

글 > : < 글 >

Welfare implications of EU effort sharing decision and possible impact of a hard Brexit

Frédéric Babonneau, Alain Haurie and Marc Vielle

marc.vielle@epfl.ch

5th International Symposium on Environment Energy Finance Issues Paris – May 22-23, 2017 Last developments in EU climate policy

- In December 2015 at COP21, the EU is committed to a binding target of an at least 40% domestic reduction in GHG emissions by 2030 compared to 1990
- In June 2016, the UK voted to leave the European Union
- In July 2016, the EC presented its proposal for a regulation to reduce GHG emissions in sectors not covered by the emissions trading system (ETS) with regards to post-2020 binding targets called *Effort Sharing Decision* (ESD)

Questions:

- What are resulting cost by Member States of this EU Effort Sharing Decision ?
- What are the impact of the Brexit on the UK and European climate policies ?

A noncooperative dynamic game

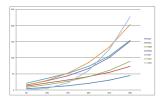
Assumptions:

- **A safety emissions budget** Bud is distributed among the Member States. Let $\theta_j \in (0, 1)$ be the share of Member State *j*, with $\sum_{i=1}^{m} \theta_j = 1$.
- **3** A competitive market for emissions permits, which clears at each period. Let ω_i^t be the vector of permits for Member State j at period t.

Model: Then we consider the game where each Member State j controls the permit allocations schedule $(\omega_j^t: t = 0, \dots, T-1)$ with $\Omega^t = \sum_{j=1}^m \omega_j^t$ and tries to achieve

$$\min_{\omega_j} \left\{ \sum_{t=0}^{T-1} \beta_j^t(\boldsymbol{\Phi}_j^t(\mathbf{e}_j^t(\boldsymbol{\Omega}^t)) + \boldsymbol{p}^t(\boldsymbol{\Omega}^t)(\mathbf{e}_j^t(\boldsymbol{\Omega}^t) - \omega_j^t)) \right\},\$$

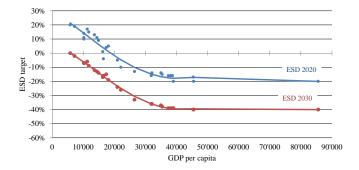
subject to actions chosen by the other Member States and under the budget sharing constraint


$$\sum_{t=0}^{T-1} \omega_j^t \le \theta_j \text{Bud.}$$
(1)

Here $\Phi_j^t(e_j^t)$ represents the cost of abatement with respect to emissions by Member State *j*, at time *t* and β_j^t a discount factor

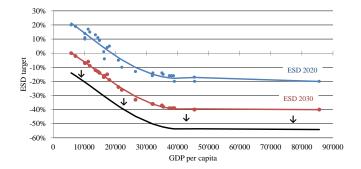
◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ●

Numerical implementation and further assumptions


- Time horizon 2011-2050, 4 decades 2011-2020, 2020-2030, 2030-2040, 2040-2050
- Bud=99 Gt CO₂; Reference scenario = 173 Gt CO₂
- $\Phi_i^t(e_i^t)$ are estimated from 200 runs of the CGE GEMINI-E3

- We assume full flexibility between ETS and non ETS (one-off flexibility option)
- We assume trading between non ETS sectors (inter-Member State flexibility)
- We assume inter-temporal flexibility between decades

Effort Sharing Decision rule


- EC already defined ESD per Member State for years 2020 and 2030
- We have to define ESD for the whole period (2011-2050)
- CO₂ emissions targets: 2020 = -20%, 2030=-40%, 2050=-80%

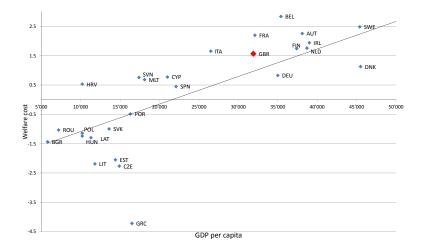
EU effort sharing decision and hard Brexit

Effort Sharing Decision rule

- EC already defined ESD per Member State for years 2020 and 2030
- We have to define ESD for the whole period (2011-2050)
- CO₂ emissions targets: 2020 = -20%, 2030=-40%, 2050=-80%

Computing the share of budget allowed to MS $j: \theta_j$

- We already defined θ_j^{ESD} the burden sharing for non ETS emissions
- We compute the θ_j with the following equation:


$$\theta_{j} = \frac{\frac{\gamma_{j}\theta_{j}^{ESD}\text{Bud} + (1 - \gamma_{j})\sum_{t} e_{j}^{t} \text{ TAX}}{\psi}}{\text{Bud}}, \qquad (2)$$

where

- $e_i^t TAX$, the emissions in an *uniform tax* scenario
- γ_j is the share of emissions in non-ETS sectors
- ψ a normalization factor (equal to 1.04)

< 3 > < 3 >

Welfare cost in relation to GDP per capita

Welfare cost: discounted welfare cost in % of discounted household consumption

EU effort sharing decision and hard Brexit

UK and climate change policy

- UK was the second-largest European GHG emitter, with 518 Mt CO₂-eq emitted, representing 13.1% of EU28 emissions
- UK was the first G20 country to adopt legislation on GHG emissions
- According to the UK government about 1,000 power stations and industrial plants in the UK participate in the EU ETS
- UK Climate Change Act established a mandate of an 80% cut in GHG emissions by 2050
- As pointed out by Lord Nicholas Stern: "The UKs commitment on climate change is longstanding and based on a understanding that it is global issue and should not be altered by its future departure from the European Union"

EU climate change policy and Brexit options

We consider two options:

- Hard Brexit: no access to EU emissions trading
- Third access status: UK participates to the EU emissions trading but without ESD (i.e. UK budget = UK domestic commitment)

	EU28	Hard Brexit	Third access status
UK budget (Mt CO_2)	13'807		
UK discounted welfare cost [†]	1.57		
Abatement cost	1.55		
Permit trading	0.18		
Gains from terms of trade	-0.16		
Change in welfare cost (billion US \$)	-		
EU discounted welfare $cost^{\dagger}$	1.17		
tin % of discounted household consumption			

[†]in % of discounted household consumption

EU climate change policy and Brexit options

We consider two options:

- Hard Brexit: no access to EU emissions trading
- Third access status: UK participates to the EU emissions trading but without ESD (i.e. UK budget = UK domestic commitment)

	EU28	Hard	Third
		Brexit	access
			status
UK budget (Mt CO_2)	13'807	13'693	
UK discounted welfare cost [†]	1.57	1.65	
Abatement cost	1.55	1.81	
Permit trading	0.18	-	
Gains from terms of trade	-0.16	-0.16	
Change in welfare cost (billion US \$)	-	-43	
EU discounted welfare $cost^{\dagger}$	1.17	1.06	
4. A A A A A A A A A A			

[†]in % of discounted household consumption

글 > : < 글 >

EU climate change policy and Brexit options

We consider two options:

- Hard Brexit: no access to EU emissions trading
- Third access status: UK participates to the EU emissions trading but without ESD (i.e. UK budget = UK domestic commitment)

	EU28	Hard Brexit	Third access status
UK budget (Mt CO_2)	13'807	13'693	13'693
UK discounted welfare cost [†]	1.57	1.65	1.63
Abatement cost	1.55	1.81	1.55
Permit trading	0.18	-	0.24
Gains from terms of trade	-0.16	-0.16	-0.16
Change in welfare cost (billion US \$)	_	-43	-34
EU discounted welfare $cost^{\dagger}$	1.17	1.06	1.17

[†]in % of discounted household consumption

글 > : < 글 >

Conclusion

- Using a meta-game approach it is possible to analyse the ESD
- With the ESD, high-income European countries pay for low-income European countries
- A hard Brexit would induce a welfare cost of UK climate policy (\approx 43 billion US \$)
- A soft brexit (i.e. a "third access status") would moderate UK cost (\approx 34 billion US \$)
- Within the Brexit scenarios MSs that are net sellers of permits (new Ms) suffer from less revenue and, in contrast, net buyers experience some benefits
- $\bullet\,$ Brexit reinforces the leadership of Germany that accounts now for 1/4 of CO_2 European emissions