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Abstract ⏤ We propose a method for designing
phased-arrays according to a given target
beamshape. Building on the Flexibeam framework,
antenna locations are sampled from a probabilistic
density function. We prove that the achieved
beamshapes converge uniformly to the target
beamshapes as the number of antennas increases.
We illustrate the technique with examples.

1. Beamforming in a Probabilistic Setup
As in the Flexibeam [1] framework, consider a
continuous array with target beamshape:

The beamforming function is defined as

where is called the extended filter.

2. Flexarray
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For circularly symmetric extended filters

we can define a beamforming density function

so that:

where and is the Hankel
transform of order zero of .
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Flexarray works in three steps:
1. Compute the beamforming

density function,
2. Sample random locations

3. Apply beamforming weights

This leads to the empirical
beamshape:
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