Acridine-based novel hole transporting material for high efficiency perovskite solar cells

An acridine-based hole transporting material (ACR-TPA) without the spirobifluorene motif is synthesized via non complicated steps. The ACR-TPA film including Li-TFSI and 4-tert-butylpyridine (tBP) additives exhibits a hole mobility of 3.08 x 10(-3) cm(2) V-1 s(-1), which is comparable to the mobility of the classical spiro-MeOTAD (2.63 x 10(-3) cm(2) V-1 s(-1)), and its HOMO level of -5.03 eV is slightly lower than that of spiro-MeOTAD (-4.97 eV). ACR-TPA layers with different thicknesses are applied to MAPbI3 perovskite solar cells, where power conversion efficiency (PCE) increases as the ACR-TPA layer thickness increases due to increased recombination resistance and fast charge separation. The best PCE of 16.42% is achieved from the ca. 250 nm-thick ACR-TPA, which is comparable to the PCE of 16.26% for a device with spiro-MeOTAD in the same device configuration. It is thus anticipated that ACR-TPA can be a promising alternative to spiro-MeOTAD because of its lower cost and comparable photovoltaic performance.

Published in:
Journal Of Materials Chemistry A, 5, 16, 7603-7611
Cambridge, Royal Soc Chemistry

 Record created 2017-05-30, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)