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Abstract: A novel method to design data-driven, fixed-structure controllers with H2 and H∞
performance objectives is presented. The control design problem is transformed into a convex
optimization problem with linear matrix inequality constraints, which can be solved efficiently
with standard solvers. The method is used to design a data-driven controller for an atomic-force
microscope. The closed-loop performance of the calculated controller is validated on a real setup.
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1. INTRODUCTION

While the use of measured data for controller tuning is not
new, recent advances in the fields of numerical optimiza-
tion and computational power open up new possibilities
for data-driven control design approaches. In these ap-
proaches, the controller parameters are directly computed
by minimizing a control criterion which is a function of
measured data. Therefore, a parametric model of the plant
is not required and there are no unmodeled dynamics.
The only source of uncertainty is the measurement noise,
whose influence can be reduced significantly if the amount
of measurement data is large.

Frequency-domain data is used in classical loop-shaping
methods for computing simple lead-lag or PID controllers
for SISO stable plants. The Quantitative Feedback The-
ory (QFT) also uses the frequency response of a system
to compute robust controllers. New optimization based
algorithms have been proposed recently Mercader et al.
(2016) to compute QFT controllers. The set of all stabi-
lizing PID controllers with H∞ performance is obtained
using only the frequency-domain data in Keel and Bhat-
tacharyya (2008). This method is extended to design fixed-
order linearly parametrized controllers in Parastvand and
Khosrowjerdi (2015, 2016). Several data-driven approaches
based on frequency-domain data using convex optimiza-
tion methods have been proposed. A linear programming
approach is used to compute linearly parametrized (LP)
controllers for SISO systems with specifications in gain and
phase margin as well as the desired closed-loop bandwidth
in Karimi et al. (2007); Saeki (2014). A convex opti-
mization approach is used to design LP controllers with
loop shaping and H∞ performance in Karimi and Galdos
(2010). Recently, the necessary and sufficient conditions
for the existence of H∞ controllers for SISO systems de-
scribed by their frequency response have been given in

Karimi et al. (2016). The use of the frequency response for
computing SISO-PID controllers by convex optimization
is proposed in Hast et al. (2013). This method uses the
same type of linearization of the constraints as Karimi and
Galdos (2010), but interprets it as a convex-concave ap-
proximation technique. An extension of Hast et al. (2013)
for the design of MIMO-PID controllers by linearization
of quadratic matrix inequalities is proposed in Boyd et al.
(2016) for stable plants. A similar approach is used in Saeki
et al. (2010) for designing LP-MIMO controllers (which
include PID controllers as a special case). This approach
is not limited to stable plants and includes the conditions
for the stability of the closed-loop system.

In this paper, a new data-driven controller design approach
is presented based on the frequency response and convex
optimization. Contrarily to the existing results in Galdos
et al. (2010); Boyd et al. (2016); Saeki et al. (2010),
the controller is fully parametrized and the design is not
restricted to LP or PID controllers. The other contribution
is that the approach is not limited to H∞ performance,
but is able to also treat H2 performance and loop-shaping
objectives. The approach also contains a new closed-loop
stability proof based on the Nyquist stability criterion.
The method is then used to design a controller for an
atomic-force microscope (AFM). The superimposed struc-
tural resonances of piezo-actuator-based scanners for AFM
make high-speed control challenging. Several model-based
approaches have been presented over the years in Schitter
et al. (2003); Fantner et al. (2006); Ando (2008). However,
in practice the use of parametric models has significant
disadvantages. The dynamics of the system are of high
order, depend on various environmental factors and change
often, thus necessitating frequent re-identification between
or even during measurements. As the imaging quality in
AFM depends on fast, accurate tracking of features, a low



robustness margin is often necessary, which can easily lead
to instability due to unmodeled dynamics.

An advantage of data-driven approaches is that frequency
response data for AFMs is easily obtainable by identifying
the system directly, using the cantilever as a fast and
precise sensor. The high positioning speed of the scan-
ner makes it possible to record a large amount of data
within short amounts of time, which drastically decreases
the influence of measurement noise on the identified re-
sponse. The authors of Nievergelt et al. (2015) present
an approach where filters are tuned manually based on
sweep frequency response data to achieve a desired closed-
loop bandwidth. Feed-forward compensation by grey-box
modeling and subsequent constrained local optimization
on sweep frequency response data has been shown to be
able to significantly increase the open-loop bandwidth of
AFM. However, this process is time-consuming and re-
quires manual interaction while giving no guarantee for
robustness or stability. The presented approach is able
to design a controller within a short amount of time and
to the desired frequency-domain specifications, while also
guaranteeing closed-loop stability.

2. PROBLEM FORMULATION

The presented controller design method is equally applica-
ble to both SISO and MIMO cases. For this application, we
only present the SISO, discrete-time formulation. A more
complete treatment of the theoretical part can be found
in Karimi and Kammer (2016).

2.1 Frequency response data

The system to be controlled is a Linear Time-Invariant
single-input single-output (LTI-SISO) strictly proper sys-
tem represented by its frequency response G(ejω). The
frequency response data can easily be obtained using the
Fourier analysis method from a set of measurements. We
assume that G(ejω) is bounded in all frequencies except
for a set Bg including a finite number of frequencies that
correspond to the poles of G on the unit circle. As the
frequency function G(ejω) is periodic, we consider ω ∈ Ωg,
where:

Ωg =

{
ω

∣∣∣∣− π

Ts
≤ ω ≤ π

Ts

}
\Bg (1)

and Ts is the sampling period.

2.2 Controller Structure

A fixed-order rational transfer function controller is con-
sidered. The controller is defined as:

K = X(z)Y (z)−1 (2)

where:

X(z) = (xpz
p + · · ·+ x1z + x0)Fx(z) (3)

Y (z) = (zp + · · ·+ y1z + y0)Fy(z) (4)

with xi, yi ∈ R. The polynomials Fx(z), Fy(z) represent
the fixed known terms in the controller, e.g. terms based
on the internal model principle or integrators. The set
of frequencies of all roots of Fy(z) on the unit circle is
denoted by By. Note that Y −1(ejω) should be bounded for
all ω ∈ Ω = Ωg\By. This control structure is very general
and is not restricted to linearly parameterized controllers.

2.3 Control performance

The control performance is defined as the constraints
on the norm of weighted sensitivity functions. A very
typical performance specification for reference tracking or
disturbance rejection can be defined as:

‖W1S‖ < 1 (5)

where S = (1+GK)−1 is the sensitivity function, W1 is the
performance weight and ‖·‖ can be the 2- or infinity-norm.
For a stable system H(z), the two- and the infinity-norm
are defined as:

‖H‖22 =
1

2π

∫ π/Ts

−π/Ts
H∗(ejω)H(ejω)dω (6)

‖H‖∞ = sup
ω
|H(ejω)| (7)

where (·)∗ denotes the complex conjugate. Note that
reversely the boundedness of the spectral norms of H does
not guarantee the stability of H.

The shape of the open-loop transfer function can also be
considered as a form of control performance. In this case,
the 2- or infinity-norm of (L − Ld) is minimized, where
L = GK and Ld is a desired open-loop transfer function.

3. CONVEX APPROXIMATION

In this section, we show how the performance specifications
can be achieved through convex optimization using only
the frequency response data of the plant. The performance
constraints are represented by a set of convex-concave
constraints and then approximated by an inner convex
approximation based on the linearization of the concave
parts.

3.1 H∞ performance

Constraints on the infinity-norm of any weighted sensitiv-
ity function can be considered. For example, consider the
following constraint:

‖W2T‖∞ < 1 (8)

where T = GK(I+GK)−1 is the complementary sensitiv-
ity function. This constraint is satisfied if W2T is stable
and

[W2GK(I +GK)−1]∗[W2GK(I +GK)−1] < 1 (9)

for all ω ∈ Ω. Note that the argument ejω has been omitted
for G(ejω),K(ejω) and W2(ejω) in order to simplify the
notation. Replacing K with XY −1 gives:

[W2GX(Y +GX)−1]∗[W2GX(Y +GX)−1] < 1 (10)

Multiplying both sides from the right by (Y + GX),
and from the left by its complex conjugate, leads to the
following matrix inequality:

[W2GX]∗[W2GX]− (Y +GX)∗(Y +GX) < 0 (11)

which is a constraint on the difference between two
quadratic terms (a convex-concave constraint). In order
to convexify the constraint, the second quadratic term is
linearized using the following property:

P ∗P ≥ P ∗Pc + P ∗c P − P ∗c Pc (12)

where P = Y+GX and Pc is any known complex value. We
can choose Pc = Yc+GXc, where Kc = XcY

−1
c is an initial



controller. Using the Schur complement, the constraint in
Eq. 11 can then represented by a linear matrix inequality:[

P ∗Pc + P ∗c P − P ∗c Pc (W2GX)∗

W2GX 1

]
> 0 (13)

This convex constraint is a sufficient condition for the
spectral constraint in (9) for any choice of Kc = XcY

−1
c .

However, this constraint will not necessarily represent a
convex set of stabilizing controllers. The stability condi-
tion will depend on the initial controller Kc and will be
discussed in Section 3.3.

3.2 Loop shaping

Assume that a desired open-loop transfer function Ld is
available and that the objective is to design a controller K
such that the open-loop transfer function L = GK is close
to Ld in the 2- or ∞-norm sense. The objective function
for the ∞-norm case is to minimize ‖L − Ld‖∞ and can
be expressed as follows:

min γ

subject to:

(GK − Ld)∗(GK − Ld) < γ ∀ω ∈ Ω

(14)

Replacing K with XY −1 in the constraint, we obtain:

(GX − LdY )∗γ−1(GX − LdY )− Y ∗Y < 0 (15)

Again Y ∗Y can be linearized around Yc using the linear
approximation in (12). Thus, the following convex formu-
lation is obtained:

min γ

subject to:[
Y ∗Yc + Y ∗c Y − Y ∗c Yc (GX − LdY )∗

GX − LdY γ

]
> 0

(16)

for all ω ∈ Ω.

In a similar way, for minimizing ‖L − Ld‖22 the following
problem can be solved:

min

∫ π
Ts

− π
Ts

Γ(ω)dω

subject to:

(GK − Ld)∗(GK − Ld) < Γ(ω) ∀ω ∈ Ω

(17)

where Γ(ω) > 0 is an unknown function ∈ R. Replacing K
with XY −1, the constraint becomes:

(GX − LdY )∗Γ(ω)−1(GX − LdY )− Y ∗Y < 0 ∀ω ∈ Ω

which results in the following convex optimization prob-
lem:

min

∫ π
Ts

− π
Ts

Γ(ω)dω

subject to:[
Y ∗Yc + Y ∗c Y − Y ∗c Yc (GX − LdY )∗

GX − LdY Γ(ω)

]
> 0

(18)

for all ω ∈ Ω. Note that, in case the constraints are eval-
uated for a finite set of frequencies ΩN = {ω1, . . . , ωN},
Γ(ω) can be replaced with a scalar variable Γk at each
frequency ωk.

3.3 Stability analysis

The stability of the closed-loop system is not necessarily
guaranteed even if the spectral norm of a weighted sensi-
tivity function is bounded. In fact, every unstable system

with no pole on the stability boundary has a bounded
spectral norm. In this section, we present the conditions
on the linearization of the constraints such that the closed-
loop stability can be guaranteed in the following theorem.

Theorem 1. Given a strictly proper plant model G, an
initial stabilizing controller Kc = XcY

−1
c with Yc 6=

0,∀ω ∈ Ω, and feasible solutions X and Y to the following
inequality,

(Y +GX)∗(Yc +GXc) + (Yc +GXc)
∗(Y +GX) > 0 (19)

for all ω ∈ Ω, then the controller K = XY −1 stabilizes the
closed-loop system if

(1) Y 6= 0,∀ω ∈ Ω.
(2) The initial controller Kc and the final controller K

share the same poles on the stability boundary, i.e.
Y = Yc = 0,∀ω ∈ By

Proof: The proof is based on the Nyquist stability crite-
rion and is given in Karimi and Kammer (2016).

Remark: A necessary and sufficient condition for Y 6= 0
is Y ∗Y > 0. Since this constraint is concave, it can
be linearized to obtain the following sufficient convex
constraint:

Y ∗Yc + Y ∗c Y − Y ∗c Yc > 0 (20)

For the loop-shaping problems in (16) and in (18), this
condition is already included in the formulation. In this
case, for guaranteeing the closed-loop stability, only the
condition in (19) must be added. This condition can
be added directly, or by considering an additional H∞
constraint on any closed-loop sensitivity function.

4. CONTROLLER DESIGN

The optimization problem described in the previous sec-
tions is now used to design a fixed-order SISO controller for
an AFM based on frequency-domain data. Some practical
issues for designing data-driven controllers are discussed,
and the control problem is formulated. The standard
control approach in AFM consists of a PI-controller in
series with a low-pass filter, where the controller gains
are manually tuned by the operator. Using this approach,
the main limitation of a scanner’s control bandwidth is
the excitation of its first mechanical resonance by the
scanner drive signal. Too large controller gains degrade
the reference tracking performance and introduce ringing,
which introduces visible ripples in the AFM image.

We will design a 10th-order controller based on frequency
domain data with the goal of providing good tracking
performance of the reference for a given bandwidth. The
additional degrees of freedom of the controller make it
possible to sufficiently dampen the resonance peaks and
achieve a good response.

4.1 Plant Identification

The scanner dynamics of a commercial tube scanner (Mul-
tiMode JV, Bruker Santa Barbara) have been identified
in constant deflection mode. The input of the plant cor-
responds to the vertical position of the sample, and the
output corresponds to the deflection of the cantilever. Both
signals are within a range of ±10 V. The transfer function
of the plant is identified by applying 100 periods of a
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Fig. 1. Frequency response data of the plant G.

pseudorandom binary sequence (PRBS) with a length of
8191 samples and a sampling frequency of 50 kHz. The
frequency response is calculated in Matlab using the spa
command with a Hann window length of 700 and is shown
in Fig. 1. One can clearly see the 30 dB resonance peak
at around 8 kHz, which limits the performance of the
standard PI-controller.

4.2 Constraint Formulation

The objective is to achieve good tracking performance of
the reference input with a desired closed-loop bandwidth
of 8 kHz. Therefore, as objective function we choose to
minimize the 2-norm ‖L− Ld‖22 between the actual open-
loop transfer function L and a desired open-loop transfer
function Ld with:

Ld =
8 · 103 · 2π

s
(21)

To improve the robustness, H∞ constraints on the sen-
sitivity S and closed-loop sensitivity T are introduced.
Additionally, the input is constrained to a maximum of
10 V. Therefore, an H∞ constraint on the input sensitivity
U is added.

‖W1S‖∞ < 1 ; ‖W2T‖∞ < 1 ; ‖W3U‖∞ < 1 (22)

where W1 = 0.4, W3 = 0.1 and

W2 =
0.1526z2 + 0.3052z + 0.1526

z2 − 0.671z + 0.2523
(23)

The values of W1 and W3 are chosen based on a worst-
case step output disturbance of 1 V. W2 serves to limit
the overshoot to 5 % and adds a roll-off at frequencies
above 8 kHz in order to eliminate ringing in the closed-loop
response. Note that since the constraints are in frequency
domain, the desired Ld and the weighting filters can be
in continuous-time, while the designed controller is in
discrete-time.

4.3 Initial controller

The stability condition presented in Theorem 1 requires
a stabilizing initial controller Kc with the same poles on
the stability boundary (the unit circle) as the desired final
controller. For a stable plant, a stabilizing initial controller
can always be found by choosing:

[xc,1, . . . , xc,p] = 0, xc,0 = ε (24)

with ε being a sufficiently small number. Furthermore, the
parameters of:

Yc(z) = (zp + · · ·+ yc,1z + yc,0) · Fy (25)

should be chosen such that Yc 6= 0 for all ω ∈ Ω\By. This
can be achieved e.g. by choosing Yc such that all roots of
Yc = 0 lie at zero, with Fy containing all the poles on the
unit circle of the desired final controller.

A controller of order p = 10 is chosen for this design.
Additionally, the controller should contain an integrator,
which leads to the following fixed terms:

Fx(z) = 1 Fy(z) = (z − 1)

Since the plant is stable, as discussed above the initial
controller is found by setting the poles of the controller
to 0 and choosing a small enough gain, resulting in the
following initial values:

Xc(z) = 0.001 Yc(z) = z10(z − 1)

4.4 Frequency gridding

The optimization problem formulated in the previous
section contains an infinite number of constraints (i.e.
∀ω ∈ Ω) and is called a semi-infinite problem. A common
approach to handle this type of constraints is to choose
a large set of frequency samples ΩN = {ω1, . . . , ωN} with
ω1 ≥ 0, ωN = π/Ts, and replace the constraints with a
finite set of constraints at each of the given frequencies.
As the complexity of the problem scales linearly with
the number of constraints, N can be chosen relatively
large without severely impacting the solver time. Since all
constraints are applied to Hermitian matrices, the con-
straints for the negative frequencies between −π/Ts and
zero will be automatically satisfied. In some applications
with low-damped resonance frequencies, the density of the
frequency points can be increased around the resonant fre-
quencies. An alternative is to use a randomized approach
for the choice of the frequencies at which the constraints
are evaluated (see Alamo et al. (2010)).

The optimization problem is therefore sampled using N =
1000 logarithmically spaced frequency points in the in-
terval ΩN =

[
4 · 103, 5 · 104π

]
Hz (the upper limit being

the Nyquist frequency of the controller). The lower limit
is chosen greater than zero in order to guarantee the
boundedness of L− Ld.
The constraint sets are formulated for each of the N fre-
quency points. The optimization variable Γ(ω) is replaced
by N sampled variables Γk, k = 1, . . . , N . This results in
the following sampled, convex optimization problem :

min
X,Y

N∑
k=1

Γk (26)

subject to:[
Y ∗Yc + Y ∗c Y − Y ∗c Yc (GX − LdY )∗

GX − LdY Γk

]
(jωk) > 0[

P ∗Pc + P ∗c P − P ∗c Pc (W1Y )∗

W1Y 1

]
(jωk) > 0[

P ∗Pc + P ∗c P − P ∗c Pc (W2GX)∗

W2GX 1

]
(jωk) > 0[

P ∗Pc + P ∗c P − P ∗c Pc (W3X)∗

W3X 1

]
(jωk) > 0

k = 1, . . . , N

where the argument (jωk) denotes a constraint evaluated
at frequency ωk, with P = Y +GX and Pc = Yc +GXc.



4.5 Iterative algorithm

Any LMI solver can be used to solve this optimization
problem and calculate a suboptimal controller K around
the initial controller Kc. As we only solve an inner convex
approximation of the original optimization problem, K
depends heavily on the initial controller Kc and the perfor-
mance criterion can be quite far from the optimal value.
The solution is to use an iterative approach that solves
the optimization problem multiple times, using the final
controller K of the previous step as the new initial con-
troller Kc. This choice always guarantees closed-loop sta-
bility (assuming the initial choice of Kc is stabilizing). As
the objective function is non-negative and non-increasing,
the iteration converges to a local optimal solution of the
original non-convex problem (see Yuille and Rangarajan
(2003)). The iterative process can be stopped once the
change in the performance criterion is sufficiently small.

5. EXPERIMENTAL RESULTS

The optimization problem is formulated in Matlab using
Yalmip (see Löfberg (2004)), and solved with Mosek (see
MOSEK ApS (2015)). The iteration converges to a final
controller in 8 steps, which takes a few minutes on a
standard desktop computer in our simple implementation.
The bode plot of the final controller K is shown in Fig. 2a.
The plot illustrates nicely how the controller compensates
the resonance peaks of the plant. The corresponding bode
plot of T based on the identified model is given in Fig. 2b
and shows that the desired bandwidth is achieved, and
that the constraint is satisfied.

In order to validate the results, the controller is im-
plemented in Labview and applied on the real system.
Imaging is performed using a home-built high-speed AFM
head (see Adams et al. (2014)) using a Bruker FastScan-
C cantilever. As the controller runs on an FPGA, the
computation time increases only linearly with the con-
troller order, and is negligible in the shown example. The
calculations are performed using a fixed-point arithmetic,
therefore the controller parameters should be scaled ap-
propriately to achieve a sufficient range and precision.
To improve numerical stability and computation speed,
the controller can also be broken down into second-order
sections. Any in- and output delays are already accounted
for in the frequency response of the plant. For high-speed
applications it might also be of interest to consider the
computation delay in the performance specifications.

The closed-loop response is swept using a lock-in amplifier
and is shown in Fig. 2c. One can see that the real
response is flat up to the desired bandwidth of 8 kHz,
and exhibits the desired roll-off at higher frequencies.
The design constraint is almost always satisfied, with an
acceptable violation at 16 kHz that does not notably
impact the performance. The plot also shows the swept
response of the original PI controller. It can be seen
how the first resonance peak limits the bandwidth of this
controller to 1.2 kHz, and introduces undesired ringing in
the response.

Finally, freshly cleaved mica was lightly sanded with 8um
grit lapping film to create terraced trenches. The sample
surface was imaged at a line rate of 57 Hz and a surface
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Fig. 2. Bode magnitude plots of: a) Controller K. b) Ex-
pected closed-loop sensitivity T . c) Measured closed-
loop sensitivity T of the proposed controller (blue),
outperforming a conventional PI controller (yellow)
by an order of magnitude.

speed of 912 µm/s, which is about 10 times faster than the
conventional approach. Imaging was performed in constant
deflection mode with a setpoint of 25 nm. The images of
the topography and the error shown in Fig. 3 illustrate the
excellent step tracking of the controller at this speed.

6. CONCLUSION

We have presented a novel method to design data-driven,
fixed-structure controllers using convex optimization. The
method was applied on an atomic-force microscope to
significantly increase the imaging bandwidth and reduce
the time needed to capture an image by one order of mag-
nitude. Once an optimal controller has been computed for
a given system, it can also be used as near-optimal initial
controller in future tuning sessions. This allows the itera-
tion to converge quickly to a new optimal controller and
greatly reduces the computation time. This is a significant
reduction compared to the conventional method of man-
ually tuning the controller parameters which, combined



(a)

(b)

Fig. 3. Atomic force microscopy imaging of a sanded
muscovite mica surface at 57 lines/second (912um/s
surface speed) with the proposed controller. a) To-
pography image showing clear sharp edges and no
parachuting artifacts or scanner ringing. b) Corre-
sponding recording of the controller error.

with the guarantee of stability and performance, makes
the presented method well suited for this application.
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