000228433 001__ 228433
000228433 005__ 20180913064333.0
000228433 037__ $$aPOST_TALK
000228433 245__ $$a3D multi-layer probe for application in neuroprosthetics
000228433 269__ $$a2017
000228433 260__ $$c2017
000228433 336__ $$aPosters
000228433 520__ $$aIn neuroprosthetics, prostheses with higher and denser electrodes are needed to obtain both more precise recordings and targeted stimulations. The main limit is the routing of the active sites to the electronic control unit. A solution is to place electrodes and connecting traces on different layers. A multi-layer approach allows the upscaling of electrodes number, thus increasing also their density. Nevertheless, a drawback of the multi-layer system is the passivation layer that increases the gap from the exposed electrode to the target tissue, especially when polymeric materials are used, such as PI or PDMS. For the layers placed more at the bottom, this gap may increase to undesired values. Indeed, the electrode-cell distance is one of the most important parameter affecting the spatial resolution and the efficiency in recording and stimulation. We introduced a new 3D design and microfabrication process, allowing all of the active sites to reach or even protrude the implant surface and traces to be placed in multi-layers. Our device may be fabricated on flexible and soft substrates, with arbitrary number of layers and arbitrary height of active sites. Bi-layer polyimide neural probes with Pt electrodes reaching 6 µm above the encapsulation layer were produced; the electrode size is 100 µm. Electrochemical characterizations show no significant differences between the multi-layer 3D shaped electrodes and planar monolayer electrodes. The average impedance at 1 kHz is 80 kOhm.
000228433 700__ $$0249232$$aAiraghi Leccardi, Marta Jole Ildelfonsa$$g242852
000228433 700__ $$0250177$$aGaillet, Vivien$$g201208
000228433 700__ $$0(EPFLAUTH)223752$$aDuckert, Bastien$$g223752
000228433 700__ $$0249241$$aGhezzi, Diego$$g254787
000228433 7112_ $$a2017 E-MRS Spring Meeting$$cStrasbourg, France$$dMay 22-26, 2017
000228433 8564_ $$s525599$$uhttps://infoscience.epfl.ch/record/228433/files/EMRS%202017%20Spring%20b.pdf$$yn/a$$zn/a
000228433 8564_ $$s18554537$$uhttps://infoscience.epfl.ch/record/228433/files/Poster_PI3D.pdf
000228433 909C0 $$0252540$$pLNE$$xU13047
000228433 909CO $$ooai:infoscience.tind.io:228433$$pSTI$$pposter
000228433 917Z8 $$x254787
000228433 917Z8 $$x254787
000228433 937__ $$aEPFL-POSTER-228433
000228433 973__ $$aEPFL
000228433 980__ $$aPOSTER