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Ita fac, mi Lucili: vindica te tibi, et tempus quod adhuc aut auferebatur aut subripiebatur aut

excidebat collige et serva. Persuade tibi hoc sic esse ut scribo: quaedam tempora eripiuntur

nobis, quaedam subducuntur, quaedam effluunt. Turpissima tamen est iactura quae per
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ponat, qui diem aestimet, qui intellegat se cotidie mori? In hoc enim fallimur, quod mortem

prospicimus: magna pars eius iam praeterit; quidquid aetatis retro est mors tenet. Fac ergo,

mi Lucili, quod facere te scribis, omnes horas complectere; sic fiet ut minus ex crastino

pendeas, si hodierno manum inieceris. Dum differtur vita transcurrit. Omnia, Lucili, aliena

sunt, tempus tantum nostrum est; in huius rei unius fugacis ac lubricae possessionem natura

nos misit, ex qua expellit quicumque vult. Et tanta stultitia mortalium est ut quae minima et

vilissima sunt, certe reparabilia, imputari sibi cum impetravere patiantur, nemo se iudicet

quicquam debere qui tempus accepit, cum interim hoc unum est quod ne gratus quidem

potest reddere.

— L. A. Seneca, E pi stul ae mor ales ad Luci l i um, Li ber I .
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Abstract
We present two different approaches to solve the hierarchy problem of the Standard Model and

to provide a consistent dynamical mechanism for electroweak symmetry breaking. As a first

scenario, we follow the naturalness paradigm as realized in Composite Higgs theories, which

conceive the Higgs particle as a bound state of a new strongly interacting sector confining

at the TeV scale. We present a minimal implementation of the model and study in detail

the phenomenology of vector resonances, which are predicted as states excited from the

vacuum by the conserved currents of the new strong dynamics. This analysis allows us to

derive constraints on the parameter space of Composite Higgs models from the presently

available LHC data and to confront naturalness with experimental results. Motivated by the

rising tension between theoretical expectations and the absence of new physics signals at

the LHC, we consider as a second possibility the neutral naturalness paradigm and address

the hierarchy problem by posing the existence of a mirror copy of the Standard Model, as

realized in Twin Higgs theories. This new color-blind sector is the main actor in protecting the

Higgs mass from large radiative corrections and is un-discoverable at the LHC, allowing us to

push far in the ultraviolet the scale where the Standard Model effective theory breaks down

and colored resonances appear. We present an implementation of the Twin Higgs program

into a composite model and discuss the requirements for uplifting the symmetry protection

mechanism also to the ultraviolet theory. After introducing a consistent Composite Twin

Higgs model, we consider the constraints imposed on the scale where colored resonances are

expected by the determination of the Higgs mass at three loops order, electroweak precision

tests and perturbativity of the ultraviolet-complete model. We show that, although allowing in

principle the new physics scale to lie far out of the LHC reach, these constructions need the

existence of light colored top partners, with a mass of around 2-4 TeV, to comply with indirect

observations. Neutral naturalness models may then evade detection at the LHC, but they can

be probed and falsified at future colliders.

Key words: electroweak symmetry breaking, LHC phenomenology, Physics beyond the Stan-

dard Model, Composite Higgs, Twin Higgs, effective field theories.
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Résumé
Nous présentons deux différentes approches pour résoudre le problème de la hiérarchie du

Modèle Standard et pour fournir un mécanisme consistant de brisure spontanée de symétrie

électrofaible. Comme premier scénario, nous considérons le paradigme de naturalité dans le

cadre des théories de Higgs composite, qui conçoivent la particule de Higgs comme un état lié

d’un nouveau secteur fortement couplé et confinant à l’échelle de quelques TeV. Nous présen-

tons une implémentation minimale du modèle et nous étudions en détail la phénoménologie

des résonances vectorielles qui sont prédites comme états excités du vide par les courants

conservés du nouveau secteur interagissant fortement. Cette analyse permet de dériver des

limites sur l’espace des paramètres du modèle de Higgs composite à partir des dernières

mesures du LHC et de tester le paradigme de naturalité avec les résultats expérimentaux.

Motivés par la tension croissante entre les attentes théoriques et l’absence de signaux de

nouvelle physique au LHC, nous considérons comme deuxième scénario le paradigme de na-

turalité neutre et nous adressons le problème de la hiérarchie en supposant l’existence d’une

copie spéculaire du Modèle Standard, comme réalisée en théories de Twin Higgs. Ce nouveau

secteur incolore protège la masse du boson de Higgs contre les grandes corrections radia-

tives et il est impossible à découvrir au LHC, en permettant de pousser loin dans l’ultraviolet

l’échelle où la théorie effective du Modèle Standard n’est plus valide et les résonances colorées

apparaissent. Nous fournissons une implémentation du paradigme du Twin Higgs dans un

modèle composite et nous discutons des conditions nécessaires pour que le mécanisme de

protection soit respecté par la théorie ultraviolette aussi. Après avoir introduit un modèle

consistant de Twin Higgs composite, nous considérons les limites imposées sur l’échelle où

les résonances colorées sont expectées par la détermination de la masse du Higgs à l’ordre de

trois boucles, les tests de précision électrofaibles et la condition de calculabilité du modèle

complet ultraviolet. Nous montrons que, bien qu’elles permettent en principe que l’échelle de

nouvelle physique soit au dehors de la portée du LHC, ces constructions exigent l’existence de

résonances colorées légères, avec une masse d’environ 2-4 TeV, pour satisfaire les observations

indirectes. Les modèles de naturalité neutre peuvent donc échapper à la détection au LHC,

mais ils pourront définitivement être explorés et falsifiés avec un futur accélérateur.

Mots-clés : brisure spontanée de symétrie, phénomenologie du LHC, physique au-delà du

Modèle Standard, Composite Higgs, Twin Higgs, théories effectives des champs.
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corresponds to ξ> 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9 Excluded regions in the (MρX , gρX ) plane for the vector singlet in models M1
X (left) and

M2
X (right), fixing MΨ = 800 GeV. The exclusions are derived from the ρ0 → l l̄ searches

in [82]. Left panel: in red the excluded region for c5 = 1, in green for c5 = 0.5, in blue for

c5 = 0. Right panel: in red the excluded region for c6 = 1, in green for c6 = 0.5, in blue

for c6 = 0. The plot also shows the contours of constant Γ/MρX (dashed black lines), of

constant ξ (dashed blue lines) and of constant gΨ (dashed red lines). The yellow region

corresponds to ξ> 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 A pictorial view of the Composite Higgs framework. . . . . . . . . . . . . . . . . . 61

3.2 The mass spectrum in the gauge (left) and fermionic (right) sectors. . . . . . . . 63

4.1 One loop diagrams contributing to the wave function renormalization (on the

left) and to the running of c ′H (on the right). The external dotted lines denote the

background field Hc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 One-loop diagrams displaying the renormalization of the top quark propagator

due to the interaction with the Higgs quantum fluctuations (on the left) and with

gluons (on the right). The solid black lines denote the fermion field, either the

SM tops or their S̃M mirrors, whereas the curly line stands both for the SU (3)

and the S̃U (3) gluons. The dashed line stands for the quantum fluctuation. . . 92

xii



List of Figures

4.3 One-loop diagrams displaying the renormalization of the twin top quark mass.

On the left, the diagram correcting the twin top propagator with loops of scalars;

in the middle the one generating the four-fermion operator of Eq. (4.38); on the

right, the renormalization of the twin top propagator due to the four-fermion

interaction. Solid lines indicate the twin quarks, dashed lines the scalar fluctuation. 97

4.4 The one loop-diagrams displaying the generation of the operator O� (on the

left) and the renormalization of the twin top mass (one the right). The blob in

the last diagram denotes insertions of O�. The external dotted lines indicate the

background field, the internal dashed ones the dynamical fluctuation; the solid

lines indicate again the twin tops. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 IR contributions to the Higgs mass in logarithmic scale, both in the full Twin Higgs theory

and in the pure SM: LL contribution (dashed black curve), NLL contribution (dashed

dotted black curve), NNLL contribution (thick black curve), LL SM contribution (dashed

red curve), NLL SM contribution (dashed dotted red curve), NNLL SM contribution

(thick red curve), re-summed total SM contribution (dotted red curve). . . . . . . . . . 103

4.6 Contour plots of the renormalized Higgs mass (in GeV) at NNLL in the plane (m∗,ξ). . 103

5.1 Diagrams with loops of twin tops contributing to the β-function of λh . Crosses

denote mass insertions. The first diagram features two insertions of a dimension-

5 operator, while the interaction vertex in the second diagram arises from a

dimension-7 operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 IR contribution to the Higgs mass as a function of the scale m∗ for ξ= 0.1. The

dashed and dot-dashed curves denote respectively the LO and NLO result in

a combined perturbative expansion in (α log) and ξ. The continuous curve

corresponds to the NNLO calculation of ref. [122]. . . . . . . . . . . . . . . . . . . 126

5.3 Allowed regions in the (MΨ,ξ) plane for F1 = 0.3 (left panel) and F1 = 1 (right

panel). See the text for an explanation of the different regions and of the choice

of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Allowed regions in the (c,α) plane, with c = cL = cR , for F1 = 0.3 (left panel) and

F1 = 1 (right panel). The yellow, orange and red regions correspond to ξ= 0.05,

0.1 and 0.15 respectively. See the text for an explanation of the choice of the

other parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

D.1 Cascade decay branching ratios as a function of the heavier resonance mass, for the

benchmark value gρ = 3, for case (I) (left plot) and case (III) (right plot) of Eq. (D.4). The

blue line corresponds to BR(ρ+
1 → W +ρ0

2) and the red curve corresponds to BR(ρ+
1 →

ρ+
2 Z ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xiii



List of Figures

G.1 Topology of the diagrams inducing the running of the Wilson coefficients in the

Twin sector. The last diagram on the right contains an insertion of cH in the

four-scalars vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

J.1 The one-loop diagram displaying the fermion contribution to the gauge boson

vacuum polarization amplitude. Two virtual fermions with generically different

masses, mi and m j , circulate in the loop. . . . . . . . . . . . . . . . . . . . . . . 182

J.2 The four one-loop diagrams displaying the fermion contribution to the Z → bLb̄L

vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

J.3 The one-loop diagram displaying the divergent contribution to the Z → bLb̄L

vertex originating from the renormalization of the Z boson propagator. . . . . . 186

xiv



List of Tables
2.1 List of the couplings arising before EWSB and their scaling with the strong coupling

constant gρL in the mass eigenstate basis, for the ρ
μ

L resonance coupled to top partners. 32

2.2 List of the couplings arising before EWSB and their scaling with the strong coupling

constant gρR in the mass eigenstate basis, for the ρ
μ

R resonance coupled to top partners. 35

2.3 List of the couplings arising before EWSB and their scaling with the strong coupling

constant gρX in the mass eigenstate basis, for the ρ
μ

X resonance in models M1
X and M2

X. 39

xv





1 Introduction

The Standard Model (SM) is an elegant and compact theory to describe all the known funda-

mental interactions between elementary particles. More than a century of experiments have

shaped our understanding of nature at its deepest level and the SM emerged as an extremely

successful theory in predicting a vast amount of results; its agreement with empirical data

is impressive. From the theoretical point of view, decades of developments have made it

possible to unify seemingly unrelated phenomena in a comprehensive perspective. In fact,

even though the weak, electromagnetic and strong forces appear very different at low-energy

scales, they are intimately related and described within the same mathematical language of

gauge theories. Specifically, all phenomenological observations indicate that nature can be

interpreted at its most fundamental level as a quantum field theory invariant under the gauge

group SU (3)c ×SU (2)L ×U (1)Y , SU (3)c accounting for the strong force and SU (2)L ×U (1)Y

jointly unifying the weak and electromagnetic interactions at short distances. This latter

electroweak gauge symmetry, however, is hidden at low-energies, namely it is spontaneously

broken by the ground state, the vacuum of the theory. The spontaneous breakdown of this

symmetry is the origin of the generation of vector boson and fermion masses and it is also

the most debated phenomenon of the SM. Despite the abundance of data collected by the

Large Hadron Collider (LHC) at CERN, in fact, the dynamics responsible for spontaneously

breaking the electroweak symmetry is still unclear, or, at least, the way the SM introduces the

mass generation cries out for additional explanations.

The SM accounts for electroweak symmetry breaking (EWSB) in the simplest and most eco-

nomical way, just by adding one fundamental elementary scalar, the Higgs boson. Together

with the would-be Goldstone bosons associated with the third polarization of the massive

vectors, the Higgs forms a single multiplet of scalars whose potential is responsible for the

generation of a vacuum expectation value (vev) for the Higgs field and ultimately for the origin

of fermion and boson masses. The discovery of a Higgs-like scalar resonance at the LHC, with

properties stunningly in agreement with the SM expectations, suggests that this theoretical
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description is indeed realized in nature and that the dynamics responsible for EWSB is weakly

coupled. However, a theoretical problem arises when considering the existence of an elemen-

tary scalar, like the Higgs particle. According to our current understanding of quantum field

theory, in fact, elementary scalars are unstable under radiative corrections unless there exists

a symmetry that is restored when their mass goes to zero [1] 1. In the case of the Higgs boson,

no symmetry enhancement appears when its mass, MH , vanishes, so that this latter should be

sensitive to the scale where the SM breaks down and new physics comes into play. Interpreting

the SM as an effective field theory valid up to a cut-off scale m∗, the quantum corrections to the

Higgs boson mass should therefore make it as heavy as m∗, barring additional fine-tuning of

the mass parameter in the theory. This argument can be easily understood on general grounds

considering the presence of a relevant operator, the Higgs boson mass term Om = H †H , in

the SM Lagrangian. Using a Wilsonian approach, the infrared (IR) Lagrangian describing the

Higgs boson mass is generated from the ultraviolet (UV) theory as the result of integrating out

high-energy degrees of freedom. Using only dimensional analysis, we then expect the IR mass

term to be proportional to

LM ass = cm2
∗H †H , (1.1)

where c is an O (1) parameter that is originated along the renormalization flow while integrating

out the UV modes. The IR scalar mass is consequently related to the UV cut-off by the relation:

MH = c
1
2 m∗, (1.2)

so that we naturally expect to have a small hierarchy between the two scales for c in its O (1)

range.

There would be no theoretical challenge in having an elementary Higgs in the spectrum if we

had experimental indications of a small cut-off scale, around a few TeV, for the SM. On the

contrary, many of the successes of the SM suggests that m∗ be very far in the UV: low energy

constraints from flavor changing neutral currents (FCNC), the smallness of neutrino masses

and the stability of the proton are just a few examples of phenomena hinting that the SM

should be valid up to very small distances. The need of incorporating gravity in a complete

description of fundamental interactions at the quantum level would suggest that the SM cut-

off be identified with the Planck scale, MPl ∼ 1018 GeV, where new physics must necessarily

appear. All experimental indications would be consistent with m∗ ∼ MPl , but according to our

1This is why elementary fermions can be naturally light, for instance: when the fermion mass goes to zero,
chiral symmetry is restored. Therefore, all radiative corrections must be proportional to the fermion mass itself, in
order to preserve the chiral symmetry restoration at all orders. As a result, the quantum contributions are small
and controllable, thus making the fermion mass term naturally light.
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previous discussion this would in turn imply the Higgs mass to be very heavy. What the LHC

has experimentally discovered is instead a very light Higgs with mass MH ∼ 125 GeV, implying

the existence of a huge hierarchy between the Higgs mass and the most obvious SM cut-off,

the Planck scale. In order to justify this hierarchy, we need to adjust very cleverly the initial

conditions for the running of the Higgs mass operator so that the parameter c in the IR turns

out to be very small. This is what is usually defined as the fine-tuning problem, namely to

understand why a parameter that we usually expect to be of O (1) must be unnaturally small to

explain the mass hierarchy between the electroweak scale and the SM cut-off.

An obvious solution to the hierarchy problem is to lower the SM cut-off assuming the existence

of new physics just above the electroweak scale that justifies the lightness of the Higgs scalar.

However, lowering the cut-off immediately spoils the success of the SM in accounting for

many experimental facts that need a very high value for m∗. Moreover, there is no experi-

mental evidence yet of the existence of new particles or forces at the TeV scale; the LHC has

provided no convincing proof that the SM breaks down any scale near the electroweak one.

As a consequence, the most important problem of high energy physics is this intrinsic and

unavoidable contradiction between on one side the agreement of the SM with experiments

that apparently suggest m∗ to be way far in the UV and on the other side the consistency of

the SM as an effective field theory that would require a much lower cut-off. Any attempt to

solve naturally the hierarchy problem by introducing new physics at the TeV scale forces to

model building gymnastics in order to satisfy all the other constraints, especially from flavor

physics, that require a much higher cut-off. At the same time, the absence of new signals at

the LHC puts all the known natural extensions of the SM under severe pressure and is pushing

them into more and more fine-tuned regions. Using naturalness as a guiding principle for new

physics searches calls therefore for more clever constructions that could explain the lightness

of the Higgs while having a cut-off scale higher than a few TeV. It is the object of this thesis to

critically assess such constructions in some detail and provide examples of natural theories

beyond the SM that could be in agreement with the absence of new physics signals at the LHC.

Naturalness

The known solutions to the hierarchy problem imply the existence of a New Physics (NP)

sector not far above the electroweak (EW) scale that is endowed with a protection mechanism,

either a symmetry or the absence of relevant operators, responsible for screening the Higgs

boson mass from large radiative corrections and for keeping it light. Following this naturalness

paradigm, we would expect to find striking new signals and evidence of NP at the LHC, at

around the TeV scale. There are different ways to realize this idea, but we can broadly classify

them under two categories: weakly coupled or strongly coupled extensions of the SM. Theories

falling in the first category can be analyzed perturbatively and allow a better understanding of
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their implications for direct or indirect searches of NP effects, which are calculable. In the case

of a new strongly interacting sector, instead, we must give up full calculability and resort to

simplified effective models to compute relevant physical quantities, the results being reliable

only under certain conditions and in a window of parameter space where the effective models

are perturbative. The concrete examples of this two scenarios are Supersymmetry, for weakly

coupled natural extensions of the SM, and Composite Higgs theories, for the strongly coupled

solution to the hierarchy problem.

According to the Coleman-Mandula theorem [2, 3], Supersymmetry is the largest possible

space-time symmetry of the S-matrix and consists in adding a supersymmetric partner to

all the SM particles; the partner has the same quantum numbers except for spin. In par-

ticular, in the most economical incarnation like the minimal supersymmetric SM (MSSM),

each SM fermion must be related to a new bosonic superpartner, whereas SM bosons are

coupled with fermionic superpartners. The known SM particles and their supersymmetric

companions form thus supermultiplets, through which the chiral symmetry protecting the

light SM fermions is extended to the Higgs sector, solving the hierarchy problem and making

the Higgs naturally light. However, no superpartners have been observed yet, so that this

scenario must be complemented with an additional supersymmetry breaking mechanism to

render the superpartners consistently heavier than the SM particles. In general, this requires

the introduction of soft supersymmetry breaking operators, so that radiative corrections to

the Higgs mass can be kept under control without spoiling the chiral protection offered by

unbroken supersymmetry. The scale m∗ where NP appears can then be identified with the

mass of the soft terms, mso f t , in the supersymmetric Lagrangian. In order to reproduce the

observed Higgs mass with a fine-tuning which is no worse than 10%, light stops (scalar super-

partners of the top quark) must be present in the spectrum; the actual value of the stop masses

is model-dependent, but in general they shouldn’t be heavier than ∼ 1 TeV [5, 6]. Current

constraints from LHC direct searches exclude the existence of these new particles up to around

the same scale, 1 TeV, pushing the minimal realizations of supersymmetry in more fine-tuned

regions [4]. Although the tension between predictions and observations is making the MSSM

and other more elaborate realizations of supersymmetry more unnatural, this scenario offers

calculability and several other advantages, like gauge coupling unification or candidates for

dark matter, thus making it still interesting to explore. We will not focus on supersymmetric

extensions of the SM in this thesis, devoting most of our effective models to Composite Higgs

(CH) scenarios.

The second possibility for solving the hierarchy problem is offered by the putative existence of

a new strongly coupled sector just above the EW scale. This idea exploits the analogy with the

known example of QCD to make the Higgs boson a composite scalar, like the QCD pions; these

latter are naturally light due to the asymptotic freedom of the SM strong interaction. In QCD,
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in fact, the separation between the confinement scale ΛQC D ∼ 200 MeV and the Planck scale is

not affected by the hierarchy problem because ΛQC D is generated dynamically by dimensional

transmutation due to the running of the strong fine-structure constant, αS . The scale of QCD,

in fact, originates as the scale where αS becomes strong in the IR:

ΛQC D = MPl e
− 2π

bαS (MPl ) . (1.3)

The small logarithmic running of the strong coupling, which is related to a marginal operator,

ensures that the radiative corrections be always small, so that a huge hierarchy between MPl

and ΛQC D can be generated with only moderately small initial conditions for the strong cou-

pling. No unnaturally small parameters are required in the theory. As a result, the QCD pions

are naturally light and are not quadratically sensitive to the scale of NP. To be more specific, the

pions can be interpreted as the Goldstone bosons associated with the spontaneous breakdown

of chiral symmetry. When the quark masses vanish and before turning on the weak interac-

tions, the QCD Lagrangian enjoys in fact an exact chiral symmetry which is spontaneously

broken to its diagonal subgroup when confinement takes place and ΛQC D is generated by

dimensional transmutation. As a consequence, several Goldstone bosons (GB) are delivered in

the spectrum; restricting to the simplest case of having only two quark flavors, there are three

GBs in the IR associated with the SU (2)L ×SU (2)R → SU (2)V spontaneous symmetry breaking

pattern. The GBs are exactly massless, but, when turning on the electroweak interactions, the

chiral symmetry is explicitly broken and a potential for the three pions is generated. Together

with the explicit breaking due to the quark masses, this phenomenon generates a mass term for

the GBs turning the pions into pseudo Nambu-Goldstone bosons (pNGB). Therefore the pions

are not exactly massless, but they must be naturally light because in the limit of vanishing

gauge couplings and quark masses they would be the exact GBs of the spontaneous chiral

symmetry breaking.

The interesting aspect of the identification of the QCD pions with pNGBs is the fact the

phenomenon by which the pions acquire a small mass term is also intimately related with

EWSB. Since the QCD vacuum breaks explicitly the EW invariance, in a world without the

Higgs particle the gauging of SU (2)L ×U (1)Y would result in the Goldstone bosons being

eaten by the W and Z particles, while the surviving unbroken electromagnetic group would

leave the photon massless. We can write the pion effective action using a standard non-linear

sigma model realization of the spontaneous symmetry breaking pattern; the three GBs are

incorporated into the Σ matrix,

Σ(x) = ei σaπa

fπ , (1.4)
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and the Lagrangian takes the form

Lπ = f 2
π

4
Tr
[

(DμΣ)†DμΣ
]

, (1.5)

where fπ is the pion decay constant, fπ ∼ 90 MeV, and Dμ is the covariant derivative containing

the gauge fields. By deriving from Eq. (1.5) the interactions between the GBs and the gauge

fields, one finds that the W and Z propagators acquire a pole at the tree-level due to the

exchange of pions. The resulting mass term for the gauge bosons is of order ∼ g fπ
2 ∼ 30 MeV.

This is not enough to account for the observed EWSB and the gauge bosons masses, so the SM

needs the Higgs sector for a realistic description. Therefore, in the SM only a small fraction of

EWSB is due to QCD effects [20]: a combination of the QCD pions and of the GBs from the

Higgs sector is eaten to give mass to the gauge bosons, whereas the orthogonal combination

remains in the spectrum and it is what we identify as the charged π± and the neutral π0.

From our previous discussion, we can imagine to render the SM Higgs sector natural by

postulating the existence of a new strongly coupled dynamics just above the EW scale. Exactly

like in QCD, this dynamics preserves a global symmetry when the gauge interactions are

turned off and when the quark masses are neglected. After confinement, the global symmetry

is broken down to an unbroken subgroup, delivering a set of GBs. We can identify the SM GBs

with the ones resulting from the spontaneous breaking of the global symmetry in the strong

sector; these pions are eaten by the gauge bosons which in turn acquire a mass term. This

is in complete analogy with QCD, except that no light pNGB survives in the IR. The simplest

realization of this idea is Technicolor, a SU (NTC ) gauge theory with a SU (2)L ×SU (2)R flavor

group broken down to SU (2)V ; the GB decay constant of the new strongly interacting pions

is identified with the EW scale. In this simple scenario, however, no light Higgs is present in

the spectrum, contradicting the LHC evidence of a new light scalar resonance. Technicolor

theories also suffer for other problems, in particular they predict a too big contribution to

the Ŝ parameter and they are strongly constrained by FCNC and other flavor observables at

low energies [20]. A more clever construction is required that can accommodate a light Higgs

particle, predict its mass in the experimental range and possibly ameliorate the tension with

indirect and direct measurements. We will explore now an example of such constructions and

try to summarize both its strengths and limitations; this is the CH scenario.

The Composite Higgs

Composite Higgs theories provide a good alternative to simple technicolor models, postulating

the existence of a new strongly interacting sector which delivers a light Higgs particle together

with the GBs eaten by the gauge fields. Differently from the SM, the Higgs is not elementary

and it is naturally light because of the protection offered by the asymptotic freedom of the new
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strong fine structure constant, exactly like the pions in QCD. The Higgs emerges as a pNGB of

an approximate global symmetry of the strongly interacting dynamics. In general, the global

symmetry group G is spontaneously broken down to an unbroken subgroup H ; the scale

where the symmetry breakdown tales place is the GB decay constant, f . The process delivers

di m(G)−di m(H) GBs, part of which are eaten to give mass to the W and Z gauge fields, the

remaining being pNGBs. All the SM particles, gauge bosons and fermions, are assumed to

be external to the composite sector and are thus elementary. They interact with the strong

dynamics either via gauging of the EW group or via linear coupling to the new composite

resonances (this is especially valid for fermions). In order to identify the Higgs as one of the

pNGBs present in the spectrum, the SM gauge group must be embeddable in the unbroken

subgroup H and the coset G/H must contain a SU (2)L doublet, which is identified with the

Higgs doublet. A possible example is the minimal Composite Higgs model [19], which we will

work out in detail in Chapter 2 of the thesis; the symmetry breaking coset is SO(5)/SO(4)

which delivers exactly four GBs to be identified with the Higgs doublet. Other more exotic

constructions are also possible, but they involve in general the presence of extra light degrees

of freedom.

In all possible realizations, the Higgs potential vanishes at tree-level due to the non-linearly

realized Goldstone symmetry. However, the gauging of the SM group and the linear coupling

between fermions and operators in the strong sector both explicitly break the global symmetry.

A potential for the Higgs doublet is therefore generated at one loop, eventually triggering

EWSB. In this way, the EW scale v ∼ 246 GeV is dynamically generated and it can be smaller

than the GB decay constant f . This is different from Technicolor theories, where only one

scale is present and v must necessarily coincide with f . The degree of vacuum misalignment

between the true vacuum of the theory at the scale f and the preferred orientation generated

by the external gauging of the SM group determines the size of the ratio

ξ=
(

v

f

)2

, (1.6)

which is a general measure of the degree of fine-tuning in CH theories. For instance, the

SO(5)/SO(4) coset is a four-dimensional sphere; the true vacuum of the theory is determined

after the first spontaneous symmetry breaking at the scale f . A second spontaneous breaking

takes place when the Higgs field acquires a potential due to the radiative corrections origi-

nated at one-loop by the interactions with the elementary fields. This phenomenon selects a

preferred orientation in the sphere and the angle between this latter and the original vacuum

of the theory determines how the EW symmetry is broken and how much fine-tuning the

construction suffers. In the most natural case, v ∼ f and there is no separation of scales; in the

most phenomenologically viable constructions, instead, the vacuum misalignment is such

that v � f and ξ∼ 10%. For smaller values of ξ, the theory becomes more fine-tuned and less
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natural, despite the existence of the symmetry protection provided by the new strong dynam-

ics. Notice that the fine-tuning parameter ξ controls the deviations from the SM theoretical

prediction of many observables, including the Higgs couplings and the electroweak precision

tests (EWPT). The actual corrections with respect to the SM depend on the specific model real-

ization; in the minimal scenario, for instance, the coupling of the composite Higgs to the gauge

bosons is gV V H = g SM
V V H

√
1−ξ, where g SM

V V H is the SM prediction. Current measurements of

the Higgs couplings at the LHC put an important constraint on the value of the fine-tuning,

which must be of the order of ξ� 10−20% [99] in the most promising scenario. As regards

the EWPT, strong limits on the value of ξ are derived when considering the corrections to the

Ŝ and T̂ parameters originated by a composite Higgs particle with respect to the SM. In the

SM, in fact, all the corrections to the EW parameters must be finite due to the renormalizable

nature of the theory. One can show that the divergences that arise from vector polarization

diagrams with the Higgs circulating in the loop exactly cancel against those generated by loops

of GBs [20,102]. Since the CH effective theory is non-renormalizable, instead, this cancellation

does not hold any more and, in particular, the modified Higgs couplings to the SM gauge fields

generate a logarithmically divergent contribution to the gauge boson self-energies [102, 108].

Therefore, the Higgs compositeness introduces a logarithmic sensitivity to the scale where the

heavy resonances of the new strong sector reside; this is exactly the SM cut-off scale m∗. One

finds

ΔŜ = g 2

192π2 ξ log

(
m2∗
M 2

H

)
, ΔT̂ =−3(g ′)2

64π2 ξ log

(
m2∗
M 2

H

)
. (1.7)

Measurements at LEP put a strong bound on the value ξ must have in order to satisfy the

experimental constraints; in general, ξ� 10%, similarly to the limit from the Higgs coupling

deviation. We shall return on the problem of EWPT in CH theories also in Chapter 5, where

we shall analyze in detail under which conditions the EWPT can be satisfied and how they

constrain the parameter space of this class of theories.

The Composite Higgs Potential and Light Top Partners

As we saw in the previous discussion, CH models offer the possibility to naturally solve

the hierarchy problem exploiting the symmetry protection of strongly coupled Technicolor

theories while at the same time allowing the existence of a light scalar resonance identifiable

with the Higgs particle. The most important question is now to understand how light a Higgs

these scenarios can accommodate and if they are capable of predicting the Higgs mass in the

correct experimental range. In general, a light pNGB Higgs comes at the price of having light

fermionic resonances connected to the top sector of the theory; they are called top partners.

The top Yukawa coupling, yt , breaks in fact the global symmetry G generating a contribution
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to the Higgs potential; since yt is the biggest coupling among the Yukawas and the gauge

interactions, its contribution is also the most sizable and relevant. It is then natural to expect

that a good prediction for the Higgs mass can be obtained just by computing the top quark

effects and how they enter the Higgs effective potential. The result shows that there exists an

intimate and structural correlation between the light Higgs mass and the top partners mass,

so that a light Higgs with mass MH ∼ 125 GeV and a fine-tuning not worse than ∼ 10−20%

requires the existence of fermionic resonances not heavier than ∼ 800 GeV−1.5 TeV [29–34].

The discovery of such new particles would be a striking evidence of the composite nature of

the Higgs and this is why they have been the subject of avid research both experimentally and

theoretically. We shall now briefly analyze this connection between a light Higgs and the top

partner mass, using only symmetries and selection rules; this will show that, regardless of the

model, natural CH theories need resonances at the TeV scale, where the SM effective theory is

expected to break down.

We consider for concreteness the minimal composite Higgs model, although the analysis can

be easily generalized to other non-minimal scenarios and the conclusions hold for a broader

class of theories. The Higgs arises as a pNGB of the SO(5)/SO(4) spontaneous symmetry

breaking pattern. In particular, as already seen before, the GBs are parametrized by the matrix

Σ= ei
�

2
f Πa T a

, (1.8)

where Πa are the Goldstone fields and T a are the broken generators. Since we are interested

in the top contribution to the Higgs potential, we should focus on the part of the Lagrangian

involving the linear coupling between the elementary fermions and the operators in the

strong sector. The top-bottom doublet can be then uplifted to a linear representation of the

global symmetry through the introduction of spurions that allow us to write the elementary-

composite mixing Lagrangian in the UV as:

L = yL qα
LΔ

L
αI O

I
R + yR t RΔ

R
I O I

L , (1.9)

where the fermionic operators OL and OR also transform under a linear representation of SO(5).

The tensors ΔL,R are the spurions and they are uniquely determined once the representation

for the composite operators is defined. The index α runs over the SU (2)L gauge representation,

whereas I is an SO(5) index depending on the chosen representation for the operators. The

parameters yL/R are small couplings in the UV and they are assumed to stay small while

flowing to the IR, allowing a perturbative treatment. In the IR, the Lagrangian in Eq. (1.9)

translates into a linear coupling between the elementary fermions and the composite fermions

excited from the vacuum by the strong sector operators, thus introducing a direct mixing with

the top partners. The spurions parametrize the breaking of the global symmetry and they can

be associated fictitious transformation properties under SO(5) so that the mixing Lagrangian
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is formally invariant under global transformations. This invariance survives in the IR if we

write the effective operators as functions of all the possible invariants that can be constructed

using the spurions ΔL,R and their transformation properties. As regards the Higgs potential, it

must be a function of all the non-derivative invariant operators containing the Higgs and the

spurions. Taking into account that the global symmetry is non-linearly realized, the Σ matrix

transforms as

Σ→ g Σ h†, (1.10)

where g ∈ SO(5) and h ∈ SO(4). Using this transformation rule, we can easily construct all the

possible invariants arising at the quadratic order in the expansion parameters yL/R . We have:

IL = Tr
[
Σ†(ΔL)†ΔLΣ

]
, IR = Tr

[
Σ†(ΔR )†ΔRΣ

]
. (1.11)

The actual expression of the invariants depends on the choice of representation for the opera-

tors in the strong sector; in general, they are trigonometric functions of the Higgs field. For

example, when considering the fundamental representation, one has

IL ∝ sin2
(

h

f

)
, IR ∝ cos2

(
h

f

)
= 1− sin2

(
h

f

)
, (1.12)

where h is the Higgs field and the formulae are valid in the unitary gauge. In order to construct

a realistic potential which can allow for EWSB, higher order terms must be constructed,

since the two invariants have the same functional forms. Analogously to what we did for the

quadratic order, we can easily find the operators entering at quartic order, which will bring a

functional dependence of the form sin4(h/ f ). The general structure of the potential can be

inferred now using dimensional analysis, see for instance [24]. The Higgs effective potential

takes therefore the generic form:

V (h) = Nc m2∗ f 2

16π2

(
cL y2

L +cR y2
R

)
sin2

(
h

f

)
+ Nc f 4

16π2 c4 y4 sin4
(

h

f

)
, (1.13)

where y collectively indicates terms going like y4
L , y4

R , y2
L y2

R , Nc is the number of QCD colors

and cL , cR , c4 are O (1) parameters. m∗ is generically the scale of the fermionic top partners

mass. Notice that the quadratic term in the effective potential is directly sensitive to this

scale, whereas quartic contributions only depend on the GB decay constant f by dimensional

analysis. A realistic EWSB pattern can now be obtained by tuning the coefficients of the

different trigonometric structures against each other, in such a way to derive ξ� 1 with a light

Higgs in the spectrum. The Higgs mass can be estimated from the quartic coupling to be

M 2
H ∼ Nc y2

t

16π2 ξm2
∗. (1.14)

10



For ξ ∼ 0.1, as required for satisfying EWPT constraints, a Higgs mass of 125 GeV can be

predicted only for values of the top partners mass scale of order m∗ ∼< 1 TeV. For smaller

values of ξ, heavier top partners are needed, but the theory becomes more fine-tuned and less

natural. This connection between a light Higgs and light top partners intrinsically depend on

the symmetry structure of the theory and, as we have shown, can be easily understood using

selection rules for the potential and dimensional analysis. The presence of new fermionic

resonances at the TeV remains a general requirement for all the other natural realizations

of CH theories, with different coset structures or considering other representations for the

composite operators linearly coupled to the elementary fermions.

The prediction of the Higgs mass in the correct experimental range requires finally light top

partners in CH theories. Searches for these particles at the LHC have produced negative

results so far, putting strong limits on their mass and therefore severely constraining this

class of models. Direct measurements exclude the existence of new heavy fermions up to

∼ 1 TeV [36, 37, 67–80], implying a growing level of fine-tuning for any CH construction. The

contradiction between the need of light resonances and the absence of new signals at the LHC

requires a further understanding of our interpretation of naturalness as a guiding principle

for new physics. On one side, considering that both supersymmetric and composite natural

extensions of the SM are under pressure, we could think to give up naturalness and introduce

some new principle or accept the possibility of a huge hierarchy between the EW scale and

the Planck scale. On the other, naturalness could be implemented in a more clever way so

that the Higgs can be protected by a symmetry without necessarily requiring the existence of

new particles close to the TeV scale. We will focus now on this second possibility, showing that

natural models exist which are not accompanied by new colored resonances discoverable at

the LHC.

Neutral Naturalness

As we saw in the previous discussion, any natural theory beyond the SM requires the existence

of new light resonances not heavier than ∼ 1 TeV. This is true both for supersymmetric and

Composite Higgs theories, the new resonances being the stops in the former case and the

top partners in the latter. These new particles have been implicitly assumed to be charged

under the SM gauge interactions and, in particular, under color. As a result, they should

be copiously produced at the LHC, a proton-proton collider, so that the current limits from

direct searches put any of the extensions of the SM under severe pressure. An interesting

alternative to these scenarios is to confine the NP responsible for protecting the Higgs from

large radiative corrections to a color-blind sector. In this way, the resonances needed to

compensate the quantum contributions to the Higgs mass generated by loops of SM particles

can be as light as naturally required without being in any way discoverable at the LHC. This
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Chapter 1. Introduction

general idea would open up the possibility of saving naturalness as a guiding principle for

particle physics while at the same time avoiding any tension with the LHC direct searches.

Invoking a neutral naturalness paradigm, we can parametrize the NP beyond the SM with two

scales. The first one is the scale where a SM-neutral sector reside; this latter is responsible

for keeping the Higgs boson light and we can set its scale at ∼ 700−800 GeV for a maximally

natural light Higgs. No particle accelerator can detect the light resonances associated with this

sector since they are uncolored; only indirect observations, like the Higgs invisible decay width,

could give a confirmation of its existence. The second scale is the true SM cut-off m∗ where the

SM-charged resonances are expected to be found. Differently to the original supersymmetric

and composite models, these latter particles do not intervene in the protection of the Higgs

mass from large radiative corrections. As a result, they can be as heavy as required to avoid

present constraints from direct searches and to be out of the LHC reach. Despite being colored,

they are therefore un-discoverable with the existing collider and effectively push the SM cut-

off scale up in the TeV range. We could expect to construct a neutral natural theory with

m∗ ∼ 5−10 TeV. At this scale, a UV completion must be specified and the neutral natural

model must be embedded into a composite or supersymmetric picture. Several concrete

examples of neutral natural theories have been proposed; the simplest one goes under the

name of Twin Higgs (TH) [125] and this is the scenario we will mainly be studying throughout

this thesis.

The Twin Higgs

Twin Higgs theories represent the most economical realization of neutral naturalness and they

offer a simple mechanism to protect the Higgs mass from quadratically divergent corrections

while concealing the lightest resonances into a hidden, uncolored mirror world. From the

low-energy perspective, these models are characterized by the existence of a mirror copy of

the SM, charged under an identical gauge group. More specifically, we introduce a S̃M, made

up of twin gauge bosons and fermions, and described as a S̃U (3)C × S̃U (2)L ×Ũ (1)Y gauge

theory. The two copies of the SM are related by a discrete Z2 symmetry that interchanges

every SM particle with its mirror; if this symmetry were to be exact, it would imply that

all the SM gauge and Yukawa couplings be identical with their twins. As we shall see, this

symmetry is the crucial ingredient for a naturally light Higgs, although it must be explicitly

broken for a phenomenologically viable model [125]. The Higgs sector of TH models enjoys

an approximate global SU (4) symmetry which is spontaneously broken down to its SU (3)

subgroup. As a result, seven GBs are delivered, six of which are eaten to give mass to the SM

gauge bosons and their twins, the last one being identified as the physical Higgs boson. As

in CH models, the Yukawa and gauge interactions in the SM and S̃M sectors explicitly break

the SU (4) symmetry generating a potential for the Higgs which in turn becomes a pNGB. The
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presence of the Z2 symmetry introduces additional constraints to the form of the quadratically

divergent corrections to the Higgs mass, allowing natural EWSB.

To illustrate the model and how the mechanism protects the Higgs mass, let us consider

a simple linear realization. The Higgs field is now part of a complex scalar H forming a

fundamental representation of SU (4). Under the SM× S̃M gauge groups, this complex field

can be decomposed as H = (H , H̃), the first doublet being a fundamental of SU (2)L , the

second transforming only under S̃U (2)L . We can write down a potential of the form

VT H (H ) =−μ2H †H +λ(H †H )2; (1.15)

analogously to what happens in the SM, H develops a vev, 〈H 〉 = μ/
�

2λ ≡ f , so that the

SU (4) symmetry is spontaneously broken to SU (3). When gauging the SM×S̃M groups, six GBs

are eaten and disappear from the spectrum, whereas the Higgs picks up a mass and becomes

a pNGB; this mass term must be proportional to the gauge couplings which explicitly break

the global symmetry. Focusing for simplicity on the SU (2)L groups, the one loop corrections

generate a quadratically divergent mass term,

ΔVT H = 9g 2m2∗
64π2 H †H + 9g̃ 2m2∗

64π2 H̃ †H̃ , (1.16)

where g̃ is the twin gauge coupling. Imposing now the Z2 symmetry, the two gauge couplings

must be equal so that g = g̃ and the one-loop corrections can be recombined to form a SU (4)

invariant:

ΔVT H = 9g 2m2∗
64π2 H †H . (1.17)

Since this latter term does not break the global symmetry, it cannot contribute a potential for

the Higgs and no mass term is generated. The Higgs is therefore insensitive to quadratic diver-

gences from gauge loops. This reasoning can be easily extended to the fermionic corrections,

in particular in the top sector, and it can be shown that this quadratic divergence cancellation

mechanism still holds [125]. The Higgs sector does not feel the scale m∗ and it is therefore

natural. The particles responsible for this cancellation are SM-blind and cannot be detected

at the LHC.

Gauge and top loops will however generate a potential for the Higgs and eventually a mass

through the SU (4) breaking term k (H 4 + H̃ 4), which is indeed produced by radiative correc-

tions. Since this is a marginal operator, it cannot be quadratically sensitive to m∗, but it will

only be logarithmically dependent on the cut-off scale. k must be of the order

k ∼ g 4

16π2 log

(
m2∗
g f

)
, (1.18)
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Chapter 1. Introduction

where g indicates collectively the gauge or Yukawa couplings in the SM sector or in its copy.

This term is perfectly natural and under control, the weak scale being dynamically generated

and protected from large radiative corrections by the TH mechanism. As we mentioned before,

however, this potential is not phenomenologically viable because it contains only a quartic

term, whereas a quadratic piece is needed for a minimum to exist. This quadratic term can

be generated by breaking the Z2 parity explicitly. If this breaking is small, it will reintroduce a

mass term in the effective potential without worsening the fine-tuning, since the Higgs will

be only mildly sensitive to m∗. One way to achieve this goal is to introduce a μ-term that

softly breaks the twin parity; for example a contribution of the form μH †H will contribute

to the mass allowing a natural pattern of EWSB. Another conceivable possibility is not to

gauge the twin hypercharge, introducing an explicit breaking in the far UV that will generate

a small difference between the SM couplings and their twins in the IR. In both cases, the

known SM Higgs potential can be reproduced once integrating out the twin Higgs doublet

H̃ . The mass term will be proportional to the small Z2 breaking effects, therefore relieving

the quadratic dependence on the cut-off scale, whereas the quartic coupling comes naturally

as a radiative effect due to loops of SM and S̃M particles. The bulk of the contribution to

the physical Higgs mass is due to this quantum contributions which should be capable of

reproducing its experimental value.

Several questions arise when considering the TH mechanism as a realistic paradigm for EWSB.

A first important problem is the embedding of this scenario in a broader picture valid up to

the Planck scale. The general features we discussed so far, in fact, are related to the low-energy

implementation of the TH scenario, but at the scale m∗, where the SM-charged resonances

are expected, we must specify whether the TH is UV-completed into a supersymmetric or a

composite picture. We then have to understand how this UV-completion can be constructed

and if the TH symmetry protection mechanism is still a valid proposal also when considering

the quantum corrections due to new heavy particles. In the IR, the TH allows the cancellation

of the quadratically divergent corrections due to the high-energy loop propagation of the

light degrees of freedom; in the UV, similar contributions arise when considering loops of

supersymmetric or composite resonances. As a consequence, when constructing a realistic UV

completion, we must understand under which conditions the TH symmetry protection can be

uplifted to a full mechanism that shields the Higgs also from the corrections due to the new

high energy sector. A second question is how well any TH scenario, however UV completed,

can reproduce the experimental value of the Higgs mass. This problem requires a precise

assessment of the radiative corrections to the Higgs effective potential and a derivation of the

physical mass beyond the simple one-loop approximation. Finally, as we mentioned above,

we might believe that a UV completed TH model could push the SM cut-off scale higher in

the TeV range, out of the LHC reach. We may naively estimate this scale as mT H∗ ∼ 10 TeV,

but we need actually to be more careful and study for each specific UV completed model if
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this is an overestimate of the cut-off and if we need to be more accurate. For example, in

composite Higgs models the requirement that the effective constructions be perturbative puts

an important constraint on the overall maximum allowed value of the cut-off scale, which may

result to be closer to the TeV scale than in the most promising expectations. We shall deal with

these problems in the main part of the thesis.

Plan of the Thesis

This thesis is organized as follows.

In Chapter 2, we give a closer look to natural extensions of the SM, in particular to CH theories.

We introduce a simplified low-energy effective Lagrangian description of the phenomenol-

ogy of heavy vector resonances in the minimal composite Higgs model, based on the coset

SO(5)/SO(4), analysing in detail their interaction with lighter top partners. Our construction

is based on robust assumptions on the symmetry structure of the theory and on plausible

natural assumptions on its dynamics. We apply our simplified approach to triplets in the

representations (3,1) and (1,3) and to singlets in the representation (1,1) of SO(4). Our model

captures the basic features of their phenomenology in terms of a minimal set of free parame-

ters and can be efficiently used as a benchmark in the search for heavy spin-1 states at the LHC

and at future colliders. We devise an efficient semi-analytic method to convert experimental

limits on σ×BR into bounds on the free parameters of the theory and we recast the presently

available 8 TeV LHC data on experimental searches of spin-1 resonances as exclusion regions

in the parameter space of the models. These latter are conveniently interpreted as a test of the

notion of naturalness.

In Chapter 3, based on an explicit model, we propose and discuss the generic features of a

possible implementation of the Twin Higgs program in the context of composite Higgs models.

We find that the Twin Higgs quadratic divergence cancellation argument can be uplifted to a

genuine protection of the Higgs potential, based on symmetries and selection rules, but only

under certain conditions which are not fulfilled in some of the existing models. We also find

that a viable scenario, not plagued by a massless Twin Photon, can be obtained by not gauging

the Twin Hypercharge and taking this as the only source of Twin Symmetry breaking at a very

high scale.

In Chapter 4, we present the Renormalization Group (RG) improvement of the Twin Higgs effec-

tive potential at cubic order in logarithmic accuracy. We first introduce a model-independent

low-energy effective Lagrangian that captures both the pseudo-Nambu-Goldstone boson

nature of the Higgs field and the twin light degrees of freedom charged under a copy of the

Standard Model. We then apply the background field method to systematically re-sum all
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Chapter 1. Introduction

the one loop diagrams contributing to the potential. We show how this technique can be

efficient to implicitly renormalize the higher-dimensional operators in the twin sector without

classifying all of them. A prediction for the Higgs mass in the Twin Higgs model is derived

and found to be of the order of MH ∼ 120 GeV with an ultraviolet cut-off m∗ ∼ 10−20 TeV.

Irrespective of any possible ultraviolet completion of the low-energy Lagrangian, the infrared

degrees of freedom alone are therefore enough to account for the observed value of the Higgs

mass through running effects.

In Chapter 5, we analyze the parametric structure of TH theories and assess the gain in

fine tuning which they enable compared to extensions of the Standard Model with colored

top partners. Estimates show that, at least in the simplest realizations of the TH idea, the

separation between the mass of new colored particles and the electroweak scale is controlled

by the coupling strength of the underlying UV theory, and that a parametric gain is achieved

only for strongly-coupled dynamics. Motivated by this consideration we focus on one of these

simple realizations, namely composite TH theories, and study how well such constructions

can reproduce electroweak precision data. The most important effect of the Twin states is

found to be the infrared contribution to the Higgs quartic coupling, while direct corrections

to electroweak observables are sub-leading and negligible. We perform a careful fit to the

electroweak data including the leading-logarithmic corrections to the Higgs quartic up to

three loops computed in Chapter 4. Our analysis shows that agreement with electroweak

precision tests can be achieved with only a moderate amount of tuning, in the range 5-10%, in

theories where colored states have mass of order 3-5 TeV and are thus out of reach of the LHC.

For these levels of tuning, larger masses are excluded by a perturbativity bound, which makes

these theories possibly discoverable, hence falsifiable, at a future 100 TeV collider.

We finally summarize our results and discuss open problems and new directions in the Con-

clusion, Chapter 6.
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2 Hunting composite vector resonances

at the LHC: naturalness facing data

The discovery of a new scalar resonance at the LHC marked an important step towards our

comprehension of the dynamics hiding behind electroweak symmetry breaking (EWSB). The

remarkable compatibility of its properties with those of the Standard Model (SM) Higgs boson

and the absence of any new physics predicted by many beyond-the-Standard-Model (BSM)

scenarios are forcing us to deeply reconsider the role of naturalness in the dynamics of this

particle. A concrete realization of naturalness is offered by the composite Higgs scenario: a

new strongly coupled sector confining at the TeV scale and inducing the spontaneous breaking

of a global symmetry can produce a light pseudo Nambu-Goldstone boson (pNGB) Higgs at

125 GeV, [14]. Probing the compositeness of the newly discovered scalar is therefore a crucial

task for understanding how natural its features are. This is indeed the main question we

would like to address in this Chapter: assuming naturalness as a good guiding principle for the

existence of a new strongly coupled physics at the TeV scale, how can the presently available

LHC data be used to test the validity of our notion of naturalness?

A possible way to answer this question is to study the phenomenological properties and the

possibility of a direct discovery of other composite resonances generated by the strong sector.

In particular, one of the robust predictions of this class of theories is the existence of spin-1

resonances excited from the vacuum by the conserved currents of the strong dynamics. They

form multiplets of the unbroken global symmetry and can behave rather differently from

the heavy Z ′ states in weakly coupled extensions of the SM. These vectors, in fact, interact

strongly with the longitudinally polarized W and Z bosons and the Higgs and thus tend to be

broader than the weakly coupled ones. The strength of their interactions with the SM fermions

depends on whether these latter participate to the strong dynamics or are purely elementary

states. A simple possibility is that SM fermions couple to the EWSB dynamics according to

their masses, so that the lightest ones are the most weakly coupled. This idea has an elegant

implementation in the framework of partial compositeness [15] and can give a qualitative

understanding of the hierarchies in the Yukawa matrices of the SM fermions in terms of RG
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flows [18, 19]. A second robust characteristic of composite Higgs models is the existence of

spin-1/2 resonances, the top partners. In the most natural realizations, these fermionic states

are lighter then the heavy vector particles, [29–34]. In a natural scenario we therefore expect

the phenomenology of spin-1 states to be significantly affected by the presence of lighter

composite fermions.

In this Chapter, we study the phenomenology of spin-1 resonances in composite Higgs theories

by means of a simplified description based on an effective Lagrangian, focussing on their

interaction with lighter top partners. This is aimed at capturing the main features relevant

for the production and decay of the heavy vectors at high-energy colliders and their effects

in low-energy experiments, avoiding the complications of a full model. Although simplified,

our procedure will be sophisticated enough to properly include those aspects which are

distinctive predictions of the class of theories under consideration, such as for example the

pNGB nature of the Higgs boson. We will focus on the minimal SO(5)×U (1)X /SO(4)×U (1)X

composite Higgs model and consider vector triplets transforming as a (3,1) and (1,3) of

SO(4) ∼ SU (2)L ×SU (2)R and vector singlets transforming only under the unbroken U (1)X .

We will study in detail the interactions of these bosonic states with top partners and include

the effects implied by the partial compositeness of SM fermions. The importance of lighter

composite fermions on the phenomenology of vector resonances has been pointed out also

in [47] and in [51]; this latter considered the case of a SU (2)L charged heavy spin-1 state. Our

approach, however, differs for the method used in deriving the effective Lagrangian and for

taking into account all the spin-1 resonances in the simplest representations of H .

Our construction provides a benchmark model to be used in searches for heavy spin-1 states

at the LHC and at future colliders. A simple kinematic model based on the width and the

production cross section times decay branching ratio (σ×BR) is sufficient to guide searches

for narrow resonances in individual channels and to set limits, see the discussion in [40].

However, combining the results obtained in different final states as well as interpreting the

limits on σ×BR in explicit models of BSM physics and developing a detailed analysis of the

interaction with lighter fermionic states requires an underlying dynamical description, such

as the one given by a simplified Lagrangian. Here we provide such a dynamical description

for spin-1 resonances coupled to lighter top partners appearing in a natural and sufficiently

large class of composite Higgs theories. Our simplified Lagrangian fully takes into account

the non-linear effects due to multiple Higgs vev insertions and does not rely on an expansion

in v/ f , where v is the electroweak scale and f is the decay constant of the pNGB Higgs. In

the limit v/ f � 1, it can be matched onto the more general one of [40], which covers a more

ample spectrum of possibilities in terms of a larger number of free parameters. In this sense,

the main virtue of our model is that of describing the phenomenology of spin-1 resonances

in composite Higgs theories in terms of a minimal set of physical quantities: one mass and
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one coupling strength for each heavy vector. Expressing the experimental results in such a

restricted parameter space is thus extremely simple and gives an immediate understanding of

the reach of current searches in the framework of strongly interacting models for EWSB. It also

provides an immediate way to test how natural the Higgs sector is expected to be.

This Chapter is organized as follows. In Section 2.1, we review the most important character-

istics of the minimal composite Higgs model that are relevant for our construction and we

analyse the dynamical assumptions that justify our effective Lagrangian approach. In Section

2.2, we introduce the models for the three vector resonances under consideration and we

discuss their mass spectrum and physical interactions.1 The main production mechanisms

and decay modes are discussed in Section 2.3, where we describe the most important channels

that can be relevant for a future discovery at the LHC. The presently available 8 TeV LHC data

are used to derive exclusion limits on the parameter space of our models in Section 2.4. Our

conclusions are finally summarized in Section 2.5.

2.1 Behind the models

Our main purpose is to introduce an effective Lagrangian description of the interactions

between heavy vectors and top partners in the minimal composite Higgs scenario. We aim

at deriving a simplified model, based on a minimal set of free parameters, which is suitable

for studying the production and decay of these new heavy states at colliders, but still capable

of capturing the most important features of the underlying strong dynamics. We will indeed

make some robust assumptions on the symmetry structure of the theory, dictated by the

pNGB nature of the Higgs, and some plausible dynamical assumptions on its spectrum,

dictated by naturalness arguments, that can provide enough information to determine the

most prominent phenomenological aspects of these constructions.

2.1.1 The symmetry structure and the degrees of freedom

We start analysing the basic features of the minimal composite Higgs model that will have

relevant consequences for the phenomenology of the heavy resonances. We assume the

existence of a new strongly interacting sector with an approximate global symmetry in the UV,

G = SO(5)×U (1)X , spontaneously broken to H = SO(4)×U (1)X ∼ SU (2)L ×SU (2)R ×U (1)X at

an energy scale f . 2 The four Goldstone bosons, Πâ , resulting from the spontaneous breaking of

the global symmetry transform as a (2,2)0 under the linearly-realized unbroken subgroup, H ;

in the absence of an explicit breaking of SO(5) they are exactly massless. The SM electroweak

1Part of the results appearing in this section has already been presented in [52].
2The abelian group U (1)X must be included in order to reproduce the correct hypercharge of the fermion fields,

which is given by Y = T 3
R +X , T 3

R being the third generator of SU (2)R
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bosons gauge the SU (2)L ×U (1)Y subgroup of the global group, thus introducing a preferred

orientation in the coset space SO(5)/SO(4) with respect to the global SO(4). The misalignment

between the direction fixed by the local group and the vacuum where the theory is realized can

be conveniently parametrized by an angle θ, which serves as an order parameter for EWSB, [8].

The interaction between the Goldstone bosons and the SM fields explicitly breaks the global

symmetry and generates a potential for the Higgs at loop level resulting in a non-vanishing

vev for its modulus. As a consequence, three Goldstone bosons are eaten to give mass to the

SM gauge bosons and a massive Higgs field, h(x), remains in the spectrum. The misalignment

angle can be identified as θ = 〈h〉/ f and the electroweak scale is dynamically generated at

v = f sinθ. It is convenient to introduce the parameter

ξ= sin2θ =
(

v

f

)2

(2.1)

characterising the separation between the electroweak and the strong scale; in a natural theory,

we expect ξ∼ 1, but it is conceivable that a small amount of tuning can give rise to ξ� 1. In

particular, compatibility with the constraints coming from electroweak precision tests and

Higgs coupling measurements generically implies ξ� 0.2, [40, 53, 56].

In this framework, we will construct effective Lagrangians respecting the non-linearly realized

SO(5) global group using the standard CCWZ formalism, as developed in [9] and [10]. Accord-

ing to this procedure, a Lagrangian invariant under the global SO(5) can be written following

the rules of a local SO(4) symmetry; the basic building blocks are given by the Goldstone boson

matrix, U (Π), and the dμ and Eμ symbols, resulting from the Maurer-Cartan form U †DμU ,

which are reviewed in Appendix A.

Considering now the degrees of freedom, they comprise elementary states, which include

the gauge bosons Wμ and Bμ and the SM fermions, and composite states, which, besides the

pNGB Higgs and the longitudinally polarized W and Z bosons, include particles with specific

transformation properties under the unbroken SO(4). As regards the interactions between

these two sectors, the gauge bosons couple through the gauging of the SM subgroup of G ,

whereas the elementary fermions couple linearly to the composite dynamics, according to

the paradigm of partial compositeness, [13]. Since this linear interaction is responsible for

generating the masses of leptons and quarks, we expect the heaviest SM fermions to be more

strongly coupled to the new sector and to have the strongest interactions with the composite

resonances. At the energy scale that can be probed at the LHC, it is therefore a well justified

approximation to consider all leptons and quarks, except for the heaviest doublet qL = (tL ,bL)

and the right-handed top quark tR , to be fully elementary and massless, so that we can neglect

their linear coupling to the strong dynamics. On the other hand, the top-bottom doublet is

taken to have a direct linear interaction with an operator OR , transforming in a representation
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rO of SO(5)×U (1)X , so that in the UV the Lagrangian is:

L = yL q̄α
L Δα,IO

OR
IO +h.c. = yL(Q̄L)IO

OR
IO +h.c., (2.2)

where IO denotes the indices of the operator OR and (Q̄L)IO
= q̄α

L Δα,IO
indicates the embedding

of qL into a full representation of SO(5), as discussed in [20]. This kind of mixing explicitly

breaks the global symmetry of the strong dynamics, yLΔ being a spurion under G , generating a

contribution to the Higgs potential via loop effects. In order to obtain a sufficiently light Higgs,

we therefore expect yL to be a relatively small parameter. The choice of the representation rO

does not depend on the details of the low-energy physics and it is to some extent free. Many

possibilities have been studied in the literature, [7, 42]; for simplicity, we will only consider the

minimal case where rO = 52/3, so that the form of the embedding will be unambiguously fixed:

(Q5
L)I = 1�

2
(i bL bL i tL − tL 0)T , (2.3)

which formally transforms under g ∈ SO(5) as (Q5
L)I → g J

I (Q5
L)J and has X -charge equal to

2/3. As regards the tR , we will consider two different scenarios. First, we will assume that this

particle arises as a composite resonance of the strong sector, transforming like a singlet under

SO(4) and with hypercharge 2/3. Then, similarly to what happens to the heaviest doublet, we

will be interested in studying the phenomenological implications of a partially composite tR ,

for reasons that will become clear in the following. In this particular case, the tR is assumed to

be linearly coupled to an operator OL of the strong sector transforming as a 52/3, with the UV

lagrangian

L = yR t̄RΔI O
I
L +h.c. = yR (Q̄5

R )I O
I
L +h.c., (2.4)

where the embedding is in this case fixed by the standard model quantum numbers to be:

(Q5
R )I = (0 0 0 0 tR )T . (2.5)

(Q5
R )I formally transforms under SO(5) like (Q5

L)I and has X -charge 2/3. The parameter yR is

expected to be of the order of the corresponding yL in order to accommodate a reasonably

tuned light Higgs in the spectrum.

We have discussed all the basic ingredients of the model, concerning both the new symmetries

and the particles we have to deal with. In this work, as highlighted in the Introduction, we will

be mainly interested in studying the phenomenology of composite spin-1 states, ρμ, focusing

on triplets transforming as a (3,1)0 and (1,3)0 under the unbroken SO(4)×U (1)X and on vector

singlets, which are left invariant by SO(4) and transform only under the abelian group U (1)X ,
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analysing in detail their interplay with lighter spin-1/2 heavy states.

2.1.2 Dynamical assumptions

Since we aim at building a simplified description of the interactions between vectors and

top partners, we need to make some generic assumptions on the dynamics of the strong

sector that can guide us in the construction of an effective Lagrangian and can give a basic

understanding of its regime of validity. Following the SILH approach, [24], we can broadly

parametrize the new confining dynamics with a mass scale m∗ and a coupling g∗, which are

related by the NDA estimate

m∗ ∼ g∗ f , (2.6)

reproducing the usual relation between the Goldstone boson decay constant and the mass

of the composite states. We will however generalize this simple approximation, taking into

account both the theoretical implications of naturalness and the constraints coming from

electroweak precision tests. On the theoretical level, in fact, we naturally expect the fermionic

resonances to be light, since they are directly responsible for cutting off the quadratically

divergent contributions to the Higgs mass coming from the SM top quark loops, as explained in

[29–34]. In particular, a reasonably tuned pNGB Higgs generically requires top partners to have

a mass around 1 TeV. On the other hand, as described also in Appendix B, vector resonances

contribute at tree level to the Ŝ parameter, thus implying their mass to be generically bigger

than 2 TeV.

These considerations are the main reason for parametrizing the confining dynamics with two

different scales, a lighter one for the spin-1/2 and a heavier one for the spin-1 resonances,

pointing towards a natural scenario where the phenomenology of vector particles can be

considerably affected by the presence of a lower-lying layer of fermionic states. We therefore

introduce a mass scale, mψ, and a coupling, gψ, for the top partners, such that

mψ = aψgψ f , (2.7)

and a mass scale, mρ , and a coupling, gρ , for the vector resonances, with the analogous

relation

mρ = aρgρ f , (2.8)

where aψ and aρ are O(1) parameters, as implied by NDA. Supposing the fermionic scale to be

smaller than the vector scale therefore implies the obvious relation between the two couplings
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of the new dynamics:

gψ < aρ

aψ
gρ . (2.9)

In particular, a naturally light composite Higgs generically requires the fermionic coupling

constant to be favoured in the range 1� gψ � 3. We will be mainly interested in studying how

these assumptions on the strong sector can be tested in the context of a phenomenological

model for the production of heavy spin-1 states and their decay to top partners and SM

particles.

We have some other considerations to make on the two scales in order to justify our effective

Lagrangian approach. Following the criterion of partial UV completion, firstly introduced

in [8], we assume that the bosonic resonances we want to study have a mass Mρ much lower

than the vector scale and bigger than the fermionic scale, mψ < Mρ � mρ , so that we can

integrate out all the heavier states and write a Lagrangian in an expansion of Mρ/mρ . This

approximation obviously starts loosing its validity as soon as the mass separation becomes

smaller, mψ � Mρ ∼ mρ , in which case the interference effects with other resonances become

non-negligible and our analysis is only a qualitative description of the underlying dynamics.

We apply this point of view to the triplets in the representation (3,1)0, ρL
μ, and (1,3)0, ρR

μ , and

to the singlet, ρX
μ , building one model for each of them. In every case we will suppose that the

other two vectors have a mass Mρ ∼ mρ , so that they belong to the tower of heavier resonances

that are being integrated out, resulting in a great simplification of the phenomenology. This

assumption is dictated mainly by the need of building the simplest description of the interplay

between heavy vectors and top partners and we have no deep reasons for excluding the

opposite case, namely that the spin-1 resonances are almost degenerate in mass. We will

however make some comments about this possibility in Appendix D, showing under which

conditions the mutual interaction between the vectors can be safely neglected even when

their spectrum is degenerate.

Finally, we must discuss the role of the fermionic scale in our effective expansion. In fact,

since we are about to derive a phenomenological Lagrangian which is valid up to the first

vector resonance, we should in principle include its interactions with all the fermions at the

scale mψ and falling into various representations of the unbroken SO(4). In order to avoid

the complications arising from such a full model, we will only take into account the lightest

heavy fermions, assuming that their mass satisfies the condition MΨ < mψ, so that the decay

channel of the vectors to these fermionic states is the most favoured one among the decays to

other resonances. Under this conditions, we can more safely neglect the remaining tower of

spin-1/2 states. For our construction to be fully meaningful, we need a criterion to understand

under which representation of SO(4) the lightest heavy fermions should transform. This is

easily found by noticing that in explicit models the lightest fermionic resonances that must be
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present in the spectrum are the top partners falling into the representations of H that can be

excited from the vacuum by the operators OR and OL linearly coupled to the qL doublet and

the tR , when this latter is partially composite, [30]. Since we chose rO = 52/3 for both cases, we

can decompose OR and OL under SO(4), obtaining 52/3 = 42/3 +12/3, therefore justifying the

introduction of top partners in the fourplet and in the singlet of the unbroken group. Moreover,

we must notice that limiting our analysis to the lightest fermionic resonances becomes a very

crude approximation when MΨ ∼ mψ, requiring a more complete construction; we leave this

study to future work, with the aim to provide in the present analysis a simplified model with a

few degrees of freedom and parameters that can be more thoroughly used to guide searches

of new physics at the LHC.

We now have all the elements to derive a phenomenological Lagrangian describing the in-

terplay between vector and fermion resonances, based on symmetry principles and general

reasonable assumptions on the nature of the strong dynamics. In conclusion, we will write

three models, one for a ρL
μ and top partners in the fourplet, one for a ρR

μ and again top partners

in the fourplet, and a last one for a ρ
μ

X and top partners in the singlet.

2.2 The models

After the clarification of the symmetries and the dynamical assumptions behind our approach,

we are now in a good position for explicitly introducing the Lagrangians for the three vector

resonances. We will devote this section to describe the three models and some of their basic

phenomenological characteristics.

2.2.1 A Lagrangian for ρL
μ

We start considering a theory for the (3,1)0 triplet and top partners in the fourplet, introducing

therefore the fermionic field

Ψ= 1�
2

⎛⎜⎜⎜⎜⎝
i B − i X5/3

B +X5/3

i T + i X2/3

−T +X2/3

⎞⎟⎟⎟⎟⎠ , (2.10)

which has X-charge 2/3. The vector resonance transforms non-homogeneously under the

unbroken SO(4),

ρL
μ → h(Π, g )ρL

μh†(Π, g )− i h(Π, g )∂μh†(Π, g ), (2.11)
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where h(Π, g ) ∈ SO(4), as described in Appendix A. The partner field transforms instead

linearly, so that

Ψ→ h(Π, g )Ψ, (2.12)

and it decomposes into two doublets under SU (2)L ×U (1)Y , the (T,B) doublet with the same

quantum numbers of top and bottom quarks and the (X5/3, X2/3) doublet with an exotic

particle of charge 5/3 and a second top-like resonance, X2/3.

Following now the CCWZ prescription and considering the tR a full composite condensate of

the strong sector, at leading order in the derivative expansion the Lagrangian is:

LL =Ll i g ht +LΨ+LρL , (2.13)

where the three different contributions stand for:

Ll i g ht =
f 2

4
(d â

μ )2 − 1

4
W a

μνW aμν− 1

4
BμνBμν+ ψ̄γμ(i∂μ+ gel

σa

2
W a

μ PL + g ′
el Y Bμ)ψ

+i q̄L /DqL + i t̄R /DtR ,

LΨ = Ψ̄γμ(i∇μ+X g ′
el Bμ−MΨ)Ψ+ [i c1Ψ̄

i
R /d i tR + yL f (Q̄5

L)IUI iΨ
i
R

+yLc2 f (Q̄5
L)IUI 5tR +h.c.

]
,

LρL = −1

4
ρ

aL
μνρ

aLμν+
m2

ρL

2g 2
ρL

(gρLρ
aL
μ −E aL

μ )2 +c3Ψ̄
iγμ(gρLρ

aL
μ −E aL

μ )T aL
i j Ψ

j .

(2.14)

In the first Lagrangian, containing the kinetic terms of the elementary sector, the composite

Goldstone bosons and third family quarks, we have collectively indicated with ψ all the

massless fermions, namely the leptons and the first two quark families, so that the ψ field has

to be understood as a sum over these different species. The second Lagrangian, LΨ, on the

other hand, describes the kinetic term of the top partners and their interactions with third

family quarks, which are generated in the IR by the UV Lagrangian (2.2). We have used the

notation of Appendix A to indicate the CCWZ covariant derivative, ∇μ, which is necessary to

respect the non-linearly realised SO(5), and we have added the contribution of the Bμ field

in order to preserve the SM gauge invariance. Finally, the last Lagrangian, LρL , introduces

the kinetic and mass terms of the vector resonance and its interaction with the top partners.

In particular, since ρL transforms non-homogeneously under the unbroken SO(4), the field

strength must be

ρ
aL
μν = ∂μρ

aL
ν −∂νρ

aL
μ + gρLε

aL bL cLρ
bL
μ ρ

cL
ν . (2.15)

We note that additional higher derivative operators can in general be included in the previous

Lagrangian and they can play a relevant role at energies of order of the resonances mass, as
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discussed for example in [8]. We will omit them for simplicity, referring to [40] for a more

complete discussion of the effects of these additional terms on the phenomenology of vector

resonances.

From Eq. (2.14), we immediately see that the only source of interactions among the composite

ρL and the elementary gauge fields is the ρL −W and the ρL −B mass mixings that follow

from the mass term in LρL . Given the expression of the CCWZ connections, the global mass

matrix of spin-1 fields (W,B ,ρL) is non-diagonal and must be diagonalised by a proper field

rotation, in order to obtain the couplings and the Lorentz structure of the vertices in the mass

eigenstate basis. Similarly, the mass matrix of these spin-1/2 fields arising from the Lagrangian

LΨ is in general non-diagonal and we need another rotation, on the fermionic sector, in order

to describe the particle spectrum.

Before discussing the two rotations, let us first count how many parameters appear in our

Lagrangian. There are eight couplings, (gel , g ′
el , gρL ,c1,c2,c3, yL , f ), two mass scales, (mρL , Mψ),

and the misalignment angle, that can be conveniently traded for the variable ξ, for a total of

eleven free parameters. Notice that we have listed the NG decay constant f as a coupling,

since it controls the strength of the NG boson interactions. The couplings gel and g ′
el arise

as a result of the weak gauging of the SM subgroup of H , gρL instead sets the strength of

the interactions between the vectors and other composite states, including the Higgs and

the longitudinally polarized W and Z bosons, whereas c1, c2 and c3 are O(1) parameters, as

suggested by power counting. All the Lagrangian input parameters can be re-expressed in

terms of physical quantities in the mass eigenstate basis. Three of them must be fixed in order

to reproduce the basic electroweak observables, which we conveniently choose to be GF , αem

and mZ . Of the remaining eight input parameters, ξ controls the modifications of the Higgs

couplings from the SM values and is thus an observable, c2 will be fixed in order to reproduce

the physical top mass and the other six can be traded for the following physical quantities: the

masses of two top partners, for instance mX5/3 and mB , the mass of the charged heavy vector

and its couplings to elementary fermions and to the top-bottom pair, and finally the coupling

of one heavy fermion to a gauge boson and top quark.

In order to fix three of the input parameters in terms of GF , αem and mZ , we need the ex-

pression of the latter in terms of the former. It turns out that GF and αem are very simple to

compute and read:

GF = 1�
2 f 2ξ

,
1

4παem
= 1

g 2
el

+ 1

g 2
ρL

+ 1

g ′2
el

= 1

g 2 + 1

g ′2 , (2.16)
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where we have conveniently defined the SM coupling g and g ′ as

1

g 2 ≡ 1

g 2
el

+ 1

g 2
ρL

, g ′ ≡ g ′
el . (2.17)

It is important to notice that αem does not get corrections after EWSB at any order in ξ, due

to the surviving electromagnetic gauge invariance. The formula for GF can be most easily

derived by integrating out first the composite ρ using the equations of motion at leading

order in the derivative expansion, ρaL
μ = E aL

μ +O(p3). From equation (2.14), one can then see

that the low-energy Lagrangian for the elementary fields contains one extra operator, (E L
μν)2,

which however does not contribute to GF . This means that the expression of GF in terms of

the elementary parameters does not receive any tree-level contribution from the composite

ρ, hence the simple formula in (2.16). Finally, the expression for mZ is in general quite

complicated and can be obtained only after the rotation to the mass eigenstate basis; we will

not report it here, but we will discuss its approximation while describing the physical spectrum

of our theory. By making use of such a formula and of equation (2.16), for given values of the

other input parameters, we can fix gel , g ′
el and f so as to reproduce the experimental values of

GF , αem and mZ .

We now discuss the rotation to the mass eigenstate basis and the physical spectrum of the

model. As regards the fermionic mass matrix, it has already been extensively analysed in [7]

and we will not examine here the details, limiting ourselves to report the basic results. After

the diagonalization, it is straightforward to derive the masses of the top quark and of the four

top partners; they are found to be:

mtop = c2 yL f�
2

MΨ√
M 2

Ψ
+ y2

L f 2

√
ξ [1+O(ξ)] , mX5/3 = mX2/3 = MΨ,

mT =
√

M 2
Ψ
+ y2

L f 2 − y2
L f 2

(
M 2

Ψ− (c2
2 −1

)
y2

L f 2
)

4
(
M 2

Ψ
+ y2

L f 2
)3/2

ξ+O(ξ2), mB =
√

M 2
Ψ
+ y2

L f 2,

(2.18)

where we have listed the expressions at leading order in ξ. The lightest top partners are X5/3

and X2/3, whose mass is exactly equal to the Lagrangian parameter MΨ and does not receive

any correction after EWSB; in particular the X5/3 particle cannot mix because of its exotic

charge and it is left invariant by the rotation. The B fermion is the heaviest particle and also

in this case its mass is not altered after EWSB. The T partner, on the other hand, is relatively

lighter than B , due to O(ξ) corrections, whereas the bottom quark remains massless, since we

are not including the linear coupling of bR to the strong sector. This latter interactions will

in general induce small corrections to the above relations of order O(mb/mtop ). In order to

obtain the correct order of magnitude for the top mass, we expect yL ∼ yt , where yt is the top

Yukawa coupling. We will use the above expression for mtop in the following in order to fix the

parameter c2 to reproduce the top quark mass. Finally, neglecting EWSB effects, we can find
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very simple expressions for the rotation angles; the mass matrix is in fact diagonalised by the

following field rotation:

tL → MΨ√
y2

L f 2 +M 2
Ψ

tL− yL f√
y2

L f 2 +M 2
Ψ

TL , bL → MΨ√
y2

L f 2 +M 2
Ψ

bL− yL f√
y2

L f 2 +M 2
Ψ

BL , (2.19)

with the TL and BL particles transforming orthogonally. The right-handed tR , TR and BR and

the top partner X 2
3

are instead left unchanged.

Let us now focus on the spin-1 sector of the theory. The mass term of the Lagrangian can be

written as

Lmass = X +M 2
±X −+ 1

2
X 0M 2

0 X 0, (2.20)

where X ± = (X 1 ± i X 2)/
�

2, with X 1,2 = {W 1,2,ρ1,2
L }, and X 0 = {W 3,ρL ,B}. The mass matrix

therefore decomposes in a 2 × 2 charged block, M 2
±, and a 3 × 3 neutral block, M 2

0 . The

expression for the charged sector is

M 2
± =

⎛⎜⎜⎜⎝
g 2

el

4g 2
ρL

(
g 2
ρL

f 2ξ+ A(ξ)m2
ρL

)
− gel

2gρL

B(ξ)m2
ρL

− gel

2gρL

B(ξ)m2
ρL

m2
ρL

⎞⎟⎟⎟⎠ , (2.21)

while the neutral block can be easily found to be

M 2
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g 2
el

4g 2
ρL

(
g 2
ρL

f 2ξ+ A(ξ)m2
ρL

)
− gel

2gρL

B(ξ)m2
ρL

gelg
′
el

4g 2
ρL

(
m2

ρL
− f 2g 2

ρL

)
ξ

− gel

2gρL

B(ξ)m2
ρL

m2
ρL

− g ′
el

2gρL

C (ξ)m2
ρL

gelg
′
el

4g 2
ρL

(
m2

ρL
− f 2g 2

ρL

)
ξ − g ′

el

2gρL

C (ξ)m2
ρL

(
g ′

el

)
2

4g 2
ρL

(
g 2
ρL

f 2ξ−D(ξ)m2
ρL

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.22)

where we have expressed the misalignment angle θ as a function of ξ, according to equation

(A.28), and we have defined the functions

A(ξ) =
(
2
√

1−ξ+2−ξ
)

, B(ξ) =
(
1+√1−ξ

)
,

C (ξ) =
(
1−

√
1−ξ

)
, D(ξ) =

(
2
√

1−ξ−2+ξ
)

.
(2.23)

It is now straightforward to analytically diagonalise the two matrices, but in general the

expressions for the eigenvalues and the eigenvectors are quite complicated. It is thus more

convenient to perform a numerical diagonalization, unless specific limits are considered in

which expressions simplify. We will provide in Appendix E a Mathematica code which makes

such a numerical diagonalization for given values of the input parameters and generates all
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the relevant couplings and masses. In the rest of our study, however, we will work in the

limit ξ� 1, which, besides being experimentally favoured, can also lead to simple analytical

formulae for the physical couplings between the heavy triplet and the other particles in our

theory. We will therefore expand the mass matrix and its eigenvectors and eigenvalues at

leading order in ξ so that our approximation will break down when ξ� 0.4, in which case the

corrections coming from subsequent powers in the expansion become non-negligible.

The spectrum of the spin-1 sector is easily found once the mass matrix is diagonalised at

linear order in ξ; after EWSB, the only massless state is the photon, since it is the gauge field

associated with the unbroken U (1)em , whereas for the remaining massive bosons we get:3

m2
W = g 2

4
f 2ξ, m2

Z = g 2 + g ′2

4
f 2ξ,

M 2
ρ±

L
= M 2

ρ0
L
=

g 2
ρL

g 2
ρL

− g 2
m2

ρL
− g 2ξ

4

(
f 2g 2 −2m2

ρL

g 2 − g 2
ρL

)
,

(2.24)

where we have used the SM couplings g and g ′ introduced in equation (2.17). As it is clear

from the previous expression, the masses of the W and Z bosons originate only after EWSB; if

we now define the electroweak scale as v =√
ξ f , through equation (2.16), then mW and mZ

have formally the same expression as in the SM. 4 The masses of the heavy triplet arise instead

at zeroth order in ξ and get corrections after EWSB; at leading order in ξ, these corrections are

equal for the two charged and the neutral resonances, since they do not depend on g ′, which

is the only parameter in the bosonic sector to break the custodial symmetry. This degeneracy

will be in general removed by O(ξ2) contributions.

Once the form of the rotation to the mass eigenstate basis is derived, it is straightforward to

obtain the physical interactions between the vector resonances, the SM fields and the top

partners. We will focus in the following on trilinear vertices, which are the most relevant ones

for studying the production and decay of heavy spin-1 states at the LHC, and we will refer

to Appendix C for the expression of the Lagrangian and the couplings in the mass eigenstate

basis.

We start analysing some qualitative features of the interactions among the vector resonances,

the gauge bosons and the Higgs field. We notice first of all that the Lorentz structure of the

vertices involving the heavy spin-1 states and two gauge bosons is the same as the one for triple

gauge vertices in the SM. This is because the kinetic terms for both composite and elementary

3Here and in the following we will generically indicate with mρ the lagrangian parameters corresponding to the
mass of one of the vector resonances and with Mρ the corresponding physical masses obtained by inverting the
expressions of the latter in terms of the former.

4With this choice, the O(ξ2) corrections appear in mW and mZ , but not in v . One could equivalently define
v through the formula mW = g v

2 , so that GF in equation (2.16) deviates from its SM expression at O(ξ2), once
rewritten in terms of v .
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fields in Eq. (2.14) imply interactions of the SM type, since LL has been truncated to two

derivatives interactions, and rotating to the mass eigenbasis does not obviously change their

Lorentz structure. Moreover, the values of the gρ+
L W Z , gρ+

L W H , gρ0
LW W and gρ0

L Z H couplings

can be easily extracted by using the Equivalence Theorem for MρL � mZ /W ; in this limit,

the leading contribution to the interaction comes from the longitudinal polarizations of the

SM vector fields and the overall strength equals that of the coupling of one ρL
μ to two NG

bosons, ρL
μππ, up to small corrections of order O(m2

Z /W /M 2
ρL

). As it can be directly seen

from equation (2.14), the ρL
μππ coupling is proportional to gρL a2

ρL
, where the O(1) parameter

aρL = mρL /(gρL f ) is introduced analogously to Eq. (2.6) in order to enforce the NDA relation

between the mass and coupling of the resonance. The free parameter gρL plays therefore a

dominant role in setting the strength of the interaction between the vectors and the SM gauge

fields and Higgs.

The interactions of the heavy vectors with the SM leptons and first two quark families, on

the other hand, follow entirely from the universal composite-elementary mixing, that is from

the elementary component of the heavy spin-1 mass eigenstate. As a consequence, the

three couplings gρ+
L f f L , gρ0

L f f L and gρ0
L f f Y do not depend on the fermion species and are

therefore universal. After rotation to the mass eigenstate basis, the first two couplings scale like

∼ g 2/gρL , whereas the last one is of order ∼ g ′2/gρL . Moreover, since the ρL
μ triplet mixes with

the elementary Wμ before EWSB and with the gauge field Bμ only after EWSB, the functions

gρ+
L f f L and gρ0

L f f L arise at zeroth order in ξ and they are equal up to O(ξ) terms, since the

breaking of the custodial symmetry due to the hypercharge g ′ enters only through EWSB

effects. The coupling gρ0
L f f Y is instead generated only by the ρL

μ−Bμ mixing and is therefore

proportional to ξ, so that its contribution to the interaction between the neutral vector and

massless fermions is sub-leading. From the above discussions it obviously follows that, in the

limit gρL � g , the heavy resonances are most strongly coupled to composite states, namely

the longitudinal W and Z bosons and the Higgs, whereas their coupling strength to lighter

fermions is extremely weak.

Let us now consider the interactions among the heavy triplet and the partially composite

top-bottom pair and the tR . Besides the universal terms in the functions gρ+
L tb , gρ0

L tL tL
and

gρ0
L bL bL

coming from the vector elementary-composite mixing, these couplings also receive an

additional contribution before EWSB, due to the fermionic mixing, from the direct interaction

of the vector resonances with top partners proportional to the O(1) parameter c3. The heaviest

SM quarks are thus effectively more strongly coupled to the resonances than the lighter ones.

After rotation to the mass eigenstate basis, all the previous functions scale in the same way

and are of order

gρ+
L tb ∼ g 2

gρL

+c3gρL

y2
L f 2

y2
L f 2 +M 2

Ψ

. (2.25)
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As regards the tR , the additional contributions to the function gρ0
L tR tR

must arise only after

EWSB, because this particle is a singlet under the unbroken group H , whereas theρL
μ resonance

has isospin 1 under the SU (2)L subgroup of SO(4). Isospin conservation therefore forbids

any new interaction coming both from the term proportional to the parameter c1 in LΨ and

from the term proportional to c3 in LρL before EWSB, so that this coupling does not receive a

relevant enhancement for small values of the misalignment angle.

The last set of interactions that has a prominent role in the phenomenology of composite

vectors is that involving the top partners; we start considering how the spin-1 resonances

couple with a heavy fermion and one third family quark. Before EWSB, the only couplings

allowed by isospin conservation are gρ+
L TL bL

, gρ+
L BL tL

, gρ0
L TL tL

, gρ0
L BL bL

; they are generated by

the last term in LρL , since the kinetic terms are invariant under the rotation in the fermionic

sector and the interaction i c1Ψ̄i /d i tR in LΨ can only contribute after EWSB. Once the rotation

to the mass eigenstate basis is performed, all the previous couplings scale obviously like

gρ+
L TL bL

∼ c3gρL

yL f MΨ

y2
L f 2 +M 2

Ψ

, (2.26)

and will receive further O(ξ) corrections for non-zero values of the misalignment angle. We

thus expect the decay channels to T b̄, B t̄ , T t̄ and Bb̄ to play an important role in the decay of

the heavy vectors, especially for large values of the strong coupling constant gρL and for high

degrees of quark compositeness. All the remaining couplings between a spin-1 resonance, a

top partner and a third family quark must originate after EWSB, since at least an insertion of

the Higgs vev is needed to conserve the isospin, so that they will in general give a sub-dominant

contribution to the phenomenology of vector resonances.

We now consider the couplings between two heavy fermions and one heavy boson. The same

analysis made for the previous situation is valid also in this case and we still expect the domi-

nant interaction to be given by the term proportional to c3 in LρL . The universal contribution

due to the elementary-composite mixing in the top partners kinetic term scales indeed like

g 2/gρL and the direct interaction between spin-1 and spin-1/2 resonances induces an addi-

tional contribution proportional to gρL . For large values of the strong coupling constant, the

universal piece will therefore be suppressed whereas the second will be enhanced, analogously

to what happens for the partially composite quarks. The functions generated before EWSB are

those allowed by isospin conservation, namely gρ+
L TL BL

, gρ0
L TL TL

, gρ0
L BL BL

, which all scale like

gρ+
L TL BL

∼ g 2

gρL

+c3gρL

M 2
Ψ

y2
L f 2 +M 2

Ψ

, (2.27)
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and gρ+
L X 2

3
X 5

3

, gρ+
L TR BR

, gρ0
L X 5

3
X 5

3

, gρ0
L X 2

3
X 2

3

, gρ0
L TR TR

and gρ0
L BR BR

, which instead are all of order

gρ+
L X 2

3
X 5

3

∼ g 2

gρL

+c3gρL . (2.28)

These second set of couplings does not receive any contribution from the rotation angles in

Eq. (2.19) because the X2/3, TR and BR fields are left invariant by the rotation in the fermionic

sector before EWSB. We therefore expect the decay channel of vectors to T B̄ , T T̄ , BB̄ , X 2
3

X̄ 5
3

,

X 5
3

X̄ 5
3

and X 2
3

X̄ 2
3

to be the most important one, when kinematically allowed, among the decays

to two top partners. The other possible decay channels will instead be suppressed by the small

value of ξ since they must originate only after EWSB.

We have finally summarized these results in Table 1, where we have listed all the relevant

couplings arising before EWSB, neglecting the O(ξ) corrections.

Couplings Scaling

gρ+
L WL ZL

, gρ+
L WL H , gρ0

LWLWL
, gρ0

L ZL H a2
ρL

gρL

gρ+
L f f L , gρ0

L f f L
g 2

gρL

gρ+
L tb , gρ0

L tL tL
, gρ0

L bL bL

g 2

gρL
+c3gρL

y2
L f 2

y2
L f 2 +M 2

Ψ

gρ+
L TL bL

, gρ+
L BL tL

, gρ0
L TL tL

, gρ0
L BL bL

c3gρL

yL f MΨ

y2
L f 2 +M 2

Ψ

gρ+
L TL BL

, gρ0
L TL TL

, gρ0
L BL BL

g 2

gρL

+c3gρL

M 2
Ψ

y2
L f 2 +M 2

Ψ

gρ+
L X 2

3
X 5

3

, gρ+
L TR BR

, gρ0
L X 5

3
X 5

3

, gρ0
L X 2

3
X 2

3

, gρ0
L TR TR

, gρ0
L BR BR

g 2

gρL

+c3gρL

Table 2.1 – List of the couplings arising before EWSB and their scaling with the strong coupling constant
gρL in the mass eigenstate basis, for the ρ

μ

L resonance coupled to top partners.

2.2.2 A Lagrangian for ρR
μ

We now introduce the Lagrangian for the (1,3)0 vector resonance coupled to top partners in

the fourplet, with fully composite tR ; it is given by:

LR =Ll i g ht +LΨ+LρR , (2.29)
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where Ll i g ht and LΨ have the same expression as in Eq. (2.14), whereas LρR is

LρR =−1

4
ρ

aR
μνρ

aRμν+
m2

ρR

2g 2
ρR

(gρRρ
aR
μ −E aR

μ )2 +c4Ψ̄
iγμ(gρRρ

aR
μ −E aR

μ )T aR
i j Ψ j . (2.30)

The theory possesses again eleven parameters with mρR , gρR and c4 indicating respectively

the mass and strong coupling constant of the ρ
μ

R resonance and the O(1) parameter which

plays the analogous role of c3. As in the previous case, we can re-express all the Lagrangian

input parameters in terms of physical quantities and fix gel , g ′
el and f in order to reproduce

the experimental values of α, GF and mZ , as described in Eq. (2.16). We can define the SM g

and g ′ weak couplings as

g ≡ gel
1

g ′2 ≡ 1

g ′
el

2 + 1

g 2
ρR

, (2.31)

so that, differently to the ρL
μ case, we can now identify g as the elementary gauge coupling

constant.

Due to the interaction between the composite ρR and the elementary gauge fields induced by

the ρR −W and ρR −B mixings, the mass matrix of the bosonic sector of the theory is again

non-diagonal. Analogously to Eq. (4.32), we can introduce the 2×2 charged block

M 2
± =

⎛⎜⎜⎜⎝
g 2

el

4g 2
ρR

(
g 2
ρR

f 2ξ−D(ξ)m2
ρR

)
− gel

2gρR

C (ξ)m2
ρR

− gel

2gρR

C (ξ)m2
ρR

m2
ρR

⎞⎟⎟⎟⎠ (2.32)

and the 3×3 neutral block

M 2
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
g ′

el

)
2

4g 2
ρR

(
g 2
ρR

f 2ξ−D(ξ)m2
ρR

)
− g ′

el

2gρR

C (ξ)m2
ρR

gelg
′
el

4g 2
ρR

(
m2

ρR
− f 2g 2

ρR

)
ξ

− g ′
el

2gρR

C (ξ)m2
ρR

m2
ρR

− gel

2gρR

B(ξ)m2
ρR

gelg
′
el

4g 2
ρR

(
m2

ρR
− f 2g 2

ρR

)
ξ − gel

2gρR

B(ξ)m2
ρR

g 2
el

4g 2
ρR

(
g 2
ρR

f 2ξ+ A(ξ)m2
ρR

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.33)

that can be diagonalized numerically with the code provided in Appendix E. The spectrum

contains the massless photon, the W and Z boson, whose masses, at linear order in ξ, get the

same expression as in Eq. (2.24), and the right-handed triplet with masses

M 2
ρ±

R
= m2

ρR
+O(ξ2), Mρ0

R
=

g 2
ρR

g 2
ρR

− g ′2 m2
ρR

− g ′2ξ
4

(
f 2g ′2 −2m2

ρR

g ′2 − g 2
ρR

)
+O(ξ2). (2.34)

We see that the mass of the charged heavy vector coincides with the Lagrangian parameter
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Chapter 2. Hunting composite vector resonances at the LHC: naturalness facing data

mρR , up to O(ξ2) corrections, and that the spectrum is degenerate even at zeroth order in ξ

due to the dependence on g ′ which explicitly breaks the custodial symmetry.

We can easily derive the couplings of the spin-1 resonance to SM particles and top partners in

the mass eigenstate basis once the rotation is performed; we will briefly describe their most

important features, stressing the main differences from the left-handed vector.

Following the same reasoning of the previous analysis, we can verify that the functions gρ+
R Z W ,

gρ+
R W H , gρ0

R W W , gρ0
R Z H scale all like a2

ρR
gρR , in the limit when the Equivalence Theorem is a

very good approximation, namely Mρ±/0
R

� mW /Z . As regards the fully elementary fermions,

the universal composite-elementary mixing is such that also the couplings gρ+
R f f L , gρ0

R f f L and

gρ0
R f f Y scale in the same way as in left-handed case. However, since the ρR

μ triplet mixes with

the elementary Wμ field after EWSB and with the gauge boson Bμ before EWSB, the couplings

gρ+
R f f L and gρ0

R f f L arise at linear order in ξ and are no longer equal due to the effects of the

hypercharge g ′, whereas the gρ0
R f f Y function, induced only by the ρR

μ−Bμ mixing, is generated

at zeroth order in ξ and gives the most relevant contribution. As a consequence, the charged

heavy vectors couple very weakly to the lightest SM fermions, contrary to the ρL
μ resonance.

Finally, the couplings to the partially composite tL and bL are enhanced by the interaction

proportional to c4. However, being ρR an SU (2)L singlet, before EWSB it can couple only to

the SU (2)L singlet current (t t̄ +bb̄), so that the enhancement in gρ+
R tb is proportional to ξ and

therefore suppressed by the small value of the misalignment angle. On the other hand, the

couplings gρ0
R tL tL

and gρ0
R bL bL

are allowed by isospin conservation even at zeroth order in ξ

and they scale like their left-handed counterparts.

Considering now the couplings to one top partner and one third family quark, the functions

arising before EWSB are gρ+
R X 2

3 L bL
, gρ+

R X 5
3 L tL

, gρ0
R TL tL

and gρ0
R BL bL

and again they are generated

by the interaction proportional to c4. Differently to the previous case, the charged resonance

will therefore be more strongly coupled to X 2
3

b̄ and X5/3 t̄ , since it can interact only to the

SU (2)L singlet current (X 2
3

b̄ +X 5
3

t̄) at zeroth order in ξ. For the neutral vector, on the other

hand, the decays to T t̄ and Bb̄ will still be the most important one among the heavy-light

channels, analogously to the ρL
μ heavy vector. Finally, as regards the couplings to two top

partners, the situation is similar to the previous one: the relevant interactions of the neutral

resonance are the same as the ones listed for the left-handed case, whereas the charged ρ+
R

will couple preferably to X 2
3

B̄ and X 5
3

T̄ , again because of the different quantum numbers of

the left-handed and right-handed vectors.

We have summarized all the relevant couplings for this second model in Table 2, where their

scaling with gρR is given neglecting corrections arising after EWSB.
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Couplings Scaling

gρ+
R WL ZL

, gρ+
R WL H , gρ0

R WLWL
, gρ0

R ZL H a2
ρR

gρR

gρ0
R f f Y

g ′2

gρR

gρ0
R tL tL

, gρ0
R bL bL

g ′2
gρR

+c4gρR

y2
L f 2

y2
L f 2 +M 2

Ψ

gρ+
R X 2

3 L bL
, gρ+

R X 5
3 L tL

c4gρR

yL f√
y2

L f 2 +M 2
Ψ

gρ0
R TL tL

, gρ0
R BL bL

c4gρR

yL f MΨ

y2
L f 2 +M 2

Ψ

gρ+
R X 2

3 L BL
c4gρR

MΨ√
y2

L f 2 +M 2
Ψ

gρ0
R TL TL

, gρ0
R BL BL

g ′2

gρR

+c4gρR

M 2
Ψ

y2
L f 2 +M 2

Ψ

gρ+
R X 5

3 L TL
, gρ+

R X 5
3 R TR

, gρ+
R X 2

3 R BR
, gρ0

R X 5
3

X 5
3

, gρ0
R X 2

3
X 2

3

, gρ0
R TR TR

, gρ0
R BR BR

g ′2

gρR

+c4gρR

Table 2.2 – List of the couplings arising before EWSB and their scaling with the strong coupling constant
gρR in the mass eigenstate basis, for the ρ

μ

R resonance coupled to top partners.

2.2.3 Two Lagrangians for ρX
μ

We consider now the phenomenology of a spin-1 resonance transforming only under the

abelian U (1)X as a gauge field,

ρX
μ → ρμ+∂μα

X , (2.35)

with αX ∈U (1)X , and interacting with top partners in the singlet of SO(4), T̃ . This vector has

very different properties with respect to the left-handed and right-handed cases; we expect

it to be more strongly coupled to particles which do not transform under SO(4), tR and T̃ ,

so that its phenomenology can be significantly different if the tR belongs to the composite

sector or if it is an elementary state linearly coupled to the new dynamics. We explore both

these possibilities building two models, M1
X for the first situation and M2

X for the second. The

Lagrangians for the two models read, respectively,

LM1
X
=Ll i g ht +LT̃ 1 +Lρ1

X
, LM2

X
=Ll i g ht +LT̃ 2 +Lρ2

X
, (2.36)
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with

LT̃ 1 = ¯̃T i /DT̃ −MΨ
¯̃T T̃ + [yL f (Q̄5

L)IUI 5T̃R + yLc2 f (Q̄5
L)IUI 5tR +h.c.

]
,

Lρ1
X
= −1

4
ρX
μνρ

Xμν+
m2

ρX

2g 2
ρX

(gρX ρ
X
μ − g ′

el Bμ)2 +c5 t̄Rγ
μ(gρX ρ

X
μ − g ′

el Bμ)tR

+c6
¯̃Tγμ(gρX ρ

X
μ − g ′

el Bμ)T̃ ,

(2.37)

and

LT̃ 2 = ¯̃T i /DT̃ −MΨ
¯̃T T̃ + [yL f (Q̄5

L)IUI 5T̃R + yR f (Q̄5
R )IUI 5T̃L +h.c.

]
,

Lρ2
X
= −1

4
ρX
μνρ

Xμν+
m2

ρX

2g 2
ρX

(gρX ρ
X
μ − g ′

el Bμ)2 +c6
¯̃Tγμ(gρX ρ

X
μ − g ′

el Bμ)T̃ .

(2.38)

The Lagrangians LT̃ 1 and LT̃ 2 contain the kinetic term of the top partner and its interaction

with the tR allowed by the symmetries; the fermion mass matrix is in general non-diagonal

and must be diagonalised in both cases. The Lagrangians Lρ1
X

and Lρ2
X

describe the kinetic

term of the vector singlet, with the field strength ρX
μν obviously defined as

ρX
μν = ∂μρ

X
ν −∂νρ

X
μ ,

and its direct coupling with T̃ . In model M1
X also a direct coupling with tR is present whereas

the same interaction is forbidden for a partially composite tR . The ρX
μ mixes in every case

with the abelian gauge field Bμ, which is needed to preserve invariance under U (1)X , so that

the mass matrix of the neutral spin-1 sector must be diagonalised by a field rotation. The

two models have nine parameters in common, g , g ′
el and f , that will be fixed to reproduce

the experimental values of α, GF and mZ according to Eq. (2.16), ξ, yL , the mass scales MΨ

and mρX , the strong coupling gρX and the O(1) parameter c6. Model M1
X has two additional

parameters, c2, which must be fixed in order to reproduce the top mass, and c5; apart from ξ

which is an observable, the six unfixed parameters could be traded for the mass of the heavy

fermion, mT̃ , and its coupling to a gauge boson and top quark, the mass of the heavy vector,

its coupling to leptons, to the top quark and to the T̃ particle. Model M2
X, on the other hand,

has one additional parameter, yR ; in this case we will fix yL to reproduce the top mass and the

remaining free parameters can be expressed in terms of physical quantities similarly to the

M1
X case.

We discuss now the rotation to the mass eigenstate basis and the spectrum of the models. As

regards model M1
X, the mass matrix of the fermionic sector has already been analysed in [7],

which we refer for the details. We just report here the expressions for the masses of the top
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quark and T̃ at leading order in ξ,

mtop = c2 yL f�
2

√
ξ, mT̃ = MΨ+ y2

L f 2

4MΨ
ξ, (2.39)

and we notice that the two fields do not mix before EWSB, because the mass matrix is diagonal

when ξ= 0. On the other hand, the mass matrix in model M2
X is

(
t̄L

¯̃
LT

)⎛⎜⎝ 0 − yL f�
2

√
ξ

f
√

1−ξyR −MΨ

⎞⎟⎠( tR

T̃R

)
, (2.40)

with eigenvalues

mtop = yL yR f 2
√

ξ
�

2
√

yR
2 f 2 +MΨ

2
, mT̃ =

√
f 2 yR

2 +MΨ
2− f 2

(
2 f 2 yR

4 −MΨ
2
(
yL

2 −2yR
2
))

4
(

f 2 yR
2 +MΨ

2
)3/2

ξ, (2.41)

which receive further corrections from higher orders in an expansion in ξ. In this case, the

field rotation needed to diagonalise the mass matrix before EWSB is

tR → MΨ√
y2

R f 2 +M 2
Ψ

tR − yR f√
y2

R f 2 +M 2
Ψ

T̃R , (2.42)

with the orthogonal transformation for the T̃R field. Considering, on the other hand, the spin-1

sector, the mass matrix is the same for both models and, in the basis of Eq. (4.32), it is given

by:

M 2
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

4
g 2

el f 2ξ 0 −1

4
gelg

′
el f 2ξ

0 m2
ρX

− g ′
el

gρX

m2
ρX

−1

4
gelg

′
el f 2ξ − g ′

el

gρX

m2
ρX

(
g ′

el

)
2

4

(
4m2

ρX

g 2
ρX

+ f 2ξ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (2.43)

where we notice that the zero entries are due to the absence of mixing of the ρX
μ singlet with

W 3
μ . The spectrum of the neutral sector contains the massless photon, the W and Z boson,

whose masses have the same expressions as in Eq. (2.24) at linear order in ξ, and the vector

singlet, with mass

M 2
ρX

=
g 2
ρX

g 2
ρX

− (g ′)2 m2
ρX

+
(
g ′)4

g 2
ρX

− (g ′)2

f 2ξ

4
+O(ξ2), (2.44)

where we have defined the SM coupling g ′ as in Eq. (2.31), with gρR replaced by gρX .

37



Chapter 2. Hunting composite vector resonances at the LHC: naturalness facing data

Once the rotation is performed, it is straightforward to derive the couplings of the vector singlet

to the heavy fermions and SM particles in the mass eigenstate basis; we discuss here their

basic phenomenological features, stressing the differences with respect to the left-handed and

right-handed cases. First of all, the couplings to gauge bosons and fully elementary fermions

are the same in both models. Since ρX
μ is not charged under SO(4), it cannot couple directly

with the longitudinally polarized W and Z bosons, so that the functions gρX W W and gρX Z H

arise only because of the mixing with the Bμ gauge field and must be generated after EWSB.

They scale like g ′2/gρX ξ and are therefore strongly suppressed, contrary to what happens for

ρL
μ and ρR

μ . The couplings to elementary fermions, on the other hand, behave similarly to

the previous cases: they are generated only because of the universal composite-elementary

mixing and scale like g ′2/gρX . In particular, the function gρX f f Y is produced before EWSB,

because the mixing with Bμ arises at zeroth order in ξ, whereas gρX f f L must be proportional

to ξ, since the singlet does not mix with W 3
μ .

The two models differ in the couplings of the vector singlet to the top quark and T̃ , as it can be

seen from Table 3, where we have summarized the scaling of the relevant couplings arising

before EWSB. In both models, the function gρX tR tR , besides the universal contribution from

the elementary-composite mixing, receives an additional enhancement which in model M1
X is

due to the direct interaction proportional to c5 and in model M2
X results from the interaction

proportional to c6 as a consequence of the fermionic rotation. The coupling gρX T̃L tL
must be

generated in both cases at linear order in ξ, since tL and T̃L do not mix before EWSB, whereas

the function gρX T̃R tR
arises after EWSB in model M1

X, because in this case tR and T̃R mix when

ξ �= 0, and before EWSB in model M2
X, since now the two fields mix even before EWSB and

the coupling is proportional to the rotation angle. Finally, as regards the interaction between

the vector singlet and two top partners, following the same reasoning, it is clear that the

function gρX T̃L T̃L
must be the same for both models, whereas the coupling gρX T̃R T̃R

receives

the contribution of the rotation angle before EWSB in model M2
X, which is instead absent if the

tR is a full singlet of the strong dynamics.

As a result of the previous analysis, we expect a relevant decay channel of the vector singlet to

be t t̄ in both models; among the channels involving the top partners, T̃ ¯̃T has great importance

in both cases, whereas T̃ t̄ is suppressed by the small value of ξ in model M1
X and is instead

enhanced in model M2
X. This features will lead to a different phenomenology for the two

models, so that the vector singlet is particularly sensitive to the degree of compositeness of

the tR quark.
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Couplings Scaling M1
X Scaling M2

X

gρX f f Y
g ′2

gρX

g ′2

gρX

gρX tR tR

g ′2
gρX

+c5gρX

g ′2
gρX

+c6gρX

y2
R f 2

y2
R f 2 +M 2

Ψ

gρX T̃R tR
c6gρX

yR f MΨ

y2
R f 2 +M 2

Ψ

gρX T̃L T̃L

g ′2

gρX

+c6gρX

g ′2

gρX

+c6gρX

gρX T̃R T̃R

g ′2

gρX

+c6gρX

g ′2

gρX

+c6gρX

M 2
Ψ

y2
R f 2 +M 2

Ψ

Table 2.3 – List of the couplings arising before EWSB and their scaling with the strong coupling constant
gρX in the mass eigenstate basis, for the ρ

μ

X resonance in models M1
X and M2

X.

2.3 Production and decay of vector resonances at the LHC

We discuss in this section the main LHC production mechanisms and the decay channels of

the vector resonances under consideration. We will parametrize the production cross section

in terms of some fundamental functions that can be computed with a Monte Carlo code,

like MadGraph5 [65], and some universal couplings, whose expressions can be derived either

analytically or numerically once the rotation to the mass eigenstate basis has been performed.

This procedure is very useful to scan the parameter space of the theories, as we shall see when

discussing the bounds from LHC direct searches. We will then study the most relevant decay

channels and introduce an efficient analytical computation of the branching ratios with the

FeynRules package, [64], as functions of the couplings in Appendix C.

2.3.1 Production cross section

The main production mechanisms of the vector resonances at the LHC, at a center of mass

energy of
�

s = 8 TeV, are Drell-Yan processes and VBF. Under the validity of the Narrow Width

Approximation (NWA), each production rate can be factorized into an on-shell cross section

times a decay branching fraction. For the Drell-Yan case, the on-shell cross sections are

controlled by the universal couplings gρ+ f f L , gρ0 f f L , gρ0 f f Y and can be written as

σ(pp → ρ++X ) = g 2
ρ+ f f L ·σud̄ ,

σ(pp → ρ−+X ) = g 2
ρ+ f f L ·σdū ,

σ(pp → ρ0 +X ) = g 2
ρ0uu

·σuū + g 2
ρ0dd

·σdd̄ ,

(2.45)
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where ρ stands for ρL , ρR or ρX and gρ0uu and gρ0dd are the coupling strength of respectively

up- and down-type fermions to the resonance,

gρ0uu =
[(

1

2

(
gρ0 f f L − gρ0 f f Y

)+ 2

3
gρ0 f f Y

)2

+
(

2

3
gρ0 f f Y

)2]1/2

,

gρ0dd =
[(
−1

2

(
gρ0 f f L − gρ0 f f Y

)− 1

3
gρ0 f f Y

)2

+
(−1

3
gρ0 f f Y

)2]1/2

.

(2.46)

We have furthermore defined the partonic cross sections as

σud̄ = ∑
ψu ,ψd

σ(pp →ψuψ̄d → ρ++X ) |gρ+ f f L=1 ,

σdū = ∑
ψu ,ψd

σ(pp →ψd ψ̄u → ρ0 +X ) |gρ+ f f L=1 ,

σuū = ∑
ψu

σ(pp →ψuψ̄u → ρ0 +X ) |gρ0uu=1 ,

σdd̄ = ∑
ψd

σ(pp →ψd ψ̄d → ρ0 +X ) |gρ0dd=1 ,

(2.47)

where we have schematically indicated ψu = u,c and ψd = d , s. The total production rates

(2.45) are thus simply given in terms of the fundamental cross sections, which include the

contributions of all the initial partons and can be computed with a Monte Carlo code, appro-

priately rescaled by the couplings gρ+ f f L , gρ0uu and gρ0dd .

Analogously, the VBF production cross sections are controlled by the couplings gρ+W Z , gρ0W W

and can be parametrized as

σ(pp → ρ++X ) = g 2
ρ+W Z ·σW +Z ,

σ(pp → ρ−+X ) = g 2
ρ+W Z ·σW −Z ,

σ(pp → ρ0 +X ) = g 2
ρ0W W

·σW W ,

(2.48)

with the fundamental cross sections now given by:

σW +Z =σ(pp →W +Z → ρ++X ) |gρ+W Z=1 ,

σW −Z =σ(pp →W −Z → ρ−+X ) |gρ+W Z=1 ,

σW +W − =σ(pp →W +W − → ρ0 +X ) |gρ0W W =1 .

(2.49)

Again, once these cross sections are computed numerically at the partonic level, we can get the

total production rates by simply rescaling with the couplings of the vectors to gauge bosons

which are easily computed in the mass eigenstate basis. Finally, since both the couplings of

the resonance to lighter quarks and to gauge bosons depend on ξ, gρ and Mρ , the production

cross section for Drell-Yan and VBF processes is a function of only these three parameters.

We now discuss the relevance of these two production mechanisms for the three vectors in

our models. In general, we expect the fundamental cross sections for the VBF process to
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2.3. Production and decay of vector resonances at the LHC

Figure 2.1 – Fundamental cross sections as functions of the physical mass of the resonance at
�

s =
8 TeV. Left panel: fundamental cross sections for the DY process. Right panel: fundamental cross
sections for the VBF process.

be much smaller than the corresponding ones for the DY process. In fact, DY is a one-body

process and the corresponding cross section goes like ∼ g 4/g 2
ρ , whereas VBF is a three-body

process, so that the cross section is further suppressed by a phase space factor and scales like

∼ g 4/((16π2)2g 2
ρ). This is confirmed by a quantitative estimation of the two mechanisms, as it

can be seen in Fig. (2.1), where the various fundamental cross sections are plotted as a function

of the resonance mass. The relative importance of the two complete production rates depends

however on the coupling strengths that rescale the partonic cross sections. Since the couplings

of the resonances to elementary fermions decrease with increasing gρ , the Drell-Yan process

is smaller for larger values of the strong coupling constant. On the other hand, the couplings

to longitudinally polarized gauge bosons increase with gρ , so that the VBF mechanism can

have a chance to compete with the DY one for more strongly coupled scenarios. The total

production cross sections for the two processes are illustrated in Figs. (2.2) and (2.3), where

we plot the contours of constant cross sections, both for DY and VBF processes, for the three

heavy vectors in the (Mρ , gρ) plane. In every case, in order to enforce the NDA relation (2.8)

between the coupling and the mass, we have rescaled ξ as

ξ= a2
ρ

1�
2GF

(
gρ

Mρ

)2

, (2.50)

and we have fixed aρ = 1, for illustration. We have also indicated the region of the parameter

space where the value of ξ exceeds 1, and is therefore not allowed, and the region where ξ

exceeds 0.4, which corresponds to the experimentally disfavoured limit where our analytical

expressions for the couplings at leading order in ξ start losing their validity. From Fig. (2.2), we

see that, despite the suppressed couplings of the resonances to elementary fermions, the DY

cross section for both the charged and neutral ρL
μ vector dominates over the VBF one even

for large gρ and increases for smaller values of the strong coupling, since in that limit the
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Figure 2.2 – Contours of constant cross section (blue lines for the DY process, red dashed lines for
the VBF process) in the plane (Mρ , gρ) for the production of the charged (left panel) and neutral (right
panel) left-handed (top) and right-handed (bottom) vector triplets. The yellow region corresponds to
ξ> 0.4, the light blue one to ξ> 1.

couplings to SM fermions get larger as a result of the larger elementary-composite mixing. The

VBF cross section increases for higher values of gρ , but remains nevertheless sub-dominant

in all regions of the parameter space where ξ< 0.4. Analogous considerations are valid also

for the production cross section of the neutral ρR
μ ; the shapes of the contours are similar, but

the overall size of the cross section is smaller by a factor ∼ (g ′/gρ)2. As regards the charged

ρR
μ vector, the couplings to the SM fermions are weaker than the previous cases, since they
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Figure 2.3 – Contours of constant cross section (blue lines for the DY process, red dashed lines for
the VBF process) in the plane (MρX , gρX ) for the production of the vector singlet. The yellow region
corresponds to ξ> 0.4, the light blue one to ξ> 1.

arise after EWSB; as a result, the two production rates are both very small and comparable, so

that in this case the VBF mechanism competes with the DY in every region of the parameter

space. Since for both mechanisms the production cross section is extremely small, however,

this resonance is produced at low rate at the LHC and is much more difficult to discover.

Finally, the vector singlet will be mostly produced by DY process, as shown in Fig. (2.3), since it

does not interact with longitudinally polarized gauge bosons before EWSB and the VBF cross

section is therefore further suppressed. These results on the behaviour of the production cross

sections for the various kinds of vector resonances are in agreement with those obtained in a

similar context in [43–48].

2.3.2 Branching ratios

We now turn to the study of the vector resonances decays. Following our natural assumptions

on the dynamics of the strong sector, we consider the top partners to be the lightest heavy

states and we fix for illustration MΨ = 800 GeV. This value for the masses of the X 5
3

and X 2
3

fields is in agreement with the bounds coming from the LHC direct searches of new exotic

quarks of charge 5/3, [81], and automatically satisfies the bounds from searches of other

top-like fermions, which are generally weaker. Under these conditions, we will study the most

relevant decay channels of the heavy bosons and how the presence of the lighter top partners

affects their branching ratios. All the partial decay widths described in this section can be
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Figure 2.4 – Decay branching ratios of the neutral left-handed vector as a function of the resonance
mass for gρL = 3, MΨ = 800 GeV and two different sets of the free parameters. The various curves
correspond to the following decay channels: W W + Z h (blue), t t̄ +bb̄ (red), l+l− (brown), uū +dd̄
(cyan), X 5

3
X̄ 5

3
+X 2

3
X̄ 2

3
(purple), T T̄ +BB̄ (orange), X 2

3
T̄ (yellow), X 2

3
t̄ (magenta), T t̄ +Bb̄ (green).

computed analytically by using the Feynrules package once the couplings in Appendix C are

derived at leading order in ξ.

We start considering the case of the neutral right-handed and left-handed vector resonances;

their decay widths are very similar, since they couple to the same top partners fields before

EWSB and their couplings to gauge bosons and SM fermions are comparable. We have

therefore shown in Fig. (2.4) the different branching ratios as a function of the resonance

mass only for ρ0
L , omitting the analogous case of ρ0

R , for the benchmark value of the strong

coupling constant gρL = 3 and varying ξ as in Eq. (2.50). The importance of the different decay

channels depends obviously on the choice of the various free parameters of the theory; in

particular, aρL , c3 and yL play a dominant role in setting the strength of the interaction with

gauge bosons, third family quarks and heavy fermions, whereas we do not expect c1 to give a

relevant contribution to the different decays. We have thus set c1 = 1 and shown the branching

ratios for two different choices of the remaining parameters that change the behaviours of

the branching ratios as a function of MρL . In the first case, the three relevant parameters are

all set to one, according to the most natural expectations dictated by NDA. We see that in

the lower mass region, MρL < 2MΨ, the dominant decays are W W /Z h, t t̄/bb̄ and T t̄/Bb̄,5

whereas above threshold, MρL > 2MΨ, the vector resonance will mainly decay to pairs of heavy

fermions, in particular X 2
3

and X 5
3

. The relevance of the light decay channels below threshold,

when the free parameters are chosen so as to perfectly match their NDA estimate, has also

been pointed out in [15]. The situation can be considerably changed with a slight violation

of NDA, as shown for the second choice of free parameters, aρ = 0.5 and c3 = 3. In this case,

the decay width to gauge bosons and Higgs is extremely reduced in the lower mass region,

since their couplings now get smaller, and the heavy vector mainly decays to two tops or two

5For the importance of heavy-light decay channels in a similar context, see for example [49].
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2.3. Production and decay of vector resonances at the LHC

Figure 2.5 – Decay branching ratios of the charged left-handed (top) and right-handed (bottom)
vectors as a function of the resonance mass for gρL/R = 3, MΨ = 800 GeV and two different sets of the
free parameters. The various curves correspond to the following decay channels: W Z +W h (blue), t b̄
(red), lν (cyan), ud̄ (brown), X 5

3
X̄ 2

3
(purple), T B̄ (orange), X 5

3
T̄ +X 2

3
B̄ (yellow), X 5

3
t̄ +X 2

3
b̄ (magenta),

T b̄ +B t̄ (green).

bottoms, whereas above threshold the decays to two 5/3 charged exotic states and to two

top-like X 2
3

particles remain still the dominant ones. We notice that for this particular choice

of parameters the fermionic elementary-composite mixing is stronger, so that the couplings

of the vector resonance to a heavy fermion and a third family quark are weaker than the

corresponding couplings to two tops or bottoms. The branching ratio for the heavy-light decay

channels is therefore reduced, whereas the t t̄ and bb̄ decays are considerably enhanced. In

both cases, the branching ratios for decays to leptons and first two quark families are instead

strongly suppressed, as expected, as well as the decays to the top partners whose couplings to

the heavy vectors are not allowed by isospin conservation before EWSB. We note finally that

the branching fractions to W W and Z h are equal to a very good approximation, as implied

by the Equivalence Theorem, which works well since MρL � mW /Z for the chosen values of

parameters. The approximate custodial symmetry also implies that BR(t t̄) ∼ BR(bb̄) and

BR(uū) ∼ BR(dd̄) ∼ 3BR(l+l−).

As concerns the decay channels of the charged left-handed and right-handed vector reso-
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Figure 2.6 – Decay branching ratios of the vector singlet as a function of the resonance mass for gρX = 3
and MΨ = 800 GeV in models M1

X (left panel) and M2
X (right panel). The various curves correspond to

the following decay channels: W W +Z h (blue), t t̄ (red), l+l− (cyan), uū +dd̄ (brown), bb̄ (purple), T̃ t̄

(orange), T̃ ¯̃T (green).

nances, their behaviour is now completely different, as implied by their different quantum

numbers. The branching ratios for both cases are shown in Fig. (2.5), for the same value of

the strong coupling as before and the same two sets of free parameters, the first one fully

matching the NDA estimate, the second one slightly departing from the natural expectations.

The decay to two gauge bosons, W Z , and to W h is dominant in the low mass region for both

resonances when aρ = 1, but a soon as aρ gets smaller and c3/4 is increased this channel is

strongly suppressed. The t b̄ decay becomes the most important one in the low mass region

when aρ = 0.5 and c3 = 3, for the ρ+
L particle, as implied by partial compositeness, whereas it

is always sub-dominant for the ρ+
R case, because of its suppressed couplings to third family

quarks. The heavy-light decay channel for the charged left-handed vector is again reduced for

the second choice of parameters because, analogously to its neutral counterpart, for smaller

values of aρL the couplings to one heavy fermion and a third family quark are weaker. Above

threshold, the most relevant decay channel of the left-handed vector is that involving two top

partners, for every choice of the free parameters. This latter charged vector will in fact mainly

decay to X 5
3

X̄ 2
3

, with almost unit branching ratio. Among the ρ+
R decays involving top partners,

on the other hand, the dominant ones are the channels X 5
3

t̄/X 2
3

b̄, which is kinematically

favoured since it opens up as soon as MρR > MΨ, and X 5
3

T̄ /X 2
3

B̄ . They are both dominant

above the threshold for the first choice of parameters, whereas in the second case the decay

to X 5
3

t̄/X 2
3

b̄ is the most relevant one among all the others for every value of the resonance

mass. Finally, the decay to leptons and first two quark families are again suppressed, but the

branching ratios for the ρ+
R are much smaller, since its couplings to fully elementary fermions

are further suppressed by a factor of ξ.

We finally discuss the most important decay channels of the singlet in the two models M1
X and

M2
X; the branching ratios are shown in Fig. (2.6), for gρX = 3. In both models, the decays to
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lighter SM fermions, gauge bosons and Higgs are always suppressed, due to their extremely

weak couplings to the vector resonance; the parameter aρX therefore does not play any major

role in improving the relevance of the W W and Z h channels. The most important decays are

thus t t̄ , T̃ t̄ and T̃ ¯̃T , as expected. In the M1
X case, the two important parameters are c5 and

c6; setting them to one, as illustration, shows that, below the threshold for the production of

two heavy fermions, the singlet mainly decays to two tops, whereas above the threshold the

channel to two top partners becomes the dominant one. The decay width to one top partner

and the top quark, on the other hand, is smaller since it is generated only after EWSB. The

situation is different in model M2
X; after setting the relevant parameter c6 to one, we see that

the channel T̃ t̄ is the most important one below the threshold, because it now arises before

EWSB. When MρX > 2MΨ, on the other hand, the decay to two top partners is still the most

relevant, even if now the channel involving the top and T̃ is stronger than in the previous

model.

2.4 Bounds from LHC direct searches

Many searches of spin-1 resonances have been performed by the ATLAS and CMS collabo-

rations, with the data collected at the 8 TeV LHC, both for neutral and charged heavy vector

particles. The main decay channels that have been considered for the charged resonance can

be summarized as follows:

• the decay to third family quarks, ρ+ → t b̄, both by ATLAS in [95] and CMS in [88],

• the leptonic decay ρ+ → l ν̄, by ATLAS in [94] and by CMS in [90],

• the fully hadronic decay to gauge bosons, ρ+ →W Z → j j , by CMS in [85] and in [86],

• the fully leptonic decay to gauge bosons, ρ+ →W Z → 3lν, by ATLAS in [96] and by CMS

in [89].

As regards the searches of new neutral resonant states, the decay channels which have been

extensively analysed by the two experiments are:

• the leptonic decay, ρ0 → l+ l̄−, by ATLAS in [92] and by CMS in [82],

• the decay to two tops, ρ0 → t t̄ , by ATLAS in [91] and by CMS in [84],

• the decay channels to two τ leptons, ρ0 → ττ̄, bt ATLAS in [93],

• the semi-leptonic decay to two gauge bosons, ρ0 →W W → l ν̄ j j , by CMS in [83],

• the fully hadronic decay to two gauge bosons, ρ0 →W W → j j , by CMS in [85].
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The results of these searches are all presented as limits on the production cross section times

branching ratio, σ×BR, as a function of the resonant mass. This allows us to recast very

easily these analyses as exclusion regions in the parameter space of our models: once the

cross section is computed semi-analytically with the method described in the previous section

and the branching ratios are derived as a function of the couplings, we can immediately

compare the theoretical predictions with the experimental data. Similar exclusion contours

on the parameters of a vector resonance, charged under SU (2)L , have already been presented

in [40], without considering the effects of partial compositeness or lighter heavy fermions.

We will show how these bounds are altered by the stronger coupling of third family quarks

to the resonance and by the presence of lighter top partners, for which we will conveniently

choose again MΨ = 800 GeV, and compare them with the indirect information coming from

the resonances contribution to Electroweak Precision Observables, derived in Appendix B.

In deriving the exclusion bounds on the parameters of our models, we will finally take into

account only the DY production mechanism and compute the total production cross section

without considering the contribution of the VBF process, this latter being much smaller than

the DY one.

We finally stress that the results presented in this section are based on the validity of the Narrow

Width Approximation. This latter assumes that the production rate can be factorized into an

on-shell cross section times a decay branching ratio and neglects the interference with the SM

background. Experimental analyses performed by following this approach must be carried

out consistently with its underlying assumptions, namely that the limits on the production

rate of the new particles should be set by focussing on the on-shell signal region; for a detailed

discussion of these aspects see Ref. [40]. We will take into account the limitations of the NWA

approach by showing in the exclusion plots the contours of constant Γ/Mρ in the parameter

space of our models. In the region where this ratio is less the 10%, the resonance is narrow

enough for the Narrow Width Approximation to be a reliable estimate of the production rate,

otherwise a more refined description must be considered in order to analyse the results of the

experimental searches.

2.4.1 Bounds on ρL
μ

We start the study of the experimental constraints on the parameters of our models by con-

sidering the case of the left-handed heavy vector. The tree-level exchange of this particle

contributes to the Ŝ and W parameters [55–57], among which the most stringent bounds

come from the first one, since W is smaller by a factor of g 2/g 2
ρL

. In Fig. (2.7) we show the

excluded regions in the (MρL , gρL ) plane from four different direct searches, one for each of

the main decay channels considered by the experimental groups, and we compare them with

the limits coming from the Ŝ variable. We also show how the bounds change for two different
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choices of the free parameters: in one case, we fix aρL = c3 = yL = 1; in the second case we have

analysed the set aρL = c3 = 0.5, yL = 3. The variable ξ always scales as in Eq. (2.50). Only the

bounds for the charged heavy vector case are presented, for illustration; the exclusion limits

for the neutral resonance are similar and are not reported here.

Figure 2.7 – Excluded regions in the (MρL , gρL ) plane for the charged left-handed vector resonance
for two different sets of the free parameters and for MΨ = 800 GeV. The exclusions are derived from
the ρ+ → t b̄ searches in [88] (blue), the ρ+ → l ν̄ searches in [90] (red), the ρ+ → W Z → j j searches
in [85] (purple) and the ρ+ →W Z → 3lν searches in [96] (green). The plot also shows the contours of
constant Γ/MρL (dashed black lines), of constant ξ (dashed blue lines) and of constant gΨ (dashed red
lines). The region on the left of the thick black line is excluded by experimental constraints on the Ŝ
parameter. The yellow region corresponds to ξ> 0.4, the light blue one to ξ> 1.

Let us discuss the results for the first choice of parameters. The searches of a heavy vector

decaying to gauge bosons, which subsequently decay fully leptonically or fully hadronically,

give the most important constraints in the low mass region, MρL < 2MΨ, since for the chosen

value of aρL the branching ratio of the W Z channel is still dominant below the threshold.

These searches do not give any information in the high mass region, mρL > 2MΨ, however, due

to the opening of the X 5
3

X̄ 2
3

channel, which significantly reduce the branching ratio to gauge

bosons. On the other hand, despite the suppressed couplings to the vector resonance of SM

leptons, the searches in the l ν̄ channel are competitive with the previous ones and can also

provide exclusion limits above the threshold for small values of the strong coupling constant.

From Fig. (2.7), we also see how the direct results compete with the indirect bounds from the Ŝ

parameter; this latter excludes the mass of the heavy resonance up to ∼ 1.8 TeV and still gives

the most powerful information on the parameter space of the model.

These bounds derived for the charged left-handed heavy vector, for aρL = 1, agree with the
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results obtained in analogous contexts; the relevance of the experimental searches in the

gauge bosons and leptonic channels was for instance already discussed in [40]. However,

taking into account the enhanced coupling of third family quarks to the resonance, we see

that exclusion limits can be obtained below threshold and for small values of gρL also from the

t b̄ search, which does not give any constraint when treating the top-bottom doublet as fully

elementary.

Fig (2.7) also shows different contours in the plane (MρL , gρL ) which provides information on

the validity of the NWA approach and of our theoretical assumptions based on naturalness

requirements. The curves corresponding to the contours of constant Γ/MρL show that the

experimental constraints are always confined in the region when this ratio is smaller than

10%, so that the NWA works well for all the four main searches. The dashed blue lines, on the

other hand, correspond to contours of constant ξ and give thus information on the amount of

tuning required for different combination of the mass and coupling of the heavy resonance.

The most natural region compatible with the experimental constraints on ξ is the window

between ξ∼ 0.1 and ξ∼ 0.2, a portion of which is already excluded by the direct searches below

the threshold; below the ξ∼ 0.1 line, more tuning is required to accommodate a reasonably

light Higgs in the spectrum, so that these regions correspond to the more unnatural ones

where our hypothesis of lighter top partners is no longer justified. Contours of constant gΨ

are also shown; the fermionic coupling constant can be in fact derived, using both Eq. (2.7)

and Eq. (2.8), as

gΨ = aρL

aΨ

MΨ

MρL

gρL ; (2.51)

we have shown the lines corresponding to the naturally favoured values gΨ = 1 and gΨ = 2

fixing aΨ = aρL for illustration. We see that the preferred natural window corresponds also to

the portion of parameter space where the fermionic coupling is in its theoretically expected

range; the region where gΨ � 1, on the other hand, coincides with the unnatural one, where

ξ assumes very small values and the lightness of top partner can no longer be justified by

naturalness arguments.

We focus now on the exclusion limits for the second set of parameters. In this case, the values

of aρL and c3 are reduced and yL is instead incremented in order to show the effects on the

bounds of the reduced interaction strength between gauge bosons and heavy vectors, on one

side, and of a higher top quark degree of compositeness, on the other side. Since now the

branching ratio to gauge bosons is suppressed even in the low mass region, no excluded region

can be extracted from any of the searches involving the W Z decay channel. On the other

hand, the experimental analyses in t b̄ channel provide a bigger exclusion limit with respect

to the previous case, due to the bigger value of yL which now increases the strength of the
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interaction between the charged resonance and the qL doublet despite the reduced value of

c3. The constraints coming from the l ν̄ searches are still competitive and important above the

threshold, so that this decay channel is extremely powerful in providing information on the

physics of new heavy states or for a potential discovery. Another main difference with respect

to the previous study is that, choosing aρL = 0.5, the limit coming from the Ŝ parameter is

reduced by a factor of two, excluding the mass of the heavy vector up to ∼ 1 TeV. When the

aρL parameter is lower than one, we therefore find that the direct searches are much more

competitive and can exclude portions of the parameter space beyond the reach of indirect

information.

As regards the NWA approach, also in this case the bounds are well constrained in the region

where this approximation is reliable and valid. The natural window 0.1 � ξ � 0.2 is now

achieved in more strongly coupled scenarios, due to the reduced value of aρL , and still part

of it is excluded by the two shown searches. The contours of constant gΨ are derived again

for aΨ = aρL and, as before, the less fine-tuned region coincides with higher values of the

fermionic coupling.

2.4.2 Bounds on ρR
μ

We consider now the bounds on the parameter space of the right-handed resonance. This

heavy particle contributes at tree level to the Ŝ and Y parameters; this latter being suppressed

by a factor of g ′2/g 2
ρR

, we again expect the most stringent limit on the mass of the new state to

come from the Ŝ variable. Since the total production cross section of the charged right-handed

vector is very small, for both VBF and DY mechanisms at the LHC, we can only extract bounds

on the model parameters for the neutral ρ0
R ; these are shown in Fig. (2.8), as excluded regions

in the (MρR , gρR ) plane for two different sets of the free parameters and recasting the results of

the searches in the lepton channel and in the semi-leptonic W W channel. We have presented

the different exclusion contours for two values of c4, when it is vanishing and when it is 1,

in order to clearly analyse the effects of the lighter top partners on the bounds from direct

searches.

Let us start briefly considering the case in which aρR = 1 and yL = 1. For these values of the

free parameters, the W W channel provides constraints in the low mass region, analogously to

the left-handed resonance, and it is not sensitive to the portion of parameter space above the

threshold 2MΨ. In the extreme situation where c4 = 0 and the direct coupling to top partners is

completely eliminated, the constraints are obviously much stronger and they gradually reduce

as c4 is increased and the branching ratios for the top partners channels become important.

As regards the experimental search in the leptonic channel, the bounds can give exclusions

above the threshold and again they are stronger for small c4, as expected. We note also the
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Figure 2.8 – Excluded regions in the (MρR , gρR ) plane for the neutral right-handed vector resonance
for two different sets of the free parameters and for MΨ = 800 GeV. The exclusions are derived from the
ρ0 → l l̄ searches in [82] (in red for c4 = 1, in blue for c4 = 0) and the ρ0 →W W → lν j j searches in [83]
(in green for c4 = 1, in orange for c4 = 0). The plot also shows the contours of constant Γ/MρR (dashed
black lines), of constant ξ (dashed blue lines) and of constant gΨ (dashed red lines). The region on
the left of the thick black line is excluded by experimental constraints on the Ŝ parameter. The yellow
region corresponds to ξ> 0.4.

main difference between the right-handed and the left-handed case: the production cross

section for the ρR resonance being smaller by a factor (g ′/gρ)2, the bounds in the parameter

space of the right-handed vector are in general much weaker than those of the left-handed

counterpart. Finally, the NWA approach works well also in this situation, the excluded regions

being confined in the portion of the (MρR , gρR ) plane where Γ/MρR < 0.1. The discussion on

the natural window and the comparison with the limits from the Ŝ variable are similar to the

ρL case.

We discuss now how the bounds change for aρR = 0.5 and yL = 3. As expected, no exclusion

contours can be derived from the W W search channel, since the branching ratios to gauge

bosons are now suppressed. The only bounds come from the analysis performed with the l l

decay channel; for c4 = 0, they are much stronger, whereas, when the decay to top partners

and third family quarks are enhanced with c4 = 1, a very tiny region of parameter space is

excluded. This is again due to the smaller production cross section that makes this resonance

in general much harder to constrain and to discover with respect to the previous one. The

NWA is again well satisfied and the region where our natural assumptions are well justified

has the same behaviour as the analogous left-handed case.

We finally notice that no exclusion regions can be derived from the experimental search
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of neutral resonances in the t t̄ channel. The experiments performed using this particular

decay are indeed much less sensitive than the others, so that, despite the enhanced coupling

strength of the top quark to the neutral vector, we find no bounds even for high degrees of top

compositeness and for larger values of c4. For this reasons, we do not expect this final state to

be enough powerful for the discovery of a neutral spin-1 particle.

2.4.3 Bounds on ρX
μ

The experimental searches for a neutral heavy resonance can also be recast as a bound on the

parameter space of the vector singlet. This heavy particle contributes only to the Y parameter,

which however always gives very weak constraints; in this case, the exclusion limits from direct

searches are therefore the most relevant ones and electroweak precision measurements have

very little exclusion power.6 The excluded regions in the (MρX , gρX ) plane are presented in

Fig. (2.9), both for model M1
X and M2

X and for different values of the free parameters. In both

cases, the most relevant experimental search is always the decay channel to the l l final state,

since the searches involving the decay to W W do not obviously give any constraint, due to

the extremely weak coupling strength of the singlet to the W boson. We will therefore fix

aρX = 1 in all the cases considered, since different values of this parameter will only alter the

shape of the contours of constant ξ and gΨ, but will not significantly change the exclusion

contours. Despite the enhanced coupling strength to top quarks, finally, the searches with

the t t̄ final state produce no limits on the parameter space of the two models, similarly to the

right-handed neutral resonance.

Considering now the specific results for model M1
X, we have fixed yL = 1 and shown the bounds

for three different values of c5. The most stringent constraints on the parameter space of the

singlet are obviously obtained when c5 = 0; in this extreme case, the direct coupling to the tR

quark is suppressed and the branching ratio to leptons increases, so that the experimental

search under consideration gives stronger bounds. Increasing c5, on the other hand, makes

the bounds much weaker and for c5 = 1 only a very tiny portion of parameter space is excluded.

This is due again to the g ′ suppression in the coupling of the vector singlet to lighter quarks,

which makes the total production cross section smaller than the left-handed case. All the

exclusion regions are concentrated in the low mass region, MρX < MΨ, and abruptly end when

MρX = 2MΨ, due to the opening of the decay channel to two top partners.

The situation is similar for model M2
X; we have shown the exclusion regions for aρX = yR = 1

6Since the vector singlet does not contribute to the Ŝ parameter, our theoretical picture of heavier spin-1
resonances and lighter top partners could be not so well justified for this particle, allowing the possible existence of
a vector which is as light as or lighter than the spin-1/2 resonances. Consistency with the idea that the new strong
sector should be characterised by only two mass scales and that all spin-1 heavy states should behave similarly,
however, leads us to consider also the singlet to belong to the tower of heavier resonances at the mρ scale.

53



Chapter 2. Hunting composite vector resonances at the LHC: naturalness facing data

Figure 2.9 – Excluded regions in the (MρX , gρX ) plane for the vector singlet in models M1
X (left) and M2

X
(right), fixing MΨ = 800 GeV. The exclusions are derived from the ρ0 → l l̄ searches in [82]. Left panel:
in red the excluded region for c5 = 1, in green for c5 = 0.5, in blue for c5 = 0. Right panel: in red the
excluded region for c6 = 1, in green for c6 = 0.5, in blue for c6 = 0. The plot also shows the contours of
constant Γ/MρX (dashed black lines), of constant ξ (dashed blue lines) and of constant gΨ (dashed red
lines). The yellow region corresponds to ξ> 0.4.

and for three values of the free parameter c6, ranging from 0 to 1. When c6 is vanishing, the

bounds are much stronger and they can extend above the threshold due to the absence of a

direct interaction with the T̃ heavy fermion. Increasing c6 makes the exclusion limits weaker;

the bounds are now confined in the low mass region and are less stringent than the neutral

left-handed case due to the hypercharge suppression.

Finally, the NWA approach is reliable for both models. In Fig. (2.9), we have in fact shown the

contours of constant Γ/MρX only for c5 = 1 and c6 = 1, corresponding to the excluded region

in red. The contours for the other two smaller values of these parameters, corresponding to

the excluded regions in blue and green, lie outside the portion of the (MρX , gρX ) plane which is

presented. Therefore, the bounds corresponding to c5 = 0,0.5 and to c6 = 0,0.5 automatically

satisfy the requirements of a narrow resonance, whereas the bound for c5 = 1 and c6 = 1 lie

completely in the portion of parameter space where the total decay width in units of MρX is

less than 10%. Also in this final case the NWA is therefore a valid prescription for analysing the

experimental results. For both models, the natural window where our theoretical assumptions

are well justified is excluded in the low mass region, but still allowed for larger values of the

resonant mass and for more strongly coupled scenarios.
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2.5 Discussion

In this Chapter we have introduced a simplified description based on an effective low-energy

Lagrangian of the phenomenology of heavy vector resonances in the minimal composite Higgs

model, studying their interaction with lighter top partners. Our approach is based on two

classes of assumptions, one regarding the symmetry structure of the theory and one regarding

its dynamical features. As concerns the symmetries, we considered the minimal case of a new

confining dynamics with an approximate global G = SO(5)×U (1)X symmetry spontaneously

broken to H = SO(4)×U (1)X . The Higgs boson emerges as pNGB and the electroweak scale

is dynamically generated via loop effects. In this framework, we focussed on heavy vector

triplets, transforming as a (3,1) and (1,3), and on heavy vector singlets, transforming as a (1,1)

of SO(4). Following the paradigm of partial compositeness, we introduced a linear coupling to

the strong sector for the top-bottom doublet and we considered the tR to be a bound state of

the strong dynamics, except in one case in which we studied the implications of a partially

composite tR quark. In this scenario, we characterised the couplings of heavy vectors to top

partners in the singlet and in the fourplet of SO(4). In the most natural realizations of the

composite Higgs idea these are indeed the lightest fermionic resonances that must be present

in the spectrum. We constructed four simplified models which are suitable for studying the

phenomenology of heavy vectors, capturing the most important features of the underlying

symmetry structure.

As concerns the dynamics, we parametrised the new strong sector with two mass scales,

a heavier one for vector resonances, mρ , and a lighter one for fermionic resonances, mψ.

We have clarified under which conditions our effective Lagrangian description is a good

approximation of the full underlying dynamics and what its regime of validity is. Our simplified

approach is in fact reliable whenever the mass of the heavy vector satisfies the relation mψ <
Mρ � mρ , in which case, using the criterion of partial UV completion [8], the tower of the

remaining and unknown resonances can be integrated out of the spectrum. Our approximate

models provide therefore a systematic simplified description of the phenomenology of spin-1

heavy states in an expansion of Mρ/mρ . These constructions loose their validity as soon as

Mρ ∼ mρ , in which case using an effective Lagrangian is formally inappropriate. However,

we expect our approach to provide a good interpretation of the experimental results, at least

qualitatively, also in this second case. We have assessed this issue considering the particular

situation in which two vector resonances of the composite tower are present in the spectrum.

We show in Appendix D that neglecting the spectrum degeneracy is a reliable approximation

for a basic quantitative description of their phenomenology.

One of the most important simplification of our procedure is to describe the phenomenology

of heavy vectors in terms of a manageable set of free parameters. Once the basic electroweak
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observables and the top mass are fixed, we are left with one mass and one coupling for each

resonance, the misalignment angle and some additional O(1) parameters controlling the

interaction with top partners and SM fermions. Of these, c1 has no role in the production and

decay of the vector resonances, so that their phenomenology can be significantly affected

only by the remaining (c3, yL) for ρL
μ, (c4, yL) for ρR

μ , (c5,c6, yL) in model M1
X and (c6, yR ) in

model M2
X. In this sense, the effective Lagrangian approach based on specific underlying

assumptions on the symmetry structure of the theory has the virtue of expressing all the

couplings of the vectors to top partners and SM particles in terms of only these quantities.

This reduces considerably the degrees of freedom that one would have in a complete model-

independent procedure, like in [40, 41], and allows us to formulate a consistent description

of the interaction with lighter fermions, which necessarily requires some knowledge of the

underlying symmetries, [7]. Our model-dependent approach is therefore essential in order to

capture the most important features of the interplay between heavy vectors and top partners,

that would be impossible to analyse without any robust assumption on the symmetry structure

of the theory.

For each resonance, we studied the main phenomenological features, analysing the mixing

angles, the spectrum and the most important couplings arising before EWSB. We have shown

that the left-handed and right-handed vectors couple strongly to the longitudinally polarized

W and Z bosons and Higgs, thanks to the Equivalence Theorem, and that they both couple

very weakly to fully elementary SM fermions. Concerning their interaction with top partners

and third family quarks, conservation of isospin gives the most important rationale to extract

the relevant couplings: only those conserving isospin without any Higgs vev insertion can

arise before EWSB and the corresponding decay channels give a dominant contribution to the

decay width. We have also considered the very different case of the singlet, which has peculiar

properties with respect to the other resonances. It couples very weakly both to SM fermions

and to gauge bosons, whereas it interacts strongly with the tR and the top partner T̃ , with

interaction strength depending on whether the tR is partially composite or not. This vector is

also special since it does not give any contribution to the Ŝ parameter, so that direct searches

are the most important mean to constrain its parameter space. We have finally studied the

decay branching ratios of all the three vectors, noticing the dominance of the top partner

decay channel above the threshold Mρ = 2Mψ and studying the relevance of the decays to SM

particles below the threshold for different values of the free parameters.

Using our effective Lagrangian description, we have devised an efficient semi-analytical

method to compare the theoretical predictions of our models with the LHC data on direct

searches of vector resonances. These latter are given as exclusion limits of σ×BR as a function

of the resonance mass, under the validity of the Narrow Width Approximation. In order to

compute the total production cross section, we have numerically calculated the parton level

56



2.5. Discussion

contribution once for all, setting the relevant trilinear couplings to unity, and we have then

rescaled with the analytical expression of the couplings at linear order in ξ. We have also

studied the main production mechanisms, DY and VBF, noticing that the former is the most

relevant one in all cases of interest. Following this method, it is very fast to analytically recast

the experimental searches as bounds on the parameter space of the resonances, once the

LHC data are rescaled with the BRs that can be computed analytically in our models. The

calculation of the cross sections as well as the numerical diagonalization of the vector mass

matrices, at every order in ξ, have been implemented in a Mathematica notebook that is

available on a dedicated website, [66].

We have applied this methodology to extract exclusion limits on the parameter space of our

models using the presently available 8 TeV LHC data. The results can be found in Figs. (2.7),

(2.8) and (2.9), where exclusion regions are shown for some relevant direct searches of heavy

vectors. We have analysed what information can be obtained from the decay channels con-

sidered by the experimental groups for different values of the free parameters of the theories.

For the left-handed vector, we concluded that the most constraining decay channels at the

LHC are W Z and l ν̄, when the free parameters are chosen so as to respect the NDA estimate.

A slight violation of NDA, obtained by reducing aρL , shows, however, that the decay channels

to gauge bosons can give no bound at all and that a very important decay channel that can be

extensively studied in the future is the t b̄, since partially composite quarks are more strongly

coupled to the heavy vectors than to the other SM fermions. The situation is similar for the

neutral right-handed resonance; again, for values of the free parameters respecting the NDA

expectations, the W W and the l l̄ channels give the most stringent bounds, whereas reducing

the value of aρR shows that exclusion regions can be drawn only from the leptonic decay

channel. As regards the searches with a t t̄ final state, in this case they do not provide any

constraint, since the production cross section for ρR
μ is smaller than the corresponding one for

the left-handed vector by a factor (g ′/g )2. This suppression is the reason why the enhanced

coupling to top quarks does not improve the sensitivity of this channel. Finally, considering

the ρX
μ case, the most constraining decay channel is the l l̄ , since the couplings of the singlet

to W bosons are very weak. Also in this case, the t t̄ channel does not give any significant

bound, the production cross section being again reduced by a factor (g ′/g )2. The suppression

in the production cross sections of the right-handed vector and of the singlet is in general the

reason why the bounds for the ρR
μ and ρX

μ resonances are much weaker than the bounds on ρL
μ,

making them more difficult to constrain or discover at the LHC. Finally, all these results can be

readily interpreted as a test of our notion of naturalness and of our dynamical assumptions

on the nature of the strong dynamics. We have shown the most natural expected window

of parameter space and considered how the data already exclude part of it in the low-mass

and small coupling region. But for bigger values of the mass and for more strongly coupled

scenarios, there is still room for a natural realization of the composite Higgs idea with heavier
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vectors decaying to lighter top partners.
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3 A Composite UV completion of the

Twin Higgs scenario

The possibility that there exist models of electroweak symmetry breaking with a minimal

amount of fine tuning (less than 10% or so) and the simultaneous absence below a few TeV

of any new particle charged under the Standard Model (SM) gauge group deserves attention.

Generically the idea behind this possibility goes under the name of Twin Higgs. In this Chapter

we discuss an explicit example where this idea is implemented in the context of a composite

Higgs picture. We do that with the purpose of proposing and analyzing a few generic features

of such an implementation, which will be illustrated in the course of the exposition.

3.1 A model example

The situation which we have in mind, depicted in Figure 3.1, is that there exist a new “Com-

posite Sector" (CS), endowed with a global symmetry group G , which confines at a scale m∗
in the TeV or multi–TeV range. In the process, G gets spontaneously broken to a subgroup H

and the order parameter for this breaking, f , is related to the confinement scale by m∗ = g∗ f .

The scale m∗ sets the typical mass of the Composite Sector resonances and g∗ sets their

typical interaction strength [24]. The Composite Sector itself originates from some unspecified

dynamics at a very high scale ΛUV � m∗ and the large separation among these two scales is

ensured by the hypothesis that the Composite Sector flows toward a conformal fixed point

below ΛUV and it remains close to it until m∗. Also one “Elementary Sector" (ES) is generated

at the high scale ΛUV. The latter is composed of weakly–interacting fields, among which the

SM ones with the possible exception of the right–handed Top quark, which could also be a

fully composite degree of freedom originating from the CS. In the ordinary, or Minimal [19],

Composite Higgs construction, the ES comprises just the SM fields. Instead, as described

below, in the Twin Composite Higgs, the ES also comprises Extra “Twin" degrees of freedom.

The CS does exactly respect G invariance, but the ES breaks it badly because its degrees of free-

dom do not come in G multiplets. Explicit G symmetry–breaking effects are communicated to
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the CS through the Elementary/Composite interactions, denoted as LINT in Figure 3.1. They

come as weak interactions at ΛUV and they are assumed not to be strongly relevant operators

such as to remain weak when evolved down at the IR scale m∗. Therefore it makes sense to

treat perturbatively their effects on the IR dynamics as tiny G–breaking perturbations.

Let us now come to our specific construction. The relevant global symmetry group of the CS is

SO(8), which gets spontaneously broken to an SO(7) subgroup delivering 7 Goldstone Bosons

in the 7 of the unbroken SO(7), out of which only the Higgs boson will survive as a physical

particle. A total of 7 Elementary gauge fields are introduced, and coupled to the CS by weakly

gauging 7 of the 28 SO(8) generators, whose explicit form is reported in Appendix A for the

Fundamental representation. In particular, we gauge some of the generators which live in

the block–diagonal SO(4)× S̃O(4) subgroup, namely those of the SU (2)L ×U (1)3,R and S̃U (2)L

subgroups of the two SO(4) � SU (2)L ×SU (2)R . The group SO(4) is taken to be part of the

unbroken SO(7), while S̃O(4) is partially broken by the CS, namely S̃O(4) → S̃O(3) at the scale

f . The SM group being embedded in the unbroken SO(4) ensures Custodial protection and

avoids unacceptably large tree–level corrections to the T parameter of ElectroWeak Precision

Tests (EWPT). This Custodial protection is one reason for having an SO(8)/SO(7) spontaneous

symmetry breaking pattern in the CS, as already noted in [120].

The SU (2)L ×U (1)3,R group is identified with the electroweak SM gauge group and the corre-

sponding gauge fields thus deliver the EW bosons and the photon. The remaining 3 elementary

vector fields gauging S̃U (2)L correspond instead to new particles, which we call the “Twin

partners” of the SM W fields. They are associated with generators that commute with the SM

group and are thus EW–neutral objects. Given that S̃U (2)L is broken by the CS, the Twin W ’s

are massive and acquire their longitudinal components from 3 of the 7 Goldstones, which

thus disappear from the spectrum. The remaining 4, associated with the generators T 7
1,...,4 in

Appendix A, are in the 4 of SO(4) and they have precisely the SM quantum numbers of the

ordinary Higgs doublet. The latter will eventually acquire a vacuum expectation value (VEV),

which we take along T 7
4 , give a mass to the EW bosons and deliver just one physical scalar,

the SM Higgs boson. Unlike in the original Twin Higgs proposal [125] and in the subsequent

literature, [120, 126–129, 132–136], no mirror partner is introduced for the SM Hypercharge

field in order to avoid the appearance of an exactly massless Twin photon in the spectrum.

3.1.1 The gauge sector

Aside from the Higgs, the EW bosons and the Twin W ’s, extra massive resonances are present,

originating as bound states of the CS. They could come in a variety of spin and SO(7) quantum

numbers but in particular we do expect some of them to be spin–one vectors and to have

the quantum numbers of the global currents associated to the unbroken group SO(7), i.e.
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Figure 3.1 – A pictorial view of the Composite Higgs framework.

to live in the Adjoint. The QCD analog of these particles are the ρ mesons, which are the

lightest spin–one hadrons. Vectors in the Adjoint would also appear in a 5d holographic

implementation of our setup. It is thus reasonable to take them as representatives of the

CS particle content. Therefore, we introduce an Adjoint (the 21 of SO(7)) of vectors ρa and

we define a 2–site model, constructed by the standard rules of Ref. [117], to describe their

dynamics. We regard this model as a simple illustrative implementation of the Composite

Twin Higgs idea. Its Lagrangian reads

L gauge =− 1

4g 2
ρ

21∑
a=1

ρa
μνρ

μν
a + f 2

4
Tr[(DμΣ)t DμΣ]− 1

4g 2
2

W α
μνW μν

α − 1

4g 2
1

BμνBμν− 1

4g̃ 2
2

W̃ α
μνW̃ μν

α ,

(3.1)

where ρa
μν are the field–strength tensors of the resonance fields –which are treated in the 2–site

model as gauge fields of a local SO(7) group–, W α
μν and Bμν are the usual SM field–strengths

and W̃ α
μν those of the 3 Twin W partners. The field Σ is a generic SO(8) matrix containing

28 real scalar fields. However, 21 of these can be eliminated by gauge–fixing the local SO(7)

associated with the ρ’s, making Σ become the exponential of the 7 broken generators only. In

this gauge, Σ can be interpreted as the Goldstone Matrix of the SO(8)/SO(7) coset, namely

Σ=U = e−
2i
f ΠαT 7

α . (3.2)

All the 7 remaining scalars, but one, can be eliminated by gauge–fixing the local S̃U (2)L

associated with the Twin W ’s and the broken SM generators. This defines the Unitary Gauge,

in which Σ reads

Σ=U = e−
2i
f HT 7

4 =

⎛⎜⎜⎜⎜⎜⎝
I3 0 0 0

0 cos H
f 0 sin H

f

0 0 I3 0

0 −sin H
f 0 cos H

f

⎞⎟⎟⎟⎟⎟⎠ , (3.3)
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where H is the real neutral component of the Higgs doublet (times
�

2) which, after EWSB,

decomposes in VEV plus physical Higgs fluctuation as H(x) =V +h(x).

It is important to interpret properly the various terms that appear in Eq. (3.1). The first one

comes purely from the CS and describes the kinetic term of the resonances and their self–

interactions. The corresponding coupling gρ is therefore of the order of the typical CS coupling

g∗. The last three terms are purely Elementary. In accordance with the hypothesis that the ES

is weakly–coupled and gives a subdominant correction to the CS dynamics, the associated

couplings are assumed to satisfy

g1,2 ∼ g̃2 � gρ ∼ g∗ , (3.4)

The second term is instead a mixed one. It contains both purely CS operators, among which the

Goldstone bosons kinetic term and a mass for the ρ’s, and Elementary/Composite interactions.

Indeed, the covariant derivative of Σ reads

DμΣ= ∂μΣ− i A A
μT AΣ+ iΣρa

μT a
21 , (3.5)

where we collected in A A
μ , A = 1, . . . ,7, all the Elementary gauge fields appropriately embedded

in the Adjoint of SO(8), namely

A A
μT A =W α

μ (TL)α+Bμ(TR)3 +W̃ α
μ (T̃L)α , (3.6)

in terms of the generators defined in Appendix A.

The mass–spectrum of the theory is immediately worked out in the weak Elementary coupling

expansion of Eq. (3.4). First, we do find the massless photon and the W and Z bosons with

masses

M 2
W � 1

4
g 2

2 f 2 sin2 V

f
= 1

4
g 2

2 v2 , M 2
Z � 1

4
(g 2

2 + g 2
1 ) f 2 sin2 V

f
= M 2

W /cos2θW , (3.7)

where we identified g1,2 with the SM g1,2 couplings –which holds up to g 2
1,2/g 2

ρ corrections–

and we defined the EWSB scale as

v = f sin
V

f
� 246 GeV, thus ξ≡ v2

f 2 = sin2 V

f
. (3.8)

Like in the ordinary Composite Higgs setup, we do have plenty of phenomenological reasons to

take ξ small. Indeed ξ controls the departures of the Higgs couplings from the SM expectations,

which are constrained both from the direct LHC measurements and from their indirect effects

on EWPT [102]. The maximal defendable value of ξ is around 0.2, given that making it small

requires fine–tuning in the potential we will take it close to the maximum, which corresponds
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Figure 3.2 – The mass spectrum in the gauge (left) and fermionic (right) sectors.

to a Goldstone scale f ∼ 500 GeV.1 The second set of particles are the Twin W ’s, which are 3

EW–neutral particles with a common mass

M 2
W̃

� 1

4
g̃ 2

2 f 2 cos2 V

f
= 1

4
g̃ 2

2 f 2(1−ξ) . (3.9)

For g̃2 ∼ g2 the Twin W ’s are light, only a factor of 1�
ξ

heavier than the W . Finally, we do

have the 21 strong sector resonances which are all degenerate at the leading order in the

g1(2)/gρ expansion because of the unbroken SO(7), with a common mass gρ f /2 ∼ m∗. The ES

couplings break the degeneracy and the 21 resonances organize themselves into one real 30,

one complex 11 and three 21/2’s of the SM group, plus four real 10 singlets with masses

M 2
30

� 1
4 f 2(g 2

ρ+ g 2
2 ) , M 2

11
� 1

4 f 2g 2
ρ , M 2

21/2
� 1

4 f 2g 2
ρ ,

M 2
10,1 � 1

4 f 2(g 2
ρ+ g 2

1 ) , M 2
10,2 � 1

4 f 2(g 2
ρ+ g̃ 2

2 ) . (3.10)

Notice that many of the composite resonances are charged under the EW group, unlike the

elementary Twin W ’s which are EW–singlets, and thus they could be directly produced at

the LHC at a significant rate. However their coupling to SM fermions rapidly decrease for

increasing gρ making current limits on their mass safely below 2 TeV already for gρ � 2 [40].

The leading constraint comes from their contribution to the Ŝ parameter of EWPT, which

places them above 2 or 3 TeV [56]. This threshold corresponds, for f = 500 GeV, to a large but

still reasonable coupling gρ � g∗ ∼ 6. The spin–one particle spectrum of our construction,

summarized in the left panel of Figure 3.2, displays the typical pattern of Twin Higgs models.

The advantage of a 2–site model is that it makes the Composite Higgs potential calculable at

1A quantitative compatibility with EWPT is actually possible in ordinary Composite Higgs models only relying
on the radiative effects of somewhat light colored Top Partners [102], [108], whose presence is precisely what we
want to avoid with our construction. A careful assessment of EWPT would be needed to establish if ξ� 0.2 is still
viable in the Twin case or if instead a stronger limit applies.
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one loop up to logarithmic divergences. The potential arises from loops of the ES, which, as

explained above, breaks of the Goldstone symmetry. Focusing momentarily on the loops of the

SM W ’s and of their Twin partners, and working at the leading order in the g2/gρ expansion

we obtain

Vg 2
2
[H ] =

9g 2
ρ f 4

512π2

(
g 2

2 sin2 H

f
+ g̃ 2

2 cos2 H

f

)(
1+ log

4μ2

g 2
ρ f 2

)
. (3.11)

The logarithmic term in the equation stems for the previously–mentioned divergent contri-

bution to the potential, which will be cut–off at the scale μ where other CS resonances, not

included in our description, appear. Given that we expect those not to be far, we will not take

this logarithm seriously and treat it as order one in our estimates.2

What is remarkable and non–generic in Eq. (3.11) is that for g2 exactly equal to g̃2 the sin2

and cos2 terms sum up to 1 and the potential becomes an irrelevant shift of the vacuum

energy. This result is compatible with the original Twin Higgs argument [125], according to

which the quadratically divergent contributions to the Higgs potential, of order g 2 f 2Λ2/16π2,

cancel in the Twin–symmetric limit g = g̃ . Given that from the low–energy perspective of

Ref. [125] the cutoff Λ is the resonance scale m∗ � gρ f , this is precisely what we are finding

here. However the true reason that underlies the cancellation is slightly different and we

believe it is important to clarify this conceptual point. This also has a practical implication we

will describe below.

The functional form of the potential in Eq. (3.11) can be obtained by spurion analysis, with the

method developed in [38], by assigning G quantum numbers to the Elementary/Composite

couplings which break the Goldstone symmetry. The ES couples via gauging to the Composite

one, i.e. by mixing with the corresponding global current operators. By focusing on the W and

W̃ interactions, which are the ones responsible for the potential (3.11), these can be written as

LINT = g2W α
μ (JL)μα+ g̃2W̃ α

μ ( J̃L)μα , (3.12)

where JL and J̃L are the currents associated with the generators TL and T̃L . With respect to our

previous notation here we performed a field redefinition W → g2W and W̃ → g̃2W̃ to move

the couplings from the kinetic term to the interaction terms. We can then uplift the couplings

to two spurions G A
α and G̃ A

α with an index A in the 28 of SO(8) and an index α= 1,2,3, so as to

rewrite LINT in a formally invariant fashion

LINT =W α
μ G A

α (JL)μA +W̃ α
μ G̃ A

α ( J̃L)μA . (3.13)

2The potential could be made fully calculable with a 3–site model [117] and no large logarithm would appear in
this case barring an unnatural separation among the two layers of resonances.
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3.1. A model example

The two spurions are identical from the viewpoint of the CS and thus they enter the potential

in exactly the same way. What makes them different is the physical values to which we will

eventually set them. By switching to a matrix notation we have

Gα ≡G A
αT a = g2T α

L , G̃α ≡ G̃ A
αT A = g̃2T̃ α

L . (3.14)

Finding the structures that can appear in the potential at order g 2
2 and g̃ 2

2 amounts to classify-

ing the G-invariants that can be constructed with two of those spurions and the Goldstone

Matrix in Eq. (3.3). It has been shown in Ref. [38] that the number of independent invariants

is equal to the number of singlets of the unbroken group H that can be obtained out of the

various spurion components, minus the number of singlets of the full group G . In the present

case the spurions are in the Adjoint of G = SO(8), which decomposes as 28 = 21⊕7 under

H = SO(7). Since one SO(7) singlet is present in the product of two 21’s and one in the product

of two 7’s, but one full SO(8) singlet arises from two 28’s, only one invariant exists, given by

I =∑
α,â

{
Tr[T â

7 U tGαU ]
}2

. (3.15)

Depending on which of the physical spurions is inserted, we obtain a different dependence on

the Higgs field

I = 3

4
g 2

2 sin2 H

f
, Ĩ = 3

4
g̃ 2

2 cos2 H

f
. (3.16)

The two spurions are treated by the CS in exactly the same way, therefore the two terms above

must appear in the potential with the same coefficient. That explains the form of Eq. (3.11)

and originates the cancellation at g2 = g̃2.

The above argument is based on the symmetries and the selection rules of the underlying UV

theory and is thus completely conclusive. That is instead not the case of the original Twin Higgs

reasoning, which only establishes the cancellation of quadratic divergences. The reason why

this could not be enough is that the quadratic divergence corresponds, from the UV viewpoint,

only to some of the contributions to the potential, namely the ones coming from the high–

scale propagation of the light degrees of freedom. The effects of heavy resonances are equally

sizable and they cannot be controlled by a purely low–energy “calculation” of the quadratic

divergence. One might thus expect that in some situations the quadratic divergence might

cancel in the low–energy theory, but still equally large finite contributions arise in the complete

models making the Twin Higgs cancellation ineffective. One example of that is provided by

the non–custodial Twin Higgs model, based on the SU (4)/SU (3) coset where the W and their

Twins gauge the SU (2)× S̃U (2) subgroup. As we explicitly verified the cancellation does not

occur in a 2–site implementation of this scenario, meaning that order g 2 f 2m2
ρ/16π2 term are

65



Chapter 3. A Composite UV completion of the Twin Higgs scenario

present also in the Twin–symmetric limit and should be taken into account in the study of the

potential. A straightforward spurion analysis offers a simple criterion to understand under

what condition the quadratic divergence argument will either fail, as in the SU (4)/SU (3) case,

or be uplifted to a proper selection rule, as in the case of SO(8)/SO(7). The point is that the

quadratic divergence contribution to the potential itself does respect the symmetries and the

selection rules of the theory, and therefore it must have a functional form which is allowed

by the spurion analysis. In SO(8)/SO(7) there is only one invariant, and thus the g 2 and g̃ 2

terms in the quadratic divergence must have the same functional dependence on the Higgs

VEV as the corresponding terms in the full potential. If from the low–energy calculation we

find that they have the appropriate form to cancel, for instance a sin2 plus cos2 structure, the

same must occur for the complete potential. The SU (4)/SU (3) Twin Higgs fails because two

independent invariants exist. The naive quadratic divergence is proportional to one invariant,

for which the cancellation occurs, but also the other invariant arises in general in the complete

potential.3

The reader might wonder at this point what is the role of the Twin Parity symmetry in our

discussion. It actually played no role up to now, but it becomes essential when trying to really

realize the cancellation via the condition g2 = g̃2. This can be enforced by Twin Parity, which

is defined as the operation

Wμ ↔ W̃μ , (3.17)

which flips the W ’s with their Twin partners, supplemented by a transformation on the CS

which interchanges the SO(4)L and S̃O(4)L . The latter is an element of SO(8),

PTwin =
[

0 I4

I4 0

]
, (3.18)

and thus it is automatically a symmetry of our construction.

3An argument showing that SO(8) is sufficient in order to fully protect the Higgs mass at O(g 2) can also be
found in Appendix B of Ref. [128]. Freed of inessential details, the argument can be synthesized as follows. Under
the SU (4)×U (1) subgroup of SO(8), the adjoint and fundamental irreps of SO(8) decompose respectively as
28 = 10 +62 +6−2 +150 and 8 = 41 + 4̄−1. Each different generator of SU (2)L × S̃U (2)L with definite twin parity
(T a

L ± T̃ a
L ) transforms as the singlet 10 of a different SU (4)×U (1) subgroup. In the twin symmetric limit, g = g̃ , the

vector bosons associated with the above twin parity eigenstates are also propagation eigenstates and the O(g 2)
correction to the effective action can be written as the sum over single exchanges of such eigenstates. Therefore
each such contribution respects a different SU (4)×U (1). Now, SU (4)×U (1) invariants built from the submultiplets
of the 8 of SO(8) accidentally respect the full SO(8). As the Goldstone bosons of SO(8) → SO(7) can be made to
live inside the 8 of SO(8), we conclude that at O(g 2) the potential respects SO(8) and thus the Goldstone bosons
remain massless. While the above argument is not unrelated to our derivation, we find it specific to that particular
case. We think our methodology, based on the analysis of the invariants constructed with “Goldstone-dressed"
external couplings, is both more systematic, encompassing in particular fermionic couplings, and more direct.
For instance, it immediately outlines the structural difference between SU (4) and SO(8), which was in fact not
appreciated in Ref. [128].
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3.1. A model example

An exact Twin symmetry requires g2 = g̃2, but it would also require the existence of a Twin

partner of the Hypercharge gauge boson, which however we have not introduced. Twin Parity

is thus broken by the Hypercharge and thus in the Higgs potential we find an unsuppressed g 2
1

contribution of the form

Vg 2
1
=

3g 2
ρ f 4

512π2 g 2
1 sin2 H

f

(
1+ log

4μ2

g 2
ρ f 2

)
. (3.19)

3.1.2 The fermionic sector

To understand the symmetry breaking potential it is crucial to describe properly the source

of the top mass. It originates, as in the canonical Composite Higgs, from a linear interaction

among the elementary top fields and some Composite Sector fermionic operators. This

realizes the so–called “Partial Compositeness” paradigm [13]. The low–energy description of

the setup depends on the choice of the quantum numbers of the latter fermionic operators

under the CS global group. Here we take the elementary qL doublet to interact with an 8 of

SO(8) and the elementary tR to interact with a singlet operator. This choice is not only simple

and minimal, it is also suited to discuss the case of a composite tR field, as we will see below.

Adding fermions requires, again as in the ordinary Composite Higgs, the presence of additional

unbroken global symmetries of the CS. In the first place, a qL doublet with 1/6 Hypercharge

does not fit in an 8 if the Hypercharge is completely internal to the SO(8) group. We will thus

consider a global U (1)X , define Hypercharge as Y = T 3
R + X and assign appropriate U (1)X

quantum numbers to our fields. Second, and more importantly, the SU (3)c color group of

QCD must be assumed to be an unbroken symmetry of the CS. This is because the quarks are

color triplets and thus the CS must carry QCD color to interact linearly with them. Clearly

there is additional structure in the Twin Composite Higgs. First of all, a second set of ES

doublet and singlet fields q̃L and t̃R are introduced and coupled to an 8 and to a singlet of

SO(8), respectively. We call these particles the “Twin Partners” of the Top (and bL) quarks.

Second, since we do not want them to be colored or charged under any of the SM groups but

still we want them to be related by a symmetry to qL and tR , also Twin Ũ (1)X and Twin S̃U (3)c

color global groups have to be introduced.

Let us now turn to our model, which incorporates fermions by a standard 2–site construction

[117]. The spirit is again to describe a minimal set of CS resonances, compatible with the

structure of the underlying CS theory. Given that we assumed the elementary qL to be coupled

to one fermionic operator in the 8 of SO(8), which decomposes under the unbroken SO(7) as

8 = 7⊕1, it is reasonable to expect a 7 and a singlet of fermionic resonances in the spectrum,
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Chapter 3. A Composite UV completion of the Twin Higgs scenario

namely

Ψ=
(
Ψ7

Ψ1

)
, (3.20)

The operators, and consequently the associated resonances, must be in a color triplet and

must carry U (1)X charge 2/3 in order to couple to qL . Similar considerations hold for the tR ,

which mixes with a singlet operator with X = 2/3. This suggests the existence of a singlet,

which however we have already incorporated by the field Ψ1. The Ψ resonances are the

so–called “Top Partners”, they carry QCD color as in the ordinary Composite Higgs scenario.

However in the Twin Higgs case naturalness will place a weaker bound on their mass. Iden-

tical considerations hold for the Twin Tops and their couplings to the CS, which suggest the

existence of a second set of fermionic resonances

Ψ̃=
(
Ψ̃7

Ψ̃1

)
. (3.21)

Those are once again a 7 and a singlet of SO(7), but they are not identical to the untilded Ψ

because they are neutral under the ordinary color and U (1)X while they are charged under the

Twin S̃U (3) and Ũ (1)X .

The decomposition of the Top Partners Ψ and their Twins Ψ̃ into SM representations is

described in Appendix F. As far as Ψ is concerned, its 8 components decompose under the

standard electroweak gauge group into one 21/6 and one 27/6 plus four states in the 12/3. The

phenomenology of these particles is expected to be similar to that of the Top Partners in the

ordinary Composite Higgs model [7]. The eight components of the Twin Ψ̃’s decompose into a

21/2, a 2−1/2 and four neutral singlets 10. Unlike the Ψ’s, they carry no QCD color but some of

them still communicate directly with the SM by EW interactions.

Now that the field content has been specified, we can write down our Lagrangian. Leaving

aside the kinetic terms, the gauge interactions and the couplings of the fermions with the

vector resonances which will not play any role in what follows, we have

Ltop =
[

yL f (Q̄L)IΣI i (ΨR )i + ỹL f ( ¯̃QL)IΣI i (Ψ̃R )i+
yR f t̄RΨL1 + ỹR f ¯̃tRΨ̃L1 + h.c.

]
−MΨΨ̄7Ψ7 − M̃Ψ

¯̃Ψ7Ψ̃7 −MSΨ̄1Ψ1 − M̃S
¯̃Ψ1Ψ̃1 ,

(3.22)
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3.1. A model example

where the Elementary qL and its mirror are embedded into incomplete octets

QL = 1�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i bL

bL

i tL

−tL

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (Q̃L)I = 1�

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

i b̃L

b̃L

i t̃L

−t̃L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.23)

Notice that the ES fields, compatibly with the Partial Compositeness hypothesis, are taken

to interact linearly with the CS through mass–mixings with the resonance fields. The non–

vanishing entries of the embeddings QL and Q̃L are of course precisely designed to make qL

and q̃L couple to components of Ψ and Ψ̃ with the appropriate gauge quantum numbers.

The couplings yL and ỹL control the strength of the interaction between Elementary and

Composite fermions and are assumed to be weak, namely yL , ỹL � g∗. The mass parameters

MΨ(M̃Ψ) and MS(M̃S) come instead purely from the CS. We thus expect them to be of order

m∗, around the scale of the vector resonances described in the previous section. As far as

the tR and t̃R mixing are concerned, two interpretations are possible which lead to different

estimates for the size of the associated couplings yR and ỹR . If we regard tR and t̃R as ES

fields, the couplings have to be weak, much below g∗ and possibly close to their left–handed

counterparts. However we can also interpret tR and t̃R as completely composite chiral bound

states originating from the CS, perhaps kept exactly massless by some anomaly matching

condition. If it is so, their mixing is a purely CS effect and thus yR , ỹR ∼ g∗. We will consider

both options in what follows taking also into account the possibility of smoothly interpolating

between the two.

As a part of the Composite Twin Higgs construction we do have to impose Twin Parity, at least

to some extent as described in the previous section. Twin Parity acts as

QL ↔ Q̃L , tR ↔ t̃R , Ψ↔ Ψ̃ , (3.24)

times the SO(8) transformation in Eq. (3.18) acting on the resonance fields Ψ and Ψ̃.4 If it

were an exact symmetry it would imply all masses and couplings in the Lagrangian (3.22) to be

equal to their Twin, un–tilded, counterparts. We notice that the implementation of Twin Parity

is slightly different in the fermionic and gauge sectors. In the gauge sector of the CS, Twin

Parity was acting just like an SO(8) transformation and thus it was automatically a symmetry.

4We have not mentioned the mirror gluons which gauge S̃U (3)c , needless to say they also get exchanged with
the SM gluons.

69



Chapter 3. A Composite UV completion of the Twin Higgs scenario

Now instead Twin Parity entails the exchange of different fermionic CS resonances, charged

under different global groups. Imposing Twin Parity thus becomes a non–trivial constraint on

the CS.

We can now turn to the determination of the mass spectrum. By working in the limit yL , ỹL �
g∗, we will focus on the leading relavant order in an expansion in powers of yL and ỹL . We

will instead not treat yR and ỹR as small parameters, so that our formulae will hold for both

completely composite and partially elementary right–handed fields. Aside from the exactly

massless bL and b̃L –which will get a mass by mixing with other resonances or by some other

unspecified mechanism–, the lightest particles are the Top quark and its Twin partner, with

masses

m2
t �

f 4

2

y2
L y2

R

M 2
S + y2

R f 2
ξ , m2

t̃ �
f 4

2

ỹ2
L ỹ2

R

M̃ 2
S + ỹ2

R f 2
(1−ξ) . (3.25)

If we remember that MS ∼ m∗ = g∗ f and yR f is either ∼ m∗ or smaller for a partially el-

ementary tR , we see that the Top mass respects the usual Partial compositeness estimate

mt = yt�
2
· v ∼ yL yR

g∗
· v , (3.26)

out of which we can determine the size of yL in terms of the other parameters. If tR is

completely Composite, we expect yR ∼ g∗ and thus yL must be around the physical Top

Yukawa coupling yt ∼ 1. Larger values are obtained in the case of a partially Elementary tR .

The same parametric estimate can be performed for the Twin Top, whose mass scales like

mt̃ ∼
ỹL ỹR

g∗
· f . (3.27)

Differently from the Top one, the Twin Top mass is not proportional to v but to f because the

Twin S̃U (2)L is broken by the CS directly at the scale f .

The rest of the spectrum comprises the 16 components of Ψ and Ψ̃. They all have masses of

order m∗, though not degenerate because of the freedom to choose the CS mass parameters

MΨ �= MS , M̃Ψ �= M̃S . We expect two almost degenerate 7–plets, with mass MΨ and M̃Ψ

respectively, plus 2 singlets whose masses are controlled by MS and M̃S and by the yR f and

ỹR f mixings. The interaction with qL and q̃L remove part of the degeneracy and the spectrum

organizes in degenerate SM multiplets as described above, with splitting of order y2
L f 2 and

ỹ2
L f 2 in the mass squared. Further tiny splitting emerge after EWSB. The qualitative structure

of the spectrum respects the Twin Higgs expectation depicted in the right panel of Figure 3.2.

Let us finally turn to the calculation of the Higgs potential, working once again in the weak
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coupling expansion yL , ỹL � g∗. Notice that yL and ỹL are the only sources of SO(8) breaking

in our fermionic Lagrangian, therefore the Higgs potential must be proportional to powers of

those couplings. It receives its formally leading contribution at second order in the coupling

expansion, through a term

Vy2 (H) = Nc f 2

32π2

{
y2

L

[
M 2

Ψ log
μ2

M 2
Ψ

−M 2
S log

μ2

M 2
S + f 2 y2

R

]
· sin2 h

f

+ỹ2
L

[
M̃ 2

Ψ log
μ2

M̃ 2
Ψ

− M̃ 2
S log

μ2

M̃ 2
S + f 2 ỹ2

R

]
·cos2 h

f

}
. (3.28)

Again, as in the order g 2
2 potential in the previous section, we see the Twin Higgs cancellation

mechanism at work. If Twin Parity is exact so that tilded and un–tilded quantities are equal,

the sin2 and cos2 sum up to one and no contribution is left to the Higgs potential. As in the

gauge sector this cancellation can be explained in terms of symmetries and selection rules.

The relevant spurions in this case are the Elementary qL and q̃L couplings, which transform in

the 8 of SO(8). Only one non–trivial invariant can be formed out of two 8’s,and that precisely

takes the sin2 and cos2 forms of the equation above.

The second relevant term in the potential is due to an IR effect. By looking at the spectrum of

the theory in Figure 3.2 we see that there is a considerable gap among the Top Partner scale

m∗ = g∗ f and the Top plus its Twin, with masses of order yL v and ỹL f . The low–energy Higgs

potential thus receives a considerable log–enhanced contribution that corresponds to the RG

evolution of the Higgs quartic coupling down from the scale m∗. In our model, the well known

effect of the Top is complemented by the effect of its Twin, so that the potential reads

VI R (H) = Nc

16π2

[
mt (H)4 log

m2∗
mt (H)2 +mt̃ (H)4 log

m2∗
mt̃ (H)2

]
, (3.29)

where mt (H) and mt̃ (H) are the Higgs–dependent Top and Twin Top masses which we can

extract from Eq. (3.25). They can be expressed as

mt (H)2 = y2
t

2
f 2 sin2 H

f
, mt̃ (H)2 =

y2
t̃

2
f 2 cos2 H

f
, (3.30)

in terms of the physical Top Yukawa and its Twin

y2
t = y2

L y2
R f 2

M 2
S + y2

R f 2
, y2

t̃ = ỹ2
L ỹ2

R f 2

M̃ 2
S + ỹ2

R f 2
. (3.31)
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This allows to rewrite the IR potential in an explicit form

VI R (H) = Nc f 4

64π2

[
y4

t sin4 H

f
log

2m2∗
y2

t f 2 sin2 H
f

+ y4
t̃ cos4 H

f
log

2m2∗
y2

t̃
f 2 cos2 H

f

]
. (3.32)

Notice that an analogous IR term plays an important role in the Higgs dynamics of the MSSM

with heavy stops, and so it will in our case.

The last term which we have to discuss is the contribution purely of order y4, not enhanced

by any IR log. The resulting expression is complicated and it will not be reported here, what

matters is that it has the parametric form

Vy4 (H) = Nc f 4

128π2

[
(y4

LF1 + ỹ4
LF̃1)

(
sin4 H

f
+cos4 H

f

)
+ (y4

LF2 − ỹ4
LF̃2)

(
sin2 H

f
−cos2 H

f

)
.

]
,

(3.33)

Here F1, F2 are O(1) functions of the mass ratios MS/MΨ and yR /MΨ. The same comment

applies to the corresponding tilded quantities. The coefficient in the first parenthesis is even

under the exchange of tilded with un–tilded objects, while the second one is odd and thus

vanishes for exact Twin Parity.

Notice finally that, in analogy with the gauge sector, also the fermion contribution to the

effective potential has a structure that is dictated solely by symmetries and selection rules.

One can indeed find all the possible invariants that can appear in the top sector contributions

to the Higgs potential by means of the spurion technique. We can generically write the

coupling of the elementary top-bottom doublets, qα
L and q̃α

L , to the composite sector as:

Lmi x = f (q̄L)α(yL)I
αΣI i (ΨR )i + f ( ¯̃qL)α(ỹL)I

αΣI i (Ψ̃R )i +h.c., (3.34)

where (yL)I
α and (ỹL)I

α are 2×8 matrices that act as spurions under the global symmetry group.

We have explicitly:

(yL)I
α = 1�

2

(
i yL yL 0 0 0× I4

0 0 i yL −yL 0× I4

)
, (ỹL)I

α = 1�
2

(
0× I4 i ỹL ỹL 0 0

0× I4 0 0 i ỹL −ỹL

)
.

(3.35)

Introducing the vector

U I =ΣI i vi (3.36)
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with

vi = (1,0,0,0,0,0,0,0)t , (3.37)

we can easily form one invariant at order y2 and two invariants at order y4. We have:

Iy2 = (yL)αI (y∗
L )αJU IU J + (ỹL)αI (ỹ∗

L )αJU IU J = 1

2
yL

2 sin2 h

f
+ 1

2
ỹ2

L cos2 h

f
, (3.38)

I 1
y4 = (yL)αI (yL)βK (y∗

L )αJ (y∗
L )βLU IU JU K U L + (ỹL)αI (ỹL)βK (ỹ∗

L )αJ (ỹ∗
L )βLU IU JU K U L =

1

4
y4

L sin4 h

f
+ 1

4
ỹ4

L cos4 h

f

(3.39)

I 2
y4 = (yL)αI (yL)βK (y∗

L )αJ (y∗
L )βK U IU J + (ỹL)αI (ỹL)βK (ỹ∗

L )αJ (ỹ∗
L )βK U IU J =

1

2
y4

L sin2 h

f
− 1

2
ỹ4

L cos2 h

f

. (3.40)

As expected, the spurion technique gives the exact trigonometric dependence on the Higgs

field that one finds by a direct computation as in Eq. (3.33).

3.2 Electroweak symmetry breaking

Let us now discuss if and under what conditions we can achieve a realistic vacuum dynamics

in our model. That amounts to producing electroweak symmetry breaking, the correct Higgs

mass and a sufficiently small (tunable) value of the ratio ξ = v2/ f 2, which controls Higgs

couplings and precision electroweak observables. In the spirit of Twin Higgs, and differently

from ordinary Composite Higgs models, we would like to obtain that without the need of

relatively light Top Partner(s) close to the Goldstone scale f . Namely, we would like to keep

MΨ/ f ≡ gΨ ∼ g∗ large and possibly close to the perturbativity bound g∗ ∼ 4π.

Let us consider first the exact Twin Parity limit, in which the untilded and tilded parameters

are taken to coincide and moreover the SM hypecharge coupling g1 is set to vanish. Remember

indeed that in our proposal the Twin Hypercharge is not gauged and thus the SM Hypercharge

gauging breaks Twin Parity. The potential, as computed in the previous section, can be written

as

V s ym.(H) = f 4β
(
s4 log

a

s2 +c4 log
a

c2

)
, (3.41)
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where

s2 ≡ sin2 H

f
, c2 ≡ cos2 H

f
, (3.42)

β= 3y4
t

64π2 , (3.43)

and

log a = log
2μ2

y2
t f 2

+ y4
L

y4
t

F1 , (3.44)

where F1, which coincides with F̃1 in the Twin symmetric case, was introduced in Eq. (3.33).

This potential is not realistic. For log a > 3/2− log2 it is minimized at the Twin symmetric

point s = c = 1/
�

2, while for log a < 1/2 it has Twin breaking minima at respectively s = 0,

c = 1 and s = 1, c = 0. In the intermediate range 1/2 < log a < 3/2− log2 it does have a tunable

minimum with c �= s �= 0: when log a approaches 1/2 from the above, ξ approaches 0. However

the effective Higgs quartic in this case is purely generated by RG evolution in the SM, and it

results too small unless f ≥ 1010 GeV, which we find unacceptable from the stanpoint of fine

tuning. In conclusion none of the above cases corresponds to a realistic phenomenology.

A realistic potential can only be obtained by turning on the Twin Parity breaking sources.

We think a consistent picture can be obtained by treating Hypercharge as the main source

of that breaking. Its effects can be classified by the loop order at which they arise. At one

loop there is the gauge contribution in Eq. (3.19). That equation features a logarithmic

divergence, but in a realistic model, that logarithm would be saturated at the scale of the

strong resonances: μ→ m∗. However, known theorems fix the sign of that contribution to

the potential to always be positive. That is indeed compatible with the leading log behaviour

at μ� mρ in Eq. (3.19). Another source of breaking is the Hypercharge contribution to the

RG evolution of the top sector parameters, down to m∗ from the UV scale ΛUV � m∗, where

our model is microscopically defined. In general this RG contribution may turn on several

effects in the composite sector. In particular each and every Yukawa and mass parameter

in the top sector can be affected. However under the assumption that the composite sector

does not possess any twin-parity-odd relevant or marginal operator, the only couplings that

will be affected are the elementary-composite mixings yL and potentially, if tR is Elementary,

yR . Focusing on yL , which affects the potential, we expect RG evolution to generate a twin

breaking splitting (for the couplings renormalized at the scale m∗) of the form

y2
L − ỹ2

L = bg 2
1

16π2 y2
L log

ΛUV

m∗
≡Δy2

L (3.45)
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3.2. Electroweak symmetry breaking

where b is an unpredictable numerical coefficient of order unity. In principle if the strong

sector between ΛUV and m∗ is approximately conformal, b could be related to the OPE

coefficients performing conformal perturbation theory. In the case of perturbative theories,

where the mixing is simply provided by mass terms, we know that b > 0. That is the well known

sign of the running of masses induced by gauge interactions: it makes yL grow when running

towards the IR, and does not affect ỹL as it involves hypercharge neutral states. Although we

have not studied the problem, we suspect b > 0 is a robust feature also at strong coupling,

though we shall not strongly rely on that. The insertion of Eq. (3.45) in the fermion induced

1-loop potential will give rise to a two-loop contribution enhanced by the UV log. We should

also notice that analogous effects are induced on the SU (3) and SU (2) gauge couplings but

they are numerically irrelevant.

The net effect of all the above considerations is the addition to the potential in Eq. (3.41) of a

Twin breaking term

ΔV (H) =α f 4s2 (3.46)

α=
3g 2

1 g 2
ρ

512π2 A+ 3Δy2g 2
Ψ

32π2 B , (3.47)

where gΨ = MΨ/ f is the effective coupling associated with the overall size of the fermion

masses introduced above –which we expect to be of order g∗– and gρ is the vector coupling,

which is also expected to be around g∗. Finally A and B are numerical coefficients that depend

on the details of the model. A, as we mentioned, is robustly predicted to be positive, while B

can take either sign.

The overall potential

V (H)

f 4 =αs2 +β
(
s4 log

a

s2 +c4 log
a

c2

)
(3.48)

is now capable to give rise to the desirable pattern of electroweak symmetry breaking. In order

to achieve that, α must be positive. One is immediately convinced of that, by working with the

non canonical field φ= f sinh/ f . In this parametrization α only affects the quadratic part of

the potential, and the quartic term φ4 purely comes from the twin symmetric contribution: a

positive effective quartic of the right size can only be achieved for a � 1. But for a � 1 the twin

symmetric potential contributes a negative φ2 term when expanded around H = 0 and this

must be compensated by tuning against a positive α, thus obtaining a vacuum expectation

value 〈sin2 H/ f 〉 = ξ� 1. A value ξ∼ 0.2 could be sufficient to account for present bounds on

the Higgs couplings (see however Footnote 1).
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Chapter 3. A Composite UV completion of the Twin Higgs scenario

From equation (3.48) we can readily study the condition for having a tunable minimum with

ξ� 1. The minimization of Eq. (3.48) yields

α

β
=−1+2log

a

1−ξ
+2ξ

[
1−2log

a√
ξ(1−ξ)

]
. (3.49)

On the extremum defined by the above equation the Higgs mass is

m2
H

v2 = 8β(1−ξ)

[
log

a2

ξ(1−ξ)
−3

]
. (3.50)

For a given ξ, the observed masses of the Higgs and of the Top, which controls β through

Eq. (3.43), fix then the value of a. Using the MS Top Yukawa coupling at the scale v , we have

y4
t ∼ 0.8 in β, so that we find

log a � 6+ log
√

ξ (3.51)

which for a realistic ξ ∼ 0.1 corresponds to log a ∼ 5. Now notice that the definition of a in

Eq. (5.5) depends on μ. In a reasonable model we expect this contribution to be saturated

at the mass m∗ ∼ g∗ f of the composite sector. With this interpretation, the first term in

Eq. (5.5) is ∼ log(g∗/yt )2. For a maximally strongly coupled theory g∗ ∼ 4π, this is in the right

ballpark to match Eq. (3.51). For smaller g∗, that is for lighter resonances, the remaining

term in Eq. (5.5) can bridge the gap and produce the needed value of log a. The situation in

our model is reminiscent of the MSSM with moderately large tanβ and heavy stops. In that

case the correct quartic is produced in equal measure by the tree level electroweak D-terms

and by the top/stop renormalization of the quartic. In our case the electroweak D-term is

basically replaced by the Twin Top contribution. One also has to pay attention not to make

log a too large, producing a too heavy Higgs. This would tend to be the case for a considerably

Elementary tR . Indeed if for instance left– and right–handed couplings were comparable,

i.e. yL ∼ yR , from Eq. (3.26) we would obtain y2
L ∼ gΨyt and thus too a large contribution to

log a from the second term in Eq. (5.5) unless gΨ <�
6 � 2.4, which means relatively Light Top

Partners as in the ordinary Composite Higgs scenario. Total tR compositeness, or at least a

larger compositeness for the tR than for the qL , is thus preferred in our scenario.

Consider now the value of α/β needed to be able to tune ξ� 1. Eq. (3.49) requires a sizeable

value α/β∼ 9. One can check what that relation requires given our estimate of α. Assuming α

is dominated by the 1-loop IR dominated effect implies

A
g 2
ρg 2

1

80y4
t

∼ 1 (3.52)

which seems to require even for gρ ∼ 4π a sizeable A ∼ 4, borderline but perhaps acceptable.
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On the other hand assuming α is dominated by the RG contribution we find

Bb

80π2

y2
L

y2
t

g 2
Ψ

y2
t

g 2
1 log

ΛUV

m∗
∼ 1. (3.53)

This is satisfied for completely composite tR , yL = yt , when

log
ΛUV

m∗
∼ 80π2

b B g 2
1

y2
t

g 2
Ψ

� 50

b B
, (3.54)

i.e. for a large separation among the IR CS confinement scale and the UV one where it

originates. Overall this seems like a plausible picture.

3.3 Discussion

A (partial) mirroring of the particles and interactions of the SM and of the new CS may give rise

to non-minimal Composite Higgs models where a minimal amount of fine tuning is needed

to be consistent with current bounds and, most importantly, where there is no new particle

carrying SM charge below a few TeV. This eliminates one possible signature of Composite

Higgs models, namely the production of colored Partners of the Top quark [35], which need

to be light in the ordinary constructions [29–34]. The limits from the non–observation of the

latter particles are currently comparable with other constraints. However they could become

the strongest limit after the second run of the LHC. In that case the Composite Twin Higgs

scenario might come to rescue.

A consistent picture emerges with the following salient features. First, mirroring the top

Yukawa and gauge couplings is enough to render innocuous the usual quadratic divergence

of the Higgs mass but does not guarantee, per se, the absence of finite but large corrections

proportional to the squared mass of the resonances carrying SM charges. Extra hypotheses,

which hold automatically in our construction, are needed to uplift the divergence cancellation

to a structural protection of the potential. Second, the breaking of the mirror symmetry

needed to get a realistic minimum of the Higgs potential may be realized by not mirroring the

weak hypercharge. This is how the potential acquires a positive squared mass term, necessary

to counteract the negative term from the mirror symmetric term, quartic in the top Yukawa

coupling. The cancellation between these two terms is the unavoidable tuning needed to

explain the smallness of the ratio (v/ f )2, currently below about 0.2, as in any Twin model. On

the other hand the size of the individual terms, both quadratic and quartic, is right, without

any further tuning, provided the RG evolution of the top sector parameters due to hypercharge

is active already at a high UV scale which might not be far from the GUT scale 5.

5Needless to say, without a mirror hypercharge no extra massless vector occurs in the spectrum, thus avoiding
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Chapter 3. A Composite UV completion of the Twin Higgs scenario

We think that the phenomenology of composite twin Higgs models deserves attention. The

infrared effects on the EWPT is well known since long time [126]. The search for relatively light

mirror states, without SM charges, may also be possible in the next LHC run. Needless to say,

to see the entire spectrum of these models in its full glory requires a Future Circular Collider

in the hadronic mode.

possible unpleasant cosmological consequences.
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4 The RG-improved Twin Higgs effective

potential at NNLL

The Twin Higgs paradigm [125] offers a clever alternative to more common natural extensions

of the SM: as we saw in the Introduction and in the previous Chapter, the new sector responsi-

ble for protecting the Higgs mass from large radiative corrections is given by a copy of the SM

particles. This latter is color-blind, namely it is not charged under the SM strong interactions.

The new mirror partners which are required for the Higgs mass to be light are then invisible

and cannot be detected at a hadronic collider. They are related to the SM fermions and bosons

by a discrete Z2 symmetry which, together with the spontaneous breaking of a global symme-

try that turns the Higgs into a pseudo Nambu-Goldstone boson (pNGB), guarantees that the

Higgs mass be insensitive to the UV contributions. The resulting possibility of having a natural

EWSB with the absence of detectable new physics at the LHC has sparked interest in this class

of models in the last years, [118, 119], [120, 127], [128, 129, 132–137], but many questions still

remain open. In particular, an important problem is to analyze the capability of this scenario

to reproduce the observed value of MH , irrespective of any possible UV completion, super-

symmetric or composite, of the low-energy Lagrangian. Since the Higgs mass is insensitive to

the UV physics, in fact, the sole infrared (IR) degrees of freedom, namely the elementary SM

particles and their mirrors, should be enough to account for the experimental indications. The

Higgs mass receives then its most important contributions from the Renormalization Group

(RG) evolution of the scalar potential from the UV down to the IR scale where MH is measured.

Computing these running effects is crucial for an understanding of the feasibility of the Twin

Higgs program as a new paradigm for physics at the electroweak (EW) scale.

In this Chapter, we study the Renormalization Group (RG) improvement of the Twin Higgs

effective potential taking systematically into account the most important effects, due to QCD

interactions and to loops of SM quarks and their twin copies. Our starting point will be a low-

energy effective Lagrangian that we write in full generality following the basic prescriptions of

the Twin Higgs paradigm. These are the spontaneous breaking of a UV global symmetry and

the existence of an extra elementary sector charged under a mirror of the SM gauge groups.

79



Chapter 4. The RG-improved Twin Higgs effective potential at NNLL

The effective action is then simply given by the renormalizable SM interactions supplemented

by two sets of higher-dimensional operators. The first set accounts for the non-linear Higgs

interactions due to the pNGB nature of the Higgs scalar and it comprises the six-dimensional

operators classified for instance in [25–28]. The leading contribution to the potential generated

by these latter is suppressed by the fine-tuning parameter ξ= (v/ f )2, where f denotes the

scale where the global symmetry is spontaneously broken. In presence of solely marginal

and irrelevant interactions, in fact, the six-dimensional operators cannot renormalize the

SM quartic coupling and mass parameter, but they can only affect the running of other non-

renormalizable operators with dimension D ≥ 6. The effective potential must contain one

operator of this type, O6 = (H †H)3, where H is the Higgs doublet. Its RG-evolution induced

both by the linear and the non-linear interactions accounts for the contributions to the Higgs

mass proportional to ξ. These effects are also common to any other natural extension of the

SM with a pNGB Higgs in the spectrum.

The second set of operators, specific to the Twin Higgs construction, describes the interactions

between the Higgs boson and the twin fermions. Its most distinctive feature is the existence of a

relevant term with dimension D = 3, namely the twin quark mass parameter, that is generated

before EWSB, [118]. Together with this latter, a series of non-renormalizable operators must be

taken into account, whose leading contribution to the potential is not necessarily proportional

to ξ, unlike the case of the six-dimensional operators made up of SM fields only. Due to the

super-renormalizable mass term, in fact, the higher-dimensional interactions in the Twin

sector can not only affect the running of other irrelevant operators with D > 4, but they can

also renormalize the SM quartic coupling and mass term. If we consider, for instance, the

dimension-five operator O5 = (H †H) ¯̃q q̃ , with q̃ a twin quark, we can easily construct a one-

loop diagram contributing to the running of the quartic coupling. If two vertices are given

by O5, two insertions of the twin quark mass are enough to generate a marginal operator.

Similar considerations are valid for the other higher-dimensional operators, which can always

renormalize the lower-dimensional ones through the insertion of an increasing number of

the relevant three-dimensional interaction. In particular, we would need to classify all the

non-renormalizable operators in the twin sector up to dimension D = 9 in order to fully

capture the correction to the Higgs mass up to the order ξ. As a consequence, a diagrammatic

computation of the RG-evolution of the effective potential results to be quite complicated,

since no existing classification of the Twin non-renormalizable operators exists. Moreover, the

number of diagrams one has to compute to renormalize the quartic coupling and O6 is big

enough to discourage the usage of this diagrammatic approach.

It is possible to avoid the full classification of the operators in the Twin sector by making

use of a more clever technique to compute the Higgs effective potential, the background

field method. As it is well known, this procedure allows to derive the RG-improved action
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4.1. The Twin Higgs low-energy Lagrangian

automatically re-summing a whole series of diagrams and without needing to calculate all

the single operators that are renormalized along the RG flow. If this method may be just an

alternative in the SM, for the Twin Higgs model it provides instead the fastest way to calculate

the contribution of the extra light degrees of freedom. We will therefore derive our expression

for the Higgs mass using the background field method. The result will be organized as an

expansion in logarithms, as usual, and we will show how to systematically include all the

contributions to the effective potential that are generated along the flow as higher powers

in the logarithmic series are included. We will renormalize the effective action up to the

third order in the expansion parameter, classifying and discussing separately the leading

contribution, the quadratic correction and finally the cubic expression for the Higgs mass.

This Chapter is organized as follows. In Section 4.1, we will review the Twin Higgs paradigm

and write down its effective low-energy Lagrangian. After briefly recalling the leading result

for the effective potential, in Section 4.2 we will apply the background field method to the

Twin Higgs model and show how to derive the RG-improved effective potential at quadratic

order. In Section 4.3, we shall extend the computation to include the cubic terms. Section 4.4

contains a discussion of the final results, the validity of our approximation and the prediction

for the Higgs mass that we get in the Twin Higgs model. In particular, Figs. (4.5) and (4.6)

represent the most important result of this work and contain the numerical estimation of MH

both in the SM and in its Twin extension. We conclude summarizing our findings in Section

4.5.

4.1 The Twin Higgs low-energy Lagrangian

The Twin Higgs paradigm is an interesting alternative to theories which conceive the Higgs

scalar as a pNGB, like for instance the Composite or the Little Higgs [19, 23]. Two are the

basic assumptions of any realization of this scenario [125]. First of all, at a generic UV scale

m∗ there must exist some extension of the SM whose Higgs sector enjoys an approximate

global symmetry, G . This latter is spontaneously broken at an IR scale f to some unbroken

subgroup H so that seven Goldstone bosons (GB) are delivered in the spectrum; four of

them are identified as the Higgs doublet. The second element is an approximate discrete Z2

symmetry that interchanges in the UV every SM particle with a corresponding mirror particle

charged under a twin copy of the SM gauge groups, S̃M.

The mechanism that allows a natural EWSB employs the explicit breaking of both these

symmetries. The weak and electromagnetic interactions together with the Yukawa couplings

violate, in fact, the global symmetry G . As a result, three of the seven GB’s are eaten to give mass

to the twin gauge bosons, a potential for the Higgs doublet is generated and the Higgs scalar

is turned into a pNGB. An exact discrete symmetry, on the other hand, guarantees that the
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Chapter 4. The RG-improved Twin Higgs effective potential at NNLL

mass term in the Higgs potential be trivially invariant under G , so that it does not contribute

a physical mass to the GB’s. These latter are then completely insensitive to any quadratic

contribution proportional to m2∗ and originated by loops of heavy particles or by the high-

energy propagation of the light degrees of freedom. The G-breaking terms in the potential, like

the Higgs quartic coupling, are at most only logarithmically sensitive to the scale m∗ and must

be proportional to g 4 and y4, where g collectively indicate the weak gauge couplings and y

the Yukawas. An explicit soft breaking of the Z2 symmetry is however necessary to generate

a small quadratic mass term that in turn allows a tunable minimum of the potential to exist.

Therefore the discrete symmetry, while being potentially respected by all the SM and S̃M

interactions, must be softly broken by some UV effects. A natural hierarchy between the EW

scale v and the GB decay constant f is generated without requiring the existence of new light

particles charged under the SM. The UV scale m∗, where the heavy fields with SM quantum

numbers reside, can thus be pushed up to m∗ ∼ 10 TeV, out of the LHC reach, without in any

way worsening the tuning between v and f .

The Higgs effective potential being largely insensitive to the UV scale, it is crucial to study

how it is affected by the IR physics. In particular, it is important to derive an expression

for the Higgs boson mass and understand how light it can be, also in comparison with its

experimental value. To tackle these questions, we aim at analyzing the RG-improvement

of the effective potential including the running of the quartic coupling induced by the light

degrees of freedom present in the Twin Higgs paradigm. Our starting point is the low-energy

Lagrangian at the scale m∗ generated after integrating out the UV physics together with the

heavy mirror copy of the Higgs doublet. We consider a non-linear implementation of the Twin

Higgs symmetries, so that also the radial mode of the linear realization is integrated out. We

will be completely agnostic as regards the particular UV completion of the theory, which could

be a strongly interacting composite dynamics [118, 119], a weakly coupled supersymmetric

sector [129, 132] or the linear model itself, and as regards any possible UV mechanism that

softly breaks the discrete symmetry. At the same time, we will not specify any particular

symmetry breaking coset; as long as it delivers seven GB’s, it could be SU (4)/SU (3) as in the

original model [125] or SO(8)/SO(7) as in the minimal composite UV completion [118, 119].

We will also neglect the tree-level contribution of all the higher-dimensional operators, like

current-current or four fermions operators, that could be originated after integrating out heavy

bosonic or fermionic resonances. Their Wilson coefficients at the scale m∗ are in fact model-

dependent and moreover they are suppressed both by the weak coupling between the light

degrees of freedom and the new dynamics and by inverse powers of m∗. Supposing this scale

to be in the multi-TeV range, as in the spirit of the Twin Higgs paradigm, the initial conditions

for these type of higher-dimensional operators can be safely taken to be zero. Our Lagrangian

will however take into account the two basic elements of the twin Higgs construction, namely

the presence of non-linear Higgs interactions due to the pNGB nature of the Higgs boson
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and the existence of extra light degrees of freedom charged under the S̃M. The remaining

non-renormalizable terms that we neglected at the tree-level will be seeded at one-loop by

the non-linear Higgs dynamics. We will consider just the most relevant contributions to the

potential, originating from the G-breaking gauge and Yukawa interactions. We neglect the

weak gauge couplings, whose effects are much smaller than those in the quark sector, and

we keep only the terms proportional to the top Yukawa coupling, which generates the most

important corrections to the potential. Under all these assumptions, the effective Lagrangian

at the scale m∗ is:

L (m∗) = (DμH †)(DμH)−V (H †H ,m∗) +

Q̄Li /DQL + t̄R i /DtR − yt (m∗)

[
f Q̄L

H ′
�

2H †H
sin

(�
2H †H

f

)
tR +h.c.

]
+

t̃ i /D t̃ − ỹt (m∗)�
2

f cos

(�
2H †H

f

)
t̃ t̃ .

(4.1)

In the previous equation, yt and ỹt denote the SM top Yukawa coupling and its twin; they are

initially equal due to the approximate Z2 symmetry: yt (m∗) = ỹt (m∗). The twin tops t̃ are not

charged under the SM and therefore do not form any doublet with the corresponding twin

bottom. This latter can then be neglected since its contribution to the RG flow of the Higgs

potential would be proportional to ỹb and is thus sub-leading. The covariant derivatives of

the fermion fields contain the strong interactions with coupling gS for the SU (3) SM gauge

groups and g̃S for its twin. Because of the twin symmetry, we have again gS(m∗) = g̃S(m∗). H

is instead the SM Higgs doublet,

H = 1�
2

(
π1 + iπ2

h + iπ3

)
; (4.2)

we define H ′ = iσ2H∗ and V (H †H ,m∗) is the Higgs effective potential at the scale m∗:

V (H †H ,m∗) = L(m∗)sin2

(�
2H †H

f

)
+F (m∗)

[
sin4

(�
2H †H

f

)
+cos4

(�
2H †H

f

)]
. (4.3)

The mass term L is generated by the Z2 breaking interactions, whereas the function F arises at

the tree-level after integrating out the UV sector; their explicit form at m∗ is model-dependent

and provides an O(1) initial condition for the running of the effective potential.

The low-energy Lagrangian fully takes into account the pNGB nature of the Higgs scalar

by introducing the non-linear trigonometric interactions between the Higgs doublet and

fermions. The effective potential has also the specific trigonometric dependence that is

dictated by the existence of a non-linearly realized spontaneous symmetry breaking coset. It is

convenient to make a field redefinition in order to recover the SM Lagrangian supplemented
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by higher-dimensional operators and to simplify the initial conditions at the scale m∗ for the

relevant Wilson coefficients. We therefore redefine the Higgs doublet as

H → f
H�

2H †H
sin

(�
2H †H

f

)
(4.4)

and recast the Lagrangian in Eq. (4.1) in the following form:

L (m∗) = (DμH †)(DμH)+ 1

2 f 2

[
cH (m∗)+dH (m∗)

H †H

4 f 2

]
OH + c ′H (m∗)

f 2 O ′
H −V (H †H ,m∗)+

Q̄Li /DQL + t̄R i /DtR + t̃ i /D t̃ −
[

yt (m∗)Q̄L H ′tR + ỹt (m∗) f�
2

√
1− 2H †H

f 2 t̃ t̃ +h.c.

]
,

(4.5)

where the potential can now be written as

V (H †H ,m∗) = 2μ2(m∗)H †H +4λ(m∗)(H †H)2 +8
c6(m∗)

f 2 O6. (4.6)

Using the notation of [25], we have introduced the following dimension-6 operators: OH =
∂μ(H †H)∂μ(H †H) and O ′

H = H †H(DμH †)(DμH)1. It is straightforward to verify that cH (m∗) =
1, whereas O′

H is not generated at the tree-level with our choice of basis, c ′H (m∗) = 0.2 Only the

RG-evolution will seed this operator at loop-level. Notice also the presence of the dimension-8

operator OD = H †H∂μ(H †H)∂μ(H †H) , with dH (m∗) = 8, which is necessary to capture all

the effects due to the running in the Twin sector, as we shall see. The Wilson coefficients

in the Higgs potential can be expressed as functions of L and F at the scale m∗, although

the explicit relation is not relevant for the analysis of the IR contributions to the Higgs mass.

However, one can check that the initial condition for c6 is simply c6(m∗) = 0, so that the

operator O6 = (H †H)3 is generated only through the running. All the contributions to the

Higgs mass or to other observables due to the higher-dimensional operators in the SM sector

are suppressed by powers of ξ, which measures the degree of tuning between the EW scale

and the GB decay constant. The parameter ξ is also constrained to be small by electroweak

precision tests (EWPT) which set a bound ξ≤ 0.2. As regards the Twin sector, notice finally

that the non-renormalizable interactions generated at the tree-level are all collected in the

1Notice that the operators OH and O ′
H are already present in the Lagrangian of Eq. (4.1), but the initial

conditions for their Wilson coefficients in that basis are such that the Higgs kinetic term is canonical. We have
therefore omitted to report them

2The operator O ′
H corrects the W boson mass at order ξ, whereas in the basis (4.4) no correction to the gauge

boson masses is induced. We did not report the low-energy Lagrangian in the gauge sector, but it can be found
in [118], for instance. As a consequence, this operator is absent at the tree-level. For the same reason, the
eight-dimensional companion operator of OD , O ′

D = (H†H)2|DμH†|2, has vanishing boundary conditions when
matching with the Twin Higgs Lagrangian in our basis. Since only the tree-level initial conditions for the eight-
dimensional operators can affect the RG-improvement of the potential at cubic order, we can completely neglect
O ′

D from our Lagrangian.
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function of the Higgs field which accompanies ỹt . From the Lagrangian in Eq. (4.5), we can

also derive the expressions of the top masses and their scale separation. After EWSB, we have

in fact mt = yt v/
�

2 for the SM tops and m̃t = ỹt f
√

1−ξ/
�

2 for their twins.

4.1.1 The Higgs mass and the LL result

The potential at the scale m∗ gives rise to a first small UV contribution to the Higgs mass. This

is a model-dependent tree-level effect that arises after integrating out the heavy physics. We

have:

(M 2
H )UV ∼λ(m∗)v2. (4.7)

The RG evolution of the potential induced by the light degrees of freedom generates other log-

enhanced IR corrections due to the running from m∗ down to the low-energy scale where the

Higgs mass is experimentally measured, for instance mt , the top mass scale. The Higgs mass

receives then a second contribution, (M 2
H )I R , which is model-independent and proper to any

possible UV completion of the Twin Higgs paradigm. Our full prediction for this observable is

therefore:

M 2
H = (M 2

H )UV + (M 2
H )I R , (4.8)

where (M 2
H )I R can be expressed at a generic renormalization scale μ as a function of the

renormalized Wilson coefficients appearing in Eq. (4.5). At first order in ξ, we have:

(M 2
H )I R (μ) = 8

[
λ(μ)+3 c6(μ) ξ

][
1− (cH (μ)+c ′H (μ)

)
ξ
]

v2. (4.9)

Once the RG flow to the IR scale has been computed to the desired level of accuracy, one

can match with the UV mass term so as to reproduce the observed value of the Higgs mass,

(M 2
H )E xp = (125 GeV)2. We aim at deriving an expression for the IR RG evolution in order to

judge how important the running effects are and to analyze which value of the UV threshold

correction is more suitable. This will in turn give information on what kind of UV completion

can be imagined to generate (M 2
H )UV of the right size.

The computation of the RG evolution of the Higgs potential can be carried out at different

orders in an expansion in logarithms. The leading contribution is obtained by neglecting the

running of the top Yukawas and the strong couplings and retaining only the first power in the

logarithmic expansion. We call this order leading logarithm (LL) result. Using the standard

Coleman-Weinberg technique, one finds that only λ can be generated at the leading order,
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Chapter 4. The RG-improved Twin Higgs effective potential at NNLL

whereas c6 is still vanishing; the Higgs mass is then [118]:

(M 2
H )LL

I R (mt ) = 3

8π2

[
y4

t (m∗) log

(
m2∗
m2

t

)
+ ỹ4

t (m∗) log

(
m2∗
m̃2

t

)]
(1−ξ) v2, (4.10)

which is the sum of two different contributions. The first one is proportional to y4
t and is

induced by the running of the quartic coupling due to loops of SM fermions, while the second

is of order ỹ4
t and results from analogous loops of twin tops. Notice also that we have included

the first correction to the leading logarithm, proportional to ξ. This effect is usually smaller

and parametrically belongs to the next class of contributions. By setting yt to the experimental

value at the scale mt , we can estimate the value of the Higgs mass generated by the IR physics.

For ξ= 0.1 and m∗ = 10 TeV, we predict (MH )I R ∼ 150 GeV, which is far above the experimental

observations. A more accurate analysis that takes into account the running of the Yukawas, the

strong couplings and the higher-dimensional operators can drastically change this prediction

and the consequent necessary size of the UV threshold correction.

In this Chapter we will study the RG-improvement of the potential and derive the first two cor-

rections of the LL Higgs mass, up to effects that are cubic in the logarithmic series. Indicating

with t = log(m2∗/μ2) the expansion parameter, where μ is again the renormalization scale, we

shall consider first of all the next-to-leading logarithmic contribution to the potential (NLL),

which incorporates all the effects proportional to t 2. We will include in this class also the

smaller ξ t 2 contributions to the Higgs mass, that would belong to the next class of corrections;

for simplicity of exposition we classify them in the same category as the other t 2 terms. We

will neglect all the other powers of ξ, which are much smaller due to the constraint from EWPT.

The second correction we shall compute is the next-to-NLL (NNLL), which contains only the

t 3 effects. We will not compute the smaller ξ t 3 corrections, which are part of the next class of

contributions.

4.2 The NLL effective potential

The RG-improvement of the Higgs effective potential is the result of all the physical effects that

induce an evolution of the Wilson coefficients when changing the energy scale of a process.

While running down from m∗ to mt , the high energy - or equivalently short distance - degrees

of freedom are integrated out and the initial parameters in the Lagrangian must be redefined

to properly describe the physics at low-energy and to eliminate the loop divergences. In

particular, in order to fully capture the NLL corrections to the potential, we have to take into

account three important effects. First of all, the top Yukawa couplings in the SM and S̃M

sectors evolve along the RG flow because of the strong interactions and the coupling with the

Higgs field. The adequate inclusion of this running contributes to the potential at order t 2.
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4.2. The NLL effective potential

Secondly, the dimension-6 operators OH and O ′
H are corrected with respect to their tree-level

initial values due to loops of fermions, thus affecting the Higgs mass at order ξt 2. Finally, also

the Higgs wave function receives a non-vanishing correction from top loops resulting in a

non-canonical scalar field; the wave function renormalization will affect the whole NLL result,

both at t 2 and ξt 2 level.

We will derive the NLL effective potential using the background field method, as developed in

standard textbooks of quantum field theory [21, 22]. This technique proves to be extremely

powerful for theories like the Twin Higgs model while at the same time being perfectly equiva-

lent to the diagrammatic approach. Due to the presence of non-renormalizable interactions,

in fact, new operators are generated along the RG-flow at each step of the running, so that

using a more conventional diagrammatic procedure one would need to keep track of all them

and compute an increasing number of diagrams. The application of the background tech-

nique, instead, treats the Higgs field as an external spectator and re-sums automatically a

huge class of diagrams without much increasing the effort as more powers of t are included.

At the quadratic level, this method is so powerful that the sole renormalization of the twin top

propagator is equivalent to the computation of an order of ten loops with the diagrammatic

approach. We shall devote this Section to the presentation of the background field method

and its usage to derive a general RG-improved Coleman-Weinberg formula for the effective

potential. This latter will be applied to the Twin Higgs Lagrangian in order to compute the NLL

correction to the Higgs mass.

4.2.1 The background field

The background field method is based on the idea that one can explicitly integrate out the

short distance degrees of freedom after separating them from the low-energy modes. Since we

are interested in computing the effective potential for the Higgs boson, our starting point is to

split the scalar doublet in two parts, a background spectator field and a quantum fluctuation:

H = Hc + η̂. (4.11)

Hc indicates the classical field configuration for the Higgs doublet; it comprises all the low-

energy modes that we will keep in the spectrum and for which we will find a potential. η̂

denotes instead the dynamical fluctuations over the classical field; these are the high-energy

modes we seek to integrate out. Notice that we are keeping the full Higgs doublet as a classical

spectator field; the SU (2) symmetry therefore allows us to apply the background field method

in successive steps, without needing to classify from the beginning all the operators containing

the classical configuration, the quantum fluctuation and their derivatives. Instead, we will

first integrate out a layer of high-energy modes and generate a series of operators that were
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absent at the tree-level. These will be function of the background Hc , which we consider

as a dynamical space-time dependent field. After the first step, we will again separate Hc

into a low-energy part and a short distance component and in this way we will recollect also

the contributions to the effective potential generated by operators involving derivatives of η.

These latter would be naively lost if considering Hc as a non-dynamical field and would be

kept only with a full classification of the operators allowed by the symmetry of the theory at

the scale m∗. This is an alternative approach that guarantees full generality, but for the simple

case of the computation of the Higgs effective potential our procedure of successive divisions

and integrations proves to be simpler and faster. We will apply this approach especially in the

last part of this Chapter when considering the operators involving derivatives of the quantum

fluctuation and contributing to the potential. Hc can be always viewed as a dynamical field

still containing a high-energy part that we can integrate out to keep only lower energy terms. In

this sense, our application of the background field method is somewhat similar to a Wilsionian

renormalization where different layers of degrees of freedom are integrated out in successive

steps.

After separating the first layer of short distance modes from the large distance degrees of

freedom, we can recast the top and twin top sectors of the Lagrangian in Eq (4.5) as follows:

L F (m∗) =L F
K i n(m∗)−Q̄Lm(Hc )′tR− ŷt (Hc )Q̄Lη̂

′
tR−m̃t (Hc ) ¯̃t t̃+

̂̃yt (Hc )† η̂�
2

¯̃t t̃+h.c., (4.12)

where L F
K i n(m∗) collectively indicates the kinetic terms of the fermion fields. Expanding the

Lagrangian in powers of η̂, we kept only the linear interactions of the high-frequency modes

with the top quarks, since the remaining non-linear interactions do not contribute at the NLL

order. The coupling between the η̂ fields and fermions is in general a background-dependent

function; in the SM, it is trivially equivalent to the top Yukawa, but in the Twin sector it is has a

specific functional form. Promoting the Yukawa couplings to spurions of the spectator Higgs

field, we have introduced the following background-dependent quantities:

ŷt (Hc ) ≡ yt , ̂̃yt (Hc ) ≡ ỹt
Hc

f

1√
1− 2H †

c Hc

f 2

. (4.13)

Also the fermion masses at the tree-level can be considered as functions of the spectator Hc

and treated formally as spurions; one easily finds:

mt (Hc ) = yt Hc , m̃t (Hc ) = ỹt f�
2

√
1− 2H †

c Hc

f 2 . (4.14)

The physical value of the mass parameters is obtained by setting the background doublet to
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4.2. The NLL effective potential

its EW vacuum expectation value, thus recovering the standard expressions.3

Let us now consider the scalar sector of the theory. After separating the short distance modes

from the long-distance ones, a set of new interactions between the background field and the

quantum fluctuation is generated. Of these, only a few are relevant for the NLL computation;

in practice, we just have to take into account that the kinetic term for η̂ becomes non-canonical

and acquires a background dependence. We have in fact:

L S(m∗) ⊃ |DμHc |2+ 1

2 f 2

(
cH +dH

H †
c Hc

4 f 2

)
OH (Hc )+1

2
Zη̂4 (Hc )(Dμ η̂4)2+1

2

3∑
i=1

Zη̂i (Hc )(Dμ η̂i )2,

(4.15)

with

Zη̂4 (Hc ) = 1+2cH
H †

c Hc

f 2 +c ′H
H †

c Hc

f 2 +dH
(H †

c Hc )2

2 f 4 , Zη̂1 (Hc ) = Zη̂2 (Hc ) = Zη̂3 (Hc ) = 1+c ′H
H †

c Hc

f 2 .

(4.16)

As for the fermionic sector, the previous equation serves as an initial condition for the wave

function of the high-energy modes, which will be modified along the flow by quantum cor-

rections. Notice that the operators OH and OD break the SU (2) invariance of the Higgs field,

contributing only to the wave function renormalization of the scalar fluctuation correspond-

ing to the real Higgs boson. We have therefore divided η̂ into two parts: η4, describing the

high-energy modes of the Higgs, and ηi , the three fluctuations of the Goldstone modes. At the

scale m∗, given that c ′H = 0, the wave function of these latter does not get renormalized, but it

will be affected by the running at higher orders in the loop expansion, as we shall see later.

One could choose to perform a proper field redefinition in order to eliminate the background

dependence and render the fluctuation canonical. We will work, instead, with a non-canonical

basis and integrate out the high-energy degrees freedom without redefining the η̂ fields. As a

consequence, we will have to write down a separate evolution equation for the wave function

which will be coupled to the β-functions of the Yukawa couplings. Despite this additional

feature, choosing a non-canonical basis has many advantages and allows to efficiently re-sum

all the diagrams generated by insertions of the higher-dimensional operators OH , O ′
H and OD .

Only after deriving the effective potential will we perform the field redefinition and find the

Higgs mass in the canonical basis.

3The top Yukawas in Eqs. (4.14) and (4.13) are both evaluated at the scale m∗; from now on, we will omit to
specify the scale where the initial condition of the bare parameters originates, unless differently stated they will all
be considered at the cut-off.
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t

t

˜t

˜t

Figure 4.1 – One loop diagrams contributing to the wave function renormalization (on the left)
and to the running of c ′H (on the right). The external dotted lines denote the background field
Hc .

4.2.2 β-functions in the Higgs background

After separating the quantum fluctuation from the long distance modes and finding the

background-dependent couplings and fermion masses, the short distance degrees of freedom

must be integrated out to derive the effective action at low energies. In the scalar sector,

this process generates a quantum contribution to the wave function of Hc and η̂ and also

renormalizes cH and c ′H . In the fermionic sector, the integration of the high-frequency modes

results in the redefinition of the background-dependent Yukawa couplings and masses, which

start evolving with the energy scale. In this section, we will derive a set of coupled differential

equations for the Higgs wave function and the Yukawas in the classical background. They are

the generalization of the usual β-functions for a general theory with a non-canonical Higgs

and field-dependent Wilson coefficients.

We start our study with the scalar sector. The running of the wave function and of the other

Lagrangian parameters is induced in this case by loops of fermions; one would formally need

to split also the top fields into long distance and short distance modes and integrate out these

latter. This is completely equivalent to computing the one-loop diagrams in Fig. (4.1) with

Nc = 3 colors circulating for both SM and S̃M quarks. The coupling between the background

field and the fermionic fluctuation is obtained by expanding the mass terms in Eq. (4.12) in

powers of the spectator Hc . For the SM, only the usual linear coupling proportional to yt exists

and therefore loops of tops can only renormalize the wave function of the Higgs. For the Twin

sector, instead, the first non-trivial coupling is quadratic in the Higgs background, so that no

contribution to the wave function can be obtained from the mirror tops. One-loop diagrams

of twin fermions will however renormalize the higher-dimensional operator O ′
H . At first order
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4.2. The NLL effective potential

in the expansion parameter t , the Lagrangian at a generic renormalization scale μ becomes:

L (t )S ⊃ ZH (t )|DμHc |2 + 1

2
Zη̂4 (Hc , t )(Dμ η̂4)2 + 1

2

3∑
i=1

Zη̂i (Hc , t )(Dμ η̂i )2+
cH (t )

2 f 2 OH + c ′H (t )

f 2 O ′
H + dH

8 f 4 OD ,

(4.17)

where

ZH (t ) = 1+ Nc y2
t

16π2 t , cH (t ) = cH , c ′H (t ) = Nc ỹ2
t

16π2 t ,

Zη̂4 (Hc , t ) = ZH (t )+ (2cH (t )+c ′H (t ))
H †

c Hc

f 2 +dH
(H †

c Hc )2

2 f 4

Zη̂1 (Hc , t ) = Zη̂2 (Hc , t ) = Zη̂3 (Hc , t ) = ZH (t )+c ′H (t )
H †

c Hc

f 2 .

(4.18)

The one-loop integration of the high-energy fermionic modes also induces a renormalization

of dH which however we can neglect. Only the tree-level value of this parameter, in fact,

contributes to the Higgs effective potential at the NLL because OD can only renormalize O6

which in turn can be first generated at order t 2. Finally, since the wave functions for the three

GBs are always equal, for simplicity we will refer only to Zη̂1 in the following, implying that the

other two wave functions behave in the same way.

Let us now consider the fermionic sector of the Twin Higgs theory. The process of integrating

out the high energy modes of the Higgs field translates in this case into a renormalization of

the top quarks propagator, as in Fig. (4.2). Together with the scalar fluctuations, a contribution

to the running of the Yukawas is also generated by QCD gluons, both in the SM and in the S̃M.

The computation of these effects is standard and leads to a background-dependent quantum

correction to the quarks wave functions and their mass. After rescaling the fermion fields4 we

4Notice that, integrating out the quantum fluctuation, a field-dependent wave function renormalization for
the fermions is induced. When re-scaling the fermion fields to go in the canonical basis, a derivative interaction
with the external classical background may be generated, which in turn could induce an additional correction to
the Higgs effective potential. However, the most generic expression for the wave function renormalization of the
fermion kinetic term takes the form:

Lw ave ⊃ i Zψ(Hc )ψγμ(
−→
∂ μ−←−

∂ μ)ψ, (4.19)

where ψ collectively indicates the top quarks or their twins. A general field redefinition like

ψ→ (
1+a Zψ(Hc )

)
ψ (4.20)

can make the fermions canonical with a suitable choice of the free parameter a. Since the kinetic term contains
two derivatives acting on the fermion field and its conjugate with opposite sign, any derivative interaction with the
external classical Higgs cancels out and no additional contribution to the effective potential is generated.
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η̂

Figure 4.2 – One-loop diagrams displaying the renormalization of the top quark propagator
due to the interaction with the Higgs quantum fluctuations (on the left) and with gluons
(on the right). The solid black lines denote the fermion field, either the SM tops or their S̃M
mirrors, whereas the curly line stands both for the SU (3) and the S̃U (3) gluons. The dashed
line stands for the quantum fluctuation.

find:

yt (t ) = yt + yt

64π2

(
16g 2

S −3
ŷ 2

t (Hc )

Zη̂4 (Hc )

)
t , ỹt (t ) = ỹt + ỹt

64π2

(
16g̃ 2

S −3
̂̃y 2

t (Hc )

Zη̂4 (Hc )

)
t . (4.21)

Since the scalar fluctuation is still non-canonical in our basis, every propagator of the η̂ fields

is accompanied by an inverse power of Zη̂(Hc ), which in turn must appear explicitly in the

evolution of the Yukawa couplings. This is why it is convenient to keep the short distance

modes non-canonical: all the contributions to the running proportional to cH , c ′H and dH will

be automatically re-summed in the denominator of the beta functions without any need of

computing additional diagrams. The sole renormalization of the top quark propagator in the

background field language is enough to consistently keep track of all the higher-dimensional

operators that will be generated along the flow.

The RG evolution of the Yukawa couplings and of the Higgs wave functions can be elegantly

described by a set of background-dependent coupled differential equations that take into

account the physical effects we have encountered so far. These β-functions will re-sum all the

leading logarithms in the energy flow; for a general Wilson coefficient c they can be defined as:

βc = dc(t )

d t
. (4.22)

From the previous results, we then easily find the following RG-equations:

βyt =
yt (Hc , t )

64π2

(
16g 2

S (t )−3
y2

t (Hc , t )

Zη̂4 (Hc , t )

)
, βZη̂4

=βZη̂1
= 3y2

t (Hc , t )

16π2 + 3ỹ2
t (Hc , t )

16π2

H †
c Hc

f 2 ,

βỹt =
ỹt (Hc , t )

64π2

⎛⎜⎝16g̃ 2
S (t )−3

ỹ2
t (Hc , t )

Zη̂4 (Hc , t )

2H †
c Hc

f 2

1

1− 2H †
c Hc

f 2

⎞⎟⎠ , βZH = 3y2
t (Hc , t )

16π2

∣∣∣∣
Hc=0

.
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(4.23)

The β-functions we have just derived are valid in a non-canonical basis; once they are solved,

we need to redefine the background field Hc in order to compute the RG-improved physical

quantities. For instance, the SM top Yukawa in the canonical basis is obtained with the simple

combination

yPhy s
t (t ) = yt (0, t )�

ZH (t )
, (4.24)

with yt (0, t ) being the running Yukawa coupling evaluated at zero spectator field; analogous

relations hold for the remaining parameters. Notice that we do not need an explicit β-function

for cH and c ′H since their RG-evolution is already absorbed in the running of the wave function

for the fluctuation η̂. This is another reason why it is advantageous to keep the Higgs field

non-canonical. Finally, the running of the top quark masses, which are the quantities we will

need in the Coleman-Weinberg formula, is directly related to the evolution of the Yukawas.

We have:

mt (Hc , t ) = yt (Hc , t )Hc , m̃t (Hc , t ) = ỹt (Hc , t ) f�
2

√
1− 2H †

c Hc

f 2 , (4.25)

where yt (Hc , t ) and ỹt (Hc , t ) denote the solution of the β-functions in the Higgs background.

This is the starting point for the computation of the RG-improved effective potential.

4.2.3 RG-improved Coleman-Weinberg formula and Higgs mass

The Coleman-Weinberg procedure to compute the effective potential is an efficient way of

re-summing all the one-loop diagrams contributing to the low-energy action with a generic

number of external scalar legs. This formally corresponds to calculate the vacuum energy, or

cosmological constant, of the theory in an external background. In order to improve the LL

result and include all the leading logarithms that are generated during the running, we can

use an evolution equation for the cosmological constant itself that serves as a β-function for

the vacuum energy. We introduce therefore the RG-improved Coleman-Weinberg formula as

follows:

d

d t
V F

CW (Hc , t ) = Nc

16π2 (m4
t (Hc , t )+m̃4

t (Hc , t )), (4.26)

where only the fermionic loops have been considered, the scalar loops giving contributions

from the NNLL correction. In order to improve the potential up to the t 2 terms, we need to

solve Eqs. (4.23) and find the renormalized top at twin top masses of Eq. (4.25) at the LL. The

initial conditions for the Wilson coefficients are fixed at the scale m∗; in particular, the wave
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function Zη̂ has the field-dependent starting value of Eq. (4.16) and automatically re-sums the

contribution to the Higgs mass induced by the higher-dimensional operators OH , O ′
H and OD .

After re-scaling the Higgs field to pass in the canonical basis,

Hc → Hc�
ZH (t )

, (4.27)

we can derive λ(t) and c6(t) at order t 2 from the RG-improved Coleman-Weinberg formula.

We also need to compute the physical value of cH (t ), which appears in the external correction

of order ξ to the Higgs mass:

cH (t ) → cH (t )

Z 2
H (t )

= cH − 3cH y2
t

8π2 t . (4.28)

Notice that c ′H (t ) does not receive contributions from the wave function of the Higgs field at

order t since it is only generated at one-loop.

From Eq. (4.9), it is finally straightforward to find the IR correction to the Higgs boson mass at

the NLL:

(M 2
H )N LL

I R (t ) = 3v2

256π4

[(
16g 2

S y4
t +16g̃ 2

S ỹ4
t −15y6

t +3(cH +1)ỹ6
t −12y2

t ỹ4
t

)
t 2 +(

36cH y6
t + ỹ6

t

(
9

8
dH −12cH −12c2

H −6

)
−6y4

t ỹ2
t +24cH y2

t ỹ4
t −

16cH g 2
S y4

t −16cH g̃ 2
S ỹ4

t

)
ξ t 2] .

(4.29)

This is our final result for the model-independent RG evolution of the Higgs mass in a low-

energy Twin Higgs theory. The renormalization scale μ encoded in the expansion parameter t

is taken to be a generic scale bigger than the physical twin top mass. When explicitly evaluating

the Higgs mass, we will fix μ= mt and match at the scale m̃t where the twin tops need to be

integrated out. Finally notice that the result in Eq. (4.29) agrees with the same solution derived

with a more conventional diagrammatic approach in Appendix G.

4.3 The NNLL effective potential

Since our Twin Higgs extension of the SM is a non-renormalizable theory, the RG-improvement

of the Higgs effective potential is not completely exhausted by the β-functions we have just

computed. These latter cannot capture all the physical effects coming into play at the next

orders in t . Other higher-dimensional operators are in fact generated along the flow that con-

tribute to the Higgs mass and that cannot be included in our previous background-dependent

renormalization of the fermion masses. In order to fully capture the NNLL correction to the

potential, we then need to classify a series of new quantum contributions to the twin top
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masses that are only present from the t 3 terms. Together with these effects, we have to take

into account the RG-evolution of the strong couplings, whose running is negligible at the NLL

order, and the scalar part of the Coleman-Weinberg potential. In this Section, we analyze the

cubic correction to the low-energy action in the background field language studying in detail

the contributions in each category. We will supplement the field-dependent β-functions with

another set of RG-evolution equations for the twin top masses and solve them to systematically

re-sum the leading logarithms. The expression of the Higgs mass at the NNLL order will be

our final result.

4.3.1 Running of the strong couplings and scalar contribution to the Coleman-

Weinberg potential

The first important correction to the NLL effective potential comes from the RG-evolution

of the strong couplings, both in the SM and in the S̃M. The Twin S̃U (3) strong interactions

are an exact mirror copy of the SU (3) gauge theory. They are both external to the whole

mechanism that protects the Higgs mass from radiative corrections so that we can assume the

Z2 symmetry to be unbroken in this sector. The runnings of gS and g̃S are therefore identical

and both described by the standard QCD β-function with n f = 6 flavors. From our initial

conditions at the scale m∗, we find:

gS(t ) = gS +
7g 3

S

32π2 t , g̃S(t ) = g̃S +
7g̃ 3

S

32π2 t , (4.30)

which give the strong couplings at the renormalization scale μ� m∗.

The second non-trivial contribution comes from the scalar part of the Coleman-Weinberg

potential, which re-sums all the vacuum energy loops involving the Higgs and the GB’s. The

generalization of Eq. (4.26) is straightforward:

d

d t
V S

CW (Hc , t ) =− 1

64π2

(
3∑

i=1
(m̂i

GB )4(Hc , t )+m̂4
H (Hc , t )

)
, (4.31)

where m̂i
GB and m̂H are respectively the masses of the quantum fluctuations for the three SM

GB’s and for the Higgs in the background field. They can be found by diagonalizing the mass

term for the high-energy modes; from the general form of the potential in Eq. (4.6), in fact,

after splitting as in Eq. (4.11), we find a non-diagonal mass matrix for η̂,

LM (Hc ) =−M̂ 2
i j (Hc )η̂ i η̂ j , (4.32)

where each of the η̂ i denotes a component of the full high-frequency doublet. The diagonal-
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ization of M̂ leads to the following expressions in the spectator background:

(m̂1
GB )2 = (m̂2

GB )2 = (m̂3
GB )2(Hc , t ) = 1

Zη̂1 (Hc , t )

(
μ2(t )+8λ(t )H †

c Hc +24c6(t )
(H †

c Hc )2

f 2

)
,

m̂2
H (Hc , t ) = 1

Zη̂4 (Hc , t )

(
μ2(t )+24λ(t )H †

c Hc +120c6(t )
(H †

c Hc )2

f 2

)
.

(4.33)

The presence of the wave function for η̂ is again a feature of our non-canonical basis. When

finding the masses for the physical fields, we need to redefine the fluctuation thus getting an

explicit dependence from Zη̂ in the scalar masses.

The correction to the low-energy action from the scalar Coleman-Weinberg potential can

only arise at cubic order in the logarithmic expansion. This is because λ in our theory is first

generated at one-loop, so that when integrating Eq. (4.31) we cannot find a lower contribution.

For the NNLL result, we do not need to compute c6, since it gives an effect suppressed by ξ.

We reported, however, the full expression of the scalar masses for completeness. Finally, also

in the scalar sector, the computation of the running of the Higgs quartic coupling through the

background field method is perfectly equivalent to the diagrammatic approach. At the NNLL,

it is in one-to-one correspondence only with the one-loop diagram generated by the Higgs

self-interaction. With the background technique, however, one has the advantage to avoid

deriving any symmetry factor, that can be cumbersome in the standard procedure.

4.3.2 Renormalization of the twin top mass in the Higgs background

The second class of effects that contribute to the Higgs mass at the NNLL order is related to

the renormalization of the twin top mass induced by the non-linear interactions between

the quarks and the scalar fluctuation and by new higher-dimensional operators. Let us start

considering how the twin propagator is affected by the non-linear coupling with η̂. After

splitting the high-energy modes from the long-distance degrees of freedom, the Lagrangian in

Eq. (4.12) develops an additional background-dependent quadratic interaction as follows:

L F (m∗) ⊃
̂̃y GB

2 (Hc )

2
�

2 f

3∑
i=1

¯̃t t̃ η̂ 2
i +

̂̃y H
2 (Hc )

2
�

2 f
¯̃t t̃ η̂ 2

4 . (4.34)

In the previous equation, we have again explicitly written the quantum fluctuation in compo-

nents,

η̂= 1�
2

(
η̂1 + i η̂2

η̂4 + i η̂3

)
, (4.35)
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η̂

η̂

η̂

Figure 4.3 – One-loop diagrams displaying the renormalization of the twin top quark mass. On
the left, the diagram correcting the twin top propagator with loops of scalars; in the middle
the one generating the four-fermion operator of Eq. (4.38); on the right, the renormalization
of the twin top propagator due to the four-fermion interaction. Solid lines indicate the twin
quarks, dashed lines the scalar fluctuation.

indicating with η4 the high-energy modes of the physical Higgs and with the remaining ηi

those of the three GB’s. The twin tops interact differently with the various types of scalar

fluctuations and we have introduced two field-dependent couplings:

̂̃y GB
2 (Hc ) = ỹt√

1− 2H †
c Hc

f 2

, ̂̃y H
2 (Hc ) = ỹt(

1− 2H †
c Hc

f 2

)3/2
. (4.36)

The first one denotes the interaction with the three GB’s, which are all coupled identically

with fermions. The physical Higgs, instead, picks up an additional term after expanding the

doublet and it is coupled differently with respect to the other scalars.

The existence of these quadratic interactions induces a renormalization of the twin top propa-

gator due to scalar tadpoles, as in Fig. (4.3). In particular, no correction to the fermion wave

function can be generated and we find only a quantum contribution to the twin mass:

δm̃S
t (Hc , t ) = 3

̂̃y GB
2 (Hc )

32
�

2π2

(m̂1
GB )2(Hc , t )

f
t +

̂̃y H
2 (Hc )

32
�

2π2

m̂2
H (Hc , t )

f
t . (4.37)

The renormalization of m̃t is proportional to the field-dependent scalar masses, which orig-

inate first at the LL. The correction to the Higgs effective potential must then arise at cubic

order, as expected.

We consider now the class of physical effects due to the generation of new higher-dimensional

operators that are not captured by the field-dependent β-functions of the top Yukawas. The

first of these operators is the six-dimensional four-fermions interaction obtained by integrating

out the high-frequency scalar modes, as shown in the median diagram of Fig. (4.3). At one-

loop, the Lagrangian in the fermionic sector receives the following additional contribution:
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L F (t ) ⊃ c4t (Hc , t )

4 f 2

(
¯̃t t̃
)2

, (4.38)

with

c4t (Hc , t ) = 3
̂̃y GB

2 (Hc )2

16π2Z 2
η̂1

(Hc )
t +

̂̃y H
2 (Hc )2

16π2Z 2
η̂4

(Hc )
t . (4.39)

In the background field language, this operator affects the Higgs potential by renormalizing the

twin top propagator, as it can be seen again in the last diagram of Fig. (4.3). It is straightforward

to derive a second correction to the fermion mass which reads:

δm̃F
t (Hc , t ) =− Nc

4π2 c4t (Hc , t )
m̃3

t (Hc )

f 2 t . (4.40)

The joint quantum correction to the four fermion interaction and to the twin mass implies a

contribution to the low-energy action only at NNLL.

There is a second kind of higher-dimensional operators renormalizing the twin top mass

which are seeded along the flow by OH , O ′
H and OD and which are distinct from the ones

captured by the wave function renormalization of η̂. After splitting the high-energy modes

from the low-energy degrees of freedom, in fact, not only do those operators induce a non-

canonical kinetic term for η̂, but they also generate other interactions involving derivatives

of the external background field. These latter were previously neglected since their contri-

bution to the Higgs mass is first encountered at the NNLL. For instance, according to the

notation of [25], in the SM sector one would get at one-loop the current-current operators

O t
L = i (H †

c
←→
D μHc )Q̄Lγ

μQL , O (3)t
L = i (H †

c σ
a←→D μHc )Q̄Lγ

μσaQL and O t
R = i (H †

c
←→
D μHc )t̄Rγ

μtR .

These latter can only renormalize the effective potential at order ξ, since they contribute to

the running of c6. They therefore do not belong to the NNLL order and we neglect them. Anal-

ogous current-current operators in the S̃M sector cannot be generated. The Higgs currents

H †
c
←→
D μHc and H †

c σ
a←→D μHc transform in fact as a (3,1) and a (1,3), respectively, under the

custodial group SO(4) ∼ SU (2)L ×SU (2)R , whereas the twin tops are global singlets under this

symmetry. In the SM, the Yukawa coupling transforms as a (2,1); it is then possible to form

an SU (2)L total singlet proportional to y2
t and the current-current operators are allowed by

selection rules. In the twin sector, these latter are instead forbidden by the quantum numbers,

since the twin top Yukawa transforms as (1,1); an operator of the type i (H †
c
←→
D μHc ) ¯̃tγμ t̃ is

therefore absent because of selection rules.

The only type of higher-dimensional operator involving derivatives of the external field that is
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η̂η̂

η̂

Figure 4.4 – The one loop-diagrams displaying the generation of the operator O� (on the left)
and the renormalization of the twin top mass (one the right). The blob in the last diagram
denotes insertions of O�. The external dotted lines indicate the background field, the internal
dashed ones the dynamical fluctuation; the solid lines indicate again the twin tops.

generated in the twin top sector has dimension seven and is of the form:

O� =−H †
c �Hc

¯̃t t̃ +h.c.. (4.41)

It is made up of total singlets and is allowed by the symmetries of our theory. From the

original Lagrangian (4.1), after the redefinition in Eq. (4.11), one finds the following interaction

between the scalar fluctuations and the background field that seeds exactly this operator:

L (m∗) ⊃− 1

2 f 2

(
2cH +c ′H +dH

H †
c Hc

2 f 2

)
η2

4H †
c �Hc −

c ′H
2 f 2

(
3∑

i=1
η2

i

)
H †

c �Hc +h.c.. (4.42)

After integrating out the short-distance degrees of freedom, we can generate at order t the

following contribution to the Lagrangian,

L (t ) ⊃ c�(Hc , t )

f 3 O�; (4.43)

the background-dependent Wilson coefficient is obtained by computing the diagram on the

left in Fig. (4.4). We find:

c�(Hc , t ) =
(

2cH +c ′H +dH
H †

c Hc

2 f 2

) ̂̃y H
2 (Hc )

16
�

2π2Z 2
η̂4

(Hc )
t +c ′H

3 ̂̃y GB
2 (Hc )

16
�

2π2Z 2
η̂1

(Hc )
t . (4.44)

Notice that c ′H is zero at the scale m∗ and it is first generated at one-loop, so that it will not

give a contribution to the NNLL effective potential through the operator O�. We reported its

correction to c� for completeness.

The operator O� contributes to the Higgs potential by renormalizing the twin top mass, as

depicted in the last diagram of Fig. (4.4). We formally need to split the high-energy modes a

second time and keep only the interactions with the box operator acting on the fluctuating
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field. We have:

L (t ) ⊃−
(

c�(Hc , t )
H †

c

f

)
�η̂ ¯̃t t̃

f 2 +h.c.. (4.45)

The field-dependent correction to the twin masses is then found to be:

δm̃�
t (Hc , t ) =−c�(Hc , t )

2H †
c

f

̂̃yt (Hc )

8
�

2π2Zη̂4 (Hc )

m̃3
t (Hc )

f 2 t , (4.46)

where we used the notation of Eq. (4.13) for the coupling ̂̃yt (Hc ). Together with the previous

two quantum contributions, this formula gives the last renormalization of the fermion masses

entering the effective action at the NNLL order.

We finally summarize the results obtained in this Section with a set of β-functions for the

higher-dimensional operators and the twin top masses. They will supplement the evolution

equations we already have for the Yukawa couplings and re-sum all the leading logarithms

appearing in the Higgs mass. From our previous expressions, we immediately find:

βc4t =
3 ̂̃y GB

2 (Hc , t )2

16π2Z 2
η̂1

(Hc , t )
+

̂̃y H
2 (Hc , t )2

16π2Z 2
η̂4

(Hc , t )
,

βc� =
(

2cH (t )+c ′H (t )+dH
H †

c Hc

2 f 2

) ̂̃y H
2 (Hc , t )

16
�

2π2Z 2
η̂4

(Hc , t )
+c ′H (t )

3 ̂̃y GB
2 (Hc , t )

16
�

2π2Z 2
η̂1

(Hc , t )
,

βm̃S
t
= 3 ̂̃y GB

2 (Hc , t )(m̂1
GB )2(Hc , t )+ ̂̃y H

2 (Hc , t )m̂2
H (Hc , t )

32
�

2π2 f
, βm̃F

t
=− 3

4π2 c4t (Hc , t )
m̃3

t (Hc , t )

f 2 ,

βm̃�
t
=−c�(Hc , t )

2H †
c Hc

f 2

ỹt (Hc , t )√
1− 2H †

c Hc

f 2

1

8
�

2π2Zη̂4 (Hc , t )

m̃3
t (Hc , t )

f 2 .

(4.47)

The quadratic couplings ̂̃y GB
2 and ̂̃y H

2 acquire in general a dependence on the expansion

parameter through the evolution of the twin Yukawa. The background-dependent twin top

mass at a generic order in t is now defined as:

m̃t (Hc , t ) = ỹt (Hc , t ) f�
2

√
1− 2H †

c Hc

f
+m̃S

t (Hc , t )+m̃F
t (Hc , t )+m̃�

t (Hc , t ), (4.48)

where the last three additional terms correspond to the solution of the previous β-functions in

the Higgs spectator field. This formula together with the RG equations are the basic elements

to compute the Higgs potential at NNLL.
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4.3.3 Higgs mass at the NNLL

In order to find the Higgs effective potential at the NNLL, we solve the β-functions in Eqs. (4.23)

and (4.47) up to order t 2 and use Eqs. (4.25) and (4.48) to derive the renormalized background-

dependent fermionic masses. Adding the running of the strong couplings and the scalar

contribution in Eq. (4.31), we have in the canonical basis:

(M 2
H )N N LL

I R (t ) = v2

8192π6

[
736g 4

S y4
t −1104g 2

S y6
t +387y8

t + ỹ4
t

(
736g̃ 4

S −288g 2
S y2

t −576g̃ 2
S y2

t +

18(3−2cH )y4
t

)+ ỹ6
t

(
240(1+cH )g̃ 2

S −18(7+8cH )y2
t

)−
4ỹ8

t

(
72+7cH +30c2

H − 11

4
dH

)]
t 3.

.

(4.49)

All the parameters are again evaluated at m∗, which sets the scale where the RG-evolution of

the Wilson coefficients starts.

4.4 Results

The background field method proved to be a useful technique to automatically re-sum a whole

series of diagrams, compute the renormalized effective potential and derive an expression

for the Higgs mass valid up to the NNLL. Our final prediction for the IR RG-evolution of this

observable is the sum of three different contributions:

(M 2
H )I R (μ) = (M 2

H )LL
I R (μ)+ (M 2

H )N LL
I R (μ)+ (M 2

H )N N LL
I R (μ), (4.50)

which are given respectively in Eqs. (4.10), (4.29) and (4.49). The renormalization scale μ is

encoded in the expansion parameter t = log(m2∗/μ2) and is chosen to be the energy scale

where the Higgs mass is measured, for instance the top mass. From our analytic result, we

can now obtain a numerical estimate of (M 2
H )I R (mt ) and compare it with the experimental

observations. This in turn will give us an idea of the capability of the low-energy Twin Higgs

construction to predict the Higgs mass in the correct range only through the IR physics. We

will also try to estimate the UV correction that would be needed in order to match with

experiments. The prediction of the Higgs mass at cubic precision is therefore an important

test of the Twin Higgs scenario as a new paradigm for understanding physics at the EW scale.

In order to derive a numerical estimate of the Higgs mass, we have first to assign a value to

all the Wilson coefficients appearing in the final formula. The initial conditions for their RG-

evolution are fixed at the scale m∗; we know already that cH = 1 and dH = 8 due to the pNGB

nature of the Higgs field. Because of Twin parity, which is still approximately a good symmetry
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Chapter 4. The RG-improved Twin Higgs effective potential at NNLL

at m∗, we can set g̃S = gS and ỹt = yt ; the strong and the Yukawa couplings, however, are

measured at the IR scale mt and we must solve their RG evolution equation to run their value

up to the UV. We need to derive gS at first order in the logarithmic expansion, whereas yt must

be known up to the quadratic contributions. We have:

gS = g̃S = gE − 7g 3
E

32π2 log

(
m2∗
m2

t

)
,

yt = ỹt = yE + yE (9y2
E −16g 2

E )

64π2 log

(
m2∗
m2

t

)
+ yE (704g 4

E −576g 2
E y2

E +243y4
E )

8192π4 log2

(
m2∗
m2

t

)
,

(4.51)

where yE and gE indicate the experimental value of these couplings at the scale mt . For the

Yukawa, we use the MS value of the top quark mass, mMS
t = 160 GeV, from which we derive

yE ∼ 0.92. For the strong interaction, we run the parameter measured at the scale of the Z

boson mass, gS(MZ ) ∼ 1.22, to the top mass scale, so we have gE ∼ 1.17. Notice that the RG

evolution of the top Yukawa in Eq. (4.51) coincides with the solution of the β-functions in

Eqs. (4.23) for vanishing external field after re-scaling the Higgs spectator as in Eq. (4.27).

The last aspect we must take care of when estimating the Higgs mass is the existence of

the twin top mass threshold. We have previously derived all our results at a generic scale

μ� m̃t ; if we want to fix μ= mt , we need to integrate out the Twin partners at the scale m̃t

and resume the purely SM running from this scale down to the top quark mass. Our Higgs

mass is then the sum of two pieces: a first evolution from m∗ to m̃t which serves as the initial

condition for a second contribution from m̃t to mt . This latter is obtained by switching off the

twin parameters and keeping only the SM supplemented by dimension-six operators. The

twin mass is evaluated at the scale m̃t using Eq. (4.48), setting the external background to its

physical vacuum expectation value and expanding at first order in ξ.

Our final results are shown in Fig. (4.5), where we plot the value of the Higgs mass at the

scale mt as function of the cut-off m∗ for the fixed value of ξ = 0.1. We choose this latter

in agreement with the general constraint due to EWPT. Fig. (4.5) shows two different sets

of curves, a first one in black for the full prediction in the Twin Higgs low-energy model

and a second one in red for the pure SM quartic coupling evolution. In each of the two

cases, we reported the Higgs mass at the LL, the NLL and the NNLL. For both results, the

LL solution appears to be quite an overestimation of the logarithmic series, indicating the

importance of extending the computation to the higher orders including the effects of the

top Yukawa running. At the NLL, the Higgs mass reduces drastically because yt and ỹt

become considerably smaller along the flow from mt to m∗ due to QCD effects. For the

Twin Higgs model we get (M 2
H )N LL

I R (mt ) ∼ (105 GeV)2 with a cut-off at 10−20 TeV, which is

considerably bigger than the SM value of (80 GeV)2 due to the presence of the extra light

degrees of freedom. The truncation of the logarithmic series to quadratic order, however, is
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Figure 4.5 – IR contributions to the Higgs mass in logarithmic scale, both in the full Twin Higgs
theory and in the pure SM: LL contribution (dashed black curve), NLL contribution (dashed dotted
black curve), NNLL contribution (thick black curve), LL SM contribution (dashed red curve), NLL SM
contribution (dashed dotted red curve), NNLL SM contribution (thick red curve), re-summed total SM
contribution (dotted red curve).
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Figure 4.6 – Contour plots of the renormalized Higgs mass (in GeV) at NNLL in the plane (m∗,ξ).

still a rude approximation of the re-summed solution; we see in fact that the NNLL introduces

non-negligible effects already for m∗ ∼ 2−3 TeV and for bigger values of the cut-off the NLL
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solution becomes less reliable. At cubic order, the prediction for the Higgs mass increases in

both cases, mostly due to QCD effects that tend to rise the value of yt , as in Eq. (4.51), and

of its corresponding twin. The growth of M 2
H in the Twin Higgs model is however less sharp

than in the SM, because of non-renormalizable effects. In particular, the contributions to

the effective potential from four fermions interactions and from the operator O� are both

negative and tend to reduce the Higgs mass with respect to QCD. We may wonder if the

NNLL solution is a reliable approximation for values of the cut-off scale of 10− 20 TeV or

if quartic effects will still give non-negligible corrections. We do not have a result at this

order in the logarithmic series for the Twin Higgs model, but we can estimate its behavior

studying the SM. We reported in Fig. (4.5) also the re-summed SM solution for the Higgs mass

obtained after solving numerically the β-function for the quartic coupling. The comparison

of this latter with the NNLL prediction shows that the cubic approximation in the SM can

be considered reliable up to m∗ ∼ 20 TeV, for which value the difference between the two

solutions is indicatively 5%. We can expect that something similar will happen also in the

Twin Higgs case. Despite the presence of non-renormalizable corrections, in fact, the QCD

effects are still the dominant ones and they must behave exactly as in the SM. The full solution

must then decrease with respect to the NNLL correction and we expect our NNLL solution

to be a reliable approximation for m∗ ∼ 20 TeV. Beyond this value for the cut-off, the quartic

contributions must necessarily be taken into account and our computation cannot be trusted

any longer.

After discussing the validity of our approximation, we can now specifically consider the

prediction of the Higgs mass that we get in the Twin Higgs model up to the NNLL order. From

Fig. (4.5), we see that (M 2
H )N N LL

I R ∼ 120 GeV for m∗ ∼ 10−20 TeV, a value which is in the perfect

range to match with the experimental observations, (M 2
H )E xp = 125 (GeV)2. We also show in

Fig. (4.6) the contour plots for the renormalized Higgs mass at NNLL in the plane (m∗,ξ), so as

to visualize the effects of the fine-tuning parameter as the cut-off scale changes. We find again

that with a moderate tuning, ξ∼ 0.1−0.2, and a value of m∗ around 20 TeV it is possible to

reproduce the experimental results. The IR physics alone can therefore generate an acceptable

value for the Higgs mass through the RG-evolution. The remaining part that is missing to

agree with observations could be supplemented by a small UV contribution. For example,

with ξ= 0.1 and m∗ ∼ 10 TeV, a value of the cut-off for which our computation is more reliable,

a modest (M 2
H )UV ∼ (5 GeV)2 is enough for the Twin Higgs paradigm to be matched perfectly

with experiments. The smallness of the UV effect together with the possibility of pushing

m∗ up to ∼ 20 TeV are also necessary for the whole mechanism to make sense. On one side,

the fact the (M 2
H )UV can be small confirms that the Higgs boson is not sensitive to the UV

physics. On the other side, if m∗ can be very large, in the multi-TeV range, it is reasonable to

neglect all the tree-level initial conditions for the higher-dimensional operators generated

after integrating out the new physics. Their Wilson coefficients at the scale m∗ are model-
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dependent and suppressed by inverse powers of the cut-off; we expect them to give only a

very small contribution to the Higgs mass. It is therefore approximately correct to set them to

zero at m∗ and consider only their one-loop value seeded by the six-dimensional operator

present at the tree-level, OH , and automatically captured by the background field method.

Our prediction is then consistently model-independent and results only from the IR physics.

The lesson we can learn from the Twin Higgs mechanism is that it is possible to construct

models with a natural light Higgs in the spectrum without necessarily requiring the existence

of new light colored top partners. The Higgs can be insensitive to the UV scale of the heavy

resonances charged under the SM, which can pushed up to ∼ 20 TeV for the experimental

value of MH to be almost exactly reproduced by the IR physics through RG effects. The UV

contribution must be small and any UV completion that can be imagined must be able to gen-

erate a modest value of the quartic coupling at the cut-off scale. Composite UV completions,

for instance, can be easily realized that fulfill this requirement, [118].

4.5 Discussion

In this Chapter, we have computed the RG-improved Higgs effective potential and mass in

the Twin Higgs model up to third order in logarithmic accuracy. We have carried out the

calculation in the most general setting, writing an effective Lagrangian comprising only the

IR degrees of freedom, namely the Higgs doublet, the SM quarks and their twins. In this

way, our prediction for the Higgs mass is completely model-independent and proper to any

possible UV completion, supersymmetric or composite, of the Twin Higgs paradigm. We have

discussed the validity of our approximation. First of all, the Higgs potential is insensitive to

the UV physics and we expect that the most important contributions to the mass come from

the RG evolution due to loops of the IR degrees of freedom. Secondly, we have neglected

the initial conditions for the higher-dimensional operators generated at the tree level after

integrating out the UV physics. Their Wilson coefficients at m∗ are in fact suppressed by the

weak coupling between the elementary and the UV sectors as well as by inverse powers of the

cut-off m∗, which is reasonably of the order of 10−20 TeV. Their contribution to the running

of the potential, which is model-dependent, is therefore safely negligible.

We showed how to carry out the renormalization of the potential in the most efficient way

using the background field method. This technique proved to be extremely useful in order

to re-sum the one-loop diagrams contributing to the running without necessarily classifying

all the non-renormalizable operators in the Twin sector. We applied this method to our low-

energy Lagrangian and we systematically included all the physical effects that are relevant up

to the NNLL order. The final result can be obtained by solving a simple set of background-

dependent β-functions from which we find the top and twin top masses in the spectator field.
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The Coleman-Weinberg formula for the effective action can then be easily applied to derive

the Higgs mass at cubic order in the logarithmic expansion.

Our final prediction for the Higgs mass is summarized in Figs. (4.5) and (4.6) where we plot

this observable as a function of the cut-off of the theory. At the NNLL, we get a value of the

order of MH ∼ 120 GeV for m∗ ∼ 10− 20 TeV, which is in the perfect range to match with

the experimental observations without requiring a big UV contribution. The IR degrees of

freedom are then enough to account for the measured value of the Higgs mass through the

RG-evolution of the effective potential.

The background field computation developed in this Chapter can be improved in order to

re-sum the whole logarithmic series and possibly get a numerical solution valid at all orders in

the expansion parameter. For this purpose, a classification of the operators in the Twin sector

seems unavoidable. Writing in full generality the Lagrangian at the scale m∗ including all the

possible gauge invariant operators, we can again split the low-energy degrees of freedom from

the short distance modes and integrate out these latter. After computing the most general β-

functions for the running of the top mass and its twin, one could easily find the potential using

the RG-improved Coleman-Weinberg formula without needing to specify which operators

are generated at each order in the expansion in logarithms. From this point of view, our

application of the background field method is not the most efficient one, since we had to

understand for the NNLL solution which operators we expected to produce at one-loop that

were not already captured in the background-dependent β-functions for the NLL result. Such

a procedure would make it even more cumbersome to compute the quartic correction to

the effective potential, because one would need to separately derive the evolution of OD , for

instance, and again individuate the operators that were not previously included and that could

give new contributions to the Higgs mass. A complete classification of the gauge invariant

operators in the Twin sector together with the six-dimensional ones already listed for the SM

would then provide the best way to systematically apply the background field method to the

Twin Higgs model. This could be a very interesting extension of our results and could give

more information on the stability of the effective potential with respect to the UV physics.
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5 Precision Tests and Fine Tuning in

Twin Higgs models

The principle of naturalness offers arguably the main motivation for exploring physics at

around the weak scale. According to naturalness, the plausibility of specific parameter choices

in quantum field theory must be assessed using symmetries and selection rules, as we saw

in the Introduction. Let us briefly recall what symmetries and selection rules imply in the

SM. When viewing the SM as an effective field theory valid below a physical cut-off scale

and considering only the known interactions of the Higgs boson, we expect the following

corrections to its mass1

δm2
h = 3y2

t

4π2 Λ
2
t −

9g 2

32π2 Λ2
g − 3g ′2

32π2 Λ2
g ′ − 3λh

8π2 Λ
2
h + . . . , (5.1)

where each Λ represents the physical cut-off scale in a different sector of the theory. The

above equation is simply dictated by symmetry: dilatations (dimensional analysis) determine

the scale dependence and the broken shift symmetry of the Higgs field sets the coupling

dependence. Unsurprisingly, these contributions arise in any explicit UV completion of the

SM, although in some cases they may be larger. According to Eq. (5.1), any given (large) value

of the scale of new physics can be associated with a (small) number ε, which characterizes the

accuracy at which the different contributions to the mass must cancel among themselves, in

order to reproduce the observed value mh � 125GeV. As the largest loop factor is due to the

top Yukawa coupling, according to Eq. (5.1) the scale ΛN P where new states must first appear

is related to m2
h and ε via

Λ2
N P ∼ 4π2

3y2
t

× m2
h

ε
=⇒ ΛN P ∼ 0.45

√
1

ε
TeV. (5.2)

1We take m2
h = 2m2

H =λh v2/2 with 〈H〉 = v/
�

2 = 174 GeV, which corresponds to a potential

V =−m2
H |H |2 + λh

4
|H |4 .
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The dimensionless quantity 1/ε measures how finely-tuned m2
h is, given ΛN P , and can there-

fore be regarded as a measure of the tuning. Notice that the contributions from g 2 and λh in

Eq. (5.1) correspond to ΛN P = 1.1 TeV/
�
ε and ΛN P = 1.3 TeV/

�
ε, respectively. Although not

significantly different from the relation in the top sector, these are still large enough to push

new states out of direct LHC reach for ε∼ 0.1.

Indeed, for a given ε, Eq. (5.2) only provides an upper bound for ΛN P ; in the more fundamental

UV theory, there can in principle exist larger corrections to m2
h which are not captured by

Eq. (5.1). For instance, in the Minimal Supersymmetric SM (MSSM) with high-scale mediation

of the soft terms, δm2
h in Eq. (5.1) is logarithmically enhanced by RG evolution above the weak

scale. In that case, Eq. (5.2) is modified as follows:

Λ2
N P ∼ 2π2

3y2
t

× 1

lnΛUV /ΛN P
× m2

h

ε
, (5.3)

where ΛN P corresponds to the overall mass of the stops and ΛUV � ΛN P is the scale of

mediation of the soft terms. However, for generic composite Higgs (CH) models, as well as

for supersymmetric models with low-scale mediation, Eq. (5.2) provides a fair estimate of

the relation between the scale of new physics and the amount of tuning. If the origin of mh

is normally termed soft in the MSMM with large ΛUV , it should then be termed supersoft

in models respecting Eq. (5.2). The essential feature of these supersoft models is that the

Higgs mass is fully generated by quantum corrections at around the weak scale, whereas in

the MSSM with large ΛUV it is well-known (and shown by Eq. (5.3), for ΛUV ∼> 100 TeV) that

the natural expectation is ΛN P ∼ mZ ∼ mh . In view of this, the soft scenarios were already

somewhat constrained by direct searches at LEP and Tevatron. Instead, the natural range of

the scale of supersoft models is only now being probed at the LHC.

Equation (5.2) sets an absolute upper bound on ΛN P for a given fine tuning 1/ε, but does

not give any details on its nature. In particular it does not specify the quantum numbers

of the new states that enter the theory at or below this scale. Indeed, the most relevant

states associated with the top sector, the so-called top partners, are bosonic (fermionic) in

standard supersymmetric models (CH models). Nonetheless, one common feature of these

standard scenarios is that the top partners carry SM quantum numbers, color in particular.

They are thus copiously produced in hadronic collisions, making the LHC a good probe of

these scenarios. Yet there remains the logical possibility that the states that are primarily

responsible for the origin of the Higgs mass at or below ΛN P are not charged under the SM,

and thus much harder to produce and detect at the LHC. The Twin Higgs (TH) is probably the

most interesting of the (few) ideas that take this approach [118–121, 125–129, 132–142]. This

is primarily because the TH mechanism can, at least in principle, be implemented in a SM

extension valid up to ultra-high scales. The structure of TH models is such that the states at
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the threshold ΛN P in Eq. (5.2) carry quantum numbers under the gauge group of a copy, a

twin, of the SM, but are neutral under the SM gauge group. These twin states, of which the

twin tops are particularly relevant, are thus poorly-produced at the LHC. The theory must also

contain states with SM quantum numbers, but their mass m∗ is boosted with respect to ΛN P

roughly by a factor g∗/gSM , where g∗ describes the coupling strength of the new dynamics,

while gSM represents a generic SM coupling. As discussed in the next section, depending on

the structure of the model, gSM can be either the top Yukawa or the square root of the Higgs

quartic. As a result, given the tuning 1/ε, the squared mass of the new colored and charged

states is roughly given by

m2
∗ ∼

4π2

3y2
t

× m2
h

ε
×
(

g∗
gSM

)2

. (5.4)

For g∗ > gSM , we could define these model as effectively hypersoft, in that, for fixed fine tuning,

the gap between the SM-charged states and the weak scale is even larger than that in supersoft

models. In practice the above equation implies that, for strong g∗ ∼ 4π, the new states are out

of reach of the LHC even for mild tuning, ε ∼> 0.1. Eq. (5.4) synthesizes the potential relevance

of the TH mechanism, and makes it clear that the new dynamics must be rather strong for

the mechanism to work. Given the hierarchy problem, it then seems almost inevitable to

make the TH a Composite TH (although it could also be a Supersymmetric Composite TH).

Realizations of the TH mechanism within the paradigm of CH models with fermion partial

compositeness [13] have already been proposed, both in the holographic and effective theory

set-ups [118–120, 133].

It is important to recognize that the factor that boosts the mass of the states with SM gauge

quantum numbers in Eq. (5.4) is the coupling g∗ itself. Because of this, strong-dynamics effects

in the Higgs sector, which are described in the low-energy theory by non-renormalizable

operators with coefficients proportional to powers of g∗/m∗, do not “decouple" when these

states are made heavier, at fixed fine tuning ε. In the standard parametrics of the CH, m∗/g∗ is

of the order of f , the decay constant of the σ-model within which the Higgs doublet emerges

as a pseudo Nambu-Goldstone Boson (pNGB). Then ξ≡ v2/ f 2, as well as being a measure of

the fine tuning through ε= 2ξ, also measures the relative deviation of the Higgs couplings from

the SM ones, in the TH like in any CH model.2 Recent Higgs coupling measurements roughly

constrain ξ� 10−20% [99], and a sensitivity of order 5% is expected in the high-luminosity

phase of the LHC [54]. However Higgs loop effects in precision Z -pole observables measured

at LEP already limit ξ∼< 5% [57, 59]. Having to live with this few percent-level tuning would

somewhat undermine the motivation for the clever TH construction. In ordinary CH models

this strong constraint on ξ can in principle be relaxed thanks to compensating corrections

2The factor of two difference between the fine tuning ε and ξ is due to the Z2 symmetry of the Higgs potential in
the TH models, as shown in section 5.1.1.
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to the T̂ parameter coming from the top partners. In the most natural models, these are

proportional to y4
t v2/m2∗ and thus, unlike the Higgs-sector contribution, decouple when m∗

is increased. This makes it hard to realize such a compensatory effect in the most distinctive

range of parameters for TH models, where m∗ ∼ 5−10 TeV. Alternatively one could consider

including custodial-breaking couplings larger than yt in the top-partner sector. Unfortunately

these give rise to equally-enhanced contributions to the Higgs potential, which would in turn

require further ad-hoc cancellations.

As already observed in the literature [118, 119] another important aspect of TH models is

that calculable IR-dominated contributions to the Higgs quartic coupling almost saturate its

observed value. Though a welcome property in principle, this sets even stronger constraints

on additional UV contributions, such as those induced by extra sources of custodial breaking.

In this Chapter we study the correlation between these effects, in order to better assess the

relevance of the TH construction as a valid alternative to more standard ideas about EW-

scale physics. Several such studies already exist for standard composite Higgs scenarios

[107, 108, 110]. In extending these to the TH we shall encounter an additional obstacle to

gaining full benefit from the TH boost in Eq. (5.4): the model structure requires rather “big"

multiplets, implying a large number of degrees of freedom. This results in a naive dimensional

analysis (NDA) upper bound for the coupling that is parametrically smaller than 4π, and hence

so is the boost factor. We shall discuss in detail how serious and unavoidable a limitation this

is.

This Chapter is organized as follows: in section 5.1 we discuss the general structure and

parametrics of TH models, followed by section 5.2 where we describe the more specific class

of composite TH models we focus on for the purpose of our study. In sections 5.3 and 5.4 we

present our computations of the basic physical quantities: the Higgs potential and precision

electroweak parameters (Ŝ, T̂ , δgLb). Section 5.5 is devoted to a discussion of the resulting

constraints on the model and an appraisal of the whole TH scenario. Our conclusions are

presented in section 5.6.

5.1 A classification of Twin Higgs scenarios

5.1.1 Structure and Parametrics

In this section we outline the essential aspects of the TH mechanism. Up to details and variants

which are not crucial for the present discussion, the TH scenario involves an exact duplicate,

S̃M, of the SM fields and interactions, underpinned by a Z2 symmetry. In practice this Z2

must be explicitly broken in order to obtain a realistic phenomenology, and perhaps more

importantly, a realistic cosmology [140, 142]. However the sources of Z2 breaking can have a
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5.1. A classification of Twin Higgs scenarios

structure and size that makes them irrelevant in the discussion of naturalness in electroweak

symmetry breaking, which is the main goal in this section.

Our basic assumption is that the SM and its twin emerge from a more fundamental Z2-

symmetric theory at the scale m∗, at which new states with SM quantum numbers, color in

particular, first appear. In order to get a feeling for the mechanism and its parametrics, it is

sufficient to focus on the most general potential for two Higgs doublets H and H̃ , invariant

under the gauge group GSM ×G̃SM , with GSM = SU (3)c ×SU (2)L ×U (1)Y , as well as a Z2:

V (H , H̃) = −m2
H (|H |2 +|H̃ |2) + λH

4
(|H |2 +|H̃ |2)2 + λ̂h

8
(|H |4 +|H̃ |4) . (5.5)

Strictly speaking, the above potential does not have minima with realistic “tunable" 〈H〉. This

goal can be achieved by the simple addition of a naturally small Z2-breaking mass term, which

does not affect the estimates of fine tuning, and hence will be neglected for the purposes of

this discussion. Like for the SM Higgs, the most general potential is accidentally invariant

under a custodial SO(4)× S̃O(4). Notice however that in the limit λ̂h → 0, the additional Z2

enhances the custodial symmetry to SO(8), where H ≡ H ⊕ H̃ ≡ 8. In this exact limit, if H̃

acquired an expectation value 〈H̃〉 ≡ f /
�

2, all 4 components of the ordinary Higgs H would

remain exactly massless NGBs. Of course the SM and S̃M gauge and Yukawa couplings, along

with λ̂h , explicitly break SO(8), changing the nature of H . Consider however the scenario

where these other couplings, which are known to be weak, can be treated as small SO(8)-

breaking perturbations of a stronger SO(8)-preserving underlying common dynamics, of

which the quartic coupling λH is a manifestation. In this situation we can reconsider the

relation between the SM Higgs mass, the amount of tuning and the scale m∗ where new states

charged under the SM are first encountered, treating λ̂h as a small perturbation of λH . At

zeroth order, i.e. neglecting λ̂h , we can expand around the vacuum 〈H̃〉2 = 2m2
H

/λH ≡ f 2/2,

〈H〉 = 0. The spectrum consists of a heavy scalar σ, with mass mσ = �
2mH =√

λH f /
�

2,

corresponding to the radial mode, 3 NGBs eaten by the twin gauge bosons, which get masses

∼ g f /2 and the massless H . When turning on λ̂h , SO(8) is broken explicitly and H acquires a

potential. At leading order in a λ̂h/λH expansion the result is simply given by substituting

|H̃ |2 = f 2/2−|H |2 in Eq. (5.5).3 The quartic coupling and the correction to the squared mass

are then given by

λh � λ̂h δm2
H ∼−λ̂h f 2/8 �−(λh/2λH )m2

H . (5.6)

As mentioned above, we assume that m2
H also receives an independent contribution from a

Z2-breaking mass term, which can be ignored in the estimates of tuning. Note that in terms of

the physical masses of the Higgs, mh , and of its heavy twin, mσ, we have precisely the same

3Notice that the effective Higgs quartic receives approximately equal contributions from |H |4 and |H̃ |4. This is
a well-known and interesting property of the TH.
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Chapter 5. Precision Tests and Fine Tuning in Twin Higgs models

numerical relation δm2
h = (λh/2λH )m2

σ. The amount of tuning ε, defined as m2
h/δm2

h , is given

by ε= 2ξ= 2v2/ f 2.

Our estimate of δm2
H in Eq. (5.6) is based on a simplifying approximation where the SO(8)-

breaking quartic is taken Z2-symmetric. In general we could have allowed different couplings

λ̂h and λ̂h̃ for |H |4 and |H̃ |4 respectively, constrained by the requirement λ̂h + λ̂h̃ � 2λh . As

the estimate of δm2
H in Eq. (5.6) is determined by the |H̃ |4 term, it is clear that a reduction

of λ̂h̃ , with λh fixed, would improve the tuning, as emphasized in ref. [139]. As discussed in

section 4, however, a significant fraction of the contribution to λ̂h and λ̂h̃ is coming from RG

evolution due to the top and twin top. According to our analysis, λ̂h/λ̂h̃ varies between 1.5 in

the simplest models to 3 in models where λ̂h̃ is purely IR-dominated as in in ref. [139]. Though

interesting, this gain does not change our parametric estimates.

The ratio λh/λH is the crucial parameter in the game. Indeed it is through Eq. (5.6) that mH

is sensitive to quantum corrections to the Lagrangian mass parameter mH , or, equivalently,

that the physical Higgs mass mh is sensitive to the physical mass of the radial mode mσ.

In particular, what matters is the correlation of mσ with, and its sensitivity to, m∗, where

new states with SM quantum numbers appear. One can think of three basic scenarios for

that relation, which we now illustrate, ordering them by increasing level of model building

cleverness. Beyond these scenarios there is the option of tadpole dominated electroweak

symmetry breaking, which we shall briefly discuss at the end.

Sub-Hypersoft Scenario

The simplest option is given by models with mσ ∼ m∗. Supersymmetric TH models with

medium- to high-scale soft-term mediation belong to this class [132], with m∗ representing

the soft mass of the squarks. Like in the MSSM, mH , and therefore mσ, is generated via

RG evolution: two decades of running are sufficient to obtain mσ ∼ m∗. Another example

is composite TH models [118, 119]. In their simplest incarnation they are characterized by

one overall mass scale m∗ and coupling g∗ [24], so that by construction one has mσ ∼ m∗
and λH ∼ g 2∗. As discussed below Eq. (5.6), in both these scenarios one then expects δm2

h ∼
(λh/2λH )m2∗. It is interesting to compare this result to the leading top-sector contribution in

Eq. (5.1). For that purpose it is worth noticing that, as discussed in section 5.3, in TH models

the RG-induced contribution to the Higgs quartic coupling Δλh |RG ∼ (3y4
t /π2) lnm∗/mt nearly

saturates its experimental value λh ∼ 0.5 for m∗ ∼ 3−10 TeV. 4 We can thus write

δm2
h ∼ (λh/2λH )m2

∗ ∼
3y4

t

2π2

1

λH
ln(m∗/mt )m2

∗ ≡
3y2

t

2π2 × y2
t

g 2∗
× ln(m∗/mt )×m2

∗ (5.7)

4For this naive estimate we have taken the twin-top contribution equal to the top one, so that the result is just
twice the SM one. For a more precise statement see section 5.3.
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which should be compared to the first term on the right-hand side of Eq. (5.1). Accounting for

the possibility of tuning we then have

m∗ ∼ 0.45× g∗�
2yt

×
√

1

ln(m∗/mt )
×
√

1

ε
TeV. (5.8)

Compared to Eq. (5.2), the mass of colored states is on one hand parametrically boosted by the

ratio g∗/(
�

2yt ), and on the other it is mildly decreased by the log. The gain and the motivation

in the ongoing work on the simplest realization of the TH idea are then clinging to the above

g∗/yt . The basic question is how big g∗ can be with the overall description still making sense,

at least qualitatively. One of the goals of this Chapter is also to investigate to what extent one

can realistically gain from this parameter by focusing on slightly more explicit CH realizations.

Applying naive dimensional analysis (NDA) one would be tempted to say that g∗ as big as ∼ 4π

makes sense, in which case m∗ ∼ 10 TeV would only cost a mild ε∼ 0.1 tuning. However such

an estimate seems quantitatively too naive. For instance, by focusing on the simple toy model

whose potential is given by Eq. (5.5), we can associate the upper bound on λH ≡ g 2∗, to the

point where perturbation theory breaks down. One possible way to proceed is to consider the

one loop beta function

μ
dλH

dμ
= N +8

32π2 λ2
H , (5.9)

and to estimate the maximum value of the coupling λH as the one for which ΔλH /λH ∼O(1)

through one e-folding of RG evolution. One finds

λH = 2m2
σ

f 2 ∼<
32π2

N +8
=⇒ mσ

f ∼<π , for N = 8 , (5.10)

which also gives g∗ ∼√
λH ∼<

�
2π, corresponding to a significantly smaller maximal gain

in Eq. (5.8) with respect to the NDA estimate. In section 5.2.2 we shall perform alternative

estimates in more specific CH constructions, obtaining similar results. However it is perhaps

too narrow minded to stick to such estimates to precisely decide the boost that g∗/(
�

2yt )

can give to m∗. What is parametrically true is that the stronger the coupling g∗, the heavier

the colored partners can be at fixed tuning. However as we are debating on factors of a few,

it is hard to be sharper. In any case the gain offered by Eq. (5.8) is probably less than one

would naively have hoped and it is thus fair to question the motivation for the TH, at least

in its “sub-hypersoft” realization. We will keep this doubt in our hearts, but continue the

exploration of TH with the belief that the connection between naturalness and LHC signatures

is so important that it must be analyzed in all its possible facets.

Concerning in particular composite TH scenarios one last important model building issue

concerns the origin of the Higgs quartic λh . In generic CH it is known that the contribution to
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λh that arises at O(y2
t ) is too large when g∗ is strong. Given that the TH mechanism demands

g∗ as strong as possible then composite TH models must ensure that the leading O(y2
t ) is

absent so that λh arises at O(y4
t ). As discussed in ref. [118], this property is not guaranteed but

it can be easily ensured provided the couplings that give rise to yt via partial compositeness

respect specific selection rules.

Hypersoft scenario

The second option corresponds to the structurally robust situation where m2
σ is one loop factor

smaller than m2∗. This is for instance achieved if H is a PNG-boson octet multiplet associated

to the spontaneous breaking SO(9) → SO(8) in a model with fundamental scale m∗. Another

option would be to have a supersymmetric model where supersymmetric masses of order m∗
are mediated to the stops at the very scale m∗ at which H is massless. Of course in both cases

a precise computation of m2
σ would require the full theory. However a parametrically correct

estimate can be given by considering the quadratically divergent 1-loop corrections in the

low energy theory, in the same spirit of Eq. (5.1). As yt and λH are expectedly the dominant

couplings the analogue of Eq. (5.1) and (5.6) imply

δm2
h ∼ λh

2λH

(
3y2

t

4π2 + 5λH

16π2

)
m2

∗ =
(

y2
t

λH
+ 5

12

)
3λh

8π2 m2
∗ . (5.11)

Very roughly, for λH ∼> y2
t , top effects become sub-dominant and the natural value for mh

becomes controlled by λh , similarly to the term induced by the Higgs quartic in Eq. (5.1).

In the absence of tuning this roughly corresponds to the technicolor limit m∗ ∼ 4πv , while

allowing for fine tuning we have

m∗ ∼ 1.4×
√

1

ε
TeV. (5.12)

It should be said that in this scenario there is no extra boost of m∗ at fixed tuning by taking

λH > y2
t . Indeed the choice λH ∼ y2

t is preferable as concerns electroweak precision tests

(EWPT). Indeed, as it is well known, RG evolution in the effective theory below mσ gives rise to

the corrections to the Ŝ and T̂ parameters that will be discussed in section 5.4 [102]. In view of

the relation ε= 2v2/ f 2 this gives a direct connection between fine tuning, EWPT and the mass

of the twin Higgs mσ. At fixed v2/ f 2, EWPT then favor the smallest possible mσ =�
λH f /

�
2,

that is the smallest λH ∼ y2
t . The most plausible spectrum in this class of models is roughly

the following: the twin scalar σ and the twin tops appear around the same scale ∼ yt f /
�

2

below the colored partners who live at m∗. The presence of the somewhat light scalar σ is one

of interesting features of this class of models.
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Super-Hypersoft Scenario

This option is a clever variant of the previous one, where below the scale m∗ approximate

supersymmetry survives in the Higgs sector in such a way that the leading contribution

proportional to λH to δm2
H

is purely due to the top sector. In that way Eq. (5.11) reduces to

δm2
h ∼ λh

2λH

(
3y2

t

4π2

)
m2

∗ =
y2

t

λH
× 3λh

8π2 m2
∗ . (5.13)

so that by choosing g∗ > yt one can push the scale m∗ further up with fixed fine tuning ε

m∗ ∼ 1.4× g∗�
2yt

×
√

1

ε
TeV. (5.14)

In principle even under the conservative assumption that g∗ ∼
�

2π is the maximal allowed

value, this scenario seemingly allows m∗ ∼ 14 TeV with a mild ε∼ 0.1 tuning.

It should be said that in order to realize this scenario, along the lines of ref. [132], one would

need to complete H into a pair of chiral superfield octets Hu and Hd as well as add a singlet

superfield S in order to generate the Higgs quartic via the superpotential trilinear g∗SHuHd .

Obviously this is a very far fetched scenario featuring all possible ideas to explain the weak

scale: supersymmetry, compositeness and the Twin Higgs mechanism.

Alternative vacuum dynamics: tadpole induced EWSB

In all the scenarios discussed so far the tuning of the Higgs vacuum expectation value (VEV) and

that of the Higgs mass coincided: ε, which controls the tuning of m2
h according to eqs. (5.8),

(5.12) and (5.14), is equal to 2v2/ f 2, which measures the tuning of the VEV. This was because

the only tuning in the Higgs potential was associated with the small quadratic term, while the

quartic was assumed to be of the right size without the need for further cancellations (see e.g.

the discussion in ref. [7]). Experimentally however, one can distinguish between the need for

tuning that originates from measurements of Higgs and electroweak observables, which are

controlled by v2/ f 2, and that coming from direct searches for top partners. Currently, with

bounds on colored top partners at just around 1 TeV [97, 98], but with Higgs couplings already

bounded to lie within 10−20% of their SM value [99], the only reason for tuning in all TH

scenarios is to achieve a small v2/ f 2. It is then fair to consider options that reduce or eliminate

only the tuning of v2/ f 2. As argued in ref. [141], this can be achieved by modifying the H

scalar vacuum dynamics, and having its VEV induced instead by a tadpole mixing with an

additional electroweak-breaking technicolor (TC) sector [130, 131]. In order to preserve the Z2

symmetry one adds two twin TC sectors, both characterized by a mass scale mTC and a decay

constant fTC ∼ mTC /4π (i.e. it is parametrically convenient to assume gTC ∼ 4π). Below the

115



Chapter 5. Precision Tests and Fine Tuning in Twin Higgs models

TC scale the dynamics in the visible and twin sectors is complemented by Goldstone triplets

πa and π̃a which can be embedded into doublet fields according to

Σ= fTC eiπaσa

(
0

1

)
, Σ̃= fTC ei π̃aσa

(
0

1

)
, (5.15)

and are assumed to mix with H and H̃ via the effective potential terms

Vtadpole = M 2(H †Σ+ H̃ †Σ̃)+h.c. . (5.16)

Assuming mT C � mH the H̃ vacuum dynamics is not significantly modified, but, for mT C >
mh , Vtadpole acts like a rigid tadpole term for H . The expectation value 〈H〉 is thus determined

by balancing such a tadpole against the gauge-invariant |H |2 mass term; the latter will then

roughly coincide with m2
h . In order for this to work, by Eq. (5.6) the SO(8)-breaking quartic

λ̂h should be negative, resulting in v ∼ (M 2/m2
h) fT C . It is easy to convince oneself that

the corrections to Higgs couplings are O( f 2
TC /v2): present bounds can then be satisfied for

fTC ∼ v/
�

10 � 80 GeV. In turn, the value of v/ f is controlled by f and can thus be naturally

small. The TC scale is roughly mTC ∼ 4π fTC ∼ 600−800 GeV, while the non-eaten pNGB π

in Eq. (5.15) have a mass m2
π ∼ M 2v/ fTC ∼ m2

h(v/ fTC )2 ∼ 400 GeV. The latter value, although

rather low, is probably large enough to satisfy constraints from direct searches. In our opinion,

what may be more problematic are EWPT, in view of the effects from the TC sector, which

shares some of the vices of ordinary TC. The IR contributions to Ŝ and T̂ , associated with

the splitting mπa < mTC , are here smaller than the analogues of ordinary technicolor (there

associated with the splitting mW � mTC ). However the UV contribution to Ŝ is parametrically

the same as in ordinary TC, in particular it is enhanced at large NT C . Even at NT C = 2, staying

within the allowed (Ŝ, T̂ ) ellipse still requires a correlated contribution from ΔT̂ , which in

principle should also be counted as tuning. In spite of this, models with tadpole-induced

EWSB represent a clever variant where, technically, the dynamics of EWSB does not currently

appear tuned. A thorough analysis of the constraints is certainly warranted.

5.2 The Composite Twin Higgs: a comprehensive construction

In this section and in the remainder of the Chapter, we will focus on the CH realization of the

TH, which belongs to the sub-hypersoft class of models. In this simple and well-motivated

context we shall discuss EWPT, fine tuning and structural consistency of the model.

Our basic structural assumption is that at a generic UV scale ΛUV � m∗, our theory can

be decomposed into two sectors: a strongly-interacting Composite Sector and a weakly-

interacting Elementary Sector. The Composite Sector is assumed to be endowed with the

global symmetry G = SO(8)×U (1)X ×Z2 and to be approximately scale- (conformal) invariant
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down to the scale m∗, at which it develops a mass gap. We assume the overall interaction

strength at the resonance mass scale m∗ to be roughly described by one parameter g∗ [24].

The large separation of mass scales ΛUV � m∗ is assumed to arise naturally, in that the

occurrence of the mass gap m∗ is controlled by either a marginally-relevant deformation, or by

a relevant deformation whose smallness is controlled by some global symmetry. At the scale

m∗, SO(8)×U (1)X ×Z2 is spontaneously broken to the subgroup H = SO(7)×U (1)X , giving

rise to seven NGBs in the 7 of SO(7) with decay constant f ∼ m∗/g∗. The subgroup U (1)X

does not participate to the spontaneous breaking, but its presence is needed to reproduce the

hypercharges of the SM fermions, similarly to CH models. The Elementary Sector consists

in turn of two separate weakly-interacting sectors: one containing the visible SM fermions

and gauge bosons, corresponding to the SM gauge group GSM = SU (3)c ×SU (2)L ×U (1)Y ;

the other containing the twin SM with the same fermion content and a S̃M gauge group

G̃SM = S̃U (3)c × S̃U (2)L . The external Z2 symmetry, or twin parity, interchanges these two

copies. For simplicity, and following [118], we choose not to introduce a mirror hypercharge

field. This is our only source of explicit Twin-parity breaking, and affects neither our discussion

of fine tuning, nor that of precision electroweak measurements.

The Elementary and Composite sectors are coupled according to the paradigm of partial

compositeness [13]. The elementary EW gauge bosons couple to the strong dynamics as a

result of the weak gauging of the SU (2)L×U (1)Y ×S̃U (2)L subgroup of the global SO(8)×U (1)X .

A linear mixing with the global conserved currents is thus induced:

L V
mix ⊃ g2 W α

μ Jμα+ g1 Bμ JμB + g̃2 W̃ α
μ J̃μα, (5.17)

where g1,2 and g̃2 denote the SM and twin weak gauge couplings, JμB ≡ Jμ3R + JμX and Jμ, J̃μ

and JμX are the currents associated respectively to the SU (2)L , S̃U (2)L and U (1)X generators.

The elementary fermions mix analogously with various operators transforming as linear

representations of SO(8) that are generated in the far UV by the strongly-interacting dynamics.

The mixing Lagrangian takes the schematic form:

L F
mix ⊃ q̄α

L ΔαAO A
R + t̄RΘAO A

L + ¯̃qα
L Δ̃αAÕ A

R + t̄RΘ̃AÕ A
L +h.c., (5.18)

where, following e.g. ref. [38], we introduced spurions ΔαA , Δ̃αA , ΘA and Θ̃A in order to uplift

the elementary fields to linear representations of SO(8), and match the quantum numbers

of the composite operators. The left-handed mixings ΔαA , Δ̃αA necessarily break SO(8) since

qL only partially fills a multiplet of SO(8). The right-handed mixings, instead, may or may

not break SO(8). The breaking of SO(8) gives rise to a potential for the NGBs at one loop

and the physical Higgs is turned into a pNGB. We conclude by noticing that g1,2 and g̃2

correspond to quasi-marginal couplings which start off weak in the UV, and remain weak

down to m∗. The fermion mixings could be either relevant or marginal, and it is possible
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that some may correspond to interactions that grow as strong as g∗ at the IR scale m∗ [18].

In particular, as is well known, there is some advantage as regards tuning in considering the

right mixings ΘA and Θ̃A to be strong. In that case one may even imagine the IR scale to be

precisely generated by the corresponding deformation of the fixed point. While this latter

option may be interesting from a top-down perspective, it would play no appreciable role in

our low-energy phenomenological discussion.

5.2.1 A simplified model

In order to proceed we now consider a specific realization of the composite TH and introduce

a concrete simplified effective Lagrangian description of its dynamics. Our model captures the

most important features of this class of theories, like the pNGB nature of the Higgs field, and

provides at the same time a simple framework for the interactions between the elementary

fields and the composite states, vectors and fermions. We make use of this effective model as

an example of a specific scenario in which we can compute EW observables, and study the

feasibility of the TH idea as a new paradigm for physics at the EW scale.

We write down an effective Lagrangian for the Composite TH model using the Callan-Coleman-

Wess-Zumino (CCWZ) construction [9, 10], and generalizing the simpler case of a two-site

model developed in ref. [118]. According to the CCWZ technique, a Lagrangian invariant

under the global SO(8) group can be written following the rules of a local SO(7) symmetry.

The basic building blocks are the Goldstone matrix Σ(Π), which encodes the seven NGBs, Π,

present in the theory, and the operators dμ(Π) and Eμ(Π) resulting from the Maurer-Cartan

form constructed with the Goldstone matrix. An external U (1)X group is also added to the

global invariance in order to reproduce the correct fermion hypercharges [118]. The CCWZ

approach is reviewed and applied to the SO(8)/SO(7) coset in Appendix A.

Before proceeding, we would like to recall the simplified model philosophy of ref. [8], which

we essentially employ. In a generic composite theory, the mass scale m∗ would control both

the cut-off of the low energy σ-model and the mass of the resonances. In that case no effective

Lagrangian method is expected to be applicable to describe the resonances. So, in order to

produce a manageable effective Lagrangian we thus consider a Lagrangian for resonances that

can, at least in principle, be made lighter that m∗. One more structured way to proceed could

be to consider a deconstructed extra-dimension where the mass of the lightest resonances,

corresponding to the inverse compactification length, is parametrically separated from the 5D

cut-off, interpreted as m∗. Here we do not go that far and simply consider a set of resonances

that happen to be a bit lighter than m∗. We do so to give a structural dignity to our effective

Lagrangian, though at the end, for our numerical analysis, we just take the resonances a

factor of 2 below m∗. We believe that is a fair procedure given our purpose of estimating the
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parametric consistency of the general TH scenario.

We start our analysis of the effective Lagrangian with the bosonic sector. Together with the

elementary SM gauge bosons, the W ’s and B , we introduce the twin partners W̃ to gauge

the S̃U (2)L group. As representative of the composite dynamics, we restrict our interest to

the heavy spin-1 resonances transforming under the adjoint of SO(7) and to a vector singlet.

We therefore introduce a set of vectors ρa
μ which form a 21 of SO(7) and the gauge vector

associated with the external U (1)X , which we call ρX
μ . The Lagrangian for the bosonic sector

can be written as

Lbosonic =Lπ+L V
comp +L V

elem +L V
mix . (5.19)

The first term describes the elementary gauge bosons masses and the NGBs dynamics and is

given by

Lπ = f 2

4
Tr
[
dμdμ

]
. (5.20)

The second term, L V
comp, is a purely composite term, generated at the scale m∗ after confine-

ment; it reduces to the kinetic terms for the ρ vectors, namely:

L V
comp =− 1

4g 2
ρ

ρa
μνρ

μνa − 1

4g 2
ρX

ρX
μνρ

Xμν , (5.21)

where ρa
μν = ∂μρ

a
ν −∂νρ

a
μ− fabcρ

b
μρ

c
ν, ρX

μν = ∂μρ
X
ν −∂νρ

X
μ and gρ and gρX are the coupling

strengths for the composite spin-1 bosons. The third term in Eq. (5.19), L V
elem, is a purely

elementary interaction, produced at the scale ΛUV where the elementary fields are formally

introduced. Also this Lagrangian can contain only the kinetic terms for the elementary fields:

L V
elem =− 1

4g 2
1

BμνBμν− 1

4g 2
2

W a
μνW aμν− 1

4g̃ 2
2

W̃ a
μνW̃ aμν , (5.22)

where g1, g2 and g̃2 denote the weak gauge couplings. The last term in the Lagrangian (5.19),

L V
mix, is a mixing term between the elementary and composite sectors originating from partial

compositeness. We have:5

L V
mix =

M 2
ρ

2g 2
ρ

(
Tr
[
ρa
μT 21

a −Eμ

])2 +
M 2

ρX

2g 2
ρX

(ρX
μ −Bμ)2 , (5.23)

where T 21
a are the SO(8) generators in the adjoint of SO(7) (see Appendix A).

5Notice that in the Lagrangian (5.23), the parameters f , Mρ , MρX , gρ and gρX are all independent. It is common
to define the parameters aρ = Mρ/(gρ f ) and aρX = MρX /(gρX f ), which are expected to be O(1). In our analysis

we set aρ = 1/
�

2 corresponding to the two-site model value (see the last paragraph of this section) and aρX = 1.
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We now introduce the Lagrangian for the fermionic sector. This depends on the choice of

quantum numbers for the composite operators in Eq. (5.18). The minimal option is to choose

OR and ÕR to be in the fundamental representation of SO(8), whereas the operators OL and

ÕL are singlets of the global group. Therefore, the elementary SM doublet and its twin must

be embedded into fundamental representations of SO(8), whereas the tR and the t̃R are

complete singlets under the global SO(8) invariance. This choice is particularly useful to

generalize our discussion to the case of a fully-composite right-handed top. From the low-

energy perspective, the linear mixing between composite operators and elementary fields

translates into a linear coupling between the latter and a layer of fermionic resonances excited

from the vacuum by the operators in the fundamental and singlet representations of the global

group. Decomposing the 8 of SO(8) as 8 = 7+1 under SO(7), we introduce a set of fermionic

resonances filling a complete fundamental representation of SO(7) and another set consisting

of just one singlet.6 We denote with Ψ7 the fermionic resonances in the septuplet and with Ψ1

the singlet, both charged under SU (3)c . Together with them, we must introduce analogous

composite states charged under S̃U (3)c ; we use the corresponding notation Ψ̃7 and Ψ̃1. We

refer to Appendix F for the complete expression of Ψ7 and Ψ̃7 in terms of the constituent

fermions.

The fermionic effective Lagrangian is split into three parts, which have the same meaning as

the analogous distinctions we made for the bosonic sector of the theory:

Lfermionic =L F
comp +L F

elem +L F
mix . (5.24)

The fully composite term is given by:

L F
comp =Ψ7(i /D7 −MΨ)Ψ7 +Ψ1(i /D1 −MS)Ψ1 + Ψ̃7(i /∇− M̃Ψ)Ψ̃7 + Ψ̃1(i /∂− M̃S)Ψ̃1

+
(
i cLΨ

i
7L /d iΨ1L + i cRΨ

i
7R /d iΨ1R + i c̃LΨ̃

i

7L /d i Ψ̃1L + i c̃RΨ̃
i

7R /d i Ψ̃1R +h.c.

)
,

(5.25)

where D7μ =∇μ+ i X Bμ, D1μ = ∂μ+ i X Bμ, and ∇μ = ∂μ+ i Eμ. We have introduced two sets of

O(1) coefficients, cL and cR and their twins, for the interactions mediated by the dμ operator.

Considering the elementary part of the Lagrangian, it comprises just the kinetic terms for the

doublets and right-handed tops:

L F
elem = qLi /DqL + t R i /DtR + q̃Li /Dq̃L + t̃ R i /∂t̃R . (5.26)

The final term in our classification is the elementary/composite mixing that we write again

6Notice that in general we should introduce two different singlets in our Lagrangian. One corresponds to a full
SO(8) singlet, while the other is the SO(7) singlet appearing in the decomposition 8 = 7+1 of the fundamental
of SO(8) under the SO(7) subgroup. We will further simplify our study identifying the two singlets with just one
composite particle.
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following the prescription of partial compositeness. With our choice of quantum numbers

for the composite operators, the spurions in Eq. (5.18) can be matched to dimensionless

couplings according to

ΔαA =
(

0 0 i yL −yL 0×4

i yL yL 0 0 0×4

)
, ΘA = yR , (5.27)

and

Δ̃αA =
(

0×4 0 0 i ỹL −ỹL

0×4 i ỹL ỹL 0 0

)
, Θ̃A = ỹR , (5.28)

where we have introduced the elementary/composite mixing parameters yL , yR and their twin

counterparts. These dimensionless y ’s control the strength of the interaction between the

elementary and composite resonance fields, according to the Lagrangian:

L F
mix = f

(
q̄α

L ΔαAΣAiΨ
i
7 + q̄α

L ΔαAΣA8Ψ1 + yR t̄RΨ1 +h.c.
)

+ f
(

¯̃qα
L Δ̃αAΣAi Ψ̃

i
7 + ¯̃qα

L Δ̃αAΣA8Ψ̃1 + ỹR
¯̃tRΨ̃1 +h.c.

)
.

(5.29)

Depending on the UV boundary condition and the relevance or marginality of the opera-

tors appearing in Eq. (5.18), the y ’s can vary from weak to O(g∗). Correspondingly the light

fermions vary from being completely elementary (for y weak) to effectively fully composite

(for y ∼ g∗). For reasons that will become clear, given yt ∼ yL yR /g∗, it is convenient to take

yL � ỹL ∼ yt , i.e. weak left mixing, and yR � ỹR ∼ g∗. For such strong right-handed mixing the

right-handed tops can be practically considered part of the strong sector.

The last term that we need to introduce in the effective Lagrangian describes the interactions

between the vector and fermion resonances and originates completely in the Composite

Sector. We have:

L V F
comp = ∑

i=L,R

[
αi Ψ7i (/ρ− /E)Ψ7i +α7i Ψ7i (/ρ

X − /B)Ψ7i +α1i Ψ1i (/ρ
X − /B)Ψ1i

+ α̃i Ψ̃7i (/ρ− /E)Ψ̃7i + α̃7i Ψ̃7i (/ρ
X − /B)Ψ̃7i + α̃1i Ψ̃1i (/ρ

X − /B)Ψ̃1i

]
,

(5.30)

where all the coefficients αi appearing in the Lagrangian are O(1) parameters.

We conclude the discussion of our effective Lagrangian by clarifying its two-site model limit

[117] (see also ref. [111]). This is obtained by combining the singlet and the septuplet into

a complete representation of SO(8), so that the model enjoys an enhanced SO(8)L ×SO(8)R

global symmetry. This is achieved by setting cL = cR = c̃L = c̃R = 0 and all the αi equal to

1. Moreover, we have to impose Mρ = gρ f /
�

2, so that the heavy vector resonances can be

reinterpreted as gauge fields of SO(7). As shown in ref. [117], with this choice of the free
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parameters the Higgs potential becomes calculable up to only a logarithmic divergence, that

one can regulate by imposing just one renormalization condition. In the subsequent sections,

we will extensively analyze the EW precision constraints in the general case, as well as in the

two-site limit.

5.2.2 Perturbativity of the simplified model

In section 5.1.1 it was noted that a TH construction typically involves large multiplicities of

states and, as a consequence, the dynamics responsible for its UV completion cannot be

maximally strongly coupled. This in turn limits the improvement in fine tuning that can be

achieved compared to standard scenarios of EWSB. In our naive estimates of eqs. (5.7), (5.11)

and (5.13) the interaction strength of the UV theory was controlled by the σ-model quartic

coupling λH or, equivalently, by mσ/ f . By considering the λH one-loop β-function (Eq. (5.9))

we estimated the maximal value of λH as the one corresponding to an O(1) relative change

through one e-folding of RG evolution. For an SO(8)/SO(7) σ-model this led to
√

λH �
�

2π,

or, equivalently, mσ/ f �π.

Alternatively, the limit set by perturbativity on the UV interaction strength may also be esti-

mated in the effective theory described by the non-linear σ-model by determining the energy

scale at which tree-level scattering amplitudes become non-perturbative. For concreteness,

we considered the following two types of scattering processes: ππ→ππ and ππ→ ψ̄ψ, where

π are the NGBs and ψ= {Ψ7,Ψ̃7} denotes a composite fermion transforming in the fundamen-

tal of SO(7). Other processes can (and should) be considered, with the actual bound being

given by the strongest of the constraints obtained in this way.

Requiring that the process ππ→ππ stay perturbative up the cutoff scale m∗ gives the bound

Mρ

f
∼ MΨ

f
� m∗

f
< 4π�

N −2
� 5.1, (5.31)

where the second inequality is valid in a generic SO(N )/SO(N −1) non-linear σ-model, and

we have set N = 8 in the last step. More details on how this result was obtained can be found

in Appendix L. Equation (5.31) in fact corresponds to a limit on the interaction strength of the

UV theory, given that the couplings among fermion and vector resonances are of order MΨ/ f

and Mρ/ f , respectively. Perturbativity of the scattering amplitude for ππ→ ψ̄ψ instead gives

(see Appendix L for details)

Mρ

f
∼ MΨ

f
� m∗

f
<
√

12
�

2π√
N f

� 4π√
N f

, (5.32)

where N f is the multiplicity of composite fermions (including the number of colors and
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families). Our simplified model with one family of composite fermions has N f = 6, which gives

a limit similar to Eq. (5.31): MΨ/ f � 5.3. A model with three families of composite quarks and

leptons has instead N f = 24, from which follows the stronger bound MΨ/ f � 2.6.

As a third alternative, one could analyze when 1-loop corrections to a given observable become

of the same order as its tree-level value. We applied this criterion to our simplified model

by considering the Ŝ parameter, the new physics contribution to which includes a tree-level

correction from heavy vectors given by Eq. (5.48), and a one-loop correction due to heavy

fermions, which can be found in Appendix J. By requiring that the one-loop term be smaller

than the tree-level correction, we obtain a bound on the strong coupling constant gρ . As an

illustration, we consider the two-site model limit cL = cR = 0 and Mρ = gρ f /
�

2 and keep the

dominant UV contribution to Ŝ in Eq. (J.19) which is logarithmically sensitive to the cut-off.

By setting m∗ = 2MΨ, we find:

ΔŜ1-loop

ΔŜtree
< 1 =⇒ Mρ

f
= gρ�

2
< π√

2log2
� 2.7. (5.33)

The perturbative limits obtained from eqs. (5.31), (5.32) and (5.33) are comparable to that on

λH derived in Sec. 5.1.1. As already discussed there, one could take any of these results as

indicative of the maximal interaction strength in the underlying UV dynamics, though none of

them should be considered as a sharp exclusion condition. In our analysis of EW observables

we will make use of Eq. (5.31) with N = 8 and of Eq. (5.32) with N f = 24 to highlight the regions

of parameter space where our perturbative calculation is less reliable. We use both limits as a

measure of the intrinsic uncertainty which is inevitably associated with this type of estimation.

5.3 Higgs Effective Potential: a brief reminder

As anticipated in the general discussion of section 5.1.1, a potential for the Higgs boson is

generated at the scale m∗ by loops of heavy states through the SO(8)-breaking couplings of

the elementary fields to the strong sector. Once written in terms of the Higgs boson h (where

H †H = f 2 sin2(h/ f )/2, H̃ †H̃ = f 2 cos2(h/ f )/2), at 1-loop this UV threshold contribution has

the form [118]:

V (m∗)

f 4 = 3

32π2

[
1

16
g 2

1 g 2
ρL1 + (y2

L − ỹ2
L)g 2

ΨL2

]
sin2 h

f
+ 3y4

L

64π2 F1

(
sin4 h

f
+cos4 h

f

)
, (5.34)

where gΨ ≡ MΨ/ f , L1, L2, F1 are O(1) dimensionless functions of the masses and couplings of

the theory and the explicit expression of the function F1 is reported in Eq. (G.4) of Appendix G.
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The first term in the above equation originates from Z2-breaking effects.7 The second term,

generated by loops of fermions, is Z2 symmetric and explicitly violates the SO(8) invariance; it

thus corresponds to the (UV part of the) last term of Eq. (5.5). Upon electroweak symmetry

breaking, Eq. (5.34) contributes to the physical Higgs mass an amount equal to

δm2
h |UV = 3y4

L

4π2 F1 f 2ξ(1−ξ) , (5.35)

where ξ controls the degree of vacuum misalignment:

ξ≡ sin2 〈h〉
f

= v2

f 2 . (5.36)

Below the scale m∗ an important contribution to the potential arises from loops of light states,

in particular from the top quark and from its twin. The bulk of this IR contribution is captured

by the RG evolution of the Higgs potential from the scale m∗ down to the electroweak scale. As

noted in previous studies (see e.g. ref. [118]), for sufficiently large m∗ this IR effect dominates

over the UV threshold correction and can reproduce the experimental Higgs mass almost

entirely. An analogous IR correction to the Higgs quartic arises in SUSY theories with large

stop masses, from loops of top quarks. The distinctive feature of any TH scenario, including

our model, is the additional twin top contribution.

The Higgs effective action, including the leading O(ξ) corrections associated with operators of

dimension 6, was computed at 1-loop in ref. [118]; the resulting IR contribution to m2
h was

found to be

δm2
h |1-loop

IR = 3y4
1

8π2 f 2ξ(1−ξ)

(
log

m2∗
m2

t

+ log
m2∗
m̃2

t

)
, (5.37)

where y1 denotes the top Yukawa coupling (see Eq. (G.8) in Appendix G). The two single log

terms in parentheses correspond to the IR contributions to the effective Higgs quartic λh from

the top quark and twin top respectively. Leading-logarithmic corrections of the form (α log)n ,

arising at higher loops have however an important numerical impact.8 For example, (α log)2

corrections generated by 2-loop diagrams (mostly due to the running of the top and twin top

Yukawa couplings, that are induced by respectively QCD and twin QCD) are expected to give a

∼ 30% reduction in the Higgs mass for m∗ � 5 TeV,

We have computed the (α log)2 correction through an effective operator approach by matching

with the low-energy effective theory at the scale m∗ and running down the Higgs quartic cou-

7Sub-leading Z2-breaking terms have been neglected for simplicity. The complete expressions are given in
ref. [118].

8Here α= g 2
SM/4π, with gSM being any large SM coupling, i.e. gS and yt .
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Figure 5.1 – Diagrams with loops of twin tops contributing to the β-function of λh . Crosses
denote mass insertions. The first diagram features two insertions of a dimension-5 operator,
while the interaction vertex in the second diagram arises from a dimension-7 operator.

pling. A suitable redefinition of fields makes the form of the effective Lagrangian particularly

compact at the scale m∗. In particular, the only dimension 6 operator in the Higgs + SM sector

with non-vanishing coefficient at the relevant loop order is the kinetic Higgs quadrilinear OH .

We report the details in Appendix G. In this operator basis the RG-improved Higgs mass also

acquires a simple form:

m2
h = δm2

h |UV +δm2
h |I R = λh(μ)

2
�

2GF
(1−ξ) , (5.38)

where the Higgs quartic coupling is evaluated at μ= mh and the Fermi constant is given by

GF = 1�
2 f 2ξ

≡ 1�
2v2

. (5.39)

Formula (5.38) is valid up to O[ξ(α log)2] and O[(α log)3] contributions, which we did not

include. Our result is thus valid at next-to-leading order (NLO) in a combined perturbative

expansion in (α log) and ξ. An interesting peculiarity characterizing the RG contribution of the

twin top is the fact that the latter couples to the Higgs boson only through higher-dimensional

operators suppressed by the scale f (see Appendix). Insertions of the twin top mass, which

is also of order f , can however compensate for such suppression. This is an example of a

situation where a marginal coupling can get renormalized by irrelevant ones in the presence

of a relevant operator in the theory [11]. For an NLO calculation it is sufficient to include up to

dimension-7 operators, as shown in figure 5.1 and discussed in the Appendix. The RG equation

for λh is coupled to those of the other couplings of the theory, in particular the couplings of

the top and twin top to the Higgs boson. We have solved this system of coupled equations

perturbatively by making an expansion in powers of the logarithms and of ξ and working at

second order. The initial conditions at the scale m∗ are fixed by matching to the full theory. In

particular, the initial value of λh is obtained from Eq. (5.37),

λh(m∗) = 3y4
L

2π2 F1 , (5.40)
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Figure 5.2 – IR contribution to the Higgs mass as a function of the scale m∗ for ξ= 0.1. The
dashed and dot-dashed curves denote respectively the LO and NLO result in a combined
perturbative expansion in (α log) and ξ. The continuous curve corresponds to the NNLO
calculation of ref. [122].

the top Yukawa coupling is given by

y1(m∗) = yL yR f√
M 2

S + y2
R f 2

. (5.41)

while the higher dimensional Higgs-top couplings, in particular y3, vanish in our chosen field

parametrization and are not generated by RG evolution at the order at which we are working

(see Appendix G). The couplings of the twin top are instead fixed assuming (approximate) Z2

invariance at the matching scale. Our final expression for λh(μ) is reported in Eq. (G.13) of the

Appendix and agrees with the result found in ref. [122] using a background field method.9

A numerical determination of the IR contribution δm2
h |I R can be obtained by making use of

the experimental value of the top quark mass to fix y1(m∗). In fact, the 1-loop RG equation for

y1 is decoupled from the twin sector and can be easily solved. We find:

y1(m∗) = y1(mt )+
(

9y3
1

64π2 − g 2
S y1

4π2

)
log

m2∗
m2

t

, (5.42)

which fixes y1(m∗) in terms of y1(mt ). 10 The value of δm2
h |I R is shown in figure 5.2 as a func-

tion of m∗ for ξ= 0.1. The naive expectation is confirmed, as the NLO correction decreases the

9Notice that our normalization of the Higgs quartic λh differs with respect to ref. [122], where the Higgs potential
is written as V (H) = 2μ2H†H +4λ(H†H)2.

10As an input to our numerical analysis we use the PDG combination for top quark pole mass mMS
t (mt ) = 173.21±

0.51±0.71GeV [100]. This is converted into the top Yukawa coupling in the MS scheme yMS
1 (mt ) = 0.936±0.005

by making use of Eq. (62) of ref. [124].
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Higgs mass by ∼ 32% for m∗ = 5 TeV. The plot also shows the curve obtained in ref. [122] with

an NNLO calculation including effects up to order ξ(α log)2 and (α log)3. Performing this calcu-

lation with an operator approach would be rather complicated, since the number of effective

operators to include grows considerably. The background field technique adopted in ref. [122]

is instead particularly effective and greatly simplifies the calculation. The NNLO terms are

found to increase the Higgs mass, for example they give a 15% enhancement for m∗ = 5 TeV

and ξ= 0.1. Higher-order logs are expected to have a smaller impact and can be neglected.

Indeed, corrections of order (α log)4 are naively smaller than the 2-loop finite corrections

(including those from UV thresholds) that are not captured by the RG-improvement.11

The plot of figure 5.2 illustrates one of the characteristic features of TH models: the IR contribu-

tion to the Higgs mass largely accounts for its experimental value and is completely predicted

by the theory in terms of the low-energy particle content (SM plus Twin states). Threshold

effects arising at the UV matching scale, on the other hand, are model dependent but give a

sub-leading correction. An accurate prediction of the Higgs mass and an assessment of the

plausibility of the model thus requires a precise determination of its IR contribution. Indeed

the difference between the IR contribution of figure 5.2 and the measured value mh = 125

GeV, must be accounted for by the UV threshold contribution in Eq. (5.35). That translates

into a generic constraint of the size of y4
L , a parameter upon which electroweak precision

observables (EWPO) crucially depend, thus creating a non-trivial correlation between the

Higgs mass, EWPO and naturalness.

Even though our discussion was here based on a NLO computation of the Higgs potential, in

our numerical analysis presented in section 5.5 we use the NNLO computation of ref. [122].

5.4 Electroweak Precision Observables

In this section we compute the contribution of the new states described by our simplified

model to the electroweak precision observables (EWPO). Although it neglects the effects of

the heavier resonances, our calculation is expected to give a fair assessment of the size of the

corrections due to the full strong dynamics, and in particular to reproduce the correlations

among different observables.

It is well known that, under the assumption of quark and lepton universality, short-distance

corrections to the electroweak observables due to heavy new physics can be expressed in terms

of four parameters, Ŝ, T̂ , W , Y , defined in ref. [56] (see also ref. [58] for an equivalent analysis)

as a generalization of the parametrization introduced by Peskin and Takeuchi in refs. [55]. Two

additional parameters, δgLb and δgRb , can be added to account for the modified couplings of

11A complete numerical re-summation of the leading logs can be performed in the SM, and one can check a
posteriori that N3LO terms are indeed small, see ref. [122].
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the Z boson to left- and right-handed bottom quarks respectively.12 A naive estimate shows

that in CH theories, including our TH model, W and Y are sub-dominant in an expansion in

the weak couplings [24] and can thus be neglected. The small coupling of the right-handed

bottom quark to the strong dynamics makes also δgRb small and negligible in our model. We

thus focus on Ŝ, T̂ and δgLb , and compute them by including effects from the exchange of

vector and fermion resonances, and from Higgs compositeness.

We work at the 1-loop level and at leading order in the electroweak couplings and perform an

expansion in inverse powers of the new physics scale. In this limit, the twin states do not affect

the EWPO as a consequence of their being neutral under the SM gauge group. Deviations

from the SM predictions arise only from heavy states with SM quantum numbers and are

parametrically the same as in ordinary CH models with singlet tR . This can be easily shown by

means of naive dimensional analysis and symmetries as follows. Twin tops interact with the

SM fields only through higher-dimensional operators. The operators relevant for the EWPO

are those involving either a SM current or a derivative of the hypercharge field strength:

OB t̃ =
g ′

m2
W

∂μBμν
¯̃tγν t̃ , Oqt̃ =

1

v2 q̄LγμqL
¯̃tγμ t̃ , OH t̃ =

i

v2 H †←→DμH ¯̃tγμ t̃ , (5.44)

where t̃ indicates either a right- or left-handed twin top.13 The first two operators of Eq. (5.44)

are generated at the scale m∗ by the tree-level exchange of the ρX . Their coefficients (in a basis

with canonical kinetic terms) are respectively of order (m2
W /m2∗)(ỹ/g∗)2 and (y2

L v2/m2∗)(ỹ/g∗)2,

where ỹ equals either ỹL or ỹR depending on the chirality of t̃ . The third operator breaks cus-

todial isospin and the only way it can be generated is via the exchange of weakly coupled

elementary fields at loop level. Given that the contribution to EWPO is further suppressed by t̃

loops, the third operator can affect EWPO only at, at least, two loops and is thus clearly negligi-

ble. By closing the t̃ loops the first two operators can give rise to effects that are schematically

of the form BB , B q̄q or (q̄q)2. The formally quadratically divergent piece of the loop integral

renormalizes the corresponding dimension-6 operators. For instance the second structure

gives

C
g ′

16π2

y2
L

m2∗

(
ỹ

g∗

)4

∂νBμνq̄LγμqL (5.45)

with C an O(1) coefficient which depends on the details of the physics at the scale m∗. Using

12We define δgLb and δgRb in terms of the following effective Lagrangian in the unitary gauge:

Le f f ⊃ g2

2cW
Zμ b̄γμ

[
(g SM

Lb +δgLb )(1−γ5)+ (g SM
Rb +δgRb )(1+γ5)

]
b + . . . (5.43)

where the dots stand for higher-derivative terms and g SM
Lb =−1/2+ s2

W /3, g SM
Rb = s2

W /3.
13Notice that OH t̃ can be rewritten in terms of the other two operators by using the equations of motion, but it is

still useful to consider it in our discussion.
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the equations of motion for B , the above operator gives rise to a correction to the Z bb vertex

of relative size

δgLb

gLb
= g ′2

16π2

y2
L v2

m2∗

(
ỹ

g∗

)4

(5.46)

which, even assuming ỹ ∼ g∗, is O(g ′/yt )2 suppressed with respect to the leading visible sector

effect we discuss below. Aside the quadratically divergent piece there is also a logarithmic

divergent piece whose overall coefficient is calculable. The result is further suppressed with

respect to the above contribution by a factor (m2
t̃

/m2∗) ln(m2
t̃

/m2∗).

An additional contribution could in principle come from loops of the extra three “twin"

NGBs contained in the coset SO(8)/SO(7). Simple inspection however shows that there is no

corresponding 1-loop diagram contributing to the EWPO. In the end we conclude that the

effect of twin loops is negligible.

Since the effects from the twin sector can be neglected, the corrections to Ŝ, T̂ and δgLb

are parametrically the same as in ordinary CH models. We now give a concise review of the

contributions to each of these quantities, distinguishing between the threshold correction

generated at the scale m∗ and the contribution arising from the RG evolution down to the

electroweak scale. For recent analyses of the EWPO in the context of SO(5)/SO(4) CH models

see for example Refs. [108, 110, 111].

5.4.1 Ŝ parameter

The leading contribution to the Ŝ parameter arises at tree level from the exchange of spin-1

resonances. Since only the (3,1) and (1,3) components of the spin-1 multiplet contribute, its

expression is the same as in SO(5)/SO(4) composite-Higgs theories:14

ΔŜρ =
g 2

2

2g 2
ρ

ξ . (5.47)

In our numerical analysis presented in section 5.5 we use the two-site model relation Mρ =
gρ f /

�
2 to rewrite

ΔŜρ =
m2

W

M 2
ρ

. (5.48)

The 1-loop contribution from loops of spin-1 and fermion resonances is sub-dominant (by

a factor g 2∗/16π2) and will be neglected for simplicity in the following. Nevertheless, we

14We neglect for simplicity a contribution from the operator Eμνρ
μν, which also arises at tree level. See for

example the discussion in Refs. [111, 112].
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explicitly computed the fermionic contribution (see Appendix J) to monitor the validity of the

perturbative expansion and estimate the limit of strong coupling in our model (a discussion

on this aspect was given in section 5.2.2). An additional threshold correction to Ŝ, naively

of the same order as Eq. (5.48), arises from the exchange of cutoff modes at m∗. As already

anticipated, we neglect this correction in the following. In this respect our calculation is subject

to an O(1) uncertainty and should rather be considered as an estimate, possibly more refined

than a naive one, which takes the correlations among different observables into account.

Besides the UV threshold effects described above, Ŝ gets an IR contribution from RG evolution

down to the electroweak scale. The leading effect of this type comes from the compositeness

of the Higgs boson, and is the same as in SO(5)/SO(4) CH models [102]:

ΔŜh = g 2
2

192π2 ξ log
m2∗
m2

h

. (5.49)

In the effective theory below m∗ this corresponds to the evolution of the dimension-6 opera-

tors

OW = i g

2m2
W

H †σi←→DμH DνW i
μν , OB = i g ′

2m2
W

H †←→DμH ∂νBμν (5.50)

induced by a 1-loop insertion of

OH = 1

2v2 ∂μ(H †H)∂μ(H †H) . (5.51)

Denoting with c̄i the coefficients of the effective operators and working at leading order in the

SM couplings, the RG evolution can be expressed as

c̄i (μ) =
(
δi j +γi j log

μ

M

)
c̄ j (M) , (5.52)

where γi j is the anomalous dimension matrix (computed at leading order in the SM couplings).

The Ŝ parameter gets a correction ΔŜ = (c̄W (mZ )+ c̄B (mZ ))ξ, and one has γW,H +γB ,H =
−g 2

2 /(96π2). An additional contribution to the running arises from insertions of the current-

current operators

OH q = i

v2 q̄Lγ
μqL H †←→DμH , O′

H q = i

v2 q̄Lγ
μσi qL H †σi←→DμH , OH t = i

v2 t̄Rγ
μtR H †←→DμH

(5.53)

in a loop of top quarks. This is however suppressed by a factor y2
L/g 2∗ compared to Eq. (5.49)

and will be neglected. The suppression arises because the current-current operators are

generated at the matching scale with coefficients proportional to y2
L .
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The total correction to the Ŝ parameter in our model is ΔŜ =ΔŜρ+ΔŜh , with the two contribu-

tions given by eqs. (5.48) and (5.49).

5.4.2 T̂ parameter

Tree-level contributions to the T̂ parameter are forbidden in our model by the SO(3) custodial

symmetry preserved by the strong dynamics, and can only arise via loops involving the

elementary states. A non-vanishing effect arises at the 1-loop level corresponding to a violation

of custodial isospin by two units. The leading contribution comes from loops of fermions and

is proportional to y4
L , given that the spurionic transformation rule of yL is that of a doublet,

while yR is a singlet. We find:

ΔT̂Ψ = aUV Nc
y2

L

16π2

y2
L v2

M 2
Ψ

+aI R Nc
y2

t

16π2

y2
L v2

M 2
Ψ

log
M 2

1

m2
t

, (5.54)

where aUV ,I R are O(1) coefficients whose values are reported in Appendix J and we have

defined M1 ≡
√

M 2
S + y2

R f 2. The result is finite and does not depend on the cutoff scale m∗.

The first term corresponds to the UV threshold correction generated at the scale μ= M1 ∼ MΨ.

The second term instead encodes the IR running from the threshold scale down to low energy,

due to loops of top quarks. In the effective theory below M1 it corresponds to the RG evolution

of the dimension-6 operator

OT = 1

2v2 (H †←→DμH)2 (5.55)

due to insertions of the current-current operators of Eq. (5.53). In particular, ΔT̂ = ĉT (mZ )ξ

and one has γT,H t =−γT,H q = 3y2
t /4π2, γT,H q ′ = 0. Notice that the size of the second contribu-

tion with respect to the first is O[(yt /yL)2 log(M 2
1 /m2

t )]: for yt ∼ yL , that is for fully composite

tR , the IR dominated contribution is formally logarithmically enhanced and dominant.

Further contributions to T̂ come from loops of spin-1 resonances, the exchange of cutoff

modes and Higgs compositeness. The latter is due to the modified couplings of the composite

Higgs to vector bosons and reads [102]:

ΔT̂h =− 3g 2
1

64π2 ξ log
m2∗
m2

h

. (5.56)

In the effective theory it corresponds to the running of OT due to the insertion of the operator

OH in a loop with hypercharge. The contribution is of the form of Eq. (5.52) with γT,H =
3g 2

1 /32π2. The exchange of spin-1 resonances gives a UV threshold correction which is also

proportional to g 2
1 (as a spurion, the hypercharge coupling transforms as an isospin triplet), but

without any log enhancement. It is thus subleading compared to Eq. (5.56) and we will neglect
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it for simplicity (see ref. [111] for the corresponding computation in the context of SO(5)/SO(4)

models). Finally, we also omit the effect of the cutoff modes because it is incalculable, although

naively this is of the same order as the contribution from states included in our simplified

model. Our result is thus subject to an O(1) uncertainty.

The total contribution to the T̂ parameter in our model is therefore ΔT̂ =ΔT̂h +ΔT̂Ψ with the

two contributions given by eqs. (5.54) and (5.56).

5.4.3 δgLb

In the limit of vanishing transferred momentum, tree-level corrections to δgLb are forbidden

by the PLR parity of the strong dynamics that exchanges SU (2)L with SU (2)R in the visible

SO(4) and S̃U (2)L with S̃U (2)R in the twin S̃O(4) (see Appendix A for details). This is a simple

extension of the PLR symmetry of CH models which protects the Z bb̄ coupling from large

corrections [39]. In our case PLR is an element of the unbroken SO(7) and keeps the vacuum

unchanged. It is thus an exact invariance of the strong dynamics, differently from SO(5)/SO(4)

models where it is accidental at O(p2). The gauge couplings g1,2 and yL explicitly break it,

while yR preserves it. At finite external momentum δgLb gets a non-vanishing tree-level

contribution:

(δgLb)tree = f 2ξ

8M 2
ρ

[
g 2

1 (αL +α7L)− g 2
2αL

] y2
L f 2

M 2
Ψ
+ y2

L f 2
. (5.57)

In the effective theory below M1, this correction arises from the dimension-6 operators

OB q = g ′

m2
W

∂μBμνq̄Lγ
νqL , OW q = g

m2
W

DμW a
μνq̄Lγ

νσa qL , . (5.58)

It is of order (y2
L/g 2∗)(g 2/g 2∗)ξ, hence a factor g 2/g 2∗ smaller than the naive expectation in

absence of the PLR protection.

At the 1-loop level, corrections to δgLb arise from the virtual exchange of heavy fermion

and vector states. The leading effect comes at O(y4
L) from loops of heavy fermions (the

corresponding diagrams are those of figs. J.2 and J.3) and reads

(δgLb)Ψ = y2
L

16π2 Nc
y2

L v2

M 2
Ψ

(
bUV +cUV log

m2∗
M 2

Ψ

)
+bI R

y2
t

16π2 Nc
y2

L v2

M 2
Ψ

log
M 2

1

m2
t

. (5.59)

The expressions of the O(1) coefficients bUV ,I R and cUV are reported in Appendix J. The first

term is logarithmically divergent and encodes the UV threshold correction at the matching

scale. The divergence comes, in particular, from diagrams where the fermion loop is connected

to the b-quark current through the exchange of a spin-1 resonance [108]. A simple operator
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analysis shows that the threshold contribution from the vector resonances in the adjoint

of SO(7) identically vanishes in our model (see Appendix I for details). An additional UV

threshold contribution to δgLb arises from diagrams where the spin-1 resonances circulate

in the loop. For simplicity we will not include such effect in our analysis (see ref. [110] for

the corresponding computation in the context of SO(5)/SO(4) models). It is however easy to

show that there is no possible diagram with ρX circulating in the loop as a consequence of

its quantum numbers, while the corresponding contribution from vector resonances in the

adjoint of SO(7) is non-vanishing in this case.

The second term in Eq. (5.59) accounts for the IR running down to the electroweak scale. In the

effective theory below M1 one has δgLb =−(c̄H q (mZ )+ c̄ ′H q (mZ ))/2, hence the IR correction

arises from the evolution of the operators OH q and O′
H q due to loops of top quarks. In this case

the operators that contribute to the running via their 1-loop insertion are those of Eq. (5.53) as

well as the following four-quark operators [25]:

OLR = (
q̄Lγ

μqL
)(

t̄RγμtR
)

, OLL = (
q̄Lγ

μqL
)(

q̄LγμqL
)

, O′
LL = (

q̄Lσ
aγμqL

)(
q̄Lσ

aγμqL
)

.

(5.60)

In fact, the operators contributing at O(y2
L y2

t ) to Eq. (5.52) are only those generated at O(y2
L) at

the matching scale; these are OH t , the linear combination OH q −O′
H q (even under PLR ), and

OLR (generated via the exchange of ρX ).15 Notice finally that the relative size of the IR and UV

contributions to δgLb is O[(yt /yL)2 log(M 2
1 /m2

t )] precisely like in the case of ΔT̂Ψ.

It is interesting that in our model the fermionic corrections to δgLb and T̂ are parametrically of

the same order and their signs tend to be correlated. It is for example well known that a heavy

fermion with the quantum numbers of tR gives a positive correction to both quantities [105–

107, 109]. We have verified that this is also the case in our model for MS � MΨ ∼ Mρ (light

singlet).16 Conversely, a light septuplet (MΨ � MS ∼ Mρ) gives a negative contribution to

both δgLb and T̂ .17 Although in general the expressions for ΔT̂Ψ and (δgLb)Ψ are uncorrelated,

their signs tend to be the same whenever the contribution from ρX to Eq. (5.59) is subleading.

When also the operator OH t is not generated at the scale m∗, the two observables are exactly

correlated and one can show that aI R = bI R (see Appendix H for a detailed discussion of

this point). The sign correlation can instead be broken if ρX contributes significantly to

δgLb (in particular, (δgLb)Ψ can be negative for αi L = −αi R ). The importance of the above

considerations lies in the fact that EW precision data prefer a positive T̂ and a negative δgLb .

Situations when both quantities have the same sign are thus experimentally disfavored.

15The operators OLL and O′
LL are generated at O(y4

L) by the tree-level exchange of both ρX and ρ.
16In this limit one has ΔT̂Ψ � 3(δgLb )Ψ.
17The existence of a similar sign correlation in the limit of a light (2,2) has been pointed out in the context of

SO(5)/SO(4) CH models, see ref. [108].
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Considering that no additional correction to δgLb arises from Higgs compositeness, and that

we neglect as before the incalculable effect due to cutoff states, the total contribution in our

model is δgLb = (δgLb)tree+(δgLb)Ψ, with the two contributions given by eqs. (5.57) and (5.59).

5.5 Results

We are now ready to translate the prediction for the Higgs mass and the EWPO into bounds

on the parameter space of our simplified model and for the composite TH in general. We are

interested in quantifying the degree of fine tuning that our construction suffers when requiring

the mass scale of the heavy fermions to lie above the ultimate experimental reach of the LHC.

As made evident by the discussion in section 2, the parameter region where the TH mechanism

boosts this scale up without increasing the fine tuning of the Higgs mass corresponds to a

fully strongly coupled QFT where no quantitatively precise EFT description is allowed. Our

computations of physical quantities in this most relevant regime should then be interpreted

as an educated Naive Dimensional Analysis (eNDA) estimate, where one hopes to capture the

generic size of effects beyond the naivest 4π counting, and including factors of a few related

to multiplet size, to spin and to numerical accidents. In the limit where Mρ/ f and MΨ/ f are

significantly below their perturbative upper bound our computations are well defined. eNDA

then corresponds to assuming that the results do not change by more than O(1) (i.e. less than

O(5) to be more explicit) when extrapolating to a scenario where the resonance mass scale sits

at strong coupling. In practice we shall consider the resonant masses up to their perturbativity

bound and vary the αi and ci within an O(1) range18. In view of the generous parameter space

that we shall explore our analysis should be viewed as conservative, in the sense that a realistic

TH model will never do better.

Let us now describe the various pieces of our analysis. Consider first the Higgs potential where

the dependence on physics at the resonance mass scale is encapsulated in the function F1

(Eq. (5.35)) which controls the UV threshold correction to the Higgs quartic. It is calculable in

our simplified model and the result is O(1) (its expression is reported in Eq. (G.4)), but it can

easily be made a bit smaller at the price of some mild tuning by varying the field content or the

representations of the heavy fermions. In order to account for these options and thus broaden

the scope of our analysis we will thus treat F1 as a free O(1) parameter. The value of F1 has a

direct impact in determining the size of the left-handed top mixing yL , since δm2
h |UV ∼ y4

LF1,

and controls the interplay between the Higgs potential and EWPO. Specifically, as we already

stressed, a smaller F1 implies a larger value of yL , which in turn gives a larger ΔT̂ ∝ y4
L v2/M 2

Ψ:

this can help improve the compatibility with the EWPT even for large MΨ. Of course that is at

the cost of a mild additional tuning, both considering the need for a clever maneuver in the

18Notice indeed that (α= 1,c = 0) and (α= 0,c = 1/
�

2) correspond to specific limits at weak coupling, respec-
tively the two-site model and the linear sigma model. This suggests that their natural range is O(1).
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Ŝ, T̂ plane to get back into the ellipse and the fact that F is generically expected to be O(1). In

the following we will thus treat F1 as an input parameter and use eqs. (5.35) and (5.41) to fix

yL and yR in terms of the Higgs and top quark experimental masses. Our final results will be

shown for two different choices of F1, namely F1 = 1 and F1 = 0.3, in order to illustrate how the

bounds are affected by changing the size of the UV threshold correction to the Higgs potential.

The EWPO and the Higgs mass computed in the previous sections depend on several param-

eters, in particular on the mass spectrum of resonances (see Appendix F), the parameters

ci , αi of eqs. (5.25), (5.30), and the parameter F1 discussed above. In order to focus on the

situation where resonances can escape detection at the LHC, we will assume that their masses

are all comparable and that they lie at or just below the cutoff scale. In order to simplify the

numerical analysis we thus set MΨ = MS = M̃Ψ = M̃S = Mρ = MρX = m∗/2. The factor of two

difference between MΨ and m∗ is chosen to avoid all UV logarithms of the form log(m∗/MΨ)

to vanish, while preventing the appearance of artificially large enhancements. As a further

simplification we set cL = cR ≡ c, α7L =α1L and α7R =α1R . The parameter αL appears only in

the tree-level contribution to δgLb , see Eq. (5.57), and we fix it equal to 1 for simplicity. Even

though the above parameter choices represent a significant reduction of the whole available

parameter space, for the purpose of our analysis they represent a sufficiently reach set where

EWPT can be successfully passed.

Let us now discuss the numerical bounds on the parameter space of our simplified model.

They have been obtained by fixing the top and Higgs masses to their experimental value and

performing the numerical fit described in Appendix K. As experimental inputs, we use the

PDG values of the top quark pole mass mt = 173.21±0.51±0.71 (see footnote 10), and of the

Higgs mass, mh = 125.09±0.24GeV [100]. Figure 5.3 shows the results of the fit in the (MΨ,ξ)

plane for F1 = 0.3 (left panel) and F1 = 1 (right panel). In both panels we have set c = 0, which

corresponds to the two-site model limit of our simplified Lagrangian. The yellow regions

correspond to the points that pass the χ2 test at 95% confidence level (CL), see Appendix K

for details. Solid black contours denote the regions for which α1L =−α1R = 1, while dashed

contours surround the regions obtained with α1L =α1R = 1. The areas in blue are theoretically

inaccessible. The lower left region in dark blue, in particular, corresponds to MΨ/ f ≡ gΨ < yL .

The upper dark and light blue regions correspond instead to points violating the perturbative

limits on gΨ given by respectively Eq. (5.31) with N = 8 and Eq. (5.32) with N f = 24 (see section

5.2.2 for a discussion). The difference between these two regions can be taken as an indication

of the uncertainty related to such perturbative bound.

In the left panel of figure 5.3 the allowed (lighter yellow) region extends up to ξ� 0.2 for masses

MΨ in the 2−3 TeV range. Values of ξ so large are possible in this case because the fermionic

contribution ΔT̂Ψ turns out to be positive and sufficiently large to compensate for both the

negative ΔT̂h in Eq. (5.56) and the positive ΔŜρ and ΔŜh in eqs. (5.48), (5.49). For larger MΨ
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Figure 5.3 – Allowed regions in the (MΨ,ξ) plane for F1 = 0.3 (left panel) and F1 = 1 (right
panel). See the text for an explanation of the different regions and of the choice of parameters.

the fermionic contribution ΔT̂Ψ becomes too small and such compensation fails. In this

case, however, the strongest bound comes from the perturbativity limit (blue region), which

makes points with large MΨ at fixed ξ theoretically inaccessible. Notice that large values of ξ

become excluded if one considers the choice α1L =α1R = 1 leading to the dashed contour. The

large difference between the solid and dashed curves (i.e. lighter and darker yellow regions)

depends on the sign correlation between ΔT̂Ψ and δgLb . In the case of the solid line, the two

parameters turn out to be anti-correlated (e.g. positive ΔT̂Ψ and negative δgLb), allowing for

the compensation effect by ΔT̂Ψ. In the case of the dashed line, instead, the signs of the two

parameters are correlated (both positive), so that when ΔT̂Ψ is large, δgLb is also large and

positive. This makes it more difficult to pass the χ2 test, since data prefer a negative δgLb .

In the right panel of figure 5.3, obtained with F1 = 1, the allowed yellow region shrinks because

the larger value of F1 implies a smaller yL hence a smaller ΔT̂Ψ. In this case the χ2 test is passed

only for ξ< 0.06, and the difference between the solid and dashed lines is small since the large

and positive ΔŜ always dominates the fit. Masses MΨ larger than ∼ 5 TeV are excluded by the

perturbative bound, unless one considers smaller values of ξ.

The results of figure 5.3 can significantly change if the parameter c is allowed to be different

from zero. In particular, as one can verify from our formulae in Appendix J, positive values

of c increase ΔT̂ and as a result the allowed regions in figure 5.3 shift to the right towards

larger values of MΨ. In this case the perturbative bound excludes a large portion of the region

passing the χ2 test. The effect of varying c is illustrated by figure 5.4, which shows the 95%

CL allowed regions in the plane (c,α) for F1 = 0.3 (left panel) and F1 = 1 (right panel). In both

panels we have set α≡ α1L =−α1R (ensuring positive ΔT̂Ψ and negative δgLb). The yellow,
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Figure 5.4 – Allowed regions in the (c,α) plane, with c = cL = cR , for F1 = 0.3 (left panel) and
F1 = 1 (right panel). The yellow, orange and red regions correspond to ξ= 0.05, 0.1 and 0.15
respectively. See the text for an explanation of the choice of the other parameters.

orange and red regions are obtained respectively for ξ= 0.05, ξ= 0.1 and ξ= 0.15, with the

masses of the resonances fixed at their perturbative upper bound Mρ = MΨ = 4π f /
�

N −2

which for N = 8 gives respectively ∼ 6/4/3.2 TeV. Notice that when increasing the value of

F1, which corresponds to reducing yL , the allowed region shifts towards positive values of c.

As already mentioned, this is because for smaller yL a larger positive value of c is needed to

get a large enough ΔT̂Ψ. Obviously, larger values of ξ correspond to smaller allowed regions,

as already clear from figure 5.3. Finally, notice that the vertically symmetric structure of the

allowed regions is due to the quadratic dependence of δgLb on α. From these plots, one can

see that for resonances conceivably out of direct LHC reach and for ξ∼ 0.1, corresponding

to about 20% tuning of the Higgs mass, both α and c are allowed to span a good fraction of

their expected O(1) range. No dramatic extra tuning in these parameters seems therefore

needed to meet the constraints of EWPT. In particular, considering the plot for F1 = 1 (at

the right), one notices that the bulk of the allowed region is at positive c. For instance by

choosing c ∼ 0.2−0.5 the plot in the (ξ, MΨ) plane for F1 = 1 becomes quite similar to the

one at the left of figure 3 valid for F1 = 0.3: there exists a “peak" centered at MΨ ∼ 2−4 TeV

and extending up to ξ∼ 0.2. The specific choice c = 0 is thus particularly reductive for F1 = 1

(right panel of figure 5.3), but this reduction disappears for positive c. Overall we conclude

that for ξ∼ 0.1 and for resonances a bit above safe LHC reach, the correct value of the Higgs

quartic can be obtained and EWPT passed with only a mild additional tuning associated with

a sign correlation α1L =−α1R , and a correlation between c and F1 (ex. c > 0 for F1 = 1). These

correlations allow for compensation among the various contributions to T̂ and δgLb : it is

clear that EWPT are not passed beautifully, but they are passed. If forced to quote an extra
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figure of tuning we could say it is about 1/4 = (1/2)× (1/2), given about 1/2 of the plausible

choices for both αi and ci are allowed.

5.6 Discussion

In this Chapter we tried to assess how plausible a scenario yielding no new particles at the

LHC can be provided using the TH construction. We distinguished three possible classes of

models: sub-hypersoft, hypersoft and super-hypersoft, with increasing degree of technical

complexity and decreasing (technical) fine tuning. We then focused on the CH incarnation of

the simplest option, the sub-hypersoft scenario. The marriage of twinning and compositeness

is practically obligatory, especially as concerns sub-hypersoft models, where the boost factor

for the mass of colored partners (Eq. (5.8)) at fixed tuning is roughly given by

g∗�
2yt

× 1√
ln(m∗/mt )

(5.61)

and hence the gain rests entirely on the relative coupling strength g∗/
�

2yt . We attempted a

more precise estimate of the upper bound on g∗/
�

2yt , as compared with previous studies

(e.g. Ref. [118]). We found, by independent but consistent estimates based on a toy sigma

model (Section 5.1.1) and on a simplified CH model (Section 5.2.2), that the upper bound

ranges between ∼ 3, in Eq. (5.10), and ∼ 5, in Eq. (5.31). These numbers are somewhat below

the NDA estimate 4π∼ 12. Consequently for a mild tuning ε∼ 0.1 the upper bound on the

mass of the resonances with SM quantum numbers is closer to the 3−5 TeV range than it is

to 10 TeV. This gain, despite being less spectacular than naively expected, is still sufficient

to push these states out of direct reach of the LHC, at the cost of resorting to full strong

coupling. One practical implication of this is that, unlike in ordinary CH models, there is no

real computational gain in considering holographic realizations: the boost factor is controlled

by the KK coupling, and in the most interesting region the KK coupling is strong and the

whole 5D description breaks down. In this situation an explicit 5D construction, such as the

ones studied in Refs. [120, 121] for instance, would be just as good as our simplified model

when used to obtain rough numerical estimates, but may not be pushed further. Indeed,

using a simplified model, we have checked that EWPT can be satisfied in a sizable portion

of parameter space, given some interplay among the various contributions. In particular

the IR corrections to T̂ and Ŝ are enhanced by ln(m∗/mh), and for ξ> 0.1 the compensating

contribution to T̂ , which decreases like 1/m2∗, is necessary. Given that perturbativity limits m∗
to be below 5 TeV for ξ> 0.1 (see the upper blue exclusion region in Fig. 5.3) this compensation

in EWPT can still take place at the price of a moderate extra tuning. For ξ of order a few percent

on the other hand, EWPT would be passed without any additional tuning, while the masses of

SM-charged resonances would be pushed up to the 10 TeV range, where nothing less than a
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100 TeV collider would be required to discover them, and barely so [36, 101].

Although EWPT work similarly in the CH and composite TH frameworks, the two are crucially

different when it comes to contributions to the Higgs quartic. In the CH these are enhanced

when g∗, i.e. m∗/ f , is strong and, as discussed for instance in Ref. [7], in order to avoid

additional tuning of the Higgs quartic, g∗ cannot be too strong. According to the study in

Refs. [30, 34] the corresponding upper bound on the mass of the colored top partners in CH

reads roughly m∗/ f ∼< 1.5, which should be compared to the upper bound m∗/ f ∼< 5 from

strong coupling we found in Eq. (5.31). The Higgs quartic protection operated by the TH

mechanism allows us to take m∗/ f as large as possible, allowing the colored partners to be

heavier at fixed f , hence at fixed fine tuning ξ. In the end the gain is about a factor of 5/1.5 ∼ 3,

not impressive, but sufficient to place the colored partners outside of LHC reach at moderate

tuning ξ∼ 0.1.

Finally, we comment on the classes of models not covered in this Chapter: the hypersoft and

super-hypersoft scenarios. The latter requires combining supersymmetry and compositeness

with the TH mechanism, which, while logically possible, does not correspond to any existing

construction. Such a construction would need to be rather ingenious, and we currently do

not feel compelled to provide it, given the already rather epicyclic nature of the TH scenario.

The simpler hypersoft scenario, though also clever, can by contrast be implemented in a

straightforward manner, via e.g. a tumbling SO(9) → SO(8) → SO(7) pattern of symmetry

breaking. The advantage of this approach is that it allows us to remain within the weakly-

coupled domain, due to the presence of a relatively light twin Higgs scalar mode σ, whose

mass can be parametrically close to that of the twin tops, ∼ yt f (around 1 TeV for ξ ∼ 0.1).

As well as giving rise to distinctive experimental signatures due to mixing with the SM Higgs

[103], the mass of the light σ acts as a UV cut-off for the IR contributions to Ŝ and T̂ in

Eqs. (5.49) and (5.56)) [137]. For sufficiently light σ then, less or no interplay between the

various contributions is required in order to pass EWPT. Together with calculability, this

property singles out the hypersoft scenario as one of the more promising TH constructions.
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6 Conclusion

In this thesis, we explored two different roads to stabilize the EW scale against quantum

radiative corrections. The first, more conventional possibility is a natural extension of the

SM endowed with a protection mechanism to dynamically explain the lightness of the Higgs

particle. Along this direction, we analyzed Composite Higgs models, theories that conceive

the Higgs as a bound state of a new strongly interacting dynamics which is not concerned

by any problem of hierarchies. As an example, we constructed the minimal scenario with a

SO(5)/SO(4) coset and studied in detail the phenomenology of heavy vector resonances. In

order to both have a light Higgs and comply with precision tests, we naturally expect that the

spectrum of this class of models is characterized by two different scales, a lower one related

to the top partner mass and a higher one for the composite spin-1 resonances. These latter

are assumed to be heavier, due to the constraints from Ŝ parameter measurements, with

a mass of ∼ 2 TeV. We presented a recast of the LHC direct searches of new heavy vectors

and translated the experimental data into bounds on the parameter space of the minimal

CH model. Interestingly enough, this procedure offers a re-interpretation of the existing

measurements as a test of the notion of naturalness and as a mean of quantifying how natural

the Higgs sector is expected to be. We found that several portions of parameter space are

already excluded by the combination of direct and indirect constraints and that naturalness

should have a quite elusive character in composite extensions of the SM, due to the apparent

difficulty to detect any new state at the LHC, be that a top partner or a vector.

Motivated by the rising tension between experiments and theoretical expectations, we studied

a second more elaborate road which implies that the particles responsible for making the

Higgs light are uncolored and therefore almost un-discoverable at the LHC. This is the general

paradigm of neutral naturalness, which can be efficiently incarnated in the Twin Higgs scenario.

We presented a general UV completion of the original model into a composite setting and we

gave an effective low-energy description of its features, showing that, differently from what

we could have expected, the TH symmetry protection mechanism cannot automatically be

141



Chapter 6. Conclusion

uplifted to the UV theory. Using symmetry and selection rules, one can easily show that the

original symmetry breaking pattern cannot protect the Higgs from large quadratic corrections

due to loops of heavy composite resonances, contributions which are sizable and as important

as those arising from the loops of elementary particles considered in the original model. The

minimal possibility for a consistent realization of the Twin Higgs paradigm into a composite

theory is to have a SO(8)/SO(7) spontaneous symmetry breaking coset which is the basic

ingredient of the Composite Twin Higgs (CTH) model introduced in this thesis. We also

explored the implications of a strongly interacting UV completion of the TH on the cut-off

scale of the theory, namely the energy scale where the SM-charged resonances are expected.

One could naively imagine that, due to the strongly coupled nature of the CTH, the parametric

gain in fine-tuning granted by the TH mechanism can be maximized so as to push m∗ far up

in the UV, to values of order ∼ 10 TeV, as we saw in Chapter 3. This conclusion would also be

supported by an exact computation of the Higgs boson mass in these scenarios. We carried

out this estimate up to three loops order in Chapter 4 and found with a model-independent

procedure that a 125 GeV Higgs can be easily reproduced in TH theories only with RG effects if

m∗ reaches 10−20 TeV. For lower values of the cut-off, the experimental measurement can be

predicted with an increasingly bigger, but still in a natural O (1) range, UV correction, which

makes the result more dependent on the specific higher energy physics. Despite the naive

estimate that m∗ may be pushed way out of the LHC reach, however, a closer inspection to

the properties of CTH models shows that several requirements bring the cut-off scale much

closer to the TeV threshold. A first obvious observation is related to the perturbativity of the

effective field theory construction under scrutiny: since the CTH is strongly interacting, any

computation is valid only in the window of parameter space where the strong coupling is small

enough to allow a perturbative treatment. Roughly, we expect the perturbative limit to be

g∗ ∼<
4π�

N
, (6.1)

where N specifies the symmetry breaking pattern SO(N )/SO(N−1). Since the coset SO(8)/SO(7)

demands the existence of big multiplets which are invariant under the global symmetry, the

coupling is constrained to be no bigger than g∗ ∼ 4, pointing towards a less promising scenario.

The scale m∗ ∼ g∗ f , in fact, must lie at ∼ 5 TeV, still out of the LHC reach but making this

model falsifiable and therefore discoverable in a future post-LHC machine. Another important

requirement, the agreement with EWPT, was extensively analyzed showing that lighter top

partners are nevertheless required also in CTH constructions to compensate the large negative

correction to the T̂ parameter due to the compositeness of the Higgs particle. In general,

light fermionic resonances must be present already at ∼ 2 TeV, in this case not because of

their role to cancel the large quadratic contributions to the Higgs mass term, but because of

their positive enhancement of the T̂ parameter. This result furthermore confirms that, even

thought the CTH construction may escape detection at the present 14 TeV machine, it will
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definitely be testable at a future 100 TeV collider.

An interesting question remains open to further future investigations, namely whether it is

possible to discover neutral naturalness and probe CTH models already at the LHC and with

the center of mass energy at our disposal. One possibility would be to find a striking evidence

of the uncolored mirror states, which are a necessary element of any theory incarnating neutral

naturalness. The light colorless top partners are, however, way more difficult to produce at

the LHC than their colored version in natural theories. The twin partners can be generated

through the mixing between the Higgs and its mirror, which exists as a consequence of the TH

mechanism to stabilize the EW scale. This results in a Higgs portal production: the colliding

protons emit a Higgs which mixes, even modestly, with a heavier singlet, this latter decaying

to uncolored resonances. The production rate is expected to be small and the final states

would evade detection, appearing only as missing transverse energy, thus posing difficulties

for a clear LHC detection. Another possibility would be the discovery of the heavier twin

Higgs, a SM-neutral scalar singlet. Again, this direction does not seem to be the best strategy:

this kind of particles have low cross-sections and may be too wide to appear as a resonance.

Furthermore, they are present in many other extensions of the SM, so that a potential discovery

of a heavy scalar with properties similar to the Higgs does not necessarily confirm the TH

constructions.

A more interesting alternative exists to make the neutral natural scenario falsifiable at the

LHC, namely the production of twin gluons hadronizing into meta-stable bound states which

can decay into SM particles. The mirror glueballs thus formed may decay preferentially to

SM states because in most of the realistic neutral natural scenarios they are expected to

be the lightest hadronic compounds in the twin sector. Cosmological considerations, in

fact, suggests that, if the twin quarks were lighter compared to the mirror QCD confinement

scale, than an unacceptably big contribution to the dark radiation would be generated, see

for instance [140, 142]. Given the present constraints on the effective number of neutrino

species due to the Planck collaboration [143], Ne f f = 3.2± 0.5, the existence of new light

species is severely constrained. We can avoid any difficulty by supposing that the Z2 symmetry

breaking, necessary to give rise to the right amount of EWSB, takes place in the Yukawa sector

of the theory, so that the twin quarks are much heavier than the twin QCD confinement

scale. In the early universe, the SM and its mirror are in equilibrium and interact with each

other through the Higgs portal, so that they have the same temperature. At some decoupling

temperature Td , the interaction between the two sectors becomes inefficient and they evolve

independently; the twin particles eventually decay into dark photons and neutrinos giving an

extra contribution to the dark radiation. To satisfy the present bound, the SM colored states

should generate the usual effective number of degrees of freedom, but their twin counterparts

should contribute very little to the number of mirror degrees of freedom. This can happen
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if the twin quarks are heavy with respect to the twin QCD confinement scale and the strong

phase transition is purely gluonic, differently to the case of the SM [142]. In this condition,

TH models can evade the bound on Ne f f and provide a realistic cosmology, implying at the

same time that the lightest hadronic states must be the glueballs. The production of this latter

mirror hadron at the LHC would finally generate striking confining hidden valley signatures,

discussed for instance in [137]. As an example, we can think about a gluon fusion process

that generates a Higgs through top loops; the SM Higgs mixes with its heavier mirror, which

can decay into twin gluons through a loop of twin fermions. The branching fraction for this

event is around 0.1%. After production, the twin gluons hadronize forming glue-balls; most of

them will escape detection again as missing transverse energy, but the lightest state has the

right quantum numbers to mix with the Higgs and decay back to SM particles, which can be

detected at the LHC. The detection of the decay products of this light twin hadron depends

on the glue-ball mass. If it is very heavy, its decay is fast and its production rate through

the Higgs mixing may be too rare to be significantly observed. For lower masses, instead,

the lightest glue-ball can have a bigger lifetime, so that its decay is displaced with respect to

the interaction point. The displaced vertex decay may provide a good signature at the LHC,

capable of compensating the low production rate and give un-disputable proof of the mirror

gluon states. Overall, this scenario would offer the possibility to probe TH theories and similar

models before the advent of a futuristic collider. The precise implications of displaced vertex

decays and consequent hidden valley phenomenology require a better understanding of both

the experimental methods of detection and a precise theoretical estimate of twin glue-ball

production rates in Higgs decay, which is complicated due to our poor understanding of

hadronization, especially in the mirror sector. A complete assessment of the LHC coverage of

neutral natural models requires therefore deeper studies on the experimental as well as on the

theoretical side. Our brief discussion shows, however, that, although seeming very elaborate

constructions to provide a last refuge to the naturalness paradigm, Twin Higgs theories and

their UV-completions may provide a falsifiable alternative for physics at the EW scale.

Whether realized as a conventional extension with colored new light resonances or as a neutral

theory with only uncolored states at the TeV scale, naturalness remains the most important

paradigm to expect and model new physics at the LHC. Its role as a leading principle for particle

physics may be disputed and new approaches may be needed in the future to revitalize our

understanding of nature at its deepest structural level and to understand the very concrete

possibility of no discoveries contradicting the SM at the intensity frontier. The upcoming

experimental data collected in the second run of the LHC are therefore of crucial importance

to understand to what extent naturalness or neutral naturalness can be realistic paradigms

for high energy physics, fueling our quest for a deep understanding of matter at its most

fundamental level.
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A CCWZ variables

In this Appendix, we give some details about the CCWZ construction and generators for both

the SO(5)/SO(4) and SO(8)/SO(7) cosets. We refer to [9] and [10] for a detailed analysis of this

procedure and we closely follow [7] and [118] for establishing our notation.

A.1 CCWZ construction for the SO(5)/SO(4) coset

We indicate with T â (â = 1, · · · ,4) the broken generators parametrizing the coset SO(5)/SO(4)

and with T aL /aR (aL/aR = 1,2,3) the SO(4) unbroken generators, whose expressions can be

found in [7]. The 5×5 Goldstone boson matrix, U (Π) = ei
�

2/ f Πâ T â
, has the following form in

the unitary gauge:

U =

⎛⎜⎜⎝
I3

cos
(
θ+ h

f

)
sin

(
θ+ h

f

)
−sin

(
θ+ h

f

)
cos

(
θ+ h

f

)
⎞⎟⎟⎠ , (A.1)

with the d â
μ , E aL

μ and E aR
μ variables defined by the relation:

−iU †DμU = d â
μT â +E aL

μ T aL
L +E aR

μ T aR . (A.2)

Dμ is the SM covariant derivative containing the elementary gauge fields,

Dμ = ∂μ− i gel

W i
μ

2
σi − i g ′

el Y Bμ, (A.3)

where i = 1,2,3 and σi are the Pauli matrices.

The d and E symbols, on the other hand, can be easily computed once U (Π) is known; up to
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quadratic order in the unitary gauge their expression is given by:

d â
μ = Aâ

μ+
�

2

f
∂μh +

�
2

2 f
h(δaL â AaL

μ −δaR â AaR
μ ),

E aL
μ = AaL

μ −δaL â

�
2

2 f
h Aâ

μ,

E aR
μ = AaR

μ −δaR â

�
2

2 f
h Aâ

μ,

(A.4)

where we have defined the Kronecker δâi , for a generic index i = 1,2,3, as:

δi â =
{

1 if â = i

0 if â �= i or â = 4
.

The external gauge fields appearing in the formulae for the d and E symbols, for a given value

of the angle θ, have the following forms:

Aâ
μ = sinθ�

2
(δâi gel W i

μ−δâ3g ′
el Bμ), A4̂

μ = 0,

AaL
μ = δaL i

(
1+cosθ

2

)
gel W i

μ+δaL 3
(

1−cosθ

2

)
g ′

el Bμ,

AaR
μ = δaR i

(
1−cosθ

2

)
gel W i

μ+δaR 3
(

1+cosθ

2

)
g ′

el Bμ,

(A.5)

where gel and g ′
el are the weak coupling of the elementary sector.

Under a global transformation g ∈ SO(5), the Goldstone boson matrix transforms as:

U (Π) → gU (Π)h†(Π, g ), (A.6)

where h(Π, g ) ∈ SO(4). As a consequence of Eq. (A.2), the previous relation implies the follow-

ing transformation rules for d and E :

d â
μ → h(Π, g )d â

μh†(Π, g )

E aL/R
μ → h(Π, g )E aL/R

μ h†(Π, g )− i h(Π, g )∂μh†(Π, g ),
(A.7)

showing that both these variables transform under a local SO(4) symmetry when acted upon

with g . Since in particular E aL/R
μ behaves like a gauge field under h(Π, g ), we can introduce the

covariant derivative

∇μ = ∂μ− i E aL
μ T aL − i E aR

μ T aR (A.8)
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and a field strength

E L/R
μν = ∂μE L/R

ν −∂νE L/R
μ + i [E L/R

μ ,E L/R
ν ]

E L/R
μν → h(Π, g )E L/R

μν h†(Π, g ),
(A.9)

where E L/R
μ = E aL/R

μ T aL/R .

A.2 CCWZ construction for the SO(8)/SO(7) coset

We define now the generators of the SO(8) algebra and describe the SO(8)/SO(7) symmetry

breaking pattern, introducing the CCWZ variables for this coset.

Generators and Σ matrix

We start by listing the twenty-eight generators of SO(8) decomposing them into irreducible

representations of the unbroken subgroup SO(7), 28 = 7⊕21. They can compactly be written

as:

(Ti j )kl =
i�
2

(δi kδ j l −δi lδ j k ), (A.10)

with i , j ,k, l = 1, · · · ,8. The seven broken generators transform in the 7 of SO(7) and they can

be chosen to be the following ones:

(T 7
α)βγ =

i�
2

(δ8βδαγ−δ8γδαβ), (A.11)

with α = 1 · · ·7 and β,γ = 1, · · · ,8. With this choice, the vacuum expectation value for the

spontaneous breaking of the approximate global symmetry points in the direction:

v = f (0,0,0,0,0,0,0,1)t . (A.12)

The remaining unbroken generators transform in the ad-joint representation of SO(7); we

collectively call them:

(T 21
αβ)γρ = i�

2
(δαγδβρ−δαρδβγ), (A.13)

with α,β= 1 · · ·7 and γ,ρ = 1 · · · ,8.

The generators that are gauged in the Twin Higgs model are obtained by taking linear combi-

nations of the broken and unbroken ones in order to reconstruct the orthogonal subgroups

SO(4) ∼ SU (2)L ×SU (2)R and S̃O(4) ∼ S̃U (2)L × S̃U (2)R contained in SO(8). We choose them
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to be

(TL)α =
(

T α
L 0

0 0

)
, (TR)α =

(
T α

R 0

0 0

)
, (T̃L)α =

(
0 0

0 T α
L

)
, (T̃R)α =

(
0 0

0 T α
R

)
, (A.14)

where T α
L and T α

R are the 4×4 generators of SO(4):

(T α
L,R)i j =− i

2

[
1

2
εαβγ

(
δ
β

i δ
γ

j −δ
β

j δ
γ

i

)
±
(
δαi δ

4
j −δαj δ

4
i

)]
(A.15)

with α= 1, · · ·3 and i , j = 1, · · ·4.

The spontaneous breaking of SO(8) to SO(7) delivers seven Goldstone bosons, that we collect

in the vector Π= (π1, · · · ,π7)t . They can be arranged in the Goldsotne matrix in the usual way,

Σ(Π) = ei
�

2
f Π·T 7 =

⎛⎝ I7 − ΠΠt

Πt ·Π
(
1−cos

(�
Πt ·Π

f

))
Π�
Πt ·Π sin

(�
Πt ·Π

f

)
− Π�

Πt ·Π sin
(�

Πt ·Π
f

)
cos

(�
Πt ·Π

f

) ⎞⎠ ; (A.16)

this latter transforms non-linearly under the action of an SO(8) group element, g , according

to the standard relation:

Σ(Π) → g ·Σ(Π) ·h†(Π, g ), (A.17)

where h(Π, g ) ∈ SO(7) and implicitly depends on the global group transformation. We choose

the Higgs particle to be the Goldstone boson aligned with the generator T 7
4 ; in the unitary

gauge, all the remaining Goldstones are non-propagating fields and the Π vector becomes

Π= (0, · · · , H = 〈h〉+h, · · · ,0), (A.18)

so that the Σ matrix simplifies to:

Σ(Π) = ei
�

2
f HT 7

4 =

⎛⎜⎜⎜⎜⎜⎝
I3 0 0 0

0 cos H
f 0 sin H

f

0 0 I3 0

0 −sin H
f 0 cos H

f

⎞⎟⎟⎟⎟⎟⎠ . (A.19)

The CCWZ variables

We introduce now the dμ and Eμ symbols of the SO(8)/SO(7) coset structure. The external

weak gauging of the SU (2)L ×U (1)R3 subgroup of SO(4) introduces the SM vector bosons,

whereas the external weak gauging of the S̃U (2)L subgroup of S̃O(4) serves for the analogous

description of their Twin counterparts. As a consequence, the covariant derivative can be
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written as:

Dμ = ∂μ− i A A
μT A , (A.20)

with

A A
μT A = g2W α

μ (TL)α+ g1Bμ(TR)3 + g̃2W̃ α
μ (T̃L)α, (A.21)

where g2, g1 and g̃2 are the gauge couplings corresponding the the three different gauged

subgroups. The CCWZ symbols are consequently derived through the Maurer-Cartan form,

Σ†(Π)DμΣ(Π) = i d i
μ(Π)T 7

i + i E a
μ(Π)T 21

a , (A.22)

with d i
μ and E a

μ corresponding respectively to the decomposition of this latter under the

broken and unbroken generators of the global group SO(8). It can be shown that these two

symbols transform under SO(8) following the rules of a local SO(7) transformation,

dμ ≡ d i
μT 7

i → h(Π, g )dμh†(Π, g ), Eμ ≡ E a
μT 21

a → h(Π, g )(Eμ− i∂μ)h†(Π, g ), (A.23)

where g and h are the group elements previously defined.

The dμ and Eμ terms are in general a function of all the seven Goldstone bosons which are

present in our model. We report here their simplified expression in the unitary gauge after

EWSB:

dμ =−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g2�
2

(√
ξ+ h

f

√
1−ξ

)
W 1

μ

g2�
2

(√
ξ+ h

f

√
1−ξ

)
W 2

μ

1�
2

(√
ξ+ h

f

√
1−ξ

)(
g2W 3

μ − g1Bμ

)
−�2

∂μh

f
g̃2�

2

(√
1−ξ− h

f

√
ξ

)
W̃ 1

μ

g̃2�
2

(√
1−ξ− h

f

√
ξ

)
W̃ 2

μ

g̃2�
2

(√
1−ξ− h

f

√
ξ

)
W̃ 3

μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.24)

and

Eμ =−i

(
E 1
μ 03×3

03×3 E 2
μ

)
, (A.25)
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with

E 1
μ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

(
−g2W 3

μ −Bμg1

)
1
2 g2W 2

μ

(
h
�

ξ− f
�

1−ξ
)
g2W 1

μ

2 f

1
2

(
g2W 3

μ +Bμg1

)
0 −1

2 g2W 1
μ

(
h
�

ξ− f
�

1−ξ
)
g2W 2

μ

2 f

−1
2 g2W 2

μ
1
2 g2W 1

μ 0

(
h
�

ξ− f
�

1−ξ
)(

g2W 3
μ−Bμg1

)
2 f(

f
�

1−ξ−h
�

ξ
)
g2W 1

μ

2 f

(
f
�

1−ξ−h
�

ξ
)
g2W 2

μ

2 f

(
f
�

1−ξ−h
�

ξ
)(

g2W 3
μ−Bμg1

)
2 f 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.26)

and

E 2
μ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
(�

ξ f +h
�

1−ξ
)
g̃2W̃ 1

μ

2 f −
(�

ξ f +h
�

1−ξ
)
g̃2W̃ 2

μ

2 f −
(�

ξ f +h
�

1−ξ
)
g̃2W̃ 3

μ

2 f(�
ξ f +h

�
1−ξ

)
g̃2W̃μ

2 f 0 −1
2 g̃2W̃ 3

μ
1
2 g̃2W̃ 2

μ(�
ξ f +h

�
1−ξ

)
g̃2W̃ 2

μ

2 f
1
2 g̃2W̃ 3

μ 0 −1
2 g̃2W̃μ(�

ξ f +h
�

1−ξ
)
g̃2W̃ 3

μ

2 f −1
2 g̃2W̃ 2

μ
1
2 g̃2W̃μ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.27)

In the previous formulae, we have explicitly introduced the fine-tuning parameter ξ, which is

related to the EW scale v and the Higgs VEV f by the usual relation

ξ=
(

v

f

)2

= sin2
( 〈h〉

f

)
; (A.28)

we can then obviously identify 〈h〉
f with the misalignment angle between the direction of the

vector v , Eq.(A.12), and the preferred orientation in the coset space induced by the external

gauging.

We finally consider how to write down an effective Lagrangian description for composite

fermions, Ψ, in the CCWZ notation. These latter can be classified according to the representa-

tion of the unbroken group SO(7) they belong to. Under the non-linearly realized global SO(8)

they therefore transform as

Ψ→ h(Π, g )Ψ, (A.29)

so that in order to write an invariant kinetic term we must introduce the covariant derivative

∇μΨ= (∂μ+ i Eμ)Ψ. (A.30)
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B Heavy vector contribution to the Elec-

troweak Precision Observables

In this Appendix, we briefly study the contribution to the Electroweak Precision Observables

generated by integrating out at tree level the vectors in our models. In general, the deviations

from the SM in the vector boson vacuum polarization amplitudes can be described by four

effective form factors: Ŝ, T̂ ,W and Y . New physics contributions to the four parameters can

be expressed as a function of the Wilson coefficients of the leading dimension-6 operators

obtained by integrating out the BSM sector. If the BSM sector respects the custodial symmetry,

as in the case of the minimal composite Higgs model, T̂ is vanishing and we are left with the

remaining three oblique parameters. In the SILH basis, [24], Ŝ comes from the linear combi-

nation of OW +OB , W and Y on the other hand are generated by O2W and O2B respectively.

In order to get the Wilson coefficients of these dimension-6 operators, we integrate out the ρ

resonances using the EOM at O(p3):

ρ
aL /aR
μ = E aL /aR

μ − 1

M 2
ρL/R

∇μE aL /aR μν+O(p5), ρX
μ = Bμ−

∂μBμν

M 2
ρX

+O(p5); (B.1)

we have to keep up to three derivative terms in the EOM, because the operators O2W and

O2B include six derivatives according to the SILH power counting (gauge fields count as one

derivative). Once evaluated on the equation of motions, we obtain from the Lρ term in Eqs.

(2.14), (2.30), (2.36), the following low-energy Lagrangian:

L6 =− 1

4g 2
ρL

(E aL
μν)2 − 1

4g 2
ρR

(E aR
μν)2 − 1

4g 2
ρX

BμνBμν− 1

2

1

M 2
ρL

g 2
ρL

∇μE aLμν∇ρE aLρ
ν

− 1

2

1

M 2
ρR

g 2
ρR

∇μE aRμν∇ρE aRρ
ν − 1

2

1

M 2
ρX

g 2
ρX

∂μBμν∂ρBρ
ν+·· · ,

(B.2)

where the dots imply terms more than quadratic in the field strength and with at least four

partial derivatives. The first two terms will give rise to OW and OB and the last two terms will

instead lead to O2W ,O2B . To see this explicitly, we rewrite the formulae for the Eμ connections
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in terms of the Higgs current; the relevant terms are

E aL
μ = δaL i gel W i

μ+
i

f 2 H † σ
a

2

←→
DμH +·· · ,

E 3R
μ = g ′

el Bμ+ i

f 2 H † 1

2

←→
DμH +·· · .,

(B.3)

and, after substituting in B.2, we get:

L6 = i g

g 2
ρL

f 2
H † σ

a

2

←→
D μHDνW a

μν+
i g ′

g 2
ρR

f 2
H † 1

2

←→
D μH∂νBμν− 1

2

g 2

g 2
ρL

M 2
ρL

DμW a
μνDρW aρν

− 1

2

g ′2

g 2
ρR

M 2
ρR

∂μBμν∂ρBρν− 1

2

g ′2

g 2
ρX

M 2
ρX

∂μBμν∂ρBρν.

(B.4)

From the previous formulae, we can immediately find the expression of the three oblique

parameters:

Ŝ = cW +cB = a2
ρL

m2
W

M 2
ρL

+a2
ρR

m2
W

M 2
ρR

, W = g 2m2
W

g 2
ρL

M 2
ρL

, Y = g ′2m2
W

g 2
ρR

M 2
ρR

+ g ′2m2
W

g 2
ρX

M 2
ρX

. (B.5)
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C Heavy vector couplings

In this Appendix, we give some technical details on the structure of the Lagrangian in the mass

eigenstate basis, for the case of a heavy vector triplet and a heavy vector singlet. We will focus

on trilinear interactions, neglecting for simplicity the quartic vertices.

We start considering the Lagrangian of a vector triplet with top partners in the fourplet, L T
ρ .

Without making explicit reference to the representation under which the spin-1 resonances

fall, we can rewrite in full generality the Lagrangian after rotation to the mass eigenstate basis

as a set of three fields, the charged ρ±
μ and the neutral ρ0

μ, interacting with the SM particles

and the top partners. The couplings between the heavy vectors and the other bosons and

fermions are in general a function of all the free parameters of the theory and they explicitly

depend on the model under consideration; we will name them gρ+i j , for the couplings of

the charged pair, and gρ0i j , for the couplings of the neutral state, where i and j generically

stand for two particles the resonance interacts with. We can therefore introduce the following

decomposition for L T
ρ :

L T
ρ =L T

g bh +L T
e f +L T

tb +L T
T P tb +L T

T P , (C.1)

where L T
g bh contains the interactions between the ρ’s and the gauge bosons and between the

ρ’s, the Higgs and a gauge boson, whereas L T
e f , L T

tb , L T
T P tb and L T

T P comprise, respectively,

the couplings of the spin-1 heavy states to fully elementary fermions, to top and bottom quarks,

to one top partner and one heavy quarks and finally to two top partners. It is straightforward

to derive the form of the different contributions in the mass eigenstate basis and in the unitary
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gauge; we find:1

L T
g bh = i gρ0W W

[
(∂μW +

ν −∂νW +
μ )W μ−ρ0ν+ 1

2
(∂μρ

0
ν−∂νρ

0
μ)W μ+W ν−+h.c.

]
+i gρ+W Z

[
(∂μρ

+
ν −∂νρ

+
μ )W μ−Z ν− (∂μW −

ν −∂νW −
μ )ρμ+Z ν

+(∂μZν−∂νZμ)ρμ+W ν−+h.c.
]+ gρ0 Z H hρ0

μZμ+ gρ+W H (hρ+
μW −

μ +h.c.),

(C.2)

L T
e f =

1�
2

gρ+ f f L(ρ+
μψ̄uγ

μPLψd +h.c.)

+ρ0
μψ̄uγ

μ

[
1

2
(gρ0 f f L − gρ0 f f Y )PL + gρ0 f f Y Q[ψu]

]
ψu

+ρ0
μψ̄dγ

μ

[
−1

2
(gρ0 f f L − gρ0 f f Y )PL + gρ0 f f Y Q[ψd ]

]
ψd ,

(C.3)

L T
tb = 1�

2
gρ+tb(ρ+

μ t̄Lγ
μbL +h.c.)

+gρ0tL tL
ρ0
μ t̄Lγ

μtL + gρ0tR tR
ρ0
μ t̄Rγ

μtR + gρ0bL bL
ρ0
μb̄Lγ

μbL ,
(C.4)

L T
T P tb = 1�

2

[
ρ+
μ

(
gρ+TL bL T̄Lγ

μbL + gρ+X 2
3 L bL X̄ 2

3 Lγ
μbL + gρ+BL tL t̄Lγ

μBL

+gρ+X 5
3 L tL X̄ 5

3 Lγ
μtL + gρ+BR tR t̄Rγ

μBR + gρ+X 5
3 R tR X̄ 5

3 Rγ
μtR

)
+h.c.

]
+ρ0

μ

(
gρ0TL tL

T̄Lγ
μtL + gρ0 X 2

3 L tL
X̄ 2

3 Lγ
μtL + gρ0BL bL

B̄Lγ
μbL

+gρ0TR tR
T̄Rγ

μtR + gρ0 X 2
3 R tR

X̄ 2
3 Rγ

μtR +h.c.

)
,

(C.5)

L T
T P = 1�

2

[
ρ+
μ

(
gρ+TL BL T̄Lγ

μBL + gρ+X 2
3 L BL X̄ 2

3 Lγ
μBL + gρ+X 5

3 L TL X̄ 5
3 Lγ

μTL

+(L ↔ R)+ gρ+X 5
3

X 2
3

X̄ 5
3
γμX 2

3

)
+h.c.

]
+ρ0

μ

(
gρ0TL TL

T̄Lγ
μTL + gρ0 X 2

3 L TL
(X̄ 2

3 Lγ
μTL +h.c.)+ gρ0BL BL

B̄Lγ
μBL + (L ↔ R)

+gρ0 X 2
3

X 2
3

X̄ 2
3
γμX 2

3
+ gρ0 X 5

3
X 5

3

X̄ 5
3
γμX 5

3

)
.

(C.6)

We make some comments on the parametrization chosen in the previous formulae. As regards

the couplings to fully elementary fermions, we have collectively indicated with ψu (ψd ) any

1All interaction terms between SM fermions and spin-1 resonances in this Lagrangian are flavor diagonal. This
follows from assuming that all the lightest fermions are fully elementary: in absence of elementary-composite
fermion mixings one can always make fields rotations to diagonalize the fermionic kinetic terms in flavor space. By
allowing for some degrees of compositeness for leptons and the first two quark families and thus for non-vanishing
elementary-composite couplings λ, the Lagrangian C.1 is valid up to O(λ) in the weak interaction eigenbasis for
the fermions. In this basis the fermion masses are not diagonal in flavor space. After rotating the fermion fields to
diagonalize the mass matrices, a VC K M matrix appear in the vertex ρ+μψ̄uψd , while the interactions of ρ0 remain
diagonal.
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of the SM up-type quarks and neutrinos (down-type quarks and charged leptons) and we

have introduced their charge through the function Q[ψu] (Q[ψd ]). The form chosen for L T
e f is

convenient for the implementation of the models in a Mathematica code, since the couplings

to different kinds of leptons and quarks can be easily and unambiguously derived from the

universal functions gρ+/0 f f L and gρ+/0 f f Y . The top-bottom doublet and the tR are instead

treated differently, as seen in equation C.4; we introduce specific couplings for every vertex

between the heaviest quarks and the spin-1 resonances, in order to take into account the

enhancement in the interactions due to partial compositeness. Finally, in the last term of the

Lagrangian, L T
T P , we have differentiated the couplings of the heavy vectors to left-handed

and right-handed top partners, because they are in general expected to be different. The

only exceptions are the interactions involving only the exotic X 5
3

and the top-like X 2
3

, namely

gρ0 X 2
3

X 2
3

, gρ0 X 5
3

X 5
3

and gρ+X 5
3

X 2
3

; in this case the couplings to states of different chirality are

equal since these X5/3 top partner is left invariant by the rotation in the fermionic sector,

whereas the X2/3L and X2/3R fields transforms in the same way under the fermionic rotation,

[7].

We finally consider the Lagrangian for the singlets: a neutral vector resonance interacting with

a fermionic heavy state, both being invariant under the unbroken SO(4). The Lagrangian can

be decomposed analogously to the previous formulae as:

L S
ρ =L S

g bh +L S
e f +L S

tb +L S
T P tb +L S

T P . (C.7)

The first three terms have the same expressions as the Lagrangian for the neutral heavy state,

ρ0
μ, in L T

ρ . The last two contributions can be instead easily rewritten after rotations to the

mass eigenstate basis and specifically depend on the choice of the representation for the top

partner; we find:

L S
T P tb = ρ0

μ

(
gρ0T̃L tL

¯̃TLγ
μtL + gρ0T̃R tR

¯̃TRγ
μtR +h.c.

)
, (C.8)

L S
T P = ρ0

μ

(
gρ0T̃L T̃L

¯̃TLγ
μT̃L + gρ0T̃R T̃R

¯̃TRγ
μT̃R

)
. (C.9)

As before, the couplings are a function of all the free input parameters of the theory and we

find different expressions if the tR is fully composite or only partially composite.
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D Effects of a degenerate vector spec-

trum

In this Appendix, we clarify the phenomenological effects of relaxing the assumption that

one vector resonance is much lighter and the other two belong to the tower of states that are

integrated out. We want to analyse the possible consequences of having an almost degenerate

spectrum and, for simplicity, we will not consider the most complicated case in which all the

three heavy states are present together. We will only analyse, instead, the simpler situation in

which two resonances are degenerate and the other one is heavier and is thus integrated out.

We therefore introduce the three following cases,

(I) (ρL , ρR ) with Lagrangian LL+R =Ll i g ht +LΨ+LρL +LρR ,

(II) (ρL , ρX ) with Lagrangian LL+X =Ll i g ht +LΨ+LT̃ 1 +LρL +Lρ1
X

,

(III) (ρR , ρX ) with Lagrangian LR+X =Ll i g ht +LΨ+LT̃ 1 +LρR +Lρ1
X

;

(D.1)

in all combinations the tR quark arises as a singlet of the composite dynamics, so that we have

considered only the interference with model M1
X in (II) and (III).

When considering the degeneracy of the particle spectrum, there are different effects on

our analysis of direct searches that we must take into account with respect to the situations

studied in the main text. First of all, we expect that the expressions of the couplings in the

mass eigenstate basis will be corrected and that the more degenerate the spectrum is, the

stronger these corrections will be. Secondly, the branching ratios will change as well, due to

the opening of new decay channels, a heavy-light one, with a vector resonance decaying to

a second heavy vector and a gauge boson, and a heavy-heavy one, which involves a vector

state decaying to other two heavy spin-1 resonances. These two classes of modifications could

significantly alter the results concerning the bounds on the free parameters of our models; we

will analyse them in the following, showing that considering only one resonance at a time and

integrating out the other two is a good basic approximation for interpreting the experimental

data.
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Let us start considering how the couplings change in case (I). The spectrum now contains two

charged and two neutral heavy vector particles. The mass matrix is given by a 3×3 charged

block and a 4×4 neutral block, whose expressions is not reported here, but can be found

in [52], where also some of the modified couplings in the mass eigenstate basis are given.

Since the ρR
μ and ρL

μ resonances belong to different representations of the unbroken SO(4),

all the corrections to the couplings in Appendix C must arise after EWSB and are therefore

suppressed. As a consequence, we do not expect that the degeneracy of the resonances masses

will induce important differences on the branching ratios that have already been analysed in

this work, so that no relevant modifications on the bounds can be induced by the changes in

the couplings.

In case (II) and (III), on the other hand, one charged and two neutral vector resonances

are present. The charged block of the mass matrix is not affected by the interference with

the singlet, which mixes only with the Bμ boson, so that no modification is induced on the

couplings of the charged vector. The neutral block, on the other hand, becomes now a 4×4

matrix and, after rotation to the mass eigenstate basis, the couplings of the neutral resonances

will be indeed modified with respect to the situation considered in the main text. In particular,

in model (II) these corrections must be suppressed by ξ, since ρL
μ mixes with Bμ only after

EWSB, whereas in model (III) both ρ3
R and ρX mix with Bμ before EWSB, therefore inducing

interference effects that can have important consequences on their phenomenology. We

conclude that the approximate description adopted in the main text works well for case (II),

even with a degenerate spectrum, whereas in case (III) the bounds and branching ratios should

be corrected if the two resonances have comparable masses.

We now study more quantitatively the effects of the spectrum degeneracy on the branching

ratios, analysing, as illustration, the cascade decay of one heavy vector to a second spin-1

resonance and a gauge boson. We want to estimate the branching ratio of this process in the

three cases, so as to understand how much the decay widths analysed in this work can be

altered by the opening of this new decay channel. From triple vector couplings in the kinetic

terms of the Lagrangians in (D.1), an additional interaction between two heavy vectors is

generated; we can write it as follows:

LX Y M = i gX +Y −M 0

[
(∂μX +

ν −∂νX +
μ )Y μ−M 0ν− (∂μX −

ν −∂νX −
μ )Y μ+M 0ν

+ (∂μY +
ν −∂νY +

μ )X μ−M 0ν− (∂μY −
ν −∂νY −

μ )X μ+M 0ν

+ (∂μM 0
ν−∂νM 0

μ)(X μ+Y ν−−X μ−Y ν+)
]
,

(D.2)
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when X is different from Y , and

LX X M = i gX +X −M 0

[
(∂μX +

ν −∂νX +
μ )X μ−M 0ν− (∂μX −

ν −∂νX −
μ )X μ+M 0ν

+ 1

2
(∂μM 0

ν−∂νM 0
μ)(X μ+X ν−−X μ−X ν+)

]
,

(D.3)

when X = Y . We have indicated with X , Y and M any of (W /Z , ρ+, ρ0). As a result, when one of

the two vectors is relatively heavier than the other one, the channels ρ+
1 → ρ0

2W +, ρ0
1 → ρ+

2 W −

and ρ+
1 → ρ+

2 Z open up (ρ1 and ρ2 stand for the vectors in different representations for each

of the three cases considered). In order to illustrate the relevance of these cascade decays, we

focus on the two following sets of benchmark values

(I) mρL = 1.5mρR = 1.5 gρR f , gρL = gρR ≡ gρ ,

(III) mρR = 1.5mρX = 1.5 gρX f , gρR = gρX ≡ gρ ,
(D.4)

and we show in Fig. (D.1) the relative branching ratios as a function of the resonant mass, for

illustration, fixing to 1 all the O(1) parameters controlling the couplings to top partners. The

results in case (II) are very similar to case (I) and the corresponding branching ratios are not

shown. We see that the branching ratios are very tiny for cases (I), due to the fact that the

mixing between a charged and a neutral state or between two charged states belonging to

different representation of H arises at O(ξ) after EWSB. The situation is different for case (III);

the branching ratio is now considerably bigger, even if the coupling between two different

heavy vectors arises again at O(ξ). This is a consequence of the small couplings of the charged

right-handed resonance to SM fermions: since the branching ratios for its decay to both

elementary and partially composite fermions are strongly suppressed, the decay channel to

the lighter vector and a W boson is much more competitive. As expected, in case (III) the

corrections to the branching ratios are therefore more important. However, these corrections

will not have relevant consequences on the exclusion plots we derived in the main text. These

latter are in fact obtained for the neutral right-handed vector which is not affected by the

presence of the relatively lighter ρX
μ since no couplings involving two neutral heavy vectors

can be induced in our models. We thus conclude that our estimate of the branching ratios

and relative bounds on the parameter space of the models is a good approximation for all the

resonances, even neglecting their possible degeneracy.
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Appendix D. Effects of a degenerate vector spectrum

Figure D.1 – Cascade decay branching ratios as a function of the heavier resonance mass, for the
benchmark value gρ = 3, for case (I) (left plot) and case (III) (right plot) of Eq. (D.4). The blue line
corresponds to BR(ρ+

1 →W +ρ0
2) and the red curve corresponds to BR(ρ+

1 → ρ+
2 Z ).
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E A MadGraph5 model for heavy vector

phenomenology

The four models discussed in Chapter 2 have been implemented in the parton level generator

MadGraph5 for the simulation of Monte Carlo events. All the trilinear interaction vertices

involving vector resonances, SM particles and top partners have been introduced in the UFO

file, following the conventions of Appendix C.

A Mathematica calculator is also provided, which performs a numerical diagonalization of the

vector mass matrix and computes all the physical quantities, masses and trilinear couplings

between heavy vectors and SM particles, after the input parameters are specified. This code

also implements the numerical diagonalization of the fermionic mass matrices in the top

partner sector and computes the trilinear couplings between heavy resonances, top partners

and partially composite SM fermions to full order in ξ. The semi-analytical formulae for the

computation of the cross sections and the partial decay widths described in the main text can

be also derived with this program.

We also stress that our numerical code has been designed not only to simulate the production

and decay of vector resonances, but also to study W W scattering processes at the LHC and

at future colliders. In order for these processes to be suitably simulated in the presence of

vector resonances, also the modifications to the couplings gHW W , gH Z Z , gH HW W , gH H Z Z

and gH H H after rotation to the mass eigenstate basis must be properly taken into account.

The corrections to the first four couplings are numerically calculated by the Mathematica

file and in particular the vertices gH HW W and gH H Z Z are the only four-particles interactions

that are numerically derived by the calculator. On the other hand, the modification of the

trilinear Higgs coupling gH H H for the minimal model with elementary fermions embedded in

the vector representation of SO(5) (MCHM5) has been derived analytically in [50] to all orders

in ξ and it is implemented in the code accordingly.

All the available software can be downloaded in a single package from the HEPMDB website
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Appendix E. A MadGraph5 model for heavy vector phenomenology

[66] and the instruction on how to run the calculator can be found in the README file which

is provided with the program.
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F Fermionic spectrum of the

SO(8)/SO(7) Twin Higgs model

The heavy fermion multiplets in the minimal Composite Twin Higgs model form complete

fundamental representations of SO(8) and decompose under SO(7) as described in the main

text. The first multiplet, which is colored under the SM gauge group SU (3) and is charged

under U (1)X with X -charge 2/3, contains eight heavy fermions which are organized as follows:

Ψ7 = 1�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i B − i X5/3

B +X5/3

i T + i X2/3

−T +X2/3�
2S1

2/3�
2S2

2/3�
2S3

2/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ψ1 = S4

2/3. (F.1)

The second multiplet, colored under the twin group S̃U (3) and charged under (U (1)X with X̃ -

charge 2/3, contains another set of eight heavy fermions; they are organized in a fundamental

of SO(8), related to the previous representation by Twin symmetry, as follows:

Ψ̃7 = 1�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i D̃−1 − i D̃1

D̃−1 + D̃1

i D̃1
0 + i D̃2

0

−D̃1
0 + D̃2

0�
2Ũ 1

0�
2Ũ 2

0�
2Ũ 3

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ψ̃1 = Ũ 4

0 . (F.2)
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In this notation, it is easy to decompose these heavy particles under the SM weak gauge

groups. The fermions T , B , X2/3 and X5/3 carry all the SM quantum numbers, both in the weak

and in the color sector; they decompose into two heavy doublets, (X5/3, X2/3), with electric

charges 5/3 and 2/3 respectively, and (T,B), with electric charges 2/3 and −1/3 respectively.

These two doublets can be therefore identified with the usual heavy fermions that we expect

to exist also in conventional composite Higgs models. The remaining components of the

vector Ψ, the S1
2/3, · · · ,S4

2/3 fields, carry mixed quantum numbers since they participate both

to the SM and the Twin sector gauge interactions. In particular, they are charged under the

twin weak gauge group, but they are colored under the SM SU (3) and they all have electric

charge equal to 2/3. Thus they decompose as four electrically charged singlets under the SM

weak gauge group. The decomposition of the Twin vector Ψ̃ under the SM is quite similar.

The first four components participate to the SM weak interactions, but they carry twin color

quantum numbers. They decompose into two heavy doublets under the SM weak gauge group,

(D̃1,D̃2
0), with electric charges 1 and 0 respectively, and (D̃1

0,D̃−1), with electric charges 0 and

−1 respectively. Finally, the fields Ũ 1
0 , · · · ,Ũ 4

0 are charged under the Twin weak and strong

gauge groups and they do not carry any electric charge. They decompose therefore as four

electrically neutral singlets under the SM gauge groups.

The action of Twin symmetry on these two vectors of heavy fermions can be easily described.

It can be in general decomposed as the product of two discrete symmetries. The first one can

be identified as a Z2 which is external to the strong sector and that rigidly interchanges Ψ7

with Ψ̃7 and Ψ1 with Ψ̃1. For the singlet, this is all we need to implement the Twin symmetry

and we can easily identify Ũ 4
0 as the Twin partner of S4

2/3. For the remaining component in the

7, we need to make the convolution of the external discrete symmetry with an element of the

unbroken symmetry group SO(7), h(Π), so that the complete Twin symmetry takes the form:

Ψ7 → h(Π)Ψ̃7. (F.3)

The matrix h(Π) is an explicit function of the Goldstone boson fields and in general it is quite

complicated to work out; we expect to have a highly non-linear relation between the heavy

fields in the two representations. In the limit when the Goldstone bosons are all set to zero,

however, we can find a simple expression for h which we can write as follows:

h =

⎛⎜⎜⎝
0 0 I3

0 −1 0

I3 0 0

⎞⎟⎟⎠ . (F.4)

By combining the action of this matrix with the external Z2, we have thus an illustrative

example of the action of Twin symmetry in a simple case.
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We now briefly discuss the mass matrices of the different charged sectors in the Composite

Twin Higgs model and the related particle spectrum. We start considering the fields that do

not have the right quantum numbers to mix with the elementary SM and Twin quarks and

whose mass is therefore independent on the mixing parameters yL/R and ỹL/R . These are the

composite fermions X5/3, D̃1 and D̃−1, with charges 5/3, 1 and −1 respectively; their mass is

exactly given by the Lagrangian parameters MΨ, for the first one, and M̃Ψ for the last two ones.

The remaining sectors have charge −1/3, 0 and 2/3 and because of the elementary/composite

mixing the associated mass matrices are in general non-diagonal and must be diagonalised by

a proper field rotation. The simplest case is the −1/3-charged sector, containing the bottom

quark and the heavy B field; the mass matrix in the {b,B} basis is

M−1/3 =
(

0 f yL

0 −MΨ

)
. (F.5)

After rotation, we find the massless bottom quark, which acquires no mass since we are not

including the bR in the model, and a massive B particle with m2
B = M 2

Ψ+ y2
L f 2.

As regards the sector of charge 2/3, it contains seven different particles, the top quark, the

top-like heavy states T and X2/3 and four composite fermions that do not participate to the

SM weak interactions, S1
2/3, · · ·S4

2/3. In the {t ,T, X2/3,S1
2/3, · · · ,S4

2/3} basis, the mass matrix is in

this case given by:

M2/3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 f yL

(√
1−ξ+1

)
−1

2 f yL

(√
1−ξ−1

)
0 − f yL

�
ξ�

2

0 −MΨ 0 0 0

0 0 −MΨ 0 0

0 0 0 −MΨ× I3 0

f yR 0 0 0 −MS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (F.6)

We see immediately that the three particles S1
2/3 · · ·S2

2/3 completely decouple from the elemen-

tary sector and they do not mix with the top quark. Their mass is therefore exactly given by the

Lagrangian parameter MΨ. The remaining 4×4 matrix is in general complicated to be analyti-

cally diagonalised, but we can easily find the spectrum in perturbation theory expanding M2/3

for ξ� 1, which is in general the phenomenologically viable constraint. The leading order
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expression for the masses is then:

m2
t �

f 4

2

y2
L y2

R

M 2
S + y2

R f 2
ξ+O (ξ2), m2

X2/3
= M 2

Ψ

m2
T � M 2

Ψ+ y2
L f 2

(
1− ξ

2

)
+O (ξ2),

m2
S4

2/3
� M 2

S + y2
R f 2 + y2

L f 2M 2
S

2
(
M 2

S + y2
R f 2

)ξ+O (ξ2).

(F.7)

We see that the X2/3 fermion can be also decoupled and it has an exact mass equal to MΨ. On

the contrary, the other three particles mix with each other and their mass gets corrected after

EWSB, the top mass being in particular generated only for non-zero values of ξ.

We finally analyze the neutral sector of our model. It comprises eight fields, the Twin top and

bottom quarks, and six of the composite fermions contained in the Ψ̃7 multiplet. In the basis

{t̃ , b̃,D̃1
0,D̃2

0,Ũ 1
0 , · · · ,Ũ 4

0 }, the mass matrix reads:

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1
2 f
√

ξỹL
1
2 f
√
ξỹL 0 0 − i f ỹL�

2
− f

�
1−ξỹL�

2

0 0 0 0 − i f ỹL�
2

f ỹL�
2

0 0

0 0 −M̃Ψ 0 0 0 0 0

0 0 0 −M̃Ψ 0 0 0 0

0 0 0 0 −M̃Ψ 0 0 0

0 0 0 0 0 −M̃Ψ 0 0

0 0 0 0 0 0 −M̃Ψ 0

f ỹR 0 0 0 0 0 0 −M̃S

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (F.8)

After diagonalisation, we find one exactly massless eigenvalue corresponding to the Twin

bottom quark, which does not acquire mass since we are not introducing the b̃R particle. Four

of the neutral heavy fermions completely decouple and acquire the following exact masses

mŨ 1
0
= mŨ 3

0
= mD̃2

0
= M̃Ψ, m2

Ũ 2
0
= M̃ 2

Ψ+ ỹ2
L f 2. (F.9)

The elementary/composite mixing induces instead corrections to the masses of the remaining
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neutral particles; at leading order in ξ we find:

m2
t̃
� f 4

2

ỹ2
L ỹ2

R

M̃ 2
S + ỹ2

R f 2
(1−ξ)+O (ξ2),

m2
D̃1

0

� M̃ 2
Ψ+ 1

2
ỹ2

L f 2 (1+ξ)+O (ξ2),

m2
Ũ 4

0

� M̃ 2
S + ỹ2

R f 2 + ỹ2
L f 2M̃ 2

S

2
(
M̃ 2

S + ỹ2
R f 2

) (1−ξ)+O (ξ2).

(F.10)

We conclude by noticing that the masses of the particles in the different charged sectors are not

unrelated to each other, but must be connected according to the action of the Twin Symmetry.

In particular, it is obvious that the two singlets S4
2/3 and Ũ 4

0 form an exact twin pair, as it is the

case for each SM quark and the corresponding twin partner. The remaining pairs can be easily

found from the spectrum and correspond to the implementation of the Twin Symmetry in the

Composite Sector that we have previously described.
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G Diagrammatic renormalization of the

Twin Higgs effective potential

This Appendix is devoted to briefly giving some technical details concerning the derivation of

the Higgs effective potential in the Twin Higgs model. We will provide the explicit form of the

function F1 appearing in the UV correction, Eq (3.33), and give an alternative derivation of the

RG-improved effective action at NLL with a diagrammatic approach.

We start considering the UV contributions, which can be derived with a standard Coleman-

Weinberg procedure, [115]. We have:

V (H) = − 2NC

16π2

∫
d p2p2{Trlog[p2 × I+M †(H , yL)c M(H , yL)c ]

+Trlog[p2 × I+ M̃ †(H , ỹL)c M̃(H , ỹL)c ]},
(G.1)

where M(H)c and M̃(H)c indicate the fermionic mass matrices of a sector with charge c.

Mc (H) corresponds to the sector of particles mixing with the SM quarks embedded in QL ,

whereas M̃c (H) is derived only from the mixing of heavy fermions with the Twin quarks in

Q̃L . The trace is understood as a sum over all the degrees of freedom, including all possible

charges in the model. Since we are looking for the potential at order O(y4
L) and O(ỹ4

L), we can

expand the mass matrices for yL ∼ ỹL � g∗ and decompose them in the following way:

Mc (H , yL)†Mc (H , yL) = M 0
c + yL M 1

c (H), M̃ †(H)M̃c (H) = M̃ 0
c + ỹL M̃ 1

c (H), (G.2)

where M 0
c and M̃ 0

c do not depend on the Higgs field. Keeping only the terms that explicitly

depend on H , the integral in Eq.(G.1) can be simplified to:

V (H) =− 2NC

16π2

∫
d p2 p2

{
Trlog

[
I+ yL

M 1
c (H)

p2 × I+M 0
c

]
+Trlog

[
I+ ỹL

M̃ 1
c (H)

p2 × I+ M̃ 0
c

]}
; (G.3)

the trace may be now easily computed and the result expanded at the order in the symmetry

breaking parameters we are interested in.
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It is now straightforward to replace the mass matrices in Appendix F into Eq.(G.3) and derive

the expression of the Higgs potential as reported in the main text. All possible quadratic

divergences in the final result must cancel out due to the two-side structure of our model, [117];

the explicit form of the function F1 retains therefore only a logarithmic dependence on the

cut-off scale m∗. We get:

F1 = 1

4

[
−1− M 4

S(
M 2

S + f 2 y2
R

)
2
+ M 2

S +M 2
Ψ− f 2 y2

R

M 2
S −M 2

Ψ
+ f 2 y2

R

log
m2∗
M 2

Ψ

−

M 2
S

(
M 2

S

(
M 2

Ψ+ f 2 y2
R

)+2 f 2 y2
R M 2

Ψ+M 4
S

)(
M 2

S + f 2 y2
R

)
2
(
M 2

S −M 2
Ψ
+ f 2 y2

R

) log
m2∗

M 2
S + f 2 y2

R

]
.

(G.4)

Regarding the RG-improvement of the effective potential, as explained in the text, we use a

simple diagrammatic approach to re-sum the leading logarithms up to two loops. We start

by writing the TH effective action in two parts, a renormalizable term plus a sum over all the

higher-dimensional operators that are relevant for our computation:

L =Ld=4 +
∑

i
ci (μ)Odi

i , (G.5)

where Odi

i are the operators with dimension di and ci (μ) are the their coefficients evaluated

at the renormalization scale μ (in this Appendix we follow the notation of ref. [24] to define

the effective operators). We further divide the action into three parts, one describing the

Higgs sector of the theory, LH , a second part for the top sector, Lt , and a final piece for the

interactions in the twin sector, L t̃ .

The term LH contains the renormalizable operators of the SM Lagrangian involving the Higgs

field, namely the Higgs kinetic term and its potential, plus a set of three dimension-6 operators,

OH , O ′
H and O6. The Lagrangian takes the form:

LH = (DμH †)(DμH)+ cH

2 f 2 ∂μ(H †H)∂μ(H †H)+ c ′H
f 2 H †H(DμH †)(DμH)−V (H †H),

(G.6)

V (H †H) =−m2
H H †H + λh

4
(H †H)2 + c6

f 2 (H †H)3. (G.7)

The top sector consists of the renormalizable Yukawa term plus the dimension-6 operator Oyt ;

we have:

Lt =−y1qL H c tR + y3

3 f 2 (H †H)qL H c tR , (G.8)
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where H c = iσ2H∗. All the remaining gauge-invariant operators in the top sector do not give

contributions to the Higgs mass at NLO because they do not renormalize the Higgs quartic.

On the other hand, the coupling y3 in general renormalizes c6 and enters in the NLO definition

of the top mass, which is one of our input parameters.

Considering finally the Twin top sector, it contains a relevant operator of dimension 3, the

Twin top mass term, O ỹ0 = t̃ t̃ , plus a set of non-renormalizable interactions of odd dimension.

The Lagrangian takes the form:

L t̃ =− ỹ0 f�
2

¯̃t t̃+ ỹ2�
2 f

(H †H) ¯̃t t̃− ỹ4

6
�

2 f 3
(H †H)2 ¯̃t t̃+ c̃2

f 2 (H †H) ¯̃t i /∂ t̃+ c̃4

6 f 4 (H †H)2 ¯̃t i /∂ t̃ , (G.9)

where the combinatorial factors have been chosen for convenience.

The initial conditions for all the Wilson coefficients in the previous Lagrangians are given at

the scale m∗ and can be easily found by matching eqs. (G.6), (G.7), (G.8) and (G.9) with the

simplified model of Sec. 5.2.1. We can select a convenient basis where many of the ci (m∗)

vanish, simplifying considerably the computation. This is found by redefining the Higgs

doublet as

H → Ĥ ≡ f
H�

2H †H
sin

(�
2H †H

f

)
(G.10)

and rewriting accordingly the effective action and the Higgs potential of Sec. 5.2.1. It is

immediate to verify that in this basis c6 = c ′H = y3 = 0 and cH = 1. Since these coefficients

do not evolve along the RG flow at NLO, their value is fixed once for all after matching. The

higher-dimensional operators involving the twin top kinetic terms are absent at tree-level in

our effective model and are generated at loop level as a result of their RG evolution. The UV

boundary conditions for their coefficients are then c̃2(m∗) = c̃4(m∗) = 0. The top and twin

top Yukawa couplings are instead generated at tree level at m∗; since at this scale the theory

respects an approximate Z2 symmetry, we have: y1(m∗) = ỹ0(m∗) = ỹ2(m∗) = ỹ4(m∗).

The RG evolution of the quartic coupling in eq. (5.38) can be derived by a one-loop compu-

tation that takes into account the running of the SM and twin top Yukawas. We define the

β-functions of a generic coefficient ci as:

βci =μ
∂

∂μ
ci (μ), (G.11)

where μ is the renormalization scale. All the β-functions are computed at one loop in the basis

obtained by redefining the Higgs doublet as in eq. (G.10) and accordingly re-scaling y4 →−3y4

and c4 → 3c4. We neglect both the running of all the dimension-6 operators that would give a

contribution proportional to the third power in our logarithmic expansion, and the diagrams
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˜t ˜t ˜t

Figure G.1 – Topology of the diagrams inducing the running of the Wilson coefficients in the
Twin sector. The last diagram on the right contains an insertion of cH in the four-scalars vertex.

with only virtual NGBs and Higgs boson circulating in the loop, which also contribute at NNLO.

The topology of the diagrams we need to compute in the Twin sector of the model is shown in

figure G.1. The result is the following set of coupled differential equations, where CF = 4/3 is

one of the SU (3) Casimirs:.

βy1 =
1

8π2

(
9

4
y3

1 −3g 2
SCF y1

)
,

βỹ0 =−3g̃ 2
SCF

8π2 ỹ0,

βỹ2 =
1

8π2

(−ỹ0 ỹ2
2 +3y2

1 ỹ2 −3g̃ 2
SCF ỹ2

)
,

βỹ4 =
1

8π2

(−4ỹ0 ỹ2 ỹ4 +2ỹ3
2 +4ỹ0 ỹ2

2cH +6y2
1 ỹ4 −3g̃ 2

SCF ỹ4
)

,

βc̃2 =
1

8π2

(
− ỹ2

2

2

)
,

βc̃4 =
1

8π2

(−2ỹ2 ỹ4 +2ỹ2
2cH

)
,

βλh =
1

8π2

(
6y2

1λ−12y4
1 −18ỹ2

0 ỹ2
2 +6ỹ4 ỹ3

0 −48ỹ2 ỹ3
0 c̃2 +6ỹ4

0 c̃4
)

.

(G.12)

By solving eq. (G.11) at NLO, we find the following expression for λ(μ), where μ is an arbitrary

scale larger than mt̃ :

λh(μ) = 3

4π2

(
y4

1 + ỹ4
0

)
log

m2∗
μ2

+ 3

128π4

[−15y6
1 +3(cH +1)ỹ6

0 −12y2
1 ỹ4

0 +16g 2
S y4

1 +16g̃ 2
S ỹ4

0

]
log2 m2∗

μ2 .

(G.13)

Here y1 and ỹ0 are the top and twin top Yukawa couplings evaluated at the cutoff scale m∗. By

virtue of Twin Parity we have written the solution imposing ỹ0(m∗) = ỹ2(m∗) = ỹ4(m∗). From

the general solution in eq. (G.13), we can find the NLO contribution to the running of the

Higgs mass by matching at the scale mt̃ where the Twin degrees of freedom are integrated out.

172



H Correlation between the IR contribu-

tions to ΔT̂Ψ and to δgLb

We show in this Appendix that the IR contributions to ΔT̂Ψ and to δgLb are always connected

with one another in any Composite Higgs model whose strong sector enjoys both the PLR and

the custodial symmetries. We can in fact interpret the IR corrections to these EW observables

as an effect due to the running of the Wilson coefficients of the dimension-six operators

generated at the cut-off scale after integrating out the heavy fermionic resonances. The

operators that are relevant for our analysis are those that give contributions to T̂ and δgLb .

Following [25], we must consider four operators:

OT = 1

2
(H †←→D μH)2, O t

L = (i H †←→D μH)qLγ
μqL ,

O t (3)
L = (i H †σa←→D μH)qLγ

μσa qL , O t
R = (i H †←→D μH)t Rγ

μtR ,
(H.1)

where H †←→D μH = H †DμH − (DμH)†H . The corrections to T̂ and to δgLb can be parametrized

in terms of the Wilson coefficients of three of these operators as follows [25]:

ΔT̂ = cT ξ, δgLb =−1

2

(
ct

L +ct (3)
L

)
ξ, (H.2)

so that the IR corrections can be obtained by running each of the three coefficients down

from the scale m∗ to the scale mtop . The operator OR , despite not appearing explicitly in the

definition of the two observables, affects the running of the Wilson coefficients through the

anomalous dimensions and it is thus relevant to our analysis.

In order to study the RG evolution of each operator, we start considering the UV boundary

conditions, namely the value of the three Wilson coefficients contributing to T̂ and δgLb at

the scale m∗. Since the strong sector respects the custodial symmetry, all tree-level correc-

tions to T̂ vanish and as a result the operator OT cannot be generated after integrating out

the BSM physics, so that cT (m∗) = 0. On the other hand, the new dynamics also respects

the PLR symmetry, which forbids the existence of any tree-level contribution to δgLb . As
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Appendix H. Correlation between the IR contributions to ΔT̂Ψ and to δgLb

a consequence, only one combination of the remaining two operators can originate at the

scale m∗, precisely the one that does not induce any correction to this coupling; we call this

combination O− =O t
L −O t (3)

L . The second linearly independent combination, O+ =O t
L +O t (3)

L ,

that contributes to δgLb , is not produced at the scale m∗, but it will eventually be generated

by the running together with OT . 1 The UV boundary conditions for the Wilson coefficients

parametrizing δgLb are therefore: ct (3)
L (m∗) = −ct

L(m∗). Due to the structure of the mixing

Lagrangian in our model, these latter coefficients are generated at the scale m∗ at order O (y2
L).

Having derived the initial values of the Wilson coefficients, we can study their RG evolution

from the cut-off to the EW scale using the corresponding β functions reported in [25]. Let us

start considering the operator OT . Neglecting the effects proportional to g 2
1 , its RG evolution

is induced by two operators, O t
L and O t

R . The β-function is:

∂cT

∂ logμ
= 3

4π2 y2
t

(
ct

R (μ)−ct
L(μ)

)
, (H.3)

from which we find:

cT (mtop ) = 3

8π2 y2
t

(
ct

L(m∗)−ct
R (m∗)

)
log

(
m2∗

m2
top

)
. (H.4)

The presence of a non-vanishing tree-level UV boundary value for ct
L and ct

R therefore gener-

ates a contribution to T̂ in the IR due to the running of OT .

We study now the evolution of the remaining two operators, O t
L and O t (3)

L . Their β-functions

are much more complicated and, beside the running induced by O t
L , O t (3)

L and O t
R , they contain

the contributions of all the four fermions operators that are generated by integrating out the

heavy vectors [25]. These latter can be neglected, since we are focusing only on the operators

that arise after integrating out the fermionic resonances; neglecting also the running due

to the gauge couplings and considering again that the only combination generated at the

tree-level is O−, we can write simply two coupled equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ct
L

∂ logμ
= y2

t

8π2

(
9

2
ct

L(μ)−3ct (3)
L (μ)− 1

2
ct

R (μ)

)
,

∂ct (3)
L

∂ logμ
= y2

t

8π2

(
5

2
ct (3)

L (μ)−ct
L(μ)

)
.

(H.5)

1Notice that the PLR symmetry interchanges the left-handed and right-handed generators, Tα
L and Tα

R (see
Appendix A), with each other. The symmetry therefore acts on the neutral Higgs currents in the following way:

H†←→D μH ↔ −H†σ3←→D μH . The combination O−, generated at the scale m∗, is consequently even under PLR ,
whereas O+ is odd under this symmetry and as a result it cannot be produced at tree-level after integrating out the
composite dynamics.
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It is then straightforward to solve and apply our UV boundary conditions to find:

ct
L(mtop ) =− y2

t

16π2

(
15

2
ct

L(m∗)− 1

2
ct

R (m∗)

)
log

(
m2∗

m2
top

)
, ct (3)

L (mtop ) = y2
t

16π2

7

2
ct

L(m∗) log

(
m2∗

m2
top

)
.

(H.6)

Similarly to what happened for OT , also in this case the combination O+, that was absent at

the scale m∗, gets generated after running the Wilson coefficients down to mtop , so that it can

only contribute to δgLb with an IR correction.

We can finally study the correlation between the two IR effects on ΔT̂ and on δgLb . From

Eq. (H.2), we find in fact:

ΔT̂ I R
Ψ = 3 ξ

8π2 y2
t

(
ct

L(m∗)−ct
R (m∗)

)
log

(
m2∗

m2
top

)
,

δg I R
Lb Ψ

= ξ

8π2 y2
t

(
ct

L(m∗)− 1

8
ct

R (m∗)

)
log

(
m2∗

m2
top

)
,

(H.7)

which, following our parametrization in Eqs. (5.54) and (5.59), immediately implies aI R = bI R

for vanishing α’s and cR = 0. The operator OR can only be generated at the tree-level from

the interaction mediated by the dμ symbol proportional to cR ; in absence of this latter, the

two observables would be exactly correlated. Taking into account that the UV boundary

values are of order O (y2
L), these IR terms generate contributions that go like O (y2

L y2
t /g 2∗), in

agreement with what we find with a direct computation. We can then conclude that, starting

only from the assumption that the strong sector respects the custodial and PLR symmetries,

the contributions to T̂ and to the Z b̄LbL coupling due to the running of the dimension-six

operators generated after integrating out the heavy fermions must always be correlated and,

in particular, they always have the same sign.

For completeness, we finally report also the expressions of ct
L , ct (3)

L and ct
R at the scale m∗ as

obtained at the tree-level after integrating out the UV physics:

ct
L(m∗) =−ct (3)

L (m∗) = f 2 y2
L

(
f 4 y4

R +M 2
S

(
2 f 2 y2

R +M 2
Ψ

)+M 4
S

)
4M 2

Ψ

(
M 2

S + y2
R f 2

)
2

−cL y2
L

f 2MS�
2MΨ

(
M 2

S + y2
R f 2

) ,

ct
R (m∗) =�

2cR
f 4 y2

L y2
R

M 2
Ψ

(
M 2

S + y2
R f 2

) .

(H.8)
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I Operator analysis of the heavy-vector

contribution to δgLb

In this Appendix we discuss the UV threshold contribution to δgLb generated by the tree-

level exchange of the composite vectors ρ (adjoint of SO(7)) and ρX (singlet of SO(7)) at zero

transferred momentum. This effect arises at leading order from diagrams with a loop of heavy

fermions, as in figure J.3. Our simple effective operator analysis will show that the contribution

of the ρ identically vanishes, in agreement with the explicit calculation in the simplified model.

An adjoint of SO(7) decomposes under the custodial SU (2)L ×SU (2)R as:

21 = (3,1)+ (1,3)+3× (2,2)+3× (1,1). (I.1)

The first two representations contain the vector resonances that are typically predicted by

ordinary CH models, namely ρL and ρR . They mix at tree-level with the Z boson and in general

contribute to δgLb . The remaining resonances do not have the right quantum numbers to both

mix with the Z boson and couple to the left-handed bottom quark due to isospin conservation.

As a result, only the components ρL and ρR inside the 21 can give a contribution to δgLb at

the 1-loop level.

In order to analyze such effect, we make use of an operator approach. We classify the operators

that can be generated at the scale m∗ by integrating out the composite states, focusing on

those which can modify the Z bb̄ vertex at zero transferred momentum. In general, since an

exact PLR invariance implies vanishing correction to gLb at zero transferred momentum, any

δgLb must be generated proportional to some spurionic coupling breaking this symmetry. In

our model, the only coupling breaking PLR in the fermion sector is yL , and a non-vanishing

δgLb arises at order y4
L . The effective operators can be constructed using the CCWZ formalism

in terms of the covariant spurion

χL =Σ†Δ†ΔΣ, (I.2)
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Appendix I. Operator analysis of the heavy-vector contribution to δgLb

where Δ is defined in eq. (5.27). By construction χL is an hermitian complex matrix. Under

the action of an element g ∈ SO(8), it transforms as a 21a +27s +7+1+1 of SO(7) (where the

7 is complex), and its formal transformation rule is

χL → h(Π, g )χL h†(Π, g ), h ∈ SO(7) . (I.3)

As a second ingredient to build the effective operators, we uplift the elementary doublet qL

into a 7+1 representation of SO(7) by dressing it with NGBs:

QL = (Σ†Δ†qL). (I.4)

We will denote with Q(7)
L and Q(1)

L respectively the septuplet and singlet components of QL .

Since Q(1)
L does not contain bL (it depends only on tL), only Q(7)

L is of interest for the present

analysis. Under an SO(8) transformation

Q(7)
L → h(Π, g )Q(7)

L . (I.5)

The effective operators contributing to δgLb can be thus constructed in terms of χL , dμ and

Q(7)
L . We find that the exchange of ρμ in the diagram of figure J.3 can generate two independent

operators,

O21 = Q̄(7)
L γμT aQ(7)

L Tr
(
dμχLT a) , O′

21 = Q̄(7)
L γμT aQ(7)

L

(
dμT aχL

)
88 , (I.6)

where T a is an SO(8) generator in the adjoint of SO(7); the exchange of ρX
μ gives rise to other

two: 1

O1 = Q̄(7)
L γμQ(7)

L Tr
(
dμχL

)
, O′

1 = Q̄(7)
L γμQ(7)

L

(
dμχL

)
88 . (I.7)

Simple inspection reveals that only the septuplet component of χL contributes in the above

equations. One can easily check that the operators of eq. (I.6) give a vanishing contribution to

δgLb . In particular, the terms generated by the exchange of the (2,2) and (1,1) components of

the ρ give (as expected) an identically vanishing contribution. Those arising from ρL and ρR

(obtained by setting T a in eq. (I.6) equal to respectively one of the (3,1) and (1,3) generators)

give instead an equal and opposite correction to gLb . This is in agreement with the results

of a direct calculation in the simplified model, from which one finds that the contributions

1Additional structures constructed in terms of dμ and χL can be rewritten in terms of those appearing in
eqs. (I.6) and (I.7), hence they do not generate new linearly independent operators. Notice that Tr(dμχLT a ) ∝
f aâb̂ d â

μ (χ(7)
L )b̂ , (dμT aχL)88 ∝ f aâb̂ d â

μ (χ(7)∗
L )b̂ , (dμχL)88 = −d â

μ (χ(7)
L )â , Tr(dμχL) = −d â

μ (χ(7)
L )â + d â

μ (χ(7)∗
L )â ,

where χ(7)
L denotes the component of χL transforming as a (complex) fundamental of SO(7). A similar clas-

sification in the context of SO(5)/SO(4) models in ref. [108] found only one operator, corresponding to the linear
combination O′

1 −O1.
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from ρL and ρR cancel each other. Finally, a non-vanishing δgLb arises from the operators of

eq. (I.7) generated by the exchange of ρX . Upon expanding in powers of the Higgs doublet, O1

and O′
1 both match the dimension-6 operator OH q of eq. (5.53) and differ only by higher-order

terms.
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J Explicit formulae for the EWPO

In this Appendix we report the results of our calculation of the electroweak precision ob-

servables, in particular we collect here the explicit expression of the coefficients aUV , aI R of

eq. (5.54) and bUV , cUV , bI R of eq. (5.59).

J.1 Computation of the Ŝ and T̂ parameters

Let us start considering the Ŝ and T̂ parameters. Following [56], we define these EW observ-

ables as

T̂ = ΠW3W3 (0)−ΠW +W −(0)

m2
W

,

Ŝ = g2

g1
Π′

W3B (0),

(J.1)

where the different Π functions can be computed by expanding the vacuum polarization

amplitudes in powers of the external momentum, q2, as it is customary:

Π
μν

ab(q2) =−i gμν
[
Πab(0)+q2Π′

ab(0)
]+qμqν terms. (J.2)

The indices a and b now run from one to four and denote one of the SM gauge bosons; we can

set in general W a
μ = {W +

μ ,W −
μ ,W 3

μ ,Bμ}.

We will be concerned only with the computation of the oblique contributions to Ŝ and T̂ ,

the non-oblique terms involving vertex and box corrections being in general negligible. As

a consequence, we must focus on one-loop diagrams of the type shown in Fig. (J.1), where

fermions with different masses circulate in the loop.

In order to evaluate the contributions of the fermions in our model, we start by writing down
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mi

W a
μ

mj

W b
ν

Figure J.1 – The one-loop diagram displaying the fermion contribution to the gauge boson
vacuum polarization amplitude. Two virtual fermions with generically different masses, mi

and m j , circulate in the loop.

in full generality the Lagrangian describing their couplings to gauge vectors:

L =W a
μ (C i j

L,a f̄ i
Lγ

μ f j
L +C i j

R,a f̄ i
Rγ

μ f j
R ), (J.3)

where f i
L/R are the left-handed and right-handed fermions in the theory, including the light

quarks, and C i , j
L/R denote the coupling matrices.

Let us consider first of all the T̂ parameter. We carry out the computation in the mass eigenstate

basis and we indicate with mi and m j the masses of the two different fermions in the loop.

In order to rotate the coupling matrices in the new basis, we compute the standard rotation

matrices Uc and Wc for the left-handed and right-handed fields, respectively, in each sector of

charge c. We finally calculate the loop integrals in dimensional regularization and we encode

the divergent part in the parameter

Δ= 1

ε
−γ+ log(4π), (J.4)

where ε is defined by d = 4−2ε and γ is the Euler-Mascheroni constant. The resulting expres-

sion for Πab(0) is therefore:

Πab(0) =− 3

8π2

∑
i , j ,c

{[(
U †

c CL,aUc

)
i j
·
(
U †

c CL,bUc

)
i j
+
(
W †

c CR,aWc

)
i j
·
(
W †

c CR,bWc

)
i j

]
·[

1

2
(m2

i +m2
j )Δ−G1(mi ,m j )

]
−
[(

U †
c CL,aUc

)
i j
·
(
W †

c CR,bWc

)
i j
+

(
W †

c CR,aWc

)
i j
·
(
U †

c CL,bUc

)
j i

]
· [mi m jΔ−G2(mi ,m j )

]}
(J.5)

182



J.1. Computation of the Ŝ and T̂ parameters

where we have introduced the functions

G1(mi ,m j ) =
m4

i log
(

m2
i

μ2

)
−m4

j log

(
m2

j

μ2

)
2(m2

i −m2
j )

− 1

2
(m2

i +m2
j ),

G2(mi ,m j ) = mi m j

m2
i log(

m2
i

μ2 )−m2
j log(

m2
j

μ2 )

m2
i −m2

j

−mi m j .

(J.6)

In the previous formulae, μ is to be identified with a generic renormalization scale. Once the

Π factors have been computed for the W + and W3 propagators, it is then straightforward to

infer the expression of T̂ from Eq. (J.1).

As regards the Ŝ parameter, we find the following expression for Π′
ab(0):

Π′
ab(0) =− 3

8π2

∑
i , j ,c

{[(
U †

c CL,aUc

)
i j
·
(
U †

c CL,bUc

)
i j
+
(
W †

c CR,aWc

)
i j
·
(
W †

c CR,bWc

)
i j

]
·[

−1

3
Δ+H1(mi ,m j )

]
−
[(

U †
c CL,aUc

)
i j
·
(
W †

c CR,bWc

)
i j
+

(
W †

c CR,aWc

)
i j
·
(
U †

c CL,bUc

)
i j

]
·H2(mi ,m j )

}
,

(J.7)

with

H1(mi ,m j ) = 1

36
(
m2

i −m2
j

)
3

(
−12m4

j

(
m2

j −3m2
i

)
log

(
m2

j

μ2

)
+12

(
m6

i −3m4
i m2

j

)
log

(
m2

i

μ2

)

+45m4
i m2

j −45m2
i m4

j −7m6
i +7m6

j

)
,

H2(mi ,m j ) = mi m j

2
(
m2

i −m2
j

)
3

(
m4

i −m4
j −2m2

i m2
j log

(
m2

i

m2
j

))
.

(J.8)

The previous formula gives directly the Ŝ parameter for a theory with a generic number of

fermions, once evaluated for the W3 −B propagator.
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J.2 Computation of δgLb

We derive now a general formula for computing δgLb in a theory with a generic number

of new heavy fermions, under reasonable assumptions. We proceed in fact by setting all

the gauge couplings to zero and considering only the interactions mediated by the Yukawa

couplings. This approximation can be justified by noticing that, as in the SM, the most relevant

contributions to this EW observable are those arising from the top sector, the gauge sector

giving in general only a smaller correction. This is indeed the well known gaugeless limit,

firstly introduced in [116]; 1 in this latter reference, the gauge vectors are treated as external

non-propagating fields and δgLb is then extracted from the one-loop renormalization of the

∂μπ
0 → bLb̄L vertex, π0 being the neutral Goldstone boson in the Higgs doublet. We will follow,

however, a different procedure, considering the Z boson as a propagating gauge field and

calculating the one-loop corrections to the Z bLb̄L vertex in the Feynman gauge. Having set

all the gauge couplings to zero, all the one-loop diagrams with internal vector lines do not

give any contribution and the final number of total diagrams considerably reduces to four, as

shown in Fig. (J.2). We will therefore be concerned in finding a general expression for δgLb

arising from these one-loop diagrams for a general composite Higgs theory with new fermionic

resonances.

We start our computation by writing down the most general Lagrangian describing the in-

teractions involving Zμ, a generic pair of fermions and the SM charged Goldstone bosons:

L = g2

cW
Zμ(gbL b̄Lγ

μbL + gbR b̄Rγ
μbR +C i j

L f̄ i
Lγ

μ f j
L +C i j

R f̄ i
Rγ

μ f j
R )

+iλi (π−b̄L f i
R −π+ f̄ i

R bL)+ i
g2

2cW
Zμ(π−∂μπ+−π+∂μπ−)

+i
g2

cW
ρi Zμ(π−b̄Lγ

μ f i
L −π+ f̄ i

Lγ
μbL)+ηi (∂μπ

−b̄Lγ
μ f i

L +∂μπ
+ f̄ i

Lγ
μbL),

(J.9)

where, as before, fL/R denotes a left-handed or right-handed fermion in the theory and, in

terms of the Goldstone fields in Eq.(A.16), we have set π+ = (π1 − iπ2)/
�

2 and π− = (π1 +
iπ2)/

�
2. Notice that in our model there are no interactions between the neutral Goldstone

boson and fermions or the Z vector, so that only one-loop diagrams involving the charged

Goldstone bosons must be taken into account. As a consequence, only the top-like particles

will give a non-zero correction to gbL and we must in the end focus on the sector of charge

1See however [107] for a discussion of the effects of the gauge couplings to δgLb .
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J.2. Computation of δgLb

Zμ
f j

f̄ i

π±
Zμ

π−

π+

f i

Zμ

f i

π±

Zμ

f̄ i

π±

Figure J.2 – The four one-loop diagrams displaying the fermion contribution to the Z → bLb̄L

vertex.

c = 2/3. The final result reads:

δgLb = − 1

32π2

∑
i
λ2

i

(
gbL +

1

2

)(
Δ+ 3

2
− log

(
m2

i

μ2

))

+ 1

16π2

∑
i j

λiλ j

[AR i j

2

(
Δ+ 1

2
− J1(mi ,m j )

)
+ ALi j J2(mi ,m j )

]

+ 1

16π2

∑
i j

[
2ρi mi (λi +ηi mi )

(
Δ+1− log

(
m2

i

μ2

))
+ 1

2
η2

i m2
i gbL

(
3Δ+ 5

2
−3log

(
m2

i

μ2

))

−ηi mi

2
(λi + 1

2
ηi mi )

(
Δ+ 3

2
− log

(
m2

i

μ2

))
+ηiλi mi gbL

(
Δ+ 1

2
− log

(
m2

i

μ2

))

+ηiη j

( AR i j

2
mi m j

(
Δ+ 1

2
− J1(mi ,m j )

)
− ALi j

(
(m2

i +m2
j )(Δ+1)−K (mi ,m j )

))

+2ηiλ j

( AR i j

2
mi

(
Δ+ 1

2
− J1(mi ,m j )

)
− ALi j m j (Δ+1− J1(mi ,m j ))

)]
,

(J.10)

with AL =U †
2/3CLU2/3, AR =W †

2/3CRW2/3 and

J1(mi ,m j ) = 1

m2
i −m2

j

(
m2

i log

(
m2

i

μ2

)
−m2

j log

(
m2

j

μ2

))
,

J2(mi ,m j ) = mi m j

m2
i −m2

j

log

(
m2

i

m2
j

)
,

K (mi ,m j ) = 1

m2
i −m2

j

(
m4

i log

(
m2

i

μ2

)
−m4

j log

(
m2

j

μ2

))
.

(J.11)
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f i

Zμ

f j

ρν

Figure J.3 – The one-loop diagram displaying the divergent contribution to the Z → bLb̄L

vertex originating from the renormalization of the Z boson propagator.

The last contribution to δgLb comes from the Feynman diagrams containing a tree-level

exchange of a vector resonance, specifically ρX
μ in our construction (see Fig. (J.3). A loga-

rithmically divergent correction to the Z bLb̄L vertex is introduced in this case, together with

additional contributions to the remaining finite parts, as explained in Chapter 4.

In order to take into account the presence of the heavy vectors, we need to renormalize the

Z boson propagator resulting from the tree-level exchange of the neutral composite states

and adding the one-loop contribution coming from all the fermions in the model. After

diagonalizing the mixing between the gauge and heavy bosons in Eq. (5.23) at leading order in

ξ, we can find the couplings between the Z gauge boson and the neutral resonances with the

heavy fermions in the mass eigenstate basis. Once this is done, it is straightforward to compute

the renormalized Z −ρ propagator using the result of the previous sections; in particular,

we can easily derive the renormalization function ΠZρ0 (0). Indicating finally with AbL
ρ0

the

coupling between the neutral heavy vectors and the left-handed bottom quark, we find:

δgLb = ΠZρ0 (0)

m2
ρ0

AbL
ρ0

. (J.12)

J.3 Results

We finally collect the explicit results for the EW observables in our models. Let us start

considering the T̂ parameter. For convenience, we split the UV contribution into two parts,

re-defining aUV as:

aUV = aF i n
UV +aLog

UV log

(
M 2

Ψ

M 2
S + f 2 y2

R

)
. (J.13)

The coefficients aF i n
UV and aLog

UV are obtained through a straightforward calculation, but their

expressions are complicated functions of the Lagrangian parameters. We thus show them only
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in the limit cL = cR ≡ c and MΨ = MS ≡ M , for simplicity. For aI R we give instead the complete

expression. We find:

aF i n
UV = 1

12

(
−12M 4

f 4 y4
R

+ 6 f 2M 2 y2
R(

f 2 y2
R +M 2

)
2
+ 9M 6(

f 2 y2
R +M 2

)
3
−8

)

+ c
(−5 f 8 y8

R −2 f 6M 2 y6
R +7 f 4M 4 y4

R +12 f 2M 6 y2
R +4M 8

)
�

2 f 4 y4
R

(
f 2 y2

R +M 2
)2

+ c2
(

f 2 y2
R +2M 2

)2 (
3 f 2 y2

R −5M 2
)

2 f 4 y4
R

(
f 2 y2

R +M 2
) ,

aLog
UV = f 6 y6

R − f 4M 2 y4
R − f 2M 4 y2

R −2M 6

2 f 6 y6
R

+
�

2c
(
2 f 6 y6

R −3 f 4M 2 y4
R +3 f 2M 4 y2

R +2M 6
)

f 6 y6
R

+ c2
(

f 2M 4 y2
R −10M 6

)
f 6 y6

R

,

aI R = 1

2
+ M 2

S M 2
Ψ

2(M 2
S + f 2 y2

R )2
+�

2
cL MS MΨ+2cR f 2 y2

R

M 2
S + f 2 y2

R

.

(J.14)

The derivation of δgLb at 1-loop level is more involved and requires the computation of a

series of diagrams. As explained in the text, we focus on those featuring a loop of fermions

and NGBs (see figure J.2), and that one with a loop of fermion and the tree-level exchange of a

heavy vector (see figure J.3).

The coefficients cUV is generated only by the latter diagram; we find:

cUV =α7L(α1R +α7R )(1+�
2cR )

g 2
ρX f 2

M 2
ρX

M 2
Ψ

2(M 2
Ψ
+ y2

L f 2)
. (J.15)

We remind the reader that in our numerical analysis we use MρX /(gρX f ) = 1, see footnote 5.

We re-define the other two coefficients as

bI R = δI R + δ̄I R

bUV =
(
δF i n

UV + δ̄F i n
UV

)
+
(
δ

Log
UV + δ̄

Log
UV

)
log

(
M 2

Ψ

M 2
S + f 2 y2

R

)
,

(J.16)

where δI R , δF i n
UV and δ

Log
UV are generated by the diagrams in figure J.2 only, whereas δ̄I R , δ̄F i n

UV

and δ̄
Log
UV parametrize the correction due to the tree-level exchange of a heavy spin-1 singlet in

figure J.3. As before, we report the expression of the UV parameters in the limit cL = cR ≡ c,

MΨ = MS ≡ M , for simplicity; in the case of the coefficients with a bar, generated by the
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Appendix J. Explicit formulae for the EWPO

diagram of figure J.3, we further set α7L =α1L and α7R =α1R . We find:

δF i n
UV = −2 f 6 y6

R −4 f 4M 2 y4
R −4 f 2M 4 y2

R +M 6

12
(

f 2 y2
R +M 2

)
3

− c
(

f 6 y6
R +4 f 4M 2 y4

R −2 f 2M 4 y2
R +M 6

)
6
�

2 f 2 y2
R

(
f 2 y2

R +M 2
)

2

+ 1

6
c2M 2

(
3

f 2 y2
R +M 2

− 2

f 2 y2
R

)
− c3M 2

3
�

2 f 2 y2
R

,

δ
Log
UV = 1

6
− M 2

6 f 2 y2
R

− c3M 4

3
�

2 f 4 y4
R

− c2M 4

3 f 4 y4
R

− c
(− f 4 y4

R +2 f 2M 2 y2
R +M 4

)
6
�

2 f 4 y4
R

,

δ̄F i n
UV =

f 2M 2α1L g 2
ρX

(
f 4 y4

R (α1L +2α1R )+ f 2M 2 y2
R (3α1L +8α1R )+2M 4 (α1L +α1R )

)
4M 2

ρX

(
f 2 y2

L +M 2
)(

f 2 y2
R +M 2

)
2

+
c f 2M 2α1L g 2

ρX

(
f 2 y2

R (2α1L +α1R )+2M 2α1L
)

�
2M 2

ρX

(
f 2 y2

L +M 2
)(

f 2 y2
R +M 2

) ,

δ̄
Log
UV =

cM 4α1L g 2
ρX (α1L −α1R )

�
2y2

R M 2
ρX

(
f 2 y2

L +M 2
) + f 2M 2α1Lα1R g 2

ρX

2M 2
ρX

(
f 2 y2

L +M 2
) .

(J.17)

For the IR coefficients we give instead the full expressions. We find:

δI R = 1

6
+ M 2

S M 2
Ψ

6(M 2
S + f 2 y2

R )2
+�

2
cL MS MΨ

3(M 2
S + f 2 y2

R )
+�

2
cR f 2 y2

R

12(M 2
S + f 2 y2

R )
,

δ̄I R =α7Lα1R

g 2
ρX

M 2
ρX

f 4M 2
Ψy2

R

2
(

f 2 y2
L +M 2

Ψ

)(
f 2 y2

R +M 2
S

) .

(J.18)

Notice that the IR corrections aI R and bI R are related to each other and parametrize the

running of the effective coefficients c̄H q , c̄ ′H q and c̄H t , as explained in the main text.

Finally, we report the contribution to Ŝ generated in our simplified model by loops of heavy

fermions. We do not include this correction in our electroweak fit, because in the perturbative

region of the parameter space it is sub-dominant with respect to the tree-level shift of eq. (5.48).

Rather, we use this computation as an additional way to estimate the perturbativity bound,

as discussed in Sec. 5.2.2. Analogously to what we did for T̂ and δgLb , we parametrize the
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fermionic contribution to Ŝ as:

ΔŜΨ = g 2
2

8π2 ξ

[
(1−c2

L −c2
R ) log

m2∗
M 2

Ψ

+ (1− c̃2
L − c̃2

R ) log
m2∗
M̃ 2

Ψ

]

+ g 2
2

16π2 ξ

[
sF i n

UV + sLog
UV log

(
M 2

Ψ

M 2
S + f 2 y2

R

)
+ s̃F i n

UV + s̃Log
UV log

(
M̃ 2

Ψ

M̃ 2
S + f 2 ỹ2

R

)]

+ g 2
2

16π2 ξsI R
y2

L f 2

M 2
Ψ

log
M 2

1

m2
t

.

(J.19)

Terms in the first line are logarithmically sensitive to the UV cut-off, the second line contains

the UV threshold corrections, while the IR running appears in the third line. The UV thresholds

include a contribution from the twin composites Ψ̃7 and Ψ̃1, parametrized by s̃F i n
UV and s̃Log

UV . At

leading order in yL , by virtue of the twin parity invariance of the strong sector, such contribu-

tion can be obtained from that of Ψ7 and Ψ1 (i.e. from sF i n
UV and sLog

UV ) by simply interchanging

the tilded quantities with the un-tilded ones. Higher orders in yL break this symmetry and

generate different corrections in the two sectors. We performed the computation of the UV

coefficients for yL = 0, whereas sI R is derived up to order y2
L . We find:

sF i n
UV = 1

2
− 6cLcR MS MΨ

(
f 2 y2

R +M 2
S +M 2

Ψ

)(
f 2 y2

R +M 2
S −M 2

Ψ

)2 + (c2
R +c2

L)

6

(
24M 2

S M 2
Ψ(

f 2 y2
R +M 2

S −M 2
Ψ

)2 −7

)
,

sLog
UV = − 2

(
M 2

S + f 2 y2
R

)(
M 2

S −M 2
Ψ
+ f 2 y2

R

)3

[
6cLcR MS M 3

Ψ+c2
R M 2

S

(
f 2 y2

R +M 2
S −3M 2

Ψ

)
+c2

L
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f 2 y2

R +M 2
S

)(
f 2 y2
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S −3M 2
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,
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S
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S − f 2 y2
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)+M 2
S M 2
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)+M 2
Ψ
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f 2 y2

R +M 2
S
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2

6M 2
Ψ

(
f 2 y2

R +M 2
S
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−cR
2
�

2 f 2 y2
R

(
M 2

Ψ− f 2 y2
L

)
3M 2

Ψ

(
f 2 y2
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S

) −cL

�
2MS

(
M 2

Ψ− f 2 y2
L
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3MΨ

(
f 2 y2

R +M 2
S
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(J.20)
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K The EW fit

For our analysis of the electroweak observables we make use of the fit to the parameters

ε1,2,3,b [61–63] performed in ref. [60] (see also ref. [57]). The central values there obtained for

the shifts Δεi ≡ εi −εSM
i and the corresponding correlation matrix are:

Δε1 =0.0007±0.0010

Δε2 =−0.0001±0.0009

Δε3 =0.0006±0.0009

Δεb =0.0003±0.0013

ρ =

⎛⎜⎜⎜⎜⎝
1 0.8 0.86 −0.33

0.8 1 0.51 −0.32

0.86 0.51 1 −0.22

−0.33 −0.32 −0.22 1

⎞⎟⎟⎟⎟⎠ . (K.1)

We can directly relate Δε1 to ΔT̂ and Δε3 to ΔŜ by using the results of Ref. [111], and fur-

thermore Δεb =−2δgLb . We set Δε2 = 0 in our study, since its effect is sub-dominant in our

model as well as in CH models [111]. We thus make use of eq. (K.1) to perform a χ2 test of the

compatibility of our predictions with the experimental constraints. The χ2 function is defined

as customary:

χ2 =∑
i j

(Δεi −μi )(σ2)−1
i j (Δε j −μ j ), (σ)2

i j =σiρi jσ j , (K.2)

where μi and σi denote respectively the mean values and the standard deviations of eq. (K.1),

while Δεi indicates the theoretical prediction for each EW observable computed in terms

of the Lagrangian parameters. After deriving the χ2, we perform a fit by scanning over the

points in our parameter space keeping only those for which Δχ2 ≡χ2 −χ2
mi n < 7.82, the latter

condition corresponding to the 95% Confidence Level with 3 degrees of freedom. Using this

procedure, we convert the experimental constraints into bounds over the plane (MΨ,ξ).
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L Estimates of the perturbativity bound

This Appendix contains details on the derivation of the perturbative limits discussed in

Sec. 5.2.2. As there explained, we considered the processes πaπb →πcπd and πaπb →ψ
c
ψd ,

where ψ= {Ψ7,Ψ̃7} and all indices transform under the fundamental representation of the

unbroken SO(7). In order to better monitor how the results depend on the multiplicity of

NGBs and fermions, we performed the calculation for a generic SO(N )/SO(N −1) coset with

N f composite fermions ψ in the fundamental of SO(N −1). Taking N = 8 and N f = 2×3 = 6

thus reproduces the simplified model of Sec. 5.2.1.

The perturbative limits are obtained by first expressing the scattering amplitudes in terms

of components with definite SO(N −1) quantum numbers. In the case of SO(7) the product

of two fundamentals decomposes as 7⊗7 = 1⊕21a ⊕27s , where the indices a and s label

respectively the anti-symmetric and symmetric two-index representations. A completely

analog decomposition holds in the general case of SO(N )/SO(N −1), 1 but for simplicity we

will use the SO(7) notation in the following to label the various components. The tree-level

leading contributions to the scattering amplitudes arise from the contact interaction generated

by the expansion of the NGB kinetic term of eq. (5.20) and from the NGB-fermion interactions

of eq. (5.25). The structure of the corresponding vertices implies that the four-NGB amplitude

has components in all the three irreducible representations of SO(N −1) and contains all

partial waves. The amplitude with two NGBs and two fermions, instead, has only the anti-

symmetric component of SO(N −1) and starts with the p-wave. At energies much larger than

1One has N⊗N = 1⊕ [N(N−1)/2]a ⊕ [N(N+1)/2−1]s .
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Appendix L. Estimates of the perturbativity bound

all masses the amplitudes read

M (πaπb →πcπd ) = s

f 2 δ
abδcd + t

f 2 δ
acδbd + u

f 2 δ
adδbc ,

M (πaπb →Ψ
c
7L
Ψd

7L
) = s

2 f 2 sinθ(δacδbd −δadδbc ) ,

M (πaπb →Ψ
c
7R
Ψd

7R
) = s

2 f 2 sinθ(δacδbd −δadδbc ) .

(L.1)

They decompose into irreducible representations of SO(N −1) as follows:

M (1)(πaπb →πcπd ) = (N −2)
s

f 2 ,

M (21)(πaπb →πcπd ) = s

f 2 cosθ ,

M (27)(πaπb →πcπd ) =− s

f 2 ,

M (21)(πaπb →Ψ
c
7L
Ψd

7L
) = s

2 f 2 sinθ ,

M (21)(πaπb →Ψ
c
7R
Ψd

7R
) = s

2 f 2 sinθ .
(L.2)

Performing a partial wave decomposition we get

M (r) = ∑
λi ,λ f

M (r)
λi ,λ f

= 16πk(i )k( f )
∞∑

j=0
a(r)

j (2 j +1)
∑

λi ,λ f

D j
λi ,λ f

(θ) , (L.3)

where λi ,λ f are the initial and final state total helicities, and k(i )(k( f )) is equal to either 1 or�
2 depending on whether the two particles in the initial (final) state are distinguishable or

identical respectively. In the above equation M (r) should be considered as a matrix acting on

the space of different channels. The coefficients a(r)
j are given by

a(r)
j = 1

32πk(i )k( f )

∫π

0
dθ

∑
λi ,λ f

D
j
λi ,λ f

(θ)M (r)
λi ,λ f

. (L.4)

and act as matrices on the space of (elastic and inelastic) channels with total angular momen-

tum j and SO(N −1) irreducible representations r. They can be rewritten as a function of the

scattering phase as

a(r)
j = e2iδ(r)

j −1

2i
∼ δ(r)

j . (L.5)

Our NDA estimate of the perturbativity bound is derived by requiring this phase to be smaller

than maximal:

|δ(r)
j | < π

2
=⇒ |a(r)

j | < π

2
(L.6)

Let us consider first the case r = 1, corresponding to the amplitude singlet of SO(N −1). The
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only contribution comes from the four-NGB channel. Since the helicities of the initial and

final states are all zeros, in this particular case the Wigner functions D
j
λi ,λ f

(θ) reduce to the

Legendre polynomials:

a(1)
j = 1

64π

∫π

0
dθP j (cosθ)M (1). (L.7)

The first and strongest perturbativity constraint comes from the s-wave amplitude, which

corresponds to j = 0. We find:

a(1)
0 = N −2

32π

s

f 2 , (L.8)

where N = 8 in our case. From eqs. (L.6) and (L.8), one obtains the constraint of eq. (5.31).

We analyze now the constraint from the scattering in the anti-symmetric representation,

r = 21. In this case, both the NGB and the fermion channels contribute; the process ππ→ππ

is however independent of the fermion and Goldstone multiplicities and can be neglected

in the limit of N and N f . The process involving fermions is a function of N f and generates a

perturbative limit which is comparable and complementary to the previous one. We have:

a(21)
j = ∑

λ f =±1

1

32π

∫π

0
dθ D

j
0,λ f

(θ)M (21)
0,λ f

. (L.9)

As anticipated, this equation vanishes for j = 0, so that the strongest constraint is now derived

for p-wave scattering, with j = 1. We have

a(21)
1 = N f

24
�

2π

s

f 2 . (L.10)

From eqs. (L.6) and (L.10) it follows the constraint of eq. (5.32).
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