Files

Abstract

A fullerene derivative (alpha-bis-PCBM) is purified from an as-produced bis-phenyl-C-61-butyric acid methyl ester (bis-[60]PCBM) isomer mixture by preparative peak-recycling, high-performance liquid chromatography, and is employed as a templating agent for solution processing of metal halide perovskite films via an antisolvent method. The resulting alpha-bis-PCBM-containing perovskite solar cells achieve better stability, efficiency, and reproducibility when compared with analogous cells containing PCBM. alpha-bis-PCBM fills the vacancies and grain boundaries of the perovskite film, enhancing the crystallization of perovskites and addressing the issue of slow electron extraction. In addition, alpha-bis-PCBM resists the ingression of moisture and passivates voids or pinholes generated in the hole-transporting layer. As a result, a power conversion efficiency (PCE) of 20.8% is obtained, compared with 19.9% by PCBM, and is accompanied by excellent stability under heat and simulated sunlight. The PCE of unsealed devices dropped by less than 10% in ambient air (40% RH) after 44 d at 65 degrees C, and by 4% after 600 h under continuous full-sun illumination and maximum power point tracking, respectively.

Details

Actions

Preview