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Abstract— A new model reference data-driven approach is
presented for synthesizing controllers for the CERN power
converter control system. This method uses the frequency re-
sponse function (FRF) of a system in order to avoid the problem
of unmodeled dynamics associated with low-order parametric
models. For this particular application, it is shown that a convex
optimization problem can be formulated (in either the H∞ or
H2 sense) to shape the closed-loop FRF while guaranteeing
the closed-loop stability. This optimization problem is realized
by linearizing a non-convex constraint around a stabilizing
operating point. The effectiveness of the method is illustrated by
designing a controller for the SATURN power converter which
is used in the Large Hadron Collider, in injector machines,
and for pulsed applications at CERN. Experimental validation
in the frequency-domain is also presented.

I. INTRODUCTION

Today’s industrial processes pose challenging problems
to control engineers due to the increasing complexities of
system structures. In order to simplify the controller design
process, these systems are approximated with low-order
parameteric models; this reduces both time and effort in
synthesizing a controller. However, this approximation can
create stability and performance problems since these low-
order models are subject to model uncertainty. Data-driven
control methods seek to alleviate this problem by synthesiz-
ing controllers based on time-domain or frequency-domain
data (i.e., synthesis is model independant). A survey on the
differences associated with model-based control and data-
driven control has been addressed in [1] and [2]; the authors
assert that model-based control methods are inherently less
robust due to the unmodeled dynamics of a process, and
that these controllers are unsafe for practical applications. In
other words, the parametric uncertainties and the unmodeled
dynamics associated with the data-driven scheme are irrele-
vant, and the only source of uncertainty is the measurement
error.

Frequency-domain based controller synthesis methods are
design schemes that continue to spark the interest of many
researchers. The authors in [3] establish a robust frequency-
domain controller design method that requires a solution to a
non-linear optimization problem. A frequency-domain loop-
shaping method for fixed-structure controllers is proposed in
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[4]; however, stability is not guaranteed with this method and
must be verified a posteriori. Controller synthesis methods
belonging to the H∞ control framework minimizes the
H∞ norm of a weighted closed-loop sensitivity function.
A convex optimization approach is used to design linearly-
parameterized (LP) controllers with loop-shaping and H∞
performance in [5]. The constraints are convexified around a
desired open-loop transfer function. A frequency-domain ap-
proach for computing low-order multivariable LP controllers
is presented in [6]. The H∞ constraints are convexified
around an initial stabilizing controller. An iterative algorithm
is used that converges to a local optimal solution of the
non-convex problem. Moreover, in [7], a convex-concave
approximation of the H∞ constraint is used which leads to
the same constraints as [5] for PID controllers. This method
is then generalized to MIMO PID controller design in [8]
for stable systems. More recent works that implement an
iterative loop-shaping method that ensures H∞ performance
have been devised in [9]. This method is not limited to
LP controllers and stable systems and can consider H2

performance as well. Recently, the necessary and sufficient
conditions for the existence of H∞ controllers for SISO
systems represented by their frequency response has been
proposed in [10]. The advantage of this method is that it does
not require an initial stabilizing controller and converges to
the global optimal solution if the controller order goes to
infinity.

The method proposed in this paper is an extension of
[9] to the model reference control problem and invokes a
new data-driven control design scheme for specific power
converter applications at CERN. Currently, the load (i.e.,
the magnet of the particle accelerator) is approximated as a
simple first-order system (series RL circuit); however, it has
been shown in [11], [12] and [13] that the vacuum chamber
of the magnet is also frequency dependent (mainly due to
the coupling effects of the beam and deformations in the
chamber geometry). In fact, the authors in [12] assert that
even small deformations in the beam pipe can drastically
change the impedance of the system and create stability
issues. Therefore, it is appropriate to consider a data-driven
based design to regulate the power converter control system.
In this work, it is shown that a model reference design in
the H∞ or H2 sense can be formulated through a convex
optimization problem; however, the methods described in this
paper can also be applied to mixed H2 and H∞ problems
(i.e., minimizing the norm of weighted sensitivity functions).
Additionally, with certain trivial conditions on the controller
parameters, it is shown that the closed-loop stability is



guaranteed.
The paper is organized as follows. The class of models

represented by FRF’s are addressed in Section II. Section
III discusses the framework of the power converter control
system and its functionality at CERN. The main results and
theoretical bases are addressed in Section IV; in this section,
loop-shaping constraints are formulated for the power con-
verter control system. Section V is dedicated to a case study
where the effectiveness of the method is demonstrated by
applying the proposed design scheme to a power converter
control system for a specific accelerator requirement. Finally,
the concluding remarks are given in section VI.

II. PRELIMINARIES

The class of systems discussed in this paper will be Linear
Time-Invariant Single-Input Single-Output (LTI-SISO) sys-
tems that will be represented by a FRF G(jω). The FRF
can be obtained directly with a given transfer function (TF)
model, or through an identification experiment using the
Fourier analysis method. Let U(jω) and Y (jω) represent
the FRFs of the system input and output signals, respectively.
Then the FRF of the system can be represented as

G(jω) = Y (jω)U−1(jω) (1)

In general, a set G can be formulated to represent a plant
model containing p FRF models:

G = {Gl(jω); l = 1, . . . , p; ∀ω ∈ Ω} (2)

Ω ∈ [0,∞). For simplicity, one model from the set G will
be considered, and the subscript l will be omitted. However,
in general, the design procedures outlined in this paper can
be applied to the multi-model case (as will be seen in the
case study).

Additionally, for notation purposes, let us define S as the
set of all strictly proper (stable) TF’s and P as the set of
all proper (stable) TF’s.

Remark. In this work, the control structure will contain
both discrete-time and continuous time systems. However,
the proposed method synthesizes controllers based on the
FRF of the system (i.e., the design method is not based
on the parametric model); therefore, if the Nyquist-Shannon
sampling rate is met, then the FRF of discrete-time systems
will be nearly identical to that of the continuous-time system.

III. SYSTEM FRAMEWORK

A schematic of the power converter control system is
shown in Fig. 1. Specific portions of the schematic are color-
coded in order to construct the associated block diagram.
Note that there are two power converter branches assembled
in series in this schematic; however, both branches possess
the same components with identical values. Therefore, the
analysis and control strategy can be performed in one branch
and then scale the controller parameters accordingly (i.e., by
a factor of 2). The input voltage for one of the high frequency
(HF) filters will be denoted as vi while the output voltage
of the filter (for one branch) will be denoted as v0. The

TF from vi to v0 describes the output filter of the power
converter for one branch. For general applications at CERN,
the objective is to control the current in the magnet such
that the error between this output current and a delayed
version of the reference current is minimized. However,
the objective of this paper is to design and implement a
controller to shape the FRF between the reference voltage
and v0. This intermediate control is performed due to the
fact that the output typically possesses large resonances,
and a controller is required to attenuate these resonances
in order to ensure better performance in the current loop.
These large resonances are present because the values of
the filter resistances are small (in order to reduce the power
losses). Large resistance values can attenuate the resonances
at the price of larger power losses. Another reason for
implementing this type of control structure at CERN is for
commissioning purposes; if/when faults occur in the system,
each loop can be verified one at a time to ensure quality
operation.

The block diagram of the control strategy is shown in
Fig. 2. This block diagram is color-coded to correlate with
the structure of the schematic in Fig. 1. The analog-to-digital
converter (ADC) is used to process the information from the
analog system to the DSP; G0(s) represents the TF from vi to
v0; H(s) represents the TF from v0 to ic (the current through
the capacitor in the HF filter); P1(s) and P2(s) are sensors
(i.e., low-pass filters); ki and ku are the control variable
gains; τ [s] is an actuation delay that is used to approximate
the dynamics of the power electronics; and C(s) is a PI
controller, i.e.,

C(z−1) = kp1 + kp2
tsz
−1

1− z−1

where ts [s] is the sampling rate of the DSP. The transfer
function analyzer (TFA) is used for identification purposes,
and will be discussed in the case study. As stated in the
Remark in the previous section, the FRFs of continuous-
time and discrete-time systems are nearly identical when
the Nyquist-Shannon sampling theorem is met. Since the
proposed method invokes a data-driven method using the
FRF of a system, all functions discussed hereafter will be
FRFs.

From this framework, it can be observed that the inner
feedback loops are reminiscent of a state-feedback control
architecture. For this application, note that {G0, P1, P2} ∈
S and H ∈ P (where H possesses a zero at zero). The
objective of this application is to design controller’s gains
such that the FRFs from vd to v0 and vr to v0 both achieve
the desired reference models.

In order to simplify the system framework, let us define
the following quantities:

km1
:= kp1(1 + ku); km2

:= kp2(1 + ku)

H1(k) := kiP1H; H2(k) := kuP2

G := G0e
−jωτ ; Cm(k) := km1

+ km2

tse
−jω

1− e−jω
(3)
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Fig. 1. Power converter control system schematic. The magnet represents the load of the process while the DSP implements the control strategy. The blue
portion represents the power electronics of the converter; the yellow portion represents the analog process of the converter with the load; the red portion
represents the digital-signal processor (DSP) which implements the control strategy; and the green block represents the measurement board which reads
the desired control variables and sends the information to the DSP for processing.

Fig. 2. Interconnection of the power converter control system. During normal operation, the TFA along with the connections indicated with a dashed-black
line are not present.

where k = [ki, ku, km1 , km2 ]. Let the FRF from vd to v0
be denoted as T ′(k) and the FRF from vr to v0 be denoted
as T (k). These closed-loop FRFs can easily be derived as
follows:

T ′(k) =
G(1 + ku)

1 +G[H1(k) +H2(k)]
(4)

T (k) =
G[1 + ku + Cm(k)]

1 +G[H1(k) +H2(k) + P2Cm(k)]
(5)

For the remaining theoretical portions of this document,
the model reference control will only be shown for T (k),
since the same procedures can also be applied to T ′(k).

IV. MAIN RESULTS

In this section, it will be demonstrated that the perfor-
mance specification of the control problem will be achieved
by formulating a convex optimization problem. The con-
trollers will be synthesized by only considering the FRF of
the system.



A. Convex Approximation

In subsequent sections, it will be shown that the type of
optimization problem that will be considered will have the
following form:

minimize
k

γ

subject to: y?(k)γ−1y(k)− z?(k)z(k) < 0
(6)

where y(k) and z(k) are linear functions of the decision
variable k and (·)? denotes the complex conjugate of the
argument. This type of problem is convex-concave (due
to the −z?(k)z(k) term). To convexify this constraint, the
term z?(k)z(k) can be linearized around an operating point
k0; without loss of generality, it can be shown that the
linearization of z?(k)z(k) leads to the following constraint:

z?(k)z(k) ≥ z?(k)z0 + z(k)z?0 − z?0z0 (7)

where z0 = z(k0). The condition in (7) can easily be
established by realizing the following inequality:

[z(k)− z0]?[z(k)− z0] ≥ 0 (8)

With this linearization, a sufficient condition for the inequal-
ity in (??) can be developed as follows:

y?(k)γ−1y(k)− [z?(k)z0 + z(k)z?0 − z?0z0] < 0 (9)

By using the Shur Complement Lemma [14], the above
condition can be expressed in terms of a Linear-Matrix-
Inequality (LMI):[

z?(k)z0 + z(k)z?0 − z?0z0 y?(k)
y(k) γ

]
� 0 (10)

This type of formulation will be used in the next section in
order to construct a model reference control objective.

B. Control Performance

For SISO systems, and for a stable system X(s), the H2

and H∞ norms are defined as follows:

‖X‖22 :=
1

2π

∫ ∞
−∞
|X(jω)|2dω

‖X‖∞ := sup
ω
|X(jω)|

It is imperative to note that the boundedness of spectral norm
X does not guarantee the stability of X .

A model reference criterion can be considered as a form of
control performance. If T is the closed-loop FRF and Td is
the desired FRF, then one can consider minimizing (T −Td)
in either the H2 or H∞ sense in order to shape T .

In the H∞ sense, the objective is to minimize ‖T (k) −
Td‖∞; an equivalent representation of this objective is to
minimize γ such that ‖T (k) − Td‖∞ < γ. This criterion is
satisfied if the following optimization problem is considered:

minimize
k∈R

γ

subject to:
[
T (k)− Td

]?[
T (k)− Td

]
< γ

(11)

for all ω ∈ Ω. It can be observed that the constraint in (11)
is not convex. Let us now define the following quantities:

w(k) = G[1 + ku + Cm(k)]

z(k) = 1 +G[H1(k) +H2(k) + P2Cm(k)]
(12)

where it is evident that T (k) = w(k)z−1(k); then the
constraint in (11) can be written as:[
w(k)− z(k)Td

]?
γ−1

[
w(k)− z(k)Td

]
− z?(k)z(k) < 0

Note that this constraint has the exact form as in (6);
therefore, the convex constraint in (10) can be utilized
to construct the model-reference optimization problem as
follows:

minimize
k∈R

γ

subject to:[
z?(k)z0 + z?0z(k)− z?0z0 [w(k)− z(k)Td]

?

w(k)− z(k)Td γ

]
� 0

(13)
for all ω ∈ Ω, where

z0 = 1 +G[H1(k0) +H2(k0) + P2Cm(k0)]

and k0 = [ki,0, ku,0, km1,0, km2,0] are the initializing gains.
In a similar manner, the following convex optimization

problem can be considered for minimizing ‖T (k)−Td‖22, as
follows:

minimize
k∈R

∫ ∞
0

γ(ω)dω

subject to:[
z?(k)z0 + z?0z(k)− z?0z0 [w(k)− z(k)Td]

?

w(k)− z(k)Td γ(ω)

]
� 0

(14)
for all ω ∈ Ω. For this H2 problem, note that γ is now a
function of ω (which contrasts with the optimization problem
in the H∞ sense).

Remark. Note that the choice of the initializing gains in k0
may affect the stability of the closed-loop system (for either
the optimization problems concerning theH∞ orH2 norms).

The next section will discuss how to select these gains in
order to ensure stability.

C. Stability Analysis

The model reference constraints developed in the previous
section do not guarantee the stability of the closed-loop
system. Setting a desired FRF to shape a closed-loop FRF is
analogous to bounding the closed-loop FRF; it can be shown
that unstable systems can still possess bounded FRF’s.

The initializing controller gains in k0 play an important
role in guaranteeing the stability of the closed-loop system.
By using the Nyquist criterion, the stability of the closed-
loop system can be ensured if certain conditions are met for
these initializing gains. In this paper, it is assumed that the
Nyquist contour has some small detours around the poles of
the open-loop system on the imaginary axis.



The following properties will be needed in order to prop-
erly analyze the stability conditions of the system:

Definition 1. Let wno{A(s)} refer to the winding number
around the origin, in the counterclockwise sense, of the image
of A(s) when s traverses the Nyquist contour (with small
detours around the poles of A(s) on the imaginary axis).
Then the following properties hold:

wno
{
A1(s)A2(s)

}
= wno

{
A1(s)

}
+ wno

{
A2(s)

}
(15)

wno
{
A(s)

}
= −wno

{
A?(s)

}
(16)

wno
{
A(s)

}
= −wno

{
A−1(s)

}
(17)

The open-loop FRF of the system T (k) in Fig. 2 is given
as

L(k) = G[H1(k) +H2(k) + P2Cm(k)].

Let F (k) = H1(k) + H2(k) + P2Cm(k) such that L(k) =
GF (k); by the Nyquist stability criterion, the closed-loop
system is stable if and only if 1 + GF makes nG + nF
counter-clockwise encirclements of the origin (where nG and
nF are, respectively, the number of right-half plane (RHP)
poles of G and F ). The Nyquist plot of 1 + GF must also
not pass through the origin.

Theorem 1. Suppose that ki, ku, km1
, and km2

are feasible
solutions to the following constraint:

z?(k)z0 + z?0z(k) > 0 ∀ω ∈ Ω (18)

where

z(k) = 1 +G[H1(k) +H2(k) + P2Cm(k)]

z0 = 1 +G[H1(k0) +H2(k0) + P2Cm(k0)]

with {G,H1, H2} ∈ S . Then the closed-loop system T is
stable if the parameters in the set k0 are stabilizing initial
gains.

Proof: The proof is based on the Nyquist stability criterion
and the properties of the winding number. The winding
number of z?(k)z0 is given as follows:

wno{z?(k)z0} = wno{z?}+ wno{z0}
= −wno{1 +GF (k)}

+ wno{1 +GF (k0)}
(19)

where F (k0) = H1(k0)+H2(k0)+Cm(k0). Note that F (k)
is strictly proper and GF (k) is strictly proper; therefore,
the winding number of z?(k)z0 can be evaluated over Ω
instead of the D-contour. Additionally, the constraint in (18)
implies that <{z?(k)z0} > 0 (where <{·} indicates the
real part of the argument), which signifies that the Nyquist
plot of z?(k)z0 will not pass through or encircle the origin.
Therefore, wno{z?(k)z0} = 0; from (19), the following
condition can then be realized:

wno{1 +GF (k)} = wno{1 +GF (k0)} (20)

The condition in (20) implies that if the initializing con-
trollers k0 are stabilizing (i.e., the open-loop system GF (k0)

TABLE I
SYSTEM CHARACTERISTICS OF SATURN POWER CONVERTER

Value Units
U0

(Output Voltage) 700 V

I0
(Output Current) 850 A

Input Power 18 kV
Input Frequency 50 Hz
IGBT equivalent

switching frequency 5000 Hz

Transformer Weight 4500 kg
Control Type RegFGC3 Type 10 / Ethernet [18] −

meets the Nyquist stability criterion), then the closed-loop
system will be stable. �

For the given structure in Figure. 2, it remains to be shown
how to select the initial stabilizing controllers in order to
guarantee the stability of the closed-loop system. From the
control structure of the power converter control system, it can
be observed that if all the controller gains in Figure. 2 are set
to zero, then the system will be in open-loop. However, since
G ∈ S , then selecting k0 = 0 will guarantee the stability of
the closed-loop system.

D. Convex Optimization via Semi-Definite Programming

All of the optimization problems considered in Section IV-
B are known as semi-infinite programming (SIP) problems
since there are a finite number of optimization variables
k and an infinite number of constraints with respect to ω.
To solve any of these problems, the optimization algorithm
can be converted to a semi-definite programming (SDP)
problem. In this manner, a predefined frequency grid can be
implemented in order to solve a finite number of constraints.
In other words, for a finite number of frequency points n
selected in ω ∈ [0,∞), then n constraints must be satisfied.
This frequency grid can be predefined in a variety of manners
(see [15], [16], [17]).

V. CASE STUDY

The focus of this case study will be on the SATURN
power converter, which incorporates the control structure
shown in Figure. 2 and uses the power converter with the
architecture shown in Figure. 1. The SATURN converter is
used in the Large Hardron Collider, in injector machines,
in experimental areas to power warm magnets, and for DC
or pulsed applications. In this power converter, a 18 kV/50
Hz transformer is used with a diode rectifier and a DC-Link
filter for the AC/DC conversion. An IGBT bridge (4 quadrant
operation) is then used for a DC/DC conversion, and the
output of this bridge is then fed into the filter. For this
application, two identical modules are assembled in series
(which doubles the output voltage) where the equivalent
switching frequency of this bridge is 5 kHz. The DSP is
also running at a rate of 5 kHz. A complete assembly of
the SATURN power converter is shown in Fig. 3. Table. I
displays the values of the system characteristics of this power
converter.



Fig. 3. SATURN power converter used for various applications at CERN.

A. Frequency Response Measurement

Since the proposed method is based on a data-driven
methodology with frequency-domain data, the FRF of each
subsystem within the power converter control system must
be obtained. In other words, we must obtain the FRF of G,
H , P1, P2, and the ADCs. The signals that are accessible
for the measurements are shown in Fig. 2, which are the
outputs of the sensors P1 and P2 and the input of the
converter control system (which goes into an ADC). Note
that the ADC at the output of the TFA has very fast
dynamics, and can be neglected. Therefore, when all of the
controller gains are set to zero, we are able to obtain the
frequency responses of GHP1 and GP2. However, note that
G appears independently of P2 in (4) and (5); since P1

and P2 are sensors with very high bandwidths relative to G
(approximately 10 kHz), then G ≈ GP2 at frequencies less
than 1 kHz. The FRF of the ADCs in the control loop are not
measured since the output of these ADCs are digital signals.
However, since these ADCs have very fast dynamics, they
can be approximated as pure delays. Since these delays are
known to be within specific ranges, a multi-model design can
be formulated to incorporate this uncertainty in the design.

The frequency response of the subsystems were obtained
with a transfer function analyzer (Powertek GP102) which
implements a sine-sweep method that recovers the gain
and phase of a system at discrete frequency points. The
appropriate scaling factors were taken into account for the
measurements (due to the series connection of the SATURN
modules) in order to coincide with the structure used in
Fig. 2. The frequency responses of GP2 and GHP1 are
shown in Fig. 4 and Fig. 5, respectively.

B. Controller Synthesis

For this application, it was desired to shape T ′(k) and
T (k) such that a bandwidth of 300 Hz and 500 Hz is attained,
respectively (where both achieve a damping of ζ = 0.8).
Note that in both of these TF’s, a pure delay appears in
the numerator; therefore, the performance of the loop-shape
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Fig. 4. Frequency response measurement of GP2.
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Fig. 5. Frequency response measurement of GHP1.

algorithm can be improved by specifying a desired loop-
shape Td(s) = T ∗d (s)e−sτ where T ∗d (s) was selected as a
standard second order process, i.e.,

T ∗d (s) =
ω2
d

s2 + 2ζωds+ ω2
d

(21)

where ζ is the damping factor and

ωd =
2πfd√

1− 2ζ2 +
√

2− 4ζ2 + 4ζ4

where fd is the desired closed-loop bandwidth. In other
words, Td is simply a delayed version of the second order
process. There is some uncertainty associated with the delay
τ ; the range of this delay is τ ∈ [0, 200]µs with a nominal
value of 100µs. Therefore, for tracking purposes, τ = 100µs
in Td(s) can be selected as a viable performance criteria.
Note that selecting τ to be another value within the uncertain
range will not significantly impact the response. The critical
values in the desired response are fd and ζ.

Although the delay in G was captured in the frequency
response measurement, it is known that there also exists an
additional measurement delay τe that was not captured in
the identification experiment (i.e., the delay from the ADCs
in the control loop). The value of the delay is uncertain and
is known to be in the range of τe ∈ [0, 30]µs. Therefore, a
multi-model design can be considered where the additional
delay can be gridded in this range and incorporated into the



closed-loop TF’s. The grid was established in intervals of
5 µs (i.e., τei = [0, 5, . . . 30]µs, i = 1, . . . , 7).

In the H∞ sense, the optimization problem to consider for
this case study is as follows:

minimize
k∈R

γ

subject to: ‖Ti(k)− Td‖∞ < γ

‖T ′i (k)− T ′d‖∞ < γ

i = 1, . . . , 7

(22)

where Ti(k) and T ′i (k) are the closed-loop TF’s that in-
corporate the additional i-th delay in τei ; Td is the desired
closed-loop TF for shaping T (k) (with a desired bandwidth
of fd = 500 Hz and damping ζ = 0.8); T ′d is the desired
closed-loop TF for shaping T ′(k) (with a desired bandwidth
of f ′d = 300 Hz and damping ζ ′ = ζ). In the H2 sense, the
optimization problem to consider is as follows:

minimize
k∈R

∫ ∞
0

γ(ω)dω

subject to: ‖Ti(k)− Td‖22 < γ(ω)

‖T ′i (k)− T ′d‖22 < γ(ω)

i = 1, . . . , 7

(23)

These optimization problems can be transformed to convex
problems by implementing the methods outlined in Section
IV-B.

C. Experimental Results

The constraints in the optimization problem in (22) and
(23) were first converted to LMI constraints. Since the
transfer function analyzer provides the gain and phase at
discrete frequency points, the optimization problem then
becomes an SDP problem. For solving the H2 problem in
SDP form, the objective function in (23) must be discretized
where

∫
γ(ω)dω →

∑
i γi.

For comparative purposes, controllers were designed by
considering the model of the process. Since there was un-
certainty associated with the delay τ , a multi-model approach
was implemented to ensure that the performance was attained
for the uncertain values. Therefore, for the model-based
design, the problem in (22) and (23) was solved by gridding
in both τ and τe.

The closed-loop frequency response of |T ′| and |T | are
shown in Fig. 6 and Fig. 7 (respectively) for the solutions
obtained by minimizing both the H∞ and H2 norms of
the process. From these figures, it can be observed that the
model-based design produces the worst performance while
the data-driven based design achieves the desired perfor-
mance for both T and T ′. The performance achieved by the
data-driven method (in both the H∞ and H2 minimization
cases) are comparable.

Remark. Note that the solutions obtained for the model-
based design were nearly identical for both the H2 and H∞
problems. Hence the single result shown for the model-based
design in Fig. 6 and Fig. 7.
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Fig. 6. The closed-loop response of |T ′|; data-driven method with H∞
performance (red line); data-driven method with H2 performance (blue
line); model-based approach with H2/H∞ performance (yellow line); -
3 dB point representing 300 Hz bandwidth (dashed-black line).
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Fig. 7. The closed-loop response of |T |; data-driven method with H∞
performance (red line); data-driven method with H2 performance (blue
line); model-based approach with H2/H∞ performance (yellow line); -
3 dB point representing 500 Hz bandwidth (dashed-black line).

Table. II displays the optimal solutions for all criteria
considered in this case study. It can be observed that the
optimal solutions γ∗ obtained with the data-driven method
are less than the solutions obtained with the model-based
approach. This is due to the fact that the uncertainty in the
delay τ for the model-based design was too conservative.
This conservativeness was significantly reduced in the data-
driven approach since the delay τ was captured in the FRF
identification experiment.

VI. CONCLUSION

A new data-driven method for computing a controller
for the CERN power converter control system that attains
H2 or H∞ performance has been presented. A frequency-
domain approach has been used in order to avoid the problem
of unmodeled dynamics associated with parametric models.
A non-convex model reference constraint was convexified
by linearizing the non-convex function around a stabilizing
operating point. This linearization process allowed the use
of the Shur Complement Lemma to construct an LMI and
solve a convex optimization problem. This method has been
applied to a power converter control system which uses a
specific controller structure and is used for experimental



TABLE II
COMPARISON OF OPTIMAL SOLUTIONS BETWEEN DATA-DRIVEN AND

MODEL-BASED METHODOLOGY

k∗i k∗u k∗p1 k∗p2 γ∗

H∞
(data-driven) 1.29 3.80 0.42 2 · 10−6 0.057

H2

(data-driven) 1.39 3.82 0.60 7 · 10−7 0.108
(peak value)

H∞
(model-based) 0.95 1.70 0.48 3 · 10−7 0.149

H2

(model-based) 0.95 1.70 0.48 3 · 10−7 0.191
(peak value)

purposes at CERN. In the case study presented in this paper,
it has been shown that the proposed data-driven method of-
fers a systematic optimization-based approach that meets the
challenging specifications required for the application. The
experiments have confirmed that the data-driven approach
significantly reduces the conservativeness associated with the
modeling process. For future work, it will be desired to
develop a method (in a data-driven sense) that will implement
a search algorithm such that the global optimal solution to
the H∞ problem can be obtained.
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