Low-complexity Walsh-Hadamard Transform (WHT) for sparse data

Key words: Signal processing, computing algorithm, signal subsampling, Walsh-Hadamard

Ref: 6.1309

Main contact: Dr. Robin Scheibler
Tel: +41 21 693 1278
robin.scheibler@epfl.ch

Dr. Mauro Lattuada
Tel: +41 21 693 3563
mauro.lattuada@epfl.ch

Technology transfer office
EPFL-TTO
EPFL Innovation Park J
CH-1015 Lausanne
Switzerland
Phone: +41 (0) 21 693 70 23

The discrete Walsh-Hadamard transform is a known signal processing tool with multiple and diverse applications. However, some of its useful properties, especially those related to signal subsampling have remained underdeveloped.

A low-complexity algorithm to compute the length \(N \) Hadamard transform of data \(K \)-sparse in the Hadamard domain.

- Improved algorithm complexity \(\sim K \log^2 N \)
- Reduced number of samples \(\sim K \log N \)

On the left, bipartite graph representation of the WHT for \(N = 8 \) and \(K = 3 \). On the right, the underlying bipartite graph after applying \(C = 2 \) different hashing produced by plugging \(\Sigma_1, \Sigma_2 \) in (6) with \(B = 4 \)