processes driving extinction.

Error Catastrophe

The concept of “error catastrophe” was originally developed in the context of a general theory
of molecular evolution pertaining to the origin of life (Eigen 1971). This theory sought to answer the
qguestion of how primitive organisms can maintain sufficiently accurate genetic information during
reproduction. Subsequently, Eigen & Schuster (1979) developed quasispecies theory to depict the dy-
namics of nucleic acid molecules under selection and mutation. A key feature of quasi-species theory is
the idea of an error threshold, which sets a hard limit on the maximum mutation rate and thus ensures
sufficient accuracy of replication.

A system of differential equations can be used to model dynamical evolutionary processes,
such as the growth of a bacterial population under different “types” of mutation and selection or the
replication of RNA viruses (Eigen 1971; Eigen & Schuster 1979). The analysis assumes an asexual, infi-
nite population. Assuming a probability W; of error free reproduction of type i, and probability W that
type i is formed from type k, the description of the change in frequency of type i with time t is given

by:

B = (Wi — E@)xi(8) + Tpews Wit (1) (1)
(Equation 6 of Eigen and Schuster 1979)

where x; is the frequency of type i and E(t) represents the mean fitness of the total population (Bie-
bricher & Eigen 2005). Thus, the change in mutant frequency i involves both selection (as represented
by the first term of this equation) and mutational gain (as represented by the second term, which
takes into account offspring of type i produced from parental type k through errors in the replication
process).

Quasispecies theory (Eigen and Schuster 1979) builds on this analysis in the framework of a sequence
space (similar to the notion of protein/sequence space developed by Maynard Smith (1970)). In this
context, a quasispecies is defined as “a given distribution of macro-molecular species with closely in-
terrelated sequences, dominated by one or several (degenerate) copies” (Eigen & Schuster 1979). If an
equilibrium or steady state is reached (implying dx,/dt = 0) and ignoring mutational gain terms above
(X k=i Wirxy), the population proportions of the different “types” making up a quasispecies can be
derived as
_ Wii—Epzi

= DT k=i 2
i Ei—Ejgzi (2)

(Equation 10 in Biebricher et al. 2005).
In addition to assuming an infinite population (though see Ochoa & Harvey 1998), this analysis

effectively assumes a fitness landscape with a single peak (though see Bonhoeffer & Stadler 1993). This
means that there is a (single) master sequence m with a probability W,,, of error free reproduction
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that is significantly higher than the probability of reproduction of all other types Wi, (which allows the
mutational gain term to be ignored).

This derivation implies the existence of an error threshold. If W,,, becomes equal or less than Ej.; the
master sequence population would collapse. Given the average fitness of the master sequence o, its
length v, and its fidelity or accuracy of reproduction Qmm=¢7;;1m, the population proportion of the mas-
ter sequence (from the above equation) can be rewritten following Biebricher & Eigen (2005) as

Xm = (0mQmm —1/(0n—1). (3)

The error threshold (1 — g,,,) can then be derived (Eigen 1971; Eigen & Schuster 1979) as:

1-qy, <2, (4)

m — Vi

For the master sequence to be maintained in the population the product of its mean fitness and it
accuracy of reproduction needs to exceed unity (6;, Qnm> 1; allowing the error threshold to be recov-
ered; Eigen 2002). Thus, effectively, any loss in accurate reproduction of the master sequence must be
compensated by the relative fitness a,,, to avoid a collapse. The error threshold depends both on the
fitness of the master sequence and on the sequence length. Because the average accuracy of repro-
duction per locus @,, is less than one, any increase in length v,, reduces the fidelity of the master se-
guence Qmm=qZ;" and reduces the error threshold in the above equation.

Simulations by Swetina & Schuster (1982) and Tarazona (1992) of the stationary state of a
population of binary sequences have been used to explore changes in the mutant spectrum as the
population mutation rate is increased over the error threshold. Consistent with theory, the spectrum
becomes markedly more diverse but remains centered around the master sequence until a complete
collapse at the error threshold. This has been described as a sharp “all or none” change with the char-
acteristics of a “first order phase transition” (Eigen 2002).

Lethal mutagenesis

Originally introduced and coined to describe a therapeutic strategy for curing vaccine-lacking
viral diseases, the concept of lethal mutagenesis refers to the drug-induced increase in viral mutation
rate (achieved through incorporating non-complementary nucleotides or nucleotide analogs during
the DNA/RNA replication process), which reduces population mean fitness (and increases mutation
load) and in turn leads to a decline in viral population size and eventual extinction (Loeb et al. 1999;
Anderson et al. 2004; Bull et al. 2007). Although the concept itself has been applied to both RNA and
DNA viruses - including human immunodeficiency virus (HIV), influenza A virus (IAV) and hepatitis B
virus (HBV) (see Anderson et al. 2004) - results were initially discussed in light of Eigen’s error catas-
trophe model (Eigen 1971) owing to the lack of a separate, formal theoretical framework of lethal mu-
tagenesis.

In an attempt to synthesize existing empirical and theoretical work, Bull et al. (2007) proposed
a general theory of lethal mutagenesis, which, as the authors noted, “offered [nothing] ... specifically
original”, but is “rather [an] ... application of simple models and the interpretation of those results in

|)l

the context of empirical methods ... that made this [theory] original”. This model is composed of three

basic features: First, a genotype-to-fitness map w(g) characterizes how the number of (deleterious)
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mutations affects the genotype’s fitness; second, a mutation-rate-to-fitness map addresses how the
population mean fitness at mutation-selection balance changes with the rate of mutations U (Haldane
1932; Biirger 1998); finally, a demographic model that links the two above components with an eco-
logical component R4, (e) that quantifies the (environmentally-dependent) maximal absolute popu-
lation growth rate (sometimes also called the maximal fecundity). Therefore, the population absolute
mean fitness W is given by

W= Rmax(e)w(w(g)v U).

Depending on the choice of the underlying demographic model, the number of viral particles
in the next (discrete) generation Ny, is then simply a function of the current population size N; and
the absolute mean fitness (e.g., a simple exponential growth model of the form N,,; = N.W or a
more complex density-dependent model; see Gabriel & Biirger 1992). However, independent of the
choice of demographic model, the population will eventually become extinct if the mean absolute
fitness W < 1, such that the population can no longer maintain itself. This can happen either because
the mean relative fitness w drops below a critical value (i.e., mutation load becomes too high), or be-
cause R4, (€e) drops below unity as a consequence of a change in the environment (e.g., due to the
application of a novel drug treatment).

In this general formulation, viral populations are assumed to be large initially such that genetic
drift is not affecting mutation-selection balance, recombination is thought to be absent, and beneficial
mutations are disregarded (see below for a discussion of recent relaxations of these model assump-
tions). This simplified model allows the calculation of critical mutation rates U, beyond which absolute
mean fitness drops below unity and the population will become extinct. In particular, under a multipli-
cative genotype-to-fitness map w(i) = (1 — s), where the fitness of a genotype is reduced by a con-
stant s per deleterious mutation, the mean relative fitness is w = e~V (Kimura & Maruyama 1966).
Thus, the population would go extinct if U > U, = Log[Rnax(e)]. Notably, due to environmental de-
pendence of Ryax(€), there is no universal critical mutation rate across viral populations — not even
for a single species.

As shown by the above back-of-the envelope calculation, lethal mutagenesis is independ-
ent of population size - a result made explicit in the original model in noting that it is fundamen-
tally a deterministic process that will operate even in very large populations (Bull et al. 2007).
Importantly, although the outcome of lethal mutagenesis is deterministic, population dynamics,
extinction times, and individual trajectories of mean absolute fitness are not. Thus, demography is
nonetheless important here (Nowak & May 2000), where finite population sizes will always in-
duce an additional (drift) load that is not accounted for in these models, but which can have a
strong effect on population dynamics owing to the fixation of deleterious mutations further de-
creasing population mean fitness.

Mutational meltdown
Muller’s ratchet (Muller 1964; Felsenstein 1974) describes the stepwise loss of the fittest class

of individuals in a population and the associated reduction in absolute fitness due to the accumulation
of deleterious alleles, or drift load (Whitlock & Bourguet 2000). In a finite population, Muller’s ratchet
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eventually results in the extinction of the population if it is not opposed by compensatory or beneficial
mutations. Lynch and Gabriel (1990) were the first to combine the study of population dynamics (i.e.,
size changes and absolute growth rates) and population genetics (i.e., allele frequency distributions
and relative fitnesses) in order to describe this extinction process, which they termed “mutational
meltdown”. In a series of papers, the authors proposed and analyzed various related models and dis-
cussed the properties and implications of mutational meltdown in both asexual and sexual populations
(Lynch & Gabriel 1990; Gabriel et al. 1993; Lynch et al. 1993; Gabriel & Birger 1994; Lynch et al.
1995a,b).

This process is fundamentally described with respect to the accumulation of mutations over
time. The mean number of mutations, 7n(t), depends on the carrying capacity K, the absolute growth
rate R, the deleterious effect of a mutation s, and the (deleterious) mutation rate u, and can be ex-
pressed as

R(E+1) =70 + - s[u+ o301~ )

where Urzl(t) describes the variance in n over time, which is generated by mutation and reduced by
selection. The dynamics of mutation accumulation, beginning with an isogenic population, can then be
split into three phases (see Fig. 1 of Lynch et al. 1993): first, mutations are accumulated rapidly, until
mutation-selection-balance is reached. This is followed by a constant accumulation of mutations at
constant population size (i.e., when the population is at its carrying capacity). Once the mean viability
drops below 1/R, carrying capacity cannot be maintained and population size starts to decline, thus
increasing the susceptibility to further accumulate deleterious mutations (which in turn again reduces
mean viability), ultimately resulting in rapid population extinction.

One important difference in the dynamics of the meltdown model is the dependence on the
order of events in the life cycle (i.e., whether selection acts before or after population size regulation).
In the first case, the carrying capacity K can be maintained over a long period, resulting in a constant
population size and linear accumulation of mutations, followed by a rapid extinction phase (Lynch &
Gabriel 1990; Lynch et al. 1993). In the second case, each click of the ratchet (i.e., when the least-
loaded class of individuals is lost) results in fewer offspring; thus the population size declines gradually
and the speed of the ratchet increases over time (Gabriel et al. 1993). Independent of the type of
model, the conclusions from these papers were that extinction times of a few hundreds of generations
are expected for small populations, and that the process is slowed by roughly an order of magnitude in
sexual populations (Lynch et al. 1995b). A simple rule determines the beginning of the final meltdown
phase, which was subsequently used in Lande’s treatment of the same problem in a quantitative ge-
netics framework (Lande 1994; 1998), and in models of lethal mutagenesis (Bull et al. 2007; and see
below): the population is doomed to extinction when the mean viability decreases below the recipro-
cal of the absolute growth rate (i.e., the number of offspring an individual can produce; Lynch et al.
1993). An interesting finding is that an intermediate magnitude of the deleterious selection coefficient
minimizes the time to extinction through mutational meltdown; this is of particular importance given
the recently accumulating empirical evidence for a generally bimodal distribution of fitness effects of
new mutations (e.g., Eyre-Walker & Keightley 2007; Hietpas et al. 2011, 2013; Bank et al. 2014).

Beyond the “extinction threshold”, other elements of lethal mutagenesis were indeed first dis-
cussed in the seminal papers on mutational meltdown (Lynch & Gabriel 1990; Lynch et al., 1993). First-
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ly, Lynch et al. (1993) describe the conditions under which mutational meltdown is driven by genetic
drift versus by mutational pressure, and conclude that “when the mutation rate is on the order of 1
per individual per generation [...] the [least-loaded] class will be lost due to mutation pressure alone”.
Secondly, the authors demonstrate that the extinction time is only relatively weakly (logarithmically)
dependent on the population size. Finally, Lynch et al. (1993) compare the mean fitness reached after
the first phase with that of the infinite-population mutation-selection-balance (i.e., the starting point
for lethal mutagenesis; Kimura & Maruyama 1966), and observe that it is indeed only slightly larger in
the case of a finite population. Thus, though generally associated with small-population size effects,
mutational meltdown has been discussed with regards to both high-mutation-rate regimes and large
population sizes as well (Lynch & Gabriel 1990).

Comparing and interpreting the models
“Everything should be made as simple as possible, but not simpler.”
Albert Einstein

The notion of lethal mutagenesis arose out of the error catastrophe literature to provide a
comprehensive framework to describe the deterministic (and thus population size-independent) pro-
cesses that lead to population extinction via the crossing of a distinct error threshold. In contrast, the
notion of mutational meltdown was fundamentally concerned with the stochastic nature of this extinc-
tion process, invoking classical population genetic models describing small population size dynamics.
However, as discussed, the model of mutational meltdown has also been examined with regards to
large population sizes. Further, recent extensions of the model of lethal mutagenesis have begun to
consider stochastic effects. For example, Wylie & Shakhnovich (2012) studied the role of population
size and mutation rate on extinction times, finding, as expected, that small populations may go extinct
very quickly, whereas large populations survive almost indefinitely.

Thus, in some ways the model of lethal mutagenesis has converged with that of mutational
meltdown, certainly in terms of appreciating the importance of stochastic processes in driving extinc-
tion events. Indeed, the genetic processes underlying population extinction are governed by the effec-
tive population size, N, (Wright 1931; Crow 1954; Charlesworth 2009). Estimates of N,/N taken from
over 100 species (excluding viruses), demonstrated that census population size is on average an order
of magnitude larger owing to fluctuating population sizes, unequal sex-ratios, and/or variance in re-
productive success (Frankham 1995). In particular, the latter has been argued to significantly affect
viral populations (Neher & Hallatschek 2013; Irwin et al. 2016). The ladder-like genealogy of the influ-
enza A virus hemagglutinin segment, for example, suggests that only a few viruses seed the entire next
generation (Grenfell et al. 2004). Along the same lines, estimates of effective population size in HIV
range from 103 to 108, but generally show an extraordinarily low N, /N ratio (Pennings et al. 2014).

Another similarity common to both models is the need to incorporate the potential effects of
beneficial and compensatory mutations in modifying the rate of fitness decline and time to extinction
(see Manrubia et al. 2010; Bull et al. 2013). Specifically, small increases in mutation rate may improve
the ability of populations to respond to novel environmental challenges, and there indeed exist exam-
ples of selection for hypermutator strains in bacteria under particular stressors (e.g., Sniegowski et al.
1997; Gerrish et al. 2013). However, owing to the effects of Hill-Robertson interference, as well as the
far greater input of newly arising deleterious relative to beneficial mutations, this concern fundamen-
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tally suggests a need to simply quantify the extent to which mutation rates must be increased in order
to ultimately result in population extinction.

Recent empirical studies attempting to test the genetic models underlying lethal mutagenesis
have largely failed to match its (qualitative) predictions (Springmann et al. 2010; Bull et al. 2013). This
is presumably owing to the evolutionary mechanisms neglected by the (original) theory such as adap-
tive evolution (i.e., beneficial/compensatory mutations), interactions between mutations (i.e., epista-
sis) and non-constant mutational effect sizes (i.e., the distribution of fitness effects [DFE]). While An-
toneli et al. (2013) recently derived a generalization of the lethal mutagenesis extinction criterion that
allows for a small fraction of (fixed effect) beneficial mutations, epistasis and the DFE are inherently
connected to the genotype-to-fitness and/or the genotype-to-phenotype map. Two alternatives to the
frequently used multiplicative fitness model of Kimura & Maruyama (1966) have been proposed: First,
in biophysics-based fitness landscape approaches, the DFE is derived from the mutational effects on
protein folding and its thermodynamic properties (e.g., Chen & Shakhnovich 2009; Stich et al. 2010;
Wylie & Shakhnovich 2011, 2012). While these approaches may indeed account for an important class
of mutational fitness effects in viruses (Wylie & Shakhnovich 2011), they have been criticized for di-
rectly equating fitness with protein stability - thus neglecting ecological aspects underlying fitness
(Martin & Gandon 2010). As an alternative, phenotypic landscape models naturally accommodate epi-
stasis, variation in mutational effects, and permit compensatory mutations (e.g., Fisher’s (1930) Geo-
metric Model; for recent empirical support see Martin & Lenormand 2006a; Cooper et al. 2007;
Hietpas et al. 2013; Achaz et al. 2014; Tenaillon 2014). Under these models, mutations, instead of di-
rectly affecting fitness, change n (unknown) quantitative traits (e.g., cell-to-cell transmission rate or
levels of drug tolerance) which are considered to be under (Gaussian) stabilizing selection centered
around an optimum. However, despite the conceptual differences between these two approaches, the
resulting shapes of the DFEs are surprisingly similar (compare Fig. 3 in Wylie & Shakhnovich 2011 with
Fig. 1 in Martin & Lenormand 2006a), perhaps simply emphasizing that variable mutational effects
must be accounted for (Bull et al. 2013).

The best evidence for the empirical observation of population extinction driven by increased
mutation rates comes from the experimental evolution literature in which these stochastic effects are
prominent by design — for example, in yeast where population sizes were artificially kept small (Zeyl et
al. 2001). Investigation in this area is particularly active in the study of RNA viruses, where the impact
of mutagenic agents administered either alone or combined with antiviral inhibitors has been widely
assessed (e.g., Loeb et al. 1999; Pariente et al. 2001; Crotty et al. 2001; Airaksinen et al. 2003; Grande-
Pérez et al. 2005; Bank et al. 2016). In other words, this literature has focused on experiments directly
modulating either effective population size or mutation rate. It is additionally of note that several em-
pirical papers claiming to study mutational meltdown do not observe extinction of their study popula-
tion (e.g., Rowe & Beebee 2003; Shoubridge & Wai 2008; Allen et al. 2009; Willi 2013; Woodruff 2013),
which may partly be owing to a confusion of terminology: the process of Muller’s ratchet and the event
of mutational meltdown are sometimes used interchangeably.

In order to avoid future confusion, we propose here that focusing on these processes will likely
be more informative for quantifying evolutionary dynamics and developing clinically relevant treat-
ment strategies, rather than quibbling about the proper (largely semantic) nomenclature surrounding
the extinction event itself. Namely, both models are fundamentally concerned with the notion of mu-
tation-selection-(drift) balance (e.g., Haldane 1937; Kimura & Crow 1964; Blirger 1989) and its induced
mutational load (also see the helpful theoretical results of Hermisson et al. 2002 that relate this equi-
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librium behavior to changing mutation rates). Further, Muller’s ratchet and Hill-Robertson interference
are fundamentally the processes driving the loss of fitness and eventual extinction. Though these pro-
cesses have been well characterized in the population genetics literature, further progress must be
made to extend these results to account for particular features of virus biology, namely the large vari-
ance in reproductive success, the population structure induced by compartmentalization, the interplay
of fluctuating population sizes and changing environmental pressures, and the effects of tissue-specific
drug permeability.

4.3 Methods

WFABC analysis

In oseltamivir treated replicates, the software developed by Foll et al. (2014) was used to es-
timate global effective population size N, and the selection coefficients s for derived mutations from
time sampled data for the allele frequency trajectories. Because the frequency of the third-most fre-
quent mutation is very low in this dataset, all sites are treated as bi-allelic. Sites with a coverage above
100 were randomly (hypergeometrically) down-sampled to a sample size of 100. Only trajectories with
a down-sampled frequency >2.5% were kept for the analysis, to ensure that these were above the
estimated sequencing error of 1%. Following Foll et al. (2014), mutations with a Bayesian posterior
distribution excluding zero of less than 0.5% (P(s<0|x)<0.5%) were deemed to be under positive selec-
tion.

Population size estimates

The temporal method of Jorde & Ryman (2007) was used to estimate effective population size
between two time points. This method uses Fs’, which is a measure of the variance in allele frequen-
cies between two time points adjusted for sampling bias to calculate N,

FS_Z(x—y)2

T Yz(1-12)
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where Fs is the estimator for allele frequency variance before adjusting for sampling bias, x and y are
the allele frequencies at the two time points, t,, is the number of generations between the two time
points, z is the average frequency where z=(x+y)/2, and 7i is the harmonic mean of the sample sizes n,
and n, at each time point. For each passage, allele counts were hypergeometrically down-sampled to
a minimum of 100 or coverage, and sites with counts less than 5 were excluded. Sites were included in
the calculation of Fs’ if one of the observed (randomly downsampled) frequencies was >2.5%. For
each pair of passages, N, was calculated as 1/Fs’.
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Population dynamics

Absolute growth rates for all replicates were obtained from the starting and final population
sizes at each passage. The underlying assumption is that each viral plaque is the result of a single infec-
tive particle, based on the low multiplicity of infection (MOI) used for each passage. Following Foll et
al. (2014) and Bank et al. (2016), we assume 13 generations of viral populations per passage and calcu-
late the Malthusian growth rate r per passage as

N(t) = Ny(exp™)

where t is the number of generations, N(t) is the population size at time t, and Nj; is the initial popula-
tion size at the start of each passage. Relative growth rates are calculated as rcompined —r'osel, Which cor-
responds to an estimate of relative fitness, based on using the oseltamivir replicates as a control (as
the oseltamivir replicates exhibit stable growth rates and no drug paired controls were not available).
We carried out a linear regression between relative growth rates and time in passage number. An or-
dinary student’s t-test was used establish whether the slope of the line, corresponding to the change
in relative growth over time, was significantly different from 0, indicating a significant difference be-
tween the treatments. Following Bank et al. (2016) the slope of the line was taken to indicate whether
there was a continuing decline in relative growth (negative slope) or potential recovery and adaptation
to the combined drug protocol (positive slope) over time.

Hierarchical clustering analysis

The hierarchical clustering analysis is based on the squared Euclidian distance between allele
frequency trajectories of the candidate mutations using Ward’s minimum variance criterion (Ward Jr
1963), starting from the first time point where the frequency was higher than the estimated sequenc-
ing error of 1%.

4.4 Results

We analysed the evolution of influenza A/Brisbane/59/2007 (H1IN1) in Madin-Darby canine
kidney cells under treatment with oseltamivir alone, or under treatment with a combination of osel-
tamivir and favipiravir, over a total of 10 passages. In the first three passages, IAV was adapted from
chicken egg and serially amplified in the MDCK cells with no treatment, as part of an earlier experi-
ment (Foll et al. 2014). Stock viral populations from an earlier experiment were used to seed passage
4 to ensure that replicates are identical before administration of the drug treatment. In passages 4 to
8, three replicates of IAV were exposed to increasing doses of a combination of oseltamivir and favipi-
ravir (Fig. 6). The replicates were paired with three populations exposed to increasing doses of osel-
tamivir only as a control. This ensured that the oseltamivir only replicates are subject to the same
experimental conditions as the populations exposed to the combination treatment. A multiplicity
(MOI) of 0.01 was used for all replicates, except replicate 1 passage 10 (MOI=0.005). Following Foll et
al. (2014), 13 viral generations are assumed to occur during each passage. Details of drug treatment,
MOI and output PFU for each replicate are shown in Table 2. These results were compared to results
obtained from a previous experiment, where two populations of IAV were exposed to favipiravir alone
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and to a no drug control over passages 4 to 15 Bank et al. (2016). The favipiravir population was treat-
ed 2uM of the drug from passage 4, and the dosage was doubled at every passage, which represents a
higher dosage than for the combined drug replicates (dosage of 1uM favipiravir in passage 4 and dou-
bling of the dose thereafter). At the end of each passage, samples from each replicate were sequenced
using high coverage, whole-genome high-throughput population sequencing.

4.4.1 Genetic diversity and purifying selection

We calculated genetic diversity for the different replicates as the expected heterozygosity (Nei
1973). Genetic diversity was consistently low throughout passages 4 to 10 (Fig. 7). It was slightly low-
er for the oseltamivir only replicates (2.0x10® average for replicate 1, 1.8x10° for replicate 2, 1.5x107
for replicate 3) compared to the combination drug replicates (3.0x10° for replicate 1, 2.6x107 for repli-
cate 2, 2.4x10°x10”). The SFS (shown in Fig. 8 for replicate 1 passages 4 and 8) shows a bias towards
low frequency variants, for all replicates and all treatments. Low frequency counts increased by pas-
sage 8 because of the mutagenic effect of favipiravir on the number of segregating sites. Only a rela-
tively small number of mutations had a derived allele frequency (DAF) in excess of 40% in all replicates
(Table 1), although higher in the combined drug replicates. Together, these points confirm the influ-
ence of strong purifying selection in viral populations acting to remove new deleterious mutations, as
found by others (e.g. Foll et al. (2014)), and evidence the action of favipiravir on the number of segre-
gating sites in combined drug replicates.

4.4.2 Evidence for mutation accumulation and Muller’s ratchet

All combined drug replicates reached extinction or near extinction by passage 10. The output
number of plaque-forming units per ml (PFU/ml) tracks census viral population size at the end of each
passage. Output PFU/ml declined to 3.0x10° for replicate 1, 8.0 x10° for replicate 4 and 2.4x10"* for
replicate 3 (Table 2). In contrast, output PFU/ml for oseltamivir only replicates remain high and stable
throughout all passages (6.0x10° PFU/ml for replicate 1, 5.0x10° PFU/ml for replicate 2 and 7.0x10°
PFU/ml for replicate 3,), indicating that the virus has rapidly evolved resistance to this drug (see sec-
tion on resistance to oseltamivir for more details).

We calculate relative growth per passage (a measure of the fitness of the viral population) as
output/input PFU/ml and show its progression on Fig. 9A. All passages and replicates have the same
multiplicity of infection (MOI = 0.01), giving a constant input PFU, except for combined drug 1 passage
10 (with an MOI of 0.005 because of low viral titers). We observe that the relative growth for com-
bined drug replicates declines more rapidly than for the population treated with favipiravir alone, de-
spite a lower dosage of favipiravir. Relative growth for combined replicate 1 has a sharp recovery at
passage 7 followed by a rapid decline, while the other two replicates decline steadily. Relative growth
for the oseltamivir replicates remains relatively stable, although below the level exhibited by the no
drug population. Based on randomly down-sampled frequencies, we calculate the total number of
sites segregating above a 1% derived allele frequency (DAF) (the estimated sequencing error) in the
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populations at each passage (Fig. 9B) to explore whether a higher segregating mutation load is respon-
sible for the earlier decline. We find that the number of segregating mutations is lower for the com-
bined drug replicates than for the favipiravir replicates. There are peaks in the number of segregating
mutations at passage 6 for combined drug 1 and passage 8 for combined drug 2, followed by a rapid
reduction. We explain these trends in the next section on genetic hitchhiking. In contrast, oseltamivir
replicates exhibit constant low mutation load and stable viral population sizes, confirming that these
populations remain in mutation-selection-drift balance.

Combined drug replicate 1 provides the strongest evidence of transition into a phase of rapid
population collapse (negative relative growth) and escalating mutation accumulation, similar to the
dynamics observed in passage 14 and 15 of the favipiravir population. The total number of segregating
mutations increased 8x to 1,800 in passage 10 from 202 in passage 9. For replicates 2 and 3, there is a
slowing of relative growth to zero and an increase in the number of segregating sites above the levels
exhibited by oseltamivir control replicates, but the scale of the end dynamics are different from repli-
cate 1, and lack the transition into population contraction.

A possible explanation for the more rapid decline of combined drug replicates as opposed to
those treated with each drug alone is the accelerated action of Muller’s ratchet. Under this theory,
the mean number of deleterious mutations per individual accumulates at a constant rate (Muller 1964;
Felsenstein 1974), assuming a static mutation rate and constant population size. The rate of this pro-
cess — the speed of the ratchet - increases exponentially with mutation rate and decreases with popu-
lation size and with the selection strength of deleterious mutations (Haigh 1978; Gordo &
Charlesworth 2000a, b). Background selection accelerates the speed of the ratchet, owing to the
presence of strongly deleterious linked mutations, which reduce the effective population size N, be-
cause neutral and weakly selected mutations can only fix if they occur on genetic backgrounds that
exclude these strongly deleterious mutations (Gordo & Charlesworth 2001). In combined drug and
favipiravir treated populations subject to an influx of mostly deleterious and neutral mutations, we
would expect an acceleration in the rate of Muller’s ratchet, particularly in the case of declining popu-
lation size. The evolutionary processes discussed here are determined by effective population size N,
rather than census size (Wright 1931; Charlesworth 2009). Because genetic drift has greater impact in
small populations, we explore whether differences in effective population size exist between the favi-
piravir and combined drug replicates, and use this as a means to indirectly assess the contribution of
Muller’s ratchet to the overall decline in virus populations, and to quantify the rate of mutation accu-
mulation.

Theoretical work and simulations have shown that the fixation of neutral and weakly deleteri-
ous mutations is a robust indicator of the loss of least loaded classes and therefore of the speed of
Muller’s Ratchet, assuming a haploid asexual population under an influx of deleterious mutations with
the same selection coefficient (Charlesworth & Charlesworth 1997; Bergstrom & Pritchard 1998;
Gordo & Charlesworth 2001). However, because of strong purifying selection, here we observe a rela-
tively small number of mutations segregating above a DAF of 40% and fixing in the population (Table 1
and Fig. 14), most of which can be attributed to positive selection or to genetic hitchhiking (see next
sections). Therefore, the rate of fixation of deleterious mutations estimates the rate of genetic hitch-
hiking rather than the speed of the ratchet in this case.
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The serial passaging of virus populations creates a series of bottlenecks followed by exponen-
tial growth (or contraction) over 13 viral generations during each passage, which depress effective
population size compared to end of passage census size. The strong purifying selection seen in 1AV
populations also acts to reduce effective population sizes (Charlesworth et al. 1993). We apply two
methods to estimate effective population size per passage, and we use these estimates to calculate
the rate mutation accumulation. Firstly, we apply the temporal method of Jorde & Ryman (2007),
which leverages the variance in allele frequencies between two time points, and adjusts for sampling
effects, to generate an unbiased estimator of effective population size, under the assumption of a con-
stant mutation rate (see methods). However, the increasing mutation rate here will generate addition-
al variance in allele frequencies and likely cause effective population sizes to be underestimated. Sec-
ondly, we calculate the effective population size at each passage based on the harmonic mean of the
population size at each generation (Ewens 1967). However, this method ignores differences in virion
budding, which create skewed offspring distributions (Irwin et al. 2016) consistent with the fact that
only a few virions seed subsequent generations (Grenfell et al. 2004). Estimates of effective popula-
tion size made using this second method will likely be inflated. We therefore calculate the rates of
mutation accumulation using these two estimates of effective population size as a lower and an upper
limit, respectively.

Because of the variance induced by the increasing mutation rate and hitchhiking patterns (see
next section), we find that Jorde & Ryman's (2007) method is not a reliable estimator of effective pop-
ulation size in combined drug replicates, and we use this method to assess average trends only. A
rapid drop in effective population size for all three combined drug replicates after passage 6 is ob-
served (Fig. 10), and is probably exacerbated by the hitchhiking effect. Excluding passage 10 for repli-
cate 1, mutation load increased at a rate of 0.49-1.45 segregating mutations per individual per passage
(0.49 for replicate 1 passages 4-9, 1.45 for replicate 2 (all passages) and 0.82 for replicate 3 (all passag-
es)). The rate of mutation accumulation is similar in order of magnitude across all three replicates but
with stochastic variation (R>of 0.172 to 0.767), partly due to the heterogeneity in estimates of N.. The
level of mutation accumulation is significant for replicate 2 only (at the 1% level, p=0.0098, student’s t
test). At the point of population collapse in passage 10 for replicate 1, mutation load escalates to 77.5
per individual. As expected, the estimates of N, using the harmonic mean of population per size are
several orders of magnitude higher (Fig. 10 D-F) than estimates using Jorde & Ryman's (2007) method,
leading to a lower estimated rate of mutation accumulation (0.0027-0.0059 per individual per passage)
(significant at the 1% level for replicate 2, p=0.0094 and at the 5% level for replicate 3, p=0.034, stu-
dent’s t test).

Because of the limitations of the above methods, global estimates of effective population size
were obtained from WF-ABC (Fig. 11) to enable a comparison between the favipiravir-treated popula-
tion and the combined drug replicates, with the caveat that the assumptions of WFABC are not fully
respected in these populations. We find that estimates of effective population size for combined drug
replicates (N.=239.16 for replicate 1, N.=216.19 for replicate 2 and N.=161.64 for replicate 3) are simi-
lar to the global estimates for the favipiravir population (N,=209.15) and cannot account for the differ-
ences between the populations. As expected, these global estimates are lower than for oseltamivir
only replicates (N.=519.21 for replicate 1, N.=269.83 for replicate 2 and N,=392.16 for replicate 3).
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The dynamics of the combined drug replicates appear to fit a classic model of mutational
meltdown, with an increase in mutation load until a sharp threshold of rapid population collapse and
escalating mutation load is reached. Evidence of small and declining effective population sizes, and of
stochastic evolutionary dynamics support a role for Muller’s ratchet, in addition to the deterministic
process of mutation accumulation owing to the shift in mutation-selection balance induced by the
increased mutation rates. However, the rate of viral decline is faster than in favipiravir treated popu-
lations and the segregating mutation load is lower. We cannot account for these differences with es-
timates of effective population size, which govern processes such as Muller’s ratchet. Therefore, in
the next sections we explore other processes, which may act in conjunction with Muller’s ratchet, and
in particular the potential effects of selective sweeps in the combined drug populations.

Assessing signs of evolutionary rescue (Alexander et al. 2014) is important because of the risk of adap-
tation of the virus to favipiravir, and because of the potential development of resistance. In a previ-
ous study, Bank et al. (2016) observed a deceleration in relative decline in two favipiravir populations,
where the drug was either held constant or was withdrawn in passages 10-15 (Fig. 5). This was high-
lighted as the first sign of adaptation of the virus to a low dosage of favipiravir. Here, we estimate
relative growth rates for the combined drug replicates, and calculate these as the difference between
the absolute growth rates per generation for the combined drug replicates and for the oseltamivir
replicates (which are used as control because of stable population sizes). We observe an increasing
rate of relative population decline, and find no evidence of adaptation of the virus under a protocol of
escalating dosage (Fig. 12). Further studies with two constant doses of favipiravir (alone and in combi-
nation with oseltamivir) are underway to establish the level of favipiravir required to ensure viral ex-
tinction and prevent adaptation of the virus.

4.4.3 Mutations putatively evolving under positive selection

To identify positively selected mutations, the posterior distributions for estimates of s were
utilized (i.e. with a posterior density interval for the selection coefficient s excluding zero of less than
0.5%, P(s < 0|x) < 0.005)). WFABC differentiates trajectories of mutations under selection from those
due to genetic drift under the assumption that all sites are unlinked and independently selected, and
that there is a static mutation rate. Because many of the trajectories in the oseltamivir-only, combined
drug and favipiravir-only replicates exhibit non-standard trajectories (i.e. trajectories that are not typi-
cally derived from the diffusion equation), and because the assumptions of a constant mutation rate
and of unlinked sites do not always hold, we also track trajectories that exceed a derived allele fre-
quency (DAF) of 40% at any time point, using randomly down-sampled counts to calculate frequencies.

We identified 11 mutations potentially evolving under positive selection in oseltamivir repli-
cates (see Fig. 13 A-C), including the known resistance mutation NA H275Y. Four of these mutations
are synonymous and seven are non-synonymous. These seven non-synonymous contending mutations
are also the only ones that arise in more than one replicate (outside of the NA region) in either the
combined drug replicates or in the favipiravir-only treated population. Neutrality is rejected for all of
these mutations in at least one oseltamivir replicate (except for NP D101N, which only exhibits a
“standard” trajectory in the favipiravir-only population) and WFABC was used to estimate selection
coefficients and Bayesian p-values (Table 1). The varied trajectories and limited clustering of these
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mutations in oseltamivir-only replicates supports the assumption that these are unlinked, inde-
pendently selected sites, although epistatic interactions cannot be excluded.

In contrast, three of the four synonymous mutations to reach a DAF in excess of 40% arise in
one oseltamivir replicate only; two cluster with the strongly selected H275Y (HA L73L in oseltamivir 1,
and NA P326P in oseltamivir 2) suggesting probable genetic hitchhiking of neutral variants. The third
(PA D67D) has a non-standard trajectory and its functional significance is unknown. These synony-
mous mutations are not discussed further. The fourth synonymous mutation, PA G58G arises in all
oseltamivir and combined drug replicates, as well as in the favipiravir population. It is inferred to
evolve under positive selection in oseltamivir 1 and fixed in this population (along with MP1 E23Q). It
exhibited non-standard trajectories in other oseltamivir and combined drug replicates, as well as in
favipiravir and no drug replicates, and clusters with MP1 E23Q, suggesting both a cell adaptation func-
tion and a possible epistatic interaction with MP1 E23Q.

Fig. 13 tracks the putative positively selected mutations in combined drug replicates (Fig. 13 D-
F) and in favipiravir and no drug populations (Fig. 13 G&H). In addition to H275Y, two other non-
synonymous mutations (A454V and E128G) in the NA region that is important for oseltamivir re-
sistance arise in the combined drug replicates only; one of these mutations, NA A454V arises in both
combined drug replicates 2 and 3. In addition to the 11 contending positively selected mutations de-
scribed above, this gives a new total of 13 contending beneficial mutations that are tracked in the
combined drug (Fig. 13 D-F) and in the favipiravir treated (Fig. 13G) and no drug (Fig13H) populations
(Table 3). While there is no recombination in influenza (but see (Bao et al. 2008)), here many of the
significant mutations occur in different segments, so that in the absence of recombination, selection of
the fittest haplotype could be facilitated by segment reassortment (an established process in HIN1) as
well as by mutation.

We explore the possible biological function of these 13 mutations (Table 3) in the light of pre-
vious studies. Outside of the NA region, the HA region contains the mutations with the highest selec-
tion coefficients: D112N and E78G. This is consistent with studies showing that changes in the HA re-
gion counter the deleterious growth effects of H275Y (Bloom et al. 2010; Ginting et al. 2012). The HA
D112N mutation was previously identified by Foll et al. (2014) and has been described in other influen-
za strains and HA serotypes (Daniels et al. 1985; Reed et al. 2009): it acts by inducing a pH change at
the point of endosome and viral fusion, thereby improving IAV infectivity (Thoennes et al. 2008). Here
it is significant in oseltamivir replicate 2 (s=0.126, Table 3) and in the no drug comparison population,
suggesting a role in cell adaption. A newly identified HA mutation, E78G, is present in all oseltamivir
and combined drug replicates where H275Y is present (5 out of 6 populations), but not in combined
drug replicate 2 where H275Y is absent, indicating a possible epistatic interaction with H275Y, alt-
hough the trajectories of E78G and H275Y are not always aligned. E78G is significant in oseltamivir
replicate 1 and 2 (s=0.114 and s=0.117 respectively, Table 3) and fixes in combined replicate 3, where-
as in oseltamivir 2 and combined replicate 1 its trajectory suggests clonal interference (see next sec-
tion).

Mutations in the M1 region have been suggested to have compensatory benefits upon inter-
acting with H275Y, namely by improving the process of virion budding and helping to overcome the
fitness cost of the H275Y mutation, reflected in the lower amount of neuroaminidase to reach the cell
surface (Jin et al. 1997; Noton et al. 2007; Rossman & Lamb 2011). E23Q was identified in both previ-
ous sets of experiments (Foll et al. 2014, Bank et al 2016) and is significant in oseltamivir 1 (s=0.057),
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favipiravir and no drug populations, with trajectories typical of clonal interference in the other repli-
cates. A37V is very close to the previously identified A41V (Foll et al. 2014) and may serve a similar
function in improving virion budding; it clusters with D101N in some replicates and E32Q in others and
arises in oseltamivir 2 and 3 (s=0.038) and combined 1 and 2. NP mutation D101N has been previously
screened as resistance mutation to the mutagenic drug ribavirin (Cheung et al. 2014) with inconclusive
results; here we find that it is present in all populations except the no drug control, including the osel-
tamivir only populations, and is therefore also likely to have a role in cell adaptation, or possibly in
improving the formation of infective virions (Noton et al. 2009). Lastly, D125N, a mutation in the NS1
region, is present in oseltamivir replicate 2 and in the no drug control, and is therefore also hypothe-
sised to have a general adaptive function to changing cell conditions.

Although H275Y does not appear more rapidly in combined drug populations than in oseltami-
vir-only replicates, the two other NA non-synonymous mutations described above (A454V and E128G)
only appeared in combined drug replicates (Fig. 13) and exhibit trajectories characteristic of strong
selection coefficients (not estimated using WFABC because the assumptions of constant mutation rate
and unlinked sites do not hold in those populations). We thus put forward the hypothesis that the
mutational input from favipiravir allows the virus to rapidly explore sequence space for alternative
oseltamivir resistance solutions within the limits of the time to extinction imposed by the increasing
load burden.

4.4.4 Effects of genetic hitchhiking

Under a model of genetic hitchhiking, neutral or weakly selected sites in physical linkage to
strongly beneficial mutations will rise in frequency (Maynard Smith & Haigh 1974). Here, we find that
the positively selected non-synonymous mutations identified in the oseltamivir replicates show greater
evidence of clustering in the combined drug populations (Fig. 13 D-F) than in the oseltamivir-only pop-
ulations (Fig. 13 A-C) (although there is also evidence of clonal interference of beneficial mutations,
see next section). This clustering of beneficial mutations may be seen around the strongly selected NA
mutations H275Y, A454V and E128G. Potential beneficial mutations for cell adaptation including
D101N and A37V (with trajectories characterized by a low selection coefficient in some replicates) are
rapidly driven to fixation by association with H275Y in combined replicate 1 and A454V in combined
replicate 2. In contrast, hitchhiking in the oseltamivir replicates occurs in synonymous (assumed neu-
tral) variants (HA L73L with H275 in replicate 1 and NA P326P with H275Y in replicate 2). This suggests
that in addition to generating possible alternative oseltamivir resistance mutations, the enhanced mu-
tational input of favipiravir (acting jointly with purifying selection and reassortment) serves to optimise
combinations of beneficial mutations on different haplotypes by quickly exploring different combina-
tions in sequence space, and hitchhikes them to fixation with the strongly selected NA mutations.

Tracking the remaining mutations specific to the combined drug replicates and segregating in
excess of 40%, revealed that these also cluster with the strongly selected NA mutations and with the
ubiquitous HA mutation E78G (H275Y and E78G in replicate 1, A454V in replicate 2, and A454V, E128G,
and HA E78G in replicate 3, see Fig. 13 D-F); this was confirmed through hierarchical clustering analysis
(Fig. 14). These mutations are unique to each combined drug replicate and are therefore assumed to
be largely deleterious or neutral, consistent with studies indicating a bi-modal distribution of fitness
effects with only a small tail of beneficial mutations (Eyre-Walker & Keightley 2007; Bank et al. 2014).
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Analyses suggest that in the combined drug replicates the strongly selected beneficial mutations
hitchhike not only other beneficial mutations but also a high mutation load to fixation. The timing of
the selective sweeps coincides with a sharp decrease in the total number of segregating mutations
after passage 6 in combined replicate 1 and after passage 8 in combined replicate 2 (Fig. 9), suggesting
that the sweeps reduce genome-wide variation but at the cost of fixing deleterious mutations that
depress viral fitness. A likely explanation is that the rapid trajectory to fixation of the beneficial muta-
tions does not allow purifying selection sufficient time to purge the linked deleterious mutations, par-
ticularly as effective population size has diminished and selection is therefore less efficient. In addition,
there is a constant input of new deleterious and neutral mutations segregating at a low frequency
from the impact of favipiravir. Ultimately this combined high load burden accelerates the decline in
viral fitness and precipitates the population towards extinction.

Thus the strength of beneficial mutations (as indicated by the shape of their trajectory and the
corresponding WFABC estimates) governs the size of the linked mutation load and potentially acceler-
ates the process of extinction. As shown, the trajectories of mutations in the favipiravir-treated popu-
lation are more random and diffuse (Fig. 13G), with fewer obvious clusters. The tracked beneficial mu-
tations in the favipiravir population mediate cell adaptation and are less strongly selected than NA
mutations in the oseltamivir and combined drug replicates with longer trajectories, giving purifying
selection more time to act. The absence of strong selective sweeps reducing genome-wide variation is
reflected in the high and escalating number of segregating mutations for favipiravir populations ob-
served in Fig. 9B. Significantly, the favipiravir population reaches extinction by passage 15, compared
to passage 10 for combined replicate 1, suggesting a tentative hypothesis that the weaker hitchhiking
dynamics are at least partly responsible for the later point of collapse.

4.4.5 Effects of Hill-Robertson interference

There are different types of Hill-Robertson (Hill & Robertson 1966) interference, depending on
the relative strength or weakness of the interacting mutations and whether they are deleterious or
beneficial. In a non-recombining, asexual population such as HIN1 here, strongly selected beneficial
alleles arising on different haplotypes compete for fixation (Fisher 1930, Muller 1932, and see Barton
2010). There is a build-up in negative linkage disequilibrium between these “repulsion haplotypes”
(Hill & Robertson 1966; McVean & Charlesworth 2000)(i.e. the beneficial mutations and their linked
variants are found associated less frequently than by chance), and thus a reduction in the efficacy of
selection. If the haplotypes carrying competing beneficial mutations have similar net fitness, they can
endure in populations, but if not, the less fit haplotype will become extinct. In contrast, beneficial
mutations arising on the same haplotype (because of mutational input or reassortment here) will be in
positive linkage disequilibrium and will rapidly fix (Hill & Robertson 1966; McVean & Charlesworth
2000). The sojorn time of a beneficial mutation is (1/s)log(4N.s) (Barton 2010) which gives a short
window for the association to occur when the selection coefficient s of the most beneficial allele is
strong. Assuming multiplicative fitness effects, each beneficial allele must have sufficiently high fitness
to overcome the mutation load of linked deleterious mutations (and its fitness will be reduced by a
factor of eV, where U is the combined deleterious mutation strength/rate assuming a multiplicative
fitness model).
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In the combined drug replicates, we find many examples of non-standard trajectories of bene-
ficial mutations (known to be mutations under weak positive selection in the oseltamivir replicates),
which are characterized by a rapid rise and decline. These trajectories suggest patterns of clonal inter-
ference between beneficial mutations: haplotypes carrying the strongly selected NA resistance muta-
tions H275Y or A454V outcompete haplotypes carrying weaker mutations mediating cell adaptation, in
cases where these weaker mutations do not hitchhike with the resistance mutations. Indeed, in the
combined drug replicates, these weak beneficial mutations only fix if they are associated with the re-
sistance mutations. For example, in combined replicate 1, the H275Y haplotype sweeps the associat-
ed NP D101N and A37G to fixation; its rise coincides with the decline of haplotypes carrying E23Q, and
possibly slows the rise of PA G58G (which clusters with E23Q in many replicates). In combined repli-
cate 2, the rise of the haplotype carrying NA A454V leads to the extinction of MP1 E23Q, MP2 A37G,
PA G58G and NP D101N, until NP D101 is reshuffled onto the A454V background and fixed. In com-
bined replicate 3, the rapid spread and fixation of haplotypes carrying NA A454V, NA E128G and HA
E78G coincides with the decline of MP1 E23Q (Fig. 13 D-F). There is some evidence of these effects in
the oseltamivir replicates but not in the favipiravir or no drug replicates, where the spread of benefi-
cial mutations mediating cell adaptation follow more standard diffusion-based trajectories (except for
PA G58G) characteristic of weakly selected mutations (Fig. 13 G&H).

In the favipiravir population, we observe the influence of a different form of interference: that
between linked weakly selected beneficial and deleterious mutations (WSHRI) (Hill & Robertson 1966;
McVean & Charlesworth 2000). There is limited clustering and significant variance in allele trajectories
over the longer lifespan of this population (Fig. 13G). Linkage is likely between weakly selected muta-
tions mediating cell adaptation (and other, non identified weakly beneficial mutations) and the in-
creasing influx of slightly deleterious and neutral mutations. The high variance in allele trajectories is
not observed to the same extent in the no drug (Fig. 13H), in the oseltamivir populations (Fig. 13A-C)
or in the combined drug populations (Fig.13D-F). Hitchhiking of beneficial, deleterious and neutral
variants with the resistance mutations (and with HA E78G) accounts for almost all of the mutation
trajectories in the combined drug populations, with the exception of 1) combined replicate 1 passage
10 where genetic drift (Muller’s ratchet) leads to the fixation of many neutral and deleterious muta-
tions owing to population collapse in this replicate and 2) combined replicate 2 passage 8 where there
is a cluster segregating at less than 40% DAF (not accounted for).

4.5 Discussion

Here we find evidence of mutation accumulation in combined drug populations that reduce
viral fitness and ultimately result in the extinction of HIN1 viral populations subject to the combined
drug protocol. The results appear to fit a classic mutational meltdown model, characterised by in-
creasing mutation accumulation until a sharp transition point of meltdown is reached, as reported by
others on the impact of favipiravir alone on IAV in vitro (Baranovich et al. 2013; Bank et al. 2016). This
is particularly evident for replicate 1. Intriguingly, despite a lower mutation load, we observe a more
rapid decline in relative growth rate in the combined drug population than in the favipiravir treated
population, and try to disentangle the processes behind this.

We find that strongly selected oseltamivir resistance mutations (and one ubiquitous HA muta-
tion, E78G, that has potential epistatic interactions with H275Y) influence the evolutionary dynamics in
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combined drug replicates by sweeping deleterious mutations to fixation, along with other weak bene-
ficial mutations (Fig. 13, 14 and summarised in Fig. 15). These selective sweeps cause a reduction in
genome-wide variation relative to the favipiravir population, reflected in a lower number of segregat-
ing mutations (Fig 9). The timing of these sweeps coincides with sharp drops in the number of segre-
gating mutations after passage 6 in replicate 1 and passage 8 in replicate 2. This striking evolutionary
dynamic is not apparent in the favipiravir-only populations, where the identified beneficial mutations
mediate cell adaptation and are less strongly selected, giving purifying selection more time to dissoci-
ate hitchhiked deleterious mutations. We therefore tentatively hypothesise that the fixation of dele-
terious mutations hitchhiking with the strongly selected oseltamivir resistance mutations reduces viral
fitness and induces an earlier point of extinction (passage 10 for combined drug replicate 1 relative to
passage 15 for favipiravir populations). Potentially, we note that the strongly selected mutations re-
quired to hitchhike deleterious mutations need not be oseltamivir resistance mutations — but we ob-
serve that few mutations except drug resistance mutations would have the necessary fitness benefit.

We identify two novel candidate mutations that only arise in combined drug replicates (NA
A454V and NA E128G - although NA E128G clusters with NA A454V in replicate 3 and may also be
hitchhiking). We also re-identify several mutations that are known to mediate cell adaptation and to
provide compensatory mechanisms to offset the adaptive cost of H275Y mutations, reflected in re-
duced virion budding.

We attempt to tease out other processes contributing to population collapse in combined drug
populations. Global estimates of small effective population size are consistent between the favipiravir
and combined drug replicates and support a role for Muller’s ratchet. We cannot use the rate of fixa-
tion of deleterious mutations to determine the speed of Muller’s ratchet because very few mutations
fix (Table 2), and because hitchhiking rather than genetic drift appears to drive fixation of those muta-
tions. The oseltamivir resistance mutations (and HA E78G) also have clonal interference effects, pre-
venting weaker beneficial mutations on haplotypes not containing the resistance mutations from
spreading in the combined drug populations. In the absence of strongly selected mutations in the
favipiravir population, the high variance in allele frequencies suggests a more important role for
WSHRI between weak beneficial and deleterious mutations than for clonal interference.

Only mutations that have been identified as under positive selection in the oseltamivir repli-
cates arise in more than one combined drug replicate (except for one NA mutation) — suggesting that
these represent the bulk of mutations under positive selection in the combined replicates too, despite
the enhanced mutation rate. This indicates that there is a limited repertoire of beneficial mutations
that can be accessed by viral populations. This finding is consistent with theoretical work and experi-
mental studies showing that the distribution of fitness effects includes only a small tail of beneficial
mutations (Eyre-Walker & Keightley 2007; Bank et al. 2014)

To the best of our knowledge, this is the first study attempting to elucidate the mechanisms
behind the synergistic effects of oseltamivir and favipiravir in HIN1 virus populations. New four-arm
experiments are currently underway that entail escalating doses of oseltamivir combined with fixed
low (2uM) and high (4uM) dosages of favipiravir in IAV populations, which will be compared with favi-
piravir-only and oseltamivir-only treated populations. The results from these experiments will provide
welcome evidence to confirm whether the hitchhiking patterns observed here are replicated, and to
establish the dosage of favipiravir required to achieve meltdown.

79



4.6 Tables

Table 1. Summary information on the number of segregating sites

Replicate Number of
sites with
DAF> 40%

Comb 1 14

Comb 3 24

Osel 2 8

Table 2 Summary output PFU/ml

Pas- Osel Favi \Y[o]] Output PFU/ml
sage (uM) (um)
3 0 0 0.01*

5 02 2 0.01 4.0E+04 1.3E+06 7.0E+05 2.6E+06 3.2E+07 3.3E+07

7 08 8 0.01 2.8E+06 3.0E+05 1.0E+05 8.6E+06 4.0E+06 9.0E+06

9 3.2 32 0.01 2.0E+04 9.0E+04 3.0E+05 9.0E+05 3.0E+06 3.0E+06

* MOI of 0.0103 in comb1, comb2, osell and osel2
# MOI of 0.005 in comb1 and osell
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Table 3 Mutations inferred to be evolving under positive selection

Seg Posi- Ref Mut Type SNP WFABCs* Bayesian P Prev Replicates Functional
name tion base base  S/NS value id interpretation
(p<0)

PA 225 C T S D67D N osel3 Synonymous
HA 1294 A G NS E78G 0.114(1) 0** N 0sel123 &  Possible epistasis
0.117(3)  0** comb13 with H275Y

NP 346 G A NS D10IN  0.027(1) 0.0349 Y all except  Cell adaptation
nodrug

NA 843 C T NS H275Y 0.125(1) 0** Y osel123 & Known resistance
0.209(2)  0** comb13 mutation
0.218(3)  0**

NA 1381 C T NS A454V § N comb23 Possible resistance
mutation

MP2 848 C G NS A37G 0.038(3) 0.039 N osel23 & Compensatory
combf12 mutation

§ in combined drug replicates only, strength not estimated (the assumptions of a constant mutation
rate and of unlinked sites do not hold)

* the numbers in brackets indicate the oseltamivir replicate used for the estimation (where the muta-
tion arises in several replicates)

** significant (p<0.005)
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Table 4 Mutations segregating with DAF >40% in the combined drug replicates

excluding the mutations under positive selection listed in Table 3. These mutations are assumed to be
neutral or deleterious (see text). Mutations marked with a question mark do not have a known amino
acid mutation equivalent using H3 numbering conversion.

Seg Position  Seg Ref Mut Ref Mut  Type AA SNP Dataset
name base base AA AA number

segl 212 PB2 G A R K N 62 R62K comb3

segl 867 PB2 A G L L S 280 L280L comb?

segl 2078 PB2 C T A \ N 684 A684V  comb3

seg2 730 PB1 C T L L S 236 L236L comb3

seg2 2058 PB1 C T S S S 678 S678S comb3

seg3 1431 PA G A L L S 469 L469L comb3

seg3 2175 PA C T ? comb1

segd 767 HA C T Y Y S 245 Y245Y  comb3

segd 1332 HA A G | \ N 434 1434V comb?

seg5 210 NP G A R R S 55 R55R combl

seg5 1023 NP C T S S S 326 $326S comb3

seg5 1369 NP G A A T N 442 A442T  comb2

seg7 208 MP1 A G G G S 61 G61G comb3

seg7 314 MP1 G A Vv | N 97 V97l comb?

seg7 426 MP1 G A R K N 134 R134K  combl

seg8 290 NS1 G A R R S 88 R88R comb3

seg8 640 NS1 G A S N N 205 S205N  combl
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4.7 Figures
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Fig. 2 Evidence of positive selection in the HIN1 genome (reproduced from Foll et al. (2014). Plots A
and C represent the Bayesian P-values for each SNP in the absence and presence of oseltamivir (the
red line is a threshold of P=0.01). The allele trajectories of significant SNPs are plotted in B and D re-
spectively, with estimates of selection coefficients. The eight segments are color coded, and lines are
dashed if these represent a second SNP in each segment. Significant SNPs are highlighted on the struc-
ture: HA D112N (NS), NA G193G (S), NA H275Y (NS), M1 A41V (NS)

A o Seament: PB2 M__NS
g
5 o
ER
& o
o v
gl
£ o £s
2
a &
. k4
g_ : s Ry =9 H ;
0 12000
S
Oseltamivir e |
3
D -
o
3
P A T o
C ., Seament: PB2 gs
@ 4
g
w | &
B 2
g -
g s °
LHER
§ o b
w
e .
=3 . & ) . s
a CECRN L see . S

T
0 2000 4000 6000 8000 10000 12000

83



Fig. 3. Histogram of fitness effects (reproduced from Foll et al. (2014) in the A) absence and B) pres-
ence of oseltamivir. A generalized Pareto distribution (GPD) was fitted to the histogram to quantify

the differences between the two distributions.
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Fig. 4 Experimentally observed pat-
tern of mutation accumulation and
effective population size compared
to theoretical expectations (repro-
duced from Bank et al. (2016))
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Fig. 5. Changes in absolute and relative growth rates of IAV (reproduced from Bank et al. (2016)).
Panel A: Absolute growth rate showed a strong negative correlation with imposed drug concentra-
tions, providing further evidence of the effectiveness of the treatment. Panel B: No correlation was
observed between the initial population size in each passage and the absolute growth rate. Panel C: In
the favipiravir (favil) treated population, relative growth rates (compared with the parallel no drug
control) were consistently negative. Panels D-F: Relative growth rates of additional treatment strate-
gies across passages. Although the growth rate decreased in the first part of each experiment (passag-
es 4-9) as drug concentration (blue line) increased, one of the populations under constant drug con-
centrations from passage 9 (constA in panel D) and one under withdrawal of treatment from passage 9
(withdrawal in panel E) showed signs of recovery upon the change of treatment.
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Fig. 6. Experimental set-up

In each of three replicates, influenza A virus was serially passaged in MDCK cells and exposed to in-
creasing concentrations of either oseltamivir only, or of oseltamivir and favipiravir combined, from
passage 4 onwards. The multiplicity of infection (MOI) used to seed each passage is shown on the right
hand side. EDs, represents a 50% effective dose for drug-naive virus. The MOlIs are valid for all repli-
cates except combined drug and oseltamivir replicates 1 passage 10, where an MOI of 0.005 was ap-
plied. The passaging was extended to an eleventh passage for oseltamivir replicate 1 only.
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Fig. 8 Site Frequency Spectrum

For each site, counts were randomly (hypergeometrically) downsampled to 100 after filtering (based
on frequency > 1% in one of the passages to reduce sequencing error estimated at 1%). The site fre-
quency spectra are shown for combined drug replicate 1 at passage 4 (in blue) and passage 8 (in red).
There is a left bias to the SFS reflecting the strength of purifying selection throughout all passages.
Counts in the low frequency bins have increased by passage 8 because of the mutagenic impact of
favipiravir on the number of segregating mutations.
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Fig. 9 Relative growth and total number of segregating sites in IAV treated with two antiviral agents.
A) Relative growth (a measure of viral fitness) is calculated as log;o(output/input PFU) for each pas-
sage. A more rapid decline in relative growth was observed in the combined drug replicates (red), than
in the favipiravir population (yellow). Relative growth for the oseltamivir replicates (blue) remains rela-
tively stable, although below the level exhibited by the control population (grey). B) The number of
segregating mutations represents all sites segregating at more than 1% DAF at each passage. Despite
the more rapid decline in relative growth, the number of segregating sites for the combined drug repli-
cates (red) is lower than for the favipiravir population (orange), indicating a lower segregating muta-
tion load. The number of segregating sites observed in the oseltamivir replicates is low, likely owing to
selective sweeps around the oseltamivir resistance mutations, as well as to the absence of favipiravir’s
mutagenic effect.
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Fig. 10 Effective population sizes and mutation load per individual for combined drug replicates. The
mean number of mutations per individual is calculated by dividing the total number of mutations seg-
regating with a DAF >1% in the population by the effective population size. The effective population
size is calculated in A-C using the method of (Jorde & Ryman 2007) , whereas in D-F it is calculated as
the harmonic mean of population size per generation.
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Fig. 12 Changes in relative growth rates for combined drug replicates. The relative growth rate for
combined drug replicates per passage was calculated by subtracting the absolute growth rate per gen-
eration for oseltamivir replicates (as a control) from the absolute growth rate per generation for the
combined drug replicates (shown as blue points with the linear regression in red, left axis). The esca-
lating concentration of the combined drug treatment (in uM favipiravir and 0.1uM oseltamivir) is
shown in light blue (right axis). The negative slope of the linear regression indicates a declining rate of
relative growth, with no evidence of recovery or adaptation by combined drug populations. The rela-
tive growth is significantly different from 0 for replicate 2 (at the 5% level, p=0.0278).
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Fig. 13 Putatively beneficial mutations. The contending beneficial mutations (Table 1) are tracked in
the oseltamivir replicates (A-C), in the combined drug replicates (D-F) and in the favipiravir and no
drug populations (G-H). The key to these mutations is given below, with the NA mutations in red. Clus-
tering is observed amongst these beneficial mutations in combined drug replicates. All other muta-
tions (i.e., arising in only one replicate) are assumed to be neutral or deleterious and are plotted in
grey. In combined drug replicates, this class of mutations also shows evidence of genetic hitchhiking
either with the resistance mutations or with HA E78G (a ubiquitous beneficial mutation in all oseltami-
vir and combined drug replicates except for combined drug replicate 2)(D-F). In G-H the beneficial mu-
tations are tracked in the favipiravir and no drug control populations, with longer trajectories (weaker

selection coefficients) and less evidence of clustering.
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Fig. 15 Hierarchical cluster analysis. Ward’s minimum variance criterion (Ward Jr 1963) was used to cluster
allele-frequency trajectories. The dissimilarity distances are shown in panels A and the details of the clusters
in panels B-D for replicates 1 and 2, and in panels B-G for replicate 3. We observe hitchhiking patterns sug-
gesting that either NA mutations (H275Y, A454V or E128G) or HA E78G sweep other beneficial and neu-
tral/deleterious mutations to fixation. Other cluster groups containing contending beneficials (Table 3) do
not fix. On panel A, synonymous mutations are shown in grey font and non-synonymous mutations in black.
Mutations marked NA did not have a known amino acid equivalent using H3 numbering.
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Fig. 15 Schematic of evolutionary dynamics in combined drug populations
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Chapter 5 Conclusion

In the first chapter we developed an ABC approach to estimate allele age, selection strength,
and starting frequency for fixed mutations using single population, single time-point datasets. Several
haplotype-based estimators indeed exist for inferring the age of low or intermediate segregating bene-
ficial mutations, but not fixed beneficial mutations. We show that we can differentiate between dif-
ferent orders of magnitude of the selection coefficient s, between old and young sweeps, and between
de novo/rare and common starting frequencies.

Our method fits a useful niche relevant to environmental studies for understanding the mode and
tempo of adaptation in relation to rapid environmental change. These methods can be used to esti-
mate the age of variants underpinning cryptic coloration resulting from environmental changes since
the last ice age, for example. In chapter 2, we apply our method to make such estimation in mice
sampled from the Nebraska Sand Hills, and estimate a recent, strong selective sweep that is consistent
with their formation during the last Ice Age. In chapter 3, the evolution of blanched coloration in
White Sands lizards is examined more generally. We incorporate the differing demographic histories
and dominance effects of two species into our method to estimate the age and strength of selected
beneficial mutations. In both examples, our results suggest that in the populations considered here,
selection on de novo mutations that post-date environmental shifts is the dominant mode of adapta-
tion — and that adaptation is thus mutation-limited, without a reservoir of standing variation for natu-
ral selection to act on.

In chapter 4, we extend this work to a clinical setting, examining the combined effect in vitro of two
drugs with different mechanisms of action, favipiravir and oseltmamivir, on experimental influenza
virus populations. Thus, in this instance, the selective pressures is man-made — though in many ways
the application of drug is analagous to the shift in selective pressure experienced by the populations
discussed above post-glaciation. However, in this case the viral populations are unable to adapt to the
new pressure. The results fit a classic model of mutational meltdown, with a rapidly escalating muta-
tional load until a sharp point of extinction, as previously described in favipiravir treated populations.
However, we observe a more rapid decline in these combined drug populations than in populations
treated with favipiravir alone, despite the rapid fixation of oseltamivir resistance mutations and a low-
er segregating mutation load than in favipiravir populations. The processes behind the synergistic
combined effect of favipiravir and oseltamivir were previously unknown. Here we describe a complex
interplay of mutation, genetic drift and selection. We observe that the mutagenic effect of favipiravir
enables the virus to rapidly explore sequence space and generate new oseltamivir resistance muta-
tions, in addition to the widespread H275Y mutation, and acts to cluster some beneficial mutations on
the same haplotype. We find evidence of small effective population sizes supporting the action of Mul-
ler’s ratchet in addition to the impact of the escalating mutation rate on deleterious mutation load.
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Importantly, we show that strong selective sweeps around the oseltamivir resistance mutations hitch-
hike not only beneficial mutations but also deleterious mutations to fixation. Thus our results usefully
inform clinical strategies of both the risks (increased transmission of new and established oseltamivir
resistance mutations) and benefits (faster extinction) of using a combined drug protocol. Further stud-
ies are underway to explore the effects of using a combined drug protocol with a high and low dosage
of favipiravir, compared to the same protocol with favipiravir alone, in order to explore these mecha-
nisms further and identify the minimum dosage required to induce extinction.

In this dissertation, | develop population genetic methods to estimate allele age and selection parame-
ters that serve to address fundamental questions in evolutionary biology. Whether in an empirical or a
clinical context, similar questions regarding the mode and tempo of adaptation arise. The focus of my
PhD has been on developing tools and approaches to help answer some of these questions. In the case
of rapid environmental shifts, estimating allele age and selection parameters allows us to understand
the nature of the adaptive process, which will become increasingly relevant in an era of intensifying
climate change. In a clinical context, where drug resistance is a pressing public health issue, under-
standing the evolutionary dynamics of HIN1 virus populations will help to manage and optimise the
risks and benefits of different drug protocols. Thus, this work fits specific, previously-void niches and
contributes towards the goal of population genetics of studying evolutionary change.
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Supporting information : Estimating the age of a fixed beneficial

allele

Supp. Tables

Supp. Table 1. Summary statistics calculated in msstats

(https://github.com/molpopgen/msstats)

Nbr Statistic  Definition Type Reference
1 S Number of segregating sites Diversity (Watterson 1975)
2 nl Number of singletons (mutations occurring SFS
once in the sample), i.e. at frequency 1 and n-
1
3 next Number of external mutations, corresponding  SFS (Fu & Li 1993)
to the number of derived singletons
4 0 Watterson’s estimate of 6 SFS (Watterson 1975)
5 T Sum of site heterozygosity = 2pg over S sites  SFS (Tajima 1983)
(where p is the frequency of one allele at
each site, and g is the frequency of the alter-
nate allele at that site)
6 Ou Fay & Wu’s estimator of 8 where H=m -6, SFS (Fay & Wu 2000)
7 H’ Zeng et al’s normalized Fay & Wu's H SFS (Zeng et al. 2006)
8 D Tajima’s D = difference between the number SFS (Tajima 1989)
of segregating sites S and the average number
of nucleotide differences estimated from
pairwise comparison
9 F Fu & Li's F SFS (Fu & Li 1993)
10 D Fu & Li'sD SFS
11 F* Fu & Li's F* SFS
12 D* Fu & Li's D* SFS
13 rm Hudson & Kaplan’s R, = the minimum num- LD (Hudson & Kaplan
ber of recombination events 1985)
14 rmmg Myers & Griffiths lowest bound on R, LD (Myers & Griffiths
2003)
15 nhap Number of haplotypes Haplotype  (Depaulis &
Veuille 1998)
16 hdiv Haplotype diversity Haplotype  (Depaulis &
Veuille 1998)
17 wallB JD Wall’s B statistic LD (Wall 1999)
18 wallQ JD Wall’s Q statistic LD
19 rosarf Rf statistic for detecting population growth SFS (Ramos-Onsins &
Rozas 2002)
20 rosaru Ru statistic for detecting population growth SFS
21 Zns Average pairwise LD measured by r? LD (Kelly 1997)
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Supp. Table 2. Relative bias and RMSE estimates for inference of T alone under strong and moderate

selection (s=0.1 and s=0.01), for young and old sweeps (L=20kb, x=0.5)

Pseudo observable true values

Strong selection s=0.1
Msstats-ABC

Relative bias

RMSE

Qmax-ﬂ

Relative bias

RMSE

Weak selection s=0.01
Msstats-ABC

Relative bias

RMSE

Wmax -M

Relative bias

RMSE

7=0.1

-0.0573
0.0437

-0.0501
0.0410

-0.2897
0.0529

-0.3117
0.0556

T=0.01

-0.2352
0.0006

-0.4457
0.0067

-0.2451
0.0147

-0.8921
0.0089

T7=0.001

-0.4969
0.0009

-0.3943
0.0063

3.7335
0.0121

0.0384
0.0005

Supp. Table 3. Relative bias and RMSE estimates for joint inference of s and T for young and old

sweeps (L=10kb x=0.5)

Recent sweeps 7=0.01 7=0.01 7=0.01
Pseudo observable true values s=0.1 5s=0.01 5=0.001
msstats-ABC

Relative biasin s -0.0553 0.6208 83.4751
RMSE ins 0.0556 0.0195 0.1117
Relative biasin T -0.2803 1.4785 5.1630
RMSEinT 0.0072 0.0361 0.0737
Qmax'ABC

Relative bias in s -0.0906 0.2472 6.4747
RMSE ins 0.0567 0.0085 0.0082
Relative biasin T -0.2064 0.3972 3.0285
RMSEinT 0.0074 0.0215 0.0525
Old sweeps 7=0.1 T=0.1 7=0.1
Pseudo observable true values s=0.1 s=0.01 5=0.001
msstats-ABC

Relative biasin s 0.0784 1.5859 55.9636
RMSE in s 0.0514 0.0399 0.0804
Relative biasin T -0.0327 -0.0108 0.3254
RMSEinT 0.0340 0.0637 0.0648
Wmax-ABC

Relative biasin s -0.3330 0.6524 4.7463
RMSE ins 0.0646 0.0214 0.0113
Relative biasin T -0.2272 -0.0656 0.1842
RMSE in T 0.0491 0.0602 0.0626
Supp. Figures
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Supp. Fig.1 Variation of selected summary statistics with population scaled selection coefficient N,s.

Boxplots represent the results of 100 simulations over different orders of magnitude, including one

0). Sweeps are young (0.01x4N, generations). Blue points represent the modes

neutral scenario (N,s

Plots are shown spanning 3 orders of

of distributions, lines represent the medians of distributions.

1000. A. Number of segregating sites S, B. Watterson’s 8, C. 7, D. Taji-

0 to N,s
ma’s D, E. Number of haplotypes, F. Haplotype diversity.
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Supp Fig. 3 Boxplot of the modes of posterior distributions of allele age T under weak selection
(s=0.001). The boxplots show results from msstats-ABC (marked M). T is drawn from a log uniform
priors: log;o(T) ~ U(-4, -0.5). Boxplots represent the modes of posterior distributions for 100 pseudo-
observables. L =2 x 10* bps,x=0.5,p=pn= 107 per base pair per generation, N = 10,000, a = 2Ns =
20. Red diamonds mark the true values of pseudo-observables(T = 0.001,0.01,0.05, 0.1,0.2,0.3 x
4N, generations).
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Supp Fig. 4 Boxplot comparing the impact of different window lengths on inference power for allele
age T, under strong selection (s=0.1). Boxplots compare results from msstats-ABC for inference using
length of 1kb, 10kb, 20kb, 40kb and 80kb. Parameters are as described in methods. T is drawn from a
log uniform prior: log;o(T) ~ U(-4, -0.5). Red diamonds mark the true values for respective inferred
values (T=0.001,0.05,0.01,0.1,0.2,0.3 x 4N, generations).
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Supp. Fig. 5. Joint inference of s and T in equilibrium populations for young sweeps (7=0.01) (msstats-ABC).
Figures show the cumulative joint posterior density plots for 100 pseudo-observable simulations over different
orders of magnitude of the selection coefficient s, for young sweeps (7=0.01) and A. s = 0.1 (a=NEs=103); B.
s=0.01(a=Nes=102); C. s=0.001(a=N.s=10);. The bottom two panels represent neutral scenarios with D. s=0.0001
(a=N.s=1); and E. s=0. The white, yellow and red colors mark areas of high, moderate and low joint density
respectively. Black crosses indicate the true values of pseudo-observables. s and T are drawn from log uniform
priors: logio(s) ~ U(-4, -0.5) and logo(T) ~ U(-4, -0.5). Other parameters are as described in methods.
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D. E.

s$=0.0001, T=0.01 s=

log(T)
log(T)

Supp Fig. 6 Joint inference of s and T in equilibrium populations for old sweeps (7=0.01) (w,.x —ABC). Figures
show the cumulative joint posterior density plots for 100 pseudo-observable simulations over different orders of
magnitude of the selection coefficient s, for old sweeps (7=0.1) and A. s = 0.1 (a=NEs=103); B. s=0.01(a=Nes=102);
C. s= 0.001(a=N,s=10). The bottom two panels represent neutral scenarios with D. s=0.0001 (a=N.s=1); and E.
s=0. Pseudo-observables were set up by running 2x10° simulations for selected values of s and T, and retaining
the top 5% by values of w,,,,, generating 100 test values. The white, yellow and red colors mark areas of high,
moderate and low joint density respectively. Black crosses indicate the true values of pseudo-observables. Other
parameters are as in previous figures. s and T are drawn from log uniform priors: log;o(s) ~ U(-4, -0.5) and
log10(T) ~ U(-4, -0.5). Other parameters are as described in methods.

A. B.

s=0.1, T=0.1 $=0.01, T=0.1

log(T)
2
log(T)
2

4 3 2 - 0 4 3 2 -1 0
log(selection coefficient s) log(selection coefficient s)

112



log(T)

log(T)

C.

$=0.001, T=0.1

IS

-3 -2 -1

log(selection coefficient s)

D.

s$=0.0001, T=0.01

-3 -2 -1

log(selection coefficient s)

o

log(T)

113

-3 -2 -1

log(selection coefficient s)



Supp Fig. 7 Joint inference of s and T in equilibrium populations for young sweeps (7=0.01) (w. —ABC). Figures
show the cumulative joint posterior density plots for 100 pseudo-observable simulations over different orders of
magnitude of the selection coefficient s, for young sweeps (7=0.01) and A. s = 0.1 (a=NEs=103); B.
s=0.01(a=Nes=102); C. s= 0.001(a=N,s=10). The bottom two panels represent neutral scenarios with D. s=0.0001
(a=N.s=1); and E. s=0. Pseudo-observables were set up by running 2x10° simulations for selected values of s
and T, and retaining the top 5% by values of w,,,, generating 100 test values. The white, yellow and red colors
mark areas of high, moderate and low joint density respectively. Black crosses indicate the true values of pseudo-
observables. Other parameters are as in previous figures. s and T are drawn from log uniform priors: logso(s) ~
U(-4, -0.5) and logp(T) ~ U(-4, -0.5).  Other parameters are as described in methods.
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D. E.

$=0.0001, Ts=0.01 s=0
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Supp Fig. 8 Boxplots of predicted values from joint inference of s and T in equilibrium populations (msstats-
ABC). Boxplots show the predicted values for 100 pseudo-observables over different magnitudes of selection
coefficient s (s = 0.1, 0.01,0.001, 0.0001 and 0), and T=0.1 (A and B) or T=0.01 (C and D). Red diamonds mark
the known values of pseudo-observables. s and T are drawn from log uniform priors: logo(s) ~ U(-4, -0.5) and
log10(T) ~ U(-4, -0.5). Other parameters are as described in methods.
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Supp Fig. 9 Boxplots of predicted values from joint inference of s and T in equilibrium populations (w_max-
ABC). Boxplots show the predicted values for 100 pseudo-observables over different magnitudes of selection
coefficient s (s = 0.1, 0.01,0.001, 0.0001 and 0), and T=0.1 (A and B) or T=0.1 (C and D). Red diamonds mark
the known values of pseudo-observables. s and T are drawn from log uniform priors: logse(s) ~ U(-4, -0.5) and
log10(T) ~ U(-4, -0.5). Other parameters are as described in methods
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Supp. Fig 10 Joint inference of s, T; and f in equilibrium populations. Figures show the predicted values for 100
pseudo-observables for five cases of starting frequency f=0.0001, 0.001, 0.01, 0.05, 0.1. Estimates of s, T; and f
were obtained from the mode of the joint posterior density. Red lines indicate the true values of the pseudo-
observables. T represents the time since selection began acting on the allele (time to fixation plus sojourn
time). A. s=0.01, T,=0.105 B. s=0.01, T,=0.150. C. s=0.1, T,=0.015.D s=0.001, T,=0.505 E. s=0.001, T,=0.006.
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Supp. Fig. 11 Joint inference of s and T; under the demographic scenario of exponential growth following a
sharp bottleneck using msstats—ABC (demographic scenario 3 described in methods). Exponential growth is
modeled with parameter a=460.5, following a 1% bottleneck at 0.01 x 4N, generations. Figures show the cumula-
tive joint posterior density plots for 100 pseudo-observable simulations. The white, yellow and red colors mark
areas of high, moderate and low joint density respectively. Black crosses indicate the true values of pseudo-
observables. S and T are drawn from a log uniform prior for s: logo(s) ~ U(-4, -0.5) and adjusted log uniform
prior for Ts. log0(Ts) ~ U(log1o(Tsoj), l0810(0.3+T,)). Other parameters are as in previous figures.

The figures below represent supplementary figures to Fig. 4. A. Inference of a strong, old sweep with pseudo-
observable values s=0.1 and T,=0.105 (calculated from T=T+T,, where T=0.1). B. Inference of a moderately
strong, recent sweep with pseudo-observable values s=0.01 and T,=0.06 (calculated from T=T+T,,; where
7=0.01). C. Inference of a moderately strong, very recent sweep with pseudo-observable values s=0.1 and
T,=0.051 (calculated from T=T+T,,; where T=0.001). D. Inference of a weak, old sweep with pseudo-observable
values s=0.001, T,=0.1(calculated from T,=T+T,,; where T=0.1). E. Inference of a weak, recent sweep with pseudo-
observable values s=0.01, T,=0.01(calculated from T=T+T,,; where T=0.01). F. Inference of a neutral mutation
drifting to fixation with pseudo-observable values s=0.0001, T;=4.961(calculated from T,=T+T,; where 7=0.01)
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5=0.001, T=0.495 $=0.0001, Ts=4.961
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Supp. Fig 12 Joint inference of s, T; and f in a population undergoing exponential growth after a sharp bottle-
neck (demographic scenario 3) Figures show the predicted values for 100 pseudo-observables for five cases of
starting frequency f=0.0001, 0.001, 0.01, 0.05, 0.1. Estimates of s, T; and f were obtained from the mode of the
joint posterior density. Red lines indicate the true values of the pseudo-observables. T, represents the time
since selection began acting on the allele (time to fixation plus sojourn time). A. s=0.1, T,=0.015. B. s=0.1,
T,=0.105. C. s=0.01, T7,=0.060
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Supp Fig. 13 Joint inference of allele age and selection coefficient for P. maniculatus

The density plots represent the joint posterior distribution of s and either T (A) or T, (B) for the serine deletion
position 128,150 on exon 2. 500,000 simulations were run assuming N.= 53,080, p = 3.67 x 108 ,u = 0.62 x 10°®
per base pair per generation. Simple rejection ABC was used with a tolerance level of 0.005. Density plots are
shown with the mutation positioned centrally (x=0.5) on a length L=40kb : A. with equilibrium demography and
B. with the demographic scenario included in simulations).

For A, the joint density maximum occurs at s=2.6x10™ (1.2x10>-2.3x10™), T=2.1x10(1.1x10™-2.2x107%).
For B, the joint density maximum occurs at s=4.3x10"" (3.5x10%-1.0), T,=6.3x10%(3.7x10™*-1.8x10™)
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Supp. Fig. 14 Inference of allele age T alone for P. maniculatus

The histogram represents the posterior distribution on a logl0 scale of allele age T for the serine deletion at
position 128,150 on exon 2. 40kb were used on either side of the serine deletion for a total length L=80kb.
100,000 simulations were run assuming N.= 53,080, p = 3.67 x 108 ,u = 0.62 x 10 per base pair per generation
and s=0.126 (Linnen et al. 2013). T was drawn from a log uniform prior: log;o(T) ~ U(-4, -0.5).
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Supporting information: The population genomics of rapid
adaptation: disentangling the signatures of selection and
demography in White Sands lizards

Table Sla

ID Habitat Coverage1

CP1 DS2 20.97

CP2 | DS2 3.25

CP3 DS2 175.87

CP4 | WS 216.56
CP5 | WS 20.73
CP6 | WS 12.36
CP13 | WS 112.91

CP15 | DS2 7.7

CP16 | DS2 10.57

CP17 | DS2 25.53

CP18 | WS 222.69
CP19 | WS 15.75

CP33 | WS 147.80
CP34 | WS 39.98

CP35 | WS 129.65
CP36 | WS 106.72
CP37 | WS 190.66
CP38 | WS 143.68

CP48 | DS2 197.19

CP49 | DS2 228.17

CP50 | DS2 66.14

CP51 | DS2 72.45

CP52 | DS2 94.47

CP64 | DS1 211.49

CP65 | DS1 245.64

CP66 | DS1 144.84

CP67 | DS1 66.81

CP68 | DS1 153.11

CP69 | DSI 142.35

CP70 | DS1 80.31

CP71 | DS1 137.65

CP72 | DS1 129.57

Mean 111.67
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Table Sla: 4. inornata samples and statistics of mapped coverage.

" After duplicate removal and only counting read pairs with appropriate orientation. The genome size

was taken to be 3.2 Gb.

Table S1b

ID Habitat | Coverage'

CP7 | DS2 268.77

CP8 | DS2 18.61

CP9 | WS 15.77

CP10 | WS 165.63

CP14 | DS2 112.27

CP20 | DS2 8.63

CP22 | DS2 2.72

CP23 | DS2 49.86

CP29 | WS 149.17
CP30 | WS 205.59
CP31 | WS 148.46
CP41 | WS 39.87
CP42 | WS 68.99
CP43 | WS 170.79
CP44 | WS 133.45
CP45 | WS 60.10

CP57 | DS2 59.91

CP58 | DS2 93.93

CP59 | DS2 140.37

CP73 | DS1 226.67

CP74 | DS1 153.94

CP75 | DS1 91.54

CP76 | DS1 68.19

CP77 | DS1 262.20

CP78 | DS1 165.35

CP79 | DS1 122.43

CP80 | DS1 89.10

CP81 | DS1 113.45

Mean 114.49

Table S1b: S. cowlesi samples and statistics of mapped coverage.

' After duplicate removal and only counting read pairs with appropriate orientation. The genome size

was taken to be 3.3 Gb.
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Table S2

A.inornata

mutation
rate

1.50E-08
1.50E-09
1.50E-08
1.50E-09
1.50E-08
1.50E-09

S.cowlesi
mutation
rate

1.50E-08
1.50E-09
1.50E-08
1.50E-09
1.50E-08
1.50E-09

1
1
15
5
7]
2

1
1
5
L5
2
2

gen time Ne(W)

2'339
23'392
2'339
23'392
2'339
23'392

gen time Ne(W)

2'024
20237
2'024
20237
2'024
20'237

Ne(J)

8'742
87'418
8'742
87'418
8'742
87'418

Ne(J)

3207
32'068
3207
32'068
3'207
32'068

Ne(P)
744

7'443

744

7'443

744

7'443

Ne(P)

1'523
15'232
1'523
15'232
1'523
15'232

Ne(ref) Ne(N)

32411 12'326 1211
324'114 123264 12'112
32'411  12'326 1'817
324'114 123264 18'168
32411 12'326 2'422
324'114 123'264 24'224

Ne(ref) Ne(N) Ne(PS)

42'068 151'557 107'677
420'6781'515'572 1'076'768
42'068 151'557 107'677
420'6781'515'5721'076'768
42'068 151'557 107'677
420'6781'515'572 1'076'768

T2 (years) T1 (years)

303
3'025

454
4538

6'051

16'977
169'768
25'465
254'652
33'954
339'536

493
4'934
740
7'401
986.7
9'867

T2 (years) T1 (years) m(W->J)

0.000031
0.000003
0.000031
0.000003
0.000031
0.000003

m(W-5P)

0.000175
0.000017
0.000175
0.000017
0.000175
0.000017

m(J->W)

0.000030
0.000003
0.000030
0.000003
0.000030
0.000003

m(P->W)

0.000295
0.000029
0.000295
0.000029
0.000295
0.000029

m(1->P)

0.000204
0.000020
0.000204
0.000020
0.000204
0.000020

m(P->J)

0.000275
0.000028
0.000275
0.000028
0.000275
0.000028

Table S2: An example of the effects of uncertainty in mutation rate (two rates given) and generation

time (three times given) on estimated demographic parameters.
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Supplementary Figures

Figure S1
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Figure S1: Left: Mean log posterior probability of the data, L(K), in (A) 4. inornata and (B) S. cowlesi.
Right: Measure of the rate of change in the log probability of the data between successive K values,

A(K), in (A) A. inornata and (B) S. cowlesi.
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Figure S2
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Figure S2: Predictive distributions of 1,000 simulated values of 7, Tajima’s D, and Fyunder the best
demographic model for A. inornata as inferred by fastsimcoal2 (solid line) and dadi (dashed line). Red
horizontal bars represent the observed values. P-values represent the probabilities that the simulated

values are larger than the observed values.
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Figure S3
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Figure S3: Predictive distributions of 1,000 simulated site frequency spectra under the best demograph-
ic model for A. inornata as inferred by fastsimcoal2 (dark gray) and dadi (light gray). The error bars
represent the 0.025™ and 0.975"™ percentiles of the simulated distributions. The white bars represent the

observed SFS.
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Figure S4

pval_fec = 0.135 pval_dadi = 0.922 pval_fec = 0.088 pval_dadi = 0.604 pval_fec = 0.132 pval_dadi= 0.773
o =3 S
g g 3 i
o v
o 8 o 8 o g \
& 8 '
~N ~N .
o o - o o
T T
0.0022 0.0026 0.0025 0.0027 0.0029
Tws "DSt %ps2
pval_fec = 0.153 pval_dadi = 0.46 pval_fec = 0.761 pval_dadi= 0.755
< o
© 4
2> > “7 2 :
2 g . g
& & &
- N
o - == o -
T
02 02 04 06 08 02 00 02 04
Dpsi Dps2
pval_fec = 0.63 pval_dadi = 0.363 pval_fec = 0.506 pval_dadi = 0.406
o |
8 8 ]
% < - g 8-
3 N 5]
o = --- o c--
T T T
008 012 016 020 0.06 0.10 0.14 0.08 0.12 0.16 020
Fst ws-ps1 Fst ws-ps2 Fgr ps1-0s2

Figure S4: Predictive distributions of 1,000 simulated values of s, Tajima’s D, and Funder the best
demographic model for S. cowlesi as inferred by fastsimcoal2 (solid line) and dadi (dashed line). Red
horizontal bars represent the observed values. P-values represent the probabilities that the simulated

values are larger than the observed values.
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Figure S5
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Figure S5: Predictive distributions of 1,000 simulated site frequency spectra under the best demograph-
ic model for S. cowlesi as inferred by fastsimcoal2 (dark gray) and dadi (light gray). The error bars rep-
resent the 0.025™ and 0.975™ percentiles of the simulated distributions. The white bars represent the

observed SFS.
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Figure S6
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Figure S6: Graphical representation of the genetic variation in the contig encompassing the Mc/r gene
in A. inornata. The colors represent the genotypes of every site that passed the quality filter criteria
(light blue: homozygote for the alternate allele, dark blue: heterozygote, gray: homozygote for the refer-
ence allele). The reference sequence was constructed from a WS individual. Individuals were grouped
according to their sampling locations (green: WS; purple: DS1; orange: DS2) and by the number of
white alleles they carried at the candidate locus. (white: 0, light blue: 1, dark blue: 2; see left panel of
the figure). The red box indicates the position of the candidate mutation reported by Rosenblum ef al.

(2010).
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Figure S7
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Figure S7: Per site weighted F values in the Mclr region in A. inornata (Weir and Cockerham’s Fy).
The F value of the candidate mutation reported by Rosenblum et al. (2010) is highlighted by a dia-

mond symbol. Figure S8
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Figure S8
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Figure S8: Graphical representation of the genetic variation in the contig encompassing the Mc/r gene
in S. cowlesi. The colors represent the genotypes of every site that passed the quality filter criteria (light
blue: homozygote for the alternate allele, dark blue: heterozygote, gray: homozygote for the reference
allele). The reference sequence was constructed from a WS individual. Individuals were grouped ac-
cording to their sampling locations (red: WS, green: DS1, blue: DS2) and to the number of white alleles
they carried at the candidate locus. (white: 0, light blue: 1, dark blue: 2; see left panel of the figure). The

red box indicates the position of the candidate mutation reported by Rosenblum ez al. (2010).
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