Abstract

A method and computing system are proposed for producing an authenticable security device with two sides. The verso side is covered with an adjustable luminescent emissive layer formed by invisible luminescent ink halftones and possibly a UV absorbing printed layer. The recto side is covered with transmissive non-luminescent ink halftones. The backlit colors resulting from the emissions of the luminescent layer or resulting from illumination by normal white light through the transmissive non-luminescent ink halftones are predicted by a backlighting model. This model enables computing the surface coverages of the luminescent and/or non-luminescent ink halftones in order to obtain a desired color either under excitation light (UV light) or under normal white light. This enable creating authenticable backlit images substantially similar to pre-stored reference images, either under normal white light, under excitation light, or under both the normal white light and the excitation light.

Details

Actions