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Abstract:

In this paper we present the application of the interior-point decomposition (IPD) method,
which was originally formulated for stochastic programming, to optimization problems involving
multiple agents that are coupled through constraints and objectives. IPD eliminates the need
to communicate local constraints and cost functions for all variables that relate to internal
dynamics and objectives of the agents. Instead, by using embedded barrier functions, the
problem is solved in the space of coupling variables, which are in general much lower in dimension
compared to internal variables of individual agents. Therefore, IPD contributes to both problem
size reduction as well as data hiding. The method is a distributed version of the primal
barrier method, with locally and globally feasible iterations and faster convergence compared
to first-order distributed optimization methods. Hence, IPD is suitable for early termination in
time-critical applications. We illustrate these attractive properties of the IPD method with a
distributed Model Predictive Control (MPC) application in the context of smart-grids, where a
collection of commercial buildings provide voltage support to a distribution grid operator.

Keywords: Distributed control, Predictive control, Multi-agent, Optimal control, Distributed
optimization, Decomposition, Smart power applications, Demand response.

1. INTRODUCTION

Multi-agent optimization is receiving increased attention
from the academy and industry with the rising prospect of
smart grid applications. ‘Smart’ operation of the future’s
electricity grid will involve coordination of various large
and small players such as generators, consumers and grid
operators. E�cient coordination of these complex agents
with various dynamics, constraints and interests is an
inherently di�cult task and introduces many challenges.

For example in a distribution grid, one can consider a de-
mand response scheme where buildings, factories, and local
generation facilities such as solar panels and generators
are coordinated by a central agent, that is responsible for
optimizing the aggregate power consumption/generation
output and security of the grid. In this setting, it is desir-
able for the central agent to establish a consistent interface
with local agents and consider only variables which a↵ect
the grid and aggregate objectives directly, whereas for
commercial and residential agents, it is important to pro-
tect private data, such as internal states, constraints and
objectives. Another requirement arises when optimization
of the aggregate response is carried out in real-time. Due
to time constraints for taking a decision, an algorithm
should either terminate in a predetermined final time, or
be able to terminate prematurely while having a feasible
sub-optimal decision at hand.

? This work has received support from the European Research
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In this paper, we consider the requirements of local data
hiding, and anytime termination of optimization algo-
rithms in time critical applications. We show that the
interior-point decomposition (IPD) method (Zhao, 2001;
Mehrotra and Özevin, 2009b) satisfies both of these re-
quirements since the implementation of the method only
necessitates sharing information related to coupling vari-
ables, which connects agents through common constraints
or objectives, and the method always outputs a feasible
solution candidate at each iteration.

IPD was first formulated by (Zhao, 2001) for solving
two stage linear stochastic programs and later applied to
more generic convex stochastic programs (Mehrotra and
Özevin, 2009b; Chen and Mehrotra, 2011). The method is
mostly used in the stochastic programming context (Sarić
et al., 2009) where the optimization is decomposed among
scenarios that represent the possible realizations of an
uncertain variable in the problem. Instead, we use IDP in
the context of multi-agent optimization and decompose the
problem among agents. The method is based on the primal
barrier method (Bertsekas, 2008; Boyd and Vandenberghe,
2004) which converts a constrained optimization problem
into an unconstrained one by using barrier functions.

Many decomposition based distributed optimization meth-
ods that are developed in the optimization research (Bert-
sekas and Tsitsiklis, 1997) are being extended and applied
in multi-agent contexts (Necoara et al., 2011; Nedic and
Özdağlar, 2009; Nedic et al., 2010). Decomposition meth-
ods can be collected under two main categories; primal and



dual decomposition. In both approaches the optimization
problem is split into a master problem that manages cou-
pling data and many sub-problems that manage local data,
although the master problem can often also be distributed.
Dual decomposition methods are based on Lagrangian
relaxation and therefore cannot guarantee primal feasibil-
ity until convergence. Primal decomposition methods on
the other hand decompose the problem directly. In the
presence of local constraints, the master problem becomes
non-di↵erentiable and is usually solved with sub-gradient
or cutting plane methods (Bertsekas, 2008). These meth-
ods are able to preserve primal feasibility through all
iterations and are therefore suitable for early termination,
although convergence can be very slow (Bertsekas, 2008).
IPD on the other hand, is a second order primal decom-
position method, as it solves unconstrained, or equality
constrained, di↵erentiable master and sub-problems with
Newton’s method, therefore achieves fast convergence and
primal feasibility.

Recently, several second order distributed optimization
methods based on Newton’s method have been pro-
posed (Pakazad et al., 2015; Necoara and Suykens, 2009;
Wei and Ozdaglar, 2012). These methods are similar to
IPD as they apply the barrier method to their problem
and compute Newton steps in a distributed fashion. The
method in (Pakazad et al., 2015) is applicable to prob-
lems where agents are ‘loosely’ coupled and the descent
direction is computed in a distributed manner without
any central agent. On the other hand, IPD can handle
more generic coupling constraints and cost functions by
relying on a central agent. Similarly, the method proposed
in (Wei and Ozdaglar, 2012) is applicable to a specific
structure arising from network utility maximization. In
(Necoara and Suykens, 2009) the method is based on
dual decomposition, and therefore cannot maintain primal
feasible iterations.

IPD is essentially a decomposition of the primal barrier
method. The problem is smoothed by using local and
global barrier functions, allowing Newton’s method to be
applied on the master problem, achieving fast convergence
as well as feasible iterations. In the following sections we
will briefly introduce the method, and discuss its attractive
properties for solving a multi-agent optimization problem:
fast convergence, primal feasible iterates for both local
and coupling constraints, data hiding for local agents
and problem size reduction for the central agent. For
finding a feasible initial point and feasibility assessment
in line-search, we propose novel methods based on simple
surrogate sets (Bitlislioğlu et al., 2017; Zhen and den
Hertog, 2015). We also present an application of the
method to an example from smart-grids: voltage support
in a distribution grid with active buildings, together with
comparison of performance with a popular first order
distributed optimization algorithm, alternating direction

method of multipliers (ADMM) (Boyd, 2010).

Notation: Rn denotes the Euclidean space of dimension n.
If a variable is subscripted, as y

i

2 Rm

i , for i 2 [1, . . . , n],
we define the stacked vector y 2 Rl as y := [yT

1

, · · · , yT
n

]T ,
with l =

P
n

i=1

m

i

. Similarly if a variable is indexed as
y(k) 2 Rn/N for k 2 [1, . . . , N ], y 2 Rn represents
[y(1)T , · · · , y(N)T ]T . Subscript indexing is used to specify

local variables among agents, whereas parenthesis indexing
is used to specify time steps in the MPC formulation.
For a function with two arguments, as in f(x, y) with
f : Rn

x

⇥n

y ! R, r
x

f(x̄, ȳ) represents the gradient vector
and r

xx

f(x̄, ȳ) represents the Hessian matrix with respect
to the variable in the subscript, evaluated at (x̄, ȳ). For a
function with a single argument, we omit the subscript.

2. PRELIMINARIES

2.1 Multi-agent Problem

We formulate the multi-agent problem with n

a

agents as

min
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where x 2 Rn

x is a global variable, y
i

2 Rn

y,i represents
local outputs that introduce coupling between agents via
the equality constraint, the constraint functions h

j

’s and
the cost function f

0

, which are all assumed to be convex.
We consider the case where agents have additional internal
variables z

i

and constraints a↵ecting the output y

i

. The
local cost functions p

i

’s are defined as
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(y
i

) = min
z

i

f

i

(z
i

)

s. t. P

i

z

i

= y

i

g

i,j

(z
i

)  0, j 2 [1, . . . ,m
i

]

(2)

where f

i

and the g

i,j

’s are convex functions and the
matrix P

i

2 Rn

y,i

⇥n

z,i has full row rank. p
i

(y
i

) is called
the ‘primal’ function (Bertsekas, 2008) and represents
the optimal value of the problem (2) for a given y

i

that parameterizes the constraints of (2). The primal
function p

i

(y
i

) of a convex program is convex, and non-
di↵erentiable in general (Boyd and Vandenberghe, 2004).

2.2 Barrier method

Consider the following convex optimization problem.

min
x

f(x)

s. t. h

j

(x)  0, j 2 [1, . . . , l]
Tx = r

Instead of solving the inequality constrained problem
above, we instead formulate a barrier augmented version
with only equality constraints

min
x

f(x) + ��(x) : Tx = r (3)

where �(.) is a strictly convex and self-concordant barrier
function (Boyd and Vandenberghe, 2004) for the feasible
set defined by constraints h

j

(x)  0, j 2 [1, . . . , l] and
� > 0 is the barrier weighting parameter. A common
choice for �(.) is the logarithmic barrier defined as

�(x) = �
lX

j=1

ln(�h
i

(x)) .

In the standard barrier method, the equality constrained
augmented problem (3) is solved with Newton’s method
for a decreasing sequence {�k}, with �

k ! 0.



We now consider application of the barrier method to
problem (1). The barrier augmented multi-agent problem
can be written as

min
x,y

f

0

(x,y) + ��

0

(x,y) +
n

aX

i=1

⇢

i

(�, y
i

)

s. t. Tx+ V y = r

(4)

where the barrier augmented primal functions ⇢
i

(�, y
i

) are
defined as
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) := min
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.

(5)

Here, �
i

is the barrier function for the feasible set defined
by the local constraints ;

G
i

= {z
i

: g

i,j

(z
i

)  0, j 2 [1, . . . ,m
i

]} .

It was shown by (Chen and Mehrotra, 2011) that, when
logarithmic barrier functions are used, ⇢

i

(�, .) is a self-
concordant barrier function family for the feasible set of
the output variable y

i

, defined as

F
i

:= {y
i

| 9z
i

, y

i

= P

i

z

i

, z

i

2 G
i

} . (6)

For ⇢

i

, an explicit description is not available, however
at a given point y

i

, the value of the function as well
as its gradient and Hessian can be obtained by solving
the unconstrained convex optimization problem (5). The
gradient and the Hessian of ⇢ is given by

r
y

⇢(�, y) = ��⇤

r2

yy

⇢(�, y) =
�
P (r2

zz

L(z⇤,�⇤)�1

P

T

��1

(7)

where L is the Lagrangian for the problem

L(z,�) = f(z) + ��(z) + �

T (Pz � y) (8)

and the optimal primal dual pair (z⇤,�⇤) satisfy the second
order su�cient conditions for optimality (Bertsekas, 2008).
The relations (7) can be derived by applying the implicit
function theorem to the optimality conditions, see (Chen
and Mehrotra, 2011).

3. INTERIOR POINT DECOMPOSITION METHOD

The interior point decomposition (IPD) method consists of
applying the primal barrier method for solving the multi-
agent problem (1). The primal-barrier method is described
by Algorithm 1. To simplify notation we define the barrier-
augmented multi agent cost function as

f̃(�, x,y) = f

0

(x,y) + ��

0

(x,y) +
n

aX

i=1

⇢

i

(�, y
i

) (9)

Algorithm 1 Primal barrier method

1: given: �, µ : � > 0, 0 < µ < 1
2: while � < ✏ do

3: (x,y) = argmin
x,y

f̃(�, x,y) : Tx+ V y = r

4: � = µ�

5: return (x,y) .

The unconstrained minimization step in the primal-barrier
method is carried out with Newton’s method, which re-
quires the gradient and Hessian of the cost function, and
iteratively minimizes a second order approximation of the
barrier-augmented cost function.

The gradient and the Hessian of the barrier-augmented
cost function (9) can be computed as

rf̃(�, x,y) = rf
0

(x,y) + �r�
0

(x,y)

+
⇥
r⇢

1

(�, y
1

)T · · · r⇢
n

a

(�, y
n

a

)T
⇤
T

r2

f̃(�, x,y) = r2

f

0

(x,y) + �r2

�

0

(x,y)+

+ blkdiag(r2

⇢

1

(�, y
1

), . . . ,r2

⇢

n

a

(�, y
n

a

))
(10)

As seen from above equations, one needs to collect
r⇢

i

(�, yk
i

),r2

⇢

i

(�, yk
i

) from all agents at each iteration.
Each agent can compute these values in parallel, by solv-
ing (5) and using relations (7), and send them to the
central agent. The central agent then computes the de-
scent direction d = [dT

x

, dT

y ]
T , by solving the equality

constrained quadratic program

min f̃(�, xk

,yk) +rf̃T (�, xk

,yk)d

+
1

2
dTr2

f̃(�, xk

,yk)d

s.t. [T V ]d = 0

(11)

The step-size is computed according to a suitable line
search strategy, which we will discuss in the following sec-
tion. The algorithm proceeds until the Newton decrement
� is reduced under a specified threshold. A description of
the method is given in Algorithm 2.

Algorithm 2 Decomposed Newton’s method

1: given: ✏,�
2: while � > ✏ do

3: for i 2 [1, . . . , n
a

] do . parallel
4: solve min

z

i

f

i

(z
i

) + ��

i

(z
i

) | P
i

z

i

= y

i

5: return ⇢

i

(�, yk
i

),r⇢
i

(�, yk
i

),r2

⇢

i

(�, yk
i

)

6: dk  solve (11)
7: t

k = linesearch(xk

,yk

,dk)
8: yk+1 = y + t

kdk

y, x

k+1 = x+ t

kdk

x

9: � =

q
dk

Tr2

f̃(�, xk

,yk)dk

. Newton decrement

10: return y .

3.1 Initialization with surrogate sets

For start-up, IPD requires an initial point that is feasible
for both local and coupling constraints. If such a point is
not available, one can solve a ‘Phase 1’ problem for finding
one; for various options see (Boyd and Vandenberghe,
2004). Another possibility, also suggested by (Mehrotra
and Özevin, 2009b), is to add slack variables with large
penalties to the problem. Due to the distributed nature of
IPD, these methods will require additional communication
and optimization steps.

We propose using simple inner approximations of the
feasible sets F

i

’s of local outputs. Note that an explicit
description of F

i

is in general not available, even to
the local agent itself. However, one can use the methods
proposed in (Bitlislioğlu et al., 2017; Zhen and den Hertog,
2015) to recover a simple surrogate set

S
i

⇢ F
i

,

with a relatively large volume (Zhen and den Hertog,
2015), using robust programming. For initialization, each



agent computes the set S
i

, which can be an ellipsoidal or
a polytopic set, and passes it to the central agent. The
central-agent then solves a surrogate feasibility problem
to find a feasible point that satisfies coupling constraints
within the aggregate set. Feasibility problem can be for-
mulated in di↵erent ways. One option is to minimize the
maximum constraint violation within the set S

1

⇥· · ·⇥S
n

a

.
If the minimizer is not feasible, the procedure can be
repeated by re-computing the surrogate sets around the
new point. This method is likely to generate a feasible
point with very few communication steps between central
and local agents, if the volumes of surrogate sets are
substantial. In our application example in Section 4, a
single step of the method was su�cient to find a strictly
feasible point.

3.2 Line search

One of the most important ingredients of Newton’s method
is the line-search, for determining the step-size in the
descent direction. The step-size should be selected as to
preserve feasibility and to guarantee a su�cient decrease
at each iteration (Bertsekas, 2008). We can split the
line-search into two steps; first, a feasibility search for
determining the maximum step size that can maintain
feasibility and second, a minimizing search for finding the
step-size with a su�cient decrease in the cost function.

Feasibility search with Dikin’s ellipsoid: For a given de-
scent direction, each agent needs to solve an additional
feasibility problem in order to determine the maximum
feasible step-size. However this can be avoided by limiting
the search within a surrogate set that is communicated to
the central agent together with gradient and Hessian infor-
mation. The surrogate sets can be computed as mentioned
in the previous section. However, the computational cost
of finding S

i

at every step might be prohibitive depending
on the dimensionality. For this reason we propose using a
feasible ellipsoid that can be constructed using the Hessian
of the barrier function which is already at hand.

Lemma 1. At any strictly feasible internal variable ẑ the
ellipsoid defined by

E(ẑ) = {y : (y � P ẑ)T (P (r2

�

i

(ẑ))�1

P

T )�1(y � P ẑ) < 1}
is contained in the feasible set for the output variable y;
E(ẑ) ⇢ F .

Proof. At any strictly feasible ẑ 2 G, the Dikin’s ellipsoid
is defined by

D(ẑ) := {z : (z � ẑ)Tr2

�(ẑ)(z � ẑ) < 1} . (12)

For a self concordant barrier function � of set G, D(ẑ)
is contained within the set G; D ⇢ G (Nesterov and
Nemirovskii, 1994). It can be shown that E(ẑ) is the image
of the Dikin’s ellipsoid D(ẑ), under the linear operator P .
Therefore, E(ẑ) is contained in the feasible set F for the
output variable y, which is the image of the set G under
P .

After solving the local problem (5) the agents can easily
construct the ellipsoid E(z⇤) and pass it’s parameters to
the central agent, avoiding any further communication
for a feasibility check. The resulting step-size can be
significantly smaller compared to an approach that uses
the actual maximum step-size, however the burden of

extra communication and optimization by all agents is
eliminated.

Minimizing search: Minimizing line search is carried out
until a su�cient descend condition (Boyd and Vanden-
berghe, 2004) is satisfied. For 0 < ↵ < 0.5 the condition is
given by

f(x+ td) < f(x) + ↵trf(x)T d . (13)

The standard method for finding a point satisfying (13)
is backtracking, which consists of decreasing the step-size
by a predetermined reduction factor 0 < � < 1 until (13)
is satisfied. This method will require communicating the
step-size to individual agents, solution of the problems (5)
and re-communication of the value to the central-agent.
Depending on whether the burden of communication or
optimization dominate, one can take di↵erent approaches,
such as; aggressive backtracking, adaptive step-size that
relates to the Newton decrement (Zhao, 2001; Mehrotra
and Özevin, 2009a; Wei and Ozdaglar, 2012) or using pre-
computed values collected from agents.

4. APPLICATION - VOLTAGE SUPPORT WITH
COMMERCIAL BUILDINGS

In this section we present an application of IDP to a
distributed MPC problem related to smart grids. We con-
sider a case where a distribution grid operator coordinates
a group of commercial buildings that joins a Demand
Response (DR) program, in order to balance the voltage
surge caused by a large solar plant.

The grid under consideration is a simplified version of the
IEEE 123 test feeder, taken from (Bolognani and Zampieri,
2016), which is modeled as a single-phase system, and con-
sists of 56 nodes. The power flow equations are linearized
with the method of (Bolognani and Zampieri, 2016) that
is suitable for distribution grids.

The grid is populated by a mix of commercial buildings,
the properties of which are given below.

Type Cooling Cap.[kW] Thermal Zones # in DR

Large O�ce 250 18 2
Small O�ce 30 5 7
Warehouse 150 3 3

The data for the building models are obtained from (US
Department of Energy: O�ce of Energy E�ciency and
Renewable Energy) and (OpenEI, 2016). We consider a
summer scenario, where the cooling systems of buildings
that participate in DR are controlled by MPC, which
relies on a thermal model that is generated with the
OpenBuild Toolbox (Gorecki et al., 2015). The grid is
mostly populated by small o�ces representing static loads,
whereas 12 buildings: two large o�ces, three warehouses
and seven small o�ces contribute to the DR program for
voltage support.

The grid operator is responsible for maintaining voltage
magnitudes of all nodes within the ±5% of the nominal
value. Starting from an initial grid state, it predicts the
solar power in-feed and power injections from all nodes and
solves the following multi-agent optimization problem.
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where N is the time horizon, v̄(k) 2 Rl represents the
predicted voltage magnitudes, in p.u., of all nodes at step
k, y

i

2 Rn

y,i represents the active power injections from
the buildings that participate in DR. G
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2 Rl⇥n

y,i models
the e↵ect of the injections from the ith node on the voltage
magnitudes of all nodes. We assume that the power factor
of the buildings are constant, and therefore reactive power
computations can be embedded inside G
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. The voltage
constraints are respected while the power injections are
allocated fairly according to the local cost functions p
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where N is the horizon length, the variables x, u, d and
(✓, y) describe state, input, disturbance and outputs for the
linear thermal dynamics. The input to thermal dynamics
u is the thermal energy over the sampling period. The
output ✓ describes the mean zone temperatures, which are
constrained to lie inside the comfort limits. The electri-
cal power consumption y

i

is modeled as a time varying
linear function of the thermal cooling power input to the
building, which is limited by actuation constraints. The
cost function represents the economic cost of electricity
determined by the price ⇡ and penalizes deviation from the
reference temperature values that represent ideal comfort
conditions.

The problem (14) can be formulated as the standard multi-
agent problem (1) and thus can be solved with IPD.
In this setting, each building can compute the barrier
augmented cost function related to its power consumption
and communicate with the grid operator that collects data
from all-agents and implements the primal barrier method,
given in Algorithm 1, with Newton’s method, given in
Algorithm 2.

The results of the optimization are shown in Figures 1-4.
Figure 1 shows the voltage profiles of all nodes without
and with coordination. The control problem is solved for
the time of day between 8:00 and 15:00, sampled every
half-hour, resulting in a horizon length N = 14. For
initialization the method explained in Section 3.1 is used,
where the central agent collects feasible ellipsoids from
agents and minimizes the maximum voltage magnitude
among all nodes. After this step, IPD proceeds from a
feasible point, and maintains local and global feasibility as
shown in Figure 2. For the line-search, Dikin’s ellipsoids
around the current point for feasibility and regular back-
tracking for su�cient decrease search are used, resulting in

Time of day
08:00 09:00 10:00 11:00 12:00 13:00 14:00Vo

lta
ge

 M
ag

ni
tu

de
 [p

.u
.]

0.95

1

1.05

Time of day
08:00 09:00 10:00 11:00 12:00 13:00 14:00Vo

lta
ge

 M
ag

ni
tu

de
 [p

.u
.]

0.95

1

1.05

Fig. 1. Predicted voltage magnitudes, without the demand
response coordination (top), and with optimal coor-
dination of 12 buildings in the grid (bottom).
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Fig. 2. The top figure shows the voltage magnitude at node
32, where the solar power infeed is placed. The figures
below show the zone temperatures and total cooling
power for a large o�ce building placed at node 31.

a reasonable number of optimization and communication
steps, as shown in Figure 3.

Finally, we provide a comparison of IPD with a first
order distributed method: ADMM. In order to preserve
the same communication structure, we introduce global
copies of local outputs as y

glob

= y and apply ADMM to
the partial Lagrangian with respect to this constraint. By



doing this, one can split the primal updates into a central
and parallel local problems similar to the IPD method.
The penalty parameter for ADMM is adaptive as described
in (Boyd, 2010). We can observe from Figure 4 that
ADMM quickly reduces the deviation from optimal energy
profiles, however the solution candidates remain infeasible
for many iterations. On the other hand IPD always takes
feasible steps by keeping the maximum voltage values
below limits and achieves much higher accuracy in a
smaller number of communication steps, compared to
ADMM.
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Fig. 3. Evolution of suboptmality measure ky � y⇤k
2

for
the problem (14), using the Dikin’s ellipsoid feasibility
search and backtracking with a reduction factor of 0.8.
Total Newton steps are 58 whereas 77 communication
steps were carried out. Barrier shrinking factor µ is set
to 0.4.
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Fig. 4. Comparison between ADMM and IPD applied to
the problem (14). The deviation from optimal profiles
is defined as the sum of absolute di↵erence in MWh,
with respect to the optimal power consumption pro-
files, for all buildings:
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with �t being the sampling time of 30 minutes.
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