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Abstract

Shannon, in his landmark 1948 paper, developed a framework for character-
izing the fundamental limits of information transmission. Among other re-
sults, he showed that reliable communication over a channel is possible at
any rate below its capacity. In 2008, Arıkan discovered polar codes; the only
class of explicitly constructed low-complexity codes that achieve the capac-
ity of any binary-input memoryless symmetric-output channel. Arıkan’s polar
transform turns independent copies of a noisy channel into a collection of syn-
thetic almost-noiseless and almost-useless channels. Polar codes are realized
by sending data bits over the almost-noiseless channels and recovering them by
using a low-complexity successive-cancellation (SC) decoder, at the receiver.

In the first part of this thesis, we study polar codes for communications.
When the underlying channel is an erasure channel, we show that almost all
correlation coefficients between the erasure events of the synthetic channels
decay rapidly. Hence, the sum of the erasure probabilities of the information-
carrying channels is a tight estimate of the block-error probability of polar
codes when used for communication over the erasure channel.

We study SC list (SCL) decoding, a method for boosting the performance
of short polar codes. We prove that the method has a numerically stable
formulation in log-likelihood ratios. In hardware, this formulation increases
the decoding throughput by 53% and reduces the decoder’s size about 33%.
We present empirical results on the trade-off between the length of the CRC
and the performance gains in a CRC-aided version of the list decoder. We also
make numerical comparisons of the performance of long polar codes under SC
decoding with that of short polar codes under SCL decoding.

Shannon’s framework also quantifies the secrecy of communications. Wyner,
in 1975, proposed a model for communications in the presence of an eaves-
dropper. It was shown that, at rates below the secrecy capacity, there exist
reliable communication schemes in which the amount of information leaked to
the eavesdropper decays exponentially in the block-length of the code. In the
second part of this thesis, we study the rate of this decay.

We derive the exact exponential decay rate of the ensemble-average of the
information leaked to the eavesdropper in Wyner’s model when a randomly
constructed code is used for secure communications. For codes sampled from
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vi Abstract

the ensemble of i.i.d. random codes, we show that the previously known lower
bound to the exponent is exact. Our ensemble-optimal exponent for random
constant-composition codes improves the lower bound extant in the literature.
Finally, we show that random linear codes have the same secrecy power as
i.i.d. random codes.

The key to securing messages against an eavesdropper is to exploit the
randomness of her communication channel so that the statistics of her obser-
vation resembles that of a pure noise process for any sent message. We study
the effect of feedback on this approximation and show that it does not reduce
the minimum entropy rate required to approximate a given process. However,
we give examples where variable-length schemes achieve much larger exponents
in this approximation in the presence of feedback than the exponents in sys-
tems without feedback. Upper-bounding the best exponent that block codes
attain, we conclude that variable-length coding is necessary for achieving the
improved exponents.

Keywords: capacity-achieving error-correction codes, polar codes, successive-
cancellation decoding, successive-cancellation list decoding, wiretap channel,
channel resolvability, random-coding secrecy exponents, random-coding resolv-
ability exponents, feedback resolvability exponents, variable-length resolvabil-
ity codes



Résumé

Dans son article fondateur de 1948, Shannon a développé un cadre pour car-
actériser les limites fondamentales de la transmission des données. Il a montré
entre autres qu’il est toujours possible de communiquer sur un canal de manière
fiable tant que le débit de communication choisi reste en deçà de la capacité du
canal. En 2008, Arıkan, a découvert les codes polaires qui sont les seuls codes
de basse complexité avec une construction explicite atteignant la capacité de
tous les canaux symétriques à entrée binaire et sans mémoire. La transforma-
tion polaire d’Arıkan convertit des copies indépendantes d’un canal bruité en
une collection de canaux synthétiques, tous presque sans bruit ou au contraire
presque inutiles. Les codes polaires sont donc réalisés en envoyant les données
via des canaux presque sans bruit et en les récupérant au récepteur avec un
décodeur par annulations successives (SC) de basse complexité.

Dans la première partie de cette thèse, nous étudions les codes polaires pour
les communications. Lorsque le canal sous-jacent est un canal d’effacement,
nous montrons que presque tous les coefficients de corrélation entre les efface-
ments des canaux synthétiques déclinent rapidement. De là, nous déduisons
que la somme des probabilités d’effacement des canaux portant des données
est une bonne évaluation de la probabilité d’erreur des codes polaires lorsqu’ils
sont employés pour la communication via le canal d’effacement.

Nous étudions le décodage par annulations successives de type liste (SCL),
une méthode pour améliorer la performance des codes polaires courts. Nous
montrons que la méthode a une formulation numériquement stable en termes
des rapports de log-vraisemblances. Une fois implémentée, cette formulation
permet d’augmenter le débit du décodeur jusqu’à 53% et de réduire la taille du
matériel utilisé d’environ 33%. Nous présentons les résultats empiriques illus-
trant le compromis entre la longueur du code CRC et le gain de performance
pour une version du décodeur de type liste assisté par CRC. Nous comparons
aussi la performance des codes polaires longs avec décodage SC et celle des
codes polaires courts avec décodage SCL.

Le cadre mathématique de Shannon quantifie aussi la confidentialité de la
communication. En 1975, Wyner a proposé un modèle de communication en
présence d’un espion. Il a été démontré que tant que le débit de communication
choisi reste en deçà de la capacité de confidentialité du canal, il existe des
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viii Résumé

méthodes de communication fiables pour lesquelles la quantité d’information
divulguée à l’espion décrôıt exponentiellement en fonction de la longueur du
code. Dans la deuxième partie de cette thèse, nous étudions le taux de cette
décroissance.

Nous dérivons le taux précis de la décroissance exponentielle de la quan-
tité d’information moyenne divulguée à l’espion dans le modèle de Wyner
lorsqu’un code construit aléatoirement est utilisé pour des communications
confidentielles. Pour ceux tirés de l’ensemble des codes aléatoires i.i.d., nous
montrons que le minorant précédemment connu à l’exposant est exact. Notre
exposant optimal pour l’ensemble des codes aléatoires de composition con-
stante est plus grand que le minorant déjà connu dans la littérature. Enfin,
nous montrons que les codes aléatoires linéaires possèdent la même puissance
de confidentialité que les codes aléatoires i.i.d.

La clé pour protéger les messages contre l’espion est d’exploiter l’entropie
de son canal, de telle façon à ce que la statistique de l’observation de celui-ci
ressemble à celle d’un processus de bruit pur, quel que soit le message envoyé.
Nous étudions l’effet du rétrocontrôle sur cette approximation et montrons qu’il
ne réduit pas le taux minimum d’entropie requis pour approximer un proces-
sus donné. Cependant, nous donnons aussi des exemples qui montrent que,
toujours dans le cadre de cette approximation, des codes à longueur variable
atteignent des exposants beaucoup plus grands en présence du rétrocontrôle
que dans les systèmes sans rétrocontrôle. En dérivant un majorant sur le
meilleur exposant atteignable avec des codes de longueur fixe, nous concluons
que le codage à longueur variable est nécessaire afin d’atteindre ces exposants.

Mots-clés: codes correcteurs d’erreurs, codes polaires, décodage par annu-
lations successives, décodage par annulations successives de type liste, canal
wiretap, résolubilité du canal, exposants de confidentialité, exposants de résolubilité,
exposants de résolubilité en présence du rétrocontrôle, codes de résolubilité à
longueur variable
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Résumé vii

Contents ix

List of Figures xii

Notation xv

1 Introduction and Overview of the Results 1
1.1 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Information Theoretic Secrecy . . . . . . . . . . . . . . . . . . 7

I Communications 13

2 Arıkan’s Polar Coding Paradigm 15
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Channel Polarization . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Polar Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Performance of Polar Codes under SC Decoding . . . . 22
2.3.2 Complexity of Successive-Cancellation Decoding . . . . 25

2.4 Construction of Polar Codes . . . . . . . . . . . . . . . . . . . 27
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.A Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . 31

3 Correlation between Synthetic BECs 35
3.1 Recursive Computation of Correlation Coefficients . . . . . . . 38
3.2 A Tight Lower Bound on the Block-Error Probability . . . . . 40
3.3 Decay of Correlations . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . 43

ix



x Contents

3.3.2 Exponential Decay of Correlation Coefficients . . . . . 46
3.4 Summary and Extensions . . . . . . . . . . . . . . . . . . . . 55
3.A Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 56
3.B Second Order Statistics of the Erasure Events . . . . . . . . . 57

3.B.1 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . 58
3.B.2 Proof of Corollary 3.3 . . . . . . . . . . . . . . . . . . 59

3.C Proof of Equation (3.68) . . . . . . . . . . . . . . . . . . . . . 59

4 Efficient Implementation of Polar List Decoder 61
4.1 List Decoding of Polar Codes . . . . . . . . . . . . . . . . . . 63

4.1.1 Performance of Successive-Cancellation List Decoding . 67
4.1.2 CRC-Aided List Decoding . . . . . . . . . . . . . . . . 68

4.2 LLR-Based Formulation of List Decoding Algorithm . . . . . . 70
4.2.1 Ranking the Paths Based on the LLRs . . . . . . . . . 73
4.2.2 Advantages of LLR-Based Formulation . . . . . . . . . 76

4.3 Other Design Considerations . . . . . . . . . . . . . . . . . . . 77
4.3.1 Choice of CRC Length . . . . . . . . . . . . . . . . . . 77
4.3.2 SC or SCL? . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . 83

II Secrecy 85

5 The Wiretap Channel and Its Secrecy Exponents 87
5.1 The Secrecy Capacity . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Channel Resolvability . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Strong Secrecy from Channel Resolvability . . . . . . . . . . . 96
5.4 The Secrecy Exponent . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Exact Random-Coding Secrecy Exponents for the Wiretap
Channel 107
6.1 The Method of Types . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Exact Secrecy Exponent versus Exact Resolvability Exponent 110
6.3 Exact Resolvability Exponents . . . . . . . . . . . . . . . . . . 112

6.3.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.2 Comparison of Exponents . . . . . . . . . . . . . . . . 115

6.4 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.2 Achievability . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.3 Ensemble Converse . . . . . . . . . . . . . . . . . . . . 122
6.4.4 Derivation of Exponents for Each Ensemble . . . . . . 125

6.5 Random Linear Codes . . . . . . . . . . . . . . . . . . . . . . 129
6.5.1 Achievability . . . . . . . . . . . . . . . . . . . . . . . 131
6.5.2 Ensemble Converse . . . . . . . . . . . . . . . . . . . . 131



Contents xi

6.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . 137
6.A Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . 138

6.A.1 Proof of (i) on Page 114 . . . . . . . . . . . . . . . . . 138
6.A.2 Proof of (ii) on Page 114 . . . . . . . . . . . . . . . . . 139
6.A.3 Strict Monotonicity of The Exponents in Rate . . . . . 145
6.A.4 Alternative form of Ei.i.d.

s . . . . . . . . . . . . . . . . . 147
6.B Proof of Lemma 6.5 . . . . . . . . . . . . . . . . . . . . . . . . 148
6.C Numerical Evaluation of The Exponents . . . . . . . . . . . . 149

6.C.1 Computing E i.i.d.
s and Es . . . . . . . . . . . . . . . . . 149

6.C.2 Computing Ec.c.
s . . . . . . . . . . . . . . . . . . . . . . 150

6.D Proof of Lemma 6.6 . . . . . . . . . . . . . . . . . . . . . . . . 152
6.E Proof of Lemma 6.7 . . . . . . . . . . . . . . . . . . . . . . . . 153
6.F Proof of Equation (6.48) . . . . . . . . . . . . . . . . . . . . . 155
6.G Proof of Equations (6.55) . . . . . . . . . . . . . . . . . . . . . 156
6.H Proof of Equation (6.120) . . . . . . . . . . . . . . . . . . . . 156
6.I Proof of Lemma 6.9 . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Channel Resolvability in the Presence of Feedback 163
7.1 Variable-Length Resolvability Codes . . . . . . . . . . . . . . 165

7.1.1 Variable-to-Fixed-Length Resolvability Codes . . . . . 165
7.1.2 Fixed-to-Variable-Length Resolvability Codes . . . . . 166

7.2 Channel Resolution in the Presence of Feedback . . . . . . . . 169
7.2.1 Converse for Block Codes . . . . . . . . . . . . . . . . 169
7.2.2 Converse for Variable-to-Fixed-Length Codes . . . . . . 172
7.2.3 Converse for Fixed-to-Variable Length Codes . . . . . . 174

7.3 Improving Resolvability Exponents with Feedback . . . . . . . 177
7.3.1 Resolvability over BEC in the Presence of Feedback . . 178
7.3.2 Resolvability over BSC in the Presence of Feedback . . 181

7.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . 192
7.A Upper Bounds on the Best Attainable Exponents . . . . . . . 193

7.A.1 Proof of Lemma 7.3 . . . . . . . . . . . . . . . . . . . . 194
7.A.2 Proof of Lemma 7.5 . . . . . . . . . . . . . . . . . . . . 196

7.B Proof of Equation (7.101) . . . . . . . . . . . . . . . . . . . . 198
7.C Empirical Second Moment of Stopped Martingales . . . . . . . 199

A Ordering the Noisy Channels 201

B Useful Results from Convex Analysis 205

C Types versus Distributions 209

Bibliography 217

Curriculum Vitæ 229



List of Figures

1.1 Transmission of Information from Source to Sink, via a Medium . 1

1.2 To communicate a message, the encoder maps it to n channel input
symbols and the decoder estimates the sent message given noisy
channel outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Shannon Cipher System . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Wyner’s wiretap model . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Singe-step Polar Transform . . . . . . . . . . . . . . . . . . . . . 18

2.2 Two- and Three-fold Polar Transform . . . . . . . . . . . . . . . . 20

2.3 The butterfly computational structure of the SC decoder for m =
3; blue dashed and orange solid arrows show f− and f+ updates
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The entire set of n = 2m erasure probabilities of the synthetic
BECs, obtained after m-fold application of the polar transform to
a BEC(p), can be computed in O(n) operations. . . . . . . . . . . 28

3.1 Bounds on the Block-Error Probability of Polar Code on BEC(1/2) 43

4.1 Performance Comparison between Polar and LDPC Codes . . . . 62

4.2 Each un ∈ Un ⊂ Fn
2 corresponds to one of 2k paths on a binary tree. 64

4.3 SC Decoder chooses a path on the tree in a greedy single pass
through the tree: In this example û4 = argmaxu∈F2
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Notation

a := b a is defined as b.
� End of a proof
A,B, . . . Sets or events
N Set of natural numbers {1, 2, 3, . . . }
Z Set of integers {. . . ,−2,−1, 0, 1, 2, . . . }
R Set of real numbers
A× B Cartesian product of two sets A and B
An nth Cartesian power of the set A
|A| Cardinality of the finite set A
Ac Complement of the set (or event) A
xj
i If i ≤ j, the vector (xi, xi+1, . . . , xj), otherwise the null

vector
xn Shorthand notation for xn

1 = (x1, x2, . . . , xn)
xI (for I ⊂ N) Sub-vector (xi : i ∈ I)
wH(x

n) Hamming weight of xn

dH(x
n, yn) Hamming distance between xn and yn

[a]+ Positive clipping operation,

[a]+ := max{a, 0}

1{·} Indicator function; equals 1 if the statement inside the
braces is true and 0 otherwise.
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• For a distribution P ∈ P(A):
supp(P ) Support of P ,

supp(P ) := {a ∈ A : P (a) > 0}

H(P ) Entropy of P ,

H(P ) :=
∑
a∈A

P (a) log
[ 1

P (a)

]

• In this thesis, without essential loss of generality, the bases of log(·) and
exp(·) are assumed to be 2.

• For two distributions P ∈ P(A) and Q ∈ P(A):
P � Q P is absolutely continuous with respect to Q, i.e.,

supp(P ) ⊆ supp(Q)
|P −Q| �1 distance between P and Q,

|P −Q| :=
∑
a∈A
|P (a)−Q(a)|

D(P‖Q) Kullback–Leibler (KL) divergence between P and Q,

D(P‖Q) :=
∑
a∈A

P (a) log
[P (a)

Q(a)

]

• For a joint distribution Q ∈ P(X × Y):
QX (resp. QY ) x-marginal (resp. the y-marginal) of Q,

QX(x) :=
∑
y∈Y

Q(x, y), QY (y) :=
∑
x∈X

Q(x, y)

I(Q) Mutual information between random variables X and
Y when (X, Y ) ∼ Q,

I(Q) := D(Q‖QX ×QY )



Notation xvii

• For a distribution P ∈ P(X ) and a stochastic matrix W : X → Y :
P n n-fold product distribution

P n(xn) :=
n∏

i=1

P (xi), ∀xn ∈ X n

W n n-fold product matrix W n : X n → Yn

W n(yn|xn) =
n∏

i=1

W (yi|xi), ∀xn ∈ X n, yn ∈ Yn

P ×W Joint distribution (P ×W) ∈ P(X × Y)

(P ×W)(x, y) := P (x)W (y|x), ∀(x, y) ∈ X × Y

P ◦W y-marginal of the joint distribution P ×W ,

(P ◦W)(y) :=
∑
x∈X

P (x)W (y|x), ∀y ∈ Y





Introduction and
Overview of the Results 1
Communication is the process of transmitting information from an information
source to an information sink, via amedium. Here, transmission can be in space
or in time. Many of the systems we conventionally know as communication
systems are those that transmit information in space. For example, when we
make a phone call or send a fax we transfer information in space — from
one point to another point, with practically no delay. The transmission of
information in time is data storage; for example, all kinds of recording media
(from magnetic tapes to modern solid state storage devices) or even our DNA
transmit information in time.

Transmitter Receiver
Communication

Medium
Information

Source
Information

Sink

Figure 1.1: Transmission of Information from Source to Sink, via a Medium

The characteristic common to every communication medium available in
the nature is noisiness: the information carried by the medium is subject
to unpredictable, but statistically regular, alterations. Furthermore, in most
circumstances, the distortion caused by the communication media is beyond
tolerable levels. The principal task of communication system engineers is to
design transceivers capable of transmitting information reliably, i.e., with low
distortion, via a noisy communication medium.

Shannon, in his landmark paper [101] postulated a mathematical frame-
work that models information transmission systems. In particular, he quan-

1
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tified the amount of information a medium can reliably carry as its capacity,
and he showed that, rather surprisingly, as long as the rate of information
to be communicated over the medium is below its capacity, transmission at
arbitrarily low error probabilities is feasible.

Shannon used a non-constructive argument to demonstrate the existence
of arbitrarily reliable communication schemes that operate at rates close to
the capacity of the medium. Designing practical methods to exploit the com-
munication resources close to their capacities has, ever since, been a challenge.
About sixty years later, Arıkan [4, 5] proposed the first method, called polar
coding, for explicitly constructing low-complexity schemes that provably allow
reliable communications at rates arbitrarily close to the capacity. In the first
part of this dissertation we consider polar codes for communications, analyze
their performance, and discuss various aspects of the design and implementa-
tion of communication systems based on polar codes.

Shannon’s breakthrough gave birth to information theory: the discipline
of characterizing the fundamental limits of information transmission. The
scope of information theory is not limited to point-to-point communications.
In many circumstances more than two parties are involved in information
transmission. Consider scenarios where sensitive information is communicated
between two authorized parties, through a public communication media to
which an unauthorized eavesdropper has access as well. In such settings, in
addition to the reliability of information transmission, the secrecy of informa-
tion is important. Shannon’s framework also permits measuring the secrecy of
information systems.

The foundations of information-theoretic secrecy were laid by Shannon
[102] and later by Wyner [118]. In particular, Wyner [118] proposed a model,
called the wiretap model, for communications in the presence of an eavesdrop-
per through noisy media. He discovered that, as long as the eavesdropper’s
medium is noisier than that of the authorized receiver, reliable and secure
communication, is feasible. In the second part of this thesis, we focus on
Wyner’s wiretap model and establish several results on the fundamental limits
of secrecy guarantees in such a setting.

1.1 Channel Coding

Shannon’s celebrated paper [101], answered the fundamental question of how
much information can be transmitted reliably over a noisy communication
channel. A communication channel is the mathematical model for the com-
munication medium at hand. It can be seen as a ‘black box’ that accepts
input symbols from an input alphabet and produces an output symbol from
its output alphabet that is correlated to the input symbol, according to the
channel law. The channel is assumed to be dictated by the nature and most
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often known to us.1

To transmit information through a channel, an encoder uses a code to map
one of M different messages to a sequence of n channel input symbols and, at
the receiver side, a decoder attempts to reproduce the communicated message
upon observing the corresponding n channel output symbols (see Figure 1.2).

Noisy
Channel

Encoder DecoderMessage Estimation
n symbols n symbols

Figure 1.2: To communicate a message, the encoder maps it to n channel input
symbols and the decoder estimates the sent message given noisy channel outputs.

A code is characterized by three parameters: (i) its block-length n, (ii) its
rate, defined as

log(M)

n
,

measuring how many messages can be transmitted via n channel uses, and
(iii) its block-error probability, i.e., the probability of misestimating the sent
message at the receiver. (The careful reader will notice that the block-error
probability is not a well-defined concept without specifying a decoding algo-
rithm and the channel over which the code is to be used for communication.)

In n uses of the channel, the number of messages that can reliably be
transmitted can grow, at most, exponentially fast with n: there are exponen-
tially many different combinations of channel input symbols, formally known
as codewords, and two different messages should not be mapped to the same
codeword. Using all possible codewords for information transmission typically
results in a high block-error probability, because any small distortion from the
channel can ‘turn’ the sent codeword to another one and confuse the decoder.
Choosing only a subset of sufficiently ‘separated’ channel input sequences as
codewords reduces the probability of error, because to shift one codeword to
another, higher distortions from the channel would be necessary.

The common belief in the pre-Shannon era was that to improve the reliabil-
ity of transmission it is always necessary to decrease the number of codewords,
i.e., sacrifice the rate of information transmission. Shannon, contradicted this
belief by introducing the notion of channel capacity. His noisy channel coding
theorem asserts that, given any rate below the capacity of the channel and
any desired level of reliability, there exists a code of that rate that meets the
reliability requirement for communication over that channel, provided that we

1The latter might sound (and in practice is) a simplistic assumption. Usually the channel
over which the communication system is used by the end-user is not exactly the one for which
the system is designed. However, communication protocols often enable the transceivers to
estimate the channel and accommodate to channel conditions by changing the transmission
parameters accordingly. In addition, small changes in channel conditions would typically
not cause radical changes in the performance of the transmission scheme. Therefore, when
designing the system, the assumption about the knowledge of the channel is not unrealistic.
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let the block-length of the code be sufficiently large. Conversely, for any rate
above the capacity there is an upper bound to the reliability of any code of
that rate, no matter how large its block-length is.

Instead of giving a recipe for constructing a capacity-achieving code, to
prove his noisy channel coding theorem, Shannon relied on the probabilistic
method. He mentions the following, just after the statement of [101, Theo-
rem 11]:

The method of proving the first part [direct part] of this theorem is
not by exhibiting a coding method having the desired properties,
but by showing that such a code must exist in a certain group of
codes. In fact we average the frequency of errors over this group
and show that average can be made less than ε. If the average of
a set of numbers is less than ε there must exist at least one in the
set which is less than ε. This will establish the desired result.

Shannon’s random-coding method is an elegant approach for showing the
existence of good codes and is the de facto method for almost all achievabil-
ity proofs in information theory. However, employing the codes constructed
via his random-selection approach is computationally and practically infeasi-
ble. Any reliable high-rate code must have a large block-length [42, Theo-
rem 5.8.1]. Whereas, the memory and the computational power required for
the coding scheme proposed by Shannon grows exponentially in block-length.
Finding good and efficiently implementable codes (i.e., those with low block-
error probability, efficient encoding and decoding algorithms, and a rate close
to the capacity) was left as a challenging exercise to coding theorists.

Coding theory was inaugurated by the appearance of the perfect codes of
Hamming and Golay [45, 46] and, later on, Reed–Muller codes [83, 91]. In the
first decades of coding theory, the objective of coding theorists was to find
linear codes2 with a large number of codewords and a high minimum distance.
In other words, to ‘pack’ as many codewords as possible into the space of chan-
nel input sequences and ensure that every two codewords differ at sufficiently
many coordinates [73]. Some of the remarkable fruits of those efforts are the
Bose–Chaudhuri–Hocquenghem (BCH) codes and Reed–Solomon (RS) codes
[22, 55, 92].

Despite being very powerful and efficient (for the computing technology
of time), the early codes failed to achieve Shannon’s limits. Linearity is an
important property for the computational efficiency of the code. In fact, it
is well-known that over a large class of channels (virtually all channels we
would deal with in practice) random linear codes perform essentially as well
as Shannon’s random codes that, in turn, perform as well as best codes at

2 The component-wise sum of any two codewords in a linear code is a codeword. Thus, a
linear code is a linear subspace of the space of channel input sequences. (Here we are assum-
ing the channel input alphabet has a group property.) Such a code can be specified by (any)
basis of the subspace it defines. Linearity significantly reduces the encoding complexity.
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rates close to the capacity [42]. Therefore, by restricting the attention to
linear codes, we are not compromising the performance. However, it turns
out that maximizing the minimum distance is not the appropriate criteria
for designing capacity-achieving codes. In fact, in the early days of coding
theory, Elias’s convolutional codes [38] were known to be powerful codes with
efficient decoding algorithms [75, 112, 116] which were not designed based on
the minimum distance criteria.

After the introduction of turbo codes [19] in the early 1990s, the attention
in coding theory turned into codes on graphs that are decoded with iterative
decoding algorithms. Such an approach was originally proposed by Gallager
in [41], where he devised low-density parity check (LDPC) codes. In short,
instead of finding a specific good code, the goal became finding an ensemble
of codes such that the distance profile (as opposed to the minimum distance)
of a randomly chosen code from the ensemble resembles that of Shannon’s
random codes. In addition, it is required that the graph representing the
relations among the coordinates of the codewords has a simple structure to
keep the decoding computationally efficient (e.g., the graph representing an
LDPC code is assumed to be sparse).

Codes on graphs appeared very promising for approaching Shannon’s lim-
its. Substantial progress was made in the development and analysis of such
codes and they were incorporated in many modern communication standards.
It was proven recently that, combined with spatial coupling (a construction in-
spired by methods from statistical physics), such codes can achieve Shannon’s
capacity under iterative decoding [66]. We refer the reader interested in the
history and key contributions in coding theory to the excellent survey of [26].

Arıkan [4, 5] postulated an information-theoretic perspective to channel
coding. He proposed a transform that, when applied to n consecutive uses
of any binary-input channel, ‘polarizes’ them into n nearly extremal channels;
these channels are either almost noiseless or almost useless. Moreover, the
fraction of noiseless channels equals the capacity of the underlying channel.
As a result, capacity-achieving polar codes are constructed by transmitting
information over the almost noiseless channels. Polar codes are very closely
related to old Reed–Muller codes. The basis vectors for the subspace they
define are chosen from the same matrix (the binary Walsh–Hadamard matrix).
The key difference is that, instead of choosing the basis to optimize the distance
profile of the code (i.e., the Reed–Muller choice), polar codes are constructed
by choosing the coordinates that ‘see’ an almost-noiseless effective channel to
the transmitter. This makes polar codes capacity-achieving under the low-
complexity successive-cancellation (SC) decoding.3

Unlike randomly constructed codes on graphs, a polar code of length n
and rate R for reliable communication over a given channel is uniquely de-

3Reed–Muller codes were for a long time conjectured to be capacity-achieving under
optimal decoding. Very recently, this conjecture was proven when the transmission takes
place over the erasure channel [65].
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fined. Moreover, the successive-cancellation decoding algorithm proposed by
Arıkan is a single-pass procedure that decodes the sent codeword in O(n log n)
complexity (as opposed to iterative decoding methods for LDPC-like codes).
To date, polar codes are the only class of explicitly constructed error-correction
codes with a low-complexity encoding and decoding algorithm that provably
achieve the capacity of any channel. As such, polar codes are the first practical
answer to Shannon’s challenge.

Although at the time of its introduction, constructing codes based on chan-
nel polarization was more an alluring theoretical method for designing com-
putationally efficient capacity-achieving error-correction schemes, the exten-
sive progress in improving their decoding algorithms (e.g., using successive-
cancellation list decoding [108]), as well as in the VLSI implementation of
polar codes, e.g. [2, 40, 67, 68, 80, 86, 90, 95, 96, 123–125], made them attractive
for practical applications. Despite their infancy, polar codes have been recently
included in the next-generation (5G) standard for communication systems [1].

Contribution of this Thesis — Part I

We study polar codes for communications in the first part of this thesis. We
start by an introduction to Arıkan’s channel polarization method in Chap-
ter 2, see how this leads to the construction of capacity-achieving codes, and
analyze the performance of polar codes under successive-cancellation (SC) de-
coding. We also review the methods for the construction of polar codes.

As we will see, yet another distinguishing characteristic of polar codes is
that the performance guarantees of polar codes are not based on simulations.
In other words, given a polar code and the channel over which this code is to be
used, we can compute upper and lower bounds on the block-error probability
of the code. This property makes them attractive for applications where very
low error-probability guarantees (say, as small as 10−16) are required. Even
though both upper and lower bounds on the block-error probability of polar
codes decay very fast (roughly like 2−

√
n [6]), they still differ by orders of

magnitude, especially when the block-length is relatively large. Hence, to avoid
a conservative design based on an overestimation of the block-error probability,
it is desirable to have better estimates of the true block-error probability of
polar codes. In Chapter 3, we study the tightness of the upper bound (which
is simply the union bound) on the block-error probability of polar codes by
analyzing the correlation between the error events of the information-carrying
channels, when transmission takes place over an erasure channel. We prove
that the upper bound is indeed a tight estimate of the block-error probability of
polar codes (Theorem 3.11) and also provide formulae for computing a tighter
lower bound on the block-error probability of polar codes, when transmission
takes place over an erasure channel (Lemma 3.5). For the typical block-lengths
considered in Chapter 3, this lower bound practically matches the existing
upper bound (see Figure 3.1).
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Shortly after the publication of Arıkan’s low-complexity SC decoding algo-
rithm [5], an improved variant of it, called successive-cancellation list (SCL)
decoding was proposed as a method for boosting the performance of polar
codes while keeping the complexity of decoding algorithm low [108]. The
empirical results of [108] suggest that the performance of a SCL decoder is
very close to that of an optimal (but computationally complex) decoder for
polar codes. In addition, to reduce their block-error probability further, us-
ing SCL decoder (instead of SC decoder) enables one to concatenate polar
codes with CRC codes [85, 110]. The latter makes them competitive with
existing commercially used error-correction codes of the same length. The
original formulation of the successive-cancellation list-decoding algorithm is
in terms of likelihoods that makes the decoder prone to underflow floating-
point errors. In practice, the numerical stability of computations has to be
guaranteed by implementing the algorithm in a numerically stable domain. In
Chapter 4, we tackle the problem of design and implementation of a com-
munication system using polar codes and SCL decoder. In Theorem 4.1, we
show that successive-cancellation list decoding can be formulated exclusively
in terms of log-likelihood ratios. Log-likelihood ratios are numerically stable
and lead to a more efficient implementation of the decoder compared to the
existing implementations of [10, 71, 72, 122, 126]. In addition, in § 4.3.1, we
evaluate the performance of CRC-concatenated polar codes and highlight the
importance of carefully tuning the length of the outer CRC code to the error-
correction capabilities of the inner polar code (which depends on the choice of
decoder). In the design of a communication system using polar codes, depend-
ing on the application, we can have the choice between adopting a long polar
code to be decoded with the conventional SC decoder or a shorter polar code to
be decoded with the more complex SCL decoder in order to guarantee a target
block-error probability. In § 4.3.2, we compare the performance of short CRC-
concatenated polar codes under SCL decoding with that of longer polar codes
under SC decoding and show that, roughly speaking, at the same block-error
probability and under the same decoding complexity, successive-cancellation
list decoding and CRC concatenation enable us to reduce the block-length
(and hence the decoding latency) by a factor of eight.

1.2 Information Theoretic Secrecy

In his subsequent work [102], Shannon used his mathematical framework for
the analysis of communication systems, to analyze the secrecy of information
transmission systems. He considered a model, today called the Shannon ci-
pher system, where two legitimate parties communicate messages encrypted
by using a securely shared key over a public communication channel. Based on
his measure of information, i.e., the entropy, he proposed to assess the secrecy
of the system via the amount of information that an eavesdropper, with access
to publicly transmitted cryptograms (see Figure 1.3), would learn about the
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messages.

Encipherer Decipherer
CryptogramInformation

Source
Information

Sink

Eavesdropper

Key

Figure 1.3: Shannon Cipher System

Shannon showed that, rather discouragingly, in order for the cipher system
to be perfectly secure, i.e., to leak zero information to the eavesdropper, the
entropy of the key must be at least as large as that of the information source.
Such a requirement is typically hard to fulfill. Apart from specific situations4,
if a secure channel capable of communicating that much entropy (the one
denoted by thick lines in Figure 1.3) is available, it could be directly used for
the transmission of secret information (instead of the public channel).

At this point the reader might notice that Shannon’s model (Figure 1.3) de-
scribes the operation of symmetric-key cryptography algorithms that are com-
monly used nowadays. For example to establish a secure connection when we
connect to a WiFi network, we share a password (key) securely between our
device and the access point. The entropy of such a key is definitely lower than
the vast amount of information our device encrypts and sends to the access
point or vice versa. Does Shannon’s conclusion imply that such systems are
insecure?

The answer is yes and no! Most of these algorithms are not information-
theoretically secure. In fact, the only encryption technique providing perfect
secrecy in Shannon’s sense is One Time Pad that uses truly pre-shared random
keys for enciphering text. The encryption methods used in modern systems
have a similar basis, with the difference that the key is generated locally using
a pair of pseudorandom-number generators at the transmitter and the receiver
side, synchronized using the pre-shared password. It is easy to show that such
a pseudorandom key does not have sufficient entropy for providing perfect
secrecy. However, ‘secrecy’ from a cryptographic point of view usually relies on
the boundedness of the eavesdropper’s computational power. Even though, in
most current cryptographic systems, the cryptogram is informative about the
secret information it encodes, according to the current computational models
and power, it would be computationally hard for an eavesdropper to deduce
the secret information upon observing the cryptogram.

4e.g., when such a key can be pre-shared securely at the time when the information is
not available yet or when the channel between the key source and the legitimate parties is
one-way
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Shannon’s notion of the secrecy is, in a sense, the most stringent measure.
Such a guarantee implies that an eavesdropper observing the cryptogram is
as informed about the secret message as an entity who generates a fake cryp-
togram independently knowing only the statistics of the cryptogram. Although
in some views information-theoretic secrecy was regarded as too strict to be
attainable in practice, in 1975, Wyner [118] showed that information-theoretic
secrecy can be guaranteed if we incorporate the noise of communication media
into the model.

In Wyner’s wiretap channel model (see Figure 1.4), the advantage of the
legitimate receiver over the eavesdropper is in having a cleaner communication
channel from the transmitter. The wiretap model is arguably a more realistic
model for the actual information transmission scenarios in the presence of an
eavesdropper. For example, your neighbour wiretapping your WiFi router’s
signals gets a noisier version of what you receive, because there are more ob-
stacles in the signal path between the router and her than in the path between
the router and you. Furthermore, in his model, the secrecy and reliability of
information transmission is provided simultaneously by the channel encoder
and decoder (this is why encipherer and decipherer are replaced by encoder
and decoder in the diagram).5

Encoder DecoderNoisy Channel

Noisy Channel

Secret
messages

Estimation

Eavesdropper

Figure 1.4: Wyner’s wiretap model

Wyner [118] showed that there exist asymptotically reliable and secure
communications schemes that enable the transmission of information at posi-
tive rates in his model. In other words, with sufficiently large n, we can find
an encoder that, given one of M secret messages (where M is exponentially
large in n), produces a sequence of n channel inputs, and a decoder that maps
back the noisy versions of these symbols at the output of the channel to the
sent message with arbitrarily low probability of error. Meanwhile the encoding
method guarantees that the information that the eavesdropper learns about
the secret message through her observations, normalized by the block-length
n, is arbitrarily small. Indeed, Wyner characterized the secrecy capacity of the

5The reader also notices that the shared secret key is missing in Wyner’s model. It turns
out that sharing a key only increases the secure information transmission capacity of the
system by an amount equal to the entropy of the key.
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wiretap channel: the highest rate at which secure and reliable communications
is possible.

Wyner’s results were extended by Csiszár and Körner [29] to the cases
where more noisiness of the eavesdropper’s channel is not necessarily due to
the concatenation of two physical channels, but the advantage of the legitimate
receiver over the eavesdropper only follows from the mathematical descriptions
of their channels. Csiszár and Körner also studied the scenarios where part of
the information is to be broadcast to both parties (i.e., the eavesdropper also
has to receive them reliably) while the rest is private to the legitimate receiver.

The principle in securing the messages against the eavesdropper is to exploit
the random noise of her communication channel. To communicate a secret
message over the wiretap channel, the encoder maps it to a randomly chosen
codeword among a particular set of codewords. When randomness in the
encoding operation and the intrinsic randomness of the eavesdropper’s channel
are combined, her observations appear like pure noise. Therefore, she would
learn very little about the secret message.

As their ages suggest, the problem of secure communications in the pres-
ence of an eavesdropper is studied less, compared to point-to-point communi-
cations. Although some fundamental limits in such scenarios were discovered
following the work of Wyner (see, for example, [29, 69]), and some structured
coding schemes for the wiretap channel were proposed (e.g., [74, 100]), many
fundamental questions concerning the model are still open. For example, given
the asymptotic nature of the secrecy guarantees, we wonder how long should
the block-length be in order to guarantee a certain level of information leakage
to the eavesdropper? The analogous question in error correction was answered
in the 1960s when it was found that the best code would guarantee exponen-
tially small error probability. But, to our knowledge, it was only in 1996 when
Csiszár [27] showed that the information leaked to the eavesdropper also van-
ishes exponentially fast in the block-length. Nevertheless, to date, the best
exponential decay rate that we could hope to attain is unknown.

Contribution of this Thesis — Part II

In the second part of this dissertation, we focus on the exponential decay rate of
the information leaked to the eavesdropper in Wyner’s wiretap channel setting.
As we characterize certain fundamental limits, we do not limit ourselves to a
specific class of computationally efficient communication schemes (as opposed
to the first part of the work where we specifically focus on polar codes for
communications). In particular, we rely on the probabilistic method and take
advantage of the convenience of random-coding arguments in our achievability
proofs.

We formally introduce Wyner’s wiretap channel model in Chapter 5 and
review the construction of codes for secure and reliable communications via
random selection. We also discuss the concept of channel resolvability — the
encoding method that, when used at the input of a channel, makes its output
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look like plain noise. We show how a resolvability-based approach to the
wiretap channel leads to the construction of secure codes and study the relation
between secrecy and resolvability exponents. The former is the exponential
decay rate of the information leaked to the eavesdropper in the wiretap model,
whereas the latter is the exponential decay rate of the distance between the
artificial noise, simulated by a resolvability encoder, at the output of a channel
and the ‘target’ noise process.

As we mentioned above, the exponential decay of the information leaked
to the eavesdropper in the block-length, in the wiretap model, was first noted
by Csiszár [27]. A sequence of recent works [47,51–54,58] study the achievable
secrecy exponents over the wiretap channel, the best of which are reported in
[47, 52, 54]. In these works the probabilistic method is employed to show the
achievability of these exponents. Specifically, an exponentially decaying upper
bound on the average amount of information leaked to the eavesdropper over
an ensemble of randomly constructed codes is derived to conclude that there
must exist a code guaranteeing such a tiny information leakage. The optimality
of those exponents is, though, not known. In Chapter 6, we present a method
for deriving ensemble-optimal secrecy exponents for the randomly constructed
codes. That is to say, we derive exponentially tight upper and lower bounds on
the average information leaked to the eavesdropper (see Theorem 6.3). The
exponent of our bounds matches that previously reported for the ensemble
of i.i.d. random codes, i.e., those constructed by independently drawing the
letters of each codeword according to a given distribution on channel input al-
phabet (independent of other codewords). Furthermore, our exponent for the
ensemble of constant-composition random codes — those for which codewords
are obtained by randomly permuting the letters of a given word (indepen-
dently for each codeword) — improves upon what was previously known to
be achievable using such codes (see Lemma 6.5). We also show that, due
to its generality, our simple analysis method is applicable to the ensemble of
randomly constructed linear codes, as well. Similarly to the error-correction
problem, Theorem 6.8 shows that random linear codes perform exactly the
same as i.i.d. random codes for secure communications.

As we discussed briefly (and we shall see more rigorously in Chapter 5),
the core concept in constructing codes for secure communications is channel
resolvability. In a sense, resolvability is the counterpart of the error correction.
In the latter the aim is to combat the channel noise and make it easy for
the receiver to distinguish the sent codeword from the others despite being
corrupted by the channel. Whereas, to simulate a random sequence at the
output of the channel, in resolvability, we exploit the channel noise. The
problem of communications in the presence of feedback is well studied. It
is known that feedback does not increase the capacity of a communication
channel [42, Exercise 4.6], but it enables us to achieve lower error probabilities
compared to systems without feedback [23]. In Chapter 7, we consider the
problem of resolvability in the presence of feedback. In Theorem 7.1, we show
that feedback does not reduce the minimum amount of randomness the encoder
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needs to accurately simulate a given random process at the output of the
channel. However, there are instances where, by using variable-length coding
and the feedback signal, a much more accurate simulation, compared to what
is attainable in the systems without feedback, is feasible (see Theorems 7.2
and 7.4). More importantly, we will prove (in Lemmas 7.3 and 7.5) that both
employing variable-length codes and making use of the feedback are necessary
to achieve such an accurate simulation of the desired random process — even
the best block code results in a lower-quality approximation.
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Arıkan’s Polar Coding
Paradigm 2
Shannon, in his seminal work [101], characterized the fundamental limits of
data transmission through a noisy channel. Given the mathematical descrip-
tion of the communication medium, he derived an expression for the capacity
of the channel — the highest rate at which reliable communication is possible.
A fascinating aspect of Shannon’s work is his proof of the feasibility of reli-
able communication at rates below capacity without an explicit prescription
of a communication scheme. Instead of constructing a specific communica-
tion scheme, he showed that associating each message with a codeword built
by choosing its letters randomly and independently from the input alphabet
of the channel, with high probability leads to a reliable transmission scheme.
Despite its elegance from a mathematical perspective, random coding does not
lead to practical implementable codes: the computation power and memory
required for decoding a randomly constructed code grows exponentially fast
with the block-length.1

In 2008, Arıkan discovered the first (to date the only) method for explicitly
constructing capacity-achieving codes with low-complexity encoding and de-
coding algorithms for any binary-input memoryless symmetric-output (BMS):
this method is channel called polar coding [4, 5].2 In this chapter, we give an
overview of polar coding in order to set up the notation and foundations for
the discussions in the following two chapters.

1Using the conventional form of random codes, the memory required for encoding a
message into a codeword also increases exponentially fast with the block-length. However,
this can be alleviated by using random linear codes [42, Chapter 6].

2Even though in the original work of Arıkan [4, 5] polar coding was introduced as a
method for achieving the capacity of BMS channels, it was soon extended to channels with
larger alphabets and non-symmetric channels [56, 81, 82,84,87,94,97–99,106].

15
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2.1 Preliminaries

Let W : F2 → Y denote a binary-input memoryless channel described by the
pair of conditional probabilities W (·|x) ∈ P(Y), x ∈ F2. We further assume
W is symmetric; i.e., that there exists a permutation π on Y such that (i)
π−1 = π and (ii) ∀y ∈ Y , W (y|1) = W (π(y)|0). Examples of binary-input
memoryless symmetric (BMS) channels are:

Binary Symmetric Channel (BSC) whose output alphabet is {0, 1} and
has transition probabilities

W (0|0) = W (1|1) = 1− p and W (0|1) = W (1|0) = p,

where p ∈ [0 : 1/2] is called the crossover probability of the channel. We denote
a BSC with crossover probability p as BSC(p).

Binary Erasure Channel (BEC) with output alphabet {0, 1, ?} and tran-
sition probabilities

W (0|0) = W (1|1) = 1− p,

W (0|1) = W (1|0) = 0, and

W (?|0) = W (?|1) = p,

where p is called the erasure probability of the channel. We denote a BEC with
erasure probability p as BEC(p).

Binary-Input Additive White Gaussian Noise Channel (BI-AWGNC)
whose output alphabet is Y = R and has transition probabilities

W (y|x) = 1√
2πσ2

e−
[y−(−1)x]2

2σ2

where σ2 > 0 is the noise variance.

Remark. It is well-known that for estimating the input of a binary-input mem-
oryless channel, the likelihood ratio

Λ(y) :=
W (y|0)
W (y|1)

is a sufficient statistic [70, Chapter 2]. In view of Lemma A.1, we can always
merge the output symbols with equal likelihood and reduce the size of the
output alphabet.

The capacity of a BMS channel W : F2 → Y , i.e., the highest rate at which
reliable communication is feasible through that channel, is given by the mutual
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information between its input and its output, I(X;Y ) when X is uniformly
distributed on F2, that is,

I(W ) :=
∑
x∈F2

1

2

∑
y∈Y

W (y|x) log
[ W (y|x)

1
2
W (y|0) + 1

2
W (y|1)

]
. (2.1)

The capacity is measured in units of bits and (for a binary-input channel) is
bounded between 0 and 1.

The other measures of noisiness of a BMS channel W : F2 → Y are its
bit-error probability, i.e., the probability of error of the ML decision on its
input, upon observing the output of a single use of the channel,

Pe(W ) :=
1

2

∑
y∈Y

min{W (y|0),W (y|1)} (2.2)

that lies in [0, 1/2] and the Bhattacharyya parameter

Z(W ) :=
∑
y∈Y

√
W (y|0)W (y|1), (2.3)

that takes values in [0, 1].
These measures of noisiness are related via the bounds summarized in the

following lemma:

Lemma 2.1. Let W : F2 → Y be a BMS channel and I(W ), Pe(W ), and
Z(W ) its capacity, bit-error probability, and Bhattacharyya parameter, defined
in (2.1), (2.2), and (2.3), respectively. Then,

(i) I(W ) + Z(W ) ≥ 1 and I(W )2 + Z(W )2 ≤ 1 [5, Propostions 1 and 11].

(ii) 2Pe(W ) ≤ Z(W ) ≤ 2
√
Pe(W )(1− Pe(W )) [93, Lemma 4.64].

A binary-input memoryless channel W is called extremal if I(W ) ∈ {0, 1}.
(According to Lemma 2.1, I(W ) ∈ {0, 1} implies Z(W ) ∈ {0, 1} and Pe(W ) ∈
{0, 1/2}.) Achieving the capacity of an extremal channel is trivial: a capacity-
1 channel can be used to communicate uncoded data bits with zero error
probability (and achieving the capacity of zero-capacity channel is even eas-
ier!).3 Unfortunately, communication systems engineers usually have to deal
with mediocre, hence not easy-to-use channels. Channel polarization [5] is a
method for ‘forging’ asymptotically extremal channels out of (infinitely many)
independent uses of a mediocre channel while preserving the total capacity.

3Note that for input alphabets larger than binary, extremality implies the existence of
trivial codes to achieve the capacity but it is not necessary. For example, a 4-ary channel
obtained as the product of two binary symmetric channels with total capacity of 1 bit per
channel use (not necessarily the same) has capacity strictly less than log(4) (and hence is
not extremal). But we can trivially communicate through such a channel at a rate of 1 bit
per channel use with zero error probability.
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Having forged such channels, constructing a capacity-achieving communica-
tion scheme would be easy. As the total capacity is preserved, the fraction of
noiseless (i.e., capacity-1) channels must be equal to the capacity of the orig-
inal (mediocre) channel. Using these channels to transfer uncoded data bits
leads to a reliable communication scheme that operates at a rate arbitrarily
close to the capacity.

2.2 Channel Polarization

Let us start with two copies of our mediocre BMS channel W : F2 → Y and
combine their inputs as shown in Figure 2.1.

W

W

Y1

Y2

+U1

U2

X1

X2

Figure 2.1: Singe-step Polar Transform

If (U1, U2) are independent Bernoulli(1/2) random variables, so are (X1, X2),
hence we have

2I(W ) = I(X1, X2;Y1, Y2) = I(U1, U2;Y1, Y2) (2.4)

where the second equality follows as

(U1, U2) �→ (X1, X2) = (U1 ⊕ U2, U2) (2.5)

is an invertible transform. Expanding I(U1, U2;Y1, Y2) by using the chain rule
of mutual information and the independence of U1 and U2, we get

2I(W ) = I(U1, U2;Y1, Y2) (2.6)

= I(U1;Y1, Y2) + I(U2;Y1, Y2|U1) (2.7)

= I(U1;Y1, Y2) + I(U2;Y1, Y2, U1). (2.8)

Both terms on the right-hand side of the above are mutual information between
a uniformly distributed binary random variable (U1 or U2) and some other
collection of random objects (Y1, Y2 or Y1, Y2, U1, respectively). Indeed, they
define the mutual information developed across the effective channels seen
between U1 and Y1, Y2, and U2 and Y1, Y2, U1, respectively. Moreover, the
second term in (2.8) is lower-bounded as

I(U2;Y1, Y2, U1) = I(U2;Y2) + I(U2;Y1, U1|Y2) (2.9)

≥ I(U2;Y2) (2.10)

= I(X2;Y2) = I(W ). (2.11)
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The above inequality can be shown to be strict, i.e., I(U2;Y1, U1|Y2) > 0, unless
I(W ) ∈ {0, 1} [5, Appendix C]. Consequently,

I(U1;Y1, Y2) ≤ I(W ) ≤ I(U2;Y1, Y2, U1) (2.12)

(with equality iff I(W ) ∈ {0, 1}).
By the virtue of (2.8) and (2.12), we can define two synthetic binary-input

channels; W− : F2 → Y2 with transition probabilities

W−(y1, y2|u1) =
∑
u2∈F2

1

2
W (y1|u1 ⊕ u2)W (y2|u2), (2.13)

and W+ : F2 → Y2 × F2 with transition probabilities4

W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2). (2.14)

Moreover
I(W−) + I(W+) = 2I(W ), (2.15)

and
I(W−) ≤ I(W ) ≤ I(W+). (2.16)

(Both channels W− and W+ can be shown to be symmetric [5, Proposition 13]
hence, the mutual information I(U1;Y1, Y2) and I(U2;Y1, Y2, U1) are indeed
equal to the capacity of the synthetic channels W− and W+, respectively.)

In short, out of two independent copies of a mediocre BMS channel W , we
synthesize two unequal BMS channels: W−, the channel seen from U1 to Y1, Y2

treating U2 as an internal noise component, which is worse than W ; and W+,
the channel seen from U2 to Y1, Y2, and U1, which is better than W . Moreover,
the total capacity is preserved during this transformation. This procedure is
called polar transform.

As applying the polar transform on two independent copies of a BMS chan-
nelW results in a pair of BMS channels, we can repeatedly apply the transform
to (independent copies of) each of these channels. For example, applying the
polar transform once more, synthesizes four channels W−−, W−+, W+−, and
W++ from two independent copies of W− and two independent copies of W+

(which are themselves obtained from four independent copies of W ) as shown
in Figure 2.2a. These channels have input and output as follows:

W−− : F2 → Y4 U1 �→ Y 4

W−+ : F2 → Y4 × F2 U2 �→ (Y 4, U1)

W+− : F2 → Y4 × F2
2 U3 �→ (Y 4, V 2) ≡ (Y 4, U2)

W++ : F2 → Y4 × F3
2 U4 �→ (Y 4, V 2, U3) ≡ (Y 4, U3)

(2.17)

4The reader might worry why we define a channel whose output is U1; because U1 is
a value set at the encoder and, in principle, unknown to the decoder. As we will see in
§ 2.3, we impose a particular decoding order at the receiver and ask it to decode U1 before
decoding U2. Therefore we can legitimately assume U1 is available to the decoder at the
time of decoding U2.
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We can again duplicate the structure of Figure 2.2a and obtain eight synthetic
channelsW−−−, . . . ,W+++ by applying the single-step polar transform to each
of the four synthetic channels (cf. Figure 2.2b).

W

W

W

W

Y1

Y2

Y3

Y4

+

+

X1

X2

X3

X4

V1

V2

V3

V4

+

+

U1

U2

U3

U4

(a) Two-fold Polar Transform: Here V1 and V2 are
inputs of two independent copies of W− and V3

and V4 are inputs of independent copies of W+.
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+

+
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T7
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+

+

+

+

V1

V2

V3
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V6

V7

V8

+

+

+

+
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U2

U3

U4

U5

U6
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(b) Three-fold Polar Transform: Similarly, V1 and V2 are inputs of
two independnet copies of W−−, V3 and V4 are inputs of independnet
copies of W−+, V5 and V6 are inputs of independnet copies of W+−,
and V7 and V8 are inputs of independnet copies of W++. Moreover,
T1, . . . , T4 are inputs to four independent copies of W− and T5, . . . , T8

are inputs to independent copies of W+.

Figure 2.2: Two- and Three-fold Polar Transform

In general, the result of the m-fold application of the polar transform to
n = 2m independent copies of a BMS channel W is a set of 2m synthetic
channels indexed by sign sequences of length m, W sm , sm ∈ {−,+}m. The
synthetic channel W sm : F2 → Yn × Fi−1

2 , sm ∈ {−,+}m has input Ui, the ith

element of the synthetic channels input vector Un ∈ Fn
2 ; and output Y n, U i−1
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(treating Un
i+1 as internal noise), where i ∈ {1, 2, . . . , n} equals

i = 1 +
m∑
j=1

2m−j · 1{sj = +}. (2.18)

With a slight abuse of notation we can write

i = (s1s2 · · · sm)2 + 1. (2.19)

The physical channel input vector Xn is related to Un via

Xn = GnU
n where Gn =

[
1 1
0 1

]⊗m

. (2.20)

In the above A⊗m denotes the mth Kronecker power of A. Consequently, the
transition probabilities of W sm are

W sm(yn, ui−1|ui) =
1

2n−1

∑
un
i+1∈F

n−i
2

W n
(
yn
∣∣Gnu

n
)

(2.21)

(with i = (s1s2 · · · sm)2 + 1).

Also, as the single-step polar transform is capacity-preserving,

2mI(W ) =
∑

sm∈{−,+}m
I(W sm). (2.22)

More importantly, as intuitively expected by looking at the fixed points of
the single-step transform (which are the extremal channels), asm→∞ almost
all synthetic channels become extremal. Since the total capacity is preserved
by the polar transform, the fraction of capacity-1 channels will be equal to the
capacity of the underlying channel W .

Theorem 2.2 ([5, Theorem 1]). The synthetic channels W sm, sm ∈ {−,+}m,
obtained from m-fold application of the polar transform polarize. That is, ∀a, b
such that 0 < a < b < 1,

lim
m→∞

1

2m
∣∣{sm ∈ {−,+}m : I

(
W sm

)
≤ a
}∣∣ = 1− I(W ), (2.23)

lim
m→∞

1

2m
∣∣{sm ∈ {−,+}m : I

(
W sm

)
∈ (a, b)

}∣∣ = 0, (2.24)

lim
m→∞

1

2m
∣∣{sm ∈ {−,+}m : I

(
W sm

)
≥ b
}∣∣ = I(W ). (2.25)

Arıkan in [5] proved Theorem 2.2 using a martingale argument. In Ap-
pendix 2.A, we review a simpler proof of the theorem given in [3].
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2.3 Polar Coding

As Theorem 2.2 suggests, for any rate R < I(W ), if m is large enough, there
exists �2mR� ‘almost noiseless’ synthetic channels, i.e., synthetic channels with
capacity arbitrarily close to 1. Using these channels for communicating un-
coded data bits, we obtain a sequence of capacity-achieving codes.

More precisely, given a rate R and a block-length n = 2m, an (n, �nR�)
polar code5 is defined as follows: Let A ⊆ {−,+}m be the indices of k = �nR�
best synthetic channels and I the integer indices corresponding to the sign
sequences in A, that is I := {(s1s2 · · · sm)2 + 1: sm ∈ A}. The encoder sets
uI to k information bits (to be communicated to the receiver) and uF , where
F = {1, 2, · · · , n} \ I, to some known-to-receiver frozen bits.6 The vector un

is then encoded to the codeword xn through (2.20). It can be easily seen that
encoding requires Θ(n log n) binary additions [5, Section VII]. The codeword
xn is then transmitted via n independent uses of the channel to the receiver.
Given I and uF , the encoding map uI �→ xn is

xn = Gn[I]uI +Gn[F ]uF , (2.26)

(where Gn[I] denotes the n×k sub-matrix of Gn obtained by keeping only the
columns with index in I; similarly Gn[F ] is the n× (n− k) sub-matrix of Gn

obtained by keeping only the columns with index in F).
The receiver observes the channel output vector yn and estimates the el-

ements of the uI successively as follows: Suppose the information indices are
ordered as I = {i1, i2, . . . , ik} (where ij < ij+1). Furthermore, for any sm and

i = (s1s2 . . . sm)2+1, let W
(i)
n be a synonym for W sm (to keep the notation sim-

ple). Having the channel output, the receiver has all the required information

to decode the input of the synthetic channel W
(i1)
n as ûi1 , since, in particu-

lar, ui1−1 is a part of the known sub-vector uF . Hopefully, this estimation is
correct and the decoder can subsequently proceed to index i2, as the informa-
tion required for decoding the input of W

(i2)
n is now available. As detailed in

Algorithm 1, this process — known formally as successive-cancellation (SC)
decoding — is continued until all the information bits have been estimated.

2.3.1 Performance of Polar Codes under SC Decoding

To show that polar codes are capacity-achieving, we analyze their block-error
probability under successive-cancellation decoding and prove that it vanishes
as the block-length increases, when the code rate R is below I(W ). To this end,
there are two caveats to be addressed: First, we define the synthetic channel

5Following the convention in coding theory, we denote an affine code of block-length n
and dimension k (hence, rate k/n) as an (n, k) code.

6In [5, Corollary 1] it has been shown that, as long as the channel W is symmetric, the
choice of frozen bits does not affect the performance of the code. Hence, in order to make
the code linear, uF is typically chosen to be the all-zero sequence.
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Algorithm 1: Successive-Cancellation (SC) Decoding [5].

1 for i = 1, 2, . . . , n do
2 if i �∈ I then // frozen bits

3 ûi ← ui;
4 else // information bits

5 ûi ← argmaxui∈F2
W

(i)
n (yn, ûi−1|ui);

6 return ûn ;

W sm (or equivalently W
(i)
n , i = (s1s2 . . . sm)2 + 1) as the channel whose input

is Ui and its output is Y n and U i−1. In successive-cancellation decoding we
use an estimate of U i−1 (which could be wrong) instead, to decode Ui. There-
fore, due to error propagation, it is not a priori clear how the performance
of the decoder can be related to the quality of the synthetic channels. Sec-
ond, Theorem 2.2 guarantees that, by taking m large enough, we can ensure
that individual channels used for the transmission of information bits have a
capacity as high as desired (hence, the probability of erroneous transmission
through each channel is as small as desired). However, since the number of
these channels increases linearly with n, this does not necessarily mean that the
probability of the intersection of all “error-free transmission” events is close to
1 (thus proving that the block-error probability under successive-cancellation
decoding is small).

To address the first point, let us consider a genie-aided version of the de-
coder by replacing the estimation of line 5 of Algorithm 1 by

ûi = argmax
ui∈F2

W (i)
n (yn, ui−1|ui). (2.27)

(Note that to implement (2.27) the decoder needs to ask for the correct value
of the previous bits ui−1 from a genie.)

Upon observing a particular channel output sequence yn, if the genie-aided
SC decoder estimates all the information bits uI correctly, then the plain
SC decoder of Algorithm 1 does the same. Conversely, once the genie-aided
decoder makes the first mistake, the same incorrect decision is taken by the
plain SC decoder; and both decoders commit a block-error event — albeit from
that point on the decoders can behave completely differently and their final
outputs are possibly different. Consequently, we conclude that the block-error
events of both decoders are the same. The genie-aided decoder makes an error
if and only if decoding of the input any of the synthetic channels is erroneous.

Therefore, if we denote by E(A) the block-error event of the polar code
defined by the set of information indices A ⊆ {−,+}m under successive-
cancellation decoding and, for ∀sm ∈ {−,+}m, by E sm the bit-error event
of the synthetic channel W sm (in the genie-aided decoder), we have

E(A) :=
⋃

sm∈A
E sm . (2.28)
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Lemma 2.3. Let Pe(A) denote the block-error probability of a polar code de-
fined defined by the set of information indices A ⊆ {−,+}m, under successive-
cancellation decoding. Then:

max
sm∈A

Pe(W
sm) ≤ Pe(A) ≤

∑
sm∈A

Pe(W
sm), (2.29)

where Pe(W
sm) = Pr(E sm) is the bit-error probability of the synthetic channel

W sm.

Proof. The result follows trivially from (2.28). The upper bound follows from
the union bound. The lower bound follows because E sm ⊆ E for ∀sm ∈ A.

The last step in showing that polar codes are capacity-achieving is to show
that the bit-error probability of individual synthetic channels decay sufficiently
fast so that the upper bound of (2.29) vanishes as the block-length increases.
This is guaranteed by the following theorem, from [6], which we present without
proof:

Theorem 2.4 ([6, Theorem 1]). For any BMS channel W , any rate R <
I(W ), and ∀β < 1/2, there exists a sequence of information indices (Am ⊆
{−,+}, m ∈ N) such that

(i) |Am| ≥ �2mR�

(ii) For all sm ∈ Am, Pe(W
sm) ∈ O

(
2−2βm

)
(where Pe(W

sm) = Pr(E sm) is the
bit-error probability of the synthetic channel W sm, obtained by the m-fold
application of the polar transform to W ).

Corollary 2.5. For any BMS channel W , any rate R < I(W ), and ∀β < 1/2,
there exists a sequence of polar codes of block-length n = 2m and rate R such
that their block-error probability satisfies

Pe(Am) ∈ O
(
2−nβ)

. (2.30)

Consequently, polar codes are capacity-achieving.

Remark 1. The bound of Equation (2.30) is essentially exponentially tight:
From [6, Theorem 3] it follows that the fraction of synthetic channels whose
bit-error probability decay faster than 2−2mβ

for β > 1/2 vanishes.7 Thus,
by virtue of the lower bound of (2.29), we conclude that, unless the code’s
rate vanishes, the block-error probability of polar codes under successive-
cancellation decoding cannot decay faster than 2−

√
n.

7In view of (ii) in Lemma 2.1, if Pe(W
sm) ≤ 2−2mβ

for some β > 1
2 , then for large

enough m, Z(W sm) ≤ 2−2mβ′
for any β′ ∈ ( 12 , β). According to [6, Theorem 3], the fraction

of synthetic channels for which Z(W sm) ≤ 2−2mβ′
for β′ > 1/2 vanishes as m→∞.
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Remark 2. Successive-cancellation decoding is obviously sub-optimal: To de-
cide on the value of the information bit ui, i ∈ I, the decoder pretends that
all the following bits un

i+1 are i.i.d. coin-flips (the exact definition of the cor-
responding synthetic channel), whereas the subsequent frozen bits put parity
constraints on the value of the current bit. These constraints are not taken
into account by that marginalization. In return, as we shall see in § 2.3.2, the
decoding algorithm is efficient. Despite this sub-optimality, SC decoding has
a good asymptotic performance (exponentially small block-error probability).

Remark 3. In the beginning of this section, we discussed a rate-based construc-
tion of polar codes, in other words, the method based on picking sufficient
information indices to have as many codewords as desired in the code. By the
virtue of the upper bound of (2.29), we can instead fix a target block-error
probability and construct the code by increasing the rate, as long as the upper
bound is below that target value.

2.3.2 Complexity of Successive-Cancellation Decoding

The computational task of the SC decoder is to calculate the pairs of likelihoods
W

(i)
n (yn, ûi−1|ui), ui ∈ F2 needed for the decisions in line 5 of Algorithm 1.

Since the decisions are binary, it is sufficient to compute the decision log-
likelihood ratios (LLRs),

λ(i)
m := log

[W (i)
n (yn, ûi−1|0)

W
(i)
n (yn, ûi−1|1)

]
. (2.31)

Due to the recursive nature of polar transform, it follows straightforwardly
(see [5, Section VII] and [68]) that the decision LLRs (2.31) can be computed
via the recursions,

λ(i)
s =

{
f−
(
λ
(i)
s−1, λ

(i+2m−s)
s−1

)
if �(i− 1)/2m−s� is even

f+
(
λ
(i−2m−s)
s−1 , λ

(i)
s−1, v

(i−2m−s)
s

)
if �(i− 1)/2m−s� is odd

(2.32)

for i = 1, 2, . . . , n and s = m,m − 1, . . . , 1 where f− : R
2 → R and f+ : R

2 ×
F2 → R are defined as

f−(a, b) := log
[ exp(a+ b) + 1

exp(a) + exp(b)

]
, (2.33a)

f+(a, b, v) := (−1)va+ b, (2.33b)

respectively. The recursions terminate at s = 0 where

λ
(i)
0 := log

[W (yi|0)
W (yi|1)

]
, ∀i = 1, 2, . . . , n, (2.34)

are channel LLRs. The partial sums v
(i)
s , s = m− 1, . . . , 1, i = 1, 2, . . . , n are

computed starting from v
(i)
m := ûi for i = 1, 2, . . . , n, and setting

v
(i)
s−1 =

{
v
(i)
s ⊕ v

(i+2m−s)
s if �(i− 1)/2m−s� is even,

v
(i)
s if �(i− 1)/2m−s� is odd.

(2.35)
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Therefore, the entire set of m× n LLRs λ
(i)
s s = 1, 2, . . . ,m, i = 1, 2, . . . , n

can be computed using O(n log n) updates: from each pair of LLRs at stage
s − 1 a pair of LLRs at stage s is calculated using the update rules of (2.32)
(see Figure 2.3). Additionally the decoder must keep track of (m − 1) × n

partial sums v
(i)
s , s = 1, 2, . . . ,m − 1, i = 1, 2, . . . , n and update them after

decoding each bit ûi.

In terms of memory requirements, an elementary implementation of the
decoder would require O(n log n) memory elements to store the intermediate
LLRs (cf. Figure 2.3) and partial sums. This can further be improved to O(n)
elements by noting that, at the time of decoding bit i, only the intermediate
LLR values corresponding to the tree rooted at λ

(i)
m in the computational graph

of the decoder needs to be stored (as opposed to entire m × n nodes of the
graph). In other words, at any time instant, at each stage s = 1, 2, . . . ,m, only
2m−s intermediate LLR values are required for computing the desired decision
LLR. A similar observation holds for the partial sums, which eventually leads
to a space-efficient implementation of the decoder [108, Section III].

Note also that the decoder, in principle, has to compute all the decision
LLR values λ

(i)
m , i = 1, 2, . . . , n, to make sure that all intermediate LLRs are

computed and stored for the next stages — despite the fact that some in-
dices correspond to frozen bits and the corresponding LLRs are not ultimately
needed for a decision. In practice, depending on the structure of frozen and
information bits, some computation time and power can be saved by skipping
the LLR calculations for some clusters of frozen bits [2].
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Figure 2.3: The butterfly computational structure of the SC decoder for m = 3;
blue dashed and orange solid arrows show f− and f+ updates respectively.
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Remark. It can easily be checked that

f−(a, b) = sign(a) sign(b)
{
min{|a|, |b|}+ log

[1 + exp(−(a+ b))

1 + exp(−|a− b|)
]}

(2.36)

≈ sign(a) sign(b)min{|a|, |b|} =: f̃−(a, b). (2.37)

In fact, it can be verified that |f−(a, b)− f̃−(a, b)| ≤ log(2) [11, Lemma 1.8].
f̃− is a ‘hardware-friendly’ approximation of f− as it involves only the easy-to-
implement min{·, ·} operation (compared to f− which involves exponentiations
and logarithms). For a hardware implementation of the SC decoder the update
rule f− is replaced by f̃−. Given f+, such an approximation is called the min-
sum approximation of the decoder.

2.4 Construction of Polar Codes

In § 2.3 we saw that a polar code of block-length n = 2m and rate R for
communication over the BMS channel W is constructed by choosing the ‘best’
�nR� synthetic channels among 2m channels W sm , sm ∈ {−,+}m for communi-
cating information bits. Theorem 2.2 shows that for any rate R < I(W ) there
exist �nR� ‘good’ synthetic channels (provided that m is large enough); and
Theorem 2.4 and its corollary show the bit-error probability of these channels
decay like 2−nβ

(for any β < 1/2). But they do not tell us which sequences
sm ∈ {−,+}m index those good channels. In principle, due to the recursive
construction of the synthetic channels, we can compute the transition proba-
bilities of W sm (for any sm ∈ {−,+}m), hence fully characterize this channel
and, accordingly, rank the synthetic channels. However, as the cardinally of
the output alphabet of the these channels grows exponentially with n = 2m,
the computations will soon become intractable. Therefore, it is important to
find computationally efficient methods for constructing polar codes.

Arıkan observed that when W is a BEC(p) both W− and W+ are equiva-
lent to binary erasure channels. More specifically, despite the growth of their
output alphabet, by merging the symbols with the same likelihood ratio (see
Lemma A.1), both channels W− and W+ reduce to binary erasure channels.
Moreover, W− ‘erases’ if either independent copies of W erase , whereas W+

erases if both copies of W erase. Therefore, W− is a BEC(2p− p2) and W+ is
a BEC(p2) [5, Proposition 6]. Consequently, to construct a polar code for com-
munication over a binary erasure channel, we can compute the erasure proba-
bilities of each of 2m binary erasure channels, denoted by Zsm , sm ∈ {−,+}m,
via the recursions

Zsm =

{
2Zsm−1 − (Zsm−1

)2 if sm = −
(Zsm−1

)2 if sm = +.
(2.38)

The recursions end at Z∅ = p. Note that the entire set of n = 2m erasure
probabilities can be computed in O(n) operations by using O(log n) memory
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elements to store intermediate calculation results and n memory elements to
store the final values (see Figure 2.4).
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Figure 2.4: The entire set of n = 2m erasure probabilities of the synthetic BECs,
obtained after m-fold application of the polar transform to a BEC(p), can be
computed in O(n) operations.

The set of binary erasure channels is the only known class of BMS channels
that can be described with a finite number of parameters and is stable under
the polar transform. Starting with any BMS, other than a BEC, the cardinal-
ity of the output alphabet of the synthetic channels, obtained after the m-fold
application of Arıkan’s polar transform (after merging symbols with equal like-
lihood ratio), grows exponentially in n = 2m. Therefore, it is computationally
infeasible to precisely keep track of the transition probabilities of the synthetic
channels, when the underlying channel is not a BEC.

To rank the synthetic channels obtained from the repeated application of
the polar transform to an arbitrary BMS channel W , Arıkan proposes a Monte
Carlo estimation method, in [5, Section IX], as follows: Suppose we want to
rank the synthetic channels based on their capacity.8 One way to estimate the
capacity of a BMS channel V : F2 → Y is to note that

I(V ) = 1−
∑
y∈Y

V (y|0) log
[
1 +

V (y|1)
V (y|0)

]
(2.39)

= 1− EY∼V (y|0)

[
log
[
1 +

V (Y |1)
V (Y |0)

]]
. (2.40)

8We can use, instead of capacity, any other measure of quality, for example the Bhat-
tacharyya parameter that is used in [5, Section IX] or the bit-error probability.
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If we transmit 0 through the channel, the output Y will have distribution
V (y|0). Hence, due to the law of large numbers, if we simulate the response
of the channel to input 0 in independent trials and generate the samples
y1, y2, . . . , yt independently from V (y|0), the empirical average

1

t

t∑
i=1

log
[
1 +

V (yi|1)
V (yi|0)

]
, (2.41)

will converge to the expectation in (2.40) as t → ∞. Consequently, we can
estimate the capacity by simulating the channel sufficient times (and by using
the empirical average instead of the expectation in (2.40)).

Suppose we run the successive-cancellation decoder for a polar code of
block-length n = 2m, defined by the set of information indices A = ∅ and
an arbitrary values for frozen bits, fed with the LLR values corresponding to
independent uses of the channel W . Recall that, as we discussed in § 2.3.2,
the decoder computes the decision LLRs

λ(i)
n = log

[W (i)
n (yn, ûi−1|0)

W
(i)
n (yn, ûi−1|1)

]
, i = 1, 2, . . . , n, (2.42)

in O(n log n) time. Since all indices i ∈ {1, 2, . . . , n} are frozen, it, indeed,
computes

λ(i)
n = log

[W (i)
n (yn, ui−1|0)

W
(i)
n (yn, ui−1|1)

]
, i = 1, 2, . . . , n, (2.43)

that are the LLRs of the outputs of the synthetic channel W
(i)
n , i = 1, 2, . . . , n.

Running this experiment t times independently (for some large t), we can

estimate the capacities of all synthetic channels I(W
(i)
n ), i = 1, 2, . . . , n using

independent samples of their output LLRs.
An alternative method for constructing polar codes is to approximate the

capacity (or any other measure of quality) of synthetic channels W sm as de-
scribed in [109]: The key idea is that polar transform and channel degradation
commute (see Theorem A.2 in Appendix A). If V �d W , in other words, V
is degraded with respect to W , (respectively V �d W , i.e., V is upgraded
with respect to W ), then V sm �d W sm (resp. V sm �d W sm) for any sequence
sm ∈ {−,+}m.

Consider the procedure described in Algorithm 2 where V = merge(W,κ)
is a BMS channel that is (i) degraded with respect to W , i.e., V �d W ,
and (ii) has at most κ output symbols.9 It follows straightforwardly that for
∀l ∈ {1, 2, . . . ,m}, Vl �d W sl . Consequently, in particular, I(Vm) ≤ I(W sm).
Now, if we replace merge with a procedure that returns an upgraded version of
W whose output alphabet has cardinality at most κ, and we run the algorithm

9Any reasonable merging function will return the channel W itself if its output alphabet
has cardinality less than or equal to κ.
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again, we obtain a second sequence of channels, call them V ′
1 , V

′
2 , . . . , V

′
m, that

satisfy ∀l ∈ {1, 2, . . . ,m}, V ′
l �d W sl . Thus, in particular,

I(Vm) ≤ I(W sm) ≤ I(V ′
m). (2.44)

More importantly, to compute I(Vm) and I(V ′
m), we need to keep track of

BMS channels whose output cardinality is at most κ (as opposed to the se-
quence of channels W s1 ,W s1s2 , . . .W sm whose output alphabet grows doubly
exponentially in m).

Algorithm 2: Algorithm to Approximate the Synthetic Channels [109].

Input: W a BMS channel, sm ∈ {−,+}m, κ ∈ N

Output: A sequence of BMS channels V1, V2, . . . , Vm

1 V0 ←W ;
2 for s = 1 to m do

3 Vl ← merge(V sl

l−1, κ);

4 return V1, V2, . . . , Vm

By designing a pair of good merging functions and an appropriate choice of
κ, we can ensure that the upper and lower bounds of (2.44) are close enough,
hence I(W sm) is well-approximated by I(Vm). In [88, 109] different merging
methods are proposed and it is shown that by letting κ to scale as m2 the
approximation error vanishes as m grows large.

2.5 Summary

As we have seen in this chapter, polar coding is a computationally efficient
method for communicating data at high rates reliably via noisy channels. A
successive-cancellation decoder, in particular, is attractive from an implemen-
tation perspective, due to its very well-structured nature. Relatively soon
after the publication of Arıkan’s original work [5], several hardware architec-
tures [40,67,68,80,86,90,95,124] and simplifications of the original algorithm
(to improve the decoding throughput) [2, 96, 123, 125] were proposed in the
literature.

In addition to having low-complexity encoding and decoding algorithms,
an important characteristic of polar codes is that we can compute bounds
on their block-error probability (see Lemma 2.3) by using computationally
efficient methods without the need for simulating the code. Given any BMS
channel W , a block length n = 2m and a rate R, we can accurately compute
the bit-error probability of the 2m synthetic channels W sm , sm ∈ {−,+}m.
Subsequently, we can compute upper and lower bounds on the block-error
probability of a polar code of rate R and block-length n, when the code is
used for communication over the channelW . This makes polar codes a suitable
candidate for applications like optical communications or storage, where the
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error probability guarantees of the order 10−16 are required. However, the
upper and the lower bounds of (2.29) differ by O(n), which, for practical block-
lengths, translates to orders of magnitude of difference. To be able to optimize
the code rate, given a target block-error probability, it is important to make
sure that the union bound does not overestimate the block-error probability.
In Chapter 3, we show that, at least when communication takes place over the
erasure channel, the upper bound of (2.29) is essentially tight. Consequently,
as a rule of thumb, we can safely design the code by pretending that the union
bound is indeed equal to the actual block-error probability of the code, under
successive-cancellation decoding.

Despite their very good asymptotic performance, short-to-moderate-length
polar codes, under successive-cancellation decoding, have a relatively high
block-error probability compared to competing coding schemes. For exam-
ple, to achieve a target block-error probability of 10−5, over a BI-AWGNC, a
system using a rate-1/2 polar code of length n = 1024 would require about
1 dB energy per bit more than one based on the rate-1/2 length n = 1296
LDPC code of IEEE 802.11n (WiFi) standard. This deficiency is partly due
to the sub-optimality of the successive-cancellation decoding; specifically, be-
cause the decoder is not allowed to go back and correct potentially wrong
decisions upon observing a conflict between the decisions and the following
frozen bits. In Chapter 4 we discuss an improved decoding algorithm, called
successive-cancellation list decoding [108]: it decreases the block-error prob-
ability of short polar codes and makes them competitive with existing error
correction schemes that are used in practice.

2.A Proof of Theorem 2.2

Let

αm(a) :=
1

2m
∣∣{sm ∈ {−,+}m : I

(
W sm

)
≤ a
}∣∣, (2.45)

βm(b) :=
1

2m
∣∣{sm ∈ {−,+}m : I

(
W sm

)
≥ b
}∣∣ (2.46)

γm(a, b) :=
1

2m
∣∣{sm ∈ {−,+}m : I

(
W sm

)
∈ (a, b)

}∣∣. (2.47)

and define, for m ∈ N,

μm :=
1

2m

∑
sm∈{−,+}m

I
(
W sm

)
(2.48)

νm :=
1

2m

∑
sm∈{−,+}m

I
(
W sm

)2
(2.49)
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Equation (2.22) implies ∀m ∈ N, I(W ) = μm. Moreover, using the identity
A2 + B2 = 1

2
[A+ B]2 + 1

2
[A− B]2, for any BMS channel W , we have

I(W+)2 + I(W−)2 =
1

2
[I(W+) + I(W−)]2 +

1

2
[I(W+)− I(W−)]2

= 2I(W ) +
1

2
[I(W+)− I(W−)]2 (2.50)

≥ 2I(W ). (2.51)

This shows that νm is an increasing sequence. Furthermore, since νm is
bounded in [0, 1] it must be convergent. Therefore,

lim
m→∞

[νm+1 − νm] = 0. (2.52)

As a consequence of Mrs. Gerber’s Lemma [119], it is shown in [97, Lemma 2.1]
that if I(W ) ∈ (a, b) (for any 0 < a < b < 1) then

I(W+)− I(W−) ≥ η(a, b) > 0 (2.53)

Therefore, for all sm ∈ {−,+}m such that I(W sm) ∈ (a, b), (2.50) yields,

1

2
[I(W sm+)2 + I(W sm−)]2 ≥ I(W sm) +

1

4
η(a, b)2. (2.54)

Hence,

νm+1 ≥ νm + γm(a, b)
1

4
η(a, b)2. (2.55)

Thus,

0 ≤ γm(a, b) ≤
4

η(a, b)2
[νm+1 − νm]. (2.56)

Using (2.52) we can immediately conclude that

lim
m→∞

γm(a, b) = 0 (2.57)

which proves (2.24).
To prove (2.25) and (2.23), on one hand we have, ∀m ∈ N,

I(W ) = μm ≤ aαm(a) + bγm(a, b) + βm(b) (2.58)

(∗)
= a+ (b− a)γm(a, b) + (1− a)βm(b), (2.59)

where (∗) follows since αm(a) + βm(b) + γm(a, b) = 1. Equation (2.59) implies

(1− a) lim inf
m→∞

βm(b) + a ≥ I(W ). (2.60)

Since, the above holds for any a ∈ (0, b), we must have

lim inf
m→∞

βm(b) ≥ I(W ). (2.61)
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Similarly, ∀m ∈ N,

I(W ) = μm ≥ aγm(a, b) + bβm(b)

(∗)
= b− bαm(a)− (b− a)γm(a, b), (2.62)

which implies
1− I(W ) ≤ (1− b) + b lim inf

m→∞
αm(a). (2.63)

Once again, since the above holds for any b ∈ (a, 1),

1− I(W ) ≤ lim inf
m→∞

αm(b). (2.64)

On the other hand, αm(a) + βm(b) ≤ 1. Hence, using (2.61) and (2.64), we
have

1 ≤ lim inf
m→∞

αm(a) + lim inf
m→∞

βm(b) ≤ lim sup
m→∞

αm(a) + lim sup
m→∞

βm(b) ≤ 1. (2.65)

The above implies both inequalities in (2.64) and (2.61) must be equality.
Therefore,

lim
m→∞

βm(b) = I(W ), and (2.66)

lim
m→∞

αm(a) = 1− I(W ), (2.67)

which prove (2.25) and (2.23), respectively.





Correlation between
Synthetic BECs 3
We have seen in § 2.3.1 that the sum of the error probabilities of the ‘good’
synthetic channels — obtained by applying the union bound to the block-error
event of polar codes — is used as a proxy on the block-error probability of polar
codes, under successive-cancellation decoding. The union-bound estimate is
sufficiently tight for the analysis of the exponential decay rate of the block-
error probability; because the upper bound of (2.29) is at most n times larger
than the lower bound of (2.29). However, especially for relatively large block-
lengths, the bounds still differ by orders of magnitude. Hence, it is natural to
ponder whether the union bound on the block-error probability of polar codes
is tight?

The union bound overestimates, at most by a factor of 2, the probability of
the union of pairwise independent events. For events E1, E2, . . . , Ek satisfying

Pr(Ei ∩ Ej) = Pr(Ei) Pr(Ej), i �= j, (3.1)

by using the inclusion–exclusion principle (see Lemma 3.1) it trivially follows
that, when

∑k
j=1 Pr(Ej) ≤ 1,

1

2

k∑
i=1

Pr(Ej) ≤ Pr

( k⋃
j=1

Ej
)
≤

k∑
i=1

Pr(Ej). (3.2)

For data transmission using polar codes, the error events in the synthetic
channels become only asymptotically pairwise independent: Consider the se-
quence of polar codes of rate R < I(W ) defined by the sequence of information
indices Am ⊂ {−,+}m, m ∈ N for communication over the BMS channel W .
For every sm ∈ {−,+}m,

max
tm∈{−,+}m:

tm �=sm

∣∣Pr(E sm ∩ E tm)−Pr
(
E sm
)
Pr
(
E tm
)∣∣ ≤ min{Pr(E sm), 1− Pr(E sm)},

(3.3)

35
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where E sm and E tm are the bit-error events of the synthetic channels W sm and
W tm respectively. According to Theorem 2.4, ∀sm ∈ Am Pr(E sm) = Pe(W

sm) ∈
O(2−2mβ

) (for any β < 1/2). Therefore, for any δ > 0, there exists m0(δ) such
that ∀m ≥ m0, and ∀sm ∈ Am,

max
tm∈{−,+}m:

tm �=sm

∣∣Pr(E sm ∩ E tm)−Pr
(
E sm
)
Pr
(
E tm
)∣∣ ≤ δ (3.4)

However, for asymptotically pairwise independent events the union bound
could well overestimate the probability of their union.

Example 3.1. Suppose we have k events E1, . . . , Ek satisfying

E1 = E2 = · · · = Ek and Pr(E1) =
1

k2
. (3.5)

These events are asymptotically pairwise independent; for i �= j,

∣∣Pr(Ei ∩ Ej)− Pr(Ei) Pr(Ej)
∣∣ = k2 − 1

k4
(3.6)

which can be made as small as desired by choosing k large enough. The
probability of the union of the events is

Pr

( k⋃
j=1

Ej
)

=
1

k2
. (3.7)

But the union-bound estimate evaluates to 1/k.

The above example shows that measuring the independence of the pair of
events Ei and Ej via their covariance

cov(Ei, Ej) := Pr(Ei ∩ Ej)− Pr(Ei) Pr(Ej) (3.8)

is not good enough for assessing the tightness of the union bound. In fact,
for the union bound to be tight, this difference should be small compared to
the probability of the individual events. It is, instead, better to measure the
dependence between the events via pairwise correlation coefficients :

ρ(i, j) :=
Pr(Ei ∩ Ej)− Pr(Ei) Pr(Ej)√

Pr(Ei)
(
1− Pr(Ei)

)√
Pr(Ej)

(
1− Pr(Ej)

) . (3.9)

Note that ρ(i, j) as defined above is the Pearson correlation coefficient between
the pair of indicator random variables of the events Ei and Ej, i.e.,

(
1Ei ,1Ej

)
.

Lemma 3.1. Let E1, . . . , Ek be k arbitrary events,

E :=
k⋃

j=1

Ej, (3.10)
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and

PUB(E1, . . . , Ek) :=
k∑

j=1

Pr(Ej). (3.11)

Then if PUB(E1, . . . , Ek) ≤ 1,

1

2
[1− kmax

i �=j
ρ(i, j)]PUB(E1, . . . , Ek) ≤ Pr(E) ≤ PUB(E1, . . . , Ek) (3.12)

(with ρ(i, j) defined as in (3.9)).

In other words, if all pairwise correlation coefficients between the events are
much smaller than 1/k (with k being the number of events), the union bound
estimates the probability of the union of the events as good as it would if the
events were pairwise independent. Lemma 3.1 is an immediate consequence of
the inclusion–exclusion principle. (See the proof in Appendix 3.A.)

In view of Lemma 3.1, we can conclude that if the pairwise correlation
coefficients between the error events of the synthetic channels (obtained by
the m-fold application of the polar transform to a channel), decay faster than
2−m, the union bound on the block-error probability of a polar code used for
transmission over that channel is essentially tight.

In this chapter, we consider the problem of communication over a binary
erasure channel using polar codes and successive-cancellation decoding. The
set of binary erasure channels is stable under the polar transform [5, Propo-
sition 6]: if W is a BEC, then both W− and W+ are equivalent to BECs.
Moreover when the transmission takes place over an erasure channel, the
successive-cancellation decoder either correctly decodes an information bit or
sees an ‘erasure’ of that information bit. With a pessimistic presumption on
the decoder, we assume that a decoding failure occurs if any of the information
bits are erased.1 Therefore, to assess the tightness of the union bound on the
block-error probability of the code, we study the correlation coefficients be-
tween the pairs of error (in this case erasure) events of the synthetic channels.
The stability of the set of binary erasure channels under the polar transform
facilitates the computation of those correlation coefficients. We give recursive
formulae for computing these correlation coefficients (see § 3.1); and show nu-
merical evidence that the union-bound estimate on the block-error probability
is indeed tight (in § 3.2). We, then, prove that as m grows large almost all
pairwise correlation coefficients decay faster than 2−m, hence the union bound
precisely estimates the block-error probability of polar codes, when used for
communication over the erasure channel (see § 3.3).

The results of this chapter was published in part in [12].

1A practical decoder can flip a coin and decide on the value of an erased information bit
correctly with 50% of chance. An analysis analogous to that of this chapter applies to such
a decoder.
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3.1 Recursive Computation of Correlation
Coefficients

As Arıkan showed in [5, Propositon 6], if W is a binary erasure channel, both
W− and W+ are also equivalent to binary erasure channels; W− erases if
either independent copies of W erase, whereas W+ erases if both independent
copies of W erase. Accordingly, if E1 and E2 denote the erasure events of two
independent copies of a BEC, W , the erasure events of W− and W+ will,
respectively, be

E− = E1 ∪ E2 ⇐⇒ E−c
= Ec1 ∩ Ec2 (3.13a)

E+ = E1 ∩ E2. (3.13b)

Obviously, although the underlying BECs (and hence their erasure events)
are independent, E− and E+ are heavily correlated: An erasure in the ‘plus’
channel implies that in the ‘minus’ channel.

Arıkan has already shown that the erasure probabilities of the synthetic
BECs W sm , denoted as Zsm , for sm ∈ {−,+}m, can be computed via single-
step recursions [5, Proposition 6]. Indeed, the independence of E1 and E2,
together with (3.13), shows that ∀sm ∈ {−,+}m,

Zsm− := Pr(E sm−) = 2Zsm − (Zsm)2 ⇐⇒ Zsm− = (Zsm)2, (3.14a)

Zsm+ := Pr(E sm+) = (Zsm)2, (3.14b)

where Zsm := Pr(E sm), which is nothing but (2.38). (In this chapter, we use
the shorthand notation x := 1− x, for x ∈ [0, 1].)

Let us index the covariance and correlation coefficients between the error
events of pairs of synthetic channels by sign sequences. For sign sequences sm

and tm, let
C(sm, tm) := Pr(E sm ∩ E tm)− Pr(E sm) Pr(E tm) (3.15)

be the covariance between the error events of W sm and W tm and

ρ(sm, tm) :=
Pr(E sm ∩ E tm)− Pr(E sm) Pr(E tm)√

Pr(E sm)[1− Pr(E sm)]
√
Pr(E tm)[1− Pr(E tm)]

, (3.16)

be the correlation coefficient between those events. Interestingly, the covari-
ances C(sm, tm) and, accordingly, correlation coefficients ρ(sm, tm) can also be
computed via single-step recursions.

Lemma 3.2. The covariances between the erasure events of the synthetic chan-
nels, after m+ 1 steps of Arıkan’s polar transform, are related to those of the
synthetic channels, after m steps of the polar transform via

C(sm−, tm−) = 2Zsm Ztm C(sm, tm) + C(sm, tm)2, (3.17a)

C(sm−, tm+) = 2Zsm Ztm C(sm, tm)− C(sm, tm)2, (3.17b)

C(sm+, tm−) = 2Zsm Ztm C(sm, tm)− C(sm, tm)2, (3.17c)

C(sm+, tm+) = 2Zsm Ztm C(sm, tm) + C(sm, tm)2, (3.17d)
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The recursions terminate at m = 0 where C(∅, ∅) = pp with p being the erasure
probability of the underlying BEC.

Corollary 3.3. The correlation coefficients between the erasure events of the
synthetic channels (defined as in (3.9)) after m + 1 steps of Arıkan’s polar
transform are related to those of the synthetic channels after m steps of the
polar transform via:

ρ(sm−, tm−) = 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

+

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)2, (3.18a)

ρ(sm−, tm+) = 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

−
√

Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)2, (3.18b)

ρ(sm+, tm−) = 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

−

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)2, (3.18c)

ρ(sm+, tm+) = 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

+

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)2. (3.18d)

The recursions end at m = 0 with ρ(∅, ∅) = 1.

Proofs of Lemma 3.2 and Corollary 3.3 are straightforward but tedious.
We relegate them to Appendices 3.B.1 and 3.B.2, respectively.

It follows that we can compute the covariances (and correlation coefficients)
between pairs of erasure events of synthetic channels via single-step recursions
because the probabilities of intersections of pairs of error events, after m + 1
levels of polarization, are computable in terms of the joint probabilities after
m levels of polarization. The property of being computable via single-step
recursions generalizes to higher order statistics.

Lemma 3.4. In general the probabilities of the intersections of any number k
of erasure events are computable via single-step recursions.
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Proof. Let sm+1(i) ∈ {−,+}m+1, i = 1, 2, . . . , k be a collection of (not neces-
sarily distinct) sign sequences of length m+ 1. We know that

Pr

(
k⋂

i=1

E sm+1(i)

)
= E

[
k∏

i=1

1Esm+1(i)

]
. (3.19)

Using (3.13) we have

1Esm+1 =

{
1Esm

1
+ 1Esm

2
− 1Esm

1
1Esm

2
if sm+1 = −

1Esm
1
1Esm

2
if sm+1 = +

(3.20)

(where E sm1 and E sm2 are independent events with identical probability). There-
fore,

k∏
i=1

1Esm+1 (3.21)

can be decomposed into the summation of terms in the form of

l1∏
j=1

1
Esm(ij)

1

×
l2∏

j=1

1
Esm(ij)

2

(3.22)

for some l1 ≤ k and l2 ≤ k. The independence of the indicator variables of
the events with subscript 1 and those with subscript 2 implies the expectation
of such a product will be the product of the expectations, each of which is
the probability of intersection of (at most) k erasure events after m levels of
polarization.

3.2 A Tight Lower Bound on the Block-Error
Probability

Recall Equation (2.29): In general, the block-error probability of a polar code
defined by information set Am ∈ {−,+}m, when used for communication over
the channel W , is lower-bounded as

Pe(Am) ≥ max
sm∈Am

Pr(E sm),

(where Pr(E sm) is the bit-error probability of synthetic channel W sm).
For the case of erasure channel, since we can compute the second order

statistics of the error events (see Lemma 3.2), we can compute the inclusion–
exclusion lower bound on the block-error probability:

Lemma 3.5. The block-error probability of a polar code of block length 2m,
defined by information indices Am ∈ {−,+}m, when used for communicating
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over a BEC(p) is lower-bounded as

Pe(Am) ≥
∑

sm∈Am

Zsm − 1

2

∑
(sm,tm)∈A2

m:
sm �=tm

[
ZsmZtm + C(sm, tm)

]
(3.23)

where the values of Zsm, Ztm and C(sm, tm) can be computed via the single-step
recursions of (3.14) and (3.17) (starting with Z∅ = p and C(∅, ∅) = pp).

Remark 1. We will see later in Equation (3.27) that the covariances C(sm, tm)
will become tiny as m gets large. Thus, for numerical stability, it is safer to
compute the normalized correlation coefficients, ρ(sm, tm), via the recursions
of (3.18) instead (and compute the inclusion–exclusion lower bound in terms
of the correlation coefficients).

Remark 2. In § 2.4 we have seen that the erasure probabilities of synthetic
channels (after them-fold application of the polar transform to a binary erasure
channel) can be computed in O(n) operations with O(log n) internal and O(n)
external memory elements to store the values. Similar considerations show that
the covariances C(sm, tm), (sm, tm) ∈ {−,+}m × {−,+}m can be computed in
O(n2) operations, with O(log n) internal memory and O(n2) external memory
(for storing the values).

The quadratic growth of the computational complexity is a bottleneck for
computing the inclusion–exclusion lower bound on the block-error probability
of long polar codes. For example, consider a (relatively long) polar code of
block-length n = 220. Assuming each erasure probability is stored as an 8-byte
double-precision floating point number (as in the IEEE standard for floating
point arithmetics), storing all erasure probabilities (hence computing the union
bound on the block-error probability) requires only eight megabytes of memory
whereas if the same data-types are used for storing the covariances, eight
terabytes of storage space would be required to compute the inclusion–exclusion
lower bound.

In Table 3.1 and Figure 3.1, we present the upper bound, the trivial lower
bound of (2.29), and the inclusion–exclusion lower bound of (3.23) on the
block-error probability of polar codes of different rates used for communication
over a binary erasure channel with erasure probability 1/2. Note that the
inclusion–exclusion lower bound of (3.23) is so tight that, except for high
rates, it is visually indistinguishable from the union bound in the curves of
Figure 3.1. (The careful reader will notice that we have intentionally chosen
the channel and the block-lengths in the same way as in [5, Fig. 7] — with the
difference that we were unable to compute the lower bound of (3.23) for the
block length of n = 220, for the reasons discussed above.)
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|An| Union Bound (2.29) Lower Bound of (2.29) Lower Bound of (3.23)

128 6.362×10−17 1.388×10−17 6.362×10−17

160 1.894×10−13 2.894×10−14 1.894×10−13

192 1.488×10−10 3.297×10−11 1.488×10−10

224 7.425×10−8 1.299×10−8 7.424×10−8

256 5.685×10−6 6.330×10−7 5.684×10−6

288 1.496×10−4 1.328×10−5 1.494×10−4

320 2.482×10−3 2.141×10−4 2.464×10−3

352 2.598×10−2 1.649×10−3 2.500×10−2

384 0.186 1.034×10−2 0.152
416 0.934 4.207×10−2 0.261

(a) n = 210

|An| Union Bound (2.29) Lower Bound of (2.29) Lower Bound of (3.23)

8,192 2.172×10−31 5.000×10−33 2.172×10−31

8,704 9.366×10−27 1.699×10−28 9.366×10−27

9,216 5.503×10−23 8.120×10−25 5.503×10−23

9,728 1.420×10−19 2.173×10−21 1.420×10−19

10,240 2.073×10−16 2.777×10−18 2.073×10−16

10,752 1.508×10−13 1.894×10−15 1.508×10−13

11,264 5.008×10−11 5.035×10−13 5.008×10−11

11,776 7.502×10−9 6.836×10−11 7.502×10−9

12,288 5.801×10−7 4.745×10−9 5.801×10−7

12,800 3.147×10−5 2.221×10−7 3.146×10−5

13,312 1.074×10−3 6.668×10−6 1.073×10−3

13,824 2.314×10−2 1.306×10−4 2.271×10−2

14,336 0.319 1.471×10−3 0.254

(b) n = 215

Table 3.1: Bounds on the Block-Error Probability of Polar Code on BEC(1/2)

3.3 Decay of Correlations

The numerical examples show that the inclusion–exclusion lower bound on the
block-error probability of polar codes is extremely close to the upper bound
that the union bound gives. In the remainder of this chapter, we will prove
that the correlation between the synthetic erasure channels decay very rapidly,
hence the union bound is a tight estimate of the block-error probability of polar
codes when used for communication over an erasure channel.
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Figure 3.1: Bounds on the Block-Error Probability of Polar Code on BEC(1/2)

3.3.1 Basic Properties

Using the recursions of Corollary 3.3, we can derive the properties summarized
in the following lemma on the correlation coefficients.

Lemma 3.6. The following properties hold for the correlation coefficients:

(i) ∀sm, tm ∈ {−,+}m,

0 ≤ ρ(sm, tm) ≤ min

⎧⎨
⎩
√

ZsmZtm

ZsmZtm
,

√
ZsmZtm

ZsmZtm

⎫⎬
⎭ . (3.24)

(ii) ∀sm+1, tm+1 ∈ {−,+}m+1

ρ(sm+1, tm+1) ≤ ρ(sm, tm), (3.25)

with equality if and only if

(a) ρ(sm, tm) = 0; or

(b) sm+1 = tm+1, Z
sm = Ztm, and ρ(sm, tm) = 1; or

(c) Zsm = 1{sm+1 = +} and Ztm = 1{tm+1 = +}.
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(iii) ∀sm �= tm,

ρ(sm, tm) ≤ 1

3
. (3.26)

Proof.

(i) As Pr(E sm ∩ E tm) ≤ min{Pr(E sm),Pr(E tm)}, and Pr(E sm) = Zsm (respec-
tively Pr(E tm) = Ztm),

C(sm, tm) ≤ min{ZsmZtm , ZsmZtm}. (3.27)

Hence, the upper bound on correlation coefficients follows by definition
(3.9). The positivity of the correlation coefficients follows by induction on
m: atm = 0 the only covariance value C(∅, ∅) = pp is positive. Equations
(3.17a) and (3.17d) map positive C(sm, tm) to positive covariance values
at level m + 1; equations (3.17b) and (3.17c) do so as well, because of
the upper bound of (3.27).

(ii) When ρ(sm, tm) = 0 the claim is trivial. Thus, we assume ρ(sm, tm) �= 0
and divide the left-hand sides of (3.18) by ρ(sm, tm) to get,

ρ(sm−, tm−)
ρ(sm, tm)

= 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm

+

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm), (3.28a)

ρ(sm−, tm+)

ρ(sm, tm)
= 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm

−
√

Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm), (3.28b)

ρ(sm+, tm−)
ρ(sm, tm)

= 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm

−

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm), (3.28c)

ρ(sm+, tm+)

ρ(sm, tm)
= 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm

+

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm). (3.28d)
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The right-hand side of (3.28d) is upper-bounded as

2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
+

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

(a)

≤

√
2Zsm + ρ(sm, tm)Zsm

1 + Zsm

√
2Ztm + ρ(sm, tm)Ztm

1 + Ztm

=

√
1− 1− (Zsm + ρ(sm, tm)Zsm)

1 + Zsm

√
1− 1− (Ztm + ρ(sm, tm)Ztm)

1 + Ztm

(b)

≤ 1. (3.29)

In the above (a) follows from Cauchy–Schwarz inequality (and is strict
unless Zsm = Ztm) and (b) since ρ(sm, tm) ≤ 1 (and is strict unless
ρ(sm, tm) = 1). The same argument applies to (3.28a).

The right-hand side of (3.28c) is upper-bounded as

2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
−

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

(a)

≤ 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm

(b)

≤ 1, (3.30)

where (a) follows since ρ(sm, tm) ≥ 0 (because of (3.24)) and (b) as√
α/(1 + α) ≤ 1/

√
2 for α ∈ [0, 1]. Both inequalities are strict unless

Zsm = 1− Ztm = 1. The same argument applies to (3.28b).

(iii) Consider a pair of sign sequences sm and tm that differ only in their
last component, say sm = + and tm = − (and agree on the first m − 1
components). It is sufficient to prove the result for such a pair. The
result for general case follows from property (ii).

Since ρ(sm−1, tm−1) = 1, (3.18c) implies,

ρ(sm, tm) = 2

√
Zsm−1

1 + Zsm−1

√
Ztm−1

1 + Ztm−1
−

√
Zsm−1

1 + Zsm−1

√
Ztm−1

1 + Ztm−1

(a)
= 2

√
Zsm−1

1 + Zsm−1

√
Zsm−1

1 + Zsm−1
−

√
Zsm−1

1 + Zsm−1

√
Zsm−1

1 + Zsm−1

=

√
Zsm−1

1 + Zsm−1

√
Zsm−1

1 + Zsm−1

=

√
Zsm−1Zsm−1

2 + Zsm−1Zsm−1

(b)

≤ 1

3
(3.31)
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where (a) follows as sm−1 = tm−1 and (b) as α/(2 + α) ≤ 1/9 for α ∈
[0, 1/4].

Property (ii) in Lemma 3.6 shows that the correlation coefficients are de-
creasing and properties (i) and (iii) show that the off-diagonal correlation co-
efficients (i.e., ρ(sm, tm) for sm �= tm) lie in [0, 1/3]. Before analyzing how the
collection of 22m − 2m off-diagonal correlation coefficients decay, let us make
sure that they converge to 0 in a point-wise manner. In other words, we verify
that applying the recursions of (3.18) to an off-diagonal correlation coefficient
repeatedly will eventually drive the result to 0.

Lemma 3.7. Let s∞ and t∞ be two unequal infinite sign sequences, and sm and
tm be the sub-sequences corresponding to their first m elements, respectively.
Then

lim
m→∞

ρ(sm, tm) = 0. (3.32)

Proof. Let � be the length of the common prefix of s∞ and t∞. For m > �,
by (ii) and (iii) in Lemma 3.6 we know ρ(sm, tm) ∈ [0, 1/3] and is decreasing.
Hence, (ρ(sm, tm),m ∈ N) is a convergent sequence. Suppose its limit is ρ� > 0.
This implies for every ε > 0, ∃m0(ε) such that ∀m > m0,

ρ(sm+1, tm+1)

ρ(sm, tm)
≥ 1− ε (3.33)

and

ρ(sm, tm) ∈ [ε, 1− ε]. (3.34)

By the continuity of (3.28), we must have ∀m ≥ m0,

|Zsm − 1{sm = +}| ≤ δ and |Ztm − 1{tm = +}| ≤ δ (3.35)

where δ is a quantity that approaches 0 as ε→ 0. Since the evolutions of Zsm

and Ztm do not allow jumps from one extreme to the other, the latter requires
both s and t sequences to be constant, i.e., sm = s� and tm = t� for m ≥ m0.
Without loss of generality, assume s∗ = + which, in turn, requires Zsm ≥ 1−δ.
We now have an incompatible situation: sm being a ‘plus’ sign will drive Zsm

to zero as m grows. Consequently, we conclude that ρ(sm, tm) cannot converge
to a non-zero value.

3.3.2 Exponential Decay of Correlation Coefficients

Lemma 3.7 gives evidence that the recursions of (3.18) will eventually push the
correlation coefficients down to 0. Now, we look at the sequence of collections
of 22m correlation coefficients and prove that they decay sufficiently fast with
m. Let us first consider the average of this collection.
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Lemma 3.8. For all sm, tm ∈ {−,+}m,
1

4

∑
(sm+1,tm+1)∈{−,+}2

ρ(sm+1, tm+1) ≤ 2

3
ρ(sm, tm). (3.36)

Proof. Using (3.18), it is easy to see that∑
(sm+1,tm+1)∈{−,+}2

ρ(sm+1, tm+1)

= 2

[√
Zsm

1 + Zsm
+

√
Zsm

1 + Zsm

][√
Ztm

1 + Ztm
+

√
Ztm

1 + Ztm

]
ρ(sm, tm)

+

[√
Zsm

1 + Zsm
−
√

Zsm

1 + Zsm

][√
Ztm

1 + Ztm
−
√

Ztm

1 + Ztm

]
ρ(sm, tm)2

(3.37)

= ρ(sm, tm)

{
2

[√
Zsm

1 + Zsm
+

√
Zsm

1 + Zsm

][√
Ztm

1 + Ztm
+

√
Ztm

1 + Ztm

]

+

[√
Zsm

1 + Zsm
−
√

Zsm

1 + Zsm

][√
Ztm

1 + Ztm
−
√

Ztm

1 + Ztm

]
ρ(sm, tm)

}
.

(3.38)

Both sides of the above are positive, and the term inside the curly brackets
can be upper-bounded as{
2

[√
Zsm

1 + Zsm
+

√
Zsm

1 + Zsm

][√
Ztm

1 + Ztm
+

√
Ztm

1 + Ztm

]

+

[√
Zsm

1 + Zsm
−
√

Zsm

1 + Zsm

][√
Ztm

1 + Ztm
−
√

Ztm

1 + Ztm

]
ρ(sm, tm)

}2

(a)

≤
{
2

[√
Zsm

1 + Zsm
+

√
Zsm

1 + Zsm

]2
+

[√
Zsm

1 + Zsm
−
√

Zsm

1 + Zsm

]2
ρ(sm, tm)

}

·
{
2

[√
Ztm

1 + Ztm
+

√
Ztm

1 + Ztm

]2
+

[√
Ztm

1 + Ztm
−
√

Ztm

1 + Ztm

]2
ρ(sm, tm)

}
(3.39)

≤
{
2

[√
Zsm

1 + Zsm
+

√
Zsm

1 + Zsm

]2
+

[√
Zsm

1 + Zsm
−
√

Zsm

1 + Zsm

]2}

·
{
2

[√
Ztm

1 + Ztm
+

√
Ztm

1 + Ztm

]2
+

[√
Ztm

1 + Ztm
−
√

Ztm

1 + Ztm

]2}
(3.40)
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= 2

{
1 +

√
ZsmZsm

2 + ZsmZsm

}
· 2
{
1 +

√
ZtmZtm

2 + ZtmZtm

}
(3.41)

(b)

≤
(
8

3

)2

. (3.42)

In the above (a) follows by Cauchy–Schwarz inequality and (b) since α/(2+α)
is increasing for α ∈ [0, 1/4]. Using the above in (3.38) establishes (3.36).

Corollary 3.9. The average of the correlation coefficients decays exponentially
fast in m according to

1

4m

∑
sm,tm∈{−,+}m

ρ(sm, tm) ≤
(2
3

)m
. (3.43)

Corollary 3.9 implies that for large enough m, almost all of off-diagonal
correlation coefficients, that is ρ(sm, tm) for sm �= tm, are small. However,
the bound it gives is not strong enough to show the asymptotic tightness of
the union bound on the block-error probability of polar codes. According
to Lemma 3.1, in order to prove this tightness, we must show (i) that the
correlations decay as fast as 2−(1+α)m for some α > 0, and (ii) that this bound
applies to maxsm �=tm ρ(sm, tm) over the sign sequences sm and tm that index the
information channels, as opposed to the average of correlation coefficients.

We can indeed show that for any α > 0, maxtm �=sm ρ(sm, tm) ≤ 2−(1+α)m,
for almost all sm ∈ {−,+}m, provided that m is large enough:

Theorem 3.10. For any α > 0 and δ > 0, there exists m0(α, δ) such that
∀m ≥ m0,

1

2m

∣∣∣{sm ∈ {−,+}m : max
tm �=sm

ρ(sm, tm) ≤ 2−m(1+α)
}∣∣∣ ≥ 1− δ. (3.44)

Having proven Theorem 3.10, we can immediately conclude that the union
bound is asymptotically tight:

Theorem 3.11. Let PUB(n,R, p) be the sum of �nR�, n = 2m, smallest era-
sure probabilities of the synthetic BECs, obtained by the m-fold application of
polar transform to a BEC(p) — that is, the sum of the �nR� smallest values
among n = 2m elements of the set {Zsm : sm ∈ {−,+}m} where the values are
computed according to the single-step recursions of (3.14). Then, if Pe(n,R, p)
denotes the block-error probability of a polar code of block-length n = 2m and
rate R < 1 − p, designed for communicating over a BEC(p), for every δ > 0,
there exists m0(δ), such that ∀m ≥ m0(δ), with n = 2m,

(1− δ)PUB

(
n,R− δ, p

)
≤ Pe(n,R, p) ≤ PUB(n,R, p). (3.45)



3.3. Decay of Correlations 49

Proof. The upper bound is already known and we only need to prove the
lower bound. For each m ∈ N, let Am be the indices of best �2mR� synthetic
channels and

Dm :=
{
sm ∈ {−,+}m : max

tm �=sm
ρ(sm, tm) ≤ δ2−m

}
. (3.46)

In view of Theorem 3.10, choose m ≥ m1(δ) such that

|Dm|
2m
≥ 1− δ. (3.47)

Consider the sequence polar codes2 defined by the set of information indices
A′

m = Am ∩ D′
m. The rate of this sequence of codes is

R′ :=
|Am ∩ D′

m|
2m

=
|Am|
2m

+
|D′

m|
2m
− |Am ∪ D′

m|
2m

≥ R− δ. (3.48)

Moreover since A′
m ⊆ Am,

Pe(A′
m) ≤ Pe(Am) = Pe(n,R, p). (3.49)

(Recall that Pe(A) denotes the block-error probability of the polar code defined
by the set of information indices A.) Let

PUB(A′
m) =

∑
sm∈A′

m

Pr(E sm), (3.50)

be the union bound on the block-error probability of the code defined by A′
m.

Since PUB(A′
m) ≤ PUB(m,R, p), by construction, and R < 1 − p, there exists

m2 such that for m ≥ m2, PUB(A′
m) ≤ 1.

For m ≥ m0 := max{m1,m2}, the lower bound of (3.12) implies

Pe(A′
m) ≥

1

2
(1− δ)PUB(A′

m). (3.51)

Moreover, by definition

PUB(A′
m) ≥ PUB(m,R′, p) ≥ PUB(m,R− δ, p). (3.52)

Combining (3.49), (3.51), and (3.52), yields

Pe(Am) ≥
1

2
(1− δ)PUB(m,R− δ, p). (3.53)

Finally, we note that the multiplicative factor in the above lower bound can
easily be improved to (1 − δ): Since PUB(A′

m) decays with m as 2−2βm (for
any β < 1/2), for large enough m, it is below δ. Using this upper bound (as
opposed to 1) in (3.97) in the proof of Lemma 3.1 (see Appendix 3.A) yields
the tighter lower bound of (3.45).

2We slightly abuse the terminology here: these codes are not real polar codes as A′
m

does not necessarily index the |A′
m| best synthetic channels.
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We devote the rest of this section to proving Theorem 3.10. To this end,
we establish a probabilistic framework similar to that used in [5] for proving
the channel polarization theorem.

Let S1, S2, . . . , be a sequence i.i.d. Bernoulli(1/2) random variables taking
values in {−,+}, and let Fm := σ(S1, . . . , Sm) be the σ-algebra generated by
the first m of them. We consider the sequence of random variables (ZSm ,m ∈
N) and (ρ(Sm, tm),m ∈ N) (for an arbitrary infinite sign sequence t∞, with tm

denoting its first m elements) which are all Fm-measurable.
Define also the Fm-measurable random process (ρm,m ∈ N) as

ρm := max
tm �=Sm

ρ(Sm, tm), (3.54)

and observe that (3.44) is equivalent to

Pr
{
ρm ≤ 2−m(1+α)

}
≥ 1− δ. (3.55)

Note also that ρm is the maximum of two processes

ρ
(1)
m,lm

:= max
tm �=Sm:
tlm=Slm

ρ(Sm, tm) (3.56)

ρ
(2)
m,lm

:= max
tm �=Sm:
tlm �=Slm

ρ(Sm, tm) (3.57)

for any sequence of integers (lm,m ∈ N) (such that lm ≤ m). In other words,

ρ
(1)
m,lm

is the largest correlation coefficient between the erasure events of the

synthetic channels W Sm and W tm , where tm and Sm have a common prefix of
length at least lm (but differ at some position after the lm

th) and ρ
(2)
m,lm

is the

maximum correlation coefficient between the erasure events W Sm and the rest
of synthetic channels.

Obviously, (3.55) follows if we can show that for m ≥ m0(α, δ),

Pr
{
ρ
(1)
m,lm
≤ 2−m(1+α)

}
≥ 1− δ/2, and (3.58)

Pr
{
ρ
(2)
m,lm
≤ 2−m(1+α)

}
≥ 1− δ/2. (3.59)

In the rest of this section we will establish (3.58) and (3.59) through a
sequence of lemmas.

Closely related sm and tm

If two channels are closely related, i.e., they are indexed by a pair of sign
sequences sm and tm, that share a long common prefix s� = t�, then with high
probability, their parent channel, W s� , is already well-polarized. In particular
Zs� is, with high probability, doubly exponentially small in �. Recursions of
(3.18) show that the correlation coefficient between the pair of erasure events
of the children of an extremal channel is small. More precisely, if � = Ω(logm),
since Zs� is exponentially small in m, the correlation coefficient between the
children of W s� will be exponentially small in m too.
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Lemma 3.12. Let lm :=
⌈
4 log

(
2(1 + α)m − 1

)⌉
. Then, ∀α ≥ 0 and ∀δ > 0,

∃m1(α, δ) such that ∀m ≥ m1,

Pr
{
ρ
(1)
m,lm
≤ 2−(1+α)m

}
≥ 1− δ/2.

Proof. Let tm �= Sm be any sign sequence that shares a prefix of length � ≥
lm with Sm. Note that S� is a uniformly chosen sign sequence in {−,+}�.
According to Lemma 3.6 (ii),

ρ(Sm, tm) ≤ ρ(S�+1, t�+1) (3.60)

Moreover, since ρ(S�, t�) = 1,

ρ(S�+1, t�+1) =

√
ZS�ZS�

2 + ZS�ZS�
≤
√

1

2
min
{
ZS� , ZS�

}
. (3.61)

In [6, Theorem 1] it has been shown that for any fixed 0 < β < 1/2 and
δ > 0 there exists l0(β, δ) such that for � ≥ l0

Pr
{
ZS� ∈

[
2−2�β , 1− 2−2�β

]}
≤ δ/2. (3.62)

Note also that since � ≥ lm (by assumption), 2−2�β ≤ 2−2lmβ
, hence

Pr
{
ZS� ∈

[
2−2lmβ

, 1− 2−2lmβ]} ≤ Pr
{
ZS� ∈

[
2−2�β , 1− 2−2�β

]}
. (3.63)

Thus, choosing β = 1
4
and, accordingly, m1(α, δ) such that m ≥ m1 implies

lm ≥ l0(
1
4
, δ), we will have (for m ≥ m1),

Pr
{
ZS� ∈

[
2−2lm/4

, 1− 2−2lm/4]} ≤ δ/2, (3.64)

which, together with the fact that lm ≥ 4 log
(
2(1 + α)m− 1

)
, implies

Pr
{
ZS� ∈

[
2 · 2−2(1+α)m, 1− 2 · 2−2(1+α)m

]}
≤ δ/2. (3.65)

The above yields

Pr

{√
1

2
min
{
ZS� , ZS�

}
≥ 2−(1+α)m

}
≤ δ/2. (3.66)

Due to (3.60) and (3.61), Equation (3.66) implies, with probability at least
1− δ/2 over the choice of S�,

ρ(Sm, tm) ≤ 2−m(1+α) (3.67)

for all tm �= Sm sharing a common prefix of length at least lm with Sm.
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Distantly related sm and tm

For distantly related channels, at the separation point, the parent channel can
still be mediocre. However, in this case, according to (3.28), the correlation
coefficients decay somehow geometrically (that is, they are multiplied by some
factor smaller than 1) in m − lm = Θ(m) steps. Consequently, we can use a
bootstrapping method to establish an exponentially decaying upper bound on
ρ
(2)
m,lm

. More precisely, (3.28) implies

ρ(sm+1, tm+1)

ρ(sm, tm)
≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
ρ(sm, tm)2

Zsm

1 + Zsm
+

2Zsm

1 + Zsm
if sm+1 = +,√

ρ(sm, tm)2
Zsm

1 + Zsm
+

2Zsm

1 + Zsm
if sm+1 = −.

(3.68)

(See the proof in Appendix 3.C.) Inspecting the right-hand side of (3.68),
we see that if, for instance, the process ZSm is sealed outside the interval
[3γ2/8, 1 − 3γ2/8] and ρm below 1

2
γ, at each step, with probability half ρm is

multiplied by at most γ, which results in an exponentially decaying bound on
ρm.

Lemma 3.13. For any sequence lm such that limm→∞ m − lm = ∞ and any
γ ≥ 0, there exits ms(γ, δ) such that ∀m ≥ ms,

Pr
{
ρ
(2)
m,lm
≤ 1

2
γ
}
≥ 1− δ (3.69)

Proof. If γ ≥ 2
3
then Pr{ρ(2)m,lm

≤ 1
2
γ} = 1 for ∀m > lm due to Lemma 3.6.

Thus, in the rest of proof we assume γ < 2
3
.

We first observe that due to (ii) and (iii) in Lemma 3.6, ρ
(2)
lm+1,lm

≤ 1/3
with probability 1. Now we will show that

Pr
{
ρ
(2)
m,lm
≥ 1

2
γ
}
≤ δ, (3.70)

for sufficiently large m. Note that ρ
(2)
m,lm
≥ 1

2
γ means ∃tm �= Sm (in particular

different in the first lm positions) for which

ρ(tm, Sm) ≥ 1

2
γ. (3.71)

Let sm, tm be such a pair and consider the sequence of successive ratios

r� :=
ρ(s�, t�)

ρ(s�−1, t�−1)
, � = lm + 2, . . . ,m. (3.72)

Let qm := m− lm − 1 and note that at most

log(3γ/2)

log(1− 1/
√
qm)
≤ − log(3γ/2)︸ ︷︷ ︸

=:cγ>0

√
qm (3.73)
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elements of the sequence r� (out of qm) can be smaller than 1− 1/
√
qm. Oth-

erwise,

ρ(sm, tm) = ρ(slm , tlm) ·
m∏

�=lm+2

r� <
1

3
· 3γ
2

=
1

2
γ, (3.74)

which contradicts (3.71). These elements partition the interval {lm+2, . . . ,m}
into at most cγ

√
qm segments, one of which must have length at least c−1

γ

√
qm.

The proof of Lemma 3.7 shows that on this segment the sign sequence sm must
be constant because, on this segment, r� > 1−1/

√
qm. The set of sequences of

length qm that have a run of the same sign for an interval of length c−1
γ

√
qm has

probability at most 2qm2
−c−1

γ
√
qm . However, by assumption qm = m − lm − 1

goes to infinity as m gets large. Therefore, the probability of having such Sm

sequences is arbitrarily small, provided that m is large enough.

Lemma 3.14. Let lm :=
⌈
4 log

(
2(1 + α)m − 1

)⌉
. Then, ∀α ≥ 0 and ∀δ > 0,

∃m2(α, δ) such that ∀m ≥ m2,

Pr
{
ρ
(2)
m,lm
≤ 2−(1+α)m

}
≥ 1− δ/2. (3.75)

Proof. Fix γ > 0 (to be chosen later). With our choice of lm, according to
Lemma 3.13, ∃ms(γ, δ), such that ∀m ≥ ms,

Pr
{
ρ
(2)
m/2,lm

≤ γ/2
}
≥ 1− δ/6. (3.76)

Moreover, the polarization of ZSm process (see [6, Lemma 2]) implies ∃m′
s(γ, δ)

such that ∀m ≥ m′
s(γ, δ),

Pr
{
∀� ≥ m/2: ZS� �∈ [3γ2/8, 1− 3γ2/8]

}
≥ 1− δ/6. (3.77)

Finally, for � = m/2+1, . . . ,m, let D� := min{ZS� , ZS�} for the sake of brevity,
and

S̃� :=

{
+ if ZS�−1 ≤ 1

2
,

− if ZS�−1 ≥ 1
2

(3.78)

Since S̃� depends only on S�−1,

B� := 1{S̃� = S�}, � =
m

2
+ 1,

m

2
+ 2, . . . ,m. (3.79)

are i.i.d. Bernoulli(1
2
) random variables. Consequently, by the weak law of

large numbers, ∃mb(δ) such that ∀m ≥ mb,

Pr

{
1

m/2

m∑
�=m/2+1

B� ≥
1

4

}
≥ 1− δ/6. (3.80)
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Let tm� = tm� (S
m) be the sign sequence for which the maximum in (3.57) is

attained. We have

log
(
ρ
(2)
m,lm

)
= log

[
ρ(Sm/2, tm/2

� )
]
+

m−1∑
�=m/2

log
[ρ(S�+1, t�+1

� )

ρ(S�, t��)

]
(3.81)

(a)

≤
m−1∑
�=m/2

log
[ρ(S�+1, t�+1

� )

ρ(S�, t��)

]
(3.82)

(b)

≤
m−1∑
�=m/2

log
[ρ(S�+1, t�+1

� )

ρ(S�, t��)

]
B�+1 (3.83)

where (a) follows because ρ(Sm/2, t
m/2
� ) ≤ 1 and (b) as ρ(S�+1, t�+1

∗ )/ρ(S�, t�∗) ≤
1 (due to (ii) of Lemma 3.6), thus excluding some terms from the summation
can only increase its value.

Inspecting (3.68), we see that if B� = 1,

ρ(S�+1, t�+1
∗ )

ρ(S�, t�∗)
≤

√
ρ(S�, t�∗)

2
D�

1 +D�

+
2D�

1 +D�

(3.84)

≤
√
ρ(S�, t�∗)

2 + 2D� (3.85)

≤
√(

ρ
(2)
m/2,lm

)2
+ 2D�. (3.86)

Using (3.76) and (3.77), we see that, for m ≥ max{ms,m
′
s}, with proba-

bility at least 1− δ/3, √(
ρ
(2)
m/2,lm

)2
+ 2D� ≤ γ. (3.87)

Further, (3.80) shows that, for m ≥ mb with probability at least 1− δ/6,

m∑
�=m/2+1

B� ≥
m

8
. (3.88)

Therefore, continuing (3.83), we conclude that for m ≥ max{ms,m
′
s,mb},

with probability 1− δ/2,

log ρ
(2)
m,lm
≤ −m log(1/γ)/8. (3.89)

Choosing γ = 2−8(1+α) ensures that, for m ≥ m1(α, δ) := max{ms,m
′
s,mb},

with probability at least 1− δ/2,

ρ
(2)
m,�m

≤ 2−m(1+α).
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3.4 Summary and Extensions

In this chapter, we have studied the correlations between the synthetic era-
sure channels and have shown that, even though after a single step of polar
transform two highly correlated erasure channels are synthesized from two
independent copies of an erasure channel, almost all correlation coefficients
between the erasure events of 2m erasure channels (after the m-fold appli-
cation of Arıkan’s polar transform) decay faster than any exponential in m.
Consequently, by using the inclusion–exclusion lower bound, we conclude that
the union bound on the block-error probability of polar codes under successive-
cancellation decoding is a tight estimate of the actual block-error probability,
when communication takes place over the binary erasure channel. Our numer-
ical examples also confirm that the inclusion–exclusion lower bound on the
block-error probability of polar codes of different rates and block-lengths is
indeed very close to the union bound.

An important implication of our result is that the optimal choice for infor-
mation indices is to select those indexing the synthetic channels with the lowest
bit-error probability. Such a choice minimizes the upper bound of (2.29), but
whether it minimizes the actual block-error probability of the code was not a
priori clear. Our results show that, at least for communication over the erasure
channel, such a design rule for the code is, indeed, optimal.

It is noteworthy that our results are immediately extensible to the case of
communication with q-ary polar codes over a q-ary erasure channel, namely
the channel W : Fq :→ Y with transition probabilities

W (y|x) =
{
p if y =?,

1− p if y �=? and y = x.
(3.90)

It can easily be checked that, exactly like the binary case, in this case both
W− and W+ are effectively q-ary erasure channels; and W− erases if either
copy of W erase, whereas W+ erases if both copies erase.3 Thus, the same
correlation structure between the erasure events of the synthetic q-ary erasure
channels exists and our conclusions will remain valid for non-binary erasure
channels as well.

It is important to extend the results of this chapter to communication over
channels other than BEC. This is a challenging open problem. The main
difficulty here is that, as we discussed in § 2.4, apart from the set of erasure
channels, no other class of easily described channels is known to be stable under
Arıkan’s polar transform. Consequently, it would be impractical to keep track
of the probability of joint error events after the repeated application of the

3Here we assumed that the polar transform is applied in the same way as the binary
case, replacing the XOR operation the modulo-q addition. According to [99], for general
q-ary channels using such a polar transform, polarization — in the sense of converging to
capacity-0 and capacity-log(q) channels — happens only when q is prime. However, for the
special case of erasure channels polarization does happen even if q is not prime.
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polar transform to a channel other than BEC. In fact, to do so, we would
need to calculate the joint distributions of pairs of log-likelihood ratios of
synthetic channels recursively, which is computationally intractable, due to
the exponential growth of the output alphabet of the synthetic channels (see
§ 2.4).

One tempting experiment would be to estimate the correlation coefficients
between the pairs of error events via computer simulations. The problem there
is that, especially when the block-length is large, most of the channels become
well-polarized and the probability of joint bit-error events will be misestimated
to be 0 (while it is actually a very small value). This renders the estimations
meaningless.

An alternative approach and one perhaps more interesting from a practical
perspective would be to apply the same method of [109] here: The inclusion–
exclusion lower bound on the block-error probability of polar codes under
successive-cancellation decoding involves the probability of individual error
events and the probability of joint error events (and the latter appears with a
negative sign in the expression). The approximation method proposed in [109]
readily gives us tight lower bounds on individual bit-error probabilities of the
synthetic channels. We still need to study how the probability of joint bit-error
events of the synthetic channels change after their output symbols are merged
and to develop computationally efficient methods to compute upper bounds
on the probability of joint bit-error events of synthetic channels accordingly.
While writing these paragraphs, it came to our attention that such an approach
is pursued in [104] to compute lower bounds on the block-error probability of
polar codes under successive-cancellation decoding for any BMS channel.

3.A Proof of Lemma 3.1

The upper bound of (3.12) is trivial. To prove the lower bound we use the
inclusion–exclusion principle,

Pr(E) ≥
k∑

j=1

Pr(Ej)−
1

2

∑
i �=j

Pr(Ei ∩ Ej). (3.91)

Moreover, for i �= j,

Pr(Ei ∩ Ej) = Pr(Ei) Pr(Ej) + ρ(i, j)
√
Pr(Ei)

(
1− Pr(Ei)

)√
Pr(Ej)

(
1− Pr(Ej)

)
(3.92)

≤ Pr(Ei) Pr(Ej) + ρmax

√
Pr(Ei)

√
Pr(Ej) (3.93)

where we have defined ρmax = maxi �=j ρ(i, j) for notational brevity. Conse-
quently,∑

i �=j

Pr(E ∩ Ej) ≤
∑
i �=j

Pr(Ei) Pr(Ej) + ρmax

∑
i �=j

√
Pr(Ei)

√
Pr(Ej) (3.94)
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(a)

≤
( k∑

j=1

Pr(Ej)
)2

+ ρmax

( k∑
j=1

√
Pr(Ej)

)2

(3.95)

(b)

≤
( k∑

j=1

Pr(Ej)
)2

+ kρmax

k∑
j=1

Pr(Ej) (3.96)

where (a) follows by including the terms corresponding to i = j in the double
sums and (b) from convexity of s �→ s2. Using (3.96) in (3.91), we have

Pr(E) ≥
[
1− 1

2
kρmax

] k∑
j=1

Pr(Ej)−
1

2

( k∑
j=1

Pr(Ej)
)2

, (3.97)

which, for
∑k

j=1 Pr(Ej) ≤ 1 can be further lower-bounded as

Pr(E) ≥
[
1− 1

2
kρmax

] k∑
j=1

Pr(Ej)−
1

2

k∑
j=1

Pr(Ej)

=
1

2
[1− kρmax]

k∑
j=1

Pr(Ej)

3.B Second Order Statistics of the Erasure
Events

In this section we prove Lemma 3.2 and Corollary 3.3. To this end, the fol-
lowing results turn out to be useful:

Lemma 3.15. For two arbitrary events A and B, let cov(A,B) := Pr(A ∩
B)− Pr(A) Pr(B). Then,

cov(Ac,Bc) = cov(A,B) (3.98a)

cov(A,Bc) = cov(Ac,B) = − cov(A,B) (3.98b)

Proof. Obviously, it is sufficient to prove that

cov(Ac,B) = − cov(A,B). (3.99)

The rest of the claims follow from (3.99) using the symmetry of cov(·, ·). By
the law of total probability,

Pr(Ac ∩ B) = Pr(B)− Pr(A ∩ B). (3.100)

Therefore

cov(Ac,B) = Pr(Ac ∩ B)− Pr(Ac) Pr(B) (3.101)

= Pr(B)− Pr(A ∩ B)− [1− Pr(A)] Pr(B) (3.102)

= Pr(A) Pr(B)− Pr(A ∩ B), (3.103)

which establishes (3.99).
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Corollary 3.16. Let the correlation coefficient between pair of events A and
B be defined as

ρ(A,B) := cov(A,B)√
Pr(A)[1− Pr(A)]

√
Pr(B)[1− Pr(B)]

. (3.104)

Then

ρ(Ac,Bc) = ρ(A,B) (3.105a)

ρ(A,Bc) = ρ(Ac,B) = −ρ(A,B). (3.105b)

3.B.1 Proof of Lemma 3.2

We first prove (3.17d) and then show how the rest of results easily follow by
using Lemma 3.15.

Recall that E sm+ = E sm1 ∩ E s
m

2 (and E tm+ = E tm1 ∩ E t
m

2 ).

C(sm+, tm+) = Pr
(
E sm1 ∩ E s

m

2 ∩ E t
m

1 ∩ E t
m

2

)
−Pr

(
E sm1 ∩ E s

m

2

)
Pr
(
E tm1 ∩ E t

m

2

)
(3.106)

(∗)
= Pr(E sm ∩ E tm)2 − Pr(E sm)2 Pr(E tm)2 (3.107)

=
(
Pr(E sm ∩ E tm

)
− ZsmZtm

)2
+ 2ZsmZtm

[
Pr(E sm ∩ E tm)− ZsmZtm

]
(3.108)

= C(sm, tm)2 + 2ZsmZtmC(sm, tm), (3.109)

where in (∗) we have used the fact that the (E sm1 , E sm2 ) (respectively (E tm1 , E tm2 ))
are independent events with equal probability).

Now, observe that (3.98a) implies

C(sm−, tm−) = cov
(
E sm−, E tm−)= cov

(
(E sm−)c, (E tm−)c

)
. (3.110)

Moreover, since (E sm−)c = (E sm1 )c∩(E sm2 )c (resp. (E tm−)c = (E tm1 )c∩(E tm2 )c) due
to (3.13a), and cov

(
(E sm)c, (E tm)c

)
= C(sm, tm) because of (3.98a), following

the same lines as (3.109), shows

cov
(
(E sm−)c, (E tm−)c

)
= C(sm, tm)2 + 2ZsmZtmC(sm, tm). (3.111)

The above, together with (3.110) establish (3.17a).
Similarly,

C(sm−, tm+) = cov
(
E sm−, E tm+

)
= − cov

(
(E sm−)c, E tm+

)
. (3.112)

and
cov
(
(E sm−)c, E tm+

)
= C(sm, tm)2 − 2ZsmZtmC(sm, tm) (3.113)

(because cov
(
E sm , (E tm)c

)
= −C(sm, tm)) which prove (3.17b). Equation (3.17c)

can also be established in the same way.
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3.B.2 Proof of Corollary 3.3

Once again we first prove (3.18d). Setting

C(sm, tm) = ρ(sm, tm)
√
ZsmZsm

√
ZtmZtm (3.114)

in both sides of (3.17d) and using the fact that Zsm+ = (Zsm)2 (similarly
Ztm+ = (Ztm)2), we get:

ρ(sm+, tm+)

√
(Zsm)2(Zsm)2(Ztm)2(Ztm)2

= 2ZsmZtm
√

ZsmZsmZtmZtmρ(sm, tm) +
(
ZsmZsmZtmZtm

)
ρ(sm, tm)2.

(3.115)

Eliminating ZsmZtm from both sides of the above we get,

ρ(sm+, tm+)

√
(Zsm)2 · (Ztm)2

= 2
√
ZsmZsmZtmZtmρ(sm, tm) +

(
ZsmZtm

)
ρ(sm, tm)2, (3.116)

which yields (3.18d). Equations (3.18a)–(3.18c) follow using Corollary 3.16
and the symmetry between ‘plus’ and ‘minus’ transforms.

3.C Proof of Equation (3.68)

An application of Cauchy–Schwarz inequality, slightly different than what we
did in the proof of (ii) in Lemma 3.6, to the right-hand side of (3.28d) yields

ρ(sm+, tm+)

ρ(sm, tm)
= 2

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
+

√
Zsm

1 + Zsm

√
Ztm

1 + Ztm
ρ(sm, tm)

(3.117)

≤

√
Ztm

1 + Ztm
+

2Ztm

1 + Ztm
·

√
ρ(sm, tm)2

Zsm

1 + Zsm
+

2Zsm

1 + Zsm

(3.118)

=

√
ρ(sm, tm)2

Zsm

1 + Zsm
+

2Zsm

1 + Zsm
(3.119)

Likewise, using (3.28a), we get

ρ(sm−, tm−)
ρ(sm, tm)

≤

√
ρ(sm, tm)2

Zsm

1 + Zsm
+

2Zsm

1 + Zsm
. (3.120)

Also, the right-hand side of (3.28c) is upper-bounded by
√

2Zsm/(1 + Zsm)
that is in turn smaller than (3.119). Similarly, the right-hand side of (3.28b)

is upper-bounded by
√
2Zsm/(1 + Zsm) that is in turn smaller than (3.120).
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Even though the block-error probability of polar codes, when decoded with
a low-complexity successive-cancellation decoder, scales roughly like O(2−

√
n)

(where n = 2m is the block-length of the code), short- to moderate-length
polar codes do not perform very well compared to existing coding schemes.
For example, in Figure 4.1 we compare the performance of polar codes of
block-lengths n = 512, n = 1024, and n = 2048 and rate 1/2 with LDPC
codes of similar block-length and same rates, when used for communication
with BPSK signalling over AWGN channel.1 We see that to guarantee a block-
error probability of 10−3 polar codes require, roughly speaking, about 1 dB of
higher energy per bit. This gap increases to more than a dB if we aim for a
block-error probability of 10−5.

This poor performance is due to two factors: the suboptimality of the
successive-cancellation decoder (as we discussed in § 2.3.1), and the intrinsic
weakness of short polar codes.2

Shortly after the introduction of polar codes, successive-cancellation list
(SCL) decoding of polar codes emerged as an efficient solution for improving
the performance of short polar codes [108]. As we will see in § 4.1, successive-
cancellation list decoding has a complexity of O(L · n log n), where L, the list
size, is a parameter that enables the complexity–performance trade-off of the
algorithm: with L = 1 the algorithm reduces to the conventional successive-
cancellation decoding, and as L increases the algorithm improves upon the
successive-cancellation decoding (in return for a slightly higher decoding com-

1We saw in Chapter 2 that polar codes are channel specific. In all examples of this
chapter, the polar codes are constructed for a BI-AWGNC with noise variance σ2 = 0.63096
using the Monte Carlo method of [5, Section IX]. For the code rate of 1/2 this corresponds
to Eb/N0 = 2 dB.

2As we will see later in this chapter, even under optimal MAP decoding, short- to
moderate-length polar codes do not exhibit a good performance.

61
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Figure 4.1: Performance Comparison between Polar and LDPC Codes

plexity). Numerical evidence show that under successive-cancellation list de-
coding with a relatively small list size, the block-error probability of polar
codes approaches that under the optimal MAP decoder. Hence successive-
cancellation list decoding compensates for the suboptimality of the successive-
cancellation decoder. Furthermore, successive-cancellation list decoding en-
ables us to use modified polar codes by concatenating a polar code with a
cyclic redundancy check (CRC) code as the outer code [85, 110]. Adding the
CRC does not increase either the computational complexity of the encoder or
that of the decoder by any notable amount, but it does significantly reduce
the block-error probability. This makes polar codes competitive with existing
codes (cf. § 4.1.2).

The original successive-cancellation list-decoding algorithm in [108] is for-
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mulated in terms of likelihood ratios, which makes the decoder’s computations
prone to underflow errors. Even if this issue is circumvented by normalizing
the intermediate computation results (as proposed in [110]), the update rules
in the likelihood domain involve multiplications and divisions that are expen-
sive for a hardware implementation of the decoder (see § 2.3.2). We show in
§ 4.2 that the successive-cancellation list-decoding algorithm can — similarly
to conventional SC decoding — be formulated exclusively in the log-likelihood
ratio (LLR) domain. Such a formulation, in particular, results in a much more
efficient hardware implementation of the decoder [8].

As we will discuss in § 4.1.2, in the design of CRC-concatenated polar
codes, the length of CRC is a crucial design parameter that has to be chosen
correctly. In § 4.3.1, we provide examples to illustrate the trade-off between
the length of CRC and the performance of the code and show that, to obtain
the best possible performance, the length of CRC should be carefully tuned
based on the list size.

Another important question in the design of polar codes for error correction
is the choice between a long polar code with the conventional low-complexity
SC decoder or a short polar code with the successive-cancellation list decoder
(which requires relatively more computational resources). In § 4.3.2, we com-
pare the block-error probability of polar codes of block-lengths n = 4096,
n = 8192, n = 16384, and n = 32768 under SC decoding to that of short
modified polar codes (of block lengths n = 512, n = 1024, and n = 2048)
that are decoded using a successive-cancellation list decoder with a list size
chosen such that the computational complexity of all decoders are almost the
same. From these examples, we conclude that to achieve a target block-error
probability, and under the same per-codeword computational cost, successive-
cancellation list decoding, together with CRC-concatenation, allows a decrease
of the block-length by a factor of eight (hence reduces the per-codeword de-
coding latency).

Part of the material presented in this chapter is based on joint work with
A. Balatsoukas-Stimming and A. P. Burg [7, 8].

4.1 List Decoding of Polar Codes

To understand the successive-cancellation list-decoding algorithm, it is useful
to picture the set of all 2k, k = |I|, possible source-plus-frozen bits

Un := {un ∈ Fn
2 : uF is fixed} (4.1)

as 2k paths from the root to the leaves of a full binary tree of height n (see
Figure 4.2).

Any decoding algorithm is hence a tree-search algorithm that picks a path
on the tree that corresponds to the set of all possible un sequences. Specifi-
cally, upon observing the channel output yn, the optimal MAP decoder would
associate each path with its posterior probability, Pr{Un = un|Y n = yn}, or
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Figure 4.2: Each un ∈ Un ⊂ Fn
2 corresponds to one of 2k paths on a binary tree.

any other score that is a monotone function of its posterior probability, and
chooses the path with the highest score:

ûN
MAP = argmax

un∈Un

Pr{Un = un|Y n = yn}. (4.2)

Obviously, implementing the MAP decoder is infeasible as its computational
complexity grows exponentially fast with the block-length.

In contrast, the low-complexity successive-cancellation decoder, finds a
suboptimal solution by maximizing the likelihood via a greedy one-time pass
through the tree: starting from the root, at each level i ∈ I, the decoder
extends the existing path by choosing the child that maximizes the partial
likelihood :

ûi = argmax
ui∈F2

W (i)
n (yn, ûi−1

1 |ui). (4.3)

(See Figure 4.3.)
Furthermore, observe that in the last step of SC decoding, the likelihood

value W
(n−1)
n (yn, ûn−1|ûn) is proportional to the posterior probability Pr{Un =

ûn|Y n = yn} as we have assumed the information bits are i.i.d. coin flips:

W (n−1)
n (yn, ûn−1|ûn) = 2Pr{Un = ûn, Y n = yn} (4.4)

= 2Pr{Un = ûn|Y n = yn}Pr{Y n = yn}. (4.5)

Consequently, in principle, one way to realize an optimal MAP decoder for
polar codes would be to allow the decoder to duplicate in two decoding threads,
whenever it reaches an information index, and to descend the tree in both paths
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Figure 4.3: SC Decoder chooses a path on the tree in a greedy single pass through
the tree: In this example û4 = argmaxu∈F2

W
(4)
n (yn, û3|u).

in parallel — instead of forcing the decoder to choose one direction to follow.
This way, the decoder would eventually end up with 2k decoding threads; each
of them corresponding to one of the sequences in Un and containing a score
proportional to the posterior probability of that particular sequence.

Successive-cancellation list (SCL) decoding [108] interpolates between the
suboptimal (but efficient) approach of the conventional successive-cancellation
decoder and the optimal (but impractical) MAP decoder by letting the decoder
descend the tree in L parallel paths: Starting from the root of the tree, at
each level corresponding to an information index, the decoder is duplicated
into two decoding threads that descend in either possible direction. However,
in order to avoid the exponential growth of the number of decoding threads,
as soon as the number of parallel threads reaches L, at each level, only the L
threads corresponding to the L most likely paths (out of 2L tentative ones)
are retained.3 In other words, successive-cancellation list decoding converts the
greedy one-time-pass search of SC decoding into a breadth-first search under
a complexity constraint. The decoder will eventually end up with a list of
L possible candidates for the sent un sequence, that we denote as {ûn[�], � =
1, 2, . . . , L}, among which the most likely one is declared as the final estimate
(see Figure 4.4).4 This procedure is formalized in Algorithm 3.

3Although it is not necessary, L is normally a power of 2
4Note that the output of successive-cancellation list decoder is a single codeword and

not a list of codewords — unlike the conventional list decoder introduced by Elias and
Wozencraft [39, 115].
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At this point we should mention that, before the advent of polar codes,
both successive-cancellation decoding and successive-cancellation list-decoding
algorithms were proposed in [35,36] for decoding the Reed–Muller codes.5
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Figure 4.4: Successive-cancellation list decoding descends the tree in L parallel
paths. In this example L = 4.

As reported in [108] (and independently confirmed by our experiments,
see § 4.1.1), with a relatively small list size, the performance of the successive-
cancellation list decoder will be very close to that of the optimal MAP decoder
for polar codes. It is also noteworthy that in the entire run of the successive-
cancellation list decoding there are Θ(n) copy operations per decoding thread
(see lines 8 and 18 of Algorithm 3). Each copy operation requires duplication
of the internal data structures of size Ω(n) of a SC decoder. Consequently,
a näıve implementation of the successive-cancellation list-decoding algorithm
would have a complexity of Ω(L · n2). However, due to the structured nature
of the SC decoder, using a copy-on-write mechanism, a successive-cancellation
list decoder can indeed be implemented in O(L · n log n) complexity [108].

5Polar and Reed–Muller codes [83, 91] are very similar. The generator matrices for
both codes are sub-matrices of Gn (2.20). The generator matrix of an (n, k) Reed–Muller
code is obtained by keeping the k columns of Gn with largest Hamming weight (a channel-
independent choice). It is discussed in [5, Section X] that the Reed–Muller choice can lead
to unreliable codes under SC decoding.
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Algorithm 3: Successive-Cancellation List Decoding [108]

1 L ← {1} ; // start with a single active thread

2 for i = 1 to n do
3 if i �∈ I then // frozen bits

4 ûi[�]← ui for ∀� ∈ L;
5 else // information bits

6 if |L| < L then // duplicate all the threads

7 foreach � ∈ L do
8 forkPath(�);

9 else // choose L best extensions

10 ∀� ∈ L and ∀u ∈ F2, compute P�,u := W
(i)
n (yn, ûi−1[�]|u);

11 τ ← the median of 2L likelihoods P�,u;
12 foreach � ∈ L such that P�,0 < τ and P�,1 < τ do
13 Kill the thread � and set L ← L \ {�};
14 for � ∈ L do
15 if P�,u > τ while P�,u⊕1 < τ then
16 ûi[�]← u;
17 else // P�,0 ≥ τ and P�,1 ≥ τ
18 forkPath(�);

19 �∗ ← argmax�∈LW
(n−1)
n (yn, ûn−1[�]|ûn[�]);

20 return ûn[�∗];

21 subroutine forkPath(�)
22 Copy the thread � into a new thread �′ �∈ L;
23 L ← L ∪ {�′};
24 ûi[�]← 0;
25 ûi[�

′]← 1;

4.1.1 Performance of Successive-Cancellation List
Decoding

In Figure 4.5, we present the empirical performance of successive-cancellation
list decoders with list sizes of L = 2, 4, 8, 16, and 32 for polar codes of rate
1/2 and block lengths n = 512, 1024, and 2048. We also plot a lower bound
on the block-error probability of a MAP decoder. This bound is obtained as
follows: During the simulations of the list decoder, whenever a decoding error
occurs, we compute the posterior probability of the (mis)decoded codeword
and compare it with that of the sent codeword. If the decoded codeword has
a higher posterior probability, the MAP decoder would also make a wrong
decision. Thus, by counting the frequency of such events, we can obtain a
lower bound on the block-error probability of the MAP decoder.

As the plots show, for signal-to-noise ratios above 1.5 dB, a relatively small
list size of L = 32 is sufficient to boost the performance of the suboptimal
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Figure 4.5: Successive-cancellation list decoder achieves close-to-optimal block-
error probability.

successive-cancellation decoder up to that of the optimal MAP decoder. More-
over, as the list size is increased, we observe a diminishing returns phenomena.
For example, for a (512, 256) polar code the block-error probabilities at list
sizes L = 8, 16 and 32 are practically indistinguishable (and they are all al-
most equal to that of the optimal MAP decoder) in the whole range of SNR.
Similarly, for our (1024, 512) polar code the block-error probabilities of list
decoders with list sizes L = 16 and L = 32 are almost the same. Finally, we
observe that as the SNR increases, say, above 3 dB, even a small list size of
L = 4 is sufficient to achieve the optimal block-error probability.

4.1.2 CRC-Aided List Decoding

During the experiments with the successive-cancellation list decoder, we ob-
serve that when the decoder fails, in most of the cases the sent codeword is
present in the final list but is not declared due to the presence of another more



4.1. List Decoding of Polar Codes 69

likely codeword in the list. (Note that in such circumstances the MAP decoder
would have failed to decode too.) Consequently, if the decoder were ‘assisted’
for its final choice (line 19 of Algorithm 3) we could improve its performance.
It turns out that such an assistance can easily be realized by modifying polar
codes as follows: We can increase the number of information bits by r (i.e.,
increase the polar code rate to (k + r)/n) and set the last r information bits
to an r-bit CRC of the first k information bits. Note that in this case the ef-
fective information rate of the code is unchanged. The successive-cancellation
list decoder, in line 19, first discards the paths that do not pass the CRC test
and then chooses the most likely path among the survivors [110]. As the em-
pirical results of [110] show (we will also see shortly) a CRC-aided successive-
cancellation list decoder has a significantly lower block-error probability and
is competitive with existing error-correction codes. Before proceeding to the
simulation results, a few remarks are in order:

1. In some works, e.g., [71,72,85] a modified polar code is realized by setting
the last r information bits to the CRC of preceding k − r information
bits. This reduces the effective information rate, making the comparison
between the performance of CRC-aided decoder and that of the unaided
decoder unfair (as the codes subject to comparison do not have the same
rate). According to [107], the simulation results of [110] are based on
equi-rate comparisons.

2. In principle, a modified polar code can be constructed by using any
(k+ r, k) code as the outer code and an (n, k+ r) polar code as the inner
code. The concatenated code has a better distance profile and the list
decoder, in line 19 of Algorithm 3, would first discard the candidates that
are not codewords of the outer code and then declare the most likely one
among the survivals (see for instance [113]). In particular, the advantage
in using a cyclic code (such as a CRC code) as the outer code is that the
code syndrome can be computed serially without the need for storing the
decoded information bits per each path6 [73, Chapter 7].

3. Another popular approach, to assist the decoder in declaring the path
that corresponds to the (hopefully) correct codeword, is to partition the
information bits into a few segments and append each segment with a
very short CRC (as opposed to appending a longer CRC on the entire
sequence of information bits) [50, 127]. Such a partitioning has the ad-
vantage that the decoder can prune the paths with an invalid CRC in
early stages, which decreases the decoding complexity. Specifically, in a
low-SNR operation regime, such an approach provides an early stopping
criteria to the decoder: If at some point none of the paths pass the par-
ity checks, the decoding stops (and a retransmission of that word will be

6This is essential for a space-efficient implementation of SC decoder which, in turn, leads
to O(L · n log n) implementation of the list decoder.
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requested from higher layers) without wasting time to decode the entire
word. This increases the decoding throughput.

4. As the careful reader might have noticed, in the design of concatenated
polar codes, there is a trade-off between the length of the CRC (more
generally the redundancy r of the outer (k, k + r) code) and the perfor-
mance improvements due to a CRC. A longer CRC helps the decoder to
reject more incorrect codewords in line 19. Meanwhile, the longer CRC
degrades the performance of the inner polar code (it requires a higher-
rate code). In § 4.3.1, we show further empirical results that illustrate
this trade-off.

In Figure 4.6, we present the simulated performance of CRC-aided successive-
cancellation list decoding with list size L = 32 and the CRC-16 defined with
generator polynomial

x16 + x15 + x2 + 1,

We see, in these examples, that modified polar codes outperform the LDPC
codes: they have both a better block-error probability and about 20% shorter
block-length.

To highlight the superiority of modified polar codes under CRC-aided list
decoding over the LDPC codes from IEEE standards, we compare the perfor-
mance of all these codes using the uniform scale of [89] in Figure 4.7. The plot
is obtained as follows. Using our simulation results, we find the SNR required
by each code to achieve the target block-error probability of 10−4. Given this
SNR value and the code block-length, we compute an upper bound R� on the
rate of the best code (of that specific block-length) whose block-error proba-
bility does not exceed 10−4 using the bounds of [89]. Then, we plot the ratio of
the code’s rate (in our case always 1/2) to the optimal coding rate R� versus
the block-length.

4.2 LLR-Based Formulation of List Decoding
Algorithm

Algorithm 3 is a valid high-level description of successive-cancellation list de-
coding. However, for implementing the algorithm, the stability of the compu-
tations is crucial. Algorithm 3 is described in terms of likelihoods that are not
safe quantities to work with: a decoder implemented by using the likelihoods
is prone to underflow errors because they quickly become tiny numbers as the
block-length increases. As noted in [110], ∀yn ∈ Yn, ui ∈ Fi

2, we trivially have

W (i)
n (yn, ui−1

1 |ui)
(a)
= 2Pr{Y n = yn, U i = ui} ≤ 2Pr{U i = ui} (b)

= 2−(i−1). (4.6)

(In the above (a) and (b) both follow from the assumption that information
bits are independent, uniformly distributed, Bernoulli random variables.)
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Figure 4.6: Performance of CRC-Aided SC List Decoder

Consider the binary-tree picture that we provided in § 4.1. The decision
LLRs

λ(i)
m := log

[W (i)
n (yn, ûi−1|0)

W
(i)
n (yn, ûi−1|1)

]
(4.7)

summarize all the necessary information for choosing the most likely child
among two children of the same parent at level i. In other words, decision
LLRs are sufficient statistics for the SC decoder’s decisions. In § 2.3.2 we have
seen that having this type of decisions in the conventional SC decoder enables
us to implement the computations in the LLR domain by using numerically
stable operations. However the successive-cancellation list decoder, in lines 10–
18 of Algorithm 3, has to choose the L most likely children out of 2L children
of L different parents (cf. Figure 4.4). For these comparisons, the decision
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Figure 4.7: Modified polar codes outperform IEEE LDPC codes. The data points
are computed using the numerical routines of [25].

log-likelihood ratios, λ
(i)
m , alone are not sufficient.

Consequently, the software implementation of the decoder in [108] imple-
ments the decoder in the likelihood domain by rewriting the recursions of
§ 2.3.2 for computing pairs of likelihoods W

(i)
n (yn, ûi−1[�]|ui), ui ∈ F2 from

pairs of channel likelihoods W (yi|xi), xi ∈ F2, i = 1, 2, . . . , n. To avoid un-
derflows, at each intermediate step of updates, the likelihoods are scaled by
a common factor such that P�,u in line 10 of Algorithm 3 is proportional to

W
(i)
n (yn, ûi−1|ui) [110].
Alternatively, such a normalization step can be avoided by performing the

computations in the log-likelihood (LL) domain, i.e., by computing the pairs

− log
[
W (i)

n (yn, ûi−1[�]|ui)
]
, ui ∈ F2 (4.8)

as a function of channel log-likelihood pairs log[W (yi|xi)], xi ∈ F2, i = 1, 2, . . . , n
[10]. Log-likelihoods provide some numerical stability. Moreover, similar to
log-likelihood ratios (see § 2.3.2), the recursive formulae for computing the
log-likelihoods can be replaced by their min–sum approximations that involve
only cheap-to-implement additions and comparisons. This leads to a suitable
formulation for a hardware implementation of the decoder [10,71,72,122,126].
However, one important disadvantage of log-likelihoods is that they are all
positive numbers being added throughout the recursive update rules. Conse-
quently, as the log-likelihoods propagate from the channel level to the decision
level, their dynamic range grows. Therefore, to avoid catastrophic overflows we
need to increment by one the bit-width of memory elements in the decoder af-
ter each update, which leads to an irregular memory structure for the decoder.
In particular, starting with a Q-bit quantization of channel log-likelihoods, the
decision log-likelihoods need to be quantized using Q + log2(n) bits. For ex-
ample, in [10], the channel likelihoods are quantized as 4-bit unsigned integers
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which, for the block-length of n = 1024, leads to 14-bit decision log-likelihood
ratios. This also means that all the processing elements of the decoder need
to support 14-bit integers. Moreover, it is obvious that the number of memory
elements per log-likelihood based SC decoder core would be twice that of a
LLR-based SC decoder (a pair of log-likelihoods instead of each log-likelihood
ratio has to be stored).

4.2.1 Ranking the Paths Based on the LLRs

Luckily, it turns out that the decoding paths can still be ordered according to
their likelihoods by using all of the past decision LLRs λ

(j)
m , j ∈ {1, 2 . . . , i}

and the trajectory of each path:

Theorem 4.1. For each path � and at each level i ∈ {1, 2, . . . , n} let the path
metric be defined as:

ζ(i)[�] :=
i∑

j=1

log
[
1 + exp{−(1− 2ûj[�]) · λ(j)

m [�]}
]
, (4.9)

where

λ(i)
m [�] = log

[
W

(i)
n (yn, ûi−1[�]|0)

W
(i)
n (yn, ûi−1[�]|1)

]
(4.10)

is the log-likelihood ratio of bit ui given the channel output yn and the past tra-
jectory of the path ûi−1

0 [�]. Then, if all the information bits are uniformly dis-

tributed in F2, ζ
(i)[�] is a strictly decreasing function of W

(i)
n (yn, ûi−1[�]|ûi[�]).

In view of Theorem 4.1, we can implement the SCL decoder by using L
parallel low-complexity and stable LLR-based SC decoders as the underlying
building blocks. In addition, we need to keep track of L path-metrics. The
metrics can be updated successively as the decoder proceeds by setting

ζ(i)[�] = ζ(i−1)[�] + Δ
(
λ(i)
m [�], ûi[�]

)
, (4.11a)

where Δ: R× F2 → R is

Δ(λ, u) := log
[
1 + exp{−(1− 2u)λ}

]
. (4.11b)

As shown in Algorithm 4, using the values of the associated path metrics, the
paths can be compared based on their likelihood.

Before proving Theorem 4.1 let us provide an intuitive interpretation of
our metric. Since

log[1 + exp(α)] ≈
{
0 if α < 0,

α if α ≥ 0,
(4.12)

the update rule of (4.11) is well-approximated if we replace Δ with Δ̃ : R ×
F2 → R defined as

Δ̃(λ, u) :=

{
0 if u = 1

2
[1− sign(λ)],

|λ| otherwise.
(4.13)
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Algorithm 4: LLR-Based Formulation of SC List Decoding

1 L ← {1} ; // start with a single active thread

2 for i = 1 to n do

3 Compute λ
(i)
m [�], ∀� ∈ L ; // parallel SC decoders

4 if i �∈ I then // frozen bits

5 ∀� ∈ L, ûi[�]← ui;

6 ∀� ∈ L, ζ(i)[�]← ζ(i−1)[�] + Δ(λ
(i)
m [�], ui) ; // see (4.11b)

7 else // information bits

8 ∀� ∈ L and ∀u ∈ F2, set P�,u := ζ(i)[�] + Δ(λ
(i−1)
n [�], u) ;

// see (4.11b)
9 if |L| < L then // duplicate all the threads

10 foreach � ∈ L do
11 forkPath(�);

12 else // choose L best extensions

13 τ ← the median of 2L likelihoods P�,u ;
14 foreach � ∈ L such that P�,0 > τ and P�,1 > τ do
15 Kill the thread � and set L ← L \ {�};
16 for � ∈ L do
17 if P�,u < τ while P�,u⊕1 > τ then
18 ûi[�]← u;

19 ζ(i)[�]← P�,u;

20 else // P�,0 ≤ τ and P�,1 ≤ τ
21 forkPath(�);

22 �∗ ← argmin�∈L ζ(n)[�];
23 return ûn[�∗];

24 subroutine forkPath(�)
25 Copy the thread � into a new thread �′ �∈ L;
26 L ← L ∪ {�′};
27 ûi[�]← 0;

28 ζ
(i)
� ← P�,0;

29 ûi[�
′]← 1;

30 ζ
(i)
�′ ← P�,1;

We also note that 1
2
[1− sign(λ

(i)
m [�])] is the direction that the LLR (given the

past trajectory ûi−1[�]) suggests. This is the same decision that a SC decoder
would take if it estimates the value of ui at step i given the past set of decisions
ûi−1[�] (cf. line 5 in Algorithm 1). Equation (4.13) shows that if at step i the

�th path does not follow the direction suggested by λ
(i)
m [�], it will receive a

penalty roughly equal to |λ(i)
m [�]|, which is the reliability of that LLR. It could

immediately be concluded, based on such an interpretation, that the path that
SC decoder follows will always have the lowest penalty thus is always declared
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as the output of the SCL decoder. So why should the SCL decoder exhibit
a better performance compared to the SC decoder? The answer is that such
a reasoning is correct only if all the elements of un are information bits. As
soon as the decoder encounters a frozen bit, the path metric is updated based
on the likelihood of the frozen bit, given the past trajectory of the path and
the a-priori known value of that bit (cf. line 6 in Algorithm 4). If the value of
that frozen bit does not agree with the LLR, given the past trajectory (which
is an indication of a preceding erroneous decision), this can penalize the SC
path by a considerable amount while keeping some other paths unpenalized.
This is exactly where the constraints put by the subsequent frozen bits show
their effect and correct the decisions (whereas in the SC decoder such an
incompatibility would have been ignored).

Let us conclude this section by proving Theorem 4.1:

Lemma 4.2. If Ui is uniformly distributed on F2, then,

W
(i)
n (yn, ui−1|ui)

Pr{U i
0 = ui|Y n = yn} = 2Pr{Y n = yn}. (4.14)

Proof. Since Pr{Ui = ui} = 1/2 for ∀ui ∈ {0, 1},

W
(i)
n (yn, ui−1|ui)

Pr{U i = ui|Y n = yn} =
Pr{Y n = yn, U i = ui}

Pr{Ui = ui}Pr{U i = ui|Y n = yn} (4.15)

=
Pr{Y n = yn}Pr{U i = ui|Y n = yn}
Pr{Ui = ui}Pr{U i = ui|Y n = yn} (4.16)

= 2Pr{Y n = yn}.

Proof of Theorem 4.1. It is sufficient to show

ζ(i)[�] = − log
[
Pr{U i = ûi[�]|Y n = yn}

]
. (4.17)

Having shown (4.17), Theorem 4.1 will follow as an immediate corollary to
Lemma 4.2 (because the channel output yn is fixed for all decoding paths).
Since the path index � is fixed on both sides of (4.9) we will drop it in the
proof. Let

Λ(i)
m :=

W
(i)
n (yn, ûi−1|0)

W
(i)
n (yn, ui−1|1)

=
Pr{Y n = yn, U i−1 = ûi−1, Ui = 0}
Pr{Y n = yn, U i−1 = ûi−1, Ui = 1} (4.18)

(the last equality follows since Pr{Ui = 0} = Pr{Ui = 1}). Observe that
showing (4.17) is equivalent to proving

Pr{U i = ûi|Y n = yn} =
i∏

j=1

1

1 + (Λ
(j)
m )−(1−2ûj)

. (4.19)
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Since

Pr{Y n = yn, U i−1 = ûi−1} =
∑

ûi∈{0,1}
Pr{Y n = yn, U i = ûi} (4.20)

= Pr{Y n = yn, U i = ûi}
[
1 + (Λ(i)

m )−(1−2ûi)
]
, (4.21)

we have,

Pr{Y n = yn, U i = ûi} = 1

1 + (Λ
(i)
m )−(1−2ûi)

Pr{Y n = yn, U i−1 = ûi−1} (4.22)

Repeated application of (4.22) (for i− 1, i− 2, . . . , 1) yields

Pr{Y n = yn, U i = ûi} =
i∏

j=0

1

1 + (Λ
(j)
m )−(1−2ûi)

Pr{Y n = yn}. (4.23)

Dividing both sides by Pr{Y n = yn} proves (4.19).

4.2.2 Advantages of LLR-Based Formulation

As we have discussed earlier in this section, an important drawback of the log-
likelihood-based implementations of the SC list decoder [10, 71, 72, 122, 126]
is their irregular memory structure and the need for the processing elements
that support large bit-widths. The LLR-based formulation of list decoder
solves both of this problems.

A successive-cancellation list decoder can be implemented using L LLR-
based SC decoders as core components. As LLRs are signed numbers and
the update rules for computing decision LLRs from channel LLRs (cf. § 2.3.2)
involve both additions and subtractions, the dynamic range of intermediate
LLRs is smaller than that of log-likelihoods; hence all of them can be quan-
tized using the same number of bits. (For instance, quantizing all LLRs as
6-bit signed integers is shown to be sufficient to minimize the performance
degradation due to fixed-point quantization for length-1024 decoder in [8].)

In addition, L recursively updated path metrics need to be stored, based
on them, the decoding paths will be ordered in each step. The path-metric
update rule of (4.11b) can safely be approximated by (4.13) to avoid expensive
arithmetics in hardware. The path metrics are unsigned numbers. If the LLRs
are represented as Q-bit signed integers (i.e., with Q − 1 bits for magnitude
plus 1 bit for the sign), in theory, we have to consider Q − 1 + log2(n) bits
for an overflow-free storage of path metrics (hence a sorter7 that supports this
bit-width for ranking the paths in line 13 of Algorithm 4). However, in prac-
tice, any path that gets continually harshly penalized will be eliminated soon.

7Although only the median of 2L metrics needs to be found in line 11 of Algorithm 3
(respectively, line 13 of Algorithm 4), in practice, as L is small, it is faster to just sort the
2L numbers to rank the paths.
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Hence, fewer bits turn out to be sufficient for storing the path metrics without
performance degradation. (E.g., only 8 bits as opposed to the theoretical value
of 15 bits for the situation considered in [8].)

Moreover, the recursive updates of the path metric (4.11) impose a partic-
ular structure on the input sequence of the sorter when the decoder proceeds
through estimating a chunk of information bits indexed by a contiguous subset
of information indices I: L (out of of the 2L) metrics to be sorted are the pre-
viously sorted metrics (as a result of decoding the previous information bits)
and the remaining L are obtained by adding a positive number to the previous
L metrics. Therefore, some of

(
L
2

)
relations between the metrics are known.

This structure can be exploited to decrease the sorting complexity [8,9,20,62].
We refer the reader to [8] for the details of the hardware architecture for

an LLR-based implementation of the successive-cancellation list decoder. To
showcase the significant gains in the performance of an LLR-based implemen-
tation of the decoder (compared to previously existing log-likelihood based
decoders), in Table 4.1, we compare the throughput and area of log-likelihood-
based and LLR-based implementations of list decoders with list sizes L = 2,
L = 4, L = 8 for a polar code of length n = 1024 from [8]. We see that an
LLR-based implementation of the decoder has up to 53% higher throughput
and occupies roughly 33% less silicon area.

LL-Based [10] LLR-Based [8] Speedup
L = 2 314 335 7%
L = 4 228 307 35%
L = 8 161 246 53%

(a) Throughput (Mbps)

LL-Based [10] LLR-Based [8] Reduction
L = 2 1.38 0.88 36%
L = 4 2.62 1.78 32%
L = 8 5.38 3.58 33%

(b) Area (mm2)

Table 4.1: The LLR-based formulation of list decoding leads to faster and smaller
implementations of the decoder.

4.3 Other Design Considerations

4.3.1 Choice of CRC Length

As we briefly discussed in § 4.1.2, in the design of a modified polar code (to be
decoded with a CRC-aided list decoder) the length of CRC has to be carefully
chosen: By increasing the length of CRC, the decoder will be able to identify
incorrect decisions more often. Meanwhile, the performance of the inner polar
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code will be degraded (as its rate needs to be increased to keep the effective
information rate fixed). In this section, we provide numerical examples that
exhibit this phenomena.

For our experiments, we picked four different CRCs of lengths r = 4, r = 8,
r = 16, and r = 32 from [114] with the following generator polynomials:

CRC-4: x4 + x+ 1, (4.24)

CRC-8: x8 + x7 + x6 + x4 + x2 + 1, (4.25)

CRC-16: x16 + x15 + x2 + 1, (4.26)

CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x5 + x2 + x+ 1. (4.27)

In Figure 4.8 we plot the empirical block-error probability of different mod-
ified polar codes of block-length n = 512 and rate half, obtained by setting
last r information bits of (512, 256 + r) polar codes to CRC-rs (defined with
the above-mentioned polynomials) of the preceding 256 information bits, de-
coded with list decoders of list sizes L = 8, L = 16 and L = 32. The plots
in Figures 4.8a and 4.8b show that, for the list sizes of L = 8 and L = 16,
using CRCs of length 4 or 8 improves the performance. Increasing the CRC
length to 16 does not improve the performance further and even causes the
CRC-aided list decoder to perform worse than the plain list decoder. More
importantly, increasing the length of CRC to 32 will degraded the performance
of the polar code so much that even with the help of CRC the decoder has a
block-error probability higher than the conventional SC decoder. On the con-
trary, as shown in Figure 4.8c, if we increase the list size to L = 32, due to the
lower block-error probability of the inner polar code under list decoding, we
can increase the length of CRC to 16 and still improve the overall performance.
But even with such a relatively large list size, increasing the CRC length to
32 degrades the performance drastically.

Repeating the same experiment for block-lengths of n = 1024 and n = 2048
results in the same phenomena (cf. Figures 4.9 and 4.10): Increasing the length
of CRC up to 16 improves the performance, increasing it to 32 bits leads to a
block-error probability worse than that of the plain list decoder.

4.3.2 SC or SCL?

Modern communication standards sometimes permit very long codes to be
used. As a result, a natural question in the design of a polar coding scheme,
to achieve a target block-error probability, would be to choose between long
polar codes decoded under less complex SC decoding algorithm, or short codes
decoded with SC list decoding. In this section, to study this trade-off, we
compare the performance of the rate-1/2 polar codes of length n = 512, n =
1024, and n = 2048 under list decoding to that of longer polar codes under
conventional SC decoding.



4.3. Other Design Considerations 79

1 2 3 4

10−5

10−3

10−1

SC
SCL

CRC-4
CRC-8
CRC-16
CRC-32

Eb/N0 (dB)

P
e

(a) L = 8

1 2 3 4

10−5

10−3

10−1

SC
SCL

CRC-4
CRC-8
CRC-16
CRC-32

Eb/N0 (dB)

P
e

(b) L = 16

1 2 3 4

10−5

10−3

10−1

SC
SCL

CRC-4
CRC-8
CRC-16
CRC-32

Eb/N0 (dB)

P
e

(c) L = 32

Figure 4.8: Performance of Modified Polar Codes of Block-length n = 512 and
Rate 1/2 under Various List Sizes

From a high-level perspective, the memory requirement of a successive-
cancellation list decoder of block-length n and list size L is the same as that of
a successive-cancellation decoder of block-length L·n (provided that the space-
efficient implementation of the decoder is employed). Moreover, to simplify the
problem, we would err on the side of conventional successive-cancellation de-
coder and pretend that a successive-cancellation decoder at block-length L · n
has the same computational complexity as a successive-cancellation list de-
coder of block-length n and list size L.8 Therefore, to make an equi-complexity
comparison, we compare the performance of polar codes of block-length n un-
der list decoding with list size L to that of polar codes of block-length L ·n un-
der conventional SC decoding. Moreover, as we discussed in § 4.1.2, modifying
polar codes by concatenating them with a CRC and then running the CRC-

8In reality, the computation power required for the list decoder scales as O(L · n log n)
but that of the SC decoder scales like O(L · n log n+ L · n logL).
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Figure 4.9: Performance of Modified Polar Codes of Block-length n = 1024 and
Rate 1/2 under Various List Sizes

aided list decoder has negligible additional costs. Hence, we choose the optimal
CRC among those introduced in § 4.3.1 for each list size and block-length and
consider the performance of the CRC-aided version of the list decoder.

Figure 4.11 shows the empirical performance of long polar codes under SC
decoding, versus short modified polar codes under SC list decoding. We see
in Figure 4.11a that modified polar codes of block-lengths n = 512, n = 1024,
and n = 2048, under successive-cancellation list decoding with list sizes L = 8,
L = 4, and L = 2, respectively, have block-error probabilities somewhat lower
than that of a polar code of block-length n = 4096 under conventional SC
decoding. If we can afford for a higher complexity of decoding a polar code
of block-length n = 8192 or, equivalently, increasing the list sizes to L = 16,
L = 8, and L = 4 for decoding the modified polar codes of block-lengths
n = 512, n = 1024 and n = 2048, respectively, we see that except at low SNRs
regime the length-512 modified polar code falls short whereas length-1024 and
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Figure 4.10: Performance of Modified Polar Codes of Block-length n = 2048
and Rate 1/2 under Various List Sizes

length-2048 polar codes have the same block-error probability as the n = 8192
polar code under SC decoding. This phenomenon becomes more visible when
we compare n = 16384 polar code under SC decoding with modified short polar
codes in Figure 4.11c: here we see that only the length-2048 modified polar
code under list decoding with list size of L = 8 performs better than the length-
16384 polar code under SC decoding. Finally, we observe in Figure 4.11d that
when we allow the block-length to increase to n = 32768, the performance of
the long polar code under SC decoding improves significantly and neither our
modified polar code of block-length n = 1024 nor the one with block-length
n = 2048 perform better than the long polar code under SC decoding (except
for the low SNR regime).

Our examples show that by using a CRC-aided successive-cancellation list
decoder, we can achieve the same performance as that of conventional SC
decoding with eight times smaller block-lengths and almost the same com-
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(d) n = 32768 polar code under SC decod-
ing versus modified polar codes of lengths
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Figure 4.11: Performance of Long Polar Codes under SC Decoding versus Short
Codes under CRC-aided SC List Decoding (All codes have rate 1/2.)

putational complexity per codeword. Hence, to achieve a particular block-
error probability, successive-cancellation list decoding provides a solution for
decreasing the decoding latency (by decreasing the block-length) without in-
creasing the computational complexity, rendering polar codes suitable for low-
latency applications.

Remark. We measured the complexity of decoding by a rough count of the
number of memory elements and arithmetic operations required for decoding
a codeword. Arguably, this might not be a precise measure — a finer measure



4.4. Summary and Outlook 83

depending on the implementation platform is more desirable. For example, in
[8] we compare the hardware synthesis results for n = 1024 list decoders with
list sizes L = 2 and L = 4 based on the hardware architecture proposed (in
the paper) to the synthesis results for SC decoders of block-length n = 2048
and n = 4096 based on the architecture of [67]. We observe that even though
we expect the SC list decoders to be at least as fast and as small as the
corresponding SC decoders, due to the presence of extra processing elements
(like the sorter and crossbars implementing the copy operations), they are
slightly slower and about 15% larger.

4.4 Summary and Outlook

In this chapter, we have reviewed the successive-cancellation list-decoding al-
gorithm, a low-complexity method to boost the performance of short polar
codes. We have seen that combining successive-cancellation list decoding with
CRC-concatenated polar codes, leads to an efficient error-correction scheme
that is competitive with existing schemes.

We have proven that the successive-cancellation list-decoding algorithm
can be formulated exclusively in terms of log-likelihood ratios, which leads to a
numerically stable implementation of the decoder. A hardware implementation
of the decoder by using the LLR-based formulation of the algorithm is up to
50% faster and around 30% smaller than the previous implementations of the
decoder, due to the smaller dynamic range of LLRs [8].

We have also looked at the trade-off between the length of CRC and the
performance of CRC-concatenated polar codes (when decoded with a CRC-
aided list decoder) in the design of modified polar codes through numerical
experiments in § 4.3.1. We observe that, given the block-length of the code,
the list size of the decoder, and the channel quality, there is a limit on how much
the length of CRC can be increased to improve the block-error probability of
the code: increasing the length of CRC beyond this limit degrades the code
performance.

Moreover, we have compared the performance of short modified polar codes
under CRC-aided successive-cancellation list decoding and that of long po-
lar codes under conventional successive-cancellation decoding in § 4.3.2. Our
examples show that, to achieve a target block-error probability, CRC-aided
successive-cancellation list decoding provides a means to reduce the block-
length by a factor of eight and keeping the per-codeword decoding complexity
roughly the same, compared to conventional successive-cancellation decoding.
This fits polar codes for low-latency applications.

In conclusion to this chapter, we remark that list decoding combined with
an outer code (to declare the final estimated codeword among candidates
present in the output of the list decoder) is a general idea that, in princi-
ple, is applicable to any code. As we have seen, the structure of polar codes
enables their efficient list decoding, that, together with the outer cyclic code,
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results in a competitive error-correction performance compared to existing
error-correction codes. To have a more comprehensive comparison of polar
codes with other error-correction schemes, it would be interesting to inves-
tigate the performance and complexity of decoding other codes (specifically,
those compared to polar codes in this chapter and other works cited) with a
list decoder (assisted with an outer code). To our knowledge, such a study has
not yet been done.
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The Wiretap Channel and
Its Secrecy Exponents 5
Wyner [118] studied the problem of secure communications in the presence
of an eavesdropper. In his model, called the wiretap channel, Alice wants
to communicate with Bob through a noisy channel WM : X → Y , while her
transmitted signals are being wiretapped by Eve, through another noisy chan-
nel WE : X → Z (see Figure 5.1). The goal is to design a communication
scheme that enables Alice to reliably communicate secret messages to Bob,
while concealing them from Eve.

S ∈ {1, 2, . . . ,Ms} Alice’s
Encoder

WM : X → Y

WE : X → Z

Bob’s
Decoder

Eve

Ŝ
Xn Y n

Zn

W : X → Y ×Z

Figure 5.1: The Wiretap Channel Model

Assuming the eavesdropper’s channel is degraded (see Appendix A) with
respect to the legitimate receiver’s channel, Wyner [118] characterized the se-
crecy capacity of the wiretap channel. The secrecy capacity is the highest rate
Rs, for which there exist communication schemes in which Alice can commu-
nicate Ms ≥ 2nRs different secret messages via n channel uses to Bob with
arbitrarily small error probability, and guarantee that the normalized amount
of information that leaks to Eve about the secret message, 1

n
I(S;Zn), is arbi-

trarily small, provided that the block-length n is large enough. Wyner’s work
was subsequently extended by Csiszár and Körner [29] where, in particular,
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they relaxed the assumption on the degradedness of the eavesdroppers’ channel
and derived the secrecy capacity of an arbitrary wiretap channel.1

The information leakage rate is, arguably, a weak notion of secrecy: In a
weakly secure system with large block-length n, upon observing Zn, Eve could
learn substantial amount of information about the secret message I(S;Zn)
albeit small compared to n (and, hence, nRs). Hence, it would be natural
to design communication schemes that guarantee the total amount of infor-
mation leaked to Eve, namely I(S;Zn), is small. Namely, to ensure strong
secrecy. Rather surprisingly, the secrecy capacity does not change under this
strong secrecy requirement. One way to prove this is via the method, pro-
posed by Maurer and Wolf [77], for converting any weakly secure system to a
strongly secure one with a negligible rate loss. Alternatively, as first proposed
by Csiszár [27], a resolvability-based approach to secrecy leads to the construc-
tion of communication schemes for the wiretap channel that directly guarantee
strong secrecy.

More strongly, a resolvability-based approach to the wiretap channel yields
communication schemes in which the information leaked to Eve decays expo-
nentially fast in block-length n. The rate of this exponential decay, called the
secrecy exponent of the model, is a measure of the strength of the communica-
tion scheme.

In this chapter, we review the problem of secure communications in the
presence of an eavesdropper, examine different achievability proofs, and show
how a resolvability-based proof can establish strong secrecy. To prepare for our
discussions of the following two chapters, we then formally define the notion
of the secrecy exponent, discuss its relation to resolvability exponent, and give
an overview of the existing works on the secrecy exponents.

An even more stringent notion of secrecy is semantic secrecy for the wire-
tap channel: it requires the information leaked to the eavesdropper I(S;Zn)
to be small for any distribution of the secret messages picked by Alice [17].
We will see, in the proof of Theorem 5.4, that a resolvability-based approach
to secrecy enables us to construct communication schemes that guarantee se-
mantic secrecy at any rate below the secrecy capacity of the system. Thus, in
particular, the secrecy capacity does not decrease, even if we ask for such a
strict secrecy guarantee.

5.1 The Secrecy Capacity

A wiretap channel is described by a joint conditional probability W : X →
Y × Z, where W (y, z|x) is the probability that the legitimate receiver (Bob)
receives y ∈ Y and the eavesdropper (Eve) receives z ∈ Z when the input of

1In fact, [29] characterizes the achievable rate-region in a more general setting where
Alice has two messages to communicate: a public message that has to be reliably transmitted
to both Bob and Eve and a private message that needs to be decoded reliably by Bob while
being hidden from Eve.
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the channel is x ∈ X . The joint conditional probability gives rise to a pair of
marginals

WM : X → Y , WM(y|x) =
∑
z∈Z

W (y, z|x), (5.1)

and
WE : X → Z, WE(z|x) =

∑
y∈Y

W (y, z|x). (5.2)

These are the effective single-input single-output noisy channels through which
the legitimate receiver and the eavesdropper perceive the signals transmitted
by the sender, respectively. As we will see, as there is no interaction between
the legitimate receiver and the eavesdropper, the system is characterized ex-
clusively in terms of the two marginals WM and WE. In other words, two
models W : X → Y × Z and W ′ : X → Y × Z that have the same marginals
WM = W ′

E and WE = W ′
E are completely equivalent.

A code of block-length n and rate Rs for the wiretap channel is a collection
of Ms ≥ exp(nRs) distributions on the set of length-n channel input sequences,
E : {1, 2, . . . ,Ms} → X n. Note the encoding is assumed to be possibly random-
ized (and we will see that this indeed has to be the case). To communicate
a particular message s ∈ {1, 2, . . . ,Ms}, the encoder draws Xn ∼ E(·|s) and
transmits it through the channel.

Definition 5.1. A rate Rs is an achievable secrecy rate over the wiretap chan-
nel W : X → Y × Z, under the weak secrecy criteria, if for every pair ε1 > 0
and ε2 > 0, there exists n0 such that for all n ≥ n0 there exists a code of block
length n and secret-message size Ms ≥ exp(nRs), E : {1, 2, . . . ,Ms} → X n,
using which

Pr{ŜMAP(Y
n) �= S} ≤ ε1 (5.3)

1

n
I(S;Zn) ≤ ε2. (5.4)

In the above ŜMAP is the optimal (MAP) decision on S upon observing Y n, the
collection S −−◦ Xn −−◦ (Y n, Zn) has distribution PS(s)E(x

n|s)W n(yn, zn|xn)
(as the diagram of Figure 5.1 shows), and PS is the uniform distribution on
{1, 2, . . . ,Ms}.

The supremum of all achievable secrecy rates is the secrecy capacity of the
wiretap channel W : X → Y ×Z.
Definition 5.2. A rate Rs is an achievable secrecy rate over the wiretap chan-
nel W : X → Y × Z under the strong secrecy criteria, if for every pair ε1 > 0
and ε2 > 0 there exists a code with the properties described in Definition 5.1
that guarantees

I(S;Zn) ≤ ε2. (5.5)

(Obviously, (5.5) is stronger than (5.4) hence replaces it.)
The strong secrecy capacity of the system is defined as the supremum of all

achievable secrecy rates under the strong secrecy criteria.
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Remark. Both (5.3) and (5.4) (or (5.5)) are average-case measures. We will
show in Theorem 5.4 that by expurgating a good average-case code we can
obtain a code that performs essentially as well as the original code for any
distribution of the secret messages — i.e., a code that guarantees semantic se-
crecy [17]. Having such a worst-case guarantee is crucial from a practical point
of view — it is the end-user that picks the secret messages to be transmitted
and the performance guarantees for the system must not rely on a specific
choice of hers.

Theorem 5.1 ([29, 118]). Given any distribution on the input alphabet X ,
PX ∈ P(X ), any rate

Rs < I(X;Y )− I(X;Z) (5.6)

is an achievable secrecy rate in the sense of Definition 5.1. In the above,
(X, Y, Z) ∼ PX(x)W (y, z|x).

Equation (5.6) implies the secrecy capacity is lower-bounded as

Cs(W ) ≥ max
PX∈P(X )

{I(X;Y )− I(X;Z)}. (5.7)

Can the above lower bound be improved? In some cases, yes: Suppose Alice
prefixes the channel with an artificial channel PX|U : U → X . That is to say,
she uses a code for the input alphabet U instead of X and, to transmit each
codeword un ∈ Un, she generates Xn ∼ P n

X|U(x
n|un) and transmits it through

the physical channel. This is equivalent to a wiretap channel with transition
probability PY Z|U(y, z|u) =

∑
x∈X PX|U(x|u)W (y, z|x). Consequently, in view

of Theorem 5.1, given any PUX = PU ×PX|U , any rate up to I(U ;Y )− I(U ;Z)
will be achievable.

Theorem 5.2 ([29] also [37, Theorem 22.1]). The secrecy capacity of the wire-
tap channel W : X → Y ×Z is given by

Cs(W ) = max
PUX∈P(U×X )

{I(U ;Y )− I(U ;Z)} (5.8)

where U −−◦ X −−◦ (Y, Z) ∼ PUX(u, x)W (y, z|x) and |U| ≤ |X |.
The secrecy capacity equals

max
PX∈P(X )

{I(X;Y )− I(X;Z)} (5.9)

if WE �c WM, that is, the legitimate receiver’s channel is more capable than the
eavesdropper’s. Moreover, the secrecy capacity is positive unless WM �n WE,
i.e., the eavesdropper’s channel is less noisy than the legitimate receiver’s. (See
Appendix A for the definitions of more capable and less noisy channels.)

Remark 1. Channel prefixing is also useful for treating the channels with cost
constraints [47]. (The auxiliary channel PX|U : U → X can be chosen such
that its output sequence satisfies the cost constraints of the physical channel
W : X → Y ×Z.)
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Remark 2. It is obvious that any coding scheme for ‘un-prefixed’ system is
immediately extensible to the prefixed system by replacing the channel W :
X → Y × Z with the prefixed channel PY Z|U : U → Y × Z (and setting the
input of the prefixing channel PX|U : U → X as the interface between the
encoder and the channel). Consequently, in the remainder of this thesis we
will not state the results explicitly for the prefixed channel, as we know that
all presented results are applicable to the prefixed setting.

Here, we review the achievability proof (i.e., the proof of Theorem 5.1) and
refer the reader interested in the converse proof (which, in turn, establishes
Theorem 5.2) to [29].

Proof of Theorem 5.1 [76]. The result is established via a method called ran-
dom binning: Fix R > 0 (to be tuned later). Given PX , Rs, R, and n, let
Ms := �exp(nRs)� and M := �exp(nR)� and generate, a (large) codebook
containing M ×Ms codewords of block-length n, by sampling each codeword
independently from the product distribution P n

X (i.e., an i.i.d. random code of
rate R+Rs + o(1)). This code can be partitioned into Ms sub-codes (or bins)
Cs, s ∈ {1, 2, . . . ,Ms} of size M :

C1 =
(
xn
1,1 xn

1,2 . . . x1,M

)
C2 =

(
xn
2,1 xn

1,2 . . . x2,M

)
...

CMs =
(
xn
Ms,1

xn
Ms,2

. . . xn
Ms,M

)
.

(5.10)

To communicate a message s ∈ {1, 2, . . . ,Ms}, the encoder transmits a uni-
formly chosen codeword from the sub-code Cs associated with the message s
(via n independent uses of the channel). That is to say,

E(xn|s) =
{

1
M

if xn ∈ Cs

0 otherwise.
(5.11)

Stating differently, to communicate a message s, the encoder picks J uni-
formly from {1, 2, . . . ,M} and transmits xn

s,J through the channel. In other
words, it maps a pair of messages (S, J), where S is the secret message and
J is a ‘junk’ message (drawn uniformly at random from {1, 2, . . . ,M}) to a
codeword from the codebook C .

The code and its partitioning, as well as the encoding scheme, are revealed
to all parties (Alice, Bob, and Eve).

We now show that such a randomly constructed code, with high probability
over the choice of the code, leads to a reliable and secure communication
scheme (provided that n is large enough). More precisely, we will prove that
∀ε1 ∈ (0, 1/2), ∀ε2 ∈ (0, 1/2), and large enough n, with probability 1− (ε1+ ε2)
over the choice of the code both (5.3) and (5.4) are satisfied.
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Reliability Shannon’s noisy channel coding theorem implies that, as long
as,

Rs +R < I(X;Y ), (5.12)

Bob can decode both messages (S, J) (thus, in particular S) with an arbitrarily
small error probability, provided that the block-length of the code is large
enough. More precisely, if ŜMAP(y

n) denotes the optimal (MAP) estimation
of S, given Bob’s channel output sequence yn, there exists n1 such that for
n ≥ n1,

EC

[
Pr{ŜMAP(Y

n) �= S}
]
≤ ε21 (5.13)

Therefore, Markov inequality implies, with probability at least 1− ε1 over the
choice of the code,

Pr{ŜMAP(Y
n) �= S} ≤ ε1. (5.14)

Secrecy Suppose a (bad) genie discloses the secret message S to Eve. Then,
as long as

R < I(X;Z), (5.15)

Eve can decode J with an arbitrarily small error probability. This is because
knowing S, Eve knows which bin the sent codeword Xn is chosen from and, as
the sub-codes are random codes of rate R themselves, Shannon’s noisy channel
coding theorem implies, for any δ > 0 (to be tuned later), there exists n2 such
that for n ≥ n2,

ECs

[
Pr{ĴMAP(S, Z

n) �= J |S = s}
]
≤ δ

ε2
2
. (5.16)

In the above ĴMAP(s, z
n) stands for the MAP estimation of J upon observing

zn and s. Consequently,

EC

[
Pr{ĴMAP(S, Z

n) �= J}
]
≤ δ

ε2
2

(5.17)

Therefore, with probability at least 1− ε2/2 over the choice of codewords

Pr{ĴMAP(S, Z
n) �= J} < δ. (5.18)

This, together with Fano’s inequality [30, Lemma 3.8] implies that with prob-
ability at least 1− ε2/2,

1

n
H(J |S;Zn) ≤ 1

n
+R · δ (5.19)

which, for n ≥ 4/ε2 =: n3, can be further upper bounded as

1

n
H(J |S, Zn) ≤ ε2

4
+R · δ. (5.20)
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Since J is uniformly distributed on {1, 2, . . . ,M} and independent of S,

1

n
I(S, J ;Zn) =

1

n
[I(S;Zn) + I(J ;Zn|S)] (5.21)

=
1

n
[I(S;Zn) + I(J ;S, Zn)] (5.22)

=
1

n
I(S;Zn) +R− 1

n
H(J |S, Zn). (5.23)

Using (5.20) in (5.23) we conclude that, for n ≥ max{n2, n3} with probability
at least 1− ε2/2,

1

n
I(S, J ;Zn) ≥ 1

n
I(S;Zn) +R(1− δ)− ε2

4
. (5.24)

Moreover, since (S, J) −−◦ Xn −−◦ (Y n, Zn),

1

n
I(S, J ;Zn) ≤ 1

n
I(Xn;Zn) ≤ 1

n

n∑
i=1

I(Xi;Zi). (5.25)

The right-hand side of the above is the average of i.i.d. random variables. As
n grows, it concentrates around its mean, that is

EC [I(Xi, Zi)] ≤ I(X;Z) (5.26)

The last inequality follows since I(X;Z) is a concave function of PX and
EC [PXi

] = PX . Consequently, there exists n4 such that for n ≥ n4, with
probability at least 1− ε2/2,

1

n

n∑
i=1

I(Xi;Zi) < I(X;Z) +
ε2
4

(5.27)

which, together with (5.25), implies with probability at least 1− ε2/2,

1

n
I(S, J ;Zn) ≤ I(X;Z) +

ε2
4
. (5.28)

Combining (5.24) and (5.28) we conclude that for n ≥ max{n2, n3, n4}, with
probability at least 1− ε2,

1

n
I(S;Zn) ≤ I(X;Z)−R(1− δ) +

ε2
2

(5.29)

Set R = I(X;Z)−ε2/4 and observe that this ensures (5.15) is satisfied. Let also
δ = ε2/(4 log |X |). Plugging these values in (5.29) shows that, with probability
at least 1− ε2,

1

n
I(S;Zn) ≤ I(X;Z)−

(
I(X;Z)− ε2

4

)(
1− ε2

4 log |X |
)
+

ε2
2

=
ε2

4 log |X | · I(X;Z) +
ε2
4

(
1− ε2

4 log |X |
)
+

ε2
2
≤ ε2. (5.30)
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(Note that I(X;Z) ≤ log |X |.)
Finally, Rs < I(X;Y )−I(X;Z) implies R+Rs < I(X;Y )−ε2/4, therefore

(5.12) holds. Thus, in particular, for n ≥ n1, with probability 1− ε1 over the
choice of codes (5.3) is satisfied. Therefore, for n ≥ max{n1, n2, n3, n4} =: n0,
with probability at least 1 − (ε1 + ε2) > 0, both (5.3) and (5.4) are satisfied
simultaneously.

Note that the encoder defined in the achievability proof needs access to
a random-number generator with entropy rate R. The entropy rate required
by the stochastic encoder is called the random-binning rate. As can be seen
through the proof, the role of the external randomness is to pack the eaves-
dropper’s channel with junk in order to not leave any more room for useful
information about the secret message S to be carried through the channel.
We can also check that by varying the random-binning rate, we can trade the
information leakage rate for the secret-message rate [29,118]. We are surprised
to observe that (5.15) puts an upper bound on the random-binning rate. This
is counter-intuitive: putting more ‘junk’ in Eve’s channel should improve the
secrecy. What happens if we increase the random-binning rate above I(X;Z)?
We will answer this in § 5.3.

5.2 Channel Resolvability

Let us put aside the problem of secure communications for a moment and
formally define the notion of channel resolvability [48, 117].2

Consider the setting represented in Figure 5.2: If the input to the n-fold
use of a discrete memoryless channel (DMC) PV |U : U → V is drawn from
distribution PUn , it is obvious that its output sequence V n will have dis-
tribution PV n = PUn ◦ P n

V |U (see Figure 5.2a). One particular way to feed
the channel is to have its input sequence generated by a deterministic en-
coder, Enc : {1, 2, . . . ,M} → Un, which maps a uniformly distributed word
J ∈ {1, 2, . . . ,M} to codewords of length n. This corresponds to taking PUn

to be the uniform distribution over the codebook

C :=
(
un
(j) = Enc(j) : j ∈ {1, 2, . . . ,M}

)
(5.31)

and results in the output distribution

PṼ n(vn) = PC (v
n) :=

1

M

M∑
j=1

P n
V |U
(
vn|un

(j)

)
. (5.32)

In this case (cf. Figure 5.2b), the encoder requires access to a random-number
generator of rate 1

n
log(M) bits per channel use, whereas, to feed the channel

2To our knowledge, the term “resolvability” is coined by Han and Verdú in [48]. In some
works, including Wyner’s [117], the problem is studied under the name “soft covering.”
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with sequences drawn from an arbitrary PUn , an entropy rate of 1
n
H(Un) is

required.
Given any PUn that induces PV n = PUn ◦P n

V |U at the output of the channel,
is it possible to design a code C such that the output of the channel, PṼ n is
close to PV n — i.e., to make it hard for an observer who perceives V n or Ṽ n

to distinguish between the cases (a) and (b) in Figure 5.2? If yes, how much
entropy rate R is required for the resolvability encoder to simulate the desired
distribution PV n arbitrarily accurately?

Un ∼ PUn Pn
V |U V n ∼ PV n

(a) The output distribution induced by the input distribution PUn is
PV n = PUn ◦ Pn

V |U .

J ∈ {1, 2, . . . ,M} Ũn = Enc(J) Pn
V |U Ṽ n ∼ PṼ n

Ũn

(b) The output distribution when uniformly chosen J ∈ {1, 2, . . . ,M}
is encoded into a codeword and transmitted is as (5.32).

Figure 5.2: Channel Resolvability

Definition 5.3. A rate R is said to be an achievable resolvability rate over
the channel PV |U : U → V and with respect to the sequence of reference
measures (PV n ∈ P(Vn), n ∈ N), if for every ε > 0, there exists n0 such that
for every n ≥ n0, we can find a resolvability encoder of block-length n and rate
at most R, Enc: {1, 2, . . . ,M} → Un, with M ≤ exp(nR), such that if PṼ n

is the output distribution of P n
V |U (the n-fold use of the channel PV |U) when

its input is Ũn = Enc(J) with J uniformly distributed in {1, 2, . . . ,M} (see
Figure 5.2b), we have

1

n
D(PṼ n‖PV n) ≤ ε. (5.33)

The infimum of all achievable resolvability rates over the channel PV |U :
U → V with respect to the sequence of reference measures (PV n , n ∈ N)
is called the resolution of the channel PV |U with respect to the sequence of
reference measures (PV n , n ∈ N).

Theorem 5.3. The resolution of the channel PV |U : U → V with respect to
the sequence of i.i.d. reference measures (P n

V , n ∈ N) equals [117]:

min
(Ũ ,Ṽ ):

PṼ |Ũ=PV |U
PṼ =PV

I(Ũ ; Ṽ ). (5.34)

The above holds also if the distance measure in (5.33) is replaced by �1 norm
[48], i.e., we ask for

|PṼ n − PV n | ≤ ε, (5.35)
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or unnormalized divergence [51,57], i.e., if we require that

D(PṼ n‖PV n) ≤ ε. (5.36)

Theorem 5.3 has a natural interpretation if we regard the entropy rate as
a valuable resource: Generating an i.i.d. sequence, distributed according to
PV , requires an entropy rate of H(V ) bits per symbol. The channel provides
us with H(V |U) bits per symbol. Hence, if we compensate for the difference,
which is I(U ;V ), we should be able to achieve our goal.

Our results in Chapter 6 imply the achievability part of Theorem 5.3 and its
converse part will follow from the more general converse proof of Theorem 7.1
in Chapter 7 (cf. § 7.2.1). Therefore we will not prove Theorem 5.3 here.
We just mention that finding a good resolvability code is easy based on the
probabilistic method: Let Cn be a random code of block length n and rate
R > I(U ;V ) obtained by sampling the codewords independently form the
product measure P n

U (for some PU that induces PV at the output of the channel
PV |U). For sufficiently large n, the ensemble average of the divergence between
the output distribution induced by the code (5.32) and the reference product
measure ECn [D(PCn‖P n

V )] will be arbitrarily small. Therefore, such a random
code is, with high probability, a good resolvability code. Note the analogy
between the error-correction and resolvability problem: A random code of rate
R < I(U ;V ) is (with high probability) a good error-correction code, whereas
if the rate is increased above I(U ;V ), it will (with high probability) be good
resolvability code.

5.3 Strong Secrecy from Channel Resolvability

Common sense turns out to be right! The fact that we have an upper bound
on the random-binning rate is only an artifact of the proof technique: The
achievability proof we reviewed at the end of § 5.1, treats I(X;Z) as the
capacity of Eve’s channel WE : X → Z and builds upon squeezing random
junk (independent of the secret message) into her channel as much as possible
so that nothing further can pass through that channel. With a slight abuse of
terminology, such a proof is called a capacity-based achievability proof [21].

However (again with a slight abuse of terminology) I(X;Z) also equals
resolution of the channel WE : X → Z (see Theorem 5.3). Suppose the
random-binning rate R is above I(X;Z). To communicate each secret mes-
sage s ∈ {1, 2, . . . ,Ms}, Alice transmits a uniformly chosen codeword from its
corresponding bin Cs that is a code of rate R > I(X;Z). Therefore, PZn|S=s,
the conditional distribution of Eve’s observation, given the secret message,
will be close to P n

Z , no matter which secret message is transmitted. Hence, Zn

must contain almost no information about S.
Let us formalize this argument: Obviously, if R > I(X;Z), the ‘secrecy’

part of the proof does not work because (5.15) is violated to begin with. (But
the scheme is still reliable provided that Rs +R < I(X;Y ).)
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However, as the achievability proof for Theorem 5.3 will show (see Chap-
ter 6), each bin Cs = (Xn

s,1, X
n
s,2, . . . , X

n
s,M) is (with high probability) a good

resolvability code for the channel WE : X → Z with respect to the product
measure P n

Z . In fact, given that a particular secret message S = s is sent, the
distribution of Alice’s observable, PZn|S=s, is the distribution induced at the
output of W n

E when it carries a uniformly chosen codeword from Cs, that is,
PZn|S=s = PCs . Therefore, for any ε2 > 0, there exists n2 such that for n ≥ n2,

ECs

[
D(PZn|S=s‖P n

Z )
]
= ECs

[
D(PCs‖P n

Z )
]
≤ ε22, (5.37)

which, together with the linearity of expectation and the fact that the sub-
codes have the same distribution, yields

EC

[
D(PZn|S‖P n

Z |PS)
]
≤ ε22. (5.38)

Consequently, with probability at least 1− ε2 over the choice of the code,

D(PZn|S‖P n
Z |PS) ≤ ε2. (5.39)

Moreover, for any distribution QZn ∈ P(Zn),

I(S;Zn) = D(PZn|S‖QZn |PS)−D(PZn‖QZn) ≤ D(PZn|S‖QZn |PS). (5.40)

Therefore, taking QZn = P n
Z in (5.40), we have from (5.39) that, for n ≥ n2,

with probability at least 1− ε2 over the choice of codes,

I(S;Zn) ≤ ε2, (5.41)

which not only implies (5.4) but also establishes strong secrecy: Setting the
random-binning rate just above I(X;Z) guarantees that the unnormalized
amount of information leaked to Eve will be arbitrarily small (provided that
the block-length n is sufficiently large).

This actually shows that Theorem 5.1, and as a consequence Theorem 5.2,
hold under the strong secrecy criteria. That is, they characterize the achievable
secrecy rates and secrecy capacity of the system, respectively, in the sense of
Definition 5.2

Remark 1. In addition to simplifying the secrecy part of the achievability
proof for the wiretap channel model, a resolvability-based approach to secrecy
is useful for establishing secrecy for many other variants of the wiretap channel
model (e.g., non-stationary channels, channels with cost constraint, . . . ) as
discussed in [21].

Remark 2. If the distance metric for resolvability is the �1 distance (which is,
due to Pinsker’s inequality [30, Exercise 3.18], weaker than the KL divergence),
it is still possible to establish strong secrecy from channel resolvability by using
the absolute continuity of entropy [30, Lemma 2.7] and the exponential decay
of the �1 distance between the code-induced output distribution (5.32) and the
reference (product) measure in n (cf. [27] for example).
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Remark 3. A (good) resolvability-based coding scheme for the wiretap channel
guarantees thatD(PZn|S‖P n

Z |PS) is as small as desired (see (5.39)). Such a code
can, in turn, be expurgated to a code of essentially the same rate for which
maxs D(PZn|S=s‖P n

Z ) is small (see the proof of Theorem 5.4), which is a worst-
case guarantee (it establishes semantic secrecy). This, also implies stealth: Eve
cannot even detect if Alice communicates messages to Bob by encoding them
to codewords from the codebook and transmitting them through the channel
or if Alice is just feeding the channel with random symbols drawn from the
input distribution — let aside estimating the content of those messages [58].

5.4 The Secrecy Exponent

So far we have learned that, in the presence of an eavesdropper, secure and
reliable communication is feasible, provided that the communication rate is
below the secrecy capacity of the wiretap channel (5.8).

A natural question is to wonder how large n needs to be in order to achieve
a desired reliability–secrecy level of (ε1, ε2) (as discussed in Definition 5.2, see
equations (5.3) and (5.5)) and if we can trade the secret-message rate Rs for
better secrecy or reliability.

The (first order) answer to the question on the reliability should be easy:
We know that the error-probability of a randomly constructed code (as we
described in the achievability proof of Theorem 5.1) decays (on average) expo-
nentially fast in the block-length, and we also know how to compute the rate
of this decay [42, Theorem 5.6.2]. Hence, it follows straightforwardly that it is
possible to construct coding schemes, of secret-message rate Rs and random-
binning rate R, for the wiretap channel whose probability of error decays (at
least) as fast as exp{−nEr(R + Rs)} where Er is the random-coding error
exponent (evaluated for the legitimate receiver’s channel WM).

It turns out that, with the same coding scheme, information leakage I(S;Zn)
also decays exponentially fast in the block-length [27,47,51–54,58]. Therefore,
it makes sense to measure the secrecy exponent of the system.

Definition 5.4. Given a rate pair (Rs, R) and a wiretap channel W : X →
Y × Z, a number E is an achievable secrecy exponent if for every ε > 0
and δ > 0, there exists n0 such that for every n ≥ n0, there exists a coding
scheme of block-length n, E : {1, 2, . . . ,Ms} → X n, with secret-message size
Ms ≥ exp(nRs) and random-binning rate at most R,

1

n
H(Xn|S) ≤ R (5.42)

which is reliable, i.e., yields,

Pr{ŜMAP(Y
n) �= S} ≤ ε, (5.43)

and guarantees
I(S;Zn) ≤ exp{−n[E − δ]}. (5.44)
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As before, in the above, ŜMAP is the optimal (MAP) decision on S given Y n, the
collection S −−◦ Xn −−◦ (Y n, Zn) has distribution PS(s)E(x

n|s)W n(zn, yn|xn)
(cf. Figure 5.1), and PS is the uniform distribution on {1, 2, . . . ,Ms}.

Hayashi [51] was the first to derive a lower bound to the achievable se-
crecy exponents by using a resolvability-based construction of wiretap channel
codes (as we described in § 5.3). Later on, he showed that this lower bound can
be improved by privacy amplification — specifically, by using a random hash
function, on top of a random code in the construction of the encoder–decoder
pair [52]. More recently, it was shown (see special cases of [47, Theorem 3.1],
[54, Theorem 2], or the proof given in [13]) that privacy amplification is unnec-
essary: when a randomly constructed wiretap channel code (as we described
in § 5.3) is used for communication, the exponent derived in [52] lower-bounds
the exponential decay rate of the ensemble average of the information leaked
to Eve.

In fact, the exponential decay of the information leakage in the wiretap
model follows by proving that, when Cn is a randomly constructed code, the
divergence between the distribution PCn (as defined in (5.32)) and the refer-
ence product measure P n

V will be exponentially small in block-length n (in
expectation) [13, 21, 27, 31, 32, 47, 48, 51–54,57, 58]. This, together with (5.40),
implies the exponential decay of the information leakage. Let us define the
resolvability exponent as well.

Definition 5.5. Given a stationary memoryless channel PV |U : U → V , a rate
R, and a sequence of target distributions (PV n ∈ P(Vn), n ∈ N), a number
E(R) is an achievable resolvability exponent over the channel PV |U , at rate R,
with respect to (PV n , n ∈ N) if for every δ > 0, there exists n0 such that for
every n ≥ n0 we can find a resolvability encoder of block-length n and rate
at most R, that is, a deterministic mapping, Enc: {1, 2, . . . ,M} → Un, with
M ≤ exp(nR), using which

D(PṼ n‖PV n) ≤ exp{−n[E(R)− δ]}. (5.45)

In the above, PṼ n is the output distribution of P n
V |U when its input is Ũn =

Enc(J), with J uniformly distributed on {1, 2, . . . ,M} (cf. Figure 5.2b).

Instead of looking for sophisticated prescriptions on how to construct good
resolvability codes and computing the resolvability exponents they achieve, we
can rely on the probabilistic method and analyze the achievable resolvability
exponents via an ensemble of random codes.

Definition 5.6. Given Π =
(
PUn ∈ P(Un), n ∈ N

)
, a sequence of probability

distributions on Un, an ensemble of random codes of rate (at most) R is a
sequence of random codes Cn of block-length n and size M = �exp(nR)�
obtained by sampling the codewords independently from the distribution PUn .
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In other words,

Pr
{
Cn =

(
un
(1), . . . , u

n
(M)

)}
=

M∏
i=1

PUn

(
un
(i)

)
. (5.46)

Two important classes of random codes are the ensemble of i.i.d. random
codes, defined by the sequence of i.i.d. codeword-sampling distributions

PUn(un) = P n
U (u

n) (5.47)

for some PU ∈ P(U), and the ensemble of constant-composition random codes,
defined by the sequence of codeword-sampling distributions

PUn(un) =
1
{
un ∈ T n

P
(n)
U

}
∣∣T n

P
(n)
U

∣∣ (5.48)

where (P
(n)
U ∈ Pn(U), n ∈ N) is a sequence of n-types that converge to some

PU ∈ P(U) and T n

P
(n)
U

⊆ Un is the set of all sequences of type P
(n)
U (see § 6.1

for formal definitions).

Definition 5.7. Given Π =
(
PUn ∈ P(Un), n ∈ N

)
, a stationary memoryless

channel PV |U : U → V , and a rate R, a number Es(Π, PV |U , R) is an achievable
resolvability exponent for the ensemble of random codes of rate (at most) R
defined by Π, over the channel PV |U , if for every δ > 0, there exists n0 such
that for all n ≥ n0,

ECn [D(PCn‖PV n)] ≤ exp
{
−n
[
Es(Π, PV |U , R)− δ

]}
. (5.49)

In the above Cn is a random code of size M = �exp(nR)� distributed accord-
ing to (5.46), PCn is the distribution of the output sequence of P n

V |U when
a uniformly chosen codeword from Cn is transmitted through the channel
(see (5.32)), and the target measure PV n is the distribution induced by the
codeword-sampling distribution PUn at the output of the product channel P n

V |U ,
i.e.,

PV n(vn) := (PUn ◦ P n
V |U)(v

n) =
∑

un∈Un

PUn(un)P n
V |U(v

n|un). (5.50)

If Es is an achievable resolvability exponent for an ensemble of random
codes, a substantial portion of the codes in the ensemble achieve the exponent
Es with respect to the sequence of reference measures (PV n , n ∈ N) defined in
(5.50): Given any δ > 0 and ε > 0, choose δ′ < δ and n large enough such that

ECn [D(PCn‖PV n)] ≤ exp
{
−n
[
Es(Π, PV |U , R)− δ′

]}
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Markov inequality implies that for any ε > 0, at any block-length n, a fraction
(1− ε) of codes satisfy

D(PCn‖PV n) ≤ 1

ε
ECn [D(PCn‖PV n)]. (5.51)

Using any such code in a resolvability encoder that simply maps the input
word J , to the codeword it indexes un

(J), yields PṼ n = PCn and

D(PṼ n‖PV n) ≤ 1

ε
ECn [D(PCn‖PV n)]

≤ exp
{
−n
[
Es(Π, PV |U , R)−

(
δ′ +

log(1/ε)

n

)]}
(5.52)

Since δ′ < δ, for large enough n, δ′+ log(1/ε)
n
≤ δ, which shows Es is achievable.

Also note that, in the passage to the probabilistic method, we restricted
the sequence of target measures to those induced by the codeword-sampling
distribution PUn at the output of the n-fold use of PV |U , as formalized in (5.50).
There is a simple reason for this: When Cn is a random code whose codewords
are drawn independently from PUn , for any distribution QV n ∈ P(Vn),

ECn [D(PCn‖QV n)] = ECn [D(PCn‖PV n)] +D(PV n‖QV n). (5.53)

Therefore, to show the existence of good resolvability codes for approximating
a sequence of target distributions (QV n , n ∈ N) via random-coding arguments,
we can consider exclusively the ensembles of random codes whose sampling
distributions (PUn , n ∈ N) induce (QV n , n ∈ N) at the output of the n-fold
use of the channel — any other ensemble is suboptimal due to the residual
divergence D(PV n‖QV n).3

For the sake of completeness, let us also formally define the error exponent
for an ensemble of random codes.

Definition 5.8. Given Π =
(
PUn ∈ P(Un), n ∈ N

)
, a stationary memoryless

channel PV |U : U → V , and a rate R, a number Er(Π, PV |U , R) is called an
achievable error exponent of the ensemble Π at rate R on channel PV |U , if for
every δ > 0, there exists n0 such that for every n ≥ n0,

ECn [Pr{ŜMAP(V
n) �= S}] ≤ exp

{
−n
[
Er(Π, PV |U , R)− δ

]}
(5.54)

when Cn, a random code of size M = �exp(nR)� is used to communicate a uni-
formly chosen message S ∈ {1, 2, . . . ,M} via n independent uses of PV |U , V

n

is the output sequence of P n
V |U , and ŜMAP(v

n) is the optimal (MAP) estimation
of S given the output sequence vn.

3This actually explains why in most works on channel resolvability, e.g., [48, 51, 117],
where the aim is to approximate an i.i.d. product distribution at the output of a DMC, the
code for achievability proof is chosen randomly from the ensemble of i.i.d. random codes.
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We can now characterize the error and secrecy exponents, of a randomly
constructed sequence of coding schemes for the wiretap channel, in terms of
error and resolvability exponents of the ensemble of random codes from which
they are sampled. In fact, as we promised earlier, we also turn our average
case guarantees to worst-case guarantees:

Theorem 5.4 ([13, 16]). Let W : X → Y × Z be a wiretap channel and
WM : X → Y and WE : X → Z be its corresponding legitimate receiver’s and
wiretapper’s marginals, respectively (see Figure 5.1). Let also Π =

(
PXn ∈

P(X n), n ∈ N
)
be a sequence of codeword-sampling distributions that define

an ensemble of random codes (see Definition 5.6).
If Er(Π,WM, R) is an achievable error exponent for the ensemble Π over

the channel WM at rate R that is continuous in R, and if Es(Π,WE, R) is
an achievable resolvability exponent of the ensemble Π over the channel WE

(cf. Definitions 5.8 and 5.7, respectively), then, for every δ > 0, there exists
a coding scheme of (possibly large) block-length n for the wiretap channel,
denoted as E : {1, 2, . . . ,Ms} → X n, with secret-message size Ms ≥ exp(nRs)
and random-binning rate at most R (i.e., 1

n
H(Xn|S) ≤ R), using which

max
PS

{
Pr{ŜMAP(Y

n) �= S}
}
≤ exp

{
−n
[
Er(Π,WM, R +Rs)− δ

]}
, (5.55)

max
PS

{
I(S;Zn)

}
≤ exp

{
−n
[
Es(Π,WE, R)− δ

]}
(5.56)

when S −−◦ Xn −−◦ (Y n, Zn) has distribution PS(s)E(x
n|s)W n(zn, yn|xn) (and

ŜMAP(Y
n) is the MAP estimation of S given Y n).

Proof. Consider a randomly constructed code for the wiretap channel of block-
length n, secret-message size 2Ms, withMs = �exp(nRs)�, and random-binning
rate R as described in the proof of Theorem 5.1: Specifically, those ob-
tained by partitioning a random code of size 2Ms × M into 2Ms sub-codes
of size M = �exp(nR)�, labeled as Cs, s = 1, 2, . . . , 2Ms, with encoder E :
{1, 2, . . . , 2Ms} → X n defined as

E(xn|s) = 1

M
1{xn ∈ Cs}. (5.57)

Let

P̄e :=EC [Pr{ŜMAP(Y
n) �= S}] (5.58)

=EC

[
1

2Ms

2Ms∑
s=1

Pr{ŜMAP(Y
n) �= S|S = s}

]
, (5.59)

D̄ :=EC

[
1

2Ms

2Ms∑
s=1

D(PCs‖PZn)

]
. (5.60)

with Y n denoting the output sequence of the legitimate receiver’s channel (as in
Figure 5.1); PCs being the distribution of wiretapper’s channel output sequence
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when a uniformly chosen codeword from the sub-code Cs is transmitted (see
(5.32)); and PZn = PXn ◦ W n

E , the distribution induced by the codeword-
sampling distribution at the output of the wiretapper’s channel (see (5.50)).
Recall that in (5.58) we have assumed that S is uniformly distributed on
{1, 2, . . . , 2Ms}.

Pick any δ′ ∈ (0, δ). As we have seen in the proof of Theorem 5.1, the prob-
ability of misdecoding the secret message s is upper bounded by the probability
of decoding either the secret message and the junk message (i.e., the random
index of the codeword in bin Cs) incorrectly. As the error exponent is assumed
to be continuous in rate, for sufficiently large n,

P̄e ≤ exp
{
−n
[
Er(Π,WM, Rs +R)− δ′

]}
. (5.61)

Furthermore, using the linearity of expectation and the fact that the sub-codes
Cs are identically distributed, for sufficiently large n,

D̄ ≤ exp
{
−n
[
Es(Π,WE, R)− δ′

]}
. (5.62)

Markov’s inequality implies, with probability of at least 2/3 over the choice
of random codes,

1

2Ms

2Ms∑
s=1

Pr{ŜMAP(Y
n) �= S|S = s} ≤ 3P̄e, (5.63)

and, with probability of at least 2/3

1

2Ms

2Ms∑
s=1

D(PCs‖PZn) ≤ 3D̄. (5.64)

Therefore, with probability of at least 1/3, the random code is chosen such
that both bounds of (5.63) and (5.64) simultaneously hold. Let (C �

s , s ∈
{1, 2, . . . , 2Ms}) be the collection of sub-codes that define any such good code.
Since the summands in the summation of (5.63) are all positive, there exists a
subset Sn,e ⊆ {1, 2, . . . , 2Ms} of cardinality |Sn,e| > 3

2
Ms such that ∀s ∈ Sn,e,

Pr{ŜML(Y
n) �= S|S = s} ≤ 12P̄e. (5.65)

Similarly, since the summands in (5.64) are positive, there exists a subset
Sn,s ⊆ {1, 2, . . . , 2Ms} of cardinality |Sn,s| > 3

2
Ms such that ∀s ∈ Sn,s

D(PCs‖PZn) ≤ 12D̄. (5.66)

Set Sn := Sn,e ∩ Sn,s and note that |Sn| = |Sn,e ∩ Sn,s| ≥ Ms. Consider the
encoder E� : Sn → X n defined as

E�(xn|s) = 1

M
1{xn ∈ Cs}. (5.67)
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The secret-message rate of the code E� is at least log(Ms)/n = Rs and its
random-binning rate is log(M)/n ≤ R. Moreover, when it is employed with
any prior PS on secret messages, it satisfies

Pr{ŜMAP(Y
n) �= S} ≤ 12P̄e, (5.68)

due to (5.65), and

I(S;Zn) ≤ D(PZn|S‖PZn |PS) ≤ 12D̄, (5.69)

due to (5.66) and to the fact that PZn|S=s = PCs . Using this expurgated code,

Pr{ŜML(Y
n) �= S} ≤ exp

{
−n
[
Er(Π,WM, Rs+R)−

(
δ′+

log(12)

n

)]}
(5.70)

by combining (5.68) and (5.61), and

I(S;Zn) ≤ exp
{
−n
[
Es(Π,WE, Rs)−

(
δ′ +

log(12)

n

)]}
(5.71)

by combining (5.69) and (5.62), respectively. Taking n large enough so that

δ′ + log(12)
n
≤ δ establishes (5.55) and (5.56).

Remark 1. The secrecy part of the proof hinges on finding exp(nRs) good re-
solvability codes via expurgation: we first generated twice as many resolvability
codes as we needed and then threw away the ‘bad’ half. Recently, in [32], it
was shown that the probability of choosing a bad resolvability code, namely a
code C (of block-length n) for which the �1 distance between the output dis-
tribution PC (5.32) and the reference measure PZn is more than exp(−nγ) for
some exponent γ, is doubly exponentially small in n. This suggests that even
if we draw exp(nRs) codes in a single shot from the ensemble, with very high
probability they are all good resolvability codes. Nevertheless, we do not know
if the results of [32] hold for any achievable exponent. (Also to establish the
secrecy exponent, we need an exponentially small KL divergence between the
code-induced distribution and the reference measure as opposed to �1 norm.
But, at least for the i.i.d. random-coding ensemble, the KL divergence has the
same exponential decay rate as the �1 distance [31, Equation (30)].)

Remark 2. Theorem 5.4 relates the error and resolvability exponents of an
ensemble of random codes in the ensemble-average sense — i.e., the exponen-
tial decay rate of the ensemble average of the error probability and output
divergence, respectively — to the error and secrecy exponents of a randomly
constructed code for the wiretap channel from this ensemble. The symmetry
that random coding puts into the problem is crucial in deriving the results: For
instance, we might be able to find better resolvability codes (than an average
random code) by carefully crafting the codewords. However, such codes might
not be readily usable for constructing a code for the wiretap channel because
of the poor error-correction performance of the union of Ms such codes.
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Remark 3. Equations (5.55) and (5.56) suggest a trade-off in code design, in
terms of the choice of input distributions, Π = (PXn ∈ P(X n), n ∈ N). The
sequence of input distributions Π that maximizes Es might not coincide with
the one that maximizes Er.

Remark 4. To prove Theorem 5.4, we expurgated a good average-case code for
the wiretap channel to obtain a good worst-case code of essentially the same
rate. This, in particular, shows that the secrecy capacity remains the same
under the semantic secrecy requirement.

5.5 Summary

In this chapter, to study data transmission in the presence of an eavesdropper,
we have reviewed the wiretap channel model, introduced by Wyner [118] and
generalized later by Csiszár and Körner [29]. We have seen that, as long as the
rate of secret information is below the secrecy capacity of the channel (see The-
orem 5.2), reliable and secure communication with the legitimate receiver is
feasible: At a sufficiently large block-length, we can construct communication
schemes in which the legitimate receiver can decode the secret messages with
arbitrarily low error probability, while keeping the amount of information the
eavesdropper learns about the secret message arbitrarily small. In fact, associ-
ating each secret message with a randomly constructed code, whose rate is just
above the mutual information developed across the wiretapper’s channel, and
using a random-binning encoder, with high probability over the choice of codes,
guarantees that the legitimate receiver can decode the secret message with ex-
ponentially small probability of error; and the amount of information leaked
to the eavesdropper about the secret message is also exponentially small in
block-length. Thus, by studying the error and secrecy exponents of the model,
we can understand how the block-error probability and information leakage
of the system scale in block-length. (We refer the reader interested in the
trade-off between error and secrecy exponents to [24].)

Error exponents have been the subject of research for decades and, cur-
rently, we have a good understanding of achievable error exponents through
random codes, of methods for achieving higher exponents compared to what
an average code achieves, and of the best error exponents that can hoped to
achieve (known as the sphere-packing exponent) [30, 42]. The state-of-the-art
on secrecy exponents is, however, less mature. To our knowledge, to date, only
lower bounds on achievable secrecy exponents via random-coding arguments
are known — the best of which are those reported in [13,47,52,54]. How tight
are those lower bounds? In Chapter 6, we partially answer this question. We
derive exponentially tight bounds on the ensemble average of the information
leaked to the eavesdropper. Among other conclusions, our results will show
that the lower bounds of [13,47,52,54] on the achievable secrecy exponents are
indeed tight for an average code.





Exact Random-Coding
Secrecy Exponents for the
Wiretap Channel 6
In Chapter 5, we have seen that when a randomly constructed code of large
block length n for the wiretap channel is employed for communicating secret
messages in presence of an eavesdropper (as illustrated in Figure 5.1), the
information the eavesdropper learns about the secret message will be expo-
nentially small in n. We denoted, as the secrecy exponent of the model, the
rate of the exponential decay of the information leaked to the eavesdropper
(cf. Definition 5.4). So far, the largest known lower bound on the achievable
secrecy exponents is reported in [47, 52, 54], but the optimality of this bound
is unclear. In fact, to our knowledge, no upper bound on the best achievable
secrecy exponents for the wiretap channel is known. In this chapter, we de-
rive the ensemble-optimal random-coding secrecy exponents for the wiretap
channel, i.e., we compute

lim
n→∞

− 1

n
logECn [I(S;Z

n)]

(where S is the secret message, Zn is the eavesdropper’s observation, and a
sequence of randomly constructed codes of block-length n, Cn, are used for
communication).

When the random code is sampled from the ensemble of i.i.d. random codes,
the exponent derived from our method matches the one reported in [47,52,54].
This shows that the previously known lower bound on the achievable secrecy
exponent is indeed tight for an average code. Stated differently, by looking at
the ensemble average of the information leaked to Eve in the wiretap channel
model, no better exponent can be shown to be achievable.1

1We remind the reader that in [52] the achievability of the exponent is shown using a
randomly constructed code sampled from the ensemble of i.i.d. random codes and a ran-
domly sampled hash function in the construction of the communication scheme (i.e., using
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We also extend our analysis to the randomly constructed codes for the
wiretap channel sampled from the ensemble of constant-composition random
codes. Constructing codes for the wiretap channel from the ensemble of ran-
dom constant-composition codes has been adopted in [53] in order to study the
universally attainable (in the sense defined in [64]) secrecy exponents. In [53],
a lower bound to the achievable secrecy exponent, when such wiretap codes are
used in conjunction with privacy amplification, is derived. This lower bound
is smaller than the lower bound of [52] on the achievable secrecy exponent
using i.i.d. random codes. Our analysis shows that the exact secrecy exponent
for the wiretap channel codes constructed from constant-composition random
codes is larger than the lower bound derived in [53] and there are examples
where this dominance is strict.

More importantly, these examples show that, in general, there is no or-
dering between the secrecy exponents of the ensembles of i.i.d. and constant-
composition codes. In other words, for some channels the i.i.d. random-coding
ensemble yields a better secrecy exponent, whereas for the other channels, the
constant-composition ensemble prevails (see § 6.3.2).

Theorem 5.4 shows that if we know by using an ensemble of random codes
we can achieve a resolvability exponent, then the same exponent is a lower
bound to the achievable secrecy exponent by using that ensemble. The first
step in our analysis is to complement Theorem 5.4 by showing that the exact
resolvability exponent for an ensemble equals the exact secrecy exponent of the
ensemble (see Theorem 6.1 in § 6.2); deriving the exact resolvability exponent
for an ensemble is easier. We present our main result on the exact secrecy ex-
ponents in § 6.3 (see Theorem 6.3) and compare the exponents with previously
known lower bounds; we defer the proof to § 6.4.

In information theory, random coding is a standard method for establishing
achievability results. However, in practice, it is desirable to use more struc-
tured codes to reduce the complexity of transceivers. It is well known that
random linear codes — which are much more structured compared to random
codes — have the same error-correction capabilities as i.i.d. random codes
[42, Chapter 6]. In § 6.5 we establish a similar result for their resolvability
and, in view of Theorem 6.1, their secrecy performance. In fact, the achiev-
ability part of our proof in § 6.4.2 depends only on the first- and second-order
statistics of the code distribution; these statistics are the same for i.i.d. random
codes and random linear codes. Hence it follows that, for resolvability, random
linear codes must perform as well as i.i.d. random codes. We also show that
the exact resolvability exponent for the ensemble of random linear codes is the
same as that of the ensemble of i.i.d. random codes.

random coding and privacy amplification). It was later shown that privacy amplification is
unnecessary and the exponent reported in [52] lower-bounds the exponential decay rate of
the expected amount of information leaked to Eve, when the code is randomly constructed
(as we described in § 5.3) by sampling codewords from i.i.d. random-coding ensemble (see,
for instance [47, Theorem 3.1] and [54, Theorem 2]).
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Part of the results presented in this chapter are obtained in collaboration
with N. Merhav and were published in [15,16].

6.1 The Method of Types

The analysis method we present in this chapter is based on the method of
types [28]. A distribution P ∈ P(X ) is an n-type if for all x ∈ X , nP (x) ∈ Z.
We denote the set of n-types on X as Pn(X ) and use the fact that |Pn(X )| ≤
(n+ 1)|X | [30, Lemma 2.2] repeatedly.

We denote the type of a sequence xn ∈ X n as Q̂xn ,

Q̂xn(x) :=
1

n

n∑
i=1

1{xi = x}. (6.1)

If P ∈ Pn(X ), we denote the set of all sequences of type P as T n
P ⊂ X n, i.e.,

T n
P := {xn ∈ X n : Q̂xn = P}. (6.2)

The size of the type class T n
P (for P ∈ Pn(X )) is bounded as (cf. [30, Lemma 2.3])

(n+ 1)−|X | exp{nH(P )} ≤
∣∣T n

P

∣∣ ≤ exp{nH(P )}. (6.3)

We write a(n) ≤̇ b(n) if there exists a function p(n) such that

lim sup
n→∞

log[p(n)]

n
≤ 0 and ∀n ∈ N : a(n) ≤ p(n)b(n). (6.4)

As noted in [28, p. 2507], when a(n) and b(n) depend on variables other than
n, it is understood that p(n) can depend only on the fixed parameters of the
problem such as channel transition probabilities, the cardinality of its input
and output alphabet, and its input distribution — not the other parameters
a(n) and b(n) might depend on. We write a(n)

.
= b(n) if a(n) ≤̇ b(n) and

b(n) ≤̇ a(n).

Remark. The reason for restricting the dependence of p(n) on the fixed pa-
rameters of the problem is as follows: We often encounter expressions such
as

aθ(n) ≤̇ bθ(n), (6.5)

for some parameter θ that takes values in a parameter space Θ, from which
we want to conclude

sup
θ∈Θ

aθ(n) ≤̇ sup
θ∈Θ

bθ(n). (6.6)

It is obvious that (6.4) enables us to immediately draw such a conclusion
because

sup
θ∈Θ

aθ(n) ≤ p(n) sup
θ∈Θ

bθ(n). (6.7)
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Had we let p depend on θ as well, such a conclusion would not have always
been true. For example, assume Θ = R and let

bθ(n) := 1 and aθ(n) := exp(n1{n ≤ θ}). (6.8)

Then with pθ(n) := aθ(n), we have

aθ(n) ≤ pθ(n)bθ(n) (6.9)

and for ∀θ,
lim sup
n→∞

log[pθ(n)]

n
= lim sup

n→∞
1{n ≤ θ} = 0, (6.10)

which would have shown aθ(n) ≤̇ bθ(n). However,

sup
θ∈Θ

aθ(n) = exp(n) �≤̇ sup
θ∈Θ

bθ(n) = 1. (6.11)

In other words, with our definition aθ(n) ≤̇ bθ(n) implies

lim sup
n→∞

{
sup
θ∈Θ

1

n
log
[aθ(n)
bθ(n)

]}
≤ 0 (6.12)

which is stronger than

sup
θ∈Θ

{
lim sup
n→∞

1

n
log
[aθ(n)
bθ(n)

]}
≤ 0. (6.13)

6.2 Exact Secrecy Exponent versus Exact
Resolvability Exponent

We have seen in § 5.3 that channel resolvability is a convenient and powerful
tool for establishing secrecy. Specifically, the exponential decay of the infor-
mation leaked to the eavesdropper in the wiretap channel model is implied
because the divergence between the distribution of the output of the n-fold
use of a channel, when its input is a uniformly chosen codeword from a (ran-
domly constructed) codebook, and the reference measure decays exponentially
fast in n (see Theorem 5.4). We now strengthen Theorem 5.4 by proving that
the ensemble-optimal resolvability exponent equals the ensemble-optimal se-
crecy exponent. Let us first formally define the notion of the exact resolvability
exponent for an ensemble:

Definition 6.1. The exact resolvability exponent of the ensemble of random
codes of rate (at most) R defined via the sequence of distributions Π = {PUn ∈
P(Un)}n∈N (see Definition 5.6), over the channel PV |U : U → V , is defined as

Es(Π, PV |U , R) := lim
n→∞

− 1

n
logECn [D(PCn‖PV n)], (6.14)

where PV n = PUn ◦P n
V |U (cf. (5.50)) and PCn is the output distribution of P n

V |U
when its input is a uniformly chosen codeword from Cn (cf. (5.32)), provided
that the limit exists.
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Remark. The exact error exponents for an ensemble of random codes is, in the
same way, defined as the exact exponential decay rate of the ensemble-average
of the probability of MAP decoding error at the receiver when a random code
from the ensemble is used for communication. For both ensembles of i.i.d.
and constant-composition random codes, the exact error exponents are well
known [30, 42, 43]. (The exactness of the random-coding exponent of [30,
Theorem 10.2] follows from the exponential tightness of the truncated union
bound [103, Appendix A].)

Theorem 6.1. Let W : X → Y × Z be a wiretap channel with WM : X → Y
and WE : X → Z being its corresponding legitimate receiver’s and wiretapper’s
stationary memoryless marginals, respectively (see Figure 5.1). Fix a sequence
of codeword-sampling distributions Π = (PXn ∈ P(X n), n ∈ N) that define an
ensemble of random codes as in Definition 5.6. Let Es(Π,WE, R) be the exact
resolvability exponent of the ensemble Π over the channel WE at rate R (see
Definition 6.1).

Consider a sequence of randomly constructed codes (Cn, n ∈ N) of secret
message rate Rs used for secure communications over the wiretap channel W :
X → Y × Z, by using a random-binning encoder that associates each secret
message with a random code of rate (at most) R and block-length n in the
ensemble (as we discussed in the proof of Theorem 5.1). Then, for any rate
pair (Rs, R) such that Es(Π,WE, R + Rs) > Es(Π,WE, R), when the secret
message S is uniformly distributed,

lim
n→∞

− 1

n
logECn [I(S;Z

n)] = Es(Π,WE, R). (6.15)

In other words, Es (evaluated at the random-binning rate R) is also the exact
secrecy exponent for the ensemble Π.

Proof. For every s ∈ {1, 2, . . . ,Ms}, let C s
n denote the sub-code (bin) asso-

ciated with the secret message s and Cn = (C 1
n ,C

2
n , . . . ,C

Ms
n ) be the entire

collection of codes used by the random-binning encoder. Since, to communi-
cate a particular message s ∈ {1, 2, . . . ,Ms}, the encoder transmits a codeword
from C s

n , conditioned on S = s the output of W n
E has distribution PC s

n
and,

since S is uniformly distributed, the unconditional output distribution of W n
E

will be PCn (cf. (5.32)). Therefore, taking QZn = PZn := PXn ◦W n
E in the

identity (5.40) yields

E[I(S;Zn)] = E[D(PCS
n
‖PZn |PS)]− E[D(PCn‖PZn)]. (6.16)

Using the linearity of expectation and the fact that the sub-codes C s
n are

identically distributed we get

E[D(PCS
n
‖PZn |PS)] =

Ms∑
s=1

PS(s)E[D(PC s
n
‖PZn)]

= E[D(PC 1
n
‖PZn)]. (6.17)
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Thus, by (6.14), we have

lim
n→∞

− 1

n
logE[D(PC s

n
‖PZn |PS)] = Es(Π,WE, R), (6.18)

lim
n→∞

− 1

n
logE[D(PCn‖PZn)] = Es(Π,WE, R +Rs)

> Es(Π,WE, R). (6.19)

where the last inequality follows from the assumption that Es(Π,WE, R+Rs) >
Es(Π,WE, R). Using (6.18) and (6.19) in (6.16) concludes the proof.

Remark. The assumption on the uniform prior of the secret messages is essen-
tial for establishing Theorem 6.1. Without such an assumption I(S;Zn) = 0,
i.e., the secrecy exponent is infinity if PS is positive only for a single secret
message. However, as we have discussed in Chapter 5, in a practical setting, it
is incorrect to assume that the user draws the secret messages from a particu-
lar distribution. It is obvious that the exact resolvability exponent is the best
achievable exponent for the ensemble (according to Definition 5.4), and that
Theorem 5.4 guarantees the existence of a sequence of coding schemes with
error and secrecy exponents Er(Π,WM, R+Rs) and Es(Π,WE, R), respectively,
for any secret message distribution PS.

Theorem 6.1 reduces the problem of deriving the exact secrecy exponent
of the ensemble to that of deriving the exact resolvability exponent of the
ensemble, which is easier; the former involves the divergence between two
random distributions PC s

n
and PCn , whereas the latter depends only on PC s

n
.

6.3 Exact Resolvability Exponents

In light of Theorem 6.1, we focus on deriving the exact resolvability exponents
for the ensembles of i.i.d. and constant-composition random codes.2

6.3.1 Main Result

Theorem 6.2. Let Cn be a random code of block-length n and rate R con-
structed by sampling M = �exp(nR)� codewords independently from the distri-
bution PUn ∈ P(Un) (see (5.46)). Let PV |U : U → V be a discrete memoryless
channel and PCn be the (random) output distribution of P n

V |U when a uniformly

chosen codeword from Cn is transmitted via n independent uses of PV |U (see
(5.32)). Then, the following hold:

2Accordingly, Cn will denote the random resolvability code of block-length n, and not
the entire wiretap channel code.
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(i) If PUn = P n
U for some PU ∈ P(U),

ECn [D(PCn‖PV n)]
.
=

{
exp
{
−nE i.i.d.

n (PU , PV |U , R)
}

if I(U ;V ) > 0,

0 if I(U ;V ) = 0,

(6.20)
where

E i.i.d.
n (PU , PV |U , R) = min

QUV ∈Pn(U×V)

{
D(QUV ‖PUV )+[R−f(QUV ‖PUV )]

+
}
,

(6.21a)
with PUV = PU × PV |U and

f(Q‖P ) :=
∑

(u,v)∈U×V
Q(u, v) log

[ P (u, v)

PU(u)PV (v)

]
, (6.21b)

for any pair of joint distributions P,Q ∈ P(U × V).

(ii) If PUn is the uniform distribution over the type-class T n

P
(n)
U

for a se-

quence of n-types (P
(n)
U ∈ Pn(U), n ∈ N) that converge to PU , i.e.,

limn→∞ |P (n)
U − PU | = 0,

ECn [D(PCn‖PV n)]
.
=

{
exp
{
−nEc.c.

n (P
(n)
U , PV |U , R)

}
if I(U ;V ) > 0,

0 if I(U ;V ) = 0,

(6.22)
where

Ec.c.
n (P

(n)
U , PV |U , R) = min

QUV ∈Pn(U×V):
QU=P

(n)
U

{
D
(
QUV ‖P (n)

UV

)

+
[
R− gn

(
QUV ‖P (n)

UV

)]+}
, (6.23a)

with P
(n)
UV := P

(n)
U × PV |U and

gn(Q‖P ) :=
∑

(u,v)∈U×V
Q(u, v) logPV |U(v|u) +H(QV )

+ min
Q′∈Pn(U×V):

Q′
U=QU ,Q′

V =QV

D(Q′‖P ). (6.23b)

for any pair of distributions P,Q ∈ P(U × V).

Recall that in the above PV n = PUn ◦P n
V |U (see (5.50)) and I(U ;V ) is evaluated

with PUV = PU × PV |U .

Theorem 6.2 gives exponentially tight bounds on the expected divergence
between the output distribution of P n

V |U —when its input is a uniformly chosen
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codeword from a randomly chosen code — and the distribution induced by the
codeword-sampling distribution at any finite (but possibly large) block-length
n. As a consequence, the exact exponential decay rate of the aforementioned
divergence, namely the exact resolvability exponent for the ensembles of in-
terest, is the limit of the exponents of (6.20) and (6.22) as n goes to infinity.
The exact resolvability exponents have the same forms as (6.21) and (6.23),
except that the search space of the minimizations will change from the grid of
empirical distributions to the set of all distributions.

Theorem 6.3.

(i) For the sequence of i.i.d. random codes of rate R, i.e., those defined
via the sequence of sampling distributions (PUn = P n

U , n ∈ N) for some
PU ∈ P(U),

lim
n→∞

− 1

n
log
(
ECn [D(PCn‖PV n)]

)
=

{
E i.i.d.

s (PU , PV |U , R) if I(U ;V ) > 0,

+∞ if I(U ;V ) = 0,

(6.24)
where

E i.i.d.
s (PU , PV |U , R) = min

QUV ∈P(U×V)

{
D(QUV ‖PUV ) + [R− f(QUV ‖PUV )]

+
}
,

(6.25)
with PUV = PU × PV |U and f as defined in (6.21b).

(ii) For the sequence of constant-composition random codes of rate R, specif-
ically, those defined via the sequence of uniform distributions over the
type class T n

P
(n)
U

, for a sequence of n-types (P
(n)
U ∈ Pn(U), n ∈ N) that

converge to PU , i.e., limn→∞ |P (n)
U − PU | = 0,

lim
n→∞

− 1

n
log
(
ECn [D(PCn‖PV n)]

)
=

{
Ec.c.

s (PU , PV |U , R) if I(U ;V ) > 0,

+∞ if I(U ;V ) = 0,

(6.26)
where

Ec.c.
s (PU , PV |U , R) = min

QUV ∈P(U×V):
QU=PU

{
D(QUV ‖PUV ) + [R− g(QUV ‖PUV )]

+
}
,

(6.27a)
with PUV = PU × PV |U and

g(Q‖P ) :=
∑

(u,v)∈U×V
Q(u, v) logPV |U(v|u) +H(QV )

+ min
Q′∈P(U×V):

Q′
U=QU ,Q′

V =QV

D(Q′‖P ), (6.27b)

for any pair of distributions P,Q ∈ P(U × V).
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Both exponents E i.i.d.
s and Ec.c.

s are positive and strictly increasing in R for
R > I(U ;V ). Moreover, the value of E i.i.d.

s can be computed through

E i.i.d.
s (PU , PV |U , R) = max

0≤λ≤1
{λR− F0(PUV , λ)} (6.28a)

with

F0(PUV , λ) := log

[ ∑
(u,v)∈U×V

PUV (u, v)
1+λ

PU(u)λPV (v)λ

]
(6.28b)

Deducing Theorem 6.3 from Theorem 6.2 involves many technical details.
The proof is hence relegated to Appendix 6.A.

Corollary 6.4. The exponents E i.i.d.
s (PX ,WE, R) and Ec.c.

s (PX ,WE, R) of (6.25)
and (6.27) are the exact secrecy exponents for the ensembles of random wire-
tap channel codes of random-binning rate R and secret message rate Rs con-
structed from the ensembles of random i.i.d. and constant-composition codes,
respectively, provided that Rs > 0 and R > I(X;Z).

6.3.2 Comparison of Exponents

The exponent Ei.i.d.
s has already been shown to lower-bound the exponential

decay rate of the information leaked to the eavesdropper when the code is
sampled from the i.i.d. random-coding ensemble in [47,54] (and in conjugation
with privacy amplification in [52]). Corollary 6.4 states that this exponent is
indeed the exact secrecy exponent for the ensemble of i.i.d. random codes. (The
exponent is expressed in the form of (6.28) in [47, 52, 54].) In contrast, it can
be shown that Ec.c.

s , the exact secrecy exponent for the ensemble of constant-
composition random codes, is larger than the previously derived lower bound
in [53]:

Es(PX ,WE, R) = max
0≤λ≤1

{λR− E0(PX ,WE, λ)}, (6.29a)

with

E0(PX ,WE, λ) := log

{∑
z∈Z

[∑
x∈X

PX(x)WE(z|x)
1

1−λ

]1−λ
}
. (6.29b)

(Note that the function E0 in (6.29b) is essentially Gallager’s E0 [42] up to a
minus sign.)

Lemma 6.5. For every discrete memoryless channel PV |U : U → V,

Ec.c.
s (PU , PV |U , R) ≥ Es(PU , PV |U , R). (6.30)

Lemma 6.5 follows from the fact that for any pair of joint distributions P
and Q with the same u-marginal, g(Q‖P ) ≤ I(Q), by following similar steps
as in [30, Problem 10.24] to derive Gallager-style expressions of random-coding
error exponents. (See Appendix 6.B for a complete proof.)
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More importantly, as for the comparison of the secrecy exponents E i.i.d.
s and

Ec.c.
s , numerical examples show that, in general, there is no ordering between

them. In particular, as shown in Figures 6.1 and 6.2, for the binary symmetric
channel and the binary erasure channel, the ensemble of constant-composition
random codes leads to a larger exponent than the ensemble of i.i.d. random
codes. The two exponents are equal when the input distribution is uniform.
On the other side, in Figures 6.3 and 6.4, we see that for asymmetric channels
(the Z-channel and the binary asymmetric channel) the ensemble of constant-
composition random codes has a smaller secrecy exponent compared to the
ensemble of i.i.d. random codes.
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(a) PX(0) = 0.3, PX(1) = 0.7

0.25 0.5 0.75 1

0.25

0.5

R

Es

Ei.i.d.
s

Ec.c.
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(b) PX(0) = PX(1) = 0.5

Figure 6.1: Comparison of Secrecy Exponents when WE is a Binary Symmetric
Channel with Crossover Probability 0.11
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(a) PX(0) = 0.28, PX(1) = 0.72
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(b) PX(0) = PX(1) = 0.5

Figure 6.2: Comparison of Secrecy Exponents when WE is a Binary Erasure
Channel with Erasure Probability 0.5

The reader can find details on how the exponents are computed in Ap-
pendix 6.C.

6.4 Proof of Theorem 6.2

In this section, we fix PU , accordingly, PUV (u, v) = PU(u)PV |U(v|u) where
PV |U is the channel transition probability. Moreover, without essential loss of
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(a) PX(0) = 0.36, PX(1) = 0.64
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Figure 6.3: Comparison of Secrecy Exponents when WE is a Z-channel with
WE(0|1) = 0.303
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0.25 0.5 0.75 1

0.25

0.5

R

Es

Ei.i.d.
s

Ec.c.
s

Es
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Figure 6.4: Comparison of Secrecy Exponents when WE is a Binary Asymmetric
Channel with WE(1|0) = 0.01, WE(0|1) = 0.303

generality, we assume that (i) supp(PU) = U (and for the constant-composition

codes, ∀n, supp(P (n)
U ) = U), and (ii) for every v ∈ V , there exists at least one

u ∈ U such that PV |U(v|u) > 0 (if this is not the case, we can shrink V).
Recall that the setting we consider is as follows: A random code Cn =

(Un
(1), U

n
(2), . . . , U

n
(M)) of block-length n and size M = �exp(nR)� is constructed

by sampling each codeword independently from distribution PUn . A uniformly
chosen codeword from this code is transmitted through the product channel
P n
V |U and the (random) distribution of its output sequence is

PCn(v
n) =

1

M

M∑
j=1

P n
V |U
(
vn|Un

(j)

)
. (6.31)

Trivial Case (zero-capacity channel) If PU is such that I(U ;V ) = 0,
then ∀u ∈ U and ∀v ∈ V , PV |U(v|u) = PV (v). This implies that for any code
of block-length n, Cn, PCn = P n

V . Moreover,

PV n = PUn ◦ P n
V |U = P n

V (6.32)
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as well. Thus, D(PCn‖PV n) = 0 (with probability 1 for a random code), which
in turn implies ECn [D(PCn‖PV n)] = 0.

Here, we begin the non-trivial part of the proof, specifically when the channel
output sequence V n is correlated with its input. For any fixed vn ∈ Vn, PCn(v

n)
(as defined in (6.31)) is an average of M i.i.d. random variables P n

V |U(v
n|Un

(j)),
j = 1, 2, . . . ,M . Hence, it is expected to concentrate around its mean that
is exactly PV n(vn). However, as the distribution of each of the summands
depends on n, a plain application of the law of large numbers is not possible
in this setting. Let

L(vn) :=

{
PCn (v

n)

PV n (vn)
if PV n(vn) > 0,

1 otherwise,
(6.33)

denote the (random) likelihood ratio of each sequence vn ∈ Vn. By construc-
tion,

ECn [L(v
n)] = 1, ∀vn ∈ Vn. (6.34)

Moreover, it follows that PCn � PV n with probability 1 (see Lemma 6.6 below).
Hence, the linearity of expectation yields

ECn [D(PCn‖PV n)] = ECn

[ ∑
vn∈Vn

PCn(v
n) log

(
PCn(v

n)

PV n(vn)

)]
(6.35)

=
∑

vn∈Vn

ECn

[
PCn(v

n) log

(
PCn(v

n)

PV n(vn)

)]
(6.36)

=
∑

vn∈Vn

PV n(vn)ECn [L(v
n) logL(vn)] (6.37)

To prove Theorem 6.2, we derive exponentially tight bounds on the value
of ECn [L(v

n) logL(vn)] (for each individual vn ∈ Vn). And, to derive the
exponents of Theorem 6.2, we combine these bounds in (6.37).

6.4.1 Basics

Lemma 6.6. Let PV n be as defined in (5.50). Then:

(i) PCn � PV n with probability 1.

(ii) For any codeword-sampling distribution PUn ∈ P(Un) that depends on un

only through its type, PV n(vn) will depend on vn only through its type.

(iii) For both choices of PUn in Theorem 6.2 (i.e., i.i.d. and constant-composition
codes),

∀vn ∈ supp(PV n), PV n(vn) ≥ 1

αn
(6.38)
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where

α :=

⎧⎨
⎩

1
Pmin
U Pmin

V |U
if PUn = P n

U ,

|U|
Pmin
V |U

if PUn is the uniform distribution over T n

P
(n)
U

,
(6.39)

with

Pmin
U := min

u∈U
PU(u) and Pmin

V |U := min
(u,v)∈U×V :
PV |U (v|u)>0

PV |U(v|u). (6.40)

Remark. For the i.i.d. random-coding ensemble, i.e., when PUn = P n
U , the

reference measure PV n equals the product measure P n
V hence supp(PV n) = Vn

(because we assumed supp(PU) = U and for every v ∈ V there exists at
least one u ∈ U such that PV |U(v|u) > 0). In contrast, when PUn is the

uniform distribution over the sequences of type P
(n)
U , (i.e., for the constant-

composition random-coding ensemble) the support of PV n need not necessarily

be Vn. For instance, consider a binary erasure channel and let P
(n)
U be the

uniform distribution on {0, 1}, for even n, i.e. PUn is the uniform distribution
on the set of

(
n

n/2

)
sequences with equal zeros and ones. Then PV n puts mass

neither on the all-zero output sequence and, by symmetry, nor on the all-one
sequence.

Lemma 6.7. Let A be an arbitrary non-negative random variable. Then, for
any θ > 0,

c(θ)
[var(A)

E[A]
− τθ(A)

]
≤ E
[
A ln
( A

E[A]

)]
≤ var(A)

E[A]
(6.41)

where

τθ(A) := E[A]

[
θ2 Pr{A > (θ + 1)E[A]}+ 2

∫ +∞

θ

tPr{A > (t+ 1)E[A]}dt
]
,

(6.42)
and

c(θ) :=
(1 + θ) ln(1 + θ)− θ

θ2
. (6.43)

Lemmas 6.6 and 6.7 are proven in Appendices 6.D and 6.E, respectively.

Remark. Jensen’s inequality yields E[A ln(A/E[A])]) ≥ 0. Lemma 6.7 im-
proves this lower bound for random variables with sufficiently small tails.

Unfortunately, L(vn) has heavy tails and a direct application of Lemma 6.7
to L(vn) will not result in exponentially tight bounds on E

[
L(vn) logL(vn)

]
.3

However, it turns out that L(vn) can be split into light- and heavy-tail com-
ponents. As we will see shortly, the heavy-tail component contributes to

3For simplicity, we drop the subscript Cn after the expectation operator. It is clear from
the context that the expectations are taken over the choice of the code.
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E
[
L(vn) logL(vn)

]
only via its mean, and Lemma 6.7 can be applied to the

light-tail component to obtain exponentially tight bounds on E
[
L(vn) logL(vn)

]
.

Since PV n(vn) depends on vn only through its type, we can use type enu-
meration method [78,79] and write

L(vn) =
1

M

M∑
i=1

P n
V |U
(
vn|Un

(i)

)
PV n(vn)

(6.44)

=
1

M

∑
Q∈Pn(U×V)

NQ(v
n)�(Q) (6.45)

where

�(Q) :=
P n
V |U(v

n|un)

PV n(vn)
(6.46)

is the common value of the right-hand side for ∀(un, vn) ∈ T n
Q , and

NQ(v
n) :=

∣∣{un ∈ Cn : (un, vn) ∈ T n
Q

}∣∣ (6.47)

is the number of codewords in Cn that have joint type Q with vn. Therefore,
{NQ(v

n) : Q ∈ Pn(U ×V)} is a multinomial collection with cluster size M and
success probabilities

pQ(v
n) =

|T n
Q |

|T n
QV
||T n

QU
|PUn(T n

QU
)1{vn ∈ T n

QV
}, (6.48)

for any codeword-sampling distribution PUn(un) that depends on un through
its type — including our cases of interest. (The above equality is proven in
Appendix 6.F.)

Partition the set of n-types on U × V , Pn(U × V) = Q′
n ∪ Q′′

n as

Q′
n := {Q ∈ Pn(U × V) : �(Q) ≤ e2M}, (6.49)

Q′′
n := {Q ∈ Pn(U × V) : �(Q) > e2M}, (6.50)

and, accordingly, split L(vn) = L1(v
n) + L2(v

n) as

L1(v
n) :=

1

M

∑
Q∈Q′

n

NQ(v
n)�(Q), (6.51)

L2(v
n) :=

1

M

∑
Q∈Q′′

n

NQ(v
n)�(Q). (6.52)

Indeed, L1 turns out to be the light-tail component of L and L2 its heavy-tail
part. Let also,

ν(vn) := var
(
L1(v

n)
)
+

1

M
E[L1(v

n)]2, and (6.53)

μ(vn) := E[L2(v
n)]. (6.54)
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Using the elementary properties of the multinomial distribution, it can be
verified4 that

ν(vn) =
1

M

∑
Q∈Q′

n

�(Q)2pQ(v
n) (6.55a)

μ(vn) =
∑
Q∈Q′′

n

�(Q)pQ(v
n). (6.55b)

In the following two subsections, we prove that ∀vn ∈ supp(PV n),

E
[
L(vn) lnL(vn)

]
+

1

M
.
= ν(vn) + μ(vn). (6.56)

Since vn is fixed in both sides of (6.56), we drop it in Subsections 6.4.2 and
6.4.3 to avoid cumbersome notation.

6.4.2 Achievability

For non-negative l1 and l2, and l = l1 + l2,

l ln(l) = l1 ln(l) + l2 ln(l) (6.57)

= l1 ln(l1) + l1 ln(1 + l2/l1) + l2 ln(l) (6.58)

≤ l1 ln(l1) + l2(1 + ln(l)) (6.59)

(since ln(1 + l2/l1) ≤ l2/l1). Thus,

E[L lnL] ≤ E[L1 lnL1] + E[L2(1 + lnL)] (6.60)

(∗)
≤ E[L1 lnL1] + (1 + n lnα)E[L2] (6.61)

where (∗) follows from (iii) in Lemma 6.6 (as L = L(vn) ≤ 1/PV n(vn)). The
upper bound of (6.41) implies

E[L1 lnL1] ≤ E[L1] ln
(
E[L1]

)
+

var(L1)

E[L1]

(∗)
≤ var(L1)

E[L1]
(6.62)

where (∗) follows since E[L1] ≤ E[L] = 1. Moreover, using (6.53) and the fact
that E[L1] + E[L2] = 1 we have

var(L1)

E[L1]
=

ν

E[L1]
− E[L1]

M
(6.63)

= ν
(
1 +

E[L2]

E[L1]

)
− 1− E[L2]

M
(6.64)

= ν + E[L2]
( ν

E[L1]
+

1

M

)
− 1

M
. (6.65)

4A proof of (6.55) is given in Appendix 6.G for completeness.
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Since �(Q) ≤Me2 for Q ∈ Q′
n, using (6.55a) we have

ν ≤ 1

M

∑
Q∈Q′

n

e2M · �(Q)pQ = e2 E[L1]. (6.66)

Using the above in (6.65) and replacing E[L2] = μ, we get

var(L1)

E[L1]
+

1

M
≤ ν + E[L2]

(
e2 +

1

M

)
≤ ν + (1 + e2)μ. (6.67)

Finally, using (6.67) in (6.62) yields,

E[L1 lnL1] +
1

M
≤̇ ν + μ. (6.68)

Using (6.68) in (6.61) (and noting that α ≥ 1 only depends on |U|, PU , and
PV |U), we conclude that

E[L lnL] +
1

M
≤̇ ν + μ. (6.69)

6.4.3 Ensemble Converse

The choice of Q′′
n implies

Pr
{
L2 ∈ (0, e2)

}
= 0. (6.70)

This holds since either ∀Q ∈ Q′′
n : NQ = 0 which implies L2 = 0 or ∃Q0 ∈ Q′′

n

such that NQ0 ≥ 1, in which case,

L2 ≥
1

M
�(Q0)NQ0 ≥

1

M
�(Q0) ≥ e2, (6.71)

(because ∀Q ∈ Q′′
n, �(Q) > e2M). Consequently,

E[L2 lnL2] =
∑
l≥e2

l ln(l) Pr{L2 = l} (6.72)

≥ ln(e2)
∑
l≥e2

lPr{L2 = l} = 2E[L2]. (6.73)

For positive l1 and l2, and l = l1 + l2 ≥ max{l1, l2},

l ln(l) = l1 ln(l) + l2 ln(l) (6.74)

≥ l1 ln(l1) + l2 ln(l2). (6.75)

Therefore,

E[L lnL] ≥ E[L1 lnL1] + E[L2 lnL2]. (6.76)
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Using the lower bound of (6.41) (with τθ(L1) and c(θ) defined as in (6.42) and
(6.43), respectively), ∀θ > 0:

E[L1 lnL1] ≥ E[L1] ln(E[L1]) + c(θ)
[var(L1)

E[L1]
− τθ(L1)

]
(6.77)

(a)
= (1− E[L2]) ln(1− E[L2]) + c(θ)

[var(L1)

E[L1]
− τθ(L1)

]
(6.78)

(b)

≥ −E[L2] + c(θ)
[var(L1)

E[L1]
− τθ(L1)

]
. (6.79)

In the above, (a) follows since E[L1] = 1 − E[L2] and (b) follows since (1 −
t) ln(1− t) ≥ −t. Using (6.73) and (6.79) in (6.75) shows that ∀θ > 0:

E[L lnL] ≥ c(θ)
[var(L1)

E[L1]
− τθ(L1)

]
+ E[L2]. (6.80)

Let us now upper-bound τθ(L1). Starting by bounding the tail of L1 we
have

Pr{L1 ≥ (t+ 1)E[L1]} = Pr

⎧⎨
⎩∑

Q∈Q′
n

�(Q)(NQ −MpQ) ≥MtE[L1]

⎫⎬
⎭ (6.81)

≤ Pr

⎧⎨
⎩ ⋃

Q∈Q′
n

{
�(Q)(NQ −MpQ) ≥

MtE[L1]

|Q′
n|

}⎫⎬
⎭
(6.82)

(a)

≤
∑
Q∈Q′

n

Pr

{
�(Q)(NQ −MpQ) ≥

MtE[L1]

|Q′
n|

}
(6.83)

(b)

≤
∑
Q∈Q′

n

E[�(Q)4(NQ −MpQ)
4]

(MtE[L1]/|Q′
n|)4

(6.84)

=
|Q′

n|4
t4(E[L1])4

1

M4

∑
Q∈Q′

n

�(Q)4 E[(NQ −MpQ)
4], (6.85)

where (a) is the union bound and (b) follows by Markov inequality. For N ∼
Binomial(M, p),

E[(N −Mp)4] = Mp(1− p)[1 + 3(M − 2)p(1− p)] (6.86)

≤ var(N) + 3 var(N)2. (6.87)

Continuing (6.85) we have

1

M4

∑
Q∈Q′

n

�(Q)4 E[(NQ −MpQ)
4] ≤ 1

M4

∑
Q∈Q′

n

�(Q)4
(
var(NQ) + 3 var(NQ)

2
)
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(a)

≤̇ 1

M2

∑
Q∈Q′

n

�(Q)2 var(NQ) + 3
1

M4

∑
Q∈Q′

n

�(Q)4 var(NQ)
2 (6.88)

(b)

≤ 1

M2

∑
Q∈Q′

n

�(Q)2 var(NQ) + 3
[ 1

M2

∑
Q∈Q′

n

�(Q)2 var(NQ)
]2

(6.89)

(c)

≤ ν + 3ν2
(d).
= ν, (6.90)

where (a) follows since �(Q) ≤ e2M
.
= M for Q ∈ Q′

n, (b) follows since for
positive summands, the sum of the squares is less than the square of the sums,
(c) holds since var(NQ) ≤ MpQ, and (d) follows since ν ≤ e2 E[L1] ≤ e2 (see
(6.66)). Plugging (6.90) into (6.85) yields

Pr{L1 ≥ (t+ 1)E[L1]} ≤̇
|Q′

n|4ν
(E[L1])4

· 1
t4
. (6.91)

Using the above in (6.42) we get

τθ(L1) = E[L1]

[
θ2 Pr{L1 > (θ + 1)E[L1]}+ 2

∫ +∞

θ

tPr{L1 > (t+ 1)E[L1]}dt
]

≤̇ E[L1]

[
θ2

θ4
+ 2

∫ +∞

θ

t

t4
dt

] |Q′
n|4

E[L1]4
ν (6.92)

.
=

ν

E[L1]3
· |Q

′
n|4
θ2

. (6.93)

Equation (6.93) implies

τθ(L1) ≤ d(n)
|Q′

n|4ν(
θ2 E[L1]3

) (6.94)

for some sub-exponentially increasing sequence d(n) (which only depends on
|U| and |V|). Therefore, taking

θn := 2
√

d(n)
|Q′

n|2
E[L1]

, (6.95)

we will have

τθn(L1) ≤
1

4
· ν

E[L1]
. (6.96)

Using (6.53) and (6.96) in (6.80) yields

E[L(vn) lnL(vn)] ≥ c(θn)
[var(L1)

E[L1]
− τθn(L1)

]
+ E[L2] (6.97)

≥ c(θn)
[ ν

E[L1]
− 1

M
E[L1]−

1

4
· ν

E[L1]

]
+ E[L2] (6.98)

(∗)
≥ c(θn)

[3
4
· ν

E[L1]
− 1

M

]
+ E[L2] (6.99)
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(where (∗) follows because E[L1] ≤ 1). Because for θ > 0, c(θ) ≤ c(0) = 1/2 <
1, we can further lower-bound (6.99) as

E[L lnL] ≥ 3

4
c(θn)

ν

E[L1]
+ E[L2]−

1

M
(6.100)

Moreover,

c(θn) =
1

θn
· (1 + θn) ln(1 + θn)− θn

θn
(6.101)

(a)

≥ 1

θn
· (1 + E[L1]θn) ln(1 + E[L1]θn)− E[L1]θn

E[L1]θn
(6.102)

= E[L1]
(1 + E[L1]θn) ln(1 + E[L1]θn)− E[L1]θn

(E[L1]θn)2
(6.103)

(b)

≥̇ E[L1], (6.104)

where (a) follows since [(1+θ) ln(1+θ)−θ]/θ is increasing in θ and E[L1] ≤ 1,
and (b) holds since [(1+θ) ln(1+θ)−θ]/θ2 is decreasing in θ (see Lemma 6.14
in Appendix 6.E) and E[L1]θn = 2

√
d(n)|Q′

n|2 ≤ 2
√
d(n)(n + 1)2|U||V|. Using

this lower bound in (6.100), we get

E[L lnL] +
1

M
≥̇ ν + μ. (6.105)

6.4.4 Derivation of Exponents for Each Ensemble

Equations (6.69) and (6.105) prove (6.56). Plugging in the values of ν(vn) and
μ(vn) from (6.55a) and (6.55b) and continuing (6.56), we get

E
[
L(vn) lnL(vn)

]
+

1

M
.
= ν(vn) + μ(vn) (6.106)

=
∑

Q∈Pn(U×V)
�(Q)pQ(v

n)κ
(
�(Q)/M

)
(6.107)

where

κ(λ) =

{
1 λ > e2,

λ λ ≤ e2.
(6.108)

It is easy to check that

min{1, λ} ≤ κ(λ) ≤ e2 min{1, λ} (6.109)

Therefore, (6.107) can be simplified as

E
[
L(vn) lnL(vn)

]
+

1

M
.
=

∑
Q∈Pn(U×V)

�(Q)pQ(v
n)min

{
1,

�(Q)

M

}
. (6.110)
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Using the above in (6.37) we get

E[D(PCn‖PV n)] +
log(e)

M
.
=
∑

vn∈Vn

PV n(vn)
∑

Q∈Pn(U×V)
�(Q)pQ(v

n)min
{
1,

�(Q)

M

}
(6.111)

=
∑

Q∈Pn(U×V)
�(Q)min

{
1,

�(Q)

M

} ∑
vn∈Vn

pQ(v
n)PV n(vn).

(6.112)

Plugging in the value of pQ(v
n) from (6.48), we get

∑
vn∈Vn

pQ(v
n)PV n(vn) =

|T n
Q |

|T n
QU
||T n

QV
|PUn

(
T n
QU

)
PV n

(
T n
QV

)
. (6.113)

Moreover, defining

ω(Q) :=
∑

(u,v)∈U×V
Q(u, v) logPV |U(v|u), (6.114)

and recalling that PV n(vn) depends on vn only through its type, we deduce
that

�(Q) =
exp
(
nω(Q)

)
|T n

QV
|

PV n

(
T n
QV

) . (6.115)

Combining (6.113) and (6.115) yields

�(Q)
∑
vn

pQ(v
n)PV n(vn) = exp

{
nω(Q)

}
|T n

Q |
PUn

(
T n
QU

)∣∣T n
QU

∣∣ (6.116)

.
= exp

{
−nD(Q‖QU × PV |U)

}
PUn

(
T n
QU

)
, (6.117)

where the last equality follows from (6.3). Thus, we have

E[D(PCn‖PV n)] +
log(e)

M
.
=

∑
Q∈Pn(U×V)

exp
{
−nD(Q‖QU × PV |U)

}
PUn

(
T n
QU

)
min
{
1,

�(Q)

M

}
. (6.118)

Since

�(PUV ) ≥ exp{nω(PUV )}
∣∣T n

PV

∣∣ ≥̇ exp{nI(U ;V )}, (6.119)

taking Q = PUV shows that the right-hand side of (6.118) decays at most as
fast as exp{−n[R−I(U ;V )]+}, which is strictly slower than 1/M = exp(−nR)
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as I(U ;V ) > 0. Consequently, we can eliminate the term log(e)/M on the left-
hand side of (6.118) and conclude5 that

E[D(PCn‖PV n)]

.
=

∑
Q∈Pn(U×V)

exp
{
−nD(Q‖QU × PV |U)

}
· PUn

(
T n
QU

)
min
{
1,

�(Q)

M

}
. (6.120)

Ensemble of i.i.d. Random Codes

When PUn = P n
U ,

PUn(T n
QU

)
.
= exp{−nD(QU‖PU)} (6.121)

Moreover, PV n = P n
V . Therefore,

PV n(vn) = exp
{
n
∑
v

QV (v) logPV (v)
}

if vn ∈ T n
QV

. (6.122)

Hence,

�(Q) =
exp{nω(Q)}

P n
V (v

n)
= exp

{
n
∑
u,v

Q(u, v) log
PV |U(v|u)
PV (v)

}
= exp

{
nf(Q‖PUV )

}
. (6.123)

where f is defined in (6.21b). As a consequence,

min{1, �(Q)/M} .
= exp

{
−n[R− f(Q‖PUV )]

+
}
. (6.124)

Using (6.121) and (6.124) in (6.120) (together with the fact that |Pn(U×V)| ≤
(n+ 1)|U||V|), we conclude that

E[D(PCn‖PV n)]
.
= exp

{
−n min

Q∈Pn(U×V)

{
D(Q‖QU × PV |U)

+D(QU‖PU) + [R− f(Q‖PUV )]
+
}}

. (6.125)

Simplifying the above exponent yields (6.21).

Ensemble of Constant-Composition Random Codes

When the codeword-sampling distribution, PUn , is the uniform distribution
over the sequences of type P

(n)
U , PUn

(
T n
QU

)
= 0 unless QU = P

(n)
U . Therefore

(6.120) reduces to

E[D(PCn‖PV n)]
.
=

∑
Q∈Pn(U×V):
QU=P

(n)
U

exp
{
−nD(Q‖P (n)

UV )
}
min{1, �(Q)/M}. (6.126)

5The careful reader could argue that PUV might not be an n-type for all n hence find
our reasoning inaccurate, in the passage from (6.118) to (6.120). Although this concern is
valid, the claim is true regardless; because we can always find a sequence of n-types that
converge to PUV . We give a rigorous and more detailed proof of (6.120) in Appendix 6.H.
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It remains to evaluate

�(Q) =
P n
V |U(v

n|un)

PV n(vn)
, (6.127)

for (un, vn) ∈ T n
Q (when QU = P

(n)
U ). The numerator of the above equals

P n
V |U(v

n|un) = exp{nω(Q)}, (6.128)

where ω is defined in (6.114), for any (un, vn) ∈ T n
Q . To compute the denomi-

nator, note that, since QU = P
(n)
U ,

PV n(vn) =
1

|T n
QU
|
∑

ũn∈T n
QU

P n
V |U(v

n|ũn) (6.129)

=
1

|T n
QU
|
∑

ũn∈T n
QU

P n
V |U(v

n|ũn)
∑

Q′∈Pn(U×V)
1{(ũn, vn) ∈ T n

Q′} (6.130)

=
1

|T n
QU
|
∑

ũn∈T n
QU

∑
Q′∈Pn(U×V)

1{(ũn, vn) ∈ T n
Q′}P n

V |U(v
n|ũn) (6.131)

=
1

|T n
QU
|
∑

ũn∈T n
QU

∑
Q′∈Pn(U×V)

1{(ũn, vn) ∈ T n
Q′} exp{nω(Q′)} (6.132)

=
∑

Q′∈Pn(U×V)

[
1

|T n
QU
|
∑

ũn∈T n
QU

1{(ũn, vn) ∈ T n
Q′}
]
exp{nω(Q′)} (6.133)

As we have already shown in the proof of (6.48) (cf. Appendix 6.F),∑
ũn∈T n

QU

1{(ũn, vn) ∈ T n
Q′} = 1{Q′

U = QU}
∑

ũn∈Un

1{(ũn, vn) ∈ T n
Q′} (6.134)

= 1{Q′
U = QU}1

{
vn ∈ T n

Q′
V

} |T n
Q′ |
|T n

Q′
V
| . (6.135)

Consequently, for vn ∈ T n
QV

,

1

|T n
QU
|
∑

ũn∈T n
QU

1{(ũn, vn) ∈ T n
Q′} = 1{Q′

U = QU}1{Q′
V = QV }

|T n
Q′ |

|T n
Q′

U
||T n

Q′
V
|

(∗).
= 1{Q′

U = QU}1{Q′
V = QV } exp{−nI(Q′)} (6.136)

where (∗) follows from (6.3). Combining the exponents, we see that each of
the summands in (6.133) equals[

1

|T n
QU
|
∑

ũn∈T n
QU

1{(ũn, vn) ∈ T n
Q′}
]
exp{nω(Q′)}

.
= exp

{
−n[D(Q′‖P (n)

UV )−D(QU‖P (n)
U ) +H(QV )]

}
(6.137)
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when Q′
U = QU and Q′

V = QV (and is zero otherwise). Recall that in the

above P
(n)
UV = P

(n)
U PV |U . Moreover, since QU = P

(n)
U , using (6.137) in (6.133)

yields

PV n(vn)
.
= exp

{
−n
[
H(QV ) + min

Q′∈Pn(U×V):
Q′

U=QU ,Q′
V =QV

D(Q′‖P (n)
UV )

]}
(6.138)

which, in turn, shows

�(Q)
.
= 1
{
QU = P

(n)
U

}
exp
[
−ngn

(
Q‖P (n)

UV

)]
(6.139)

with gn defined as in (6.23b). Therefore,

min{1, �(Q)/M} .
= exp

{
−n
[
R− gn

(
Q‖P (n)

UV

)]+}
. (6.140)

when Q is such that QU = P
(n)
U . Using (6.140) in (6.126) proves (6.23).

6.5 Random Linear Codes

We derived the exact random-coding resolvability exponents for the ensembles
of i.i.d. and of constant-composition random codes. In practice, a randomly
sampled code from either of the aforementioned ensembles is too complex to
use — to begin with, the encoder needs to store exponentially many code-
words. Consequently, it is desirable to use more structured codes. For the
error-correction problem, which is a counterpart of the resolvability problem,
we know that on average random linear codes perform as well as i.i.d. ran-
dom codes (for uniform input distribution) [42, Section 6.2]. In terms of their
ensemble-average behavior, random linear codes are the same as i.i.d. random
codes, simply because the proof of channel coding theorem [42, Chapter 5]
depends only on the pairwise independence of codewords. This pairwise inde-
pendence also holds for the codewords of a random linear (or more precisely,
affine) code. How well do random linear codes perform as a resolvability code?

Inspecting the achievability part of our proof (§ 6.4.2), we see that our
exponentially decaying upper bound on E[L(vn) lnL(vn)] depends only on the
first- and second-order statistics of the type enumeratorsNQ(v

n). The fact that
they form a multinomial collection is of no importance in the proof. As long as
the codewords are pairwise independent, (6.55) holds. Thus, as random linear
codes have the same first- and second-order statistics as i.i.d. random codes
[42], it straightforwardly follows that the exponent E i.i.d.

s is also achievable by
random linear codes (for uniform input distribution).

In this section, we will show that E i.i.d.
s is indeed ensemble-optimal for the

ensemble of random affine codes as well. Note that here we assume the channel
input U equals Fq for some q, and that the input distribution PU is the uniform
distribution on Fq. The goal is hence to approximate P n

V , where

PV (v) =
1

q

∑
u∈Fq

PV |U(v|u), (6.141)
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at the output of the channel by transmitting a uniformly chosen codeword
from a random affine code.

Definition 6.2 (Random Affine Code [42]). An (n, k) random affine code is
defined as the (random) collection of codewords

Cn :=
(
Un
wk = Gwk +Dn : wk ∈ Fk

q

)
(6.142)

where G ∈ Fn×k
q is a random n × k generator matrix whose elements Gi,j

are drawn independently and uniformly from Fq and Dn ∈ Fn
q is a random

dither vector independent of G uniformly distributed on Fn
q . The codewords

are indexed by q-ary vectors of length k, wk ∈ Fk
q .

As shown in [42, p. 207], the ensemble of random affine codes has the
same first- and second-order statistics as the ensemble of i.i.d. random codes,
namely, ∀wk ∈ Fk

q ,

Pr
{
Un
wk = un

}
= q−n, ∀un ∈ Fn

q , (6.143)

and for all unequal pairs wk and w̃k in Fk
q ,

Pr
{
Un
wk = un, Un

w̃k = ũn
}
= q−2n, ∀un, ũn ∈ Fn

q . (6.144)

Here we prove the following result.

Theorem 6.8. Let PV |U : U → V be a discrete memoryless channel with input
U = Fq and consider the sequence (Cn, n ∈ N) of (n, kn) random affine codes
of rate (at most) R, i.e., those satisfying

lim sup
n→∞

kn log(q)

n
≤ R. (6.145)

(See Definition 6.2.) Let PCn be the (random) output distribution of P n
V |U when

a uniformly chosen codeword from Cn is transmitted via n independent uses of
PV |U (see (5.32)). Then,

E[D(PCn‖PV n)]
.
=

{
exp
{
−nE i.i.d.

n (PU , PV |U , R)
}

if I(U ;V ) > 0,

0 if I(U ;V ) = 0,
(6.146)

where PU is the uniform distribution on Fq (and hence, I(U ;V ) is evaluated
with PUV (u, v) =

1
q
PV |U(v|u)), PV is defined in (6.141), and E i.i.d.

n is defined

in (6.21) (see Theorem 6.2).

Having established Theorem 6.8, it follows that Ei.i.d.
s (as defined in (6.25))

is the exact random-coding resolvability exponent (hence, the exact random-
coding secrecy exponent) for the ensemble of random affine codes.



6.5. Random Linear Codes 131

Proof of Theorem 6.8. We show that our argument in § 6.4 is valid if the code
Cn is sampled from the ensemble of random affine codes, instead of the i.i.d.
random-coding ensemble when PU is the uniform distribution on U = Fq,
(obviously, we only focus on the case I(U ;V ) > 0).

First, note that even though PCn(v
n) (see (6.31)) is only the average of

pairwise independent random variables, by the virtue of (6.143), the distri-
bution of each summand is the same as that when the code was sampled
from i.i.d. random-coding ensemble. Thus, (6.34) in particular holds. By
the same token, Lemma 6.6 is also valid for a random affine code (with
α = 1/(Pmin

U Pmin
V |U) = q/Pmin

V |U).
6 We can still rewrite the summation of M = qk

(pairwise independent) random variables in (6.44) into the summation of at
most (n+ 1)|U||V| weighted type enumerators as in (6.45) with NQ(v

n) exactly
as defined in (6.47).

Although the collection of type-enumerators
(
NQ(v

n), Q ∈ Qn(U × V)
)

is not a multinomial collection anymore, pQ(v
n) as defined in (6.48) (with

PUn(un) = (1/q)n for all un ∈ Un) is still the probability of having a code-
word un in the code whose joint type with vn is Q. Furthermore, in view of
(6.143) and (6.144), type-enumerators for random affine codes have exactly the
same first- and second-order statistics (i.e., expectation vector and covariance
matrix) as they had for i.i.d. random codes. Hence (6.55a) and (6.55b) hold.

6.5.1 Achievability

The achievability part of our proof for random codes (in § 6.4.2) involves only
elementary mathematical manipulations and uses only the first- and second-
order statistics of the type-enumerators. Therefore, it follows that

E[D(PCn‖PV n)] ≤̇ exp
{
−nE i.i.d.

n (PU , PV |U , R)
}

(6.147)

(when Cn is a randomly chosen affine code of rate at most R).

6.5.2 Ensemble Converse

For the ensemble converse of the proof in § 6.4.3, to upper-bound the tails
of L1(v

n), we used the fourth central moments of the type-enumerators, that
depend on the third- and fourth-order statistics of the code. In a random
affine code, the codewords are not necessarily triple-wise and quadruple-wise
independent. For example, consider a binary affine code and take wk

(1), w
k
(2),

wk
(3), and wk

(4) such that

wk
(1) ⊕ wk

(2) = wk
(3) ⊕ wk

(4)

Then, it is obvious that

Un
wk

(1)
⊕ Un

wk
(2)

= Un
wk

(3)
⊕ Un

wk
(4)
,

6Also note that since in this case PV n = Pn
V , with PV as defined in (6.141), the support

of PV n is Vn.
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with probability 1. Hence, every four codewords indexed by linearly dependent
wks are also linearly dependent. (We will see shortly that for binary alphabet,
the codewords are, in fact, triple-wise independent.)

It might be possible to derive other bounds on the tails of L1(v
n) and show

that it still concentrates around its mean sufficiently fast. We, instead, show
that even though the codewords are not triple- and quadruple-wise independent
in general, a random linear code does not contain too many such dependent
codewords. In particular, the dependencies are weak enough to enable us to
prove that (6.90) is still an upper bound (up to sub-exponential factors) on
the summation on the right-hand side of (6.85).

Lemma 6.9. Consider a q-ary random affine code as in Definition 6.2. Fix a
collection of m ≤ k vectors in Fk

q , w
k
(1), w

k
(2), . . . , w

k
(m), and un

(1), u
n
(2), . . . , u

n
(m) ∈

Fn
q . Let

Ω
(
wk

(1), w
k
(2), . . . , w

k
(m)

)
:=

[
wk

(1) wk
(2) . . . wk

(m)

1 1 . . . 1

]
. (6.148)

and

Ξ
(
un
(1), u

n
(2), . . . , u

n
(m)

)
:=
[
un
(1) un

(2) . . . un
(m)

]
. (6.149)

Then

Pr

( m⋂
j=1

{
Un
wk

(j)
= un

(j)

})
= q−n rank(Ω)1{kern(Ω) ⊆ kern(Ξ)}, (6.150)

(in the above kern(A) = {y : Ay = 0} and all matrix operations are assumed
to be done in Fq).

Let us defer the proof of Lemma 6.9 to Appendix 6.I and prove the ensemble
converse here.

Recall that we need to show that

1

M4

∑
Q∈Q′

n

�(Q)4 E[(NQ(v
n)−MpQ(v

n))4] ≤̇ ν(vn) =
1

M

∑
Q∈Q′

n

�(Q)2pQ(v
n).

(6.151)
We also recall that ∑

Q∈Pn(U×V)
�(Q)pQ(v

n) = E[L(vn)] = 1, (6.152)

thus, in particular, �(Q)pQ(v
n) ≤ 1. As before, we shall drop vn from the

argument of the variables as it is fixed on both sides of (6.151).
Expand NQ as

NQ =
∑

wk∈Fk
q

1{(Un
wk , v

n) ∈ T n
Q }︸ ︷︷ ︸

=:χ(wk)

(6.153)
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(where Un
wk = Gwk+Dn as described in (6.142)) and recall that E[χ(wk)] = pQ.

Let ψ(wk) := χ(wk)− pQ for the sake of brevity. Therefore,

E
[
(NQ −MpQ)

4
]
= E

[( ∑
wk∈Fk

q

(χ(wk)− pQ)

)4]
(6.154)

=
∑

wk
(1)

,...,wk
(4)

∈Fk
q

E
[
ψ(wk

(1))ψ(w
k
(2))ψ(w

k
(3))ψ(w

k
(4))
]

(6.155)

=
∑

wk∈Fk
q

E[ψ(wk)4] (6.156)

+
∑

wk
(1)

�=wk
(2)

{
2E[ψ(wk

(1))ψ(w
k
(2))

3] + 3E[ψ(wk
(1))

2ψ(wk
(2))

2]

+ 2E[ψ(wk
(1))

3ψ(wk
(2))]
}

(6.157)

+ 4
∑

distinct
wk

(1)
,wk

(2)
,wk

(3)

{
E[ψ(wk

(1))
2ψ(wk

(2))ψ(w
k
(3))]

+ E[ψ(wk
(1))ψ(w

k
(2))

2ψ(wk
(3))] + E[ψ(wk

(1))ψ(w
k
(2))ψ(w

k
(3))

2]
}
(6.158)

+
∑

distinct
wk

(1)
,...,wk

(4)

E[ψ(wk
(1))ψ(w

k
(2))ψ(w

k
(3))ψ(w

k
(4))]. (6.159)

Had the codewords been triple- and quadruple-wise independent, the sum-
mations in (6.158) and (6.159) would have evaluated to 0. Hence, because
the codewords are still pairwise independent, as shown in (6.86), the sum of
(6.156) and (6.157) is upper-bounded as

∑
wk∈Fk

q

E[ψ(wk)4] +
∑

wk
(1)

�=wk
(2)

{
2E[ψ(wk

(1))ψ(w
k
(2))

3] + 3E[ψ(wk
(1))

2ψ(wk
(2))

2]

+ 2E[ψ(wk
(1))

3ψ(wk
(2))]
}
≤ var(NQ) + 3 var(NQ)

2. (6.160)

Furthermore, in (6.90) it has already been shown that

1

M4

∑
Q∈Q′

n

�(Q)4
(
var(NQ) + 3 var(NQ)

2
)
≤̇ ν. (6.161)

Therefore, to establish (6.151) it remains to prove

1

M4

∑
Q

�(Q)4[Σ3(Q) + Σ4(Q)] ≤̇ 1

M

∑
Q

�(Q)2pQ, (6.162)
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where

Σ3(Q) := 4
∑

distinct
wk

(1)
,...,wk

(3)

{
E[ψ(wk

(1))ψ(w
k
(2))ψ(w

k
(3))

2] + E[ψ(wk
(1))ψ(w

k
(2))ψ(w

k
(3))

2]

+ E[ψ(wk
(1))ψ(w

k
(2))ψ(w

k
(3))

2]
}

(6.163)

Σ4(Q) :=
∑

distinct
wk

(1)
,...,wk

(4)

E[ψ(wk
(1))ψ(w

k
(2))ψ(w

k
(3))ψ(w

k
(4))]. (6.164)

Bound on Σ3 Let wk
(1), w

k
(2), and wk

(3) be three distinct vectors in Fk
q and

Ω(wk
(1), w

k
(2), w

k
(3)) as defined in (6.148). We observe that Ω is either full-rank

or has rank 2. It cannot have rank 1 since, in that case, we must have[
wk

(2)

1

]
= a

[
wk

(1)

1

]
(6.165)

for some a ∈ Fq which implies a = 1 hence wk
(1) = wk

(2).

If rank(Ω) = 3 then, (6.150) implies ψ(wk
(1)), ψ(w

k
(2)) and ψ(wk

(3)) are inde-

pendent thus all the expectations in (6.163) will be zero. Hence, we need to
consider only the case where rank(Ω) = 2; that is, for distinct wk

(1) and wk
(2),[

wk
(3)

1

]
= a

[
wk

(1)

1

]
+ b

[
wk

(2)

1

]
(6.166)

for some (a, b) ∈ F2
q such that (a, b) �= (0, 1) and (a, b) �= (1, 0). It can be

verified that there are q − 2 such pairs (b is determined as a function of a as
a + b = 1 and a cannot be 0 or 1).7 Therefore, among M(M − 1)(M − 2)
summands in (6.163) only, (q − 2)M(M − 1) are non-zero.

Moreover,

ψ(wk
(1))ψ(w

k
(2))ψ(w

k
(3))

2 = [χ(wk
(1))− pQ][χ(w

k
(2))− pQ]ψ(w

k
(3))

2 (6.167)

=
[
χ(wk

(1))χ(w
k
(2))− pQ[χ(w

k
(1)) + χ(wk

(2))] + p2Q
]
ψ(wk

(3))
2 (6.168)

≤
[
χ(wk

(1))χ(w
k
(2)) + p2Q

]
ψ(wk

(3))
2

(∗)
≤ χ(wk

(1))χ(w
k
(2)) + p2Q, (6.169)

where (∗) follows by verifying that |ψ(wk
(3))

2| ≤ 1. Consequently, for distinct

wk
(1), w

k
(2), and wk

(3),

E
[
ψ(wk

(1))ψ(w
k
(2))ψ(w

k
(3))

2
] (a)

≤ E
[
χ(wk

(1))χ(w
k
(2))
]
+ p2Q (6.170)

(b)
= 2p2Q. (6.171)

7 Consequently, for binary alphabet this case never occurs and rank(Ω) = 3 always.
Hence the codewords of a binary affine code are triple-wise independent as well.
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where (a) follows by (6.169) and (b) holds because of the pairwise independence
of codewords. Therefore, each non-zero summand in (6.163) is upper-bounded
by

E[ψ(wk
(1))ψ(w

k
(2))ψ(w

k
(3))

2] + E[ψ(wk
(1))ψ(w

k
(2))

2ψ(wk
(3))]

+ E[ψ(wk
(1))

2ψ(wk
(2))ψ(w

k
(3))] ≤ 6p2Q (6.172)

Using (6.172), together with the fact that there are only (q − 2)M(M − 2)
non-zero terms in the sum of (6.163), we can conclude that

Σ3(Q) ≤ 24(q − 2)M(M − 1)p2Q. (6.173)

The above in turn implies

1

M4
�(Q)4Σ3(Q) ≤̇ 1

M2
�(Q)4p2Q (6.174)

(a)

≤̇ 1

M
p2Q�(Q)3 (6.175)

(b)

≤ 1

M
pQ�(Q)2, (6.176)

where (a) follows since �(Q) ≤̇M for Q ∈ Q′
n and (b) follows since �(Q)pQ ≤ 1.

Bound on Σ4 Following the same lines, for distinct wk
(1), wk

(2), wk
(3), and

wk
(4), the matrix Ω(wk

(1), w
k
(2), w

k
(3), w

k
(4)) as defined in (6.148) can have rank 2,

3, or 4. If it is full-rank, (6.150) implies that ψ(wk
(1)), ψ(w

k
(2)), . . . , ψ(w

k
(4)) are

independent, thus

E

[
4∏

j=1

ψ
(
wk

(j)

)]
=

4∏
j=1

E
[
ψ
(
wk

(j)

)]
= 0 (6.177)

Now, suppose rank(Ω) = 2. This means,[
wk

(3)

1

]
= a

[
wk

(1)

1

]
+ b

[
wk

(2)

1

]
(6.178a)[

wk
(4)

1

]
= a′

[
wk

(1)

1

]
+ b′

[
wk

(2)

1

]
(6.178b)

for some (a, b, a′, b′) ∈ F4
q. For every pair

(
wk

(1), w
k
(2)) there exists at most q2

choices of (a, b, a′, b′) that satisfy (6.178).
Expanding the product

4∏
j=1

ψ(wk
(j)) =

4∏
j=1

(χ(wk
(j))− pQ) (6.179)
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and using the pairwise independence of codewords, we can check that for dis-
tinct wk

(1), . . . , w
k
(4),

E

[
4∏

j=1

ψ
(
wk

(j)

)]
≤ E

[
4∏

j=1

χ
(
wk

(j)

)]
+ 2p4Q (6.180)

(a)

≤ E[χ(wk
(1))χ(w

k
(2))] + 2p4Q (6.181)

(b)
= p2Q + 2p4Q ≤ 3p2Q (6.182)

where (a) follows because χ(wk) ∈ {0, 1} and (b) follows from the pairwise
independence of codewords.

If rank(Ω) = 3, then every three columns of Ω are linearly independent,
thus, the random variables ψ(wk

(1)), . . . , ψ(w
k
(4)) are triple-wise independent.

Moreover, in this case,[
wk

(4)

1

]
= a

[
wk

(1)

1

]
+ b

[
wk

(2)

1

]
+ c

[
wk

(3)

1

]
(6.183)

for some (a, b, c) ∈ F3
q. Given any triplet (wk

(1), w
k
(2), w

k
(3)) there are at most q2

triplets (a, b, c) ∈ F3
q that satisfy (6.183). Starting from the bound of (6.180),

for distinct wk
(1), . . . , w

k
(4) that index triple-wise independent codewords we have

E

[
4∏

j=1

ψ
(
wk

(j)

)]
≤ E

[
4∏

j=1

χ
(
wk

(j)

)]
+ 2p4Q (6.184)

(a)

≤ E[χ(wk
(1))χ(w

k
(2))χ(w

k
(3))] + 2p4Q (6.185)

(b)
= p3Q + 2p4Q ≤ 3p3Q (6.186)

where, again, (a) follows since χ(wk) ∈ {0, 1} and (b) follows from the triple-
wise independent of codewords.

So, in total, among
(
M
4

)
terms in the summation of (6.164), there are at

most q2M2 that are upper-bounded as in (6.182), at most q2M3 that are upper-
bounded as in (6.186), and the rest correspond to quadruple-wise independent
codewords, hence they are zero. Therefore,

Σ4(Q) ≤ 3q2M2p2Q + 3q3M3p3Q, (6.187)

which yields,

1

M4
�(Q)4Σ4(Q) ≤̇ 1

M2
�(Q)4p2Q +

1

M
�(Q)4p3Q (6.188)

=
[ 1

M
�(Q)2pQ + �(Q)2p2Q

] 1

M
�(Q)2pQ (6.189)

(∗)
≤̇ 1

M
�(Q)2pQ, (6.190)
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where (∗) follows since �(Q) ≤̇ M for Q ∈ Q′
n and �(Q)pQ ≤ 1. Summing up

both sides of (6.176) and (6.190) over Q ∈ Q′
n, yields (6.162) and concludes

the proof.

6.6 Summary and Outlook

We have studied the exact exponential decay rate of the information leaked to
the eavesdropper in Wyner’s wiretap channel model when an average wiretap
channel code in the ensemble of random codes is used for communication. Our
analysis shows that the existing lower bound on the secrecy exponent of i.i.d.
random codes in [47,52,54] is, indeed, tight. Moreover, our result for constant-
composition random codes improves upon that of [53] (see (6.30) and examples
in § 6.3.2).

A key step in our analysis is to observe that when a code for the wiretap
channel is constructed by associating the secret messages with identically dis-
tributed sub-codes (randomly chosen from the ensemble), the exact secrecy
exponent of the system equals the exact resolvability exponent of the ensem-
ble. Consequently, we have reduced the problem to the derivation of exact
random-coding resolvability exponents. The latter is easier, as the informa-
tional divergence of interest (whose exponential decay rate is being assessed)
involves a single random distribution (the output distribution), whereas the
former involves two random distributions (the conditional and unconditional
output distributions). As we have seen in Chapter 5, channel resolvability
was already known to be a convenient and powerful tool for establishing the
secrecy [21, 27, 47, 51–54, 57, 58]. Theorem 6.1 highlights the usefulness of this
tool by showing that the resolvability exponent is not only a lower bound to
the secrecy exponent but also equals the secrecy exponent.

The technique we use to derive the exact resolvability exponents is based
on the elementary properties of the random-coding ensemble (namely, pairwise
independence of codewords for the achievability part, and relative triple- and
quadruple-wise independence among codewords for the converse part — as we
discussed in § 6.4.3 and § 6.5.2). As we have seen, in addition to the ensem-
ble of i.i.d. random codes, which was the de facto random-coding ensemble
for proving achievability results in channel resolvability, our method is conve-
niently applicable to the ensemble of constant-composition random codes and
the ensemble of random linear codes.

As we might have guessed, the ensemble of random linear codes has the
same behavior as the ensemble of i.i.d. random codes for resolvability, hence
for secrecy. It is remarkable that i.i.d. random codes sometimes perform better
than constant-composition random codes, as our examples in § 6.3.2 show (see
Figures 6.3 and 6.4). This is in contrast to channel coding, where constant-
composition random codes turn out to be never worse than i.i.d. random codes
in terms of the error exponent [30]. We emphasize that the ensembles of
constant-composition and of i.i.d. random codes are incomparable in terms of
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their resolvability exponents, as they approximate different reference measures.
But, in the context of constructing coding schemes for the wiretap channel, we
can compare their secrecy power by looking at their secrecy exponents. The ex-
amples presented in § 6.3.2 suggest that the superior ensemble (in terms of the
secrecy exponent) depends on the channel alone (i.e., for a given channel, one
of the ensembles yields a better secrecy exponent for all input distributions).
A subject for future research would be to characterize the set of channels for
which the ensemble of i.i.d. random codes results in a better secrecy exponent
(and vice versa).

As we have discussed in the remarks following Theorem 5.2, our results
(as well as those of others cited) are immediately extensible to prefixed wire-
tap channels. More precisely, for a given auxiliary channel PX|U , the expo-
nents of (6.25) and (6.27), evaluated for the effective channel PZ|U(z|u) =∑

x PX|U(x|u)WE(z|x) (instead of WE) and the input distribution PU are the
ensemble-optimal secrecy exponents of both random-coding ensembles. Ob-
serve that in this setting PX|U (in addition to the random-binning rate R) is
also a design parameter that can be exploited to optimize the secrecy expo-
nent. Moreover, it should also be noted that in the prefixed setting, in addition
to the entropy rate of R bits per channel use (for random binning), the en-
coder requires an entropy rate of H(X|U) bits per channel use to simulate the
channel PX|U that has to be taken into account when comparing the secrecy
exponents.

6.A Proof of Theorem 6.3

As the results when I(U ;V ) = 0 are trivial, we only proceed with the proofs
assuming I(U ;V ) > 0.

6.A.1 Proof of (i) on Page 114

We need to show that

lim
n→∞

E i.i.d.
n (PU , PV |U , R) = E i.i.d.

s (PU , PV |U , R). (6.191)

Recall that E i.i.d.
n and E i.i.d.

s are defined in (6.21) and (6.25), respectively. Since
Pn(U × V) ⊂ P(U × V),

min
QUV ∈Pn(U×V)

{
D(QUV ‖PUV ) + [R− f(QUV ‖PUV )]

+}

≥ min
QUV ∈P(U×V)

{
D(QUV ‖PUV ) + [R− f(QUV ‖PUV )]

+}. (6.192)

Therefore,

lim inf
n→∞

E i.i.d.
n (PU , PV |U , R) ≥ Ei.i.d.

s (PU , PV |U , R). (6.193)
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On the other side, let

Q�
UV := argmin

QUV ∈P(U×V)
{D(QUV ‖PUV ) + [R− f(QUV ‖PUV )]

+}. (6.194)

Note that Q�
UV � PUV ; if not the value of the objective function would be

+∞ whereas at QUV = PUV it evaluates to [R − I(U ;V )]+ < +∞. Since⋃
n∈N Pn(U × V) is dense in P(U × V), there exists a sequence of n-types(
Q

(n)
UV ∈ Pn(U × V), n ∈ N

)
that are absolutely continuous with respect to

Q�
UV and converge to Q�

UV , i.e.,

lim
n→∞

|Q(n)
UV −Q�

UV | = 0.

(See Lemma C.1 in Appendix C.) We, also have,

D(Q
(n)
UV ‖PUV ) + [R− f(Q

(n)
UV ‖PUV )]

+

≥ min
QUV ∈Pn(U×V)

{
D(QUV ‖PUV ) + [R− f(QUV ‖PUV )]

+
}

= E i.i.d.
n (PU , PV |U , R). (6.195)

Since, ∀n ∈ N, Q
(n)
UV � Q�

UV � PUV and both D(Q‖P ) and f(Q‖P ) are
continuous in Q over the set of distributions Q that are absolutely continuous
with respect to P ,

lim
n→∞

{
D(Q

(n)
UV ‖PUV ) + [R− f(Q

(n)
UV ‖PUV )]

+
}

= D(Q�
UV ‖PUV ) + [R− f(Q�

UV ‖PUV )]
+ = E i.i.d.

s (PU , PV |U , R). (6.196)

Using (6.195) in (6.196) yields,

E i.i.d.
s (PU , PV |U , R) ≥ lim sup

n→∞
E i.i.d.

n (PU , PV |U , R) (6.197)

which, together with (6.193) prove (6.191).

6.A.2 Proof of (ii) on Page 114

To prove (6.26), we need to show that

lim
n→∞

Ec.c.
n (P

(n)
U , PV |U , R) = Ec.c.

s (PU , PV |U , R) (6.198)

for any sequence of n-types, P
(n)
U ∈ Pn(U) that converge to PU . The proof

is divided into a sequence of lemmas. Recall that, without essential loss of
generality, we assume supp(P

(n)
U ) = supp(PU) = U .

Lemma 6.10. ∀Q ∈ Pn(U × V) such that Q � P , |gn(Q‖P )| < +∞ and
the minimizing n-type Q′ on the right-hand side of (6.23b) is also absolutely
continuous with respect to P . The same statement holds for g and the mini-
mizing distribution Q′ on the right-hand side of (6.27b) for any distribution
(not necessarily n-type) Q� P .
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Proof. Q� P implies the summation∑
(u,v)

Q(u, v) logPV |U(v|u) (6.199)

is bounded. The entropy term H(QV ) is also bounded. Moreover,

min
Q′∈Pn(U×V):

Q′
U=QU ,Q′

V =QV

D(Q′‖P ) ≤ D(Q‖P ) < +∞, (6.200)

because Q � P and Q′ = Q is a feasible point in the above minimization.
Therefore, gn(P‖Q) is bounded and the optimizing Q′ is absolutely continuous
with respect to P (if not D(Q′‖P ) = +∞). (The claim on g follows exactly in
the same way.)

Corollary 6.11. The minimizing n-type QUV in (6.23a) is absolutely continu-

ous with respect to P
(n)
UV . Similarly, the minimizing distribution QUV in (6.27a)

is absolutely continuous with respect to PUV .

Proof. Consider the minimizing QUV in (6.27a). If it is not absolutely contin-
uous with respect to PUV , D(QUV ‖PUV ) = +∞, however, taking QUV = PUV

in (6.23a)

Ec.c.
s (PU , PV |U , R) ≤ [R− g(PUV ‖PUV )]

+ (6.201)

which is finite because g(Q‖P ) is bounded if Q � P . (In fact, it follows
that g(P‖P ) = I(P ) thus, Ec.c.

s (PU , PV |U , R) ≤ [R − I(U ;V )]+.) Therefore
no QUV �� PUV can be the minimizer. The same reasoning shows that the
minimizing QUV in (6.23a) is absolutely continuous with respect to P

(n)
UV .

Lemma 6.12. Let
(
Q(n) ∈ Pn(U × V), n ∈ N

)
be a sequence of joint n-types

and
(
P (n) ∈ P(U × V), n ∈ N

)
a sequence of joint distributions. Let

Q := lim
n→∞

Q(n) and P := lim
n→∞

P (n). (6.202)

(Note that since the distributions live in a compact space, P(U×V), by passing
to a subsequence if necessary, both above limits exist.) Assume, furthermore,
that

(i) all P (n)s have the same support as P ; and

(ii) ∀n ∈ N, Q(n) � P (n).

Then,

lim
n→∞

gn
(
Q(n)‖P (n)

)
= g(Q‖P ), (6.203)

(where gn and g are defined in (6.23b) and (6.27b) respectively).
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Accepting Lemma 6.12 momentarily, we are ready to establish (6.198).

Note that limn→∞ P
(n)
UV = PUV because of the assumption that limn→∞ P

(n)
U =

PU . Also since, for all n ∈ N, supp(P
(n)
U ) = supp(PU) (by assumption),

supp(P
(n)
UV ) = supp(PUV ), for all n ∈ N. Let

Q̃
(n)
UV := argmin

QUV ∈Pn(U×V)
QU=P

(n)
U

{
D(QUV ‖P (n)

UV ) + [R− gn(QUV ‖P (n)
UV )]

+
}

(6.204)

and (by passing to a subsequence if necessary)

Q̃UV := lim
n→∞

Q̃
(n)
UV (6.205)

Note that Q̃
(n)
UV � P

(n)
UV (by Corollary 6.11), thus, by the continuity of diver-

gence and Lemma 6.12 we have

lim inf
n→∞

Ec.c.
n (P

(n)
U , PV |U , R) = lim inf

n→∞

{
D
(
Q̃

(n)
UV ‖P

(n)
UV

)
+
[
R− gn

(
Q̃

(n)
UV ‖P

(n)
UV

)]+}
= D(Q̃UV ‖PUV ) + [R− g(Q̃UV ‖PUV )]

+ (6.206)

Moreover, since Q̃
(n)
U = P

(n)
U and limn→∞ P

(n)
U = PU , Q̃U = PU . Therefore,

D(Q̃UV ‖PUV ) + [R− g(Q̃UV ‖PUV )]
+

≥ min
QUV :

QU=PU

{
D(QUV ‖PUV ) + [R− g(QUV ‖PUV )]

+
}
= Ec.c.

s (PU , PV |U , R).

(6.207)

Consequently,

lim inf
n→∞

Ec.c.
n (P

(n)
U , PV |U , R) ≥ Ec.c.

s (PU , PV |U , R). (6.208)

To prove the reverse inequality, let

Q�
UV = argmin

QUV ∈P(U×V):
QU=PU

{
D(QUV ‖PUV ) + [R− g(QUV ‖PUV )]

+
}
. (6.209)

Corollary 6.11 implies Q�
UV � PUV . Moreover, since limn→∞ P

(n)
U = PU = Q�

U ,

there exists a sequence of n-types Q
(n)
UV ∈ Pn(U × V) such that

(a) Q
(n)
UV � QUV (thus, Q

(n)
UV � P

(n)
UV ),

(b) limn→∞ |Q(n)
UV −Q�

UV | = 0, and

(c) ∀n, Q(n)
U = P

(n)
U
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(see Lemma C.2 in Appendix C). Consequently, using the continuity of diver-
gence and Lemma 6.12 once again,

Ec.c.
s (PU , PV |U , R) =

{
D(Q�

UV ‖PUV ) + [R− g(Q�
UV ‖PUV )]

+
}

= lim
n→∞

{
D
(
Q

(n)
UV ‖P

(n)
UV

)
+
[
R− gn

(
Q

(n)
UV ‖P

(n)
UV

)]+}
(6.210)

Moreover, since ∀n ∈ N, Q
(n)
U = P

(n)
U ,

D
(
Q

(n)
UV ‖P

(n)
UV

)
+
[
R− gn

(
Q

(n)
UV ‖P

(n)
UV

)]+
≥ min

QUV ∈Pn(U×V):
QU=P

(n)
U

{
D(QUV ‖P (n)

UV ) + [R− gn(QUV ‖P (n)
UV )]

+
}
. (6.211)

Combining (6.210) and (6.211) yields,

Ec.c.
s (PU , PV |U , R) ≥ lim sup

n→∞
Ec.c.

n (P
(n)
U , PV |U , R) (6.212)

Uniting (6.208) and (6.212) proves (6.198).
It remains to prove Lemma 6.12.

Proof of Lemma 6.12. Define, for any pair of joint-distributions P,Q,

φn(Q‖P ) := min
Q′∈Pn(U×V) :

Q′
U=QU ,Q′

V =QV

D(Q′‖P ) (6.213)

and
φ(Q‖P ) := min

Q′∈P(U×V) :
Q′

U=QU ,Q′
V =QV

D(Q′‖P ). (6.214)

Entropy H(QV ) is continuous in Q and∑
u,v

Q(u, v) logPV |U(v|u)

is also continuous when Q� P . Thus, it suffices to show

lim
n→∞

φn(Q
(n)‖P (n)) = φ(Q‖P ), (6.215)

to establish the claim. As Pn(U × V) ⊂ P(U × V),

φn(Q
(n)‖P (n)) ≥ φ(Q(n)‖P (n)). (6.216)

Since by assumption all P (n) have the same support as P , for all n, the min-
imizing Q′ (in evaluation of φ(Q(n)‖P (n))) lies in the compact set of distribu-
tions that are absolutely continuous with respect to P . Therefore, applying
Lemma B.1 (in Appendix B), we conclude that φ is convex and continuous in
(P,Q). Consequently,

lim inf
n→∞

φn(Q
(n)‖P (n)) ≥ lim

n→∞
φ(Q(n)‖P (n)) = φ(Q‖P ). (6.217)
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We now prove the reverse equality. To simplify the argument, let us start
with an additional assumption, which we relax later, on the sequence of n-types
Q(n). Assume for all (but finitely many) n ∈ N,

supp(Q
(n)
U ) ⊆ supp(QU) and supp(Q

(n)
V ) ⊆ supp(QV ). (6.218)

Let
Q̃ := argmin

Q′∈Pn(U×V):
Q′

U=QU ,Q′
V =QV

D(Q′‖P ). (6.219)

Note that Q̃� P (as we discussed in Lemma 6.10). We claim that there exists
a sequence of n-types (Q̃(n) ∈ Pn(U × V), n ∈ N) such that

(a) Q̃(n) � P (n),

(b) limn→∞ |Q̃(n) − Q̃| = 0,

(c) Q̃
(n)
U = Q

(n)
U and Q̃

(n)
V = Q

(n)
V .

Properties (a) and (b) follow, rather easily, from the denseness of the union
of n-types in the simplex. Also, since Q̃(n) converges to Q̃ whose u- and v-
marginals are, respectively, QU and QV , and Q

(n)
U and Q

(n)
V also converge to

QU and QV , the u- and v-marginals of Q̃(n) must be close to Q
(n)
U and Q

(n)
V ,

respectively, i.e.,

lim
n→∞

|Q̃(n)
U −Q

(n)
U | = 0 and lim

n→∞
|Q̃(n)

V −Q
(n)
V | = 0. (6.220)

However, it is not clear if the marginals of Q̃(n) exactly match those of Q(n).
It can be shown (see Lemma C.3 in Appendix C) that, under mild technical
conditions, we can actually construct a sequence of n-types (Q̃(n), n ∈ N) that
satisfies (c) (as well as (a) and (b)).8

Properties (a) and (b), together with the continuity of divergence, imply

φ(Q‖P ) = D(Q̃‖P ) = lim
n→∞

D(Q̃(n)‖P (n)). (6.221)

Property (c) yields, ∀n ∈ N,

D(Q̃(n)‖P (n)) ≥ min
Q′∈Pn(U×V) :

Q′
U=Q

(n)
U ,Q′

V =Q
(n)
V

D(Q′‖P (n)) = φn(Q
(n)‖P (n)) (6.222)

Uniting (6.221) and (6.222) yields

lim sup
n→∞

φn(Q
(n)‖P (n)) ≤ φ(Q‖P ) (6.223)

which, together with (6.217) establishes (6.215).

8Lemma C.3 constructs an n-type Q̃(n) that is absolutely continuous with respect to Q̃.
Since Q̃� P and all P (n)s are assumed to have the same support as P property (a) follows.
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Let us now verify that the requirements of Lemma C.3 on the support of
Q̃ are satisfied. Following the remark after Lemma C.3 it is sufficient to show
that Q(n) � Q̃. As it is shown in Lemma 6.13 (in Appendix 6.C), Q̃(u0, v0) = 0
implies P (u0, v0) = 0, or Q̃U(u0) = 0, or Q̃V (v0) = 0. If P (u0, v0) = 0, since all
P (n)s have the same support as P , ∀n, P (n)(u0, v0) = 0, which, since Q(n) �
P (n), implies ∀n, Q(n)(u0, v0) = 0. Otherwise, if Q̃U(u0) = 0, QU(u0) = 0
(since Q̃ has the same marginals as Q) and the assumption (6.218) yields ∀n,
Q

(n)
U (u0) = 0 which in turn implies Q(n)(u0, v0) = 0. Similarly Q̃V (v0) = 0

implies ∀n, Q(n)(u0, v0) = 0. Therefore, Q(n) � Q̃, hence the requirements of
Lemma C.3 are satisfied if (6.218) holds.

It now remains to relax the constraints (6.218). Let

U ′ := supp(QU) ⊆ U and V ′ := supp(QV ) ⊆ V (6.224)

and, ∀n ∈ N, define
λn := Q(n)(U ′ × V ′). (6.225)

Since Q(n) is an n-type, nλn ∈ Z. Moreover, since supp(Q) ⊆ U ′ × V ′ and
limn→∞ Q(n) = Q,

lim
n→∞

λn = 1. (6.226)

Define

Q
(nλn)
1 (u, v) :=

Q(n)(u, v)

λn

1{(u, v) ∈ U ′ × V ′} (6.227)

and

Q
(n[1−λn])
2 (u, v) :=

Q(n)(u, v)

1− λn

1{(u, v) ∈ (U × V) \ (U ′ × V ′)}. (6.228)

Note that Q
(nλn)
1 is an nλn-type (similarly Q

n[1−λn]
2 is an n[1− λn]-type) and,

by construction, Q
(nλn)
1 satisfies the constraints of (6.218). Consequently, our

previous argument shows that we can quantize Q̃ to a sequence of nλn-types
Q̂(nλn) that are absolutely continuous with respect to Q̃, converge to Q̃ as
n→∞, and have the same u- and v-marginals as Q

(nλn)
1 . Therefore,

φ(Q‖P ) = D(Q̃‖P ) = lim
n→∞

D
(
Q̂(nλn)

∥∥ P (n)
)
. (6.229)

Moreover, since P (n) → P as n→∞, for large enough n,

|P (n) − P | ≤ 1

2
Pmin, (6.230)

where we have defined

Pmin := min
(u,v)∈supp(P )

P (u, v). (6.231)

Since all P (n) have the same support as P (6.230) implies for large enough n,

P (n)(u, v) ≥ 1

2
Pmin, ∀(u, v) ∈ supp(P ). (6.232)
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The above, together with the fact that Q
(n[1−λn])
2 � P (n) implies for large n,

D
(
Q

(n[1−λn])
2

∥∥ P (n)
)
≤ log

[ 2

Pmin

]
(6.233)

Consequently, since λn → 1,

lim
n→∞

(1− λn)D
(
Q

(n[1−λn])
2

∥∥ P (n)
)
= 0 (6.234)

Therefore,

φ(Q‖P ) = D(Q̃‖P ) = lim
n→∞

D
(
Q̂(nλn)

∥∥ P (n)
)

(∗)
= lim

n→∞

{
λnD

(
Q̂(nλn)

∥∥ P (n)
)
+ (1− λn)D

(
Q

(n[1−λn])
2

∥∥ P (n)
)}

(6.235)

In the above, (∗) follows from (6.234). Since KL divergence is convex, defining

the n-type Q̃(n) := λnQ̂
(nλn) + (1− λn)Q

(n[1−λn])
2 , for ∀n, we have

λnD
(
Q̃(nλn)

∥∥ P (n)
)
+ (1− λn)D

(
Q

(n[1−λn])
2

∥∥ P (n)
)

≥ D
(
λnQ̂

(nλn) + (1− λn)Q
(n[1−λn])
2

∥∥ P (n)
)
= D(Q̃(n)‖P (n)) (6.236)

Using the above in (6.235) yields

φ(Q‖P ) ≥ lim sup
n→∞

D(Q̃(n)‖P ). (6.237)

Moreover, since Q̂(nλn) has the same marginals as Q
(nλn)
1 , it can be verified

that Q̃(n), by construction, has the same marginals as Q(n). Therefore (6.222)
holds. Once again, uniting (6.222) and (6.237) yields (6.223) which, together
with (6.217), establishes (6.215).

6.A.3 Strict Monotonicity of The Exponents in Rate

That E i.i.d.
s is strictly increasing in R for R > I(U ;V ) can be easily seen

through the form of (6.28): Ei.i.d.
s is the supremum of affine functions of R thus

is convex in R. Moreover, since F0(PUV , λ) is a convex function of λ passing
through the origin with slope I(U ;V ), E i.i.d.

s starts to increase above 0 once R
exceeds I(U ;V ) which means it will be strictly increasing for R > I(U ;V ).

Hence, we only prove the claim for Ec.c.
s . (This proof can also be used to

show E i.i.d.
s is strictly increasing in R, replacing g with f .) Note that

Ec.c.
s (PU , PV |U , R) = min

⎧⎪⎪⎨
⎪⎪⎩ min

QUV :
QU=PU ,

g(QUV ‖PUV )≥R

D(QUV ‖PUV ) ,

min
QUV :

QU=PU ,
g(QUV ‖PUV )≤R

{
D(QUV ‖PUV ) +R− g(QUV ‖PUV )

}
⎫⎪⎪⎬
⎪⎪⎭ . (6.238)
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Consider the first minimization

min
QUV :

QU=PU ,
g(QUV ‖PUV )≥R

D(QUV ‖PUV ) = min
QUV �PUV :
QU=PU ,

g(QUV ‖PUV )≥R

D(QUV ‖PUV ). (6.239)

(We can safely restrict the search space to distributions QUV that are abso-
lutely continuous with respect to PUV since, otherwise, D(QUV ‖PUV ) = +∞.)
The function g is continuous over the compact set of distributions QUV � PUV

(see the proof of Lemma 6.12). Moreover, D(QUV ‖PUV ) is a convex function
attaining its unique global minimum at QUV = PUV . We can also verify that
g(PUV ) = I(U ;V ). Therefore, if R ≥ I(U ;V ), Lemma B.2 (in Appendix B)
yields

min
QUV :

QU=PU ,
g(QUV ‖PUV )≥R

D(QUV ‖PUV ) = min
QUV :

QU=PU ,
g(QUV ‖PUV )=R

D(QUV ‖PUV ) (6.240a)

and for every QUV such that g(QUV ‖PUV ) > R,

D(QUV ‖PUV ) > min
QUV :

QU=PU ,
g(QUV ‖PUV )=R

D(QUV ‖PUV ). (6.240b)

Consequently, using (6.240a) in (6.238), we get

Ec.c.
s (PU , PV |U , R) = min

QUV :
QU=PU ,

g(QUV ‖PUV )≤R

{
D(QUV ‖PUV ) +R− g(QUV ‖PUV )

}
(6.241)

= R + min
QUV :

QU=PU ,
g(QUV ‖PUV )≤R

{
D(QUV ‖PUV )− g(QUV ‖PUV )

}
(6.242)

(when R ≥ I(U ;V )).
Take R′ > R ≥ I(U ;V ) and let

Q�
UV = argmin

QUV :
QU=PU ,

g(QUV ‖PUV )≤R′

{
D(QUV ‖PUV )− g(QUV ‖PUV )

}
(6.243)

If g(Q�
UV ‖PUV ) ≤ R, then

Ec.c.
s (PU , PV |U , R

′) = R′ +D(Q�
UV ‖PUV )− g(Q�

UV ‖PUV ) (6.244)

≥ R′ + min
QUV :

QU=PU ,
g(QUV ‖PUV )≤R

{
D(QUV ‖PUV )− g(QUV ‖PUV )

}
(6.245)

> R + min
QUV :

QU=PU ,
g(QUV ‖PUV )≤R

{
D(QUV ‖PUV )− g(QUV ‖PUV )

}
(6.246)

= Ec.c.
s (PU , PV |U , R). (6.247)
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Otherwise, we have the following chain of inequalities

Ec.c.
s (PU , PV |U , R) = R + min

QUV :
QU=PU ,

g(QUV ‖PUV )≤R

{
D(QUV ‖PUV )− g(QUV ‖PUV )

}

≤ R + min
QUV :

QU=PU ,
g(QUV ‖PUV )=R

{
D(QUV ‖PUV )− g(QUV ‖PUV )

}
(6.248)

= min
QUV :

QU=PU ,
g(QUV ‖PUV )=R

{
D(QUV ‖PUV )

}
(6.249)

(a)
< D(Q�

UV ‖PUV ) (6.250)

(b)

≤ R′ +D(Q�
UV ‖PUV )− g(Q�

UV ‖PUV ) = Ec.c.
s (PU , PV |U , R

′). (6.251)

In the above, (a) follows from (6.240b) and (b) holds since g(Q�
UV ‖PUV ) ≤ R′.

Consequently, for R′ > R ≥ I(U ;V ),

Ec.c.
s (PU , PV |U , R

′) > Ec.c.
s (PU , PV |U , R). (6.252)

6.A.4 Alternative form of E i.i.d.
s

As [a]+ = max0≤λ≤1 λa, we have

min
QUV

{
D(QUV ‖PUV ) + [R− f(QUV ‖PUV )]

+
}

= min
QUV

{
D(QUV ‖PUV ) + max

0≤λ≤1
λ[R− f(QUV ‖PUV )]

}
(6.253)

= min
QUV

max
0≤λ≤1

{λR +D(QUV ‖PUV )− λf(QUV ‖PUV )} (6.254)

(a)
= max

0≤λ≤1
min
QUV

{λR +D(QUV ‖PUV )− λf(QUV ‖PUV )} (6.255)

= max
0≤λ≤1

{
λR +min

QUV

{D(QUV ‖PUV )− λf(QUV ‖PUV )}
}

(6.256)

(b)
= max

0≤λ≤1
{λR− F0(PUV , λ)} . (6.257)

In the above, (a) follows since D(QUV ‖PUV )−λf(QUV ‖PUV ) is convex in QUV

(recall that f is linear in QUV ) and (b) follows since the concavity of logarithm
implies

D(QUV ‖PUV )− λf(QUV ‖PUV )

=
∑

(u,v)∈U×V
QUV (u, v) log

QUV (u, v)

PUV (u, v)1+λPU(u)−λPV (v)−λ
(6.258)

(∗)
≥ − log

∑
(u,v)∈U×V

PUV (u, v)
1+λPU(u)

−λPV (v)
−λ (6.259)

= F0(PUV , λ), (6.260)
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with equality in (∗) iff QUV (u, v) ∝ PUV (u, v)
1+λPU(u)

−λPV (v)
−λ.

6.B Proof of Lemma 6.5

Taking Q′ = Q in (6.27b) shows

g(Q) ≤ I(Q) +D(QU‖PU). (6.261)

Therefore,

Ec.c.
s (PU , PV |U , R) = min

QUV ∈P(U×V):
QU=PU

{
D(QUV ‖PUV ) + [R− g(QUV ‖PUV )]

+
}

≥ min
QUV ∈P(U×V):

QU=PU

{
D(QUV ‖PUV ) + [R− I(QUV )]

+
}

(6.262)

(a)
= min

QUV ∈P(U×V):
QU=PU

{
D(QUV ‖PUV ) + max

0≤λ≤1
{λR− λI(PUV )}

}
(6.263)

(b)
= max

0≤λ≤1

{
λR + min

QUV ∈P(U×V):
QU=PU

{D(QUV ‖PV U)− λI(QUV )}
}
, (6.264)

where (a) follows since [a]+ = max0≤λ≤1 λa and (b) holds since D(Q‖P ) −
λI(Q) is convex in Q for λ ∈ [0, 1] (and linear in λ). To verify the latter, note
that

I(Q) = min
Q′

V ∈P(V)
D(Q‖QU ×Q′

V ). (6.265)

Therefore,

D(Q‖P )− λI(Q) = max
Q′

V ∈P(V)
{D(Q‖P )− λD(Q‖QU ×Q′

V )} (6.266)

= max
Q′

V ∈P(V)

{ ∑
(u,v)∈U×V

Q(u, v) log
[ Q(u, v)1−λ

P (u, v)QU(u)−λQ′
V (v)

−λ

]}
(6.267)

=
1

t
max

Q′
V ∈P(V)

{ ∑
(u,v)∈U×V

Q(u, v) log
[ Q(u, v)

P (u, v)tQU(u)1−tQ′
V (v)

1−t

]}
, (6.268)

where we have defined t := 1/(1− λ) in the last step. As t ≥ 1, the objective
function inside the max{·} in (6.268) is convex in Q and since the supremum
of convex functions is still convex, and t ≥ 0 (because λ ≤ 1) the convexity of
D(Q‖P )− λI(Q) in Q follows. It can also be seen that the objective function
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in (6.268) is concave in Q′
V . Therefore

min
QUV ∈P(U×V):

QU=PU

{D(QUV ‖PV U)− λI(QUV )}

=
1

t
min
QUV :

QU=PU

max
Q′

V

{ ∑
(u,v)∈U×V

Q(u, v) log
[ Q(u, v)

P (u, v)tQU(u)1−tQ′
V (v)

1−t

]}
(6.269)

(a)
=

1

t
max
Q′

V

min
QUV :

QU=PU

{ ∑
(u,v)∈U×V

Q(u, v) log
[ Q(u, v)

P (u, v)tQU(u)1−tQ′
V (v)

1−t

]}
(6.270)

(b)

≥ 1

t
max
Q′

V

{
− log

[ ∑
(u,v)∈U×V

P (u, v)tPU(u)
1−tQ′

V (v)
1−t

]}
(6.271)

= −min
Q′

V

{
1

t
log

[∑
v∈V

Q′
V (v)

1−t
∑
u∈U

PU(u)
1−tPUV (u, v)

t

]}
, (6.272)

where (a) follows from the concavity of the objective function of (6.268) in Q′
V

and (b) follows from the concavity of logarithm, together with the fact that
QU = PU . KKT conditions imply the solution to the minimization of (6.272)
is

Q′
V (v) = c

[∑
u∈U

PU(u)
1−tPUV (u, v)

t
]1/t

(6.273)

with c−1 =
∑

v∈V
[∑

u∈U PU(u)
1−tPUV (u, v)

t
]1/t

. Plugging this into the objec-
tive function of (6.272) and substituting t = 1/(1− λ), we have

min
QUV ∈P(U×V):

QU=PU

{D(QUV ‖PV U)− λI(QUV )}

= − log
∑
v∈V

[∑
u∈U

PU(u)PV |U(v|u)
1

1−λ

]1−λ

= −E0(PU , PV |U , λ). (6.274)

Plugging (6.274) into (6.264) proves the claim.

6.C Numerical Evaluation of The Exponents

6.C.1 Computing E i.i.d.
s and Es

Both E i.i.d.
s and Es can be evaluated via the expressions (6.28) and (6.29) by

using the fact that both F0 and E0 (defined in (6.28b) and (6.29b), respectively)
are convex in λ and pass through the origin with slope I(U ;V ).

For instance, to evaluate E i.i.d.
s , we know that

• for R ≤ I(U ;V ), the exponent is zero, i.e., E i.i.d.
s (PU , PV |U , R) = 0;
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• for I(U ;V ) < R < Rc, where the critical rate Rc is

Rc :=
∂

∂λ
F0(PUV , λ)

∣∣∣
λ=1

, (6.275)

the pairs (R,E i.i.d.
s ) are related parametrically as

R(λ) =
∂

∂λ
F0(PUV , λ) (6.276a)

E i.i.d.
s (λ) = λR(λ)− F0(PUV , λ) (6.276b)

for the range of λ ∈ [0, 1];

• finally, if R ≥ Rc

E i.i.d.
s (PU , PV |U , R) = R− F0(PUV , 1). (6.277)

It is clear that to evaluate Es, we have to replace F0 with E0 and follow
precisely the same steps.

6.C.2 Computing Ec.c.
s

To compute Ec.c.
s (defined in (6.27)), we have to solve two minimizations: that

of (6.27a) and that of (6.27b). The second turns out to be efficiently solvable
by using standard convex optimization tools.

min
Q′∈P(U×V):

Q′
U=QU ,Q′

V =QV

D(Q′‖P ) = min
Q′∈P(U×V)

{
D(Q′‖P ) + max

λ∈R|U|,
ρ∈R|V|

{∑
u∈U

λu[QU(u)−Q′
U(u)]

+
∑
v∈V

ρv[QV (v)−Q′
V (v)]

}}
(6.278)

= max
λ∈R|U|,
ρ∈R|V|

{∑
u∈U

λuQU(u) +
∑
v∈V

ρvQV (v)

+ min
Q′

{
D(Q′‖P )−

∑
u∈U

λuQ
′
U(u)−

∑
v∈V

ρvQ
′
V (v)

}}
(6.279)

where λ := (λu : u ∈ U) and ρ := (ρv : v ∈ V) and the last equality follows
since D(Q‖P ) is convex in Q and the second term in (6.278) is linear in Q
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Moreover, the inner unconstrained minimization in (6.279) can be solved as

min
Q′

{
D(Q′‖P )−

∑
u∈U

λuQ
′
U(u)−

∑
v∈V

ρvQ
′
V (v)

}

= min
Q′

⎧⎨
⎩ ∑

(u,v)∈U×V
Q′(u, v) log

[ Q′(u, v)

P (u, v) exp(λu) exp(ρv)

]⎫⎬
⎭ (6.280)

= − log

[ ∑
(u,v)∈U×V

P (u, v) exp(λu) exp(ρv)

]
, (6.281)

by using the concavity of logarithm. The minimum is attained if

Q′(u, v) = c P (u, v) exp(λu) exp(ρv) (6.282)

where c−1 =
∑

u,v P (u, v) exp(λu) exp(ρv). Plugging this into (6.279), we get

min
Q′∈P(U×V):

Q′
U=QU ,Q′

V =QV

D(Q′‖P ) = max
λ∈R|U|,
ρ∈R|V|

{∑
u∈U

λuQU(u) +
∑
v∈V

ρvQV (v)

− log

[ ∑
(u,v)∈U×V

P (u, v) exp(λu) exp(ρv)

]}
(6.283)

Remark 1. Using Hölder’s inequality, it can be verified that the objective
function of (6.283) is concave in (λ, ρ), thus can be efficiently maximized using
standard numerical methods.

Proof. Since the first two sums in the objective function of (6.283) are linear
in (λ, ρ) it is sufficient to prove that the function

(λ, ρ) �→ log

[ ∑
(u,v)∈U×V

P (u, v) exp(λu) exp(ρv)

]
(6.284)

is convex in (λ, ρ). Fix s ∈ [0, 1], λ, λ′ ∈ R|U|, and ρ, ρ′ ∈ R|V|. Then, Hölder’s
inequality implies∑

(u,v)∈U×V
P (u, v) exp[sλu + sρv + (1− s)λ′

u + (1− s)ρ′v]

=
∑

(u,v)∈U×V
P (u, v)s exp[sλu + sρv]P (u, v)1−s exp[(1− s)λ′

u + (1− s)ρ′v]

(6.285)

≤

⎡
⎣ ∑
(u,v)∈U×V

P (u, v) exp[λu + ρv]

⎤
⎦s ⎡⎣ ∑

(u,v)∈U×V
P (u, v) exp[λ′

u + ρ′v]

⎤
⎦1−s

.

(6.286)

Taking the logarithm of both sides proves the claim.
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Remark 2. It is easy to check that if QU = PU (respectively QV = PV ),
λ = (1, 1, . . . , 1) (respectively ρ = (1, 1, . . . , 1)) will be a stationary point, and
by concavity, the maximizer of (6.283). Therefore, for evaluating Ec.c.

s , since
we only consider the distributions QUV with u-marginal QU = PU , we already
know the optimal λ and need to only optimize over the choices of ρ.

A by-product of the above calculations is a characterization of the support
of the minimizing Q′ in (6.27b):

Lemma 6.13. Let
Q� = argmin

Q′∈P(U×V):
Q′

U=QU ,Q′
V =QV

D(Q′‖P ). (6.287)

Then, Q�(u, v) = 0 if and only if P (u, v) = 0 or Q�
U(u) = 0, or Q�

V (v) = 0.

Proof. The claim follows from (6.282). The optimizing Q� is obtained by
setting the optimal λ and ρ in (6.282). If Q(u0, v0) = 0 but P (u0, v0) > 0,
then we must either have exp(λu0) = 0 or exp(ρv0) = 0. The former implies
Q(u0, v) = 0 for ∀v ∈ V , which in turn, implies QU(u0) = 0. The latter,
similarly, yields QV (v0) = 0.

It remains to solve the minimization of (6.27a) to evaluate Ec.c.
s , which can

be done by exhaustive search for the small alphabets we considered in § 6.3.2.

6.D Proof of Lemma 6.6

(i) The linearity of expectation shows that

PV n(vn) =
∑

un∈Un

PUn(un)P n
V |U(v

n|un), (6.288)

is the expectation of the non-negative random variable PCn(v
n) (defined

in (6.31)). Therefore, PV n(vn) = 0 implies PCn(v
n) = 0 almost surely.

(ii) Pick vn and ṽn that have the same type. Therefore, there exists a per-
mutation, call it π : Vn → Vn, such that ṽn = π(vn) and vn = π−1(ṽn).
Then,

PV n(ṽn) =
∑

ũn∈Un

PUn(ũn)P n
V |U(ṽ

n|ũn) (6.289)

(a)
=
∑

un∈Un

PUn

(
π(un)

)
P n
V |U
(
π(vn)|π(un)

)
(6.290)

(b)
=
∑

un∈Un

PUn(un)P n
V |U(v

n|un) = PV n(vn). (6.291)

where in (a) we have taken un = π−1(ũn) and (b) follows since PUn(un)
only depends on the type of un (and by construction un and π(un) have
the same type) and similarly P n

V |U
(
π(vn)

∣∣ π(un)
)
= P n

V |U(v
n|un).
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(iii) We have

PV n(vn) =
∑

un∈Un

PUn(un)P n
V |U(v

n|un). (6.292)

PV n(vn) > 0 implies there exists at least one sequence un
0 ∈ supp(PUn)

for which P n
V |U(v

n|un
0 ) > 0. Therefore, P n

V |U(v
n|un

0 ) > (Pmin
V |U)

n. Thus

(6.292) yields
PV n(vn) ≥ PUn(un

0 )(P
min
V |U)

n. (6.293)

For i.i.d. random-coding ensemble, PUn(un) = P n
U (u

n) ≥ (Pmin
U )n and for

the constant-composition random-coding ensemble, PUn(un) ≥ (1/|U|)n
(since, for any n-type P ∈ Pn(U), T n

P ⊆ Un).

6.E Proof of Lemma 6.7

We prove the claim for unit-mean A. Specifically, we show that

c(θ) (var(A)− τθ(A)) ≤ E[A ln(A)] ≤ var(A), (6.294)

for any random variable A with E[A] = 1 (where c(θ) and τθ(A) are defined
in (6.43) and (6.42), respectively). The claim for general A then follows by
setting A′ = A/E[A] in the above and noting that

E
[
A ln
( A

E[A]

)]
= E[A]E[A′ ln(A′)] and var(A′) =

var(A)

(E[A])2
. (6.295)

The upper bound of (6.294) follows as

E[A ln(A)] = E[A ln(A)− (A− 1)] (6.296)

≤ E[(A− 1)2] = var(A), (6.297)

because a ln(a)− (a− 1) ≤ (a− 1)2 (see Figure 6.5).
To prove the lower bound of (6.294), we have

a ln(a)− (a− 1) ≥ c(θ)(a− 1)21{a ≤ θ + 1}. (6.298)

This follows by observing that a ln(a)−(a−1)
(a−1)2

is a decreasing function of a (see

Lemma 6.14 below or Figure 6.5). Thus,

E[A ln(A)] ≥ c(θ)

∫ θ+1

0

(a− 1)2dFA(a). (6.299)

where FA(a) is the cumulative distribution function of a.
Furthermore,∫ θ+1

0

(a− 1)2dFA(a) = var(A)−
∫ +∞

θ+1

(a− 1)2dFA(a) (6.300)
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a

1

a ln(a)− (a− 1)

(a− 1)2

c(θ)(a− 1)21{a < θ + 1}

Figure 6.5: Bounds on a ln(a)− (a− 1)

Let F̄A(a) = Pr{A > a} be the complementary distribution function of A.
Therefore,∫ +∞

θ+1

(a− 1)2dFA(a) = −
∫ +∞

θ+1

(a− 1)2dF̄A(a) (6.301)

=
[
−(a− 1)2F̄A(a)

]+∞
θ+1

+ 2

∫ +∞

θ+1

(a− 1)F̄A(a)da

(6.302)

(∗)
= θ2F̄A(θ + 1) + 2

∫ +∞

θ

tF̄A(t+ 1)dt. (6.303)

The equality in (∗) follows since we assumed the variance of A exists. Com-
bining (6.303) and (6.300) in (6.299) proves the lower bound of (6.294).

Lemma 6.14. For t ≥ 0,

(i) the mapping t �→ t ln(t)− (t− 1)

t− 1
is increasing in t;

(ii) the mapping t �→ t ln(t)− (t− 1)

(t− 1)2
is decreasing in t.

Proof.

(i)
∂

∂t

{t ln(t)− (t− 1)

t− 1

}
=

(t− 1)− ln(t)

(t− 1)2
≥ 0, (6.304)

since ln(t) ≤ t− 1.
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(ii)

∂

∂t

{t ln(t)− (t− 1)

(t− 1)2

}
=

1

(t− 1)2

[
2− t+ 1

t− 1
ln(t)

]
. (6.305)

The curve (t+ 1) ln(t) is convex in t for t ≥ 1 and concave in t for t ≤ 1.
(This is easy to check as its second derivative is 1/t − 1/t2.) Moreover,
its tangent line at t = 1 is 2(t− 1). Therefore,

(t+ 1) ln(t) ≤ 2(t− 1) t ≤ 1, (6.306)

(t+ 1) ln(t) ≥ 2(t− 1) t ≥ 1. (6.307)

Consequently,

t+ 1

t− 1
ln(t) ≥ 2, (6.308)

hence, the term inside the square brackets in (6.305) is always negative.
This proves (ii).

6.F Proof of Equation (6.48)

Since PUn(un) only depends on the type of un,

pQ(v
n) =

∑
un∈Un

1{(un, vn) ∈ T n
Q }PUn(un) (6.309)

=
PUn(T n

QU
)

|T n
QU
|

∑
un∈Un

1{(un, vn) ∈ T n
Q }. (6.310)

Furthermore, we have

|T n
Q | =

∑
vn∈Vn

∑
un∈Un

1
{
(un, vn) ∈ T n

Q

}
. (6.311)

The value of the inner sum in (6.311) depends only on the type of vn (this can
be easily checked using the same type of argument as we had in Appendix 6.D
part (ii)) and, clearly, is zero if vn �∈ T n

QV
. Thus

|T n
Q | = |T n

QV
|1{vn ∈ T n

QV
}
∑

un∈Un

1
{
(un, vn) ∈ T n

Q

}
. (6.312)

Plugging (6.312) into (6.310) yields (6.48).
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6.G Proof of Equations (6.55)

We prove only (6.55a) (as (6.55b) is trivial). We omit the dependence on vn

throughout the proof for notational brevity.

var(L1) =
∑
Q∈Q′

n

1

M2
�(Q)2 var(NQ) +

∑
(Q1,Q2)∈Q′

n
2:

Q1 �=Q2

1

M2
�(Q1)�(Q2) cov(NQ1 , NQ2)

(6.313)

(∗)
=

1

M

∑
Q∈Q′

n

�(Q)2pQ(1− pQ)−
1

M

∑
(Q1,Q2)∈Q′

n
2

Q1 �=Q2

�(Q1)�(Q2)pQ1pQ2 ,

(6.314)

where (∗) follows since for the multinomial collection {NQ : Q ∈ Pn(U × V)},
var(NQ) = MpQ(1− pQ) and cov(NQ1 , NQ2) = −MpQ1pQ2 . Moreover,∑

(Q1,Q2)∈Q′
n
2:

Q1 �=Q2

�(Q1)�(Q2)pQ1pQ2 =
∑

Q1∈Q′
n

�(Q1)pQ1

∑
Q2∈Q′

n\{Q1}
�(Q2)pQ2 (6.315)

=
∑

Q1∈Q′
n

�(Q1)pQ1

(
E[L1]− pQ1�(Q1)

)
. (6.316)

Using the above in (6.314), we get

var(L1) =
1

M

∑
Q∈Q′

n

�(Q)pQ

[
(1− pQ)�(Q)−

(
E[L1]− pQ�(Q)

)]
(6.317)

=
1

M

∑
Q∈Q′

n

�(Q)pQ
[
�(Q)− E[L1]

]
(6.318)

=
1

M

∑
Q∈Q′

n

�(Q)2pQ −
1

M
E[L1]

2.

6.H Proof of Equation (6.120)

For Q ∈ P(U × V), let

a(Q) := exp
{
−nD(Q‖QU × PV |U)

}
PUn

(
T n
QU

)
min
{
1,

�(Q)

M

}
, (6.319)

for the sake of brevity.
Equation (6.118) immediately implies

E[D(PCn‖PV n)] ≤̇
∑

Q∈Pn(U×V)
a(Q). (6.320)
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It remains to show

E[D(PCn‖PV n)] ≥̇
∑

Q∈Pn(U×V)
a(Q), (6.321)

to establish (6.120).
Recall that (6.118) means there exists a sub-exponentially increasing se-

quence β(n) such that

β(n)
[
E[D(PCn‖PV n)] +

log(e)

M

]
≥

∑
Q∈Pn(U×V)

a(Q) (6.322)

Equation (6.115) implies ∀Q ∈ Pn(U × V),

�(Q) ≥ exp
(
nω(Q)

)∣∣T n
QV

∣∣. (6.323)

Using the above and (6.3) we can verify that, ∀Q ∈ Pn(U × V),

�(Q) ≥ exp{nω(Q)}
∣∣T n

QV

∣∣ (6.324)

≥ (n+ 1)−|V| exp{n[ω(Q) +H(QV )]} (6.325)

= (n+ 1)−|V| exp{n[I(Q)−D(Q‖QU × PV |U)]
}
. (6.326)

Let (P̂
(n)
UV ∈ Pn(U × V), n ∈ N) be a sequence of n-types that converges to

PUV and, for the constant composition ensemble, has the u-marginal P̂
(n)
U =

P
(n)
U . (The existence of such a sequence is guaranteed by Lemma C.1 or

Lemma C.2 in Appendix C.) Thus, in particular, for every ε > 0 there ex-
ists n0(ε) such that ∀n ≥ n0(ε),

I
(
P̂

(n)
UV

)
≥ I(U ;V )− ε/2, (6.327a)

D
(
P̂

(n)
UV

∥∥ P̂ (n)
U × PV |U

)
≤ ε/2, and (6.327b)

PUn

(
T
P̂

(n)
U

)
≥ exp{−nε/2}. (6.327c)

Using (6.327a) and (6.327b) in (6.326) yields

�
(
P̂

(n)
UV

)
≥ (n+ 1)−|V| exp{n(I(U ;V )− ε)}, (6.328)

which, in turn, implies

min
{
1,

�(P̂
(n)
UV )

M

}
≥ (n+ 1)−|V| exp{−n[R− I(U ;V ) + ε]+}. (6.329)

As a consequence, taking (6.327c) into account, a(P̂
(n)
UV ) is lower-bounded as

a
(
P̂

(n)
UV

)
= exp{−nD(P̂

(n)
UV ‖P̂

(n)
U × PV |U)}PUn

(
T n

P̂
(n)
U

)
min
{
1,

�(P̂
(n)
UV )

M

}
≥ (n+ 1)−|V| exp{−n(ε+ [R− I(U ;V ) + ε]+)} (6.330)
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We can verify that, setting

ε := min{R/2, I(U ;V )/3} > 0, (6.331)

yields
ε+ [R− I(U ;V ) + ε]+ = R− ε. (6.332)

Consequently, using this value of ε, (6.330) implies

a
(
P̂

(n)
UV

)
≥ (n+ 1)−|V| exp{−n[R− ε]} (6.333)

Obviously, ∃n1 such that ∀n ≥ n1,

β(n)
log(e)

M
≤ 2β(n) log(e) exp(−nR)

≤ 1

2
(n+ 1)−|V| exp{−n[R− ε]}. (6.334)

(The first inequality follows since M = �exp(nR)� ≥ exp(nR)/2.) Hence, for
n ≥ n2 := max{n0, n1},

β(n)
log(e)

M
≤ 1

2
a
(
P̂

(n)
UV

)
(6.335)

Since ∀Q ∈ P(U × V), a(Q) ≥ 0, for n ≥ n2, using (6.322) we have,

β(n)
[
E[D(PCn‖PV n)] +

log(e)

M

]
≥

∑
Q∈Pn(U×V)

a(Q) (6.336)

=
∑

Q∈Pn(U×V)\{P̂ (n)
UV }

a(Q) + a
(
P̂

(n)
UV

)
(6.337)

≥ 1

2

∑
Q∈Pn(U×V)\{P̂ (n)

UV }

a(Q) + a
(
P̂

(n)
UV

)
(6.338)

=
1

2

∑
Q∈Pn(U×V)

a(Q) +
1

2
a
(
P̂

(n)
UV

)
(6.339)

(∗)
≥ 1

2

∑
Q∈Pn(U×V)

a(Q) + β(n)
log(e)

M
(6.340)

where (∗) follows from (6.335).
Therefore, for n ≥ n2,∑

Q∈Pn(U×V)
a(Q) ≤ 2β(n)E[D(PCn‖PV n)] (6.341)

Taking

β′(n) :=

{
+∞ if n < n2

2β(n) otherwise,
(6.342)
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yields, ∑
Q∈Pn(U×V)

a(Q) ≤ β′(n)E[D(PCn‖PV n)], ∀n ∈ N. (6.343)

Moreover, we have

lim sup
n→∞

1

n
log β′(n) = lim sup

n→∞

1

n
log β(n) = 0, (6.344)

by assumption, and that β′ depends only on the fixed parameters of the prob-
lem (because n2 depends only on these parameters). Therefore, (6.343) estab-
lishes (6.321) and concludes the proof.

6.I Proof of Lemma 6.9

We first prove that, with r = rank(Ω) ≤ m,

Pr

( m⋂
j=1

{
Un
wk

(j)
= un

(j)

})
= Pr

( r⋂
j=1

{
Un
wk

(j)
= un

(j)

})
1{kern(Ω) ⊆ kern(Ξ)}

(6.345)
If kern(Ω) �⊆ kern(Ξ), the event of interest on the left-hand side of (6.345)

has probability 0: If there exists a non-zero (a1, a2, . . . , am) ∈ Fm
q such that

Ω · [a1, a2, . . . , am]T = 0 but Ξ · [a1, a2, . . . , am]T �= 0,

m∑
j=1

ajU
n
wk

(j)
=

m∑
j=1

aj
[
G Dn

] [wn
(j)

1

]
(6.346)

=
[
G Dn

] m∑
j=1

aj

[
wn

(j)

1

]
= 0 (6.347)

whereas
⋂m

j=1

{
Un
wk

(j)

= un
(j)

}
implies

m∑
j=1

ajU
n
wk

(j)
=

m∑
j=1

aju
n
(j) �= 0. (6.348)

When kern(Ω) ⊆ kern(Ξ),

m⋂
j=1

{
Un
wk

(j)
= un

(j)

}
=

r⋂
j=1

{
Un
wk

(j)
= un

(j)

}
. (6.349)

To prove (6.349), we show that
⋂r

j=1

{
Un
wk

(j)

= un
(j)

}
, together with the fact that

kern(Ω) ⊆ kern(Ξ), implies ∀i = r + 1, . . . ,m, {Un
wk

(i)

= un
(i)

}
.
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Fix i ∈ {r+1, . . . ,m}. Since rank(Ω) = r, there exists (a1, a2, . . . , ar) ∈ Fr
q

for which[
wn

(i)

1

]
=

r∑
j=1

aj

[
wn

(j)

1

]
⇐⇒

r∑
j=1

aj

[
wn

(j)

1

]
−
[
wn

(i)

1

]
= 0. (6.350)

Therefore,

Un
wk

(i)
= Gwk

(i) +Dn (6.351)

=
[
G Dn

] [wk
(i)

1

]
(6.352)

=
[
G Dn

] r∑
j=1

aj

[
wn

(j)

1

]
(6.353)

=
r∑

j=1

aj
[
G Dn

] [wn
(j)

1

]
(6.354)

=
r∑

j=1

ajU
n
wk

(j)
(6.355)

(∗)
=

r∑
j=1

aju
n
(j) (6.356)

where (∗) follows by the assumption that
⋂r

j=1

{
Un
wk

(j)

= un
(j)

}
. Moreover, since

kern(Ω) ⊆ kern(Ξ), (6.350) implies

r∑
j=1

aju
n
(j) − un

(i) = 0 ⇐⇒
r∑

j=1

aju
n
(j) = un

(i) (6.357)

Using the above in (6.356) shows

Un
wk

(i)
= un

(i). (6.358)

Hence, it remains to compute

Pr

(
r⋂

j=1

{
Un
wk

(j)
= un

(j)}
)

= Pr

{[
G Dn

] [wk
(1) wk

(2) . . . wk
(r)

1 1 . . . 1

]
=
[
un
(1) un

(2) . . . un
(r)

]}
. (6.359)

Since

A :=

[
wk

(1) wk
(2) . . . wk

(r)

1 1 . . . 1

]
∈ F(k+1)×r

q
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is a full rank matrix, given any B ∈ Fn×r
q , there are qn×(k−r+1) choices of

X ∈ F
n×(k+1)
q that satisfy

X · A = B. (6.360)

This holds because we can split A =

[
A1

A2

]
where A1 ∈ Fr×r

q and A2 ∈

F
(k+1−r)×r
q and X =

[
X1 X2

]
where X1 ∈ Fn×r

q and X2 ∈ F
n×(k+1−r)
q ; and

rewrite (6.360) as
X · A = X1 · A1 +X2 · A2 = B (6.361)

Since A1 is a full-rank square matrix, given any X2 ∈ F
n×(k+1−r)
q , we can

uniquely determine X1 that satisfies

X1 · A1 = B −X2 · A2.

As there are qn×(k−1+r) choices forX2, the linear system of (6.360) has qn×(k−1+r)

solutions.
The matrix

[
G Dn

]
is uniformly distributed on F

n×(k+1)
q . Given the above

considerations, out of all qn×(k+1) choices of
[
G Dn

]
, qn×(k+1−r) satisfy the

equality on the right-hand side of (6.359). Therefore,

Pr

{[
G Dn

] [wk
(1) wk

(2) . . . wk
(r)

1 1 . . . 1

]
=
[
un
(1) un

(2) . . . un
(r)

]}
= q−r.

(6.362)
which, together with (6.359) concludes the proof.





Channel Resolvability in
the Presence of Feedback 7
In Chapter 5, we have seen that channel resolvability is a powerful and con-
venient tool for establishing secrecy. Subsequently, in Chapter 6 we have de-
rived ensemble-optimal resolvability exponents for the ensembles of i.i.d. and
constant-composition random codes. The application of channel resolvability
is not limited to information theoretic secrecy. In [117], Wyner developed
his soft covering lemma — stating that the distribution induced at the out-
put of a discrete memoryless channel when its input is a uniformly chosen
codeword from a randomly constructed code is arbitrarily close to the i.i.d.
measure — to prove achievability results on the common information of two
random variables. Common information is defined as the minimum rate of
common randomness that must be shared between two encoders (behaving,
otherwise, independently) so that they can generate two correlated output se-
quences. Along the same lines, channel resolvability is also the building block
for achievability results in coordination and distributed channel synthesis; the
goal in such settings is to quantify the minimum communication rates required
among different nodes of a network so that they can locally generate sequences
that are jointly correlated (as if they were drawn from a prescribed joint dis-
tribution) [31, 33].

Channel resolvability and error correction are, in a sense, closely inter-
connected problems. In error correction, the aim is to combat the channel
randomness so that, upon observing the output signal, the sent codeword is
still distinguishable from the others, despite the noise added by the channel
to the input signal. In channel resolvability, we exploit channel randomness so
that, when it is combined with external randomness, the output sequence of
the channel looks as if it were generated by a random-number generator.

In this chapter, we consider the problem of channel resolvability in the
presence of causal feedback; specifically when the encoder of Figure 5.2b ob-

163
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serves the previously received symbols Ṽ i−1 before producing the ith channel
input symbol Ũi. Hence, the encoder has the opportunity to decide about the
value of Ũi based on the past behavior of the channel (see Figure 7.1). In
this setting, the encoder can not be specified as a single deterministic function
Enc: {1, 2, . . . ,M} → Un. Instead, it is described by a collection of determin-
istic functions(

Enci : {1, 2, . . . ,M} × V i−1 → U , i ∈ {1, 2, . . . , n}
)
. (7.1)

The function Enci determines the ith channel input symbol Ũi as a function of
the external randomness J and previously received symbols Ṽ i−1.

J ∈ {1, 2, . . . ,M} Ũi = Enci(J, Ṽ
i−1) Pn

V |U Ṽ n ∼ PṼ n

Ũn

Ṽ i−1

Figure 7.1: Channel Resolvability in the Presence of Feedback

For its counterpart problem, i.e., channel coding, the utility of feedback is
well studied in the literature. We know that feedback does not increase the
capacity of the channel [42, Exercise 4.6], rather it enables the construction
of higher-quality error-correction schemes. It was shown by Burnashev [23]
that, in the presence of feedback (and using variable-length error-correction
schemes), larger error exponents are achievable.

Given the analogy between resolvability and error correction, it is natural
to wonder if similar advantages exist in the presence of feedback for channel
resolvability? In this chapter, we study this problem and show that, although
feedback does not reduce the resolution of the channel (see Theorem 7.1), it
indeed enables us to improve the quality of distribution approximation at the
output of the channel. We consider specifically two examples of binary erasure
and binary symmetric channel and propose resolvability encoders that yield
much larger resolvability exponents, compared to the achievable exponents of
Chapter 6 (see Theorems 7.2 and 7.4 in § 7.3).

As we will see, the canonical benefit of feedback is to allow the encoder
to adapt, based on the channel behavior, the rate of external randomness it
consumes. This is done via variable-length resolvability schemes. Variable-
length coding is necessary for achieving the exponents of Theorems 7.2 and
7.4: In Lemmas 7.3 and 7.5, we show that no block code can achieve the
exponents of Theorems 7.2 and 7.4. We restrict our analysis to approximating
an i.i.d. sequence at the output of channel PV |U , i.e., resolvability with respect
to the sequence of product measures (PV n = P n

V , n ∈ N). Apart from being
the most widely used choice of the sequence of reference measures in prevalent
applications of resolvability (particularly, in applications other than secrecy),
such a restriction permits us to define fixed-to-variable-length resolvability
encoders. Specifically, resolvability encoders that, instead of generating a fixed
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number of channel input symbols, given the external randomness and channel
behavior, determine the length of channel input (and hence output) sequence,
based on a stopping rule.

The results presented in this chapter were published in part in [14].

7.1 Variable-Length Resolvability Codes

The classic channel-resolvability problem is defined based on block codes: The
goal is to make the distribution of a length-n block of the output PṼ n close to
i.i.d. P n

V by mapping the input message J ∈ {1, 2, . . . ,M} to a channel input
sequence of length n, Ũn (in a deterministic manner) that will, in turn, be
observed as Ṽ n at the output of the channel. It is useful to extend this notion
to variable-length codes.

7.1.1 Variable-to-Fixed-Length Resolvability Codes

Instead of mapping a single input word J to n channel input symbols, the en-
coder can decide on how much randomness to consume, based on the channel
behavior, by mapping a variable number of input words to n channel input
symbols. This flexibility permits the encoder to begin the transmission upon
reading a small number of random bits and then, based on the noise the
channel injects to the system, to decide if more randomness is required for
producing the subsequent symbols or if they can be computed as a determin-
istic function of the feedback signal and the randomness already available to
the encoder. Such a variable-to-fixed-length resolvability encoder is formally
defined as follows:

Definition 7.1. A variable-to-fixed-length resolvability encoder of block-length
n for system with feedback, maps a variable number T of input words J1, J2,
. . . , JT into a sequence of length n of channel input symbols Ũn. In its most
generic form, such an encoder is defined via two collection of functions: A
collection of shift functions,

Shifti,t : {1, 2, . . . ,M}t × V i−1 → {0, 1}, t ∈ N, i = 1, 2, . . . , n, (7.2)

and a collection of encoding functions

Enci,t : {1, 2, . . . ,M}t × V i−1 → U , t ∈ N, i = 1, 2, . . . , n. (7.3)

The encoder maps the input words J1, J2, . . . to Ũn using the following proce-
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dure:

Algorithm 5: Variable-to-Fixed-Length Resolvability Encoder

Input: J1, J2, . . . , i.i.d. uniformly distributed on {1, 2, . . . ,M}
1 t← 1;
2 for i = 1 to n do

3 while Shifti,t(J
t, Ṽ i−1) = 1 do

4 t← t+ 1;

5 Ũi ← Enci,t(J
t, Ṽ i−1);

6 Transmit Ũi via the channel and record the feedback signal;

In other words, at any time instant i ∈ {1, 2, . . . , n}, given the input words
read so far J t = (J1, J2, . . . , Jt) and the feedback signal Ṽ i−1, the ‘shift’ func-
tion Shifti,t decides whether to read a new word Jt+1 from the input or not.
Afterwards, the encoding function Enci,t produces the i

th channel input symbol
Ũi as a function of the input words J t and the feedback signal.

Remark. We can define a variable-to-fixed-length code for the system with-
out feedback1 by dropping the dependence of the encoding functions on the
feedback signal. It is, however, not difficult to see that such a system can be
reduced to a block resolvability code with an encoder that picks a codeword
from the codebook (and transmits it through the channel) with a non-uniform
distribution.

The performance of a variable-to-fixed-length resolvability code is measured
by the output divergence D(PṼ n‖P n

V ) and the average rate

R :=
E[T ] log(M)

n
. (7.4)

Indeed, by the law of large numbers, when the system is run many times, it
consumes an average entropy rate of R bits per output symbol. Definitions 5.3
and 5.5 are extended straightforwardly (by replacing the rate R as defined in
(7.4)) to variable-to-fixed-length codes.

7.1.2 Fixed-to-Variable-Length Resolvability Codes

An alternative strategy for adapting the entropy rate consumed by the encoder
is to devise a fixed-to-variable-length resolvability encoder. Such an encoder
takes a single message J ∈ {1, 2, . . . ,M} as input but, based on a stopping rule,
is allowed to produce as many channel input symbols as desired. The advantage
of such a construction is that, when feedback is present, the encoder can adapt
the code rate by amortizing the entropy of J over as many channel uses as
possible; if the channel is too noisy, its output sequence has little correlation

1Variable-to-fixed-length resolvability codes for the system without feedback are also
proposed independently and concurrently in [120], where their corresponding achievable
rates over general (not necessary stationary nor memoryless) channels are studied using
information spectrum methods.
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with its input (which, in turn is a function of J), hence an observer sensing
its output can detect that a sequence of deterministically constructed symbols
are transmitted via the channel only after seeing a large number of output
symbols. A fixed-to-variable-length resolvability code is, formally, defined as
follows:

Definition 7.2. A fixed-to-variable-length resolvability code of size M for the
system with feedback over the input and output alphabets (U ,V) is defined
via a collection of deterministic encoding functions

Encn : {1, 2, . . . ,M} × Vn−1 → U ∪ {STOP}, n ∈ N, (7.5)

where STOP �∈ U is a special symbol indicating the “end of transmission.”
Given the input word J and the past channel output symbols V n, the encoding
function Encn+1 decides either to feed the channel with another input symbol
in U (and increase the number of produced symbols to n + 1) or to stop the
encoding by outputting STOP.

Using the above-mentioned collection of encoding functions, a resolvability
encoder maps the input word J into a sequence of channel input symbols
Ũ1, Ũ2, . . . using the following procedure:

Algorithm 6: Fixed-to-Variable-Length Resolvability Encoder

Input: J uniformly distributed on {1, 2, . . . ,M}
1 n← 0;

2 while Encn+1(J, Ṽ
n) �= STOP do

3 Ũn+1 ← Encn+1(J, Ṽ
n);

4 Transmit Ũn+1 via the channel;
5 n← n+ 1;

Remark. We can define a fixed-to-variable-length resolvability code for the
system without feedback by removing the dependence of the encoding functions
on the feedback signal. In this case, the system is equivalent to a deterministic
encoder that maps the input words to codewords of variable lengths.

When a fixed-to-variable-length feedback resolvability encoder is employed,
the stopping time of the encoder (hence the length of the channel output
corresponding to a single run of the encoder) will be a random variable, which
we denote by N . The stopping time depends both on the channel randomness
and the randomness of the input word J :

N = inf{n ≥ 0: Encn+1(J, Ṽ
n) = STOP}. (7.6)

Extending Definition 5.3, we say a rate R is an achievable resolvability rate
with respect to the sequence of product measures (P n

V , n ∈ N), if for every ε > 0
there exists a fixed-to-variable-length resolvability code as in Definition 7.1,
with (possibly large) message size M , whose rate is at most R,

log(M)

E[N ]
≤ R, (7.7)
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and results in an expected output divergence of at most ε, i.e.,

D :=
∑
n≥0

D(PṼ n|N=n‖P n
V ) Pr{N = n} ≤ ε (7.8)

Again, by the law of large numbers, when the scheme is run many times (each
time producing a block of channel output symbols), the output sequence will
have an average length of E[N ] symbols per block. Hence, the system has
consumed an average entropy rate of log(M)/E[N ] per output symbol. And
the divergence between the distribution of the output string and the product
distribution normalized by the number of blocks will be close to D.

Likewise, following Definition 5.5, we call E(R) an achievable resolvability
exponent with respect to the sequence of product measures (P n

V , n ∈ N) if there
exists a fixed-to-variable-length resolvability code of (possibly large) message
size M , and rate at most R (cf. (7.7)) that yields

D ≤ exp
{
−E[N ](E(R)− δ)}. (7.9)

Remark. Our choice of quality measure (7.8) is justified as follows. Consider
successive independent runs of a classic (block) resolvability encoder. After B
runs, the output sequence Ṽ nB is the concatenation of B sequences of length
n,

Ṽ nB = (Ṽ n
(1), Ṽ

n
(2), . . . , Ṽ

n
(B)) (7.10)

where Ṽ n
(t) corresponds to the tth run of the encoder. Since the successive

executions are assumed to be independent, it is easy to see that

D(PṼ nB‖P nB
V ) =

B∑
t=1

D
(
PṼ n

(t)

∥∥ P n
V

)
. (7.11)

Suppose an observer attempts to detect if an encoder is used at the input
of the channel or a random-number generator drawing i.i.d. symbols from
PU . Any test that reliably identifies coded transmission will misidentify the
transmission of i.i.d. PU input symbols as coded transmission with probability
≈ exp[−D(PṼ nB‖P nB

V )] [70, Chapter 3]. Consequently, unless the code leads
to a perfect i.i.d. output sequence, the accumulated divergence between the
distribution of the output sequence and the product measure increases with
B and the observer will eventually be able to implement a decent classifier —
no matter how powerful of a resolvability code we use. However, when the
code guarantees that D(PṼ n‖P n

V ) ≤ ε (over a single run), the per-block output
divergence,

1

B
D(PṼ nB‖P nB

V ) =
1

B

B∑
t=1

D
(
PṼ n

(t)

∥∥ P n
V

)
(7.12)

will, indeed, be smaller than ε since each of the summands in the above sum
are smaller than ε.
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For a fixed-to-variable-length scheme, the fact that D is small (with D as
defined in (7.8)) gives the same guarantee: when the encoder is run B times
in a row (for large B) the accumulated divergence between the distribution of
the output sequence and the product measure, normalized by the number of
runs, B, will be close to D hence small.

7.2 Channel Resolution in the Presence of
Feedback

Theorem 7.1. In the presence of feedback, the resolution of the channel PV |U :
U → V with respect to the sequence of i.i.d. reference measures (P n

V , n ∈ N) is

min
(Ũ ,Ṽ ):

PṼ |Ũ=PV |U
PṼ =PV

I(Ũ ; Ṽ ). (7.13)

The above holds, even if a rate adaptation strategy (using variable-length codes)
is employed.

In other words, feedback does not reduce the resolution of a channel. This
can easily be explained by looking at the entropy rate as a resource: Nei-
ther feedback nor rate adaptation strategies add entropy rate to the system.
Therefore, the difference between what we need, H(V ), and what the chan-
nel supplies, H(V |U), must be offset in order to accurately approximate the
product measure at the channel output.

We devote the rest of this section to proving Theorem 7.1. Clearly, we
only need to give a converse proof, as the achievability proof follows from the
achievability of rates below the channel’s resolution without feedback. To this
end, we first prove a converse result for block codes in the presence of feedback.
Subsequently, to extend the proof to variable-length schemes, we show that
based on every (good) variable-length code, we can construct a (good) block
code of essentially the same rate. Thus, the converse for variable-length codes
follows from the converse for block codes. We will also prove the converse under
weak resolvability criteria. That is to say, we assume the code guarantees only
a small normalized divergence between the output distribution and the product
measure. For simplicity, and without loss of generality, throughout the proof
we assume supp(PV ) = V .

7.2.1 Converse for Block Codes

Fix ε > 0 and consider any resolvability encoder that maps uniformly dis-
tributed J ∈ {1, 2, . . . ,M} to a channel input sequence Ũn ∈ Un and results
in

1

n
D(PṼ n‖P n

V ) ≤ ε, (7.14)
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where Ṽ n is the output sequence of n-fold use of PV |U to the input Ũn.

We have

log(M)

n
=

1

n
H(J) ≥ 1

n
I(J ; Ṽ n) (7.15)

=
1

n

[
H(Ṽ n)−

n∑
i=1

H(Ṽi|J, Ṽ i−1)
]

(7.16)

(a)
=

1

n

[
H(Ṽ n)−

n∑
i=1

H(Ṽi|J, Ṽ i−1, Ũi)
]

(7.17)

(b)
=

1

n

[
H(Ṽ n)−

n∑
i=1

H(Ṽi|Ũi)
]
. (7.18)

In the above, (a) follows since Ũi is a deterministic function of Ṽ i−1 (the
feedback signal) and J (the external randomness) and (b) because the channel
is assumed to be memoryless, thus (J, Ṽ i−1) −−◦ Ũi −−◦ Ṽi. At this point the
problem is reduced to proving the converse for the system without feedback,
and we can proceed as in [117, Proof of Theorem 5.2].

It is easy to verify that

D(PṼ n‖P n
V ) = D

(
PṼ n

∥∥∥ n∏
i=1

PṼi

)
+

n∑
i=1

D(PṼi
‖PV ) (7.19)

Since both terms on the right-hand side of (7.19) are positive, (7.14) implies

1

n

n∑
i=1

D(PṼi
‖PV ) ≤ ε, (7.20)

and
1

n
D
(
PṼ n

∥∥∥ n∏
i=1

PṼi

)
=

1

n

[ n∑
i=1

H(Ṽi)−H(Ṽ n)
]
≤ ε (7.21)

Therefore, continuing (7.18), we have

log(M)

n
≥ 1

n

[
H(Ṽ n)−

n∑
i=1

H(Ṽi|Ũi)
]

(7.22)

≥ 1

n

[ n∑
i=1

H(Ṽi)−
n∑

i=1

H(Ṽi|Ũi)
]
− ε. (7.23)

The uniform continuity of entropy [30, Lemma 2.7] implies

|H(Ṽi)−H(V )| ≤ |PṼi
− PV | log

[ |V|
|PṼi
− PV |

]
. (7.24)
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Hence, as θ �→ θ log |V|
θ

is concave in θ,

1

n

n∑
i=1

|H(Ṽi)−H(V )| ≤ 1

n

n∑
i=1

|PṼi
− PV | log

[ |V|
|PṼi
− PV |

]
(7.25)

≤
[
1

n

n∑
i=1

|PṼi
− PV |

]
log

[
|V|

1
n

∑n
i=1 |PṼi

− PV |

]
. (7.26)

Moreover,

1

n

n∑
i=1

|PṼi
− PV |

(a)

≤ 1

n

n∑
i=1

√
2D(PṼi

‖PV ) (7.27)

(b)

≤

√√√√2
1

n

n∑
i=1

D(PṼi
‖PV ) (7.28)

(c)

≤
√
2ε (7.29)

where (a) follows by Pinsker’s inequality [30, Exercise 3.18], (b) from the con-
cavity of the square root, and (c) from (7.20). Using (7.29) in (7.26) we can
further lower-bound (7.23) as

log(M)

n
≥ 1

n

[ n∑
i=1

H(Ṽi)−
n∑

i=1

H(Ṽi|Ũi)
]
− ε (7.30)

≥ H(V )− 1

n

n∑
i=1

H(Ṽi|Ũi)−
[
ε+
√
2ε log

|V|√
2ε

]
. (7.31)

Furthermore, since ∀i = 1, 2, . . . , n, PṼi|Ũi
= PV |U ,

H(Ṽi|Ũi) ≤ max
(Ũ ,Ṽ ):

PṼ |Ũ=PV |U
D(PṼ ‖PV )≤D(PṼi

‖PV )

H(Ṽ |Ũ). (7.32)

Lemma B.3 (see Appendix B) shows that the right-hand side of the above is
concave in D(PṼi

‖PV ). Therefore

1

n

n∑
i=1

H(Ṽi|Ũi) ≤
1

n

n∑
i=1

max
(Ũ ,Ṽ ):

PṼ |Ũ=PV |U
D(PṼ ‖PV )≤D(PṼi

‖PV )

H(Ṽ |Ũ) (7.33)

≤ max
(Ũ ,Ṽ ):

PṼ |Ũ=PV |U
D(PṼ ‖PV )≤ 1

n

∑n
i=1 D(PṼi

‖PV )

H(Ṽ |Ũ) (7.34)

(∗)
≤ max

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U
D(PṼ ‖PV )≤ε

H(Ṽ |Ũ) (7.35)
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where, (∗) again follows from (7.20). Using the above in (7.31), we get

log(M)

n
≥ H(V )− max

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U
D(PṼ ‖PV )≤ε

H(Ṽ |Ũ)−
[
ε+
√
2ε log

|V|√
2ε

]
. (7.36)

Since (7.36) must hold for every ε > 0 (but possibly large n and M), and
H(V |U) is continuous in PUV , we get

log(M)

n
≥ min

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U ,

PṼ =PV

I(Ũ ; Ṽ ). (7.37)

7.2.2 Converse for Variable-to-Fixed-Length Codes

Now suppose we have a variable-to-fixed-length code, that maps T (a random
number of) independently drawn input words J1, J2, . . . , JT , each uniformly
distributed in {1, 2, . . . ,M}, into a sequence of length n of channel input
symbols Ũn that, when transmitted through n-fold channel P n

V |U , result in

n approximately i.i.d. output symbols Ṽ n, i.e.,

1

n
D(PṼ n‖P n

V ) ≤ ε (7.38)

for a given ε > 0. We are set to prove that

E[T ] log(M)

n
≥ min

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U ,

PṼ =PV

I(Ũ ; Ṽ ). (7.39)

Let B ∈ N be a (large) integer and fix δ > 0. The following procedure
defines a block resolvability code of message size MB(E[T ]+δ) and block-length
nB (suppose B(E[T ] + δ) is integer for simplicity):

Algorithm 7: A Block Code Based on a Variable-to-Fixed-Length Code

Input: J1, J2, . . . , JB(E[T ]+δ) i.i.d. uniformly distributed on {1, 2, . . . ,M}
1 S ← 0; // total number of words consumed

2 for b = 1 to B do
3 Run the variable-to-fixed-length scheme, feeding it with Tb independent

words JS+1, JS+2, . . . , JS+Tb
to produce Ũnb

n(b−1)+1 ; // Jt = 1 if

t > B(E[T ] + δ)
4 S ← S + Tb;

In other words, our block encoder first buffers B(E[T ]+δ) input words and
then runs the variable-to-fixed-length encoder B times successively, feeding the
consecutive runs of the encoder with the input words from the buffer. In case
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it ends up with an empty buffer, it just uses dummy (deterministic) words to
feed the variable-to-fixed-length encoders to finish B runs.

We claim that this code is a good block resolvability code, provided that
B is sufficiently large. Define the event H as

H := {S > B(E[T ] + δ) at the end of Algorithm 7}. (7.40)

By the law of total probability, for any vnB ∈ VnB,

PṼ nB(vnB) = PṼ nB |H(v
nB|H) Pr(H) + PṼ nB |Hc(vnB|Hc) Pr(Hc). (7.41)

Since the KL divergence is convex,

D(PṼ nB‖P nB
V ) ≤ D

(
PṼ nB |H

∥∥ P nB
V

)
Pr(H) +D

(
PṼ nB |Hc

∥∥ P nB
V

)
Pr(Hc).

(7.42)
The bound of (7.38) implies

D
(
PṼ nB |Hc

∥∥ P nB
V

)
Pr(Hc) ≤ D

(
PṼ nB |Hc

∥∥ P nB
V

)
(7.43)

=
B∑
b=1

D
(
PṼ nb

n(b−1)+1
|Hc

∥∥∥ P n
V

)
(7.44)

≤ nBε. (7.45)

Because, if S ≤ B(E[T ]+ δ), all the successive runs of the underlying variable-
to-fixed-length encoder are fed with uniformly distributed words J1, J2, . . . , JS;
thus, they all result in an approximately i.i.d. output sequence (as guaranteed
by (7.38)).

To bound the second term in (7.42), we note that, for any distribution
QV nB ∈ P(VnB),

D(QV nB‖P nB
V ) ≤ nB log

[ 1

Pmin

]
(7.46)

where Pmin := minv∈V PV (v). Moreover, since S =
∑B

b=1 Tb, we have

Pr(H) = Pr

{
B∑
b=1

Tb > B(E[T ] + δ)

}
(7.47)

= Pr

{
1

B

B∑
b=1

Tb ≥ E[T ] + δ

}
. (7.48)

Since T1, T2, . . . , TB are i.i.d. random variables with mean E[T ], by the law of
large numbers, we can guarantee that the above probability is smaller than
any desired value if B is large enough. Choose B such that

Pr(H) ≤ ε

log[1/Pmin]
. (7.49)

Then, using (7.46) and (7.49) we conclude that

D
(
PṼ nB |H

∥∥ P nB
V

)
Pr(H) ≤ nBε (7.50)
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Using (7.45) and (7.50) in (7.42) yields

1

nB
D(PṼ nB‖P nB

V ) ≤ 2ε (7.51)

which shows the proposed scheme is a good block resolvability code. The rate
of this block code is

log(M)B(E[T ] + δ)

nB
=

E[T ] log(M)

n
+ δ

log(M)

n
, (7.52)

and our converse result for block codes requires,

E[T ] log(M)

n
+ δ

log(M)

n
≥ min

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U ,

PṼ =PV

I(Ũ ; Ṽ ). (7.53)

As (7.53) holds for any infinitesimal δ > 0, it implies (7.39).

7.2.3 Converse for Fixed-to-Variable Length Codes

We can prove the converse result for fixed-to-variable-length codes in a similar
way. Specifically, given a fixed-to-variable-length resolvability code that maps
J ∈ {1, 2, . . . ,M} to a sequence of N of channel input symbols Ũ1, Ũ2, . . . , ŨN

(where N is a variable-length), with average output length E[N ], guaranteeing

1

E[N ]

∑
n≥0

D(PṼ n|N=n‖P n
V ) Pr{N = n} ≤ ε, (7.54)

we construct a good block resolvability code whose rate is close to log(M)/E[N ].
The converse, then, follows by the converse on block resolvability codes.

Fix B ∈ N (a large integer) and δ > 0 and consider the following procedure:

Algorithm 8: A Semi-Block Resolvability Code Based on a Fixed-to-
Variable-Length Code

Input: J1, J2, . . . , JB i.i.d. uniformly distributed on {1, 2, . . . ,M}
1 S ← 0; // total number of symbols produced

2 for t = 1 to B do
3 Run the fixed-to-variable-length scheme, feeding it with Jt, to produce

ŨS+Nt
S+1 ;

4 S ← S +Nt; // Nt symbols produced in the tth round

5 while S < B(E[N ]− δ) do
6 S ← S + 1;

7 ŨS ← u0; // u0 is any dummy symbol in U
8 Transmit ŨS via the channel;
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Algorithm 8 runs the fixed-to-variable-length resolvability scheme B times
in a row. After the last round, if the total number of symbols produced
is less than B(E[N ] − δ), it produces extra dummy symbols to extend the
length of its output sequence to B(E[N ]− δ). Note that the length of output
sequence of the encoder defined in Algorithm 8 is still variable. (It terminates
with S ≥ B(E[N ] − δ) symbols.) By adding an extra ‘early termination’
condition, however, we can cut its output sequence short to contain only the
first b := B(E[N ]− δ) symbols and obtain a block resolvability code. (Again,
suppose B(E[N ]− δ) is integer for simplicity.) We have intentionally kept the
details of implementing the ‘early termination’ out of the algorithm, as we will
see that analyzing the unterminated version is simpler and the performance of
the terminated version is straightforwardly related to that of the unterminated
version.

We now show that when Ṽ b is the first b symbols of the output sequence
of the channel when it is fed by Algorithm 8,

1

b
D(PṼ b‖P b

V ) (7.55)

is small.
Define the event H as

H := {the while loop of line 5 of Algorithm 8 is executed}
= {N1 +N2 + . . .+NB < b} (7.56)

where N1, N2, . . . , NB are the stopping times of successive runs of the under-
lying fixed-to-variable-length resolvability encoder.

Same considerations as in (7.41) and (7.42) shows

D(PṼ b‖P b
V ) ≤ D(PṼ b|Hc‖P b

V ) Pr(Hc) +D(PṼ b|H‖P b
V ) Pr(H). (7.57)

We have

Pr(Hc)PṼ b|Hc(vb) = Pr
{
Ṽ b = vb,

B∑
t=1

Nt ≥ b
}

(7.58)

=
∑

n1,n2,...,nB :
n1+n2+···+nB≥b

Pr{Ṽ b = vb|N1 = n1, . . . , NB = nB}

· Pr{N1 = n1, . . . , NB = nb}. (7.59)

Consequently, using the convexity of divergence we have

Pr(Hc)D(PṼ b|Hc‖P b
V ) ≤

∑
n1,n2,...,nB :

n1+n2+···+nB≥b

D(PṼ b|N1=n1,...,NB=nB
‖P b

V )

· Pr{N1 = n1, . . . , NB = nB}. (7.60)
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Moreover, for every s ≥ b, and any distribution QṼ s ∈ P(Vs), using the
chain rule for the divergence we have

D(QṼ s‖P s
V ) = D(QṼ b‖P b

V ) +D(QṼ s
b+1|Ṽ b‖P b−s

V |QṼ s
b+1

) ≥ D(QṼ b‖P b
V ). (7.61)

In particular, taking s = n1 + n2 + · · · + nB on the right-hand side of (7.60),
we can continue our upper bound in (7.60) as

Pr(Hc)D(PṼ b|Hc‖P b
V ) ≤

∑
n1,n2,...,nB :

n1+n2+···+nB≥b

D(PṼ b|N1=n1,...,NB=nB
‖P b

V )

· Pr{N1 = n1, . . . , NB = nB} (7.62)

≤
∑

n1,n2,...,nB :
n1+n2+···+nB≥b

D(PṼ n1+···+nB |N1=n1,...,NB=nb
‖P n1+···+nB

V )

· Pr{N1 = n1, . . . , NB = nB} (7.63)

(a)
=

∑
n1,n2,...,nB :

n1+n2+···+nB≥b

B∑
t=1

D
(
PṼ

nt
nt−1+1|Nt=nt

∥∥∥ P nt
V

)

· Pr{N1 = n1, . . . , NB = nB} (7.64)

(b)

≤
∑

n1,n2,...,nB :
n1≥0,n2≥0,...,nB≥0

B∑
t=1

D
(
PṼ

nt
nt−1+1|Nt=nt

∥∥∥ P nt
V

)

· Pr{N1 = n1, . . . , NB = nB} (7.65)

=
B∑
t=1

∑
n≥0

D(PṼ n|Nt=n‖P n
V ) Pr{Nt = n} (7.66)

(c)

≤ εB E[N ] (7.67)

In the above, (a) follows since the successive runs of the original fixed-to-
variable-length encoder are independent (in the inner summation we took n0 :=
0), (b) by extending the sum to all non-negative integers n1, n2, . . . , nB (noting
that the summands are non-negative), and (c) from (7.54).

Moreover, as we saw before

Pr(H)D(PṼ b|H‖P b
V ) ≤ bPr(H) log

[ 1

Pmin

]
(7.68)

with Pmin := minv∈V PV (v).
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Finally, since

Pr(H) = Pr

{
1

B

B∑
t=1

Nt ≤ E[N ]− δ

}
(7.69)

and N1, N2, . . . , NB are i.i.d. random variables with mean E[N ], due to the law
of large numbers, by choosing B large enough, we can guarantee that

Pr(H) ≤ ε

log[1/Pmin]
. (7.70)

Uniting (7.67)–(7.70) in (7.57), we conclude that, for large enough B,

1

b
D(PṼ b‖P b

V ) ≤
E[N ]

E[N ]− δ
ε+ ε ≤ 3ε (7.71)

where the last inequality follows by choosing δ ≤ E[N ]/2. Thus, we showed
that the block code defined by a terminated version of Algorithm 8 is indeed
a good resolvability code. Such a code produces B(E[N ] − δ) channel input
symbols from B uniformly distributed input words in {1, 2, . . . ,M}, hence its
rate is log(M)/(E[N ] − δ). Therefore, it follows from the converse result we
established in § 7.2.1 that

B log(M)

B(E[N ]− δ)
=

log(M)

E[N ]− δ
≥ min

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U ,

PṼ =PV

I(Ũ ; Ṽ ). (7.72)

Since (7.72) holds for every δ > 0, we deduce that

log(M)

E[N ]
≥ min

(Ũ ,Ṽ ):
PṼ |Ũ=PV |U ,

PṼ =PV

I(Ũ ; Ṽ ). (7.73)

This concludes the proof.

7.3 Improving Resolvability Exponents with
Feedback

We have seen that feedback does not reduce the resolution of a channel; to
approximate the product distribution PV at the output of the channel PV |U :

U × V we need at least an entropy rate of I(Ũ ; Ṽ ) at its input (where Ũ , Ṽ ∼
PU × PV |U for some PU that induces PV at the output of channel). Does this
mean that feedback is totally useless?

Not at all! Similarly to the problem of error correction, feedback sim-
plifies the design of encoder and improves the quality of approximation. We



178 Channel Resolvability in the Presence of Feedback

present two examples in this section: resolvability over a binary erasure channel
and a binary symmetric channel. For the former, we construct a variable-to-
fixed-length resolvability encoder that, by using the feedback signal and by
consuming an entropy rate approaching the resolution of the channel (as the
block-length increases), produces a perfect i.i.d. string at the output of the
channel. That is to say, a resolvability exponent of infinity is achievable over
the BEC in the presence of feedback. For the latter, we propose a fixed-to-
variable-length resolvability encoder that, in the presence of feedback, achieves
the straight-line resolvability exponent [R−I(U ;V )]+. Moreover, we will show
that neither of these improved resolvability exponents are achievable by using
block codes.

7.3.1 Resolvability over BEC in the Presence of Feedback

Theorem 7.2. Assume the channel PV |U : U → V is a BEC(p) with input
alphabet U = {0, 1} and output alphabet V = {0, 1, ?}. Let PV ∈ P({0, 1, ?} be
the distribution induced by the uniform distribution at the input of the channel
at its output, i.e.,

PV (0) = PV (1) =
1− p

2
, and PV (?) = p. (7.74)

In the presence of feedback, there exists a variable-to-fixed-length resolvability
encoder of block-length n that consumes, on average, an entropy rate of (1−p)+
p/n bits per channel use and, guarantees PṼ n = P n

V . In other words ‘perfect’
resolvability encoders exist. Recall that Ṽ n denotes the output of the n-fold
use of the channel when it is fed by the variable-to-fixed-length resolvability
encoder. Therefore, the resolvability exponent

EBEC(p,R) :=

{
0 if R ≤ (1− p),

+∞ if R > (1− p),
(7.75)

is achievable over the channel with respect to the sequence of product reference
measures P n

V , using variable-to-fixed-length resolvability schemes.

Before proving Theorem 7.2 let us highlight the importance of variable-
length coding through the following lemma.

Lemma 7.3. Let PV be the distribution induced at the output of a BEC(p) when
its input has a uniform distribution (see (7.74)). Then, using any sequence of
block resolvability encoders of block-length n (for the system with feedback) over
a BEC(p),

lim sup
n→∞

− 1

n
logD(PṼ n‖P n

V ) ≤
{
0 if R < (1− p),

2d2(R‖1− p) if R ≥ (1− p),
(7.76)
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Figure 7.2: In the presence of feedback, perfect variable-to-fixed-length resolv-
ability codes exist. Here, we evaluate the exponents for BEC(1/2).

where

d2(p‖q) := p log
[p
q

]
+ (1− p) log

[1− p

1− q

]
(7.77)

is the binary divergence function. (Recall that Ṽ n denotes the output of the n-
fold use of the channel when its input sequence is generated by the resolvability
encoder.)

Lemma 7.3 follows along the same lines as [121, Corollary 6] by using
Pinsker’s inequality [30, Exercise 3.18]; it shows that ‘perfect’ block resolv-
ability encoders of rates strictly less than 1 cannot exist. We defer the proof
of Lemma 7.3 to Appendix 7.A. (In fact, [121, Corollary 6], combined with
Pinsker’s inequality, implies (7.76) for the system without feedback.) In Fig-
ure 7.2, we compare the upper bound of (7.76), the achievable exponent of
(6.25) (evaluated for a BEC(1/2) with uniform input distribution), and the
exponent of (7.75).

Proof of Theorem 7.2. For any n ∈ N, consider the variable-to-fixed-length
resolvability encoder described as follows:

Algorithm 9: Variable-to-Fixed-Length Resolvability Encoder for BEC

Input: U1, U2, . . . i.i.d. uniformly distributed on {0, 1}
1 t← 1;
2 for i = 1 to n do

3 if i > 1 and Ṽi−1 ∈ {0, 1} then
4 t← t+ 1;

5 Ũi ← Ut;

6 Transmit Ũi via the channel and record Ṽi;

Note that we have denoted the input words to the encoder as U1, U2, . . .
that are i.i.d. uniformly distributed bits on {0, 1} (whereas, previously, we
used to denote the input words to the resolvability encoder with symbol J).
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If we wanted to formulate the encoding algorithm in terms of the collection
of shifting and encoding functions (cf. Definition 7.1), the encoder would be
defined via the collection of shifting functions Shifti,t : {0, 1}t×V i−1 → {0, 1}.

Shifti,t(u
t, vi−1) = 1{i > 1 and vi−1 ∈ {0, 1}}, ∀t ∈ N, ∀i ∈ {1, 2, . . . , n}

(7.78)
and encoding functions Enci,t : {0, 1}t × V i−1 → {0, 1},

Enci,t(u
t, vi−1) = ut, ∀t ∈ N, ∀i ∈ {1, 2, . . . , n}. (7.79)

In other words, the encoder starts off by reading one uniformly distributed
bit from the input and transmitting it through the channel. Then, at each
subsequent time instant, i ∈ {2, 3, . . . , n} checks if the previously transmitted
bit is erased. If this is the case, it repeats the same bit. Otherwise, it reads a
fresh random bit from the input and transmits it.

It is easy to check that Ṽ n, the output of P n
V |U when the resolvability code

of Algorithm 9 is used at its input, has distribution P n
V . To verify this formally,

we will show that

PṼi|Ṽ i−1(vi|vi−1) =

{
p, if vi =?,
1−p
2
, if vi ∈ {0, 1}.

(7.80)

Using the law of total probability,

PṼi|Ṽ i−1(vi|vi−1) =
∑

ui∈{0,1}
Pr{Ṽi = vi|Ṽ i−1 = vi−1, Ũi = ui}

· Pr{Ũi = ui|Ṽ i−1 = vi−1} (7.81)

(a)
=
∑

ui∈{0,1}
PV |U(vi|ui) Pr{Ũi = ui|Ṽ i−1 = vi−1} (7.82)

(b)
=

{
p if vi =?

(1− p) Pr{Ũi = vi|Ṽ i−1 = vi−1} if vi ∈ {0, 1}
(7.83)

where (a) follows since the channel is memoryless and (b) using the transition
probabilities of a BEC(p). Finally, we note that

Pr{Ũi = vi|Ṽ i−1 = vi−1} = 1

2
∀vi ∈ {0, 1}, (7.84)

by construction. Using (7.84) in (7.83) shows PṼ n = P n
V (for every n).

Moreover, the average rate of the system is

log(M)E[T ]

n
=

E[T ]

n
=

(n− 1)(1− p) + 1

n
(7.85)

= (1− p) +
p

n
(7.86)
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since T equals one plus the number of ‘non-erasure’ events in n − 1 channel
uses. Consequently, given any R > (1 − p) by taking n large enough, we will
have a scheme whose rate is below R and guarantees

D(PṼ n‖P n
V ) = 0, (7.87)

(since ∀n, PṼ n = P n
V ).

Remark 1. The resolution of a BEC(p), with respect to the sequence of product
measures P n

V (with PV as defined in (7.74)), is (1 − p) bits per channel use
(because the uniform input distribution is the only distribution that induces
PV at the output of a BEC). Theorem 7.2 illustrates that by using an external
entropy rate just above I(U ;V ) we can perfectly simulate the i.i.d. measure
P n
V at the output of a BEC.

Remark 2. If we fed the encoder proposed in the proof of Theorem 7.2 with
i.i.d. U1, U2, . . . drawn from an arbitrary distribution PU ∈ P(U), the scheme
would lead to a perfect simulation of the product distribution P n

V (where PV

is the distribution induced by PU at the output of the BEC) consuming an
average entropy rate of H(U)(1− p) + o(1) at the encoder.

7.3.2 Resolvability over BSC in the Presence of Feedback

Theorem 7.4. In the presence of feedback, the exponent

EBSC(p,R) = [R− 1 + h2(p)]
+ (7.88)

is achievable over a BSC(p) with respect to the sequence of uniform reference
measures P n

V ∈ P(Vn), PV (0) = PV (1) = 1
2
, using fixed-to-variable-length

resolvability schemes. In the above

h2(p) := p log
1

p
+ (1− p) log

1

1− p
(7.89)

is the binary entropy function.

The straight-line exponent of (7.88) is larger than the exponent of (6.25) as
the objective function of (6.25) equals [R−I(U ;V )]+ at QUV = PUV . Further-
more, we have the following upper bound on the best achievable resolvability
exponent over a BSC using block codes in the presence of feedback.

Lemma 7.5. Let PV be the uniform distribution on {0, 1}. Then using any
sequence of block resolvability codes of length n and rate (at most) R, (for the
system with feedback) over a BSC(p),

lim sup
n→∞

− 1

n
log[D(PṼ n‖P n

V )]

≤

⎧⎪⎨
⎪⎩
0 if R < 1− h2(p)

2d2
(
p− R−1+h2(p)

log[(1−p)/p]

∥∥ p) if 1− h2(p) ≤ R < log[2(1− p)]

+∞ if R ≥ log[2(1− p)]

(7.90)
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0.25 0.5 0.75 1

0.25

0.5

R

E

Ei.i.d.
s of (6.25)

The upper bound of (7.90)

EBSC(p,R) of (7.88)

Figure 7.3: The straight-line exponent resolvability [R− I(U ;V )]+ is achievable
over a BSC(p) with respect to the sequence of uniform product measures. The
exponents are evaluated for a BSC(1/2).

where PṼ n is the output distribution of the n-fold channel when it is fed by
the block resolvability encoder of length n. (In the above d2(·‖·) is the binary
divergence function defined in (7.77).)

We prove Lemma 7.5 in Appendix 7.A.2

In Figure 7.3, we compare the exponents of (7.88) and (6.25) and the
upper bound of (7.90). It can easily be seen that, at least for rates close to the
resolution of the channel, employing variable-length resolvability schemes is
necessary; the best attainable resolvability exponent using block codes begins
its increase above 0 with slope zero as R exceeds 1− h2(p).

Proof of Theorem 7.4. Consider the following fixed-to-variable-length resolv-
ability scheme:

Fix α > 0 and the message size M ∈ N. The collection of encoding
functions (Encn, n ∈ N) share a codebook of size M and infinite block-length,

C :=
(
u∞(j) ∈ F∞

2 : j ∈ {1, 2, . . . ,M}
)

(7.91)

(to be specified later) and are defined as

Enc1(j) = u1(j), and (7.92a)

Encn+1(j, v
n) =

{
STOP if log(M)

n
≤ α[1− h2(q̂n)],

un+1(j) otherwise,
(7.92b)

where,

q̂n :=
dH(u

n(j), vn)

n
(7.93)

2 Similarly to our comment after Lemma 7.3, we remark that [121, Corollary 6], combined
with Pinsker’s inequality, implies (7.90) for the system without feedback.
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is the fraction of flipped bits during the first n transmissions. (Recall that dH

denotes the Hamming distance between two sequences.)
In other words, given the input word j, the encoder successively transmits

the letters of the corresponding codeword u∞(j), until the transmission rate
log(M)/n drops below a given multiple of the empirical capacity of the channel.
This, in particular, implies that the stopping time N is larger than log(M)/α.

Lemma 7.6. Given any δ > 0, there exists M0(δ) such that, for all M ≥ M0

using the proposed scheme,

α[1− h2(p)]− δ ≤ log(M)

E[N ]
≤ α[1− h2(p)] + δ (7.94)

Proof. Let

Φn := 1{channel flips at time n}, ∀n ∈ N. (7.95)

Hence

nq̂n =
n∑

i=1

Φi (7.96)

where (Φn, n ∈ N) are i.i.d. Bernoulli(p) random variables. Let

Sn := nq̂n − np. (7.97)

The process (Sn, n ∈ N) is a martingale with respect to the natural filtering(
Fn = σ(Φ1, . . . ,Φn), n ∈ N

)
. This follows simply because E[|Sn|] ≤ 2n < +∞

and

E[Sn|Fn−1] = E[Φn]− p+ Sn−1 = Sn−1 (7.98)

The encoder stops at time

N = inf
{
n ≥ log(M)

α
: 1− h2

(
q̂n
)
≥ α−1 log(M)

n

}
. (7.99)

In terms of Sn, the stopping condition is

log(M) ≤ α ·N
[
1− h2

(
p+

SN

N

)]
. (7.100)

It easily can be verified (cf. Appendix 7.B) that ∀p ∈ (0, 1), ∀ε ∈ (−p, 1− p),

h2(p) + h′
2(p)ε+ h′′

2(p)ε
2 ≤ h2(p+ ε) ≤ h2(p) + h′

2(p)ε (7.101)

Using the lower bound of (7.101) in (7.100), we get

log(M) ≤ αN − αNh2(p)− αN
SN

N
h′
2(p)− αN

S2
N

N2
h′′
2(p) (7.102)

= αN [1− h2(p)]− αSNh
′
2(p)− αh′′

2(p)
S2
N

N
. (7.103)



184 Channel Resolvability in the Presence of Feedback

Taking the expectation of the right-hand side of (7.103), noting that E[SN ] =
E[S�log(M)/α�] = 0 (because a stopped martingale is also a martingale [44,
Theorem 4, Chapter 7]), we get

log(M)

E[N ]
≤ α[1− h2(p)]− αh′′

2(p)
E[S2

N/N ]

E[N ]
. (7.104)

(Note also that h′′
2(p) < 0 since h2 is a concave function.) The growth rate of

the last term in (7.104) remains to be examined. Had we replaced the stopping
time N with a fixed time n, the quantity of interest would have behaved like
1/n (since E[S2

n/n] is a constant). It turns out that for a stopping time N ,
E[S2

N/N ] might not be a constant but will grow at most logarithmically in N :
Lemma 7.7 (in Appendix 7.C) shows

E
[S2

N

N

]
≤ p(1− p)E[1 + ln(N)]. (7.105)

Consequently,

log(M)

E[N ]
≤ α[1− h2(p)]− αh′′

2(p)p(1− p)
E[1 + ln(N)]

E[N ]
(7.106)

(a)

≤ α[1− h2(p)]− αh′′
2(p)p(1− p)

1 + ln(E[N ])

E[N ]
(7.107)

(b)

≤ α[1− h2(p)]− αh′′
2(p)p(1− p)

1 + ln
(
log(M)/α

)
log(M)/α

, (7.108)

where (a) follows from Jensen’s inequality and (b) folows because [1+ln(x)]/x
is decreasing for x ≥ 1 andN ≥ log(M)/α. Therefore, by choosingM ≥M1(δ)
such that

− αh′′
2(p)p(1− p)

1 + ln
(
log(M)/α

)
log(M)/α

≤ δ (7.109)

the upper bound of (7.94) will be satisfied.
To lower-bound log(M)/E[N ], we note that ∀n > 1,

q̂n =
n− 1

n
q̂n−1 +

1

n
Φn. (7.110)

Since h2(·) is concave, at the stopping time,

h2(q̂N) ≥
N − 1

N
h2(q̂N−1) +

1

N
h2(ΦN) (7.111)

(∗)
>

N − 1

N
×
[
1− α−1 log(M)

N − 1

]
(7.112)

=
N − 1

N
1− α−1 log(M)

N
, (7.113)

where (∗) follows from the stopping condition (7.99). Rearranging the above,
we get,

log(M) > α(N − 1)1− αNh2(q̂N). (7.114)
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Substituting q̂N = SN

N
+ p yields

log(M) > α(N − 1)− αNh2

(SN

N
+ p
)

(7.115)

(∗)
≥ α(N − 1)1− αNh2(p)− αN

SN

N
h′
2(p) (7.116)

= αN [1− h2(p)]− α[1 + SNh
′
2(p)] (7.117)

where (∗) follows from the lower bound of (7.101). Taking the expectation of
the right-hand side of (7.117) (and using the fact that E[SN ] = 0 once again)
we get,

log(M)

E[N ]
≥ α[1− h2(p)]−

α

E[N ]
(∗)
≥ α[1− h2(p)]−

α2

log(M)
. (7.118)

where (∗) follows because N ≥ log(M)/α. Thus, choosing M ≥ M2(δ) such
that

α2

log(M)
≤ δ (7.119)

ensures the lower bound of (7.94).
TakingM ≥M0(δ) := max{M1,M2} guarantees that both upper and lower

bounds of (7.94) are satisfied.

To complete the proof of Theorem 7.4, we need to bound the expected out-
put divergence D, as defined in (7.8), for an appropriate code. Let h−1

2 (·) denote
the inverse of the binary entropy function h2(·) (cf. (7.89)) when its domain is
restricted to [0, 1/2] and define w : {�log(M)/α�, �log(M)/α�+1, . . . } → N as

w(n) :=
⌊
nh−1

2

(
1− α−1 log(M)

n

)⌋
. (7.120)

Let Φn := (Φ1, . . . ,Φn) denote the flip pattern of n independent uses of the
channel and

Hn :=
{
φn ∈ {0, 1}n : {Φn = φn} ⊂ {N = n}

}
(7.121)

denote the set of flip patterns that stop the encoder at time N = n. Using
the fact that the process nq̂n = wH(Φ

n) is an integer-valued process and the
stopping condition (7.99), we can conclude that (among other constraints)
∀φn ∈ Hn,

wH(φ
n) = w(n) or n− wH(φ

n) = w(n) (7.122)

(see Figure 7.4), where wH(φ
n) denotes the Hamming weight of φn.

Note that Hn can be empty for some values of n, For example, if for some
n, ∃� ∈ N such that w(n − �) = w(n) then, Hn is empty because either the
encoder stops at time n− � or, if not, it will stop at some time N > n, because

wH(Φ
n) ≥ wH(Φ

n−�) > w(n)
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n

w(n)

n− w(n)

log(M)
α

log(M)
α

nq̂n

N

n
2

Figure 7.4: Stopping Time of the Proposed Encoder for BSC

and similarly n − wH(Φ
n) < n − w(n). Obviously Pr{N = n} = 0 for such

values of n, so we do not need to be concerned about them. Let

N := {n ≥ log(M)/α : Pr{N = n} > 0} (7.123)

be the support of N and assume n ∈ N .

Partition Hn = H1
n ∪H2

n where

H1
n := {φn ∈ Hn : wH(φ

n) = w(n)}, (7.124)

H2
n := {φn ∈ Hn : wH(φ

n) = n− w(n)}. (7.125)

It can easily be verified that |H1
n| = |H2

n| = |Hn|/2. Indeed, the symmetry of
stopping thresholds around n/2 (see Figure 7.4) implies φn ∈ H1

n if and only
if its complement (i.e., the sequence obtained by flipping all elements of φn) is
in H2

n. Consequently,

Pr{Φn ∈ H1
n} =

1

2
|Hn|pw(n)(1− p)n−w(n), (7.126a)

Pr{Φn ∈ H2
n} =

1

2
|Hn|pn−w(n)(1− p)w(n). (7.126b)

Assume, without essential loss of generality, that p < 1
2
. Then Pr{Φn ∈

H1
n} ≥ Pr{Φn ∈ H2

n}. Hence,

ρn :=
Pr{Φn ∈ H1

n}
Pr{Φn ∈ H1

n}+ Pr{Φn ∈ H2
n}
∈ [1/2 : 1]. (7.127)
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Moreover, since {N = n} = {Φn ∈ Hn} = {Φn ∈ H1
n} ∪ {Φn ∈ H2

n} and H1
n

and Hn
2 are disjoint (by definition),

PṼ n|N=n(v
n) = ρn Pr{Ṽ n = vn|Φn ∈ H1

n}+ (1− ρn) Pr{Ṽ n = vn|Φn ∈ H2
n}.

(7.128)
Given the specification of the encoder, we have,

Pr{Ṽ n = vn,Φn ∈ H1
n} =

1

M

M∑
j=1

Pr{Ṽ n = vn,Φn ∈ H1
n|Ũn = un(j)} (7.129)

=
1

M

M∑
j=1

∑
φn∈H1

n

Pr{Ṽ n = vn,Φn = φn|Ũn = un(j)} (7.130)

=
1

M

M∑
j=1

∑
φn∈H1

n

Pr{Ṽ n = vn|Φn = φn, Ũn = un(j)}

· Pr{Φn = φn|Ũn = un(j)} (7.131)

(a)
=

1

M

M∑
j=1

∑
φn∈H1

n

1{vn = φn ⊕ un(j)}Pr{Φn = φn} (7.132)

(b)
=

Pr{Φn ∈ H1
n}

|H1
n|

1

M

M∑
j=1

∑
φn∈H1

n

1{vn = bn ⊕ un(j)}, (7.133)

where (a) follows since the channel behavior, Φn, is independent of its input
Ũn and when its input is un and has flip pattern φn, its output is un⊕φn, and
(b) follows since Pr{Φn = φn} only depends on wH(φ

n) and all φn ∈ Hn
1 have

the same Hamming weight. As a consequence,

Pr{Ṽ n = vn|Φn ∈ H1
n} =

1

M |H1
n|

M∑
j=1

1{un(j)⊕ vn ∈ H1
n} (7.134)

=
1

M |H1
n|
KH1

n
(vn) (7.135)

where for any An ⊆ {0, 1}n, we have defined

KAn(v
n) :=

∣∣{j ∈ {1, 2, . . . ,M} : un(j)⊕ vn ∈ An

}∣∣. (7.136)

We similarly have

Pr{Ṽ n = vn|Φn ∈ H2
n} =

1

M |H2
n|
KH2

n
(vn). (7.137)

Since P n
V (v

n) = 2−n, combining (7.135) and (7.137), together with the fact
that |H1

n| = |H2
n| = 1

2
|Hn| in (7.128), we get

L(vn) :=
PṼ n|N=n(v

n)

P n
V (v

n)
=

2n

M 1
2
|Hn|

[
ρnKH1

n
(vn) + (1− ρn)KH2

n
(vn)
]
. (7.138)
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Following the same considerations as in (6.37), we have

D(PṼ n|N=n‖P n
V ) =

∑
vn

P n
V (v

n)L(vn) logL(vn). (7.139)

Now, assume the code shared by the encoding functions (Encn, n ∈ N) is
sampled from the i.i.d. random-coding ensemble. Specifically, each codeword
U∞(j) is an infinite i.i.d. sequence of binary digits where each symbol is equally
likely to take either value and the codewords are independent of each other. In
this case, as we have seen in Chapter 6, {KH1

n
(vn), KH2

n
(vn)} forms a multino-

mial collection with cluster sizeM and (equal) success probabilities 2−n|Hn|/2.
Thus, it can immediately be verified that E[L(vn)] = 1.

Since L(vn) ≤ 2n,

E[L(vn) logL(vn)] ≤ nE[L(vn)] = n. (7.140)

Moreover, applying the upper bound of Lemma 6.7 to L(vn) yields

E[L(vn) logL(vn)] ≤ log(e) var
(
L(vn)

)
. (7.141)

Combining the previous two bounds we get,

E[L(vn) logL(vn)] ≤ min
{
n, log(e) var

(
L(vn)

)}
. (7.142)

Since

var
(
KH1

n
(vn)
)
= var

(
KH2

n
(vn)
)

= M2−n1

2
|H|
(
1− 2−n1

2
|H|
)
≤M2−n1

2
|H|, (7.143)

and KH1
n
(vn) and KH2

n
(vn) are negatively correlated, using (7.138) we get

var
(
L(vn)

)
≤ 2(ρ2n + (1− ρn)

2)
2n

M |Hn|
≤ 2

2n

M |Hn|
. (7.144)

Using (7.144) in (7.142) and the linearity of the expectation together with
(7.139), we conclude that

E
[
D(PṼ n|N=n‖P n

V )] ≤ min
{
n, 2 log2(e)

2n

M |Hn|
}
. (7.145)

Since Pr{N = n} = Pr{Φn ∈ H1
n} + Pr{Φn ∈ H2

n} and Pr{Φn ∈ H1
n} ≥

Pr{Φn ∈ H2
n} (cf. (7.126)),

Pr{N = n} ≤ 2Pr{Φn ∈ H1
n} = |Hn|pw(n)(1− p)n−w(n). (7.146)
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Multiplying the right-hand sides of (7.145) and (7.146), we get

E[D(PṼ n|N=n‖P n
V )] Pr{N = n}

≤ c1 min
{
n|Hn|pw(n)(1− p)n−w(n),

2n

M
pw(n)(1− p)n−w(n)

}
(7.147)

= c1p
w(n)(1− p)n−w(n)min

{
n|Hn|,

2n

M

}
(7.148)

(a)

≤ c1p
w(n)(1− p)n−w(n)min

{
n2nh2(w(n)/n),

2n

M

}
(7.149)

(b)

≤ c1p
w(n)(1− p)n−w(n)min

{
n2n[1−α−1 log(M)/n],

2n

M

}
(7.150)

= c12
npw(n)(1− p)n−w(n)min

{
n

1

M1/α
,
1

M

}
(7.151)

≤ c1n2
npw(n)(1− p)n−w(n)min

{ 1

M1/α
,
1

M

}
(7.152)

= c1n2
npw(n)(1− p)n−w(n) 1

Mmax{1,1/α} . (7.153)

In the above c1 := 2 log(e), (a) holds sinceHn is a subset of all binary sequences
of length n and Hamming weight w(n), and (b) follows by substituting the
value of w(n). (Recall that the binary entropy function is increasing when its
argument is below 1/2.)

Since the stopping rule is independent of the choice of C , using (7.153) in
the definition of average output divergence D (see (7.8)) we get

E[D] ≤ c1
1

Mmax{1,1/α}

∑
n∈N

n2npw(n)(1− p)n−w(n). (7.154)

Define ∀n ∈ N,

γ(n) := h−1
2

(
1− α−1 log(M)

n

)
∈ [0, 1/2], (7.155)

and note that w(n) > nγ(n)− 1. Therefore (since p < 1
2
),

2npw(n)(1− p)n−w(n) ≤ c22
npnγ(n)(1− p)n[1−γ(n)] (7.156)

where c2 :=
1−p
p
. Thus, we can further upper-bound (7.154) as

E[D] ≤ c1c2
1

Mmax{1,1/α}

∑
n∈N

n2npγ(n)(1− p)n−γ(n). (7.157)

Moreover, we have

2npnγ(n)(1− p)n−nγ(n) = 2−n[d2(γ(n)‖p)+h2(γ(n))−] (7.158)

(∗)
≤ 2−n[h2(γ(n))−1] (7.159)

= M1/α (7.160)
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(where d2(·‖·) is the binary KL divergence defined in (7.77)). In the above (∗)
is equality iff γ(n) = p.

Let γ� be the solution of

d2(γ‖p) + h2(γ) = 1. (7.161)

(Note that γ� ∈ (p, 1/2), because the right-hand side of the above is continuous
and increasing in γ, at γ = p it evaluates to h2(p) < 1, and at γ = 1/2 evaluates
to d2(1/2‖p) + 1 > 1.)

Pick any q ∈ (γ�, 1
2
) and partition N = N1 ∪N2 where

N1 := {n ∈ N : γ(n) ≤ q} (7.162)

N2 := {n ∈ N : γ(n) > q}. (7.163)

Accordingly, split the summation in (7.157) as∑
n∈N

n2npγ(n)(1− p)n−γ(n) =
∑
n∈N1

n2npγ(n)(1− p)n−γ(n)

+
∑
n∈N2

n2npγ(n)(1− p)n−γ(n). (7.164)

Since γ(n) is increasing in n,

sup{n ∈ N1} ≤
α−1

1− h2(q)
log(M). (7.165)

Consequently, the first summation in (7.164) contains at most α−1

1−h2(q)
log(M) =:

c3 log(M) terms and, in view of (7.160), is upper-bounded3 as∑
n∈N1

n2npγ(n)(1− p)n−γ(n) ≤
[
c3 log(M)

]2
M1/α. (7.166)

Defining η := d2(q‖p) + h2(q)− 1 > 0, the second summation in (7.164) is
upper bounded as∑

n∈N2

n2npγ(n)(1− p)n−γ(n) =
∑
n∈N2

n2−n[d2(γ(n)‖p)+h2(γ(n))−1]

(a)

≤
∑
n∈N2

n2−nη
(b)

≤
∞∑
n=0

n2−nη =
2η

[2η − 1]2
, (7.167)

where (a) holds since d2(γ‖p) + h2(γ) is increasing in γ and (b) follows by
extending the sum to all integers. Since for large M , the bound of (7.166) is
(much) larger than that of (7.167), in view of (7.164) we have∑

n∈N
n2npγ(n)(1− p)n−γ(n) ≤ 2

[
c3 log(M)

]2
M1/α. (7.168)

3 Since q > γ� > p, for largeM this summation contains n for which γ(n) ≈ p. Therefore,
the bound is tight up to logarithmic factors.
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Using (7.168) in (7.157) we get

E[D] ≤ 2c1c2
[
c3 log(M)

]2 1

Mmax{1,1/α}M
1/α

= 2c1c2
[
c3 log(M)

]2
M−[α−1]+/α (7.169)

Thus, at least for half of the choices of C ,

D ≤ 4c1c2
[
c3 log(M)

]2
M−[α−1]+/α (7.170)

Now we are ready to conclude the proof of Theorem 7.4. We need to show
that given and R and δ > 0, we can tune the parameter α such that with large
enough M ,

log(M)

E[N ]
≤ R (7.171)

and
D ≤ exp{−E[N ]([R− 1 + h2(p)]

+ − δ)}. (7.172)

Let δ′ > 0 be a small positive number. In view of Lemma 7.6, there exists
M0(δ

′) such that for ∀M ≥M0(δ
′),

log(M)

E[N ]
≤ α[1− h2(p)] + δ′ (7.173)

Thus, taking α = [R−δ′]/[1−h2(p)] in the above guarantees (7.171). Moreover,
for any good code satisfying (7.170),

− log(D)

E[N ]
=

log(D)

log(M)

log(M)

E[N ]
(7.174)

(a)

≥ log(D)

log(M)

(
α[1− h2(p)]− δ′

)
(7.175)

(b)

≥
( [α− 1]+

α
− εM

)(
α[1− h2(p)]− δ′

)
(7.176)

= [α− 1]+[1− h2(p)]

−
{(

α[1− h2(p)]− δ′
)
εM +

[α− 1]+

α
δ′
}

(7.177)

(c)
= [R− 1 + h2(p)− δ′]+

−
{
(R− 2δ′)εM +

[R− 1 + h2(p)− δ′]+

R− δ′
δ′
}

(7.178)

(d)

≥ [R− 1 + h2(p)]
+

−
{
δ′ + (R− 2δ′)εM +

[R− 1 + h2(p)− δ′]+

R− δ′
δ′
}

(7.179)

where (a) follows from the lower bound of (7.94) and (b) follows from (7.170)
where εM is a quantity that approaches 0 as M grows large, (c) by substituting
the value of α and (d) since [a− δ′]+ ≥ [a]+ − δ′.
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Since εM approaches 0 as M → ∞, by choosing δ′ small enough and M
sufficiently large, we can make sure that the term inside the curly brackets in
(7.179) is smaller than δ to guarantee (7.172).

7.4 Summary and Outlook

In this chapter, we have studied the problem of channel resolvability in the
presence of feedback. We have shown that, although feedback does not de-
crease the channel resolution, in the presence of causal feedback, higher re-
solvability exponents are achievable, compared to what the block resolvability
codes discussed in Chapter 6 attain.

Specifically, we have shown that we can perfectly simulate an i.i.d. string at
the output of an erasure channel by using an external entropy rate just above
the resolution of the erasure channel. We remark that for the counterpart
problem, i.e., error correction, a similar method (retransmission of every bit
until it is received unerased) permits zero-error data transmission over an
erasure channel at rates arbitrarily close to its capacity, in the presence of
feedback.

Moreover, we have also proposed a resolvability scheme that achieves the
straight-line resolvability exponent [R − I(U ;V )]+, over a binary symmetric
channel. This result is the analogue of establishing the achievability of the er-
ror exponent [I(U ;V )−R]+ in the presence of feedback (cf. [111, Section 2.1])
for communication. Burnashev’s optimal exponent for error correction [18,23]
is also a straight line but with a steeper slope. It would be interesting to inves-
tigate whether the results presented in this chapter can be extended to show
the achievability of the exponent [R − I(U ;V )]+ in the presence of feedback
over general channels and with respect to arbitrary target distributions.

Theorems 7.2 and 7.4 suggest that, by using variable-length resolvability
schemes, much higher resolvability exponents compared to the exponents of
Chapter 6 (which are optimal for an average code) are achievable in the pres-
ence of feedback. These improvements are, in essence, due to rate-adaptation
gains that variable-length coding provides. In fact, for the settings considered
in Theorems 7.2 and 7.4, Lemmas 7.3 and 7.5, respectively, upper-bound the
best attainable resolvability exponent by using block-codes in the presence of
feedback. Comparing those upper bounds to the exponents of Theorems 7.2
and 7.4 gives rise to two important conclusions: First, employing variable-
length resolvability encoders is necessary; even the best block encoder cannot
attain the exponents of Theorems 7.2 and 7.4, at least at rates close to chan-
nel’s resolution. Second, the improvements in the exponent, demonstrated in
this chapter, are exclusively due to the presence of feedback.

We remark that the bounds of Lemmas 7.3 and 7.5 — specifically Equa-
tions (7.76) and (7.90) — for the system without feedback were already implied
by [121, Corollary 6]. We have shown (in Appendix 7.A) that, using a method
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similar to that of [121], we can establish the same bounds in the presence of
feedback.

It is worth noting that, for the channel coding problem, Dobrushin [34]
and Haroutunian [49] upper-bounded the best attainable error exponent in
the presence of feedback by using block codes (This upper bound equals the
sphere-packing exponent for symmetric channels [34] but is larger than that,
for asymmetric ones [30, Exercise 10.36].) These results imply that employ-
ing variable-length error-correction schemes is necessary to achieve the higher
exponents of [23]. Lemmas 7.3 and 7.5 give similar conclusions for channel
resolvability; feedback does not increase the upper bound on the best attain-
able resolvability exponent by using block codes for the settings considered in
theses lemmas.

7.A Upper Bounds on the Best Attainable
Exponents

In this section we upper-bound the best achievable resolvability exponent by
using block codes for the system with feedback to establish Lemmas 7.3 and
7.5. Our method is largely based on that of [121].

In view of Pinsker’s inequality [30, Exercise 3.18], Lemma 7.3 follows if
we prove that for any sequence of block resolvability codes (indexed by their
block-length n), for the system with feedback,

lim sup
n→∞

− 1

n
log |PṼ n − P n

V | ≤
{
0 if R < (1− p),

d2(R‖1− p) if R ≥ (1− p).
(7.180)

Likewise, to prove Lemma 7.5 it suffices to show

lim sup
n→∞

− 1

n
log |PṼ n − P n

V |

≤

⎧⎪⎨
⎪⎩
0 if R < 1− h2(p),

d2
(
p− R−1+h2(p)

log[(1−p)/p]

∥∥ p) if 1− h2(p) ≤ R < log[2(1− p)],

+∞ if R ≥ log[2(1− p)].

(7.181)

It is well known that for any two probability measures P and Q on Vn

|P −Q| = 2 sup
A⊆Vn

{P (A)−Q(A)}. (7.182)

Recall that a block resolvability code maps a uniformly distributed word
J ∈ {1, 2, . . . ,M} into a sequence of length-n of channel input symbols Ũn that
are observed at the output of the channel as Ṽ n. The collection (J, Ũn, Ṽ n)
has distribution

Pr{J = j, Ũn = un, Ṽ n = vn} = 1

M

n∏
i=1

1{Enci(j, ṽi−1) = ũi}PV |U(ṽi|ũi).

(7.183)
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Therefore,

Pr{Ṽ n = vn|J = j} =
n∏

i=1

PV |U
(
vi
∣∣ Enci(j, vi−1)

)
. (7.184)

For each j = 1, 2, . . . ,M , let

Aj :=
{
vn ∈ Vn :

Pr{Ṽ n = vn|J = j}
P n
V (v

n)
≥ 2M

}
, (7.185)

Define also

A :=
M⋃
j=1

Aj (7.186)

In view of (7.182),

1

2
|PṼ n − P n

V | ≥ PṼ n(A)− P n
V (A). (7.187)

We also have

PṼ n(A) =
1

M

M∑
j=1

∑
vn∈Vn

Pr{Ṽ n = vn|J = j}1{vn ∈ A} (7.188)

≥ 1

M

M∑
j=1

∑
vn∈Vn

Pr{Ṽ n = vn|J = j}1{vn ∈ Aj}, (7.189)

where the inequality follows since Aj ⊆ A (for every j = 1, 2, . . . ,M). More-
over, the union bound implies

P n
V (A) ≤

M∑
j=1

P n
V (Aj) =

M∑
j=1

∑
vn∈Vn

P n
V (v

n)1{vn ∈ Aj}. (7.190)

Combining (7.189) and (7.190) in (7.187) yields

1

2
|PṼ n − P n

V | ≥
1

M

M∑
j=1

∑
vn∈Vn

[
Pr{Ṽ n = vn|J = j} −MP n

V (v
n)
]

· 1
{Pr{Ṽ n = vn|J = j}

P n
V (v

n)
≥ 2M

}
. (7.191)

7.A.1 Proof of Lemma 7.3

Given j ∈ {1, 2, . . . ,M} and for a fixed block resolvability encoder, define

Vn(j) :=
{
vn ∈ {0, 1, ?}n : ∀i = 1, 2, . . . , n, vi ∈ {?,Enci(vi−1, j)}

}
. (7.192)
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Using the transition probabilities of BEC(p) and (7.184) we get

Pr{Ṽ n = vn|J = j} = pne(vn)(1− p)n−ne(vn)1{vn ∈ Vn(j)}, (7.193)

where for vn ∈ {0, 1, ?}n,

ne(v
n) :=

∣∣{i ∈ {1, 2, . . . , n} : vi =?
}∣∣ (7.194)

is the number of erasures in vn. Moreover

P n
V (v

n) = pne(vn)
(1− p

2

)n−ne(vn)

. (7.195)

Consequently (7.191) is simplified as

1

2
|PṼ n − P n

V | ≥
1

M

M∑
j=1

∑
vn∈Vn

[
Pr{Ṽ n = vn|J = j} −MP n

V (v
n)
]

· 1
{Pr{Ṽ n = vn|J = j}

P n
V (v

n)
≥ 2M

}
(7.196)

=
1

M

M∑
j=1

∑
vn∈Vn

[
pne(vn)(1− p)n−ne(vn)1{vn ∈ Vn(j)}

−Mpne(vn)
(1− p

2

)n−ne(vn)]
1
{1{vn ∈ Vn(j)}

2−[n−ne(vn)]
≥ 2M

}
(7.197)

=
1

M

M∑
j=1

n∑
e=0

Kj(e)p
e(1− p)n−e

[
1−M2−(n−e)

]
1
{
2n−e ≥ 2M

}
.

(7.198)

where in the last step we have defined

Kj(e) :=
∣∣{vn ∈ Vn(j) : ne(v

n) = e
}∣∣. (7.199)

We now note that there is a one-to-one correspondence between the set of
sequences in Vn(j) with e erasures and the set of binary sequences of Hamming
weight e: Given any sequence vn ∈ Vn(j) with e erasures, we can construct a
binary sequence of Hamming weight e by putting ones at coordinates where
vi =? and zeros elsewhere. Conversely, given a binary sequence of Hamming
weight e, bn ∈ {0, 1}n, we can construct a sequence vn ∈ Vn(j) by setting
vi = Enci(j, v

i−1) if bi = 0 and vi =? otherwise, for i = 1, 2, . . . , n. Therefore,

Kj(e) =

(
n

e

)
. (7.200)
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Using the above in (7.198) yields

1

2
|PṼ n − P n

V | ≥
n∑

e=0

(
n

e

)
pe(1− p)n−e

[
1−M2−(n−e)

]
1
{
2n−e ≥ 2M

}
(7.201)

=

�n−log(M)−1�∑
e=0

(
n

e

)
pe(1− p)n−e

[
1−M2−(n−e)

]
(7.202)

(a)

≥ 1

2

�n−log(M)−1�∑
e=0

(
n

e

)
pe(1− p)n−e (7.203)

(b)

≥ 1

2(n+ 1)

�n−log(M)−1�∑
e=0

2−nd2(e/n‖p) (7.204)

≥ 1

n+ 1
max

e∈{0,1,...,�n−log(M)−1�}
2−nd2(e/n‖p). (7.205)

In the above (a) follows since for e ≤ n − log(M) − 1, M2−(n−e) ≤ 1
2
and (b)

follows since (
n

k

)
≥ 1

(n+ 1)
2nh2(k/n). (7.206)

Using the continuity of binary divergence, (7.205) yields

lim sup
n→∞

− 1

n
log |PṼ n − P n

V | ≤ min
0≤q≤1−R

d2(q‖p) (7.207)

=

{
0 if R ≤ 1− p,

d2(1−R‖p) if R > 1− p,
(7.208)

which establishes (7.180).

7.A.2 Proof of Lemma 7.5

Let
w̃j(v

n) :=
∣∣{i ∈ {1, 2, . . . , n} : vi �= Enci(j, v

i−1)
}∣∣. (7.209)

As PV |U is the transition probability of a BSC(p), (7.184), yields

Pr{Ṽ n = vn|J = j} = pw̃j(v
n)(1− p)n−w̃j(v

n). (7.210)

Furthermore, as PV is assumed to be the uniform distribution on {0, 1}, (7.191)
is simplified as

1

2
|PṼ n − P n

V | ≥
1

M

M∑
j=1

∑
vn∈Vn

[
Pr{Ṽ n = vn|J = j} −MP n

V (v
n)
]

· 1
{Pr{Ṽ n = vn|J = j}

P n
V (v

n)
≥ 2M

}
(7.211)
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=
1

M

M∑
j=1

∑
vn∈Vn

[
pw̃j(v

n)(1− p)n−w̃j(v
n) −M2−n

]

· 1
{pw̃j(v

n)(1− p)n−w̃j(v
n)

2−n
≥ 2M

}
(7.212)

=
1

M

M∑
j=1

n∑
w=0

Kj(w)
[
pw(1− p)n−w −M2−n

]

· 1
{pw(1− p)n−w

2−n
≥ 2M

}
, (7.213)

where in the last step we have defined

Kj(w) :=
∣∣{vn ∈ {0, 1}n : w̃j(v

n) = w
}∣∣. (7.214)

Again, we observe a one-to-one correspondence between the elements of the
set {vn ∈ {0, 1}n : w̃j(v

n) = w} and the binary sequences of Hamming weight
w: Any vn with w̃j(v

n) = w can be mapped to a binary sequence of Hamming
weight w by putting ones at coordinates for which vi �= Enci(j, v

i−1) and
zeros elsewhere. Conversely, given a binary sequence bn ∈ {0, 1}n of Hamming
weight w we can construct vn with w̃j(v

n) = w by setting vi = Enci(j, v
i−1)⊕bi.

Consequently,

Kj(w) =

(
n

w

)
, ∀j = 1, 2, . . . ,M. (7.215)

Using (7.215) in (7.213) yields

1

2
|PṼ n − P n

V | ≥
n∑

w=0

(
n

w

)[
pw(1− p)n−w −M2−n

]
1
{pw(1− p)n−w

2−n
≥ 2M

}
.

(7.216)
As p ≤ 1/2,

n∑
w=0

(
n

w

)[
pw(1− p)n−w −M2−n

]
1
{pw(1− p)n−w

2−n
≥ 2M

}

=

�τn�∑
w=0

(
n

w

)[
pw(1− p)n−w −M2−n

]
(7.217)

where, with R := log(M)/n,

τn := n
[
p− 1

log[(1− p)/p]

(
R +

1

n
− [1− h2(p)]

)]
. (7.218)
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Therefore, we can lower-bound |PṼ n − P n
V | as

1

2
|PṼ n − P n

V | ≥
�τn�∑
w=0

(
n

w

)[
pw(1− p)n−w −M2−n

]
(7.219)

(a)

≥
�τn�∑
w=0

(
n

w

)
1

2
pw(1− p)n−w (7.220)

(b)

≥ 1

2(n+ 1)

�τn�∑
w=0

2−nd2(w/n‖p) (7.221)

≥ 1

2(n+ 1)
max

w∈{0,1,...,�τn�}
2−nd2(w/n‖p). (7.222)

where (a) follows as for w ≤ �τn�, M2−n ≤ 1
2
pw(1 − p)n−w by definition, and

(b) holds because of (7.206). Consequently, as

lim
n→∞

�τn�
n

= p− R− [1− h2(p)]

log[(1− p)/p]
=: q(R), (7.223)

and the binary divergence function is continuous, we get

lim sup
n→∞

− 1

n
log |PṼ n − P n

V | ≤ min
q∈[0,q(R)]

d2(q‖p). (7.224)

Finally, we note that

min
q∈[0,q(R)]

d2(q‖p) =

⎧⎪⎨
⎪⎩
0 q(R) ≥ p

d2(q(R)‖p) 0 < q(R) < p

+∞ q(R) ≤ 0.

(7.225)

This establishes (7.181) and concludes the proof.

7.B Proof of Equation (7.101)

The upper bound follows from concavity of h2(·). To establish the lower bound,

recall that h′
2(p) = log

[
1−p
p

]
and h′′

2(p) = − log(e)
p(1−p)

. Therefore,

h2(p+ ε)− h2(p)− εh′
2(p) = (p+ ε) log

[ p

p+ ε

]
+ (1− p− ε) log

[ 1− p

1− p− ε

]
= −

{
(p+ ε) log

[
1 +

ε

p

]
+ (1− p− ε) log

[
1− ε

1− p

]}
(7.226)

(∗)
≥ − log(e)

{
(p+ ε)

ε

p
− (1− p− ε)

ε

1− p

}
(7.227)

= − log(e)

p(1− p)
ε2. (7.228)

In the above (∗) follows since log(1 + s) ≤ log(e)s.
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7.C A Bound on the Empirical Second Moment
of Stopped Martingales

Lemma 7.7. Let (ξn, n ∈ N) be i.i.d. zero-mean random variables and

Sn :=
n∑

i=1

ξn, n ∈ N.

Then the process (Sn, n ∈ N) is a martingale with respect to the natural
filtering

(
Fn = σ(ξ1, . . . , ξn), n ∈ N

)
and, if N is a stopping time,

E
[S2

N

N

]
≤ var(ξ1)E[1 + ln(N)]. (7.229)

Proof. That (Sn, n ∈ N) is a martingale is trivial. We only prove (7.229). Let

Nm := min{N,m}, ∀m ∈ N. (7.230)

It is clear that ∀m ∈ N, Nm ∈ {1, 2, . . . ,m}, almost surely and Nm is a
stopping time. The latter can be verified by noting that

{Nm = n} =
{
{N = n} if n < m,

{N ≥ m} if n = m.
(7.231)

Thus for n < m, {Nm = n} = {N = n} ∈ Fn by the hypothesis that N is a
stopping time, and for n = m,

{Nm = m} = {N ≥ m} =
m−1⋂
j=1

{N �= j} ∈ Fm−1, (7.232)

and Fm−1 ⊆ Fm (hence {Nm = m} ∈ Fm). Finally N1 = 1 almost surely,
hence,

E

[
S2
N1

N1

]
= var(ξ1). (7.233)

We now have

E

[
S2
Nm

Nm

]
− E

[
S2
Nm−1

Nm−1

]
= E

[(
S2
m

m
− S2

m−1

m− 1

)
1{N ≥ m}

]
(7.234)

= E

[
(m− 1)

(
ξ2m + 2ξmSm−1

)
− S2

m−1

(m− 1)m
1{N ≥ m}

]
≤ 1

m

(
E[ξ2m1{N ≥ m}] + 2E[ξmSm−11{N ≥ m}]

)
(∗)
=

1

m
var(ξm) Pr{N ≥ m}. (7.235)
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In the above (∗) follows since, as shown in (7.232), {N ≥ m} ∈ Fm−1; thus
1{N ≥ m} is independent of ξm.

Using (7.235) repeatedly together with the fact that ∀n ∈ N, var(ξn) =
var(ξ1), we get

E

[
S2
Nm

Nm

]
≤ E

[
S2
N1

N1

]
+ var(ξ1)

m∑
�=2

Pr{N ≥ �}
�

(7.236)

(∗)
= var(ξ1)

m∑
�=1

Pr{N ≥ �}
�

≤ var(ξ1)
∑
�≥1

Pr{N ≥ �}
�

. (7.237)

where (∗) follows from (7.233) and the fact that N ≥ 1 almost surely. We
finally have

∑
�≥1

Pr{N ≥ �}
�

=
∑
n≥1

Pr{N = n}
n∑

�=1

1

�
(7.238)

≤
∑
n≥1

Pr{N = n}(1 + ln(n)) = E[1 + ln(N)]. (7.239)

Using the above in (7.237) yields

E

[
S2
Nm

Nm

]
≤ E[1 + ln(N)], ∀m ∈ N. (7.240)

Now, since limm→∞ Nn = N with probability 1

E
[S2

N

N

]
= E

[
lim

m→∞

S2
Nm

Nm

]
= E

[
lim inf
m→∞

S2
Nm

Nm

]
(a)

≤ lim inf
m→∞

E

[
S2
Nm

Nm

]
(b)

≤ E[1+ln(N)],

(7.241)
where (a) follows from Fatou’s lemma (applied to the sequence of non-negative
random variables S2

Nm
/Nm, m ∈ N) and (b) follows from (7.240).



Ordering the Noisy
Channels A
Let W : X → Y and V : X → Z be two discrete-input memoryless channels
(DMCs) with the same input alphabet X and arbitrary output alphabets. We
are interested in comparing these channels. For ease of presentation, we assume
the channel has also a discrete output alphabet. The results presented here
can straightforwardly be extended to continuous-output channels.

Definition A.1. The channel V : X → Z is degraded with respect to the
channel W : X → Y (equivalently, W is upgraded with respect to V ) iff there
exist a stochastic matrix Q : Y → Z such that

V (z|x) =
∑
y∈Y

Q(z|y)W (y|x) ∀z ∈ Z, ∀x ∈ X (A.1)

We write V �d W or W �d V to denote this.

Degradedness means by processing the output of W one can simulate V
(see Figure A.1).

Definition A.2. The channels W : X → Y and V : X → Z are “equivalent”
if W �d V and W �d V .

W QX ∈ X Z ∈ Z
Y ∈ Y

V

Figure A.1: V �d W or Equivalently W �d V
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Lemma A.1. Suppose W : F2 → Y is a binary-input DMC. Assume there
exist two output symbols y′ and y′′ in its output alphabet Y with the same
likelihood ratio,

W (y′|0)
W (y′|1) =

W (y′′|0)
W (y′′|1) . (A.2)

Then, W is equivalent (in the sense of Definition A.2) to W ′ : F2 → Y \
{y′, y′′} ∪ {(y′, y′′)} with transition probabilities

W ′(y|x) =
{
W (y|x) if y �= (y′, y′′)

W (y′|x) +W (y′′|x) if y = (y′, y′′).
(A.3)

Proof. Let Y ′ := Y \ {y′, y′′} ∪ {(y′, y′′)} for the sake of brevity. Taking the
degrading channel, Q : Y → Y ′, as the one that maps y′ and y′′ to (y′, y′′) (and
acts as the identity channel on all other symbols), namely,

Q(y1|y2) = 1
{(

y2 �∈ {y′, y′′} ∧ y1 = y2
)
∨
(
y2 ∈ {y′, y′′} ∧ y1 = (y′, y′′)

)}
,

shows that W ′ �d W . Whereas, because of the assumption (A.2), taking the
channel Q′ : Q′ → Y as

Q′(y1|y2) =

⎧⎪⎨
⎪⎩
1 if y2 �= (y′, y′′) and y1 = y2

W (y′|0)
W (y′|0)+W (y′′|0) if y2 = (y′, y′′) and y1 = y′

W (y′′|0)
W (y′|0)+W (y′′|0) if y2 = (y′, y′′) and y1 = y′′

(A.4)

shows that W �d W ′.

Definition A.3. A channel W : X → Y is less noisy than channel V : X → Z
if for every distribution PUX such that U −−◦ X −−◦ (Y, Z) ∼ PUX(u, x)W (y|x)V (z|x),

I(U ;Y ) ≥ I(U ;Z) (A.5)

We write V �n W to show W is less noisy than V .

Definition A.4. A channelW : X → Y ismore capable than channel V : X →
Z if for every input distribution PX , with (X, Y, Z) ∼ PX(x)W (y|x)V (z|x),

I(X;Y ) ≥ I(X;Z) (A.6)

We write V �c W if W is more capable than V .

Degradedness is a strictly stronger condition than being less noisy which
is itself strictly stronger than being more capable [37, § 5.6]

Channel degradation and Arıkan’s polar transform (cf. § 2.2) commute:

Theorem A.2 ([63, Lemma 4.7]). Let W : X → Y and V : X → Z be two
discrete memoryless channels. Then, if V �d W , ∀m ∈ N, ∀sm ∈ {−,+}m,

V sm �d W sm .
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We further know that if W is less noisy than V , the synthetic channels
obtained from W are more capable (but not necessarily less noisy) than the
corresponding synthetic channels obtained from V .

Theorem A.3 ([105, Theorem 10]). Let W : X → Y and V : X → Z be
two discrete memoryless channels. Then, if V �n W , ∀m ∈ N, and ∀sm ∈
{−,+}m,

V sm �c W
sm .





Useful Results from
Convex Analysis B
Lemma B.1. Let f : A → R be a convex and continuous function over a
convex domain A and L : A→ B be a continuous linear mapping from A onto
B — i.e., B = L(A) is the image of A under L. Define g : B → R as

g(y) := inf
x∈A:

L(x)=y

f(x). (B.1)

Then g is convex in y hence continuous in the interior of B. Furthermore, if
A is also compact, then g is continuous everywhere in B.

Proof. Pick y1 and y2 in B. By definition ∀ε > 0, there exists x�
1 and x�

2 in A
with

L(x�
1) = y1 and L(x�

2) = y2, (B.2)

such that
g(y1) + ε > f(x�

1) and g(y2) + ε > f(x�
2). (B.3)

Then for any λ ∈ [0 : 1],

λg(y1) + (1− λ)g(y2) + ε > λf(x�
1) + (1− λ)f(x�

2) (B.4)

(a)

≥ f
(
λx�

1 + (1− λ)x�
2

)
(B.5)

(b)

≥ min
x∈A:

L(x)=λy1+(1−λ)y2

f(x) = g
(
λy1 + (1− λ)y2

)
(B.6)

where (a) follows by the convexity of f and (b) because

L
(
λx�

1 + (1− λ)x�
2

)
= λL(x�

1) + (1− λ)L(x�
2)λy1 + (1− λ)y2, (B.7)

as L is linear.
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As (B.6) holds for every positive ε, it implies

λg(y1) + (1− λ)g(y2) ≥ g
(
λy1 + (1− λ)y2

)
(B.8)

which establishes the convexity of g.

Convexity implies continuity in the interior of B. The only discontinuity
points of g could be at the boundaries of the set B where it might only be
upper semi-continuous. In other words, for a sequence of points (yn, n ∈ N) in
B with y := limn→∞ yn on the boundaries of B,

lim sup
n→∞

g(yn) ≤ g(y). (B.9)

We now prove that if A is compact, then g is lower semi-continuous at
any point, hence is continuous everywhere. Because L is a bounded linear
mapping, the compactness of A implies B is also compact. Further, if A is
compact the infimum in (B.1) is indeed a minimum.

Let (yn, n ∈ N) be any sequence of points in B and y := limn→∞ yn. Note
that y ∈ B since B is compact. Define again

x�
n := argmin

x∈A:
L(x)=yn

f(x), (B.10)

and x := limn→∞ x�
n (by passing to a subsequence if necessary). The compact-

ness of A implies x ∈ A. Since f is assumed to be continuous,

lim
n→∞

g(yn) = lim
n→∞

f(x�
n) = f(x) (B.11)

Because L is continuous

lim
n→∞

L(x�
n) = L(x). (B.12)

Moreover,

lim
n→∞

L(x�
n) = lim

n→∞
yn = y. (B.13)

Hence, L(x) = y which yields

f(x) ≥ min
x′∈A:

L(x′)=y

f(x′) = g(y). (B.14)

Combining (B.11) and (B.14) yields

lim inf
n→∞

g(yn) ≥ g(y). (B.15)

Therefore, g is lower semi-continuous at any point hence is continuous over
the entire set B.
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Lemma B.2. Let f : A → R+ be a non-negative, convex, and continuous
function over a convex domain A and g : A → R a continuous function. Let
x0 be a global minimizer of f in A. Then, if g(x0) ≤ α

inf
x∈A:

g(x)≥α

f(x) = inf
x∈A:

g(x)=α

f(x) (B.16)

Moreover, if x0 is the unique global minimizer, ∀x1 ∈ A with g(x1) > α,

f(x1) > inf
x∈A:

g(x)=α

f(x). (B.17)

Proof. Obviously
inf
x∈A:

g(x)≥α

f(x) ≤ inf
x∈A:

g(x)=α

f(x). (B.18)

To establish (B.16) we will show that

inf
x∈A:

g(x)≥α

f(x) ≥ inf
x∈A:

g(x)=α

f(x). (B.19)

By definition, ∀ε > 0, there exists x� ∈ A with g(x�) ≥ α such that

inf
x∈A:

g(x)≥α

f(x) + ε > f(x�). (B.20)

Define γ : [0, 1]→ R as

γ(λ) := g
(
λx� + (1− λ)x0

)
. (B.21)

Since g is continuous so is γ. Moreover γ(0) = g(x0) ≤ α and γ(1) = g(x�) ≥ α.
Thus, there exists 0 ≤ λ� ≤ 1 for which

γ(λ�) = α. (B.22)

Therefore, (B.20) yields

inf
x∈ A:
g(x)≥α

f(x) + ε > f(x�) (B.23)

(a)

≥ λ�f(x�) + (1− λ�)f(x0) (B.24)

(b)

≥ f
(
λ�x� + (1− λ�)x0

)
(B.25)

(c)

≥ inf
x∈A:

g(x)=α

f(x). (B.26)

where (a) follows as x0 is the global minimizer of f and (b) from the convexity
of f and (c) because

g
(
λ�x� + (1− λ�)x0

)
= α. (B.27)



208 Useful Results from Convex Analysis

As (B.26) holds for every positive ε, it implies (B.19).
To prove (B.17), we use the same type of argument. Specifically, we define

γ′(λ) := g
(
λx1 + (1− λ)x0

)
(B.28)

and note that there exists 0 ≤ λ� < 1 such that γ′(λ�) = α. (Note that
γ′(1) > α by assumption.) Therefore,

f(x1)
(a)
> λ�f(x1) + (1− λ�)f(x0) (B.29)

(b)

≥ f
(
λ�x1 + (1− λ�)x0

)
(B.30)

(c)

≥ inf
x∈A:

g(x)=α

f(x) (B.31)

where (a) follows since λ� < 1 and x0 is the unique global minimizer and (b)
and (c) from the convexity of f and the fact that g(λ�x1 + (1 − λ�)x0) = α,
respectively.

Lemma B.3. Let f : A → R a convex function over some convex domain A
and L : A→ R a linear function. Then, g : R→ R, defined as

g(y) := sup
x∈A:

f(x)≤y

L(x) (B.32)

is concave in y.

Proof. Take y1, y2 ∈ R. By definition, for every ε > 0, there exists x�
1 ∈ A and

x�
2 ∈ A with

f(x�
1) ≤ y1 and f(x�

2) ≤ y2, (B.33)

such that
L(x�

1) > g(y1)− ε and L(x�
2) > g(y2)− ε. (B.34)

Since L is linear, for any λ ∈ [0 : 1],

L
(
λx�

1 + (1− λ)x�
2

)
= λL(x�

1) + (1− λ)L(x�
2) (B.35)

> λg(y1) + (1− λ)g(y2)− ε. (B.36)

Moreover, as f is convex,

f(λx�
1 + (1− λ)x�

2) ≤ λf(x�
1) + (1− λ)f(x�

2) ≤ λy1 + (1− λ)y2. (B.37)

Consequently,

L
(
λx�

1 + (1− λ)x�
2

)
≤ sup

x∈A:
f(x)≤λy1+(1−λ)y2

L(x) = g
(
λy1 + (1− λ)y2

)
. (B.38)

Combining (B.36) and (B.38) we have

g
(
λy1 + (1− λ)y2

)
> λg(y1) + (1− λ)g(y2)− ε. (B.39)

As (B.39) must hold for every positive ε, we conclude that

g
(
λy1 + (1− λ)y2

)
≥ λg(y1) + (1− λ)g(y2).



Types versus Distributions C
Recall that given a discrete alphabet A, a distribution P ∈ P(A) is an n-type,
iff ∀a ∈ A, nP (a) ∈ Z and that we denote the set of n-types over alphabet A
as Pn(A) � P(A) (see § 6.1).

The union of n-types
⋃

n∈N Pn(A) is dense in the set of distributions on A:

Lemma C.1. Given any distribution P ∈ P(A) there exists a sequence of
n-types (P (n) ∈ Pn(A), n ∈ N) such that

lim
n→∞

|P − P (n)| = 0. (C.1)

Moreover the sequence of n-types can be chosen such that P (n) � P for all
n ∈ N and, for n ≥ �1/Pmin�, supp(P (n)) = supp(P ). Here, we have defined,

Pmin := min
a∈supp(P )

P (a). (C.2)

Proof. Without loss of generality, suppose the support of P equals A (if not,
just start with a smaller A). Define, for every n, An ⊆ A as

An := {a ∈ A : nP (a) �∈ Z} (C.3)

and let

kn(a) := �nP (a)�. (C.4)

Obviously, if a ∈ An

kn(a) > nP (a)− 1 (C.5)

otherwise,

kn(a) = nP (a) (C.6)
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Therefore,

n− |An| <
∑
a∈A

kn(a) ≤ n (C.7)

Finally, let

rn := n−
∑
a∈A

kn(a). (C.8)

Let Bn be any arbitrary subset of size rn < |An| of An and set

k̃n(a) :=

{
kn(a) if a �∈ Bn
kn(a) + 1 if a ∈ Bn

(C.9)

The integers k̃n(a), a ∈ A have the following properties:

(i) k̃n(a) ≥ 0 (by construction); and

(ii)
∑
a

k̃n(a) = n.

Consequently

P (n)(a) :=
k̃(a)

n
(C.10)

is a valid n-type. Moreover, ∀a ∈ A,
|k̃n(a)− nP (a)| ≤ 1 (C.11)

hence,

|P (n) − P | ≤ |A|
n

, (C.12)

which goes to 0 as n→∞.
Finally, note that if n > 1/Pmin, then ∀a ∈ A

nP (a) > 1. (C.13)

Therefore, ∀a ∈ A, kn(a) > 0.

Constructing a sequence of n-types that approximate a given distribution
was trivial: we just had to quantize the distribution to obtain an n-type.
We sometimes need to quantize distributions to n-types with a prescribed
marginal:

Lemma C.2. Let P ∈ P(X × Y) be a joint distribution on X × Y and PX

be its x-marginal. Let Q
(n)
X ∈ Pn(X ) be an arbitrary sequence of n-types that

converges to PX . Then, there exists a sequence of n-types P (n) ∈ Pn(X × Y)
such that

lim
n→∞

|P − P (n)| = 0 (C.14)

and
P

(n)
X = Q

(n)
X , ∀n ∈ N (C.15)

Moreover, P (n) � P for all n ∈ N.
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Proof. Once again, without loss of generality, assume supp(PX) = X .
We know that every n, and every x ∈ X , there exists an nQ

(n)
X (x)-type

that is close to PY |X(·|x). More precisely, using Lemma C.1 we can construct

an nQ
(n)
X (x)-type, call it P

(n)
Y |X(·|x), such that

∣∣P (n)
Y |X(·|x)− PY |X(·|x)

∣∣ ≤ |Y|
nQ

(n)
X (x)

(C.16)

and P
(n)
Y |X(·|x)� PY |X(·|x).

Now it is easy to check that P (n)(x, y) := Q
(n)
X (x)× P

(n)
Y |X(y|x) is an n-type

with x-marginal Q
(n)
X . Moreover∣∣P (n) − P
∣∣ =∑

x,y

∣∣Q(n)
X (x)P

(n)
Y |X(y|x)− PX(x)PY |X(y|x)

∣∣ (C.17)

≤
∑
x

Q
(n)
X (x)

∑
y

∣∣P (n)
Y |X(y|x)− PY |X(y|x)

∣∣
+
∑
x

∣∣Q(n)
X (x)− PX(x)

∣∣∑
y

PY |X(y|x) (C.18)

≤ |X ||Y|
n

+
∣∣Q(n)

X − PX

∣∣. (C.19)

The above upper bound converges to 0 as n → ∞ by the assumption that
limn→∞ |Q(n)

X − PX | = 0.

A more interesting scenario is to ask for quantizing a distribution such that
both of the marginals of the quantized n-types match desired n-types. This is
also possible but requires taking care of a few technical details.

Definition C.1. Given any joint distribution P ∈ P(X × Y) the support
graph of P is the bipartite graph G = (V,E) with V := X ∪ Y (here we
assume, without loss of generality, that X ∩ Y = ∅) and

E := {e = (x, y) : P (x, y) > 0} (C.20)

That is, x ∈ X is connected to y ∈ Y iff P puts a positive mass on (x, y).

Definition C.2. If We call (Xi × Yi, i = 1, 2, . . . , k) the block-partitioning of
the support of P if,

(i) supp(P ) ⊆
k⋃

i=1

(Xi × Yi);

(ii) (X1,X2, . . . ,Xk) (respectively (Y1,Y2, . . . ,Yk)) partitions X (resp. Y);

(iii) ∀i = 1, 2, . . . , k, the component corresponding to vertices in Xi ∪ Yi of
the connectivity graph of P (cf. Definition C.1) is connected.
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(iv) ∀i �= j, the component corresponding to vertices in Xi ∪ Yi ∪ Xj ∪ Yj in
the connectivity graph of P is disconnected.

Obviously the block-partitioning of the support of a distribution is unique
(up to reordering the sets) as it corresponds to partitioning the connectivity
graph of the distribution to connected components.

Lemma C.3. Let P ∈ P(X ×Y) be a joint distribution on X ×Y and PX and

PY ) its x- and y-marginals, respectively. Let Q
(n)
X ∈ Pn(X ) and Q

(n)
Y ∈ Pn(Y)

be two arbitrary sequences of n-types that converge to PX and PY respectively.
Let (Xi×Yi, i = 1, 2, . . . , k) be the block-partitioning of the support of P . Then,
if

Q
(n)
X (Xi) = Q

(n)
Y (Yi), ∀i = 1, 2, . . . , k, (C.21)

there exists a sequence of n-types P (n) ∈ Pn(X × Y) such that

lim
n→∞

|P − P (n)| = 0 (C.22)

and

P
(n)
X = Q

(n)
X , and P

(n)
Y = Q

(n)
Y ∀n ∈ N. (C.23)

Moreover, P (n) � P for all n ∈ N.

Remark. Before proving Lemma C.3, it is worthwhile to mention that the
conditions on the support of P are rather mild and, in most applications, we
do not need to worry about them. For example, if the support graph of P (cf.
Definition C.1) is connected (C.21) obviously holds. Another very common

situation is when Q
(n)
X and Q

(n)
Y are marginals of a joint n-type Q(n), that is

absolutely continuous with respect to P . Then, we can easily verify that even
if the support graph of P is disconnected, (C.21) is automatically satisfied.

Proof of Lemma C.3. By the virtue of Lemma C.1, there exist a sequence of
n-types (P̃ (n) ∈ Pn(X × Y), n ∈ N) that converge to P as n grows large.

Obviously the marginals of P̃ (n)s can be different than Q
(n)
X and Q

(n)
Y but since

the latter converge to PX and PY , respectively, the marginals of P̃ (n) are close
to Q

(n)
X and Q

(n)
Y . It turns out that we can slightly perturb P̃ (n) so that its

marginals match Q
(n)
X and Q

(n)
Y without changing its support.

The constraint on the support turn out to be quite important. In fact,
without such a constraint, much easier solutions exist.

To prove the claim, we shall show that ∀ε > 0, ∃n0(ε) such that ∀n ≥ n0,

|P̃ (n) − P | ≤ ε/2 (C.24)

and we can find an integer-value mapping d : X × Y → Z with the following
properties:
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1. With

rX(x) := n[Q
(n)
X (x)− P̃

(n)
X (x)], and (C.25)

rY (y) := n[Q
(n)
Y (y)− P̃

(n)
Y (y)], (C.26)

we have

∀x ∈ X ,
∑
y∈Y

d(x, y) = rX(x), and (C.27)

∀y ∈ Y ,
∑
x∈X

d(x, y) = rY (y). (C.28)

2. ∀(x, y) ∈ X × Y ,
d(x, y) + nP̃ (n)(x, y) ≥ 0 (C.29)

with equality if P̃ (n)(x, y) = 0.

3.
|d| :=

∑
(x,y)∈X×Y

|d(x, y)| ≤ nε/2 (C.30)

(Note that d(x, y) also depends on n, but we do not show this dependence
explicitly to keep the notation simple.) If such d can be found,

P (n)(x, y) := P̃ (n)(x, y) +
1

n
d(x, y) (C.31)

will be an n-type (because d is integer-valued) whose x- and y-marginals are

Q
(n)
X and Q

(n)
Y , respectively, (due to the first property) and is absolutely con-

tinuous with respect to P̃ (n) (due to the second property). Moreover, due to
the third property, using the triangle inequality and (C.24) it easily follows
that

|P (n) − P | ≤ |P (n) − P̃ (n)|+ |P̃ (n) − P | ≤ ε. (C.32)

Hence, we have constructed the sequence of n-types with desired properties.
Let us assume n ≥ �1/Pmin� (see (C.2)) so that P̃ (n) has the same support

as P and pick
γ := min{(2/5)Pmin, ε/(4|X ||Y|)}. (C.33)

By definition, ∃n1(γ) such that for n ≥ n1,

|P̃ (n) − P | ≤ γ/2. (C.34)

(Hence, for such n (C.24) holds.) Moreover, (C.34) implies

|P̃ (n)
X − PX | ≤ γ/2 and |P̃ (n)

Y − PY | ≤ γ/2. (C.35)

On the other side, since Q
(n)
X and Q

(n)
Y converge to PX and PY , respectively,

∃n2(γ) such that for n ≥ n2

|Q(n)
X − PX | ≤ γ/2 and |Q(n)

Y − PY | ≤ γ/2 (C.36)
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Therefore, triangle inequality implies, for n ≥ max{n1, n2},

|Q(n)
X − P̃

(n)
X | ≤ γ and |Q(n)

Y − P̃
(n)
Y | ≤ γ (C.37)

Let G be the support graph of P̃ (n) (see Definition C.1). Since n ≥
�1/Pmin�, this would be the same as the support graph of P .

The graph G has k connected components by definition. Consider the
ith connected component of G, and denote it as Gi = (Vi, Ei). We know
that Vi = Xi ∪ Yi. Let Ti = (Vi, E

′
i), E

′
i ⊆ Ei be a spanning tree of that

component. Pick any vertex, say x0 ∈ Xi, as the root of the tree.1 Suppose
this tree has height Hi. Let Vi(h) denote the set of vertices at height h in
the tree. (Thus Vi(0) = {x0}.) For every vertex v ∈ Vi(h), h ≥ 1, let p(v) ∈
Vi(h − 1) be the parent of v and Ki(v) := {u ∈ Vi(h + 1) : (v, u) ∈ E ′

i}
be the children of v (with K(v) = ∅ for the leaves). Consider the following
algorithm to populate the edges of the tree Ti with integer values (de, e ∈ E ′

i):

Algorithm 10:

1 for h = H to 1 do
2 foreach v ∈ Vi(h) do
3 d(v,p(v)) ← r(v)−∑u∈Ki(v)

d(v,u) ; // r(v) is defined below

In line 3 we have used the generic notation

r(v) :=

{
rX(x), if v ∈ X ,
rY (y), if v ∈ Y .

(C.38)

Now, we claim that running Algorithm 10 on each connected component and
setting

d(x, y) :=

{
de if (x, y) ∈ E ′

0 otherwise.
(C.39)

results in the desired mapping d : X × Y → Z with all desired properties.

Let us verify them step by step: Equation (C.27) and (C.28) hold by con-
struction except for the roots of the trees. To prove that (C.27) holds for the
roots to too we first note that for every i,

∑
(x,y)∈Xi×Yi

d(x, y) =
∑
y∈Yi

∑
x∈Xi

d(x, y)
(a)
=
∑
y∈Yi

rY (y)
(b)
= n[Q

(n)
Y (Yi)− P̃

(n)
Y (Yi)]

(C.40)
where (a) follows since we know (C.28) holds for all y ∈ Yi (and that d(x, y) = 0
if y ∈ Yi but x �∈ Xi, by construction) and (b) from the definition of rY , (C.26).

1It is obvious that the root can also be picked from Yi too.
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Therefore,

n[Q
(n)
Y (Yi)− P̃

(n)
Y (Yi)] =

∑
y∈Yi

d(x0, y) +
∑

x∈Xi\{x0}

∑
y∈Yi

d(x, y) (C.41)

(∗)
=
∑
y∈Yi

d(x0, y) +
∑

x∈Xi\{x0}
rX(x) (C.42)

=
∑
y∈Yi

d(x0, y)− rX(x0) +
∑
x∈Xi

rX(x) (C.43)

where again (∗) follows since (C.27) holds for x ∈ Xi \ {x0}. Moreover, using
the definition (C.25),∑

x∈Xi

rX(x) = n[Q
(n)
X (Xi)− P̃

(n)
X (Xi)] (C.44)

But since supp(P̃ (n)) = supp(P ) ⊆ ⋃k
i=1(Xi × Yi)), we have

P̃
(n)
X (Xi) = P̃

(n)
Y (Yi). (C.45)

Using the above and the assumption (C.21) yields,∑
x∈Xi

rX(x) = n[Q
(n)
X (Xi)− P̃

(n)
X (Xi)] = n[Q

(n)
Y (Yi)− P̃

(n)
Y (Yi)]. (C.46)

Plugging (C.46) into (C.43) proves∑
y∈Y

d(x0, y) =
∑
y∈Yi

d(x0, y) = rX(x0). (C.47)

To verify (C.29) and (C.30) we use the following bound

|d(x, y)| ≤ n
[
|Q(n)

X − P̃
(n)
X |+ |Q

(n)
Y − P̃

(n)
Y |
]
≤ n2γ. (C.48)

The bound of (C.48) follows easily by nothing that the value associated with
each edge of the tree in the algorithm is (in absolute value) at most as large
as the sum of the absolute values of the values associated with the vertices in
the sub-tree rooted at the end of that edge. This sum can be extended to the
whole tree to derive the bound of (C.48).

Now (C.29) can be verified as follows: First, if P̃ (n)(x, y) = 0, then (x, y) �∈
E ⊃ E ′ and, as a consequence, d(x, y) = 0. Otherwise,

d(x, y) + nP̃ (n)(x, y)
(a)

≥ −2nγ + P̃ (n)(x, y) (C.49)

(b)

≥ −2nγ + nP (x, y)− nγ/2 (C.50)

≥ n[Pmin − 5/2γ] (C.51)

where (a) follows by (C.48) and (b) from (C.34). Since γ ≤ 2
5
Pmin (see (C.33))

the above is non-negative.
Finally since γ ≤ ε/(4|X ||Y|) (again, see (C.33)) the bound of (C.30)

follows by summing the left-hand side of (C.48) over all (x, y) ∈ X × Y .
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Marvell SÀRL, Etoy, Switzerland

2010 Research Assistant,
Information Theory Laboratory, EPFL, Switzerland

2009 B.Sc. Thesis “Analysis of Synchronization and Time-offset
Estimation Methods in OFDM Systems”,

School of ECE, University of Tehran, Iran

2008 Telecommunications Engineer (Internship),
Iran Telecommunications Research Center, Tehran, Iran

Teaching Experience

EPFL (2010–2016)

• Advanced Digital Communications

• Applied Probability and Stochastic Processes

• Information Theory and Coding

• Principles of Digital Communications

• Analysis II

• Circuits and Systems II

• Discrete Structures

• Probability and Statistics

University of Tehran (2006–2008)

• Engineering Mathematics

• Probability and Statistics
• C++ Programming

Honors and Awards

2016 EPFL I&C Outstanding Teaching Assistant Award
2015 Finalist for the Best Student Paper Award at IEEE ISCAS 2015
2013 EPFL I&C Outstanding Teaching Assistant Award
2012 EPFL I&C Doctoral School Fellowship
2011 Ranked 2nd (GPA 5.9/6) among Communication System M.Sc.

Students of 2012 Class

2010 EPFL Research Assistant Scholarship
2009 Ranked 3rd (GPA 18.27/20) among EE Students of 2009 Class

with Telecommunication Major
2005 Ranked 220th among 500,000 participants in the nationwide uni-

versity entrance exam in Iran

Publications

(1) M. Bastani Parizi and E. Telatar, “On the correlation between polarized
BECs,” in Proceedings of 2013 IEEE International Symposium on Infor-
mation Theory (ISIT), Jul. 2013, pp. 784–788.



Curriculum Vitæ 231

(2) A. Balatsoukas-Stimming, M. Bastani Parizi, and A. P. Burg, “LLR-based
successive cancellation list decoding of polar codes,” in Proceedings of 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2014, pp. 3903–3907.

(3) A. Balatsoukas-Stimming, M. Bastani Parizi, and A. P. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Transactions
on Signal Processing, vol. 63, no. 19, pp. 5165–5179, Oct. 2015.

(4) A. Balatsoukas-Stimming, M. Bastani Parizi, and A. P. Burg, “On metric
sorting for successive cancellation list decoding of polar codes,” in Pro-
ceedings of 2015 IEEE International Symposium on Cirtcuits and Systems
(ISCAS), May 2015, pp. 1993–1996.

(5) M. Bastani Parizi and E. Telatar, “On the secrecy exponent of the wire-
tap channel,” in Proceedings of 2015 IEEE Information Theory Workshop,
Oct. 2015, pp. 287–291.

(6) M. Bastani Parizi, E. Telatar, and N. Merhav, “Exact random coding se-
crecy exponents for the wiretap channel,” in Proceedings of 2016 IEEE
International Symposium on Information Theory (ISIT), Jul. 2016, pp.
1521–1525.

(7) M. Bastani Parizi and E. Telatar, “On channel resolvability in presence of
feedback,” in Proceedings of 54th Annual Allerton Conference on Commu-
nication, Control, and Computing, Sep. 2016, pp. 78–85.

(8) M. Bastani Parizi, E. Telatar, and N. Merhav, “Exact random coding se-
crecy exponents for the wiretap channel,” IEEE Transactions on Informa-
tion Theory, vol. 63, no. 1, pp. 509–531, Jan. 2017.

Invited Talks

• “Error Analysis and List Decoder Implementation for Polar Codes,” IBM
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