
Miniphases: Compilation using Modular
and Efficient Tree Transformations

Dmitry Petrashko
EPFL, Switzerland

dmitry.petrashko@gmail.com

Ondřej Lhoták
University of Waterloo, Canada

olhotak@uwaterloo.ca

Martin Odersky
EPFL, Switzerland

martin.odersky@epfl.ch

Abstract
Production compilers commonly perform dozens of trans-
formations on an intermediate representation. Running those
transformations in separate passes harms performance. One
approach to recover performance is to combine transforma-
tions by hand in order to reduce number of passes. Such an
approach harms modularity, and thus makes it hard to main-
tain and evolve a compiler over the long term, and makes
reasoning about performance harder. This paper describes a
methodology that allows a compiler writer to define multiple
transformations separately, but fuse them into a single tra-
versal of the intermediate representation when the compiler
runs. This approach has been implemented in the Dotty com-
piler for the Scala language. Our performance evaluation in-
dicates that this approach reduces the running time of tree
transformations by 35% and shows that this is due to im-
proved cache friendliness. At the same time, the approach
improves total memory consumption by reducing the ob-
ject tenuring rate by 50%. This approach enables compiler
writers to write transformations that are both modular and
fast at the same time.

CCS Concepts •Software and its engineering → Com-
pilers

Keywords compiler performance, tree traversal fusion,
cache locality

1. Introduction
Contemporary compilers are complicated, consisting of
thousands to millions of lines of code. The design of a com-
piler is constrained by multiple competing requirements,
and it is challenging to satisfy all of them simultaneously.
A compiler needs to be correct, and therefore easy to test.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’17, June 19-24, 2017, Barcelona, Spain

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4988-8/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3062341.3062346

A compiler needs to be maintainable and easy to debug.
To serve both of these needs, the design of the compiler
should be modular. But a compiler also needs to be fast.
Compiling a complicated programming language is compu-
tationally expensive, but software developers run their com-
pilers many times during development, and waiting for the
compiler hinders their productivity. A good compiler design
provides both modularity and performance at the same time.

Balancing modularity and performance has been a diffi-
cult and long-running challenge in the compiler for the Scala
programming language. Compilation times have been a fre-
quent complaint from users. On many occasions, compiler
developers had to make difficult trade-offs between modu-
larity, maintainability, and performance.

Most compilers are composed of a sequence of transform-
ations of some intermediate representation of the program
being compiled. Often, a core part of the intermediate rep-
resentation is an abstract syntax tree.

In this paper, we propose a new design for tree transform-
ations that is both modular and efficient at the same time.
This design is adopted in the Dotty compiler for Scala. We
present the design to demonstrate its modularity and we em-
pirically evaluate its performance in the Dotty compiler.

For modularity, each transformation of the intermediate
representation should be expressed as an independent tra-
versal of the abstract syntax tree. However, the tree is much
too large to fit in cache, so each traversal of the whole tree
is expensive. Our solution enables the compiler developer to
implement, test, and reason about transformations as separ-
ate traversals. However, our approach fuses the transform-
ations performed at individual tree nodes so that multiple
logical transformation passes (“Miniphases”) are performed
in a single traversal of the abstract syntax tree.

The remainder of this paper is organized as follows:
• Section 2 shows the conflict between modularity and per-

formance based on experience with Scala 2.x compilers;
• Section 3 presents performance characteristics that we

targeted when designing the Miniphases framework;
• Section 4 introduces proposed design abstractions and

describes the implementation inside the Dotty compiler;

• Section 5 presents results of experiments that evaluate
the impact of the Miniphases framework on GC object
promotion rate and CPU cache misses;

• Section 6 covers limitations of the framework and sound-
ness of fusion;

• Section 7 discusses real-world experience with the frame-
work, such as maintenance cost and the on-boarding pro-
cess for new contributors;

• Section 8 presents related work;
• Section 9 concludes.

2. Background: Scala Compilers
The current Scala compiler has been the production compiler
since version 2.0 of Scala in 2006. The Miniphase approach
that we study in this paper is being implemented in Dotty,
a next-generation compiler for experimenting with new lan-
guage features and compiler designs for Scala.

Both compilers share the following common structure.
The major internal data structures are trees, which describe
the syntax of the program being compiled, and are gradu-
ally transformed by the compiler pipeline, and types and
symbols, which describe semantic information and the re-
lationships between program entities. The program being
compiled is represented as a sequence of compilation units.
Every compilation unit is a single source-file which may
define multiple top-level classes.

The tree nodes in both compilers are logically immutable
and do not have a link to their parent node. This allows to
reuse trees in multiple locations, and simplifies debugging
as no mutation to trees is possible. When trees are modi-
fied, they are rebuilt using copiers. An optimization avoids
the copying in the (quite common) case where a transform
returns a tree with the same fields as its input.

Symbols are unique identifiers for definitions, including
members and local variables, coming both from sources cur-
rently being compiled as well as their binary dependencies.
Types are used not only to describe the type of an entity, but
can also serve as references to program definitions such as
methods or variables. In the Dotty compiler, this has been
generalized to a point where all references to other program
parts are embodied in types. This is possible, and convenient,
because the Scala type system includes singleton types [18],
which guarantee that an expression has the same value as
some entity such as a field or variable, and are thus equi-
valent to references to those fields and variables. Types also
encode constants [13] and higher-kinded types.

An execution of the compiler is broadly divided into the
front-end, the tree transformation pipeline, and code gener-
ator. The front-end parses and type-checks source code, and
generates trees annotated with type information. The tree
transformations gradually desugar and lower the Scala-like
code to a simpler form that is close to Java bytecode. The
code generator emits Java bytecode from the lowered trees.

Figure 1: Mega-phase based transformation of a tree

In this paper, our focus is on the middle phases which con-
situte the tree transformation pipeline.

2.1 Experience with the Scala Compiler
In this section, we review experience from the past ten years
of developing the Scala compiler, focusing especially on
modularity and performance.

The compiler that has been used for Scala versions 2.0
to 2.12 is organized as a sequence of phases. Each phase is
a function that takes the tree of a compilation unit as input
and returns a transformed tree as output. The implementation
of each phase can be arbitrary Scala code, and there are
no restrictions on how it, for example, traverses the tree.
This Megaphase approach is illustrated in Figure 1. In the
compiler for Scala version 2.12.0, there are 24 such phases,
listed in Table 1.

The Megaphase approach was originally intended to be
modular in that each phase is an independent transformation
of the tree.

A drawback is that each phase that implements a specific
language feature must traverse the entire tree to find uses
of that feature. When a use of the feature is found, the phase
transforms the relevant tree node. All ancestor nodes are also
rebuilt because the tree is immutable. For example, the pro-
gram in Listing 1 uses pattern matching, lazy vals, and mix-
ins. To compile this program, at least five transformations
are needed to implement the three language features, to cre-
ate a constructor for the class Increment, and to normalize
the method interfaceMethod to take an empty list of ar-
guments. When implemented as independent Megaphases,
each of these transformations must traverse the entire tree.

phase name id description
parser 1 parse source into ASTs, perform simple desugaring
namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects
typer 4 the meat and potatoes: type the trees

patmat 5 translate match expressions
superaccessors 6 add super accessors in traits and nested classes

extmethods 7 add extension methods for inline classes
pickler 8 serialize symbol tables

refchecks 9 reference/override checking, translate nested objects
uncurry 10 uncurry, translate function values to anonymous classes

fields 11 synthesize accessors and fields, including bitmaps for lazy vals
tailcalls 12 replace tail calls by jumps

specialize 13 @specialized-driven class and method specialization
explicitouter 14 this refs to outer pointers

erasure 15 erase types, add interfaces for traits
posterasure 16 clean up erased inline classes
lambdalift 17 move nested functions to top level

constructors 18 move field definitions into constructors
flatten 19 eliminate inner classes
mixin 20 mixin composition

cleanup 21 platform-specific cleanups, generate reflective calls
delambdafy 22 remove lambdas

jvm 23 generate JVM bytecode
terminal 24 the last phase during a compilation run

Table 1: Phases in Scala 2.12.0

1 trait Interface {
2 def interfaceMethod = 1
3 lazy val interfaceField = 2
4 }
5

6 class Increment(by: Int) extends Interface {
7 def incOrZero(b: Any) = b match {
8 case b: Int => b + by
9 case _ => 0

10 }
11 }

Listing 1: Sample Scala program

In this example, each of the phases changes only a single
node in the tree, yet five traversals are needed to change five
nodes.

To improve performance, consecutive phases have been
joined at the source level by hand, making the resulting
phase contain code to perform multiple transformations at
once. Even though the Megaphase design was intended
to be modular, performance considerations pressured the
developers to mix unrelated transformations in individual
phases. This reduction in the number of phases makes the
compiler faster, at a cost of hard-to-predict interactions
between different transformations. Over the years, this has
led to a code-base that is hard to maintain and evolve.

For example, Scala supports method definitions with mul-
tiple argument lists. The phase called uncurry was originally
written to flatten the argument lists in such definitions into a
single list of arguments. For the sake of performance, several
unrelated transformations were added to this phase. In par-
ticular, this phase also finds try blocks used as subexpres-
sions of some expression and lifts them into separate meth-
ods. This transformation is necessary because Java try blocks
are statements, not expressions, so the JVM implementation
of exception handlers does not provide a way to communic-
ate an expression context from the try block to the exception
handler. This transformation is completely unrelated to the
original purpose of the uncurry phase. In the Dotty com-
piler, this transformation is done in its own Miniphase called
LiftTry.

As another example, the Scala compiler contains a phase
called refchecks, originally written to check that overrid-
ing methods conform to the types of the superclass meth-
ods that they override. Originally, the phase was intended to
only inspect but not modify the tree. However, the current
implementation of this phase performs multiple transform-
ations of the tree. In particular, it replaces local (singleton)
object definitions by local variables containing the object,
it replaces calls to factory methods with calls to class con-
structors, and it eliminates conditional branches when their
condition is statically known. None of these transformations

phase name id description

FrontEnd 1 Compiler frontend: scanner, parser, namer, typer
sbt.ExtractDependencies 2 Sends information on classes’ dependencies to sbt via callbacks

PostTyper 3 Additional checks and cleanups after type checking
sbt.ExtractAPI 4 Sends a representation of the API of classes to sbt via callbacks

Pickler 5 Generate TASTY info
FirstTransform 6 Some transformations to put trees into a canonical form

CheckReentrant 7 Internal use only: Check that compiled program has no data races involving global vars
RefChecks* 8 Various checks mostly related to abstract members and overriding

CheckStatic* 9 Check restrictions that apply to @static members
ElimRepeated* 10 Rewrite vararg parameters and arguments

NormalizeFlags* 11 Rewrite some definition flags
ExtensionMethods* 12 Expand methods of value classes with extension methods

ExpandSAMs* 13 Expand single abstract method closures to anonymous classes
TailRec* 14 Rewrite tail recursion to loops
LiftTry* 15 Put try expressions that might execute on non-empty stacks into their own methods

ClassOf* 16 Expand ‘Predef.classOf‘ calls.
TryCatchPatterns* 17 Compile cases in try/catch

PatternMatcher* 18 Compile pattern matches
ExplicitOuter* 19 Add accessors to outer classes from nested ones.

ExplicitSelf* 20 Make references to non-trivial self types explicit as casts
CrossCastAnd* 21 Normalize selections involving intersection types.

Splitter* 22 Expand selections involving union types into conditionals
VCInlineMethods* 23 Inlines calls to value class methods

IsInstanceOfEvaluator* 24 Issues warnings when unreachable statements are present in match/if expressions
SeqLiterals* 25 Express vararg arguments as arrays

InterceptedMethods* 26 Special handling of ‘==‘, ‘|=‘, ‘getClass‘ methods
Getters* 27 Replace non-private vals and vars with getter defs (fields are added later)

ElimByName* 28 Expand by-name parameters and arguments
AugmentScala2Traits* 29 Expand traits defined in Scala 2.11 to simulate old-style rewritings

ResolveSuper* 30 Implement super accessors and add forwarders to trait methods
ArrayConstructors* 31 Intercept creation of (non-generic) arrays and intrinsify.

Erasure 32 Rewrite types to JVM model, erasing all type parameters, abstract types and refinements.
ElimErasedValueType* 33 Expand erased value types to their underlying implmementation types

VCElideAllocations* 34 Peep-hole optimization to eliminate unnecessary value class allocations
Mixin* 35 Expand trait fields and trait initializers

LazyVals* 36 Expand lazy vals
Memoize* 37 Add private fields to getters and setters

LinkScala2ImplClasses* 38 Forward calls to the implementation classes of traits defined by Scala 2.11
NonLocalReturns* 38 Expand non-local returns

CapturedVars* 39 Represent vars captured by closures as heap objects
Constructors* 40 Collect initialization code in primary constructors

FunctionalInterfaces* 41 Rewrites closures to implement @specialized types of Functions.
GetClass* 42 Rewrites getClass calls on primitive types.

LambdaLift* 43 Lifts out nested functions to class scope, storing free variables in environments
ElimStaticThis* 44 Replace ‘this‘ references to static objects by global identifiers

Flatten* 45 Lift all inner classes to package scope
RestoreScopes* 46 Repair scopes rendered invalid by moving definitions in prior phases of the group
ExpandPrivate* 47 Widen private definitions accessed from nested classes

SelectStatic* 48 get rid of selects that would be compiled into GetStatic*
CollectEntryPoints* 49 Find classes with main methods
CollectSuperCalls* 50 Find classes that are called with super

DropInlined* 51 Drop Inlined nodes, since backend has no use for them
MoveStatics* 52 Move static methods to companion classes

LabelDefs* 53 Converts calls to labels to jumps
GenBCode 54 Generate JVM bytecode

Table 2: Phases in Dotty compiler. The horizontal lines indicate blocks of Miniphases(*) that constitute a single transformation.

Figure 2: Pipelining of a leaf-node through Miniphases

are related to the original purpose of the refchecks phase,
or to each other.

In this paper, we propose a framework that removes the
need to make this trade-off. The proposed framework allows
separate transformations to be defined in separate phases, yet
applies the transformations in a common traversal of the tree
for performance. Thus, it frees compiler developers from the
pressure to combine unrelated transformations in the same
phase.

Currently, the code of the Dotty compiler is modularized
into 54 phases, listed in Table 2. We expect that the number
of phases could increase to around 100 once the compiler is
finished.

3. Target Performance Characteristics
While designing the framework, we had approximate per-
formance characteristics in mind.

Based on user feedback on existing versions of the Scala
compiler, we would like to be able to compile about 4000
lines per second (on a MacBook Pro 14’, 2014). The current
scalac compiler can compile 1000–2000 lines per second
on such a machine, depending on the application being com-
piled.

The tree transformation pipeline uses about one-third of
the compilation time. The rest of the time is spent in the
typechecker and the code generator, which are independ-
ent of the tree transformation pipeline. Thus, the tree trans-
formations should process 12000 lines of code per second.
A typical line of code corresponds to about 12 tree nodes.
We estimate that the compiler performs about 100 distinct
transformations, each of which justifies a separate phase. We
would like the framework to spend no more than 20% of the
time traversing the tree, leaving 80% of the time for useful
transformations. Thus, a Megaphase approach would need to
visit each node in about 14 nanoseconds, or 28 CPU cycles.
If we can perform the 100 transformations in only 10 tra-
versals, we can use 140 nanoseconds, or 280 CPU cycles per
tree node visit.

4. Design
Listing 2 presents a simplified structure of the tree nodes
used in the Dotty compiler. Each tree node has a withNew-
Children method that creates a new node with a modified
list of children.

Figure 3: Pipelining of an inner-node through Miniphases

12 abstract sealed class Tree {
13 def tpe: Type
14 def withNewChildren(list: List[Tree]): Tree
15 def children: List[Tree]
16 }
17 class Ident(sym: Symbol) extends Tree
18 class Select(from: Tree, name: String) extends Tree
19 ...
20 class ValDef(sym: Symbol, rhs: Tree) extends Tree
21 class DefDef(sym: Symbol, rhs: Tree) extends Tree
22 class CompilationUnit(trees: List[Tree]) extends

Tree

Listing 2: Tree nodes

23 def compileUnits(units: List[CompilationUnit],
phases: List[Phase]) = {

24 var units1 = units
25 for (phase <- phases)
26 units1 = units1.map(unit => phase.runPhase(unit)

)
27 }

Listing 3: Overall traversal

The tree transformation pipeline has the overall structure
given in Listing 3. For each phase, and for each compilation
unit, the compiler applies the phase to the compilation unit.
In the Miniphase approach, this high-level structure remains
the same. However, multiple Miniphase transformations are
fused together and performed in a single phase.

To support this fusion, all Miniphases must traverse the
tree in a consistent order. A Miniphase is therefore imple-
mented as a phase whose runPhase does a postorder tra-
versal over the tree, as shown in Listing 4. When visiting
each node, it calls the transform method, which dispatches
to a specific node transformation function depending on the
type of the tree node. By default, the node transformations
are all identity methods. An implementation of a specific
transformation is expected to override the transformation
methods of the types of node relevant to the transformation.

The advantage of imposing a uniform postorder traversal
is that multiple Miniphases can now be fused together, after
being combined by functions presented in Listing 5. The

28 class Phase {
29 def runPhase(t: Tree): Tree
30

31 val runsAfter: Set[MiniPhase] = Set.empty
32 def checkPostCondition(t: Tree): Boolean = true
33 }
34

35 class MiniPhase extends Phase {
36 val valDefTransform: ValDef => Tree = id
37 val defDefTransform: DefDef => Tree = id
38 val identTransform: Ident => Tree = id
39 ...
40 val selectTransform: Select => Tree = id
41

42 final def transform(t: Tree) = t match {
43 case a: ValDef => valDefTransform(a)
44 case a: DefDef => defDefTransform(a)
45 ...
46 case a: Select => selectTransform(a)
47 }
48

49 final def runPhase(t: Tree): Tree = {
50 val newChildren =
51 t.children.map(sub => runPhase(sub))
52 val reconstructed = t.withNewChildren(

newChildren)
53 transform(reconstructed)
54 }
55 }

Listing 4: Definition of a Miniphase

56 private def chainMiniPhases(first: MiniPhase, second
: MiniPhase) = {

57 new MiniPhase {
58 val valDefTransform = { x: ValDef =>
59 val newTree = first.valDefTransform(x)
60 second.transform(newTree)
61 }
62

63 ... // similar to valDefTransform for all node
kinds

64

65 val runsAfter: Set[MiniPhase] =
66 second.runsAfter -- first ++ first.runsAfter
67

68 def checkPostCondition(t: Tree) =
69 first.checkPostCondition(t) &&
70 second.checkPostCondition(t)
71 }
72 }
73

74 def combine(a: Array[MiniPhase]): MiniPhase =
75 a.reduceRight((phase, acc) =>
76 chainMiniPhases(phase, acc)
77)

Listing 5: Fusion algorithm for Miniphases

fused Miniphase traverses the tree only once. While visiting
each tree node, it applies the transformations implemented
by all of its constituent Miniphases. The valDefTransform
method applies the valDefTransform method of the first
Miniphase (and similarly for other node types), but for
subsequent Miniphases, it must call the general transform
method, because the first Miniphase might have changed the
type of the node. This is illustrated in Figures 2 and 3. In Fig-
ure 2, the blue leaf node is transformed by three Miniphases
(yellow, green, orange), yielding an orange node, before any
of the other blue nodes are processed. In the next step, in Fig-
ure 3, the parent of the now orange node is processed by the
same three Miniphases.

A set of fused Miniphases has the following properties,
which must be taken into account by implementors:

• The transform method is called on all nodes of the
compilation unit in a post-order traversal order.

• When the transform method of Miniphase m is called
on a tree node t, t has already been transformed by all
Miniphases that come before m, and the children of
t have been transformed by all Miniphases that have
been fused with m, including ones that come both be-
fore and after m. In Figure 3, the yellow and green
Miniphases process a node whose child is already or-
ange, even though the orange Miniphase comes after the
green one. Though it is surprising that Miniphase m “sees
the future” in its child subtrees, we have found that this
rarely creates any problems, since most phases simplify
the trees and introduce new invariants and rarely break
existing ones.

We will discuss in Section 6 the criteria that developers
of transformation phases must consider in deciding whether
a phase can be fused with other phases.

Two important optimizations can be applied to the basic
fusion technique. Both these optimizations are shown in the
modified version of the Miniphase fusion implementation
given in Listing 6.

First, since most Miniphases transform only a small sub-
set of the types of tree nodes, the fusion code explicitly
checks (Line 81, Listing 6) if the transformation in one of
the Miniphases is the identity, and if so, the transformation
in that Miniphase is skipped.

Second, since most transformations do not change the
type of the tree node, a fast path that explicitly checks for
this case was added that avoids the dispatch in the transform
method, and instead calls the node transformation method

for the relevant node type directly.

4.1 Prepares
The Miniphase framework presented so far is sufficiently
general to implement all but 4 Miniphases present in the
Dotty compiler. The remaining 4 phases, however, perform
transformations that depend on the ancestors of the current

78 private def chainMiniphases(first: Miniphase, second
: Miniphase) = {

79 new Miniphase {
80 val valDefTransform =
81 if (first.valDefTransform == id)
82 second.valDefTransform
83 else if (second.valDefTransform == id)
84 first.valDefTransform
85 else { x: ValDef =>
86 val newX = phase.valDefTransform(x)
87 newX match {
88 case newX: ValDef =>
89 second.valDefTransform(x)
90 case other: Tree =>
91 second.transform(other)
92 }
93 ... // similar changes form all AST nodes
94 }
95 }

Listing 6: Optimization for identity transforms and for
nodes that keep the same node type

96 class MiniPhase extends Phase {
97 ... //members introduced in previous listings
98 val valDefPrepare: ValDef => Unit = empty
99 val defDefPrepare: DefDef => Unit = empty

100 val identPrepare: Ident => Unit = empty
101 ...
102 val selectPrepare: Select => Unit = empty
103 }

Listing 7: MiniPhase extended with prepares

tree node, so it may seem that a post-order traversal is not
ideal.

One example is the LiftTry transformation which was
described in Section 2.1. This transformation lifts try blocks
within an expression into independent methods. When it
encounters a try block, this phase needs to know whether
the block is part of a larger expression, and thus it needs
information about its ancestors in the tree.

In order to accommodate such phases without abandon-
ing the consistent post-order traversal that enables phase
fusion, prepare methods have been added to the frame-
work that mutate the internal state of a phase when enter-
ing a given type of subtree. Specifically, the LiftTry phase
maintains a boolean state which is an over-approximation of
whether the current subtree is inside an expression that re-
quires try blocks to be lifted into methods. Before processing
a tree node using the transform method, the runPhase
method first calls the corresponding prepare method to

update the state of the Miniphase.
The chainMiniPhases method now also needs to chain

prepares, as shown in Listing 8.
In the current implementation, there is a separate prepare

method for each type of tree node, just as there are node-

104 private def chainMiniPhases(first: MiniPhase, second
: MiniPhase) = {

105 new MiniPhase {
106 val valDefTransform = ... // as before
107

108 ... // as before
109

110 val runsAfter: Set[MiniPhase] = ... // as before
111

112 def checkPostCondition(t: Tree) = ... // as
before

113

114 val valDefPrepare =
115 if (first.valDefPrepare == empty)
116 second.valDefPrepare
117 else { t: ValDef =>
118 first.valDefPrepare(t)
119 second.valDefPrepare(t)
120 }
121 ... // similar to valDefPrepare for all AST

nodes
122 }
123 }

Listing 8: Fusion with prepares

specific transform methods. Only very few phases have non-
empty prepare methods, and those that do need to prepare for
most kinds of tree node types. Therefore, it may have been
sufficient (and simpler) to only have a single prepare method
that is executed for every node regardless of its type.

4.2 Initialization and Finalization of Phases
Later, during development, we have found it helpful to ex-
tend Miniphases with the ability to prepare for a compila-
tion unit and transform a compilation unit. compilation-
UnitPrepare is the proper place to initialize the initial in-
ternal state of the phase, such as populating global refer-
ences used by the phase, while compilationUnitTransorm
is a natural place to clean the internal state to avoid high
memory footprint and memory leaks.

5. Evaluation
We have performed an empirical evaluation of the per-
formance benefits of the Miniphase approach. We com-
pared the current version of the Dotty compiler, which uses
Miniphases, with a modified version in which the groups of
Miniphases were split up, so that each Miniphase performed
a separate tree traversal, like in the Megaphase approach.
We ran both versions of the compiler on two significant
input programs: the Scala standard library (34 000 LOC)
and the Dotty compiler itself (50 000 LOC). In addition to
the overall running time, we compared data from the JVM
garbage collector, specifically the number of objects alloc-
ated and promoted to the old generation, and data collec-
ted using low-level CPU counters to explain cache behavior.

Figure 4: Execution time of tree transformation passes,
typechecker, and code generation backend in Miniphase and
Megaphase versions of the Dotty compiler.

The benchmarks were executed on a server with two Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz CPUs, running on a
fixed frequency of 2.4Ghz with HyperThreading disabled.
This CPU has a 25MB L3 cache. Every one of the 10 cores
in this CPU additionally has a 256KB L2 cache and 32KB
L1-icache and L1-dcache. In this architecture, the L2 cache
is not inclusive and the L3 cache is inclusive on all levels
above it: data contained in the core caches must also reside
in the last level cache [6].

This server has 64Gb of 4-channel memory and runs 64-
bit Ubuntu Linux with kernel version 4.4.0-45-generic. We
have used the Oracle Hotspot Java VM version 1.8.0_111,
build 25.111-b14. In order to ensure consistency between the
runs and reduce variance due to disk seeks, all data needed
for compilation is stored in tmpfs, a Linux filesystem that is
an in-memory store.

5.1 Overall Time
Figure 4 shows the overall running time of the frontend, tree
transformation pipeline, and backend. The tree transform-
ations use a significant amount of the overall compilation
time: in the Megaphase approach, they take more time than
either the frontend or the backend. The graph also shows that
Miniphases decrease the time taken by the tree transforma-
tions by 37% when compiling the standard library and 34%
when compiling the Dotty compiler. Overall, the total com-
pilation time (including the frontend and backend) decreases
by 15% and 16%, respectively. In the following sections, we
look in more detail at the likely reasons for this improve-
ment.

5.2 GC Object Allocation and Promotion
In this section, we investigate the performance of the garbage
collector. The reported values were obtained by parsing the
GC logs obtained by passing -XX:+PrintGCDetails -XX:+
PrintGCTimeStamps to the Oracle Hotspot Java VM. The
entire compiler pipeline was executed 50 times from a cold

Figure 5: Total size of GC object allocated, GBytes

Figure 6: Total size of GC object tenured, GBytes

start, which represents a common setup of batch compilation
in a big project.

We measured how many managed objects are allocated
and then promoted to the old generation by garbage collec-
tion. We performed our measurements during the compila-
tion of the compiler itself and the standard library.

Figure 5 shows the total size of the objects allocated
in the tree transformation pipeline. Miniphases reduce the
amount of memory allocated by 5% during compilation of
the Dotty compiler itself and 9% during compilation of the
Scala standard library. This is explained by the fact that we
need to recreate a path from the modified part of the tree
to the root less frequently. It is important to note that the
absolute amount of memory allocated is high, between 7 to
9 GB, so even a decrease of 9% is a lot of memory. Note
that this is the total size of objects allocated during the entire
execution of the compiler, not the total consumed amount of
memory at any particular point in time.

The decrease in the objects promoted to the old gener-
ation is much more significant, even in a relative sense, as
shown in Figure 6. The reduction thanks to Miniphases is a

Figure 7: Instructions and cycle counters

full 49% and 55% for the standard library and Dotty com-
piler, respectively. In absolute terms, Miniphases reduce the
promoted objects by over 1 GB in both cases. Many tree
nodes that are created in a Miniphase are replaced by sub-
sequent Miniphases in the same traversal, so they die young.
In contrast, in the Megaphase approach, a node created in
one phase is not replaced until the next traversal of the whole
tree, and by that time, the node may already have been pro-
moted to the old generation.

5.3 CPU Performance Counters
Focusing now on CPU behaviour, we used the perf utility
that is shipped with Ubuntu Linux 16.04 with Linux ker-
nel 4.4.0-45-generic to measure low-level CPU counters.
This measurement approach is less intrusive than tracing or
sampling profiling and allows to explain details of how the
code was executed by the CPU.

To isolate the tree transformation pipeline from the front
end and the code generator, we made two modified versions
of the Dotty compiler: one stops execution after the front
end, and the other stops execution after the tree transform-
ations. The data collected during 50 executions of each of
these versions was very consistent, with a variability less
than 0.5% across runs. We subtracted the counts of the two
versions to approximate the effect of the tree transformations
on the performance counters.

Figure 7 shows the number of instructions executed, the
number of clock cycles taken, and the number of stalled
cycles during the execution of the tree transformations. The
total number of instructions decreased by 10%, but the num-
ber of cycles used to execute those instructions decreased by
a much larger 35%.

This is explained by Figure 8a, which shows that Mini-
phases decreased the cache miss rate by 47%, 17% and
40% for L1 cache loads, L1 cache stores and last level
cache loads, respectively. Figure 8b indicates that the total
number of cache accesses decreased by only 10%. Figure 8c

shows that the total number of accesses that miss all on-chip
caches and access main memory decreased by 47%, from
512 million to 278 million accesses.

Figure 8d presents the L1-instruction cache miss count,
which decreased by 24%. We believe that this is explained
by the fact that CPU caches are inclusive and eviction from
last level cache would also trigger eviction from lower level
caches. By improving the hit rate in data caches, Miniphases
also indirectly reduce evictions from the L1-instruction
cache.

We conclude that the main reason for the performance
improvements of the Miniphase approach compared to the
Megaphase approach is that the Miniphase approach makes
more effective use of the CPU caches.

5.4 Comparison with Existing Production Compiler
To put the running times of the Dotty compiler with Mini-
phases in perspective, Figure 9 compares its performance to
the existing Scala production compiler, scalac, which im-
plements the Megaphase approach. It must be noted that
they are different compilers, so confounding factors other
than Miniphases also influence differences in their perform-
ance. Nevertheless, we observe that Dotty spends only 42%
and 39% as much time in tree transformations as scalac
when compiling the standard library and Dotty, respect-

ively. Dotty’s type checker is also faster than that of scalac,
though this is unrelated to Miniphases, and the performance
of the backends is about the same. Overall, Dotty compiles
the standard library and itself in only 51% and 58% of the
time taken by scalac.

6. Soundness and Limitations of Phase
Fusion

6.1 Fusion Criteria
We do not formally define criteria that would give sound-
ness guarantees that fusing phases does not change their be-
haviour. To be sound, any such formal criteria would have
be conservative. They can give guarantees for simple pro-
grams in which tree traversals affect a small number of well-
behaved data structures, but they would be too conservative
to apply to the setting of a complex production compiler in
which the tree traversals indirectly interact with files, tools
external to the compiler itself and other kinds of global mut-
able state.

Instead, we provide high-level criteria that must be in-
terpreted with an understanding of the overall design of the
compiler and the high-level relationships between the major
global data structures. The following requirements are suffi-
cient for a Miniphase to be fusible into a block:

1. A phase does not break invariants registered by previous
phases in the same block.

(a) Cache miss rates (b) L1 cache access counters

(c) Memory accesses that missed cache (d) L1-icache-load misses

Figure 8: Cache access counters.

2. A phase can successfully transform trees whose children
have already been transformed by future phases in the
same block.

3. A phase does not require that previous phases in the same
block have finished transforming the entire compilation
unit. Usually, when this is required, it is due to global data
structures outside of the tree being transformed, such as
the symbol table.

We have built a system for expressing phase invariants
and postconditions that are enforced by dynamic checkers
during testing. In our experience, these checkers are able to
catch cases when these three requirements for phase fusion
are violated. We will discuss these checkers in Section 6.3,

but first, we examine examples of phases that are not fused
because they violate the fusion criteria.

6.2 Example Violations of Fusion Criteria
Ideally, all the Miniphases in the compiler would be fused
into a single traversal of the tree. In practice, our compiler
has 6 separate blocks of Miniphases, marked with (*) in
Table 2. Miniphases in the same block are fused together, but
each block requires a separate traversal of the tree. Here, we
describe some of the reasons that prevented us from fusing
all Miniphases.

We have found that phases that violate of rule 1 are un-
common. While we did have phases that relax some invari-
ants of previous phases, we were able to implement them in
a more maintainable way following rule 1.

Figure 9: Execution time of stages of the Dotty and scalac
compilers when compiling the standard library and Dotty.

6.2.1 Rule 2 Example: Pattern Matching
The Scala language has a very expressive pattern matching
construct. A pattern matching phase translates this construct
into complicated code with many branches and instructions
similar to gotos. This phase also introduces a split between
groups of Miniphases because it makes major changes to the
structure of the trees, and because it would be difficult for
other phases to handle both the high-level pattern matching
constructs and the low-level control flow generated by this
phase. One example of such a conflicting phase is tail recur-
sion elimination, which transforms self-recursive methods
with tail-calls into loops within the method (which do not
grow the stack). Since both the pattern matching phase and
the tail recursion elimination phase make non-local changes
in the control flow, it would be very difficult to design them
so that they can both execute in a single tree traversal. Fol-
lowing rule 2, pattern matching introduces a split between
Miniphases in the phase-plan.

6.2.2 Rules 2 and 3 Example: Erasure
Since Java bytecode does not have generic types, a Scala
compiler needs to erase type arguments from generic types.
The phase that performs type erasure modifies the types of
many trees. Since types are the main carriers of semantic in-
formation, it would be difficult to write other transformation
phases that work on trees with both unerased and erased ver-
sions of types, violating rule 2.

At the same time, erasure has some global assumptions
about trees that it sees. In particular it assumes absence of
member selections on union types [19]. Union types are
eliminated by the splitter phase, which is required to trans-
form the entire compilation unit to eliminate all of them.
Therefore, the type erasure phase introduces a split between
groups of Miniphases because it violates both rules 2 and 3.

6.3 Phase Preconditions and Postconditions
Since the criteria from Section 6.1 are not verified statically,
the Miniphase framework uses a system of dynamic asser-
tions exercised by a large test suite to ensure correctness,
and to localize a bug to a specific phase.

Each Miniphase defines postconditions that must hold
about the tree nodes after the phase has transformed them.
Runtime tests of the postconditions are implemented in the
checkPostcondition method (Listing 4) of the Miniphase.
The intended meaning of the postconditions is that if one
Miniphase establishes a postcondition, all later Miniphases
must also preserve it.

During testing, a checker pass is inserted between phases.
A simplified version of its implementation is shown in List-
ing 9. The pass first checks various global invariants that are
expected to always hold between any phase. For example,
the checker removes all types from the tree and reconstructs
them bottom-up, and checks that the reconstructed types are
the same as the types that were associated with the tree. After
checking global invariants, the checker pass runs the post-
condition checks of not only the last executed Miniphase, but
also of all the Miniphases that executed before it. This en-
sures not only that each Miniphase has established its post-
conditions, but also that no other Miniphases have invalid-
ated them. In practice, we have found this mechanism to be
very effective in the localizing bugs to a given Miniphase. In
particular, bugs that involve interactions between different
Miniphases would be difficult to track down without these
checks. But if a postcondition of phase X fails after execut-
ing phase Y, we know immediately that phase Y breaks the
invariant that phase X is intended to establish. For example,
if a phase reintroduces a tree that contains pattern matching
after the phase that eliminates pattern matching, we know
immediately which phase to blame.

Miniphases also define preconditions by reference to the
postconditions of other Miniphases. That is, a Miniphase
specifies which other Miniphases must execute before it.
For example, the phase that removes pattern matching re-
quires the tail recursion elimination phase to finish pro-
cessing all the trees before it can finish executing. Any pre-
conditions specific to a Miniphase are usually the postcon-
ditions of some earlier Miniphase. To specify preconditions,
a Miniphase defines two methods. The runsAfter method
returns a set of Miniphases that must precede the current
Miniphase. The runsAfterGroupsOf method returns a set
of Miniphases that must strictly precede the fused Mega-
phase containing the current Miniphase. In other words, a
Miniphase in runsAfterGroupsOf must completely finish
transforming the tree before the current Miniphase can run.
These two methods are used to specify the ordering criteria
between Miniphases, in particular rule 2 from Section 6.1.
If Miniphase X requires the postcondition of Miniphase Y
to hold for only the node that X is immediately processing,
X includes Y in runsAfter. If X requires the postcondi-

124 class TreeChecker(previousPhases: List[Phase], typer
: Typer) extends Phase {

125 def runPhase(t: Tree): Tree = {
126 t.forAllSubtrees{subt =>
127 val reTyped = typer.typeCheck(subt.stripTypes)
128

129 reTyped.hasSameTypes(subt) &&
130 checkNoDoubleDefinitions(subt) &&
131 checkValidJVMNames(subt) &&
132 checkcheckNoOrphanTypes(subt) &&
133 /* other non-phase-specific sanity checks*/
134 previousPhases.forAll { phase =>
135 phase.checkPostCondition(subt)
136 }
137 }
138 }
139 ... // implementations of hellper methods such as

checkNoDoubleDefinitions
140 }

Listing 9: Simplified version of TreeChecker

tion of Y to hold for all nodes of the tree, in particular for
the children of the node that X is immediately processing,
X includes Y in runsAfterGroupsOf. The phase ordering
requirements specified by these two methods are checked
when the Dotty compiler runs, not when it is compiled, but
they are checked as soon as the compiler starts up, so any
violations are caught immediately, independent of any test
input.

The runtime overhead of the dynamic checks depends
significantly on the specific code being compiled, but the
approximate slowdown in the running time of the compiler
is about 1.5x. The dynamic checks are enabled on every run
of the test suite. The Dotty compiler has an extensive test
suite that includes the tests from the test suite of the current
production scalac compiler.

A similar dynamic invariant checking pass was initially
implemented in the current production scalac compiler.
However, in practice, it has not been maintained in a passing
state: some Megaphases invalidate the postconditions of
other Megaphases. For example, the pattern matching elim-
ination phase creates references to symbols that are created
only later, by a later phase. In general, because each Mega-
phase does multiple unrelated things, and because related
transformations need to be split into different Megaphases,
it has proven infeasible in practice to allocate to specific
Megaphases the postconditions that should logically belong
to the individual transformations.

7. Discussion
In this section, we discuss further experience with the
Miniphase framework, including the onboarding process,
code readability and maintenance, and common patterns that
work well together with Miniphases.

7.1 Readability
The Scala and Dotty compilers are developed by several dis-
connected teams and open-source contributors. Most open-
source contributors contribute their time voluntarily, and
wish to start contributing quickly, without spending a lot
of time to just get started. Most contributors want to solve
the specific problem that bothers them. With the Miniphase
framework, contributors find the phases easier to understand
for two reasons:

First, each Miniphase is smaller and does a single trans-
formation. A new developer needs to initially understand
only one small phase, rather than a large Megaphase in
which multiple different transformations are interleaved.
This leads to less coupling and easier understanding.

Second, the Miniphase framework insists on a specific
uniform structure of phases. While this makes it harder to
write the initial implementation in this framework, it helps
over the long term by making phases have similar structure
and be easier to understand and maintain.

This is a very substantial improvement over the situation
in the Scala 2.0-2.12 compiler, where fusing multiple com-
plex phases together by hand made it very hard to keep track
of what every phase does and how.

7.2 Predictable Performance Characteristics
The Miniphase approach imposes a specific structure that
makes it easy for external contributors to join and reason
about performance of a Miniphase. In most cases, the obvi-
ous solution that is suggested by the framework is the most
efficient. This is very helpful in the presence of open-source
contributors, since it reduces the number of iterations needed
to polish the performance of contributed code.

7.3 Onboarding Process
Open-source contributors frequently ask how they can get
involved and learn about internals of the compiler. A good
way for new contributors to start working on the compiler
is by extending either the tree checkers or phase postcon-
ditions. The new contributor learns which properties can be
relied on in which phases, and can check her assumptions in
test executions of the compiler. At the same time, the con-
tributor improves the compiler with stronger checkers that
make it possible to catch bugs earlier and simplify devel-
opment and debugging. Moreover, the added postcondition
checkers can serve as documentation of invariants for other
new contributors.

7.4 Experience with Contributors
When a new phase is being developed, we need to decide
where the phase should be run in the pipeline. Deciding
whether two phases should be fused is a complex question
that depends on how much high-level information the phase
needs and whether it can co-exist in the same phase block.
The former is commonly trivial while the latter is covered by
the rules presented in Section 6.

Based on our experience, most people who contribute to
the compiler are on the extremes: either they are experts who
have been working on the compiler for long and know the
entire pipeline, or they come to make a small contribution
once in a while. While the first group doesn’t need any
guidance on knowing where to place a phase, the second
group commonly starts by discussing the idea of a phase in a
mailing list, online chat, or personal communication. In this
discussion, experts suggest how the phase should be written
and where it should be in the pipeline.

After an initial implementation is written, it is contributed
as a pull request to a github repository and goes through
review by experts maintaining the repository. At the same
time, continuous integration systems run tests that verify that
pre- and post-conditions hold for the entire testsuite, which
includes the compiler itself, the standard library, and several
thousands of programs contributed by the community.

8. Related Work
8.1 Deforestation and Stream Fusion
The original inspiration for the Miniphase approach was
prior work on “deforestation” [3, 5, 24]. These approaches
compose multiple functions that transform lists or trees
without explicitly constructing the intermediate data struc-
tures between the composed functions. A limitation of these
general approaches is that the functions to be composed must
be in so-called treeless form. In the specific case of a Scala
compiler, this condition is violated because the tree trans-
formations inspect nodes nested inside subtrees and con-
struct new subtrees consumed by subsequent phases. Thus,
the general deforestation technique cannot be applied be-
cause it would change the semantics of the transformations.

8.2 Sound Fusion in Tree Traversal Languages
In this section, we describe several domain-specific tree tra-
versal languages and frameworks that are more general than
the functions that can be fused by deforestation, but still suf-
ficiently restricted to enable static analysis of the patterns of
data accesses in a traversal. This enables automatic sound
reordering of the node visits in multiple traversals.

Attribute Grammar Scheduling Attribute grammars [12]
are a formalism that defines computation on trees as evalu-
ation of a set of pure functions for each node that may de-
pend on the attribute values computed for other nodes. The
formalism has been applied in many practical compiler im-
plementations over the decades. As an example, JastAdd [4]
is a recent attribute grammar framework that continues to be
actively maintained, developed, and extended. A key prob-
lem is to find an order in which to evaluate the attributes of
tree nodes that respects the dependencies between the attrib-
ute functions. For a particular parse tree, it suffices to to-
pologically sort the pairs of tree nodes and their attributes,
since the dependencies are explicit in the attribute evalu-
ation functions. Various restricted classes of attribute gram-

mars have been defined for which an evaluation order can
be pre-computed ahead of time, independently of a particu-
lar parse tree. Some of these classes can be evaluated in a
single pass over the parse tree, with a single visit of each
node [10, 11, 15]. More general classes of attribute gram-
mars require multiple passes, and algorithms have been pro-
posed for finding evaluation orders that minimize the num-
ber of passes [1, 22]. These techniques have been extended
to evaluation of attributes of multiple tree nodes in paral-
lel [9]. Meyerovich et al. [16] combines parallel attribute
scheduling techniques with programmer input in the form of
sketches to synthesize GPU and multicore CPU implement-
ations of tree manipulating programs.

Locality in Tree Traversals Techniques have been pro-
posed to rewrite recursive programs that traverse trees to en-
hance data locality [7, 8, 25]. Jo and Kulkarni [7] proposed
point blocking, a transformation similar to loop interchange,
in which an outer loop of multiple tree traversals is inter-
changed with the traversal of the tree nodes, yielding a single
traversal that executes the previously outer loop at each node
that it visits. The transformation is applicable when the outer
loop is parallelizable. Jo and Kulkarni [8] extended the idea
of point blocking into a similar but more sophisticated tech-
nique, traversal splicing, that improves locality of irregular
tree traversals that traverse only a subset of the nodes of the
tree. Weijiang et al. [25] defined a static dependence test for
a domain specific language for tree traversals. The depend-
ence test analyzes tree access path expressions in the code
that visits each tree node to determine which visits of which
nodes can be reordered. The dependence test makes it pos-
sible to soundly apply point blocking, traversal splicing, and
parallelization to a larger set of tree traversal algorithms.

MADNESS Passes Rajbhandari et al. [20, 21] propose and
prove correct a technique that is able to compose recursive
operators that are implemented using a set of primitive re-
cursive operators. They demonstrate significant speedup ob-
tained by fusion. Their approach is able to find an optimal
schedule for fusion, while in our case the schedule is pre-
defined. Compared to the dependence test of Weijiang et
al. [25], the MADNESS system is more general in that it
applies to both pre-order and post-order traversals.

The main benefit of the techniques described in this sec-
tion is that they identify cases when soundness of fusion
can be proven automatically. There are two reasons why
they cannot be applied in the Dotty compiler. First, Dotty
transformations modify the tree and construct new subtrees.
Second, the implementations of Miniphase transformations
are not purely functional: they manipulate non-local mutable
data structures such as symbol tables, and they even cause
additional files to be parsed and type-checked and trans-
formed when they are referenced.

8.3 Other Pass Fusion Approaches
ASM [2] is Java bytecode instrumentation and emission lib-
rary based on the visitor design pattern. A visitor transforms
instructions in a sequence of bytecode instructions. ASM al-
lows multiple visitors to be fused, so that part of the bytecode
sequence is processed by all of them before continuing with
the rest of the sequence. The obvious difference is that ASM
transforms sequences, while Miniphases transform trees. For
sequences, there is one obvious traversal order, while for
trees, various traversal orders are possible. Miniphases im-
pose a post-order traversal but provide the mechanism of
prepares, discussed in Section 4.1, to implement transforma-
tions that would otherwise require different traversal orders.
Another difference is that in Dotty, the meaning of a tree
often depends significantly on its subtrees, so the issue of a
phase observing children that have already been transformed
by other trees is more important. In contrast, the meaning
of a bytecode instruction usually does not depend on pre-
ceding instructions, at least not directly. Instead, it depends
strongly on context, such as the state of the JVM operand
stack, which ASM transformers usually maintain in addi-
tional data structures, not as part of the instructions them-
selves. In contrast, in the tree-based representation of Dotty,
information about the operands of an expression node is as-
sociated with its child nodes. In general, both the input and
the output of an ASM pass is JVM bytecode. In contrast,
the purpose of the transformations in Dotty is to translate an
intermediate representation similar to Scala source code to
one similar to Java bytecode, so the types of nodes that ap-
pear in the tree gradually change as the tree passes through
the sequence of transformations.

Lepper [14] proposes to optimize a sequence of traversals
of trees by multiple visitors by detecting which visitors are
interested in processing which nodes of the tree. This is done
by using reflection to identify visitors that do not override
the default visit methods for certain types of tree nodes. The
optimized traversal can then skip traversing entire subtrees
whose types ensure that none of the visitors are interested
in visiting any of their nodes. A key difference is that these
optimized visitors only traverse the tree, but do not generate
different trees to pass from one visitor phase to the next.

8.4 Compilers Based on Tree Transformation Passes
The Nanopass Framework [23] is a compiler intended for
teaching courses on compiler construction. In the frame-
work, each individual transformation is done in a separate
pass. Fusing the phases is suggested as possible future work.
Due to practical considerations when compiling a complex
language such as Scala, we need to have additional prepare
passes, which the Nanopass Framework does not have.

Like Dotty, the Polyglot compiler [17] is structured as a
sequence of passes that successively transform trees, in this
case from various extensions of Java to Java itself. Like in
Dotty, tree nodes are immutable, so each pass that replaces

a tree node with a new one rebuilds the spine of the tree
up to the root. The Miniphase approach of fusing tree trans-
formations could also be used to improve the performance
of Polyglot.

9. Conclusion and Future Work
The Miniphase approach removes the need to choose between
modularity and efficiency in the implementation of tree
transformations in a compiler. The resulting compiler is thus
more modular and more efficient than using the Megaphase
approach. This methodology simplifies both development
and maintenance. Our evaluation indicates that using fused
Miniphases allows speedups for tree transformations up to
1.6x that we demonstrated on real code bases with a real-
world Scala compiler. Our detailed evaluation shows that
the biggest contributing factor is improved cache friendli-
ness, which leads to better CPU utilization.

Our approach is applicable not only to trees, but can be
extended to directed acyclic graphs. We are also interested in
using Miniphase-based approaches for executing independ-
ent compiler phases in parallel.

While our work was primarily focused on a compiler for
Scala, we believe that the approach is general enough to
be used in other compilers which share the same internal
representation for considerable parts of their pipelines.

Acknowledgments
We want to thank Iulian Dragos for sharing his experience
based on 12 years work on Scala compilers, starting before
the time of Scala 2.0, even before the Scala compiler had
bootstrapped itself. His knowledge was very helpful in un-
derstanding the evolution of the Scala 2.0-2.12 codebase.

This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

We are grateful to other researchers and students that
use and base their work on the Dotty compiler and to the
anonymous reviewers for the valuable feedback and helpful
comments.

References
[1] H. Alblas. Attribute evaluation methods. In H. Alblas

and B. Melichar, editors, Attribute Grammars, Applications
and Systems: International Summer School SAGA Prague,
Czechoslovakia, June 4–13, 1991 Proceedings, pages 48–113,
Berlin, Heidelberg, 1991. Springer Berlin Heidelberg. ISBN
978-3-540-38490-8. doi: 10.1007/3-540-54572-7_3. URL
http://dx.doi.org/10.1007/3-540-54572-7_3.

[2] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: a code
manipulation tool to implement adaptable systems. Adaptable
and extensible component systems, 30(19), 2002.

[3] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fu-
sion: from lists to streams to nothing at all. In R. Hinze
and N. Ramsey, editors, Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming,

http://dx.doi.org/10.1007/3-540-54572-7_3

ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages
315–326. ACM, 2007. ISBN 978-1-59593-815-2. doi:
10.1145/1291151.1291199. URL http://doi.acm.org/10.

1145/1291151.1291199.

[4] T. Ekman and G. Hedin. The JastAdd system – modular
extensible compiler construction. Science of Computer Pro-
gramming, 69(1):14–26, 2007.

[5] A. J. Gill. Cheap deforestation for non-strict functional lan-
guages. PhD thesis, University of Glasgow, UK, 1996. URL
http://theses.gla.ac.uk/4817/.

[6] Intel Corporation. Intel 64 and IA-32 architectures optim-
ization reference manual, 2016. URL http://www.intel.

com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf.

[7] Y. Jo and M. Kulkarni. Enhancing locality for recursive tra-
versals of recursive structures. In Proceedings of the 2011
ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’11,
pages 463–482, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0940-0. doi: 10.1145/2048066.2048104. URL
http://doi.acm.org/10.1145/2048066.2048104.

[8] Y. Jo and M. Kulkarni. Automatically enhancing locality
for tree traversals with traversal splicing. In G. T. Leavens
and M. B. Dwyer, editors, Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2012,
part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012,
pages 355–374. ACM, 2012. ISBN 978-1-4503-1561-6. doi:
10.1145/2384616.2384643. URL http://doi.acm.org/10.

1145/2384616.2384643.

[9] M. Jourdan. A survey of parallel attribute evaluation meth-
ods. In H. Alblas and B. Melichar, editors, Attribute
Grammars, Applications and Systems: International Summer
School SAGA Prague, Czechoslovakia, June 4–13, 1991 Pro-
ceedings, pages 234–255, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg. ISBN 978-3-540-38490-8. doi: 10.
1007/3-540-54572-7_9. URL http://dx.doi.org/10.1007/

3-540-54572-7_9.

[10] U. Kastens. Ordered attributed grammars. Acta In-
formatica, 13(3):229–256, 1980. ISSN 1432-0525. doi:
10.1007/BF00288644. URL http://dx.doi.org/10.1007/

BF00288644.

[11] U. Kastens. Implementation of visit-oriented attribute eval-
uators. In H. Alblas and B. Melichar, editors, Attribute
Grammars, Applications and Systems: International Summer
School SAGA Prague, Czechoslovakia, June 4–13, 1991 Pro-
ceedings, pages 114–139, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg. ISBN 978-3-540-38490-8. doi: 10.
1007/3-540-54572-7_4. URL http://dx.doi.org/10.1007/

3-540-54572-7_4.

[12] D. E. Knuth. Semantics of context-free languages. Math-
ematical systems theory, 2(2):127–145, 1968. ISSN 1433-
0490. doi: 10.1007/BF01692511. URL http://dx.doi.org/

10.1007/BF01692511.

[13] G. Leontiev, E. Burmako, J. Zaugg, A. Moors, and P. Phillips.
Sip-23 - literal-based singleton types. https://github.com/

scala/scala/pull/4706, 2016. Accessed: 2016-10-24.

[14] M. Lepper and B. Trancón y Widemann. Optimization of vis-
itor performance by reflection-based analysis. In J. Cabot and
E. Visser, editors, Theory and Practice of Model Transform-
ations: 4th International Conference, ICMT 2011, Zurich,
Switzerland, June 27-28, 2011. Proceedings, pages 15–30,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-21732-6. doi: 10.1007/978-3-642-21732-6_2.
URL http://dx.doi.org/10.1007/978-3-642-21732-6_2.

[15] P. Lewis, D. Rosenkrantz, and R. Stearns. Attributed
translations. Journal of Computer and System Sci-
ences, 9(3):279 – 307, 1974. ISSN 0022-0000. doi:
http://dx.doi.org/10.1016/S0022-0000(74)80045-0. URL
http://www.sciencedirect.com/science/article/pii/

S0022000074800450.

[16] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodik.
Parallel schedule synthesis for attribute grammars. In Pro-
ceedings of the 18th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’13,
pages 187–196, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1922-5. doi: 10.1145/2442516.2442535. URL
http://doi.acm.org/10.1145/2442516.2442535.

[17] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for java. In G. Hedin, ed-
itor, Compiler Construction: 12th International Conference,
CC 2003 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2003 Warsaw,
Poland, April 7–11, 2003 Proceedings, pages 138–152, Ber-
lin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN
978-3-540-36579-2. doi: 10.1007/3-540-36579-6_11. URL
http://dx.doi.org/10.1007/3-540-36579-6_11.

[18] M. Odersky. The Scala language specification v 2.11, 2016.
URL https://web.archive.org/web/20160702192746/

http://www.scala-lang.org/files/archive/spec/2.11/.

[19] B. C. Pierce. Programming with intersection types, union
types. Technical report, and polymorphism. Technical Report
CMU-CS-91-106, Carnegie Mellon University, 1991.

[20] S. Rajbhandari, J. Kim, S. Krishnamoorthy, L. Pouchet,
F. Rastello, R. J. Harrison, and P. Sadayappan. A domain-
specific compiler for a parallel multiresolution adaptive nu-
merical simulation environment. In J. West and C. M. Pan-
cake, editors, Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, SC 2016, Salt Lake City, UT, USA, November 13-
18, 2016, pages 40:1–40:12. ACM, 2016. ISBN 978-1-
4673-8815-3. URL http://dl.acm.org/citation.cfm?id=

3014958.

[21] S. Rajbhandari, J. Kim, S. Krishnamoorthy, L.-N. Pouchet,
F. Rastello, R. J. Harrison, and P. Sadayappan. On fusing
recursive traversals of K-d trees. In Proceedings of the 25th
International Conference on Compiler Construction, pages
152–162. ACM, 2016.

[22] H. Riis Nielson. Computation sequences: A way to charac-
terize classes of attribute grammars. Acta Informatica, 19(3):
255–268, 1983. ISSN 1432-0525. doi: 10.1007/BF00265558.
URL http://dx.doi.org/10.1007/BF00265558.

[23] D. Sarkar, O. Waddell, and R. K. Dybvig. Educational pearl:
A nanopass framework for compiler education. J. Funct.

http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://theses.gla.ac.uk/4817/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://doi.acm.org/10.1145/2048066.2048104
http://doi.acm.org/10.1145/2384616.2384643
http://doi.acm.org/10.1145/2384616.2384643
http://dx.doi.org/10.1007/3-540-54572-7_9
http://dx.doi.org/10.1007/3-540-54572-7_9
http://dx.doi.org/10.1007/BF00288644
http://dx.doi.org/10.1007/BF00288644
http://dx.doi.org/10.1007/3-540-54572-7_4
http://dx.doi.org/10.1007/3-540-54572-7_4
http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1007/BF01692511
https://github.com/scala/scala/pull/4706
https://github.com/scala/scala/pull/4706
http://dx.doi.org/10.1007/978-3-642-21732-6_2
http://www.sciencedirect.com/science/article/pii/S0022000074800450
http://www.sciencedirect.com/science/article/pii/S0022000074800450
http://doi.acm.org/10.1145/2442516.2442535
http://dx.doi.org/10.1007/3-540-36579-6_11
https://web.archive.org/web/20160702192746/http://www.scala-lang.org/files/archive/spec/2.11/
https://web.archive.org/web/20160702192746/http://www.scala-lang.org/files/archive/spec/2.11/
http://dl.acm.org/citation.cfm?id=3014958
http://dl.acm.org/citation.cfm?id=3014958
http://dx.doi.org/10.1007/BF00265558

Program., 15(5):653–667, 2005. URL http://dx.doi.org/

10.1017/S0956796805005605.

[24] P. Wadler. Deforestation: Transforming programs to eliminate
trees. Theoretical Computer Science, 73(2):231–248, 1990.

[25] Y. Weijiang, S. Balakrishna, J. Liu, and M. Kulkarni. Tree
dependence analysis. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’15, pages 314–325, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3468-6. doi:
10.1145/2737924.2737972. URL http://doi.acm.org/10.

1145/2737924.2737972.

http://dx.doi.org/10.1017/S0956796805005605
http://dx.doi.org/10.1017/S0956796805005605
http://doi.acm.org/10.1145/2737924.2737972
http://doi.acm.org/10.1145/2737924.2737972

	1 Introduction
	2 Background: Scala Compilers
	2.1 Experience with the Scala Compiler

	3 Target Performance Characteristics
	4 Design
	4.1 Prepares
	4.2 Initialization and Finalization of Phases

	5 Evaluation
	5.1 Overall Time
	5.2 GC Object Allocation and Promotion
	5.3 CPU Performance Counters
	5.4 Comparison with Existing Production Compiler

	6 Soundness and Limitations of Phase Fusion
	6.1 Fusion Criteria
	6.2 Example Violations of Fusion Criteria
	6.2.1 Rule 2 Example: Pattern Matching
	6.2.2 Rules 2 and 3 Example: Erasure

	6.3 Phase Preconditions and Postconditions

	7 Discussion
	7.1 Readability
	7.2 Predictable Performance Characteristics
	7.3 Onboarding Process
	7.4 Experience with Contributors

	8 Related Work
	8.1 Deforestation and Stream Fusion
	8.2 Sound Fusion in Tree Traversal Languages
	8.3 Other Pass Fusion Approaches
	8.4 Compilers Based on Tree Transformation Passes

	9 Conclusion and Future Work

