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Abstract

The rise of web-scale services has led to a staggering growth in user data on the Internet [85].

To transform such a vast raw data into valuable information for the user and provide quality

assurances, it is important to minimize access latency and enable in-memory processing.

For more than a decade, the only practical way to accommodate for ever-growing data in

memory has been to scale out server resources, which has led to the emergence of large-scale

datacenters [19] and distributed non-relational databases (NoSQL) [41, 56]. Such horizontal

scaling of resources translates to an increasing number of servers that participate in processing

individual user requests. Typically, each user request results in hundreds of independent

queries targeting different NoSQL nodes - servers, and the larger the number of servers

involved, the higher the fan-out. To complete a single user request, all of the queries associated

with that request have to complete first, and thus, the slowest query determines the completion

time. Because of skewed popularity distributions and resource contention, the more servers

we have, the harder it is to achieve high throughput and facilitate server utilization, without

violating service level objectives [54, 127].

This thesis proposes rack-scale memory pooling (RSMP), a new scaling technique for future dat-

acenters that reduces networking overheads and improves the performance of core datacenter

software. RSMP is an approach to building larger, rack-scale capacity units for datacenters

through specialized fabric interconnects with support for one-sided operations, and using

them, in lieu of conventional servers (e.g. 1U), to scale out. We define an RSMP unit to

be a server rack connecting 10s to 100s of servers to a secondary network enabling direct,

low-latency access to the global memory of the rack. We, then, propose a new RSMP design

- Scale-Out NUMA that leverages integration and a NUMA fabric to bridge the gap between

local and remote memory to only 5× difference in access latency. Finally, we show how RSMP

impacts NoSQL data serving, a key datacenter service used by most web-scale applications
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today. We show that using fewer larger data shards leads to less load imbalance and higher

effective throughput, without violating applications’ service level objectives. For example, by

using Scale-Out NUMA [126], RSMP improves the throughput of a key-value store up to 8.2×
over a traditional scale-out deployment [128].

Key words: datacenters, rack-scale systems, RDMA, distributed non-relational databases

(NoSQL)
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Résumé

L’avènement de l’ère internet a été marqué par la prolifération de services web, qui à leur

tour ont entrainé une véritable explosion, en termes de volumes, des données utilisateurs

circulant sur le net [85]. L’exploitation de ces données brutes ainsi que leur transformation en

informations utiles doit se faire tout en garantissant une certaine qualité de services. Pour cela,

il est important de minimiser les temps d’accès aux données et de permettre leur traitement

en mémoire. Pendant plus d’une décennie, la solution adoptée par défaut pour répondre à un

volume toujours croissant de données à traiter en mémoire a été d’accroître les ressources et la

puissance des serveurs, conduisant de fait à la création de centres de données colossaux [19]

ainsi qu’à l’apparition de bases de données distribuées non-relationnelles [41, 56]. Une telle

augmentation des ressources côté serveur passe inévitablement par l’ajout de machines.

Le traitement d’une requête utilisateur requière ainsi la participation de plusieurs serveurs.

Chaque requête utilisateur génère une multitude de sous-requêtes indépendantes visant

des bases de données réparties sur différents serveurs ou nœuds NoSQL. Plus le nombre

de serveurs impliqués est grand, plus le fan-out est important. Le résultat d’une requête

utilisateur n’est obtenu que lorsque toutes les sous-requêtes ont été traitées. Par conséquent,

le temps nécessaire à l’exécution d’une requête utilisateur est déterminé par celui de la sous-

requête la plus lente. Le grand nombre de serveurs impliqués dans une requête empêche de

garantir l’utilisation uniforme des ressources et le maintien du débit de traitement à un niveau

respectant les service level objectives (SLO) [54, 127]. Cela s’explique d’une part par l’inégale

popularité des différents nœuds, mais également par les conflits d’utilisation des ressources

nécessaires à chacune des requêtes.

Cette thèse propose rack-scale memory pooling (RSMP), une nouvelle technique de scaling

pour les futurs centres de données permettant de réduire les délais réseaux et d’améliorer les

performances des logiciels au cœur des centres de données. RSMP présente une approche
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permettant de construire de larges unités, à l’échelle des racks, pour les centres de données,

via l’utilisation de fabric interconnects spécialisés supportant les opérations one-sided. Ces

unités sont destinées à remplacer les serveurs conventionnels (e.g., 1U) lors d’un scale out.

Nous définissons une unité RSMP comme un rack connectant jusqu’à plusieurs centaines

de serveurs à un sous-réseau. Ce sous-réseau permet un accès direct et avec peu de latence

à la mémoire globale du rack. Nous proposons ensuite un nouveau design RSMP, Scale-Out

Numa. Ce nouveau design tire profit de l’intégration des interfaces réseaux ainsi que des

NUMA fabrics afin de réduire les délais d’accès à la mémoire globale, comparés aux coûts

d’accès de la mémoire locale (facteur de 5). Enfin, nous montrons comment RSMP impacte

un service NoSQL, l’une des bases de données les plus populaires parmi les applications web

devant traiter de grands volumes de données. Nous montrons qu’il est possible, en utilisant

seulement quelques larges data shards, d’obtenir une meilleure répartition des requêtes et

un débit de sortie plus élevé, tout en respectant le SLO de l’application. Par exemple, en

utilisant Scale-Out NUMA [126], RSMP améliore le débit d’un key-value store par un facteur

supérieur à 8.2, comparé à la méthode usuelle consistant à augmenter les ressources serveurs

(scale-out) [128].

Mots clés : centre de données, système en rack, RDMA, bases de données distribuées non-

relationnelles
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1 Introduction

The surge in popularity of online services and new technologies is transforming the Inter-

net into a true worldwide network, connecting almost 50% of the world’s population at the

time of writing [2]. Thanks to the Internet, online services are available everywhere and to

everyone, allowing people around the planet to communicate and share, search, learn, shop,

organize themselves, just by using a computing device, be it a personal computer or a mo-

bile device. The biggest challenge associated with this trend is to enable fast access to vast

user-generated data, allowing applications to perform computation at high speed. A shared

memory machine is the ideal candidate, but it cannot physically accommodate exceedingly

large datasets, whereas scaling up shared memory is expensive and introduces verification

and fault-containment challenges [42, 126].

The in-memory scale-out model has emerged as a solution enabling low-latency local access

to data [12]. A scale-out deployment usually assumes a datacenter – a large warehouse full of

servers, running a diverse set of in-memory services and applications that retrieve and process

data in a distributed manner. In datacenters, data is partitioned and distributed among many

servers via a distributed NoSQL database [4], where each server hosts a chunk of that data in

unstructured or semi-structured format [31, 41, 56, 62, 69, 146]. This thesis focuses only on

in-memory workloads where the data is served from DRAM. Unfortunately, even though the

actively used portion of data typically resides in memory, many datacenter applications and

services require frequent data transfers from remote to local memory and vice verse, primarily

because of core data structures and algorithms used or for load balancing, fault tolerance, or
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coordination purposes. As compared to local memory, the network is much slower and poor

remote access latency is often a major performance obstacle [126].

This thesis proposes rack-scale memory pooling (RSMP), an approach to aggregating memory

at rack-scale granularity enabling low–latency access to nearby data. We argue that aggre-

gating racks’ servers into rack-scale logical entities naturally overcomes a range of issues in

the datacenter that arise due to the specifics of the adopted scale-out model, such as load

imbalance [127] and resource contention [54]. §1.1 focuses on in-memory data serving using

distributed NoSQL databases, a critical datacenter service that is the backbone of most Web

applications. §1.2 provides an overview of rack-scale memory pooling (RSMP), a technique

whose primary goal is to improve the performance of such systems. §1.3 briefly describes a

high–performance rack–scale memory pooling architecture that leverages integration and

NUMA. Finally, §1.4 summarizes how NoSQL databases can take advantage of the RSMP

datacenter architecture.

1.1 Data Serving in Datacenters

To be able to store and operate on vast amounts of data, large-scale datacenters, also known

as warehouse-scale computers [19], have emerged as the core component of any popular

service on the Internet today. Modern datacenters consist of thousands of independent servers

communicating over a TCP/IP network. Each server of the datacenter’s back-end performs

computation on a chunk of data to extract meaningful information, or just serves that data in

its raw format to the applications the end users interact with.

To facilitate fast access to vast data, most datacenter services tend to keep the data, or at

least the popular subset that is actively used, in DRAM [69, 169]. Because of its size, data is

typically distributed across many servers, allowing for parallel processing and serving using

the concept of distributed NoSQL databases [31, 41, 56, 62, 69, 146]. Even though the scale-out

NoSQL model is advantageous from the cost–performance perspective and has become a

key concept in the cloud computing industry, it introduces a range of challenges, from the

low-level datacenter organization to data distribution, running computation in a distributed

setting, dealing with load imbalance, interference, just to name a few [16, 32, 54].
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Figure 1.1 – Scale-out key-value store. Distributed hash table (DHT) ring contains key-to-server
mappings.

Data serving - NoSQL services are characterized by fine grain, random accesses to large

amounts of data [14, 16, 104]. In such services, unlike in analytics, aggregating network trans-

fers is a non-trivial task. Also, unlike relational databases, most NoSQL implementations do

not support more complex operations through ACID transactions, such as join, for scalabil-

ity reasons. The classic examples of distributed NoSQL databases include key-value stores

(KVS) [56, 62, 69] and their variants, such as graph stores [31] and wide column stores - multi-

dimensional maps [13, 41], typically using distributed hash table (DHT) rings or B+ tree-like

(index) data structures for client request routing. NoSQL databases store data in trivial un-

structured (schema-free) or semi-structured formats, such as key-value pairs (tuples), wide

column, or graph, which are different from relational databases that store data using tabular

relations. Unlike relational databases, NoSQL databases scale horizontally to thousands of

machines and provide the clients with simple put/get API for access to individual data items.

They sacrifice consistency in favor of availability, partition tolerance, and speed (CAP theo-

rem [29]). NoSQL data serving is at the core of every web-scale application today and is one of

the most important services running in today’s datacenters [41, 56, 62, 69]. This thesis focuses

on key-value stores (KVS), but the conclusions we make are equally applicable to the other

types of distributed NoSQL databases running in-memory data serving workloads [31, 41].

Fig. 1.1 illustrates a classic key-value store (KVS) design, in which one or more front-end

servers use keys to retrieve data from the back-end servers storing the data in the key-value
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pair format [31, 58, 62, 69, 135, 146]. In a typical KVS, a DHT ring maps keys to servers and

is used by the clients to look up data in a scalable manner. One simple way a KVS client can

locate individual data items using a DHT ring is as follows:

ser ver I D = hash(ke y)% tot al_ke y_count

shar d_ke y_count

The DHT ring on Fig. 1.1 maps contiguous ranges of keys to four different servers and their

respective hash tables. Hash values that exceed the total number of keys are mapped to the

same four DHT ranges - servers. The server processing a key-value request uses the hash value

to locate the bucket in its local memory. Collisions are typically handled through the concept

of chaining using linked lists.

The high fan-out nature of data serving workloads requires guarantees on the maximum

service time that should be within the agreed-upon service level objective (SLO) boundary [54].

Such highly parallel processing of requests can cause load imbalance when the popularity

distribution of data items is skewed [81, 127]. The servers hosting highly popular data will run

at higher utilization and saturate faster, potentially violating the application’s SLO. In such a

setting, it is necessary to think about the latency requirements. This thesis studies dynamic

replication and proposes memory pooling as a complementary technique for mitigating skew-

induced imbalance. In addition, the thesis provides key insights into how memory pooling

can be used to accommodate for other sources of rack-level imbalance, such as resource

contention [54].

1.2 Rack-Scale Memory Pooling (RSMP)

We argue that bringing the servers of a datacenter closer together within each rack, through a

specialized, low–latency network, improves the performance of core datacenter workloads,

such as in-memory data serving. We propose rack-scale memory pooling (RSMP), which is an

approach to aggregating the main memories of a rack’s servers and treating them as a shared

pool for application data. For RSMP to make sense, the internal rack-scale network connecting

the servers must support low-latency one-sided memory access primitives. RSMP leverages
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one-sided primitives to build coarser grain server nodes – RSMP units, where each server

explicitly accesses memory elsewhere in the rack through one-sided read operations.

RSMP can be achieved using RDMA [116], which is a state-of-the-art implementation of

one-sided primitives. Today, RDMA exists in the form of specialized PCI cards, called host

channel adapters (HCA), that implement the entire RDMA stack, including link, network,

and transport layers, in hardware [115]. At the link level, RDMA requires either Converged

Ethernet (RoCE) [22] or Infiniband [138], since one-sided operations work best over lossless

connections. Assuming lossless links, the Infiniband transport implements the go-back-0

retransmission algorithm [74]. However, it has been shown that large, datacenter-scale RDMA

deployments based on Converged Ethernet (RoCE) do, in fact, lose packets, often leading to

livelocks because of a naive transport-level algorithm for reliable delivery [74].

The support for one-sided access assumes: (i) the ability to initiate remote memory operations

directly from user-space and (ii) the ability to access non-local memory without involving

the owner of that memory – its CPU. RDMA HCA offers both by exposing a queue-pair-based

(QP-based) interface, where the application and the controller interact directly via memory-

mapped pairs of queues, and by supporting address translation through IOMMU.

Fig. 1.2 illustrates a datacenter where the building block is a rack. Unlike standard RDMA

deployments that sometimes span multiple racks, RSMP confines the fabric to a rack and

assumes TCP for inter-rack communication. By limiting the size of an RSMP unit to a rack,

we avoid the emergent safety, performance and monitoring challenges of large-scale RDMA

fabrics. For example, recent work has shown that scaling RDMA over commodity Ethernet

introduces issues of congestion control, dealing with deadlocks and livelocks, and other

subtleties of priority-based flow control [74, 170]. Using Ethernet for RDMA in datacenters

is a common design decision since most datacenter software today is still IP-based. Even

though the flow-control issues of commodity Ethernet may go away [74, 170], complementing

datacenter-scale RDMA (or equivalent) fabrics with specialized ultra-low-latency and high-

bandwidth rack-scale fabrics [15, 126, 130] will be of great importance to balance the load

across small groups of servers, without the cost of data replication (see §5). For example,

similar to the design from Fig. 1.2, it is easy to imagine specialized, high-performance rack-

5



Chapter 1. Introduction

ETH ETH ETH

Server N

Server 1

ETH

Inter-DC 
network

RDMA RDMA RDMA RDMA

RSMP unit
(rack)

Figure 1.2 – RSMP datacenter architecture using RDMA. Each rack is equipped with an internal
RDMA network to form an RSMP unit.

scale systems (e.g., Scale-Out NUMA [126]) in lieu of RDMA racks, and an RDMA network

connecting the servers.

Unlike cache-coherent NUMA (ccNUMA), RSMP assumes virtual global address spaces span-

ning multiple servers that are not cache coherent with respect to each other. The software

framework running on top of RSMP and exposing the abstraction of global virtual address

spaces uses explicit one-sided primitives to access remote portions of an address space.

The software framework enables concurrent access and abstracts away the distributed nature

of an RSMP unit. For the sake of correctness, all the servers belonging to an RSMP unit must

follow a specific concurrency model. The RSMP software framework’s responsibility is to

implement the agreed-upon concurrency scheme and allow application code running on

individual servers to access global data safely. The software framework is in charge of resolving

memory references and allows the programmer to write shared–memory–like server code.

Unlike existing distributed frameworks, such as FARM [58], the RSMP software framework

has been designed to support the new datacenter architecture from Fig. 1.2 and includes a
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client API based on RPC for server/rack resolution and scheduling. Clients use this API to

understand the back-end organization and initiate operations. That is, which individual nodes

have low–latency shared access to each other’s main memory and constitute an RSMP node.

Thus, the software framework allows application clients to easily take advantage of the RSMP

architecture. In addition, the API enables layering of a distributed NoSQL database on top of

the framework, which we demonstrate in §5.

1.3 Improving the Effectiveness of RSMP Through Integration

How effective RSMP is depends on the underlying fabric’s latency. That is, the lower the latency,

the higher the impact on application throughput. The key goal of any RSMP implementation

should be to bring down the remote access latency as close to local access latency as possible.

The main factors for this include: the underlying fabric’s link performance, the switch latency,

the network architecture (e.g., switch–based or glueless, CLOS or 3D torus) [98] and the end-

to-end network performance as a function of the cluster size (i.e., average hop count), the

low–level communication protocol, and, most importantly, the interface between an end–

point’s CPU and the fabric. As we pointed out earlier, the minimum requirement for RSMP to

scale is to support one-sided primitives. Without such support the latency is guaranteed not

to be sufficiently low [75].

The upper bound on the maximum sustainable remote access latency depends on the use

case and the nature of the application itself. Some RSMP applications can tolerate higher

access latency to remote memory [112], whereas some other applications require a minimal

remote to local access ratio [58]. Nevertheless, any application that can take advantage of

RSMP will also benefit from faster remote access and result in better performance [128].

This thesis introduces an RSMP design leveraging integrated controllers, a low-latency fabric,

and small form factor to bridge the gap between the remote and local access latency. A key

requirement for efficient RSMP is to support a low-overhead interface between the CPU and

the controller. To achieve that, we propose folding the controller into the cache hierarchy

of the CPU. By making the controller cache-coherent with the CPU cores, it is possible to

keep the queue pairs in shared memory and allow applications to interact with the controller
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through the standard load/store interface, thus minimizing the overhead of scheduling remote

memory operations and receiving completion notification. The second requirement is to use

a low-latency fabric interconnect. This thesis introduces a solution based on NUMA, but we

also argue that a similar solution is feasible with other types of high-performance fabrics, such

as InfiniBand [138]. Nevertheless, NUMA significantly reduces complexity, in terms of state,

the messaging protocol, and the hardware-software interface.

§4 describes Scale-Out NUMA (soNUMA), an integrated RSMP design based on NUMA. soN-

UMA uses a NUMA memory subsystem, such as Intel QuickPath Interconnect (QPI) [120], to

layer a simple cache-block request-reply one-sided access protocol. The basic one-sided prim-

itives, such as remote read and write are implemented as part of a specialized hardware block,

called remote memory controller (RMC). The RMC is integrated into the CPU’s cache hierarchy,

enabling user programs to interact with it directly via cache-resident queues. Applications

schedule remote transfers via work queues (WQ), and asynchronously get notified by the RMC

upon completion via completion queues (CQ). This programming model is similar to RDMA

verbs [116], in which a pair of queues is used for sending/receiving messages and scheduling

remote transfers, plus a completion queue for notifications. In RDMA, the controller must

use DMA to perform transfers of queue-pair entries in and out of the main memory. Modern

processor technologies, such as direct cache access (DCA) [82], reduce the overhead by allowing

the controller to directly access the CPU cache, but still require DMA. Unlike RDMA, soNUMA

implements a lean transport protocol with a narrow and cache-coherent hardware-software

interface that improves the latency of remote operations and reduces hardware complexity.

Our RSMP software framework described in §3.5 is compatible with both the state-of-the-art

RDMA and our NUMA–based solution.

The high-performance characteristics of NUMA, which includes small maximum transmission

unit (MTU) with low header overhead, and the ability to interact with the network interface

directly from user-space through shared memory, enable applications running on soNUMA

to access remote data at a small factor of the local access latency and stream at DDR rates.

This thesis studies the advantages of integrated RSMP solutions, such as Scale-Out NUMA,

over discrete solutions. We show that low remote access latency enables efficient RSMP and

improves the performance of core datacenter workloads, such as NoSQL data serving.
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Figure 1.3 – A Rack-Out KVS architecture.

1.4 Using RSMP in Data Serving

To understand the benefits of RSMP, we study NoSQL databases and identify the inefficiencies

and bottlenecks of in-memory data serving workloads. Data serving is an important class

of datacenter services that most web applications today rely on, such as social networks or

e-commerce [31, 56]. In particular, our focus is on hash–partitioned data serving systems,

widely referred to as key-value stores (KVS) [45, 56, 62, 69, 106, 146]. Our conclusions also

apply to the other types of distributed NoSQL databases storing data in simple, unstructured

or semi-structured formats in memory, with weak consistency semantics [38].

We observe that the highly parallel nature of KVS, and distributed NoSQL databases in general,

results in load imbalance that often leads to SLO violations. In particular, key popularity

distributions are typically skewed, which directly translates to non-uniform utilization of the

servers [127]. We define such non-uniform load distribution as shard skew. The larger the

shard skew, the faster the system saturates, at which point the 99th percentile latency violates

the SLO. Such sensitivity to skew prevents proper utilization of datacenter resources. Moreover,

as the number of participating servers increases, the shard skew deteriorates and further

lowers the utilization of resources. In addition to shard skew, other sources of imbalance, such

as resource contention, present a threat to stable performance with the increase in server

count [54].
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To reduce load imbalance, we apply the concept of RSMP and propose to make the unit of

sharding a rack [128]. Fig. 1.3 illustrates Rack-Out KVS, a key-value store design using RSMP.

The DHT ring in Rack-Out KVS maps contiguous key ranges to RSMP units and features a

load balancer that determines which server within the target RSMP unit should process an

incoming key-value request.

In §5, we describe a simple load balancing approach for Rack-Out KVS that uses a random

function, and, in §6, we present an adaptive load balancing approach leveraging workload

characteristics and server occupancy to take scheduling decisions. Our RSMP design in Rack-

Out KVS is based on the concurrent-read/exclusive-write (CREW) access model [102]. The

CREW access model enables load balancing of read operations within each rack. We show that

the larger the RSMP grouping (i.e., the number of servers within a rack), the more throughput

we get out of the system, without violating the tail latency SLO.

We study the impact of Rack-Out KVS on in-memory data serving workloads using the state-of-

the-art RoCE hardware [115] and an integrated solution based on Scale-Out NUMA [126]. We

first use RDMA to show the benefit of RSMP for skewed workloads. RDMA provides sufficiently

low remote access latency for RSMP to make an impact. We, then, evaluate Rack-Out KVS

using Scale-Out NUMA, which provides lower remote access latency as compared to RDMA

and further boosts the performance.

1.5 Thesis Goals and Primary Contributions

This thesis proposes rack-scale memory pooling (RSMP), an approach to aggregating the

main memories of a datacenter rack using a low-latency fabric interconnect, with the goal

to create a scalable building block for future datacenters. The concept of RSMP assumes

hardware support for one–sided operations and adequate software support implementing the

abstraction of a global address space. The software support for RSMP exposes a server API for

allocation and transparent access to data via one-sided primitives, and a client API for request

routing and access to data via RPC. To demonstrate the impact of RSMP, this thesis focuses on

distributed non-relational (NoSQL) databases and in-memory data serving workloads.
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The statement of this thesis is as follows:

Pooling the main memory within datacenter racks using a low-latency fabric

improves the performance of in-memory data serving workloads.

We first identify the performance bottlenecks in popular datacenter services, focusing on

in-memory data serving using distributed non-relational (NoSQL) databases. We show that

data popularity skew that exists in most data serving workload translates to load imbalance

and requires the servers of a datacenter’s back-end to communicate, mainly for load balancing

reasons.

Second, we introduce a set of design principles for making communication within a rack

more efficient. We propose rack-scale memory pooling (RSMP), a technique that relies on fast

one-sided operations to enable shared access to a rack’s data. RSMP exposes a different kind

of programming abstraction that follows the shared-memory model, rather than messaging.

In RSMP, improving the underlying rack-scale fabric is advantageous and directly impacts

applications’ performance. To build such a fabric, we identify key bottlenecks in existing

implementations, such as InfiniBand, and argue for a lightweight solution that leverages

integration.

Third, we design and implement a high-performance rack-scale system based on NUMA and

a custom one-sided access protocol. The low-overhead, RDMA-like protocol is layered on top

of a NUMA cache-block request/reply fabric, and is implemented in hardware as part of a

specialized on-chip block. The software interacts directly with the on-chip controller through

cache coherent memory accesses. Using a set of benchmarks we evaluate our solution and

show the benefits of using a NUMA-based fabric and making the controller a part of a node’s

coherence domain.

Fourth, we propose Rack-Out KVS, a distributed NoSQL database design where the unit of

sharding is one RSMP unit. By using fewer larger units, and hence fewer data shards, Rack-Out

KVS reduces the load imbalance that exists in a majority of data serving workloads, leading to

higher throughput, while respecting tight service-level objectives (SLO). We show that Rack-

Out KVS is synergistic with dynamic replication and together lead to higher throughput than
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RSMP or dynamic replication alone. However, RSMP significantly reduces the need for dy-

namic replication and, thus, reduces the overhead that comes with frequent load monitoring,

creating replicas, maintaining consistency, etc.

Fifth, we propose a new scheduling mechanism for the Rack-Out KVS client that adapts the

workload to the skewed write distribution and the variable service times within an RSMP

unit. The new mechanism comprises two independent algorithms that create and adjust

per-rack read distributions to reflect the imbalance within each rack. The read distributions

are computed periodically and sampled by the clients. The goal of adaptive load balancing is

to keep the servers of each RSMP unit, in the ideal case, equally occupied.

To summarize, this thesis claims the following contributions:

• A detailed analysis of the impact of data popularity skew on load imbalance in datacenter

environments. We use in-memory data serving as an example to motivate for memory

aggregation through low-latency one-sided primitives.

• Rack-scale memory pooling (RSMP), an approach to aggregating the main memory of a

rack using one-sided operations. We introduce a set of design principles and technical

requirements for RSMP. We, then, identify bottlenecks in existing fabrics and describe

how tight integration can drive the remote latency down to a small factor of the local

access latency.

• Scale-Out NUMA, an integrated and scalable RSMP design based on NUMA. We explain

the design and implementation of Scale-Out NUMA in detail, and evaluate it using a set

of micro-benchmarks.

• A key-value store (KVS) design leveraging RSMP. We explain how distributed NoSQL

databases can take advantage of RSMP to improve data serving throughput, without

violating applications’ SLO. Most data serving workloads are skewed, which translates

to load imbalance across the servers of a scale-out deployment. By grouping the servers

within each rack using RSMP and, thus, reducing the number of data shards, applications

suffer less from load imbalance and achieve higher throughput.
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• An adaptive load balancing extension for RSMP-based data serving. We observe that the

static RSMP approach has limited impact on the performance of read-write workloads

and systems under contention because of the random scheduling of read requests. We

show how adaptive scheduling of read requests that levarages the information about the

workload and server occupancy leads to higher throughput for read-write workloads.

§2 focuses on skew analysis in classic data serving and studies datacenter technology trends.

In §3, we introduce the concept of rack-scale memory pooling (RSMP) and state the main

prerequisites for RSMP that are necessary to provide performance benefits over scale-out. In

§4, we propose a rack-scale system design based on NUMA enabling highly effective RSMP.

§5 describes how RSMP impacts the performance of distributed NoSQL databases and in-

memory data serving. Finally, §6 proposes an adaptive load balancing mechanism that pushes

the limits of CREW, the concurrency model enabling RSMP.

This thesis does not cover the security and fault tolerance aspects of RSMP. The thesis also

does not study higher level programming models built over the classic global address space

abstraction that is used in RSMP. Next, we focus on distributed in-memory NoSQL databases

exclusively, even though we see other use cases for RSMP, such as rack-scale analytics (check

§4.7.5). In the Scale-Out NUMA work, we do not focus on the network but, instead, study the

end-point design and its impact on the remote access performance.

1.5.1 Bibliographic Notes

Portions of this thesis are based on the work I have previously published with my advisors

Edouard Bugnion and Babak Falsafi, and two of my colleagues, Alexandros Daglis and Boris

Grot. Chapter 4 is based on a conference paper published in the Proceedings of the ACM

International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) in 2014 [126], and a patent granted by the US Patent & Trademark Office in

2017 [129]. Chapter 5 is based on an extended abstract published in the Proceedings of the ACM

International Conference on Measurement and Modeling of Computer Science (SIGMETRICS)

in 2016 [127], and a conference paper published in the Proceedings of the ACM Symposium on

Cloud Computing (SOCC) in 2016 [128]. Chapter 6 is based on a pending journal submission.
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2 Data Serving in Datacenters

The entire datacenter stack, from the low–level server architecture to application code, needs to

be carefully crafted in order to maximize user experience. The number of users of any popular

Web application is growing and requires constant effort of fine tuning datacenter software,

including the optimization of specific application features and system software [23, 110, 169],

rearchitecting datacenter networks to support higher bisection bandwidth and lower the

oversubscription rate [61], adding accelerators to servers to speed up critical application

features [93, 139], horizontally scaling server resources to accommodate for increasingly larger

datasets [12], etc.

The classic scale-out design has a number of advantages, such as the ability to arbitrarily

scale the system, but it is often a major performance-limiting factor. First, the distributed

nature of scale-out requires using the network that is much slower as compared to CPU and

local memory. Some applications exhibit more locality than the other, but, in general, most

applications rely on the network for coordination, data transfers, and replication [55, 81, 83].

Second, to increase DRAM capacity and accommodate for increasingly larger datasets in

memory, the straightforward solution is to just throw in more servers. However, horizontal

scaling increases a provider’s costs without a proportional increase in performance. For

example, partitioning a graph results in more edges spanning two servers, which directly

translates to more network traffic and slower computation; adding more servers to a NoSQL

database results in more imbalance and worse resource utilization [127]; distributing a web

index across a larger number of servers makes the search engine more vulnerable to tail latency
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violations [54].

This chapter describes what today’s datacenter infrastructure looks like and discusses the

implications of the scale-out model on the performance of in-memory data serving workloads

and distributed NoSQL databases. §2.1 focuses on data serving and key-value stores (KVS) in

particular, since they are widely used in popular web applications [31, 56, 62, 69, 146, 169]. We

identify major bottlenecks in KVS and show why the standard scale-out model in combination

with dynamic replication alone is not a great fit for heavely skewed data serving workloads.

Designing and implementing efficient datacenter services is a first-order concern in deploying

large-scale applications on the Internet. In a nutshell, a typical application is organized in two

or more tiers, where the front-end tier is stateless and runs Web server applications that the

users directly interact with, and the back-end runs a wide variety of datacenter services that

the Web server applications use to produce meaningful content for the user. We first list and

briefly discuss a few important aspects of datacenter infrastructure. In §2.1, we focus on data

serving and provide an extensive analysis of how the scale-out nature of datacenters impacts

the performance of this core datacenter service [41, 56, 62, 123].

Resource provisioning. A datacenter service should be provisioned with enough physical

resources, such that it (almost) never lacks CPU cycles, memory, or network bandwidth.

This requires planning and cleverly mapping different services onto datacenter resources

to maximize utilization, but at the same time allow each service to take full advantage of

the available resources. This is usually achieved through monitoring and analyzing each

individual service in isolation or in production, and achieving balance by moving/replicating

data to less utilized servers [81] or entirely migrating/replicating computation in form of

virtual machines (VM) [125, 166]. Resource provisioning requires complex system support

that is typically implemented as part of the datacenter scheduler. The scheduler is the only

entity that has a global view of the system and, thus, is in charge of approximating the optimal

placement of data/VMs and allocation of resources [32, 149, 161].

Networking. The characteristics of different datacenter services vary in terms of algorithms

and data structures used, communication patterns, user activity (input load), popularity
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distribution, etc [68]. Pure scale-out services are rare, and, in the common case, they require

significant network support to accomodate for: intensive communication patters induced

by specific data structures or algorithms used [55, 112], load spikes necessitating proper

resource provisioning through data or VM migration and replication, etc. Thus, some of the

key questions in datacenter design include: what should the network topology look like, how

much bandwidth should we provision, what should be the network oversubscription ratio, how

can we improve the network latency to facilitate access to non-local data, etc. Most datacenter

operators have adopted CLOS topologies, which can scale horizontally to arbitrary sizes with

high link redundancy using low-radix switches [8, 72, 153]. Migrating a data shard or a VM may

occupy the network for too long and violate application SLO. Also, some services may require

fine-grain low-latency access to remote data, which requires specialized hardware [115, 126].

Thus, with the rise of cloud computing, the network becomes a key resource that should

enable core datacenter software to bridge the gap between local and remote memory.

Performance isolation. Datacenters run a diverse set of applications and services concur-

rently. Web search, for instance, depends on its indexing and crawling services running on

thousands of servers in the datacenter [30, 53]. At the same time, services like analytics (e.g.

MapReduce [55]) or data serving (e.g. Bigtable [41]), are collocated on the same servers, com-

peting for resources such as CPU, memory, and network. Consolidation is necessary in order

to adequately utilize available resources and reduce costs. Deploying a large datacenter for

just one service would not pay off and most definitely result in waste of resources. Consolida-

tion is often the main contributor to performance interference between collocated services.

Therefore, technologies like virtual machines and containers have emerged [17]. The main

responsibility of a virtual machine monitor (hypervisor) is to isolate independent services

and reduce performance interference among them. When using such technologies, each

service or application runs inside its virtual envirnoment and is supplied with a prespecified

amount of resources. Nevertheless, performance interference does occur even in today’s

virtualized or containerized envirnoments, and it is often the case that one service degrades

the performance of another collocated service due to resource contention [54]. Performance

interference also occurs within individual virtual machines / processes due to daemons (i.e.

background processes), garbage collection, maintenance activities, energy management.
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In §2.1, we focus on the concept of distributed NoSQL databases, with emphasis on key-

value stores (KVS), and identify key inefficiencies. §2.2 describes how popularity skew leads

to load imbalance and underutilized resources. In §2.3, we argue that dynamic replication

alone introduces significant overhead in heavily skewed data serving workloads. Finally, §2.4

introduces the problem of variable service times that is due to performance interference,

background activities, and non-uniform memory accesses.

2.1 Distributed NoSQL Databases

Data serving is a critical datacenter service that is central to the big data revolution. Appli-

cations like social networks, search engines, and e-commerce extensively use data serving

to retrieve data quickly and return it to the user in some readable form. The data is usually

distributed among many servers and is kept in memory. Upon a user request, the web server

running the application concurrently issues a number of data lookups or updates to a collec-

tion of back-end servers. In a nutshell, after the application had retrieved the requested data

items, it assembles a page (or a subset of it [1]) and sends it to the user’s web browser. Such

high fan–out nature of data serving workloads makes the tail latency the most relevant metric;

the slowest lookup determines an application’s performance. The larger the number of parti-

pating servers per request, the higher the likelihood of violating the tail latency objective [54].

Such latency considerations, for example, force Facebook to restrict the number of sequential

data accesses to fewer than 150 per rendered web page [56].

Data serving services are commonly implemented as distributed NoSQL databases hosting

data in simple unstructured or semi-structured formats, such as tuples, graphs, sparse multi-

dimensional maps, etc [31, 41, 56, 62, 69, 146]. Unlike relational databases, NoSQL databases

scale horizontaly to thousands of machines [91]. They sacrifice consistency in favor of avail-

ability, partition tolerance, and speed (CAP theorem [29]). Fig. 2.1 illustrates a datacenter-scale

NoSQL deployment, where each server hosts a group of small data chunks, often referred to

as micro-shards [81] or tablets [41]. A micro-shard is the unit of migration and replication in

distributed NoSQL databases.

A significant fraction of distributed NoSQL databases leverage consistent hashing to partition
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Figure 2.1 – A typical datacenter/rack architecture. Each server hosts a group of micro-shards
of a distributed NoSQL database.

the data among the participating servers. We refer to hash-partitioned NoSQL databases

that store data in a trivial key-value format as key-value stores (KVS). In KVS, all the keys and

the associated values that map to one contiguous range reside in the memory of the server

responsible for that range. This enables client-side hash partitioning, in which the client

computes the hash of the key and contacts the owner directly [69, 146]. Alternativly, other

designs allow the servers to coordinate among themselves and route the key to the owner [62].

When replication is enabled, mainly for fault tolerance reasons, each server is responsible for

multiple subsequent key ranges, typically three.

Often times, distributed NoSQL databases replicate data purely for load balancing reasons. In

this work, we refer to such replication as dynamic replication, where the data is replicated at

micro-shard granularity, and to an arbitrary number of servers, depending on the load. This

thesis focuses on distributed data serving with support for dynamic replication. We assume a

key-value store with support for dynamic replication as the baseline for the design described

in the next section.

In the rest of this section, we cover the basics of data serving using key-value stores (KVS)

(§2.1.1). Then, in the rest of the chapter, we study the load imbalance problems in data

serving workloads. The conclusions we make hold for the general class of distributed NoSQL

databases, because of the similar characteristics of the various implementations; for example,

a NoSQL database could use a lexicographically ordered index instead of a hash, and store data

19



Chapter 2. Data Serving in Datacenters

in giant tables (wide column) partitioned across the servers, rather than key-value tuples [41].

Nevertheless, only the simple put/get operations on individual data items (rows) would

apply, while the index is, like consistent hashing, distribution-agnostic, as data popularity

distributions cannot be predicted. Thus, both of these NoSQL designs are prone to the same

load imbalance problems, such as skewed data serving workloads.

In the following section, we use a skew analysis to motivate for a different kind of datacenter

architecture, one in which the building block is a rack, rather than a server. While most

concepts we introduce also apply to the data processing category of services, such as graph

processing, throughout this thesis we focus primarily on in-memory data serving. We evaluate

the impact of our techniques described in the following sections on this particular class of

datacenter services.

2.1.1 Case Study: Key-Value Stores

An in-memory key-value store (KVS) is the most critical component of many modern cloud

applications. Several such large–scale applications are powered by well–engineered KVS,

which are designed to scale to thousands of servers and petabytes of data and serve billions of

requests per second [16, 31, 56, 123]. KVS such as Memcached [69], Redis [146], Dynamo [56],

TAO [31], and Voldemort [106] are used in production environments of large service providers

such as Facebook, Amazon, Twitter, Zynga, and LinkedIn [9, 105, 123, 159].

The popularity of key-value stores has led to considerable research and development efforts,

including open-source implementations [62], research efforts [11, 132] and a wide range of

sophisticated, highly tuned frameworks that aspire to become the state-of-the-art of KVS [58,

101, 102]. In principle, all these different KVS systems are distributed hash tables that organize

data in a simple key–value pair format, where the clients use a hash function to look-up

individual pairs.

Each server hosts multiple micro–shards, where a single micro–shard represents the unit of

migration and replication, as illustrated on Fig. 2.1. The metadata, which essentially consists

of a hash space ring, needs to be kept up–to–date constantly and it should be available to both

clients and servers. Upon a server failure, for instance, the associated hash range needs to

20



2.2. Scale-Out-Induced Imbalance

be reassigned to another server, and the clients need to learn about this change in a timely

manner, so that they can route their requests correctly.

KVS commonly deploy weaker consistency models, since under strong consistency, a KVS is

not guaranteed to be available in the presence of network failures (partitions). As previously

said, KVS usually maintain multiple copies of the data on multiple servers, for both load

balancing and fault tolerance reasons. To accelerate write operations, upon a data update

request, the receiver performs a local update, notifies the client, and then in the background

propagates the update to the other replicas. Strong consistency requires the KVS to guarantee

to always return the most recent version of any data, which requires extra checks. In particular,

each read needs to trigger a retrieval of all the copies of the requested data item and return

the most recent version to the application. Luckily, most applications can tolerate weaker

consistency models, where the receiving server is not obliged to return the most recent copy.

The number of replicas involved in each read operation defines the consistency level [62].

Service providers set strict SLO to ensure high quality, designing the service to respond to user

requests within a short and bounded delay. For high fan–out applications, such as a social

networking website, designing for the average latency is not enough; a good service guarantees

that the vast majority of requests will meet the SLO, and thus targets a 99th or even 99.9th

percentile latency of just a few milliseconds [54, 56]. At such tight latency constraints, keeping

all or the majority of data in memory is common practice. However, given the sheer amount of

data modern services handle, adequate memory capacity can only be supplied by deploying a

vast number of servers, which directly contradicts with the tail latency requirement [54, 127].

2.2 Scale-Out-Induced Imbalance

Distributed NoSQL databases typically handle very large collections of data items and millions

or billions of requests per second. In such a setting, skewed distributions emerge naturally,

as the popularity of the data items varies greatly. Previous work has shown that popularity

distributions in real-world data serving workloads follow a power-law distribution [14, 16, 67,

81], resulting in an access frequency imbalance, commonly referred to as skew. A skewed

distribution is accurately represented by the power-law Zipfian distribution [16, 40, 49, 67, 151].
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Figure 2.2 – The 20 most popular micro-shards out of 512000 micro-shards (sorted), Zipfian
input key distribution.

Based on Zipf’s law, and given a collection of popularity-ranked data items, the popularity

y of a data item is inversely proportional to its rank r: y ∼ r−α, with α close to unity. A

classic example of such skewed popularity distribution is a social network, where a very small

subset of users is extremely popular as compared to the average user. These two distinct user

categories (popular versus the rest) result in a popularity distribution with a skyrocketing peak

and a long tail.

The exponent α is determined by the dataset that it models. α = 0.99 is the typical data

popularity distribution used in data serving research [46, 58, 79, 101, 102]. Some studies

show that the popularity distribution skew in real-world datasets can be lower than that (e.g.,

α= 0.6 [151], α= 0.7−0.9 [141, 151]), but also even higher (e.g., up to α= 1.01 [40, 67]).

Sharding the data across the deployment’s collection of servers is done by grouping the data

items into micro-shards, each server being responsible for hosting and serving hundreds or

thousands of them from its local memory [54, 68]. This data distribution is typically done by

applying a hash function to the key, which maps each data item to a micro-shard (e.g., [62, 113,

156]) and each micro-shard to a server. Hash functions are aimed at probabilistically reducing

load imbalance by evenly distributing data items to servers, but are static, stateless, and

distribution-agnostic, as data item popularities cannot be predicted in advance or controlled,

and may change over time. The same holds for lexicographically ordered index, which is

another popular data placement method in distributed NoSQL databases [41].
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Figure 2.3 – Grouping of 250M data items with a power-law popularity distribution in 128
servers.

Fig. 2.2 shows the 20 most popular micro-shards in a one billion key dataset. The hottest

micro-shard alone accounts for 4.2% of the total traffic, which is 20× the average load of an

entire server in a 512-node cluster, and 85× in a 2048-node cluster of the same aggregate

capacity. In practice, a collection of micro-shards that maps to a single server represents a

single data shard that is served by its corresponding server. Thus, even after grouping data

items together into shards, the presence of the inherent popularity skew of data items is still

observable as popularity skew across shards [127].

Fig. 2.3 illustrates the access distribution of a dataset of 250 million items of randomly gener-

ated keys, distributed across 128 servers, and accessed with a power-law (Zipfian) popularity

distribution of exponent α= 0.99. In such a distribution, the most popular item is accessed

11 million times more than the average item. After sharding the dataset across 128 servers

through a hash function, the hottest server holds a shard with a set of keys that is 6.5× more

popular than the average shard. This has significant implications as this hottest server will

receive a 6.5× higher load than the average, and may become overloaded while the majority of

the servers are largely idle. In the absence of any dynamic replication or migration scheme,

the number of micro-shards per server does not impact the skew.

We define the shard skew as the access ratio between the hottest and the average server. Shard

skew arises in a datacenter deployment as a function of three parameters: (i) the exponent α

of the dataset’s power-law distribution, (ii) the number of data items comprising the dataset,

and (iii) the number of servers.
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Figure 2.4 – Impact of the Zipfian exponent (250M keys).

Figure 2.5 – Impact of the dataset size (Zipfian α= 0.99).

Fig. 2.4 shows the shard skew as the number of servers scales for different popularity dis-

tribution exponents α. While the shard skew is insensitive to scaling out for low α values

(e.g., α = 0.6), large exponents dramatically increase shard skew, which in turn becomes a

performance limiter. For example, doubling the number of servers from 1024 to 2048 with

α= 0.99 leads to shard skew increasing near-linearly by 1.97×.

Fig. 2.5 shows the impact of the size of the data item population on the shard skew. While

larger datasets result in better load distribution to shards and hence lower shard skew, the

variation of shard skew with the dataset size is minimal. Also, given a set of keys, the choice

of the hash function used to distribute the data items to micro-shards has negligible impact

on the resulting shard skew. Our experiments with different hash functions corroborate this

observation.
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2.3 Replication: a Thorny Solution

Service providers are well aware of the problems that arise from skew-induced load imbal-

ance [53, 54, 81]: servers that hold the most popular micro-shards can quickly become over-

whelmed with user requests, degrading the whole system’s performance and service quality.

Data replication is a technique that is widely used to better deal with such load imbalance

in the datacenter. It is based on the simple concept that by replicating each data N times, N

servers rather than one can operate on the same piece of data, thus providing higher flexibility

and robustness against skew. In its simplest form, replication is static; the whole dataset is repli-

cated a fixed number of times. However, this approach comes at a great cost, as it multiplies

the memory capacity requirements, which is the most critical resource of modern datacenters.

Furthermore, static replication only provisions for a predefined amount of skew; any skew

higher than the replication factor was provisioned for results in the service’s quality degrada-

tion. Finally, replication requires a mechanism to keep all the copies consistent. Consistency

is a hard problem to deal with, as it introduces both correctness and performance concerns.

The variety and complexity of the implementation frameworks dealing with various forms of

consistency is an indication of this problem’s challenging nature [28, 33, 56, 83, 96, 131, 158].

Recent research has focused on optimizations beyond static replication. In particular, dynamic

replication can flexibly calibrate memory overprovisioning and sudden changes in skew (i.e.,

thundering herds [123]). The main principle is that the system dynamically monitors the load

on an ensemble of micro-shards, and takes replication decisions on the fly to mitigate the

load imbalance. Dynamic replication could operate on individual keys or on entire micro-

shards [79, 81]. The latter is often preferred as it simplifies the updates of the KVS metadata

and minimizes routing overheads. The effectiveness of such methods is highly dependent

on the fine-tuning of several parameters, such as the timeliness, cost, and accuracy of load

imbalance detection, the speed of replication, tracking the changing number of replicas and

timely deallocation when the replicas are no longer useful, etc. [31, 79, 81, 84].

Dynamic replication is never free: (i) load monitoring, the actual replication of micro-shards,

and the updates to the KVS metadata all add CPU, memory, and network overheads; (ii) a

replicated micro-shard is more expensive to maintain. Even in a weakly consistent KVS [56],
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each replica must eventually be updated, which reduces the system’s effective throughput.

2.4 Service Time Variability

In addition to popularity skew, a major source of imbalance in data serving systems, per-

formance interference with either background activities or other applications, maintenance

activities, energy management, remote memory accesses or accesses to disk, etc., all lead to

variable service times and are, often, the main cause of tail latency violations [54]. Any service

that is triggered periodically, such as garbage collection, may contribute to load imbalance.

Also, the request processing times may vary depending on the amount of work that needs to

be done. Longer processing times require from a server to stall the other incoming requests,

which reduces the server’s processing rate.

Because of the high fan-out nature of data serving, the larger the number of servers involved

in servicing a single user request, the higher the likelihood that the tail latency SLO will be

violated [54]. The trend towards extreme scale-out will further exacerbate this problem [63].

Dean et al. [54] proposed hedged requests where a client sends a secondary request after a

short delay (1ms). First, such an approach works for systems with end-to-end latencies in

excess of a few milliseconds. At microsecond-scale, where the propagation delay and the

service times are much smaller, because of a low-latency datacenter fabric and in-memory

workloads, it is not clear whether issuing concurrent requests is the optimal solution.

The dynamic replication approach would require creating replicas of small data chunks

(micro-shards) upon detecting delays in processing incoming requests. The cost of load

monitoring, moving the data across the network, and maintaining consistency of the replicas

make dynamic replication impractical for solving the service time variability problem.

2.5 Datacenter Technology Trends

The rise of new technologies and architectures for datacenters, such as hardware accelera-

tors, specialized servers, and high–performance interconnects, will change the way we think

about designing and building datacenter services. New server technologies, such as micro–
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servers [27, 57, 78, 107], improve energy efficiency and are likely to replace conventional blade

servers. A micro–server features a low–power System–on–chip and plugs into a small chassis

or rack of 10s to 100s of micro–servers. Such a small cluster typically features an internal

network based on Ethernet. The servers within the same chassis are treated as independent

servers, like in conventional scale–out deployments.

Other than small form factor and integration, researchers and industry leaders have pro-

posed various hardware accelerators to speed up application processing in the datacenter.

Catapult [139], for instance, features an FPGA connected to the NIC of each server, allowing

developers to accelerate network operations or simply off–load part of the computation to the

FPGA. With the rise of “dark silicon” [76], the trend towards specialized ASICs and FPGAs will

become more popular in the coming years.

Finally, most datacenter services rely on the network to produce meaningful output [55, 112,

121]. Because the network is multiple orders of magnitude slower than local memory, such

transfers are usually exceedingly long and dominate the execution time. How long a transfer

will take depends on how big the transfer is, the latency and bandwidth of the network, and the

computational paradigm used. For small transfers, it is important that the network provides

low propagation delay - latency, whereas for big transfers it is more important that the network

provides high bandwidth. How big a transfer is depends on the use case; applications that

support batch computation or applications that require replication (VM or data) are likely to

initiate larger network transactions. Applications performing fine-grain accesses to data, such

as key-value stores, require a low-latency network. In many cases, the programming paradigm

allows for the overlap of large network transactions and computation [112]. Applications

using replication to scale in throughput are directly dependent on network bandwidth. A slow

network will take more time to replicate data and, thus, the clients to take advantage of the

extra replicas for load balancing.

To complement novel server designs and accelerators, high–performance networks, such as In-

finiBand (in further text IB), are making inroads into the datacenter and will alter the trade-offs

for building datacenter services [3, 5]. IB is a complete network stack implemented in hard-

ware, allowing user-level programs to send and receive messages with minimal CPU overhead.
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Programs using IB as the means for communication interact directly with the network interface

using memory mapped queues, avoiding any processing in the kernel and minimal processing

in the user-space. The transport layer of IB, which implements the queue-pair (QP) interface,

is implemented in the network interface, allowing for direct interaction between user-space

software and the interface. Besides classic send and receive operations, the hardware-software

interface of IB includes remote direct memory access (RDMA) operations [116], such as remote

read and write.

Using remote reads and writes, an application can access the data in the memory of another

server without CPU interrupts. In many cases, RDMA provides performance boost and we

will demonstrate that on the data serving example. We will also identify the major bottlenecks

in IB implementations and propose a more efficient design that leverages integration and

delivers higher performance boost than the state-of-the-art RDMA. We will also discuss a

hypothetical design combining IB with the concepts introduced in this thesis.

2.6 Summary

Designing datacenter services is a challenging task. Most such services require intensive

communication across the datacenter network because the data is distributed. We focused on

the specifics of distributed NoSQL databases and key-value stores in particular, which require

communication among the servers for load balancing reasons. A typical distributed key-value

store shards the data using a hash function and, thus, is subject to skewed access patterns.

The popularity skew that appears in most real-world cloud applications directly translates

to load imbalance that manifests itself in poor datacenter utilization. To make better use of

resources and achieve higher throughput without violating the agreed-upon SLO, dynamic

replication techniques have emerged [31, 54, 79, 81]. However, dynamic replication comes

with considerable overheads: the consistency semantics expected by the application, the

dataset’s change rate [56], the precision of the monitoring algorithm, and the micro-shard

size, all critically impact the system’s behavior. Fortunately, RDMA technologies are making

inroads into datacenters and will significantly reduce the cost of data transfers, changing the

trade-offs in designing and implementing future datacenter services.
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3.1 Introduction

Rack-scale memory pooling (RSMP) is an approach to aggregating the memory of a datacenter

rack for the purpose of mitigating load imbalance in in-memory data serving workloads. RSMP

leverages a low-latency fabric with support for one-sided primitives [116] to provide shared

data access to a group of servers. In this section, we focus on the fundamentals of RSMP,

the RSMP node architecture, and the underlying fabric technologies. We also identify major

performance obstacles in existing fabrics and propose integration as an approach to lowering

the remote access latency.

RSMP enables any application process to transparently and securely access the memory within

the rack. Under RSMP, the memory of a rack is treated as a single pool through which multiple

application processes, running on distinct servers, can share data. From the application

perspective, RSMP exposes the abstraction of a partitioned global address space (PGAS [44]),

providing access to both local and remote data through a well-defined interface. The RSMP

software framework resolves remote references and performs transfers from remote to local

memory and vice verse.

In one-sided, remote reads, the transfer initiator directly accesses the memory of another

server, without interrupting its CPU, and copies the data into its local memory. One-sided

operations assume a hardware transport, meaning applications can initiate remote transfers
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Figure 3.1 – RSMP datacenter architecture using RDMA. The aggregate memory of each rack
is perceived as one shared pool of memory for data. Remote data is accessed through the
internal RDMA network.

directly from user space and at low CPU overhead. Remote direct memory access (RDMA) is an

existing technology providing one-sided access. RDMA is often referred to as Infiniband, a

network stack providing support for RDMA [5]. Infiniband is implemented in a specialized net-

work controller - host channel adapter (HCA) that applications interact with to initiate remote

transfers using pairs of memory-mapped queues (i.e., bounded buffers). The Infiniband trans-

port layer, which is also implemented in the network controller, exposes a queue-pair-based

interface and performs remote transfers using the underlying fabric. Besides actual Infiniband

fabrics [138], the Infiniband transport is compatible with classic IP networks layered on top of

lossless Ethernet (RoCE [74, 115]). RDMA works best over lossless fabrics, because losing a

packet at the link layer triggers the back-to-0 algorithm at the Infiniband transport layer that

restarts the whole transfer, often leading to livelocks [74]. RoCE is typically used in datacenters,

simply because IP traffic is still predominantly used by datacenter software.

Fig. 3.1 illustrates how the servers of a datacenter rack form one giant node - RSMP unit using

a secondary rack-scale RDMA network. Such an architecture allows any server within the

rack to read any data using the underlying RDMA capability. Because of RSMP, the aggregate

data within a rack in distributed NoSQL databases can be perceived as one super-shard, as

opposed to numerous micro-shards or a group of shards. In §5, we demonstrate the impact

of the RSMP datacenter organization on distributed key-value stores, an important class of
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distributed NoSQL databases.

Unlike cache-coherent NUMA (ccNUMA), RSMP assumes virtual global address spaces span-

ning multiple servers that are not cache coherent with respect to each other. The software

framework running on top of RSMP and exposing the abstraction of a global virtual address

space uses explicit one-sided primitives to access remote portions of the address space.

Integrating the fabric controller in the CPU’s cache hierarchy enables a low-overhead interface

between software and the controller. We show how integration can drive the latency down to a

small factor of the local access latency. We first introduce integration as a general principle

applicable to any implementation of one-sided operations. Then, in the following chapter,

we demonstrate this principle through Scale-Out NUMA [126]. Another factor playing key

role in minimizing the remote access latency and complexity is the choice of the fabric. Scale-

Out NUMA leverages a memory interconnect, where the nodes connect to each other using

point-to-point low-latency links.

Finally, RSMP requires a concurrency model to guarantee correctness. As we previously

pointed out, one-sided operations execute without the intervention of the server hosting the

target data. If a concurrent write access occurs on the host server, the reader could retrieve

partially written data. Thus, a concurrency control mechanism is necessary to synchronize

local accesses executed on the CPU with remote accesses executed by the fabric controller

concurrently. In RSMP, the software framework enables concurrent access and abstract away

the distributed nature of an RSMP unit. The RSMP software framework’s responsibility is to

implement the agreed-upon concurrency scheme and allow application code running on

different servers to access global data safely.

The software framework is in charge of resolving memory references and allows the program-

mer to write shared–memory–like server code. Unlike existing distributed frameworks, such

as FARM [58], the RSMP software framework has been designed to support the new datacenter

architecture from Fig. 3.1 and includes client API for server/rack resolution and scheduling.

By using the RSMP API, the client code can understand the back-end organization. That is,

which individual nodes have low–latency shared access to each other’s main memory and

constitute an RSMP node. Thus, the software framework allows application clients to easily
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take advantage of the RSMP architecture.

We first provide some evidence to support our two-fabric design decision (§3.2). Then, we

focus on key technical requirements for RSMP and discuss existing technologies (§3.3). In §3.4,

we explore additional techniques that make RSMP much more efficient. We, then, describe the

programming interface and the software support for resolving memory references in RSMP

(§3.5). Finally, in §3.6, we provide a short summary of the RSMP proposal.

3.2 When Does RSMP Make Sense?

RSMP assumes a two-fabric datacenter architecture, where the servers use a primary, datacenter-

wide fabric for cross-rack communication, and a secondary, rack-scale fabric for rack-local

communication, as illustrated on Fig. 3.1. A rack-scale RDMA fabric consists of per-server

fabric controllers (HCA) connected to either an RDMA-enabled top-of-rack Ethernet or Infini-

band switch (labeled as RDMA). Unlike standard RDMA deployments that sometimes span

multiple racks, the RSMP design from Fig. 3.1 confines the fabric to a rack and assumes the

classical Ethernet (ETH) at datacenter scale. By limiting the size of an RSMP unit to a rack,

such a design avoids the emergent safety, performance and monitoring challenges of large-

scale RDMA fabrics. For example, recent work has shown that scaling RDMA over lossless

Ethernet introduces issues of congestion control, dealing with deadlocks and livelocks, and

other subtleties of priority-based flow control [74, 170]. Using lossless Ethernet for RDMA (i.e.,

RoCE) in datacenters is common, since most datacenter software today is still IP-based.

Even though the current scalability problems of RoCE are likely to be eliminated in the near

future [74, 170], complementing datacenter-scale RDMA (or equivalent) fabrics with special-

ized ultra-low latency rack-scale fabrics [15, 126, 130] will be of great importance to balance

the load across groups of servers, without the cost of replication (see §5). Such a design would

require an adequate network oversubscription ratio, because the bottleneck could shift from

the CPU to the datacenter-scale fabric, sufficient rack-scale fabric bandwidth to allow for

high-throughput rack-local access, and enough per-server memory bandwidth. Similar to the

design from Fig. 3.1, it is easy to imagine specialized rack-scale systems with ultra-low memory

access latency and high bandwidth in lieu of RDMA racks, and an RDMA network connecting
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the servers. To put things into perspective, Scale-Out NUMA [126], a specialized rack-scale

system, provides a significant improvement in access latency over the state-of-the-art RDMA,

and two to three orders of magnitude as compared to standard Ethernet.

Assuming a scalable RDMA or equivalent design, we now define the two key requirements for

a two-fabric solution - RSMP to provide a performance improvement over the single-fabric

solution for in-memory data serving workloads. We define Remote_ST and Local_ST as the

average times to process an incoming client request remotely, within the rack, and locally,

within the server (respectively). Assuming the run-to-completion model, Remote_ST includes

the primary fabric processing overhead (e.g., TCP/IP in Fig. 3.1), application processing, and

the latency of one or multiple remote memory accesses via the secondary fabric. Thus, the

ratio between Remote_ST and Local_ST depends not just on the latency of the secondary

fabric, but also the software overheads. We define the Grouping Factor (GF) as the size of an

RSMP unit - how many servers have direct access to each other’s memory via one-sided access

primitives. Assuming a skewed data serving workload, the following must hold for a two-fabric

solution (i.e., RSMP) to provide a performance impact, independent of the fabric technologies:

Remote_ST
Local_ST = k : k ≥ 1, ∃GF : speedup(GF ) > 1

For a given service time ratio k, there should exist some GF, such that the maximum speedup,

defined as the throughput improvement of the corresponding RSMP deployment over scale-

out (i.e., GF=1), is greater than one. For such a GF to exist, the following must also hold:

∀ i ∈ {1.. N
GF r acks} : pr i mar y_ f ab_BWi ≤ second ar y_ f ab_BWi ≤ node_mem_BW

For each RSMP unit - rack in our deployment, there should be enough bisection bandwidth

(BW) within the rack (secondary fabric) and enough memory bandwidth within each server,

such that none of the two ever becomes a throughput bottleneck. Hence, the bottleneck

should be either the bandwidth of the primary - datacenter-scale fabric connecting the servers

of a rack with the servers in the other racks, or the maximum CPU processing rate. Which of

the two saturates first depends on the request size, the per-request software overhead, the

number of CPU cores, the primary fabric bandwidth, and the latency of the secondary fabric

(assuming synchronous processing). In the following text, we look at the key techniques that

are necessary to satisfy the two requirements from the above.
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Figure 3.2 – One-sided access illustration. Application uses memory-mapped queues to
request remote transfers. CPUs not participating on the data path.

3.3 Design Principles and Techniques Enabling RSMP

Rack-scale memory pooling (RSMP) is a set of general design principles and techniques for ag-

gregating memory within a rack that is applicable to any fabric implementation or technology.

This section will introduce those principles as the main prerequisites for effective memory

pooling. In §3.3.1, we focus on one-sided primitives, which allow applications to access the

memory within the local rack directly and with minimal overhead. §3.3.2 studies fabric in-

terconnects or simply fabrics, which provide the foundation for one-sided communication.

Finally, §3.3.3 focuses on concurrency issues in RSMP and explains why a concurrency control

mechanism is necessary for correct execution.

3.3.1 One-Sided Memory Access Primitives

One-sided memory access primitives require: (i) the involvement of only one endpoint (usually

the source) in a network transfer, and (ii) the ability to initiate and complete such transfers

without OS involvement. The typical one-sided primitives include: remote read, remote

write, and remote atomic operations, such as compare-and-swap or fetch-and-add. As Fig. 3.2

shows, one-sided access primitives do not engage the CPU of the server hosting the target

data, and, thus, avoid the overhead associated with interrupts. Also, one-sided primitives can

be executed from user space using memory-mapped queue pairs, without trapping into the

kernel, which is illustrated on the lefthand side of the figure. To support such direct user-space

access to remote memory, one-sided primitives require a fabric controller implementing a

complete network stack with support for one-sided primitives.

For clarity, we distinguish between the support for one-sided access and the underlying fabric

interconnect. The support for one-sided access includes a low-overhead hardware/software

interface and a state machine for direct memory access. Such support is typically part of the
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upper layers of the network stack (i.e., transport). Fabrics consist of the layers below, such as

network/routing, link and physical layers. The fabric layers define the link-level messaging

protocol between endpoints, congestion control, routing, link-level flow control, etc. We

discuss fabric interconnects in the following subsection.

Fabric controllers enabling one-sided access expose a programming interface based on pairs

of queues which are directly accessible to user-space software. A queue pair (QP) consists of

two to three circular buffers or queues responsible for initiating one-sided or classic messaging

operations (i.e., send/recv) and notifying applications upon their completion. The queues

are typically memory mapped into the application’s address space, allowing application code

to schedule one-sided accesses directly from user space. In its simplest form, a QP-based

interface consists of a work queue (WQ) or send queue (SQ) and a completion queue (CQ).

When an application wants to access remote memory, it initiates a transfer by encoding all the

necessary information into a WQ entry. These parameters typically include remote node ID,

offset, key identifying the region exposed for remote access, size of the transfer, etc. The fabric

controller polls on WQs and once it detects a new WQ entry, it decodes the passed information

and initiates a data transfer. Upon completion, the controller notifies the application via a CQ.

The remote access protocol interfaces with applications through the QP-based interface and

transforms application requests into fabric transactions (e.g., IP packets). Such protocol is

implemented as a state machine and consists of one or more hardware pipelines that layer

remote data transfers on top of the fabric’s transport. The protocol also defines a set of message

headers carrying essential information between two endpoints. Besides local requests for

remote access, the remote access protocol is responsible for executing incoming requests

issued by other nodes in the system. For one-sided operations, the protocol must not involve

the CPU and it needs to load and subsequently inject the retrieved data into the fabric.

In this thesis, we propose and discuss the details of one such one-sided protocol – Scale-Out

NUMA (soNUMA) [50, 126]. The soNUMA transport is layered on top of a NUMA fabric

exposing a simple cache block request-reply interface. We also discuss RDMA as the state-of-

the-art in one-sided communication. We use RDMA based on lossless Ethernet to evaluate

the benefits of RSMP and, also, compare RDMA to soNUMA.
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3.3.2 Fabric Interconnects

We define a fabric interconnect or fabric as a medium that carries network traffic in one-

sided communication. One-sided protocols run on top of fabrics; they translate application

requests for remote transfers into low-level request-reply fabric transactions. For example,

a remote read request requires sending a packet to the server hosting the target data. Upon

reception, the target’s controller reads the requested data from the local memory, breaks it up

into multiple packets and sends them to the requestor. The number of such packets depends

on the maximum transmission unit (MTU) that the underlying fabric has been configured

with.

Fabric interconnects define packet formats, headers and specific networking features that the

transport protocol above uses to perform data transfers. At each layer of the stack, packets

are encapsulated or decapsulated, depending on the direction. The header overhead can be

significant depending on how complex the protocol is (e.g., how many features are supported)

and the MTU size. For example, supporting routing across different subnets requires carrying

network IDs, such as IP addresses, in every packet. Such feature is supported in Infiniband

and lossless Ethernet fabrics. Finally, the smaller the MTU, the larger the header overhead,

independent of the header size.

The MTU size is one of the determining factors for a fabric’s performance. Large MTUs

can amortize the significant header overhead of complex protocols, while smaller MTUs

provide better propagation delay, which improves the latency of small transfers. We provide a

comparison between the Infiniband and NUMA MTUs in §4.8. The MTU can be configured

and varies from cache-block size (i.e., 64B) in NUMA to 8KB in Infiniband. Note that the

physical interconnect can further break packets into smaller chunks of data (e.g., flits and

phits in memory subsystems) before sending them across the wire.

A major requirement for one-sided communication is that the underlying fabric does not drop

packets (i.e., lossless). In Infiniband, if a packet gets lost, the whole transfer is reinitiated at

the transport layer and this can lead to livelocks [74]. To prevent such events, link-level flow

control is a common solution that prevents buffer overflow in the switches and/or endpoints.

Infiniband, for instance, implements credit-based flow control where each node keeps track
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of empty space in downstream entities. One alternative to credit-based flow control is priority-

based flow control (PFC), where endpoints and switches pause upstream entities using specific

types of frames when an overflow is about to occur, and resume them when there is enough

space to safely proceed with transfers. Such flow control mechanism is used in lossless

Ethernet to ensure efficient RDMA. It has been shown that even flow-controlled fabrics can

lose packets due to various hardware bugs and errors, which is why an efficient retransmission

mechanism is required at the transport level [74].

3.3.3 Concurrency Models

RSMP requires a concurrency mechanism for correctness reasons. Accessing remote data

using one-sided operations implies that conflicts with local CPU accesses at the target node

can occur. For instance, if the target node is updating an object, a remote reader could read

a partially updated version of that object. To prevent such inconsistent accesses, either a

hardware or software synchronization mechanism is required.

Optimistic concurrency control (OCC) is one common way to minimize the number of round

trips required to perform a remote transfer [58]. Under software OCC, the reader copies the

requested data to its local memory and performs atomicity checks to verify that the object

has not been modified during the transfer. In this thesis, we use a modified version of fast

and available remote memory (FARM) [58] framework to provide the RSMP abstraction to

applications. In FARM, OCC is implemented in software and assumes a data layout in which

all cache blocks contain a version number. When an object is copied from remote to local

memory, all the per-cache-block versions are compared against each other to detect atomicity

violations that may have occured at the target node.

With the emergence of low-latency rack-scale fabrics, a hardware OCC mechanism will be of

great importance [126]. Using a software mechanism in combination with today’s Infiniband

fabrics is a reasonable choice, given the relatively high latencies of such fabrics (i.e., >1us). In

§4, we study an integrated fabric providing ramote access latency that is only a small factor

higher than the local access latency. Due to such ulta-low access latency to remote memory, a

software mechanism is not sufficient as the atomicity checks and extracting useful data takes
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up a significant fraction of the end-to-end latency [50].

Finally, ACID transactions are necessary in RSMP to ensure consistent operations on multiple

objects residing on different servers of the rack. An OCC mechanism guarantees linearizability,

meaning accesses to a single object are serialized, whereas transactions guarantee serializ-

ability - interleaved accesses to a set of objects appear as if they were executed one at a time.

FARM supports distributed transactions using a variant of the two-phase commit protocol.

In FARM, the number of necessary remote operations is minimized through a combination

of RDMA and standard RPC. This thesis, however, focuses on distributed NoSQL databases

with weak consistency semantics that do not require support for ACID transactions. NoSQL

databases typically assume the scale-out model, which is the model RSMP follows, where

distributed ACID transactions are not practical [28].

3.4 Integrated RSMP

The impact of RSMP on datacenter’s performance depends on the underlying fabric’s per-

formance characteristics. RDMA provides low-latency access to remote memory, and, thus,

enables effective RSMP. For most applications where RSMP is applicable, RDMA is sufficiently

fast to provide performance benefits as compared to standard scale-out deployments. To

provide a more effective RSMP, one could think of a different kind of one-sided architecure

that delivers lower latency and/or more bandwidth than existing RDMA implementations.

The goal of such a new design should be to achieve the latency that is as close to the latency

of a cache-coherent NUMA machine as possible. In this section, we will first identify the

main performance bottlenecks in Infiniband/RDMA. Then, we will outline a set of design

principles for building integrated one-sided fabrics that outperform the existing Infiniband

implementations.

3.4.1 Obstacles to Low-Latency RSMP Using RDMA

RDMA is implemented through Infiniband, which assumes specialized discrete network cards,

also known as host channel adapters (HCA), Converged Ethernet or Infiniband switches and

physical links connecting the hosts. The Infiniband transport is implemented in the HCA
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and is layered either over an existing IP/Ethernet network, for compatibility reasons, or an

actual Infiniband network. For RDMA to work, the underlying fabric must support lossless

communication. In IP/Ethernet networks, this is achieved through priority-based link-level

flow control [6], whereas Infiniband fabrics rely on credit-based flow control [5] to provide the

lossless property.

Because the entire network stack is implemented in hardware and the fact that only one

endpoint is involved in one-sided communication, Infiniband delivers latencies on the order of

only a few microseconds [58]. A hardware implementation of the transport allows applications

to directly and at low overhead request remote data transfers from the locally-attached HCA

via a set of registered memory-mapped queue pairs. The Infiniband transport implements

one-sided operations and, thus, data can be retrieved from remote memory without involving

the CPU of the owner node. HCAs access requested data from the local memory via DMA

completions over the PCI bus and return it to the requestor using the fabric.

Even though Infiniband provides low-latency access to remote memory, its implementations

are not well-aligned with the concept of RDMA. In particular, RDMA assumes one-sided

communication that brings significant latency improvements over messaging, but initiating

one-sided accesses dominates the end-to-end latency, primarily because of the PCI/DMA

interface between the CPU and the HCA [18]. The PCI/DMA interface has been considered

reasonably fast for decades in conventional TCP/IP networks, as the on-loaded network packet

processing time dominates the end-to-end latency.

The second source of overhead is the switch that connects the servers within the rack. A single

Ethernet switch adds up to 200ns of latency [114]. Also, the links may not provide sufficiently

high signaling rate and/or width for applications to communicate at low latency and high

bandwidth. More recent Infiniband signaling technologies, such as EDR, provide signaling

rates up to 25Gbp/s per link.

Finally, protocol complexity affects the complexity of the HCA, increases the header overhead,

and the amount of state kept in the network and its endpoints. In §4.8, we provide an analysis

of different MTU sizes and header overheads to conclude that low complexity results in smaller

header sizes and enables the use of smaller MTU, which reduces the end-to-end latency.
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Figure 3.3 – PCIe/DMA interaction between a core and a host channel adapter (HCA).

PCIe/DMA. PCIe/DMA is a standard technique for connecting IO devices, such as graphic

processing units, solid state disks, network interfaces, etc. The PCI bus connects the device to

the CPU and the memory, allowing data transfers from the CPU caches or DRAM to the device

and vice verse. The queue-pair-based interface (QP-based) in Infiniband leverages PCIe/DMA

for transferring queue-pair entries between the application and the HCA. The HCA can be

configured to accept QP entries via PCI writes or to pull QP entries using DMA. Which of the

two mechanisms is more efficient depends on the number of round trips between the CPU

and the device required for each application request. The size of the WQ entry often makes

it more efficient to use DMA completions as opposed to direct PCI writes [89]. Nevertheless,

the QP interaction over PCI/DMA can add up to 1us of delay in transferring data across the

network [18].

When using PCIe writes, the software uses memory-mapped IO to write directly into the

address space of the device. Another approach is to configure the controller to pull fresh WQ

entries using PCIe completions upon doorbell notifications. The latter approach is illustrated

on Fig. 3.3, where (i) the core creates one or multiple SQ entries, (ii) notifies the HCA via a

doorbell, (iii) the HCA pulls fresh SQ entries via PCIe completions, and, finally, (iv) executes

the requests, writes the requested data to memory (for reads) and notifies the application

via a new CQ entry. This combination of PCI reads and completions are considered more

bandwidth-efficient, as the packets in aggregate carry less header metadata, whereas direct
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PCI writes often provide better latency.

Switches and Links. The second source of inefficiency is the switch and the links connecting

the servers. A single Ethernet switch can add up to 200ns of latency [114], and, thus, the more

servers we connect, the higher the latency (e.g., two racks require three switches in total).

Link latency depends on the signaling rate, the width, and the MTU size. Infiniband has

significantly improved since its first version based on Single Data Rate (SDR) with the latency

of 5us. Currently, Infiniband enhanced data rate (EDR) can provide the latency of 0.61us and

bandwidth of 100Gbps.

The signaling rate depends on how many bits can be transferred per clock cycle and the clock

frequency; Quad Data Rate, for example, transfers 4 bits per cycle by using both rising and

falling edges of the signal on two distinct wires (differential signaling). The available widths in

Infiniband include 1, 4, and 12×.

Protocol complexity. Finally, HCAs are highly complex devices implementing an entire

network stack. Such a network stack consists of transport, network, link, and physical layers.

The transport layer is always Infiniband, while the rest of the stack is either an actual Infiniband

network, consisting of Infiniband L3, L2, and PHY, or an IP/Ethernet network with support for

link-level flow control (i.e., lossless Ethernet). IP over lossless Ethernet is commonly used in

datacenters, because most of the traffic is still based on IP. HCAs are complex devices because

Infiniband supports many features that add state and network packet header overhead. For

instance, the requirement to establish connections between potentially each pair of QPs prior

to accessing remote memory can lead to exceedingly large amount of state and thrashing from

the HCA to DRAM [58].

Infiniband requires routing across subnets to support larger server deployments, which trans-

lates to bigger packet headers. Each packet also carries the information associated with the

requested operation, such as the opcode, virtual address, etc. Thus, Infiniband headers can

be as large as 98 bytes for RDMA operations [5], which is why it is important to support large

MTUs in Infiniband and amortize the header overhead. The downside of large MTU headers

is longer propagation delay - higher latency for small data transfers (see §4.8).
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3.4.2 Integrated Fabric Interconnects

Tight integration can reduce the latency, improve bandwidth, and reduce complexity of

one-sided fabrics. We first propose a set of design principles that lead to faster one-sided

communication and reduce protocol complexity. In the next chapter, we describe Scale-Out

NUMA (Fig. 3.4) an actual implementation of integrated one-sided fabric. Our focus is on

rack-scale one-sided fabrics and we assume integration only within a single rack and not

across multiple racks.

The main goal of integration is to: (i) improve the interaction between the software and the

fabric controller, and (ii) improve transfer efficiency using one-sided primitives. We show

that integration leads to a design that is much better aligned with the idea of one-sided

communication, where servers can access each other’s memory at a small factor of the local

access latency. The reduced remote access latency leads to significant performance benefits

through a better use of the fabric.

The first step towards a more efficient one-sided fabric is to design a lightweight hardware-

software interface between the software and the controller. Such an interface should allow

software to initiate remote transfers at much lower cost, such that a larger fraction of the

end-to-end latency is attributed to the propagation delay of the interconnect, rather than

the interface itself. A low-overhead interface is feasible through integration, where the fabric

controller is a specialized and hardwired part of the CPU, allowing cores to interact with the

controller faster than using PCI/DMA. Such an approach assumes removing the PCI bus,

a mechanism that falls behind the concept of RDMA due to its overheads. By integrating

the controller in the CPU, the cores can interact with the controller through cache-coherent

shared memory and leverage the cache coherence protocol for core-to-controller transfers

and vice verse.

Second, a faster one-sided fabric also necessitates the use of specialized network elements.

This includes removing the switches and using integrated low-latency routers instead, as well

as using multiple low-latency and high-bandwidth links to connect the nodes. A low-latency

router in glueless/supercomputer-like fabrics can have a pin-to-pin delay of only a few tens

of nanoseconds [118]. Then, low-latency and wide links can further improve transfer times.
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Figure 3.4 – A 2D mesh Scale-Out NUMA architecure.

In addition, connecting the nodes using high-degree network topologies, such as 3D torus,

improves the bisection bandwidth. Integrated fabrics assume the use of a printed circuit

board, which makes all the elements of the rack integrated.

Finally, a low-complexity transport protocol for one-sided access reduces the state and header

overhead. To integrate a fabric controller into the CPU cache hierarchy, it is necessary to

support a minimal number of features, which requires minimal state to be kept in the network

endpoints and less metadata to be carried, along with the data, across the network (header).

By reducing the header overhead, it is possible to reduce the MTU size and minimize the

propagation delay.

Fig. 3.4 illustrates a 2D mesh Scale-Out NUMA (soNUMA) architecture that we cover in the

next chapter. soNUMA is an integrated one-sided fabric design layering a low-latency and low-

complexity one-sided protocol over a rack-scale NUMA fabric. Each node in a soNUMA fabric

consists of a System-on-chip (SoC) with CPU cores, a remote memory controller (RMC), and

local DRAM. RMC is the soNUMA’s fabric controller that layers one-sided remote transfers over

NUMA. The unique combination of a lightweight one-sided protocol and NUMA improves the

remote access latency by an order of magnitude as compared to the state-of-the-art RDMA

designs. In the next chapter, we discuss Scale-Out NUMA in detail and describe what it takes

to build a faster alternative to RDMA.
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Figure 3.5 – A virtual global address space with objects spread across the N servers of an RSMP
unit. Memcopy semantics for accessing both local and remote objects.

3.5 RSMP Software Framework

A key prerequisite for RSMP is a software framework that provides the abstraction of virtual

global address spaces. Such a software framework is necessary to implement applications in

a transparent way, while taking advantage of the RSMP architecture. By using the software

framework, programmers do not have to spend too much time thinking about the intricacies

of the underlying fabric and the architecture of the back-end. That is, the RSMP software

framework provides: (i) an API for managing virtual global address spaces and (ii) an RPC

mechanism with associated API for the client-server interaction. The server-side abstraction

providing virtual global address spaces allows applications to transparently keep their data in

the memory of multiple nodes connected using a one-sided fabric (i.e., RSMP unit). The client-

side API allows applications to locate data and assign tasks (e.g., key lookup) to individual

servers assuming shared access to data at the level of a rack.

Data layout. The default data layout in RSMP is objects, where each object is associated

with a global virtual address and is accessed through the framework’s API, independent of

the object’s location. Fig. 3.5 illustrates a global address space of stand-alone objects spread

across an RSMP unit. Upon a request for access to a specific object, the RPC handler resolves

the reference and issues a remote read if the object is not stored in the local memory. The

fabric transfers the object to an application buffer and the framework returns a reference to

the payload. It is up to the application programmer to decide whether the same object should

be transferred repeatedly from remote memory or cached for some period of time.
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An object in RSMP could be a key-value pair, a table row, graph vertex, etc. Depending on the

kind of distributed NoSQL database layered on top of the framework, the RPC handler uses

application-specific metadata, such as DHT ring, index, or adjacency matrix, to locate data in

memory.

One of the downsides of the global address space abstraction is spatial locality; frequent access

to remote objects might hurt performance. However, with the advance of high-performance

one-sided fabrics, locality will become less of an issue. In the next chapter, we introduce a

state-of-the-art one-sided fabric, delivering remote latency that is only a small factor higher

than the local DRAM latency [126].

Programming interface and implementation. The RSMP software framework provides an

RPC mechanism with the client-side API for requesting data structure-specific operations

from the servers via TCP/IP, such as key-value lookup and insert in distributed hash tables.

The RPC API assumes read-shared data access within each rack, allowing clients to take

advantage of the RSMP architecture. The API helps clients understand the architecture of the

back-end - which nodes are connected to each other and form RSMP units. The clients use

the API to make smarter scheduling decisions leading to better performance as compared

to the straightforward design in which work is distributed uniformly across an RSMP unit.

In §6, we describe one such design for data serving applications. The current version of

the RSMP software framework does not assume a networking abstraction where an RSMP

unit is associated with a single IP address. A networking abstraction would further simplify

application development and allow applications to think of an RSMP unit as one giant server.

RSMP software framework is based on FaRM [58], a distributed object store providing basic

mechanisms that enable the concurrent-read/exclusive-write (CREW) concurrency model [102].

In particular, FaRM implements atomic remote object reads via RDMA using optimistic

concurrency control that encodes versions in objects. Should an object write overlap with a

remote read request, the framework detects the inconsistency and retries the operation. Next-

generation rack-scale fabrics, such as Scale-Out NUMA, propose to add hardware support for

atomic, multi-cache line remote reads that eliminate the software overheads associated with

atomicity checks and data layout [50].
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Client read API

RSMP int RpcRead(server_endp_t server_endp, int rpc_type, buf_t params, rpc_callback_t AppCb)
FaRM int AtomicRead(addr_t addr, size_t block_size, read_callback_t SearchDataCb)

Table 3.1 – Client read function comparison between RSMP and FARM. FARM assumes direct
access to globally distributed data.

We perform three major modifications of FaRM: (i) FaRM has been designed with the core

assumption that the clients would have direct access to the RDMA fabric; instead, we augment

FaRM with a TCP/IP network front-end that receives client requests, processes them using the

FaRM framework, and sends back the replies; (ii) out of necessity, we ported FaRM to Linux

and its RDMA stack – OFED; (iii) we ported the FaRM core from the standard RDMA interface

to use the low-overhead Scale-Out NUMA operations.

Table 3.1 shows the read function declarations on RSMP and FaRM. Because of the RSMP

datacenter organization assumption, the RSMP software framework uses RPC to retrieve data

from the servers via the TCP/IP network. Unlike RSMP, FaRM assumes a globally available

RDMA fabric where any client can access any data [58]. FaRM clients typically use AtomicRead

to retrieve a bigger chunk of data (e.g., table row) and then search for specific - requested

item (e.g., column) locally, once the data has been transferred via RDMA. In RSMP, servers use

AtomicRead from inside the RPC handler to retrieve data from the global address space of the

local RSMP unit and return it to the client.

Using the framework API, it is possible to layer a distributed NoSQL database on top of the

RSMP abstraction, such as key-value stores, sparse multi-dimensional maps, graph stores [31,

41, 58, 128]. In a nutshell, what distinguishes one NoSQL database from another is: (i) how

memory gets allocated (e.g., tables, graphs, key-value pairs) and (ii) the type of metadata that

the clients use to determine the location of data (i.e., which server / RSMP unit) - that the

servers use to find the global virtual address associated with the requested data from inside

the RPC handler.

Independent of the NoSQL database, the clients can use the knowledge of the back-end RSMP

configuration (i.e., server groupings) to perform load balancing. In §5 and §6, we describe

two different approaches to load balancing in a distributed key-value store, which we had

previously implemented on top of the RSMP framework.
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Run-to-completion model. The RSMP framework is optimized for latency and processes

client requests on the server side in a run-to-completion manner [23], even though the QP-

based interfaces of RDMA and Scale-Out NUMA support asynchronous remote operations.

First, given the high overhead of processing inbound client requests (kernel and user space

overheads), there is very little opportunity for pipelining; for example, Table 5.1 shows that the

service time for local KVS lookups is 5us, which is well above the Scale-Out NUMA latency

of only 240ns [50]. In the case of RDMA, using the asynchronous API may lead to a slight

improvement in throughput, given the higher remote access latency of RDMA, but would

make programming more complex [20]. Second, besides the performance aspect and more

importantly, the run-to-completion model allows us to reason and carefully analyze applica-

tion behavior. In §5, we present a queuing model for a KVS based on the RSMP framework.

Assuming the run-to-completion model, we use the request processing times (i.e., service

times) to instrument the model and accurately match the KVS’s performance with the model

results.

Consistency semantics. RSMP assumes the scale-out architecture, which means ACID trans-

actions across different racks are not practical. Fortunately, NoSQL databases, unlike relational

databases, often times imply only put and get operations on individual data items and, thus,

do not require ACID transactions, but only need to guarantee linearizability [97]. Also, because

of the scale-out assumption, NoSQL databases by definition do not provide strong consistency

guarantees for replication (CAP theorem [29]), but rather implement eventual consistency

models for availability reasons.

3.6 Summary

RSMP is a technique for aggregating memory at rack-scale using a fabric interconnect with sup-

port for one-sided operations. One can also think of RSMP as building fewer larger servers in a

scale-out - datacenter envirnoment. A larger server in this context is a tightly interconnected

cluster of nodes that can be perceived as a single capacity unit (i.e., server) in a datacenter. To

build such clusters, we introduced the concept of one-sided operations and discussed fabric

interconnects enabling low-latency one-sided transfers. One-sided operations bypass the OS
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kernel and do not involve the owner of the target data - destination, thus providing a signifi-

cant performance improvement over TCP/IP. We studied Infiniband as the state-of-the-art

implementation of one-sided operations. Infiniband is a full network stack providing reliable

delivery using link-level credit-based flow control.

We identified the major bottlenecks in existing RDMA implementations based on Infiniband.

We identified PCI/DMA as the major source of overhead. Other sources include the switches,

link signaling rate, network architecture, and complexity of the one-sided protocol. We, then,

introduced integration as an effective approach to reducing the remote access latency, where

the fabric controller resides on the chip and is cache coherent with the CPU cores, which

minimizes the hardware-software interface overhead.

Finally, we discussed software support for RSMP. We proposed the RSMP software framework

exposing the abstraction of a global address space to applications, with the object data layout.

We described the API and how applications - NoSQL databases should be implemented on top

of this API. We, also, described the run-to-completion model and the consistency semantics

for distributed NoSQL databases running on top of RSMP.
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4 Scale-Out NUMA: An Integrated RSMP

Design

We introduce Scale-Out NUMA (soNUMA) - an architecture, programming model, and com-

munication protocol for integrated, low-latency rack-scale memory pooling (RSMP). soNUMA

layers an RDMA-inspired programming model directly on top of a NUMA memory fabric via a

stateless messaging protocol. To facilitate interactions between the application, OS, and the

fabric, soNUMA relies on the remote memory controller (RMC) - a new architecturally-exposed

hardware block integrated into the node’s local coherence hierarchy. Our results based on

cycle-accurate full-system simulation show that soNUMA performs remote reads at latencies

that are within 4x of local DRAM, can fully utilize the available DDR3 memory bandwidth

using a single CPU core, and can issue up to 10M remote memory operations per second per

core.

Because of the ability to access remote memory at a small factor of the local access latency,

soNUMA enables highly effective RSMP. In this chapter, we focus on the architecture of

soNUMA, and in the next chapter we show how RSMP using soNUMA can impact distributed

key-value stores (KVS). §4.1 introduces the problem of low-latency RSMP. In §4.2 we discuss

datacenter trends and obstacles to low-latency RSMP. We then describe the essential elements

of the soNUMA architecture (§4.3), followed by a description of the design and implementation

of the RMC (§4.4), the software support (§4.5), and the proposed communication protocol

(§4.6). We evaluate our design (§4.7) and discuss additional aspects of the work (§4.8). Finally,

we place soNUMA in the context of prior work (§4.9) and conclude (§4.10).
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4.1 Introduction

Datacenter applications are rapidly evolving from simple data-serving tasks to sophisticated

analytics operating over enormous datasets in response to real-time queries. To minimize the

response latency, datacenter operators keep the data in memory. As dataset sizes push into

the petabyte range, the number of servers required to house them in memory can easily reach

into hundreds or even thousands.

Because of the distributed memory, applications that traverse large data structures (e.g., graph

algorithms) or frequently access disparate pieces of data (e.g., key-value stores) must do so

over the datacenter network. As today’s datacenters are built with commodity networking

technology running on top of commodity servers and operating systems, node-to-node com-

munication delays can exceed 100μs [145]. In contrast, accesses to local memory incur delays

of around 60ns – a factor of 1000 less. The irony is rich: moving the data from disk to main

memory yields a 100,000x reduction in latency (10ms vs. 100ns), but distributing the memory

eliminates 1000x of the benefit.

The reasons for the high communication latency are well known and include deep network

stacks, complex network interface cards (NIC), and slow chip-to-NIC interfaces [70, 145].

RDMA reduces end-to-end latency by enabling memory-to-memory data transfers over Infini-

Band [109] and Converged Ethernet [6] fabrics. By exposing remote memory at user-level and

offloading network processing to the adapter, RDMA enables remote memory read latencies

as low as 1.19μs [47]. Even though RDMA enables RSMP, its latency is still >10x higher than

the local DRAM latency.

We introduce Scale-Out NUMA (soNUMA), an architecture, programming model, and commu-

nication protocol for distributed, in-memory applications that reduces the access latency to

nearby remote memory (RSMP unit) to within a small factor (∼4x) of local memory. soNUMA

leverages two simple ideas to minimize latency. The first is to use a stateless request/reply

protocol running over a NUMA memory fabric to drastically reduce or eliminate the network

stack, complex NIC, and switch gear delays. The second is to integrate the protocol controller

into the node’s local coherence hierarchy, thus avoiding state replication and data movement

across the slow PCI Express (PCIe) interface.
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soNUMA exposes the abstraction of a partitioned global virtual address space, which is useful

for big-data applications with irregular data structures such as graphs. The programming

model is inspired by RDMA [116], with application threads making explicit remote memory

read and write requests with copy semantics. The model is supported by an architecturally-

exposed hardware block, called the remote memory controller (RMC), that safely exposes

the global address space to applications. The RMC is integrated into each node’s coherence

hierarchy, providing for a frictionless, low-latency interface between the processor, memory,

and the interconnect fabric.

Our primary contributions are:

• the RMC – a simple, hardwired, on-chip architectural block that services remote memory

requests through locally cache-coherent interactions and interfaces directly with an

on-die network interface. Each operation handled by the RMC is converted into a set of

stateless request/reply exchanges between two nodes;

• a minimal programming model with architectural support, provided by the RMC, for

one-sided memory operations that access a partitioned global address space. The model

is exposed through lightweight libraries, which also implement communication and

synchronization primitives in software;

• a preliminary evaluation of soNUMA using cycle-accurate full-system simulation demon-

strating that the approach can achieve latencies within a small factor of local DRAM and

saturate the available bandwidth using a single core;

• an soNUMA emulation platform built using a hypervisor that runs applications at

normal wall-clock speeds and features remote latencies within 5x of what a hardware-

assisted RMC should provide.

4.2 Why Scale-Out NUMA?

In this section, we discuss key trends in datacenter applications and servers, and identify

specific pain points that affect the latency of such deployments.
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4.2.1 Datacenter Trends

Applications. Today’s massive web-scale applications, such as search or analytics, require

thousands of computers and petabytes of storage [165]. Increasingly, the trend has been toward

deeper analysis and understanding of data in response to real-time queries. To minimize

the latency, datacenter operators have shifted hot datasets from disk to DRAM, necessitating

terabytes, if not petabytes, of DRAM distributed across a large number of servers.

Recent work examining sources of network latency overhead in datacenters found that a

typical deployment based on commodity technologies may incur over 100μs in round-trip

latency between a pair of servers [145]. According to the study, principal sources of latency

overhead include the operating system stack, NIC, and intermediate network switches. While

100μs may seem insignificant, we observe that many applications, including graph-based

applications and those that rely on key-value stores, perform minimal computation per data

item loaded. For example, read operations dominate key-value store traffic, and simply return

the object in memory. With 1000x difference in data access latency between local DRAM

(100ns) and remote memory (100μs), distributing the dataset, although necessary, incurs a

dramatic performance overhead.

In addition to costly remote accesses, excessive horizontal scaling leads to significant load

imbalance and higher probability of violating service-level objectives (SLO) [54, 127, 128]. In

data serving workloads, for example, skewed key popularities emerge regularly and directly

translate to load imbalance across the servers. Because of this, achieving high throughput

without violating applications’ tail latency objectives is a difficult problem. In addition, re-

source contention, garbage collection, energy management, maintenance activities, and other

sources of performance interference, all increase the likelihood of tail latency violations. Ama-

zon, for instance, reported that the rendering of a single page typically requires access to over

150 services, which is why achieving low tail latency is important [56]. These interactions intro-

duce significant overheads that constrain the practical extent of sharding and the complexity

of deployed algorithms. Also, tail latency considerations force Facebook to restrict the number

of sequential data accesses to fewer than 150 per rendered web page [145]. Therefore, to

provide the required quality of service and, at the same time, avoid wasting server resources, it
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is necessary to reduce the number of participating nodes through RSMP or similar techniques.

Server architectures. Today’s datacenters employ commodity technologies due to their

favorable cost-performance characteristics. The end result is a scale-out architecture char-

acterized by a large number of commodity servers connected via commodity networking

equipment. Two architectural trends are emerging in scale-out designs.

First, System-on-Chips (SoC) provide high chip-level integration and are a major trend in

servers. Current server SoCs combine many processing cores, memory interfaces, and I/O

to reduce cost and improve overall efficiency by eliminating extra system components. For

example, Calxeda’s ECX-1000 SoC [36] combines four ARM Cortex-A9 cores, memory controller,

SATA interface, and a fabric switch [35] into a compact die with a 5W typical power draw.

Second, system integrators are starting to offer glueless fabrics that can seamlessly interconnect

hundreds of server nodes into fat-tree or torus topologies [57]. For instance, Calxeda’s on-

chip fabric router encapsulates Ethernet frames while energy-efficient processors run the

standard TCP/IP and UDP/IP protocols as if they had a standard Ethernet NIC [52]. The tight

integration of NIC, routers and fabric leads to a reduction in the number of components in

the system (thus lowering cost) and improves energy efficiency by minimizing the number of

chip crossings. However, such glueless fabrics typically do not reduce the end-to-end latency,

because of the high cost of protocol processing at the end points.

Remote DMA. RDMA enables memory-to-memory data transfers across the network with-

out processor involvement on the destination side. By exposing remote memory and reliable

connections directly to user-level applications, RDMA eliminates all kernel overheads. Fur-

thermore, one-sided remote memory operations are handled entirely by the adapter without

interrupting the destination core. RDMA is supported on lossless fabrics such as Infini-

Band [138] and Converged Ethernet [86] that scale to hundreds of nodes and can offer remote

memory read latency as low as 1.19μs [47]. Although historically associated with the high-

performance computing market, RDMA is now making inroads into web-scale datacenters,

such as Microsoft Bing [152]. Latency-sensitive key-value stores such as RAMCloud [132] and

Pilaf [117] are using RDMA fabrics to achieve object access latencies of as low as 5μs.
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Figure 4.1 – Netpipe benchmark on a Calxeda microserver.

4.2.2 Obstacles to Low-Latency Distributed Memory

As datasets grow, the trend is toward more sophisticated algorithms at ever-tightening latency

bounds. While SoCs, glueless fabrics, and RDMA technologies help lower network latencies

within the rack, the network delay per byte loaded remains high. Here, we discuss principal

reasons behind the difficulty of further reducing the latency for in-memory applications.

Node scalability is power-limited. As voltage scaling grinds to a halt, future improvements

in compute density at the chip level will be limited. Power limitations will extend beyond

the processor and impact the amount of DRAM that can be integrated in a given unit of

volume (which governs the limits of power delivery and heat dissipation). Together, power

constraints at the processor and DRAM levels will limit the server industry’s ability to improve

the performance and memory capacity of scale-up configurations, thus accelerating the trend

toward distributed memory systems.

Deep network stacks are costly. Distributed systems rely on networks to communicate.

Unfortunately, today’s deep network stacks require a significant amount of processing per

network packet which factors considerably into end-to-end latency. Figure 4.1 shows the

network performance between two Calxeda EnergyCore ECX-1000 SoCs, measured using the

netpipe benchmark [154]. The fabric and the NICs provide 10Gbps worth of bandwidth.
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Despite the immediate proximity of the nodes and the lack of intermediate switches, we

observe high latency (in excess of 40μs) for small packet sizes and poor bandwidth scalabil-

ity (under 2 Gbps) with large packets. These bottlenecks exist due to the high processing

requirements of TCP/IP and are aggravated by the limited performance offered by ARM cores.

Large-scale shared memory is prohibitive. One way to bypass complex network stacks

is through direct access to shared physical memory. Unfortunately, large-scale sharing of

physical memory is challenging for two reasons. First is the sheer cost and complexity of

scaling up hardware coherence protocols. Chief bottlenecks here include state overhead, high

bandwidth requirements, and verification complexity. The second is the fault-containment

challenge of a single operating system instance managing a massive physical address space,

whereby the failure of any one node can take down the entire system by corrupting shared

state [42]. Sharing caches even within the same socket can be expensive. Indeed, recent work

shows that partitioning a single many-core socket into multiple coherence domains improves

the execution efficiency of scale-out workloads that do not have shared datasets [111].

PCIe/DMA latencies limit performance. I/O bypass architectures have successfully re-

moved most sources of latency except the PCIe bus. Studies have shown that it takes 400-500ns

to communicate short bursts over the PCIe bus [70], making such transfers 7-8x more expen-

sive, in terms of latency, than local DRAM accesses. Furthermore, PCIe does not allow for

the cache-coherent sharing of control structures between the system and the I/O device,

leading to the need of replicating system state such as page tables into the device and system

memory. In the latter case, the device memory serves as a cache, resulting in additional DMA

transactions to access the state. SoC integration alone does not eliminate these overheads,

since IP blocks often use DMA internally to communicate with the main processor [24].

Switch latency and link signaling rate. A single Ethernet switch adds up to 200ns of la-

tency [114], and, thus, the more servers we connect, the higher the latency (e.g., two racks

require three switches in total). The link latency depends on the signaling rate, the width, and

the MTU size.
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Infiniband, for instance, has improved substantially since its first version based on single data

rate (SDR) with the latency of 5us. Currently, Infiniband enhanced data rate (EDR) can provide

the latency of 0.6us and bandwidth of 100Gbps.

State and header overhead. RDMA network interfaces (HCA) are complex devices because

Infiniband supports many features that add state and network packet header overhead. For

instance, the requirement to establish connections between potentially each pair of QPs prior

to accessing remote memory can lead to exceedingly large amount of state and thrashing from

the HCA to DRAM [58]. Also, in Infiniband, each packet carries the information associated with

the requested operation, such as the opcode, virtual address, network IDs (if routing across L2

domains), etc. Thus, Infiniband headers can be as large as 98 bytes for RDMA operations [5],

which is why it is important to support large MTUs in Infiniband and amortize the header

overhead. The downside is that large MTUs increase the propagation delay for small transfers.

4.3 Scale-Out NUMA

This work introduces soNUMA, an architecture and programming model for low-latency

RSMP. soNUMA addresses each of the obstacles to low-latency described in §4.2.2. soNUMA

is designed for a scale-out model with physically distributed processing and memory: (i)

it replaces deep network stacks with a lean memory fabric supporting simple headers and

small MTU (64B), low-latency low-radix switches; (ii) eschews system-wide coherence in

favor of a global partitioned virtual address space accessible via RMDA-like remote memory

operations with copy semantics; (iii) replaces transfers over the slow PCIe bus with cheap

cache-to-cache transfers; and (iv) is optimized for rack-scale deployments (RSMP), where

distance is minuscule. In effect, our design goal is to borrow the desirable qualities of ccNUMA

and RDMA without their respective drawbacks.

Fig. 4.2 identifies the essential components of soNUMA. At a high level, soNUMA combines

a lean memory fabric with an RDMA-like programming model in a rack-scale system. The

figure shows a 2D mesh soNUMA, but any other topology, such as 2D or 3D torus, can be used.
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Figure 4.2 – Scale-Out NUMA fabric and node architecture. Software communicates with the
local RMC through cache-to-cache transactions.

Applications access remote portions of the global virtual address space through remote mem-

ory operations. A new architecturally-exposed block, the remote memory controller (RMC),

converts these operations into network transactions and directly performs the memory ac-

cesses. Applications directly communicate with the RMC using a memory-mapped queue

pair, bypassing the operating system, which gets involved only in setting up the necessary

in-memory control data structures.

Unlike traditional implementations of RDMA, which operate over the PCI bus, the RMC

benefits from a tight integration into the processor’s cache coherence hierarchy. In particular,

the processor and the RMC share the control data structures, such as work queues (WQ),

completion queues (CQ), page tables, and application data, via the cache hierarchy. The

implementation of the RMC is further simplified by limiting the architectural support to

one-sided remote memory read, write, and atomic operations, and by unrolling multi-line

requests at the source RMC, thus, minimizing the state and header overheads. As a result, the

protocol can be implemented in a stateless manner by the destination node.

The RMC converts application commands into remote requests that are sent to the network

interface (NI). The NI is connected to an on-chip low-radix router with reliable, point-to-

point links to other soNUMA nodes. The notion of fast low-radix routers borrows from

supercomputer interconnects; for instance, the mesh fabric of the Alpha 21364 connected 128
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nodes in a 2D torus using an on-chip router with a pin-to-pin delay of just 11ns [118].

soNUMA’s memory fabric bears semblance (at the link and network layer, but not at the

transport layer) to the QPI and HTX solutions that interconnect sockets together into multiple

NUMA domains. In such fabrics, parallel transfers over traces minimize pin-to-pin delays,

short messages (header + a payload of a single cache line) minimize buffering requirements

and the propagation delay, topology-based routing eliminates costly CAM or TCAM lookups,

and virtual lanes ensure deadlock freedom. Although Fig. 4.2 illustrates a 2D-torus, the design

is not restricted to any particular topology.

4.4 Remote Memory Controller

The foundational component of soNUMA is the RMC, an architectural block that services

remote memory accesses originating at the local node, as well as incoming requests from

remote nodes. The RMC integrates into the processor’s coherence hierarchy via a private L1

cache and communicates with the application threads via memory-mapped queues. We first

describe the software interface (§4.4.1), provide a functional overview of the RMC (§4.4.2),

and describe its microarchitecture (§4.4.3).

4.4.1 Hardware/Software Interface

soNUMA provides application nodes with the abstraction of globally addressable, virtual

address spaces that can be accessed via explicit memory operations. The RMC exposes this

abstraction to applications, allowing them to safely and directly copy data to/from global

memory into a local buffer using remote write, read, and atomic operations, without kernel

intervention. The interface offers atomicity guarantees at the cache-line granularity, and no

ordering guarantees within or across requests.

soNUMA’s hardware/software interface is centered around four main abstractions directly

exposed by the RMC: (i) the context identifier (ctx_id), which is used by all nodes participating

in the same application to create a global address space; (ii) the context segment, a range of

the node’s address space which is globally accessible by others; (iii) the queue pair (QP), used
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by applications to schedule remote memory operations and get notified of their completion;

and (iv) local buffers, which can be used as the source or destination of remote operations.

The QP model consists of a work queue (WQ), a bounded buffer written exclusively by the ap-

plication, and a completion queue (CQ), a bounded buffer of the same size written exclusively

by the RMC. The CQ entry contains the index of the completed WQ request. Both are stored

in main memory and coherently cached by the cores and the RMC alike. In each operation,

the remote address is specified by the combination of <node_id, ctx_id, offset>. Other

parameters include the length and the local buffer address.

4.4.2 RMC Overview

The RMC consists of three hardwired pipelines that interact with the queues exposed by the

hardware/software interface and with the NI. These pipelines are responsible for request gen-

eration, remote request processing, and request completion, respectively. They are controlled

by a configuration data structure, the Context Table (CT), and leverage an internal structure,

the Inflight Transaction Table (ITT).

The CT is maintained in memory as a table and is initialized by the RMC device driver (see

§4.5.1). The CT keeps track of all registered context segments, queue pairs, base addresses,
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and page table root addresses. Each CT entry – table row, indexed by its ctx_id, specifies the

address space and a list of registered QPs (WQ, CQ) for that context. Multi-threaded processes

can register multiple QPs for the same address space and ctx_id. The RMC driver preallocates

as many QP entries in each row as there are physical CPU cores, assuming one QP per core

per context in the extreme case. The QP entries in CT store the physical addresses of the

queues and the corresponding head/tail indices. Storing physical addresses instead of virtual

and bypassing the TLB is necessary to enable low-overhead polling on the queues. The RMC

driver also supports sharing of QPs across different contexts within the same address space by

reusing the physical addresses of previously allocated QPs when registering new contexts.

Multiple processes are also allowed to register contexts and access remote memory concur-

rently, but there should be no overlap among registered ctx_ids, within or across processes.

If the driver tries to register a new context with a ctx_id that has been already taken, the RMC

will return an error. The reason why there should be no overlap among ctx_ids is because the

RMC uses the ctx_id as the index for the CT.

The RMC TLB supports address space identifiers (ASID), which is similar to process identifiers

(PID), but usually they have fewer bits (e.g., 8 bits for the ASID versus 32 bits for a PID). The

RMC uses the received ctx_id (either from the application or another node in the system)
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to look up the page table root address in CT, and uses the 8 least significant bits as the ASID

for the address space that the context is associated with. With ASID, the system avoids the

overhead of TLB shootdowns for contexts residing within the same address space. Meanwhile,

the ITT is used exclusively by the RMC and keeps track of the progress of each WQ request.

Fig. 4.3 shows the high-level internal organization of the RMC and its NI. The three pipelines

are connected to distinct queues of the NI block, which is itself connected to a low-radix router

block with support for two virtual lanes. While each of the three pipelines implements its

own datapath and control logic, all three share some common data structures and hardware

components. For example, they arbitrate for access to the common L1 cache via the MMU.

Fig. 4.4 highlights the main states and transitions for the three independent pipelines. Each

pipeline can have multiple transactions in flight. Most transitions require an MMU access,

which may be retired in any order. Therefore, transactions will be reordered as they flow

through a pipeline.

Request Generation Pipeline (RGP). The RMC initiates remote memory access transactions

in response to an application’s remote memory requests (reads, writes, atomics). To detect

such requests, the RMC polls on each registered WQ. Upon a new WQ request, the RMC

generates one or more network packets using the information in the WQ entry. For remote

writes and atomic operations, the RMC accesses the local node’s memory to read the required

data, which it then encapsulates into the generated packet(s). For each request, the RMC

generates a transfer identifier (tid) that allows the source RMC to associate replies with

requests.

Remote transactions in soNUMA operate at cache line granularity. Coarser granularities, in

cache-line-sized multiples, can be specified by the application via the length field in the

WQ request. The RMC unrolls multi-line requests in hardware, generating a sequence of

line-sized read or write transactions. To perform unrolling, the RMC uses the ITT, which tracks

the number of completed cache-line transactions for each WQ request and is indexed by the

request’s tid.
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Remote Request Processing Pipeline (RRPP). This pipeline handles incoming requests

originating from remote RMCs. The soNUMA protocol is stateless, which means that the RRPP

can process remote requests using only the values in the header and the local configuration

state. Specifically, the RRPP uses the ctx_id to access the CT, computes the ASID and the

virtual address by adding the offset to the base virtual address, translates it to the correspond-

ing physical address, and then performs a read, write, or atomic operation as specified in

the request. The RRPP always completes by generating a reply message, which is sent to the

source. Virtual addresses that fall outside of the range of the specified security context are

signaled through an error message, which is propagated to the offending thread in a special

reply packet and delivered to the application via the CQ.

Request Completion Pipeline (RCP). This pipeline handles incoming message replies. The

RMC extracts the tid and uses it to identify the originating WQ entry. For reads and atomics,

the RMC then stores the payload into the application’s memory at the virtual address specified

in the request’s WQ entry. For multi-line requests, the RMC computes the target virtual address

based on the buffer base address specified in the WQ entry and the offset specified in the reply

message.

The ITT keeps track of the number of completed cache-line requests. Once the last reply is

processed, the RMC signals the request’s completion by writing the index of the completed

WQ entry into the corresponding CQ and moving the CQ head pointer. Requests can therefore

complete out of order and, when they do, are processed out of order by the application.

Remote write acknowledgments are processed similarly to read completions, although remote

writes naturally do not require an update of the application’s memory at the source node.

The RCP pipeline is responsible for detecting failures. If a node does not respond or if a single

packet does not arrive in a preconfigured amount of time, the RCP notifies the application by

passing the corresponding error code and node ID (in case of node failures) via the CQ. This is

implemented through an equivalent of the x86’s time stamp counter (TSC) and the ITT storing

transactions’ start times.
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4.4.3 Microarchitectural Support

The RMC implements the logic described above using a set of completely decoupled pipelines,

affording concurrency in the handling of different functions at low area and design cost. The

RMC features two separate interfaces: a coherent memory interface to a private L1 cache and

a network interface to the on-die router providing system-level connectivity. The memory

interface block (MMU) contains a TLB for fast access to recent address translations, required

for all accesses to application data. TLB entries are tagged with address space identifiers

corresponding to the application context. TLB misses are serviced by a hardware page walker.

The RMC provides two interfaces to the L1 cache – a conventional word-wide interface as

well as a cache-line-wide interface. The former is used to interact with the application and to

perform atomic memory operations. The latter enables efficient atomic reads and writes of

entire cache lines, which is the granularity of remote memory accesses in soNUMA.

The RMC’s integration into the node’s coherence hierarchy is a critical feature of soNUMA

that eliminates wasteful data copying of control structures, and of page tables in particular. It

also reduces the latency of the application/RMC interface by eliminating the need to set up

DMA transfers of ring buffer fragments. To further ensure high throughput and low latency

at high load, the RMC allows multiple concurrent memory accesses in flight via a memory

access queue (MAQ). The MAQ handles all memory read and write operations, including

accesses to application data, WQ and CQ interactions, page table walks, as well as ITT and

CT accesses. The number of outstanding operations is limited by the number of miss status

handling registers at the RMC’s L1 cache. The MAQ supports out-of-order completion of

memory accesses and provides store-to-load forwarding.

Each pipeline has its own arbiter that serializes the memory access requests from the pipeline’s

several stages and forwards the requests to the MAQ. The latter keeps track of each request’s

originating arbiter, and responds to that once the memory access is completed. Upon such a

response, the arbiter feeds the data to the corresponding pipeline stage.

Finally, the RMC dedicates two registers for the CT and ITT base addresses, as well as a small

lookaside structure, the CT cache (CT$) that caches recently accessed CT entries to reduce

pressure on the MAQ. The CT$ includes the context segment base addresses and bounds, PT
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roots, and the queue addresses, including the queues’ head and tail indices. The base address

registers and the CT$ are read-only-shared by the various RMC pipeline stages.

4.5 Software Support

We now describe the system and application software support required to expose the RMC to

applications and enable the soNUMA programming model. §4.5.1 describes the operating

system device driver. §4.5.2 describes the lower-level wrappers that efficiently expose the

hardware/software interface to applications. Finally, §4.5.3 describes higher-level routines that

implement unsolicited communication and synchronization without additional architectural

support.

4.5.1 Device Driver

The role of the operating system on an soNUMA node is to establish the global virtual address

spaces. This includes the management of the context namespace, virtual memory, QP registra-

tion, etc. The RMC device driver manages the RMC itself, responds to application requests,

and interacts with the virtual memory subsystem to allocate and pin pages in physical memory.

The RMC device driver is also responsible for allocating the CT and ITT on behalf of the RMC.

Unlike a traditional RDMA NIC, the RMC has direct access to the page tables managed by the

operating system, leveraging the ability to share cache-coherent data structures. As a result,

the RMC and the application both operate using virtual addresses of the application’s process

once the data structures have been initialized.

The RMC device driver implements a simple security model in which access control is granted

on a per ctx_idbasis. To join a global address space <ctx_id>, a process first opens the device

/dev/rmc_contexts/<ctx_id>, which requires the user to have appropriate permissions.

All subsequent interactions with the operating system are done by issuing ioctl calls via

the previously-opened file descriptor. In effect, soNUMA relies on the built-in operating

system mechanism for access control when opening the context, and further assumes that all

operating system instances of an soNUMA fabric are under a single administrative domain.
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4.5.2 Access Library

The QPs are accessed via a lightweight API, a set of C/C++ inline functions that issue remote

memory commands and synchronize by polling the completion queue. We expose a syn-

chronous (blocking) and an asynchronous (non-blocking) set of functions for both reads

and writes. The asynchronous API is comparable in terms of functionality to the Split-C

programming model [48].

Fig. 4.5 illustrates the use of the asynchronous API for the implementation of the classic Page-

Rank graph algorithm [136]. rmc_wait_for_slotprocesses CQ events (calls pagerank_async

for all completed slots) until the head of the WQ is free. It then returns the freed slot where

the next entry will be scheduled. rmc_read_async (similar to Split-C’s get) requests a copy of

a remote vertex into a local buffer. Finally, rmc_drain_cq waits until all outstanding remote

operations have completed while performing the remaining callbacks.

This programming model is efficient as: (i) the callback (pagerank_async) does not require a

dedicated execution context, but instead is called directly within the main thread; (ii) when

the callback is an inline function, it is passed as an argument to another inline function

(rmc_wait_for_slot), thereby enabling compilers to generate optimized code without any

function calls in the inner loop; (iii) when the algorithm has no read dependencies (as is the

case here), asynchronous remote memory accesses can be fully pipelined to hide their latency.

To summarize, soNUMA’s programming model combines true shared memory (by the threads

running within a cache-coherent node) with explicit remote memory operations (when ac-

cessing data across nodes). In the PageRank example, the is_local flag determines the

appropriate course of action to separate intra-node accesses (where the memory hierarchy

ensures cache coherence) from inter-node accesses (which are explicit).

Finally, the RMC access library exposes atomic operations such as compare-and-swap and

fetch-and-add as inline functions. These operations are executed atomically within the local

cache coherence hierarchy of the destination node.
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float *async_dest_addr[MAX_WQ_SIZE];
Vertex lbuf[MAX_WQ_SIZE];

inline void pagerank_async (int slot, void *arg) {
*async_dest_addr[slot] += 0.85 *

lbuf[slot].rank[superstep%2] / lbuf[slot].out_degree;
}

void pagerank_superstep(QP *qp) {
int evenodd = (superstep+1) % 2;
for(int v=first_vertex; v<=last_vertex; v++) {

vertices[v].rank[evenodd] = 0.15 / total_num_vertices;
for(int e=vertices[v].start; e<vertices[v].end; e++) {

if(edges[e].is_local) {
// shared memory model
Vertex *v2 = (Vertex *)edges[e].v;
vertices[v].rank[evenodd] += 0.85 *

v2->rank[superstep%2] / v2->out_degree;
} else {

// flow control
int slot = rmc_wait_for_slot (qp, pagerank_async );
// setup callback arguments
async_dest_addr[slot] = &vertices[v].rank[evenodd];
// issue split operation
rmc_read_async (qp, slot,

edges[e].nid, //remote node ID
edges[e].offset, //offset
&lbuf[slot], //local buffer
sizeof(Vertex)); //len

}
}

}
rmc_drain_cq (qp, pagerank_async );
superstep++;

}

Figure 4.5 – Computing a PageRank superstep in soNUMA through a combination of remote
memory accesses (via the asynchronous API) and local shared memory.

4.5.3 Messaging and Synchronization Library

By providing architectural support for only read, write and atomic operations, soNUMA re-

duces hardware cost and complexity. The minimal set of architecturally-supported operations

is not a limitation, however, as many standard communication and synchronization prim-

itives can be built in software on top of these three basic primitives. In contrast, RDMA

provides hardware support (in adapters) for unsolicited send/receive messages and remote

read/write/atomic on top of reliable connections, thus introducing significant complexity

(e.g., per-connection state) into the design [142].
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Unsolicited communication. To communicate using send and receive operations, two

application instances must first each allocate a bounded buffer from their own portion of the

global virtual address space. The sender always writes to the peer’s buffer using rmc_write

operations, and the content is read locally from cached memory by the receiver. Each buffer is

an array of cache-line sized structures that contain header information (such as the length,

memory location, and flow-control acknowledgements), as well as an optional payload. Flow-

control is implemented via a credit scheme that piggybacks existing communication.

For small messages, the sender creates packets of predefined size, each carrying a portion

of the message content as part of the payload. It then pushes the packets into the peer’s

buffer. To receive a message, the receiver polls on the local buffer. In the common case, the

send operation requires a single rmc_write, and it returns without requiring any implicit

synchronization between the peers. A similar messaging approach based on remote writes

outperforms the default send/receive primitives of InfiniBand [108].

For large messages stored within a registered global address space, the sender only provides

the base address and size to the receiver’s bounded buffer. The receiver then pulls the content

using a single rmc_read and acknowledges the completion by writing a zero-length mes-

sage into the sender’s bounded buffer. This approach delivers a direct memory-to-memory

communication solution, but requires synchronization between the peers.

At compile time, the user can define the boundary between the two mechanisms by setting

a minimal message-size threshold: push has lower latency since small messages complete

through a single rmc_write operation and also allows for decoupled operations. The pull

mechanism leads to higher bandwidth since it eliminates the intermediate packetization and

copy step.

Barrier synchronization. We have also implemented a simple barrier primitive such that

nodes sharing a ctx_id can synchronize. Each participating node broadcasts the arrival at a

barrier by issuing a write to an agreed upon offset on each of its peers. The nodes then poll

locally until all of them reach the barrier.
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Figure 4.6 – Communication protocol for a remote read.

4.6 Communication Protocol

soNUMA’s communication protocol naturally follows the design choices of the three RMC

pipelines at the protocol layer. At the link and routing layers, our design borrows from existing

memory fabric architectures (e.g., QPI or HTX) to minimize pin-to-pin delays.

Link layer. The memory fabric delivers messages reliably over high-speed point-to-point

links with credit-based flow control. The message MTU is large enough to support a fixed-size

header and an optional payload. Each point-to-point physical link has two virtual lanes to

support deadlock-free request/reply protocols.

Routing (Network) layer. The routing-layer header contains the destination and source

address of the nodes in the fabric (<dst_nid, src_nid>). dst_nid is used for routing, and

src_nid to generate the reply packet.

The router’s forwarding logic directly maps destination addresses to outgoing router ports,

eliminating expensive CAM or TCAM lookups found in networking fabrics. While the actual

choice of topology depends on system specifics, low-dimensional k-ary n-cubes (e.g., 3D torii)

seem well-matched to rack-scale deployments [57].
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Transport layer. The RMC transport protocol is a simple request-reply protocol, with exactly

one reply message generated for each request. The WQ entry specifies the dst_nid, the

command (e.g., read, write, or atomic), the offset, the length and the local buffer address.

The RMC copies the dst_nid into the routing header, determines the ctx_id associated with

the WQ, and generates the tid. If the ctx_id is not specified by the library, the RMC will

access the context that the WQ is associated with. If the WQ is associated with more than one

context, the application needs to specify which context it would like to access.

The tid serves as an index into the ITT and allows the source RMC to map each reply message

to a WQ and the corresponding WQ entry. The tid is opaque to the destination node, but

is transferred from the request to the associated reply packet. The tid, ctx_id, offset, and

opcode are a part of the transport header, whereas src_id and dst_id belong to the routing

header. The routing layer, along with the layers underneath belong to the NUMA fabric (e.g.,

QPI). The transport layer on soNUMA is custom and replaces the cache coherence protocol of

ccNUMA.

Fig. 4.6 illustrates the actions taken by the RMCs for a remote read of a single cache line.

The RGP in the requesting side’s RMC first assigns a tid for the WQ entry and the ctx_id

corresponding to that WQ. The RMC specifies the destination node via a dst_nid field of the

routing header. The request packet is then injected into the fabric and the packet is delivered

to the target node’s RMC. The receiving RMC’s RRPP decodes the packet, computes the local

virtual address using the ctx_id and the offset found in it and translates that virtual address

to a physical address. For correctness reasons, the RMC uses the concept of address space

identifiers (ASID) to pick the right virtual-to-physical translation.

This stateless handling does not require any software interaction on the destination node.

As soon as the request is completed in the remote node’s memory hierarchy, its RMC cre-

ates a reply packet and sends it back to the requesting node. Once the reply arrives to the

original requester, the RMC’s RCP completes the transaction by writing the payload into the

corresponding local buffer and by notifying the application via a CQ entry (not shown in

Fig. 4.6).
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4.6.1 Dealing with packet loss and node failures

Reliable delivery of packets is commonly enforced at the link and transport layers. In TCP/IP

networks, the TCP layer is responsible for flow control, congestion management, retransmis-

sions in case of packet loss, connection management, etc. Most of TCP processing is onloaded

to the CPU, which makes commodity TCP networks a bad candidate for RSMP because of high

remote access latency.

In RDMA networks, the Infiniband transport layer is implemented inside the NIC (i.e., HCA),

thus, significantly reducing the CPU load and improving the latency. The Infiniband transport

layer assumes lossless links and, thus, implements a trivial back-to-0 algorithm for retrans-

missions [74]. Therefore, IB requires either a Converged Ethernet network with priority-based

flow control (PFC) or an actual Infiniband network with support for credit-based flow control

at the link layer to support lossless delivery.

A recent study on full-scale datacenter RDMA networks has shown that lossless links, in fact,

do lose packets [74, 170], because of frame check sequence erros and bugs in switch hardware

and software, concluding that a smarter retransmission mechanism is necessary for large -

datacenter scale deployments.

NUMA fabrics implement credit-based flow control at the link layer, guaranteeing lossless

delivery under congestion. One of the goals of soNUMA is to scale beyond what is possible

(or affordable) with ccNUMA, which inspired us to think about failures. A failure on soNUMA

can lead to SoC socket loss or, less dramatic, packet loss. In both cases, again, to simplify

the design of the RMC, we expose failures to applications directly, letting them decide what

action to take when nodes do not respond or there are unexpectedly long running remote

transfers. The RMC notifies the application framework via the CQ and passes an error code

signaling node or packet loss. The default routing algorithm on soNUMA is destination based

and individual node failures may appear as if multiple nodes have failed. To deal with this

problem, a more sophisticated adaptive algorithm for routing is required.

70



4.7. Evaluation

Application

sy
st

em
us

er

RMC device 
driver RMCemu

WQ

Context seg

Local buffer

ioctl

Node X

CQ

QP

Memory
management

RGP + RCP RRP

REQ

REQ

RESP

RESP

Node Z

Node Y

VM #1 VM #2

VM #3

User library

Figure 4.7 – soNUMA development platform. Each node is implemented by a different VM.
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4.7 Evaluation

4.7.1 Methodology

To evaluate soNUMA, we designed and implemented two platforms: (i) development platform

– a software prototype of soNUMA based on virtual machines used to debug the protocol

stack, formalize the API, and develop large-scale applications; and (ii) cycle-accurate model –

a full-system simulation platform modeling the proposed RMC.

Development platform. Our software soNUMA prototype is based on the Xen hypervi-

sor [17] and a conventional ccNUMA server, on top of which we map (pin) multiple virtual

machines to distinct NUMA domains. This includes both virtual CPUs and memory page

frames. The server we use for the prototype is a modern AMD Opteron server with 4 CPU sock-

ets (12 cores each, three-level cache hierarchy, 16MB LLC) and 256GB of RAM. The memory

subsystem provides us with 8 NUMA domains (2 per socket).

Fig. 4.7 shows our setup. Each individual VM represents an independent soNUMA node,

running an instance of the full software stack. The stack includes all user-space libraries,

applications, the OS kernel, as well as the complete RMC device driver inside it.
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Core ARM Cortex-A15-like; 64-bit, 2GHz, OoO,
3-wide dispatch/retirement, 60-entry ROB

L1 Caches split I/D, 32KB 2-way, 64-byte blocks,
2 ports, 32 MSHRs, 3-cycle latency
(tag+data)

L2 Cache 4MB, 2 banks, 16-way, 6-cycle latency
Memory cycle-accurate model using DRAMSim2

[144].
4GB, 8KB pages, single DDR3-1600 chan-
nel.
DRAM latency: 60ns; bandwidth: 12GBps

RMC 3 independent pipelines (RGP, RCP, RRPP).
32-entry MAQ, 32-entry TLB

Fabric Inter-node delay: 50ns

Table 4.1 – System parameters for simulation on Flexus.

The driver is a Linux kernel module that responds to user library commands through ioctl,

enabling WQ/CQ registration, buffer management, and security context registration.

In this platform, we have implemented an RMC emulation module (RMCemu), which runs

in kernel space. RMCemu implements the RMC logic and the soNUMA wire protocol (for a

total of 3100LOC). The module exposes the hardware/software interface described in §4.4.1

to the RMC device driver and applications. RMCemu runs as a pair of kernel threads pinned

to dedicated virtual CPUs, one running RGP and RCP, the other RRPP of Fig. 4.4. All of the

user-level data structures and buffers get memory-mapped by the device driver into the kernel

virtual address space at registration time, and thus become visible to the RMCemu threads.

We emulate a full crossbar and run the protocol described in §4.6. Each pair of nodes ex-

changes protocol request/reply messages via a set of queues, mapped via the hypervisor

into the guest physical address spaces of the VMs (there are two queue pairs per VM pair,

emulating virtual lanes). To model the distributed nature of an soNUMA system, we pin each

emulated node to a distinct NUMA domain such that every message traverses one of the

server’s chip-to-chip links. However, for the 16-node configuration, we collocate two VMs per

NUMA domain.

Cycle-accurate model. To assess the performance implications of the RMC, we use the

Flexus full-system simulator [164]. Flexus extends the Virtutech Simics functional simulator
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with timing models of cores, caches, on-chip protocol controllers, and interconnect. Flexus

models the SPARC v9 ISA and is able to run unmodified operating systems and applications.

In its detailed OoO timing mode with the RMCs implemented, Flexus simulates “only” 5000

instructions per second, a slowdown of about six orders of magnitude compared to real

hardware.

We model simple nodes, each featuring a 64-bit ARM Cortex-A15-like core and an RMC. The

system parameters are summarized in Table 4.1. We extend Flexus by adding a detailed timing

model of the RMC based on the microarchitectural description in §4.4. The RMC and its

private L1 cache are fully integrated into the node’s coherence domain. Like the cores, the

RMC supports 32 memory accesses in flight. Fig. 4.4 illustrates how the logic is modeled as a

set of finite state machines that operate as pipelines and eliminate the need for any software

processing within the RMC. We model a full crossbar with reliable links between RMCs and a

flat latency of 50ns, which is conservative when compared to modern NUMA interconnects,

such as QPI and HTX.

4.7.2 Microbenchmark: Remote Reads

We first measure the performance of remote read operations between two nodes for both the

development platform and the Flexus-based simulated hardware platform. The microbench-

mark issues a sequence of read requests of varying size to a preallocated buffer in remote

memory. The buffer size exceeds the LLC capacity in both setups. We measure (i) remote read

latency with synchronous operations, whereby the issuing core spins after each read request

until the reply is received, and (ii) throughput using asynchronous reads, where the issuing

core generates a number of non-blocking read requests before processing the replies (similar

to Fig. 4.5). We run the micro-benchmark in both single-sided (only one node reads) and

double-sided (both nodes read from each other) mode.

Fig. 4.8 shows the remote read latency on the simulated hardware as a function of the request

size. For small request sizes, the latency is around 300ns, of which 80ns are attributed to

accessing the memory (cache hierarchy and DRAM combined) at the remote node and 100ns

to round-trip socket-to-socket link latency.
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Figure 4.8 – Remote read latency (sim’d HW).

Figure 4.9 – Remote read latency (dev. platform).

Figure 4.10 – Remote read throughput (sim’d HW).

74



4.7. Evaluation

The end-to-end latency is within a factor of 4 of the local DRAM access latency. In the double-

sided mode, we find that the average latency increases for larger message sizes as compared

to the single-sided case. The reason for the drop is cache contention, as each node now has to

both service remote read requests and write back the reply data.

Fig. 4.9 shows the latency results on the development platform. The baseline latency is 1.5μs,

which is 5x the latency on the simulated hardware. However, we notice that the latency

increases substantially with larger request sizes. On the development platform, the RMC

emulation module becomes the performance bottleneck as it unrolls large WQ requests into

cache-line-sized requests.

Fig. 4.10 plots the bandwidth between two simulated soNUMA nodes using asynchronous

remote reads. For 64B requests, we can issue 10M operations per second. For page-sized

requests (8KB), we manage to reach 9.6GBps, which is the practical maximum for a DDR3-

1600 memory channel. Thanks to the decoupled pipelines of the RMC, the double-sided test

delivers twice the single-sided bandwidth.

4.7.3 Microbenchmark: Send/Receive

We build a Netpipe [154] microbenchmark to evaluate the performance of the soNUMA

unsolicited communication primitives, implemented entirely in software (§4.5.3). The mi-

crobenchmark consists of the following two components: (i) a ping-pong loop that uses the

smallest message size to determine the end-to-end one-way latency and (ii) a streaming

experiment where one node is sending and the other receiving data to determine bandwidth.

We study the half-duplex latency (Fig. 4.11) and bandwidth (Fig. 4.13) on our simulation

platform. The two methods (pull, push) expose a performance tradeoff: push is optimized for

small messages, but has significant processor and packetization overheads. pull is optimized

for large transfers, but requires additional control traffic at the beginning of each transfer. We

experimentally determine the optimal boundary between the two mechanisms by setting the

threshold to 0 and ∞ in two separate runs.
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Figure 4.11 – Send/receive read latency (sim’d HW).

Figure 4.12 – Send/receive read latency (dev. platform).

Figure 4.13 – Send/receive read throughput (sim’d HW).
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Transport soNUMA RDMA/IB
Dev. Plat. Sim’d HW [47]

Max BW (Gbps) 1.8 77 50
Read RTT (μs) 1.5 0.3 1.19

Fetch-and-add (μs) 1.5 0.3 1.15
IOPS (Mops/s) 1.97 10.9 35 @ 4 cores

Table 4.2 – A comparison of soNUMA and InfiniBand.

The black curve shows the performance of our unsolicited primitives with the threshold set

to the appropriate value and both mechanisms enabled at the same time. The minimal half-

duplex latency is 340ns and the bandwidth exceeds 10Gbps with messages as small as 4KB. For

the largest request size evaluated (8KB), the bandwidth achieved is 12.8 Gbps, a 1.6x increase

over Quad Data Rate InfiniBand for the same request size [80]. To illustrate the importance of

having a combination of push and pull mechanisms in the user library, we additionally plot

in grey their individual performance.

We apply the same methodology on the development platform. The minimal half-duplex

latency (see Fig. 4.12) is 1.4μs, which is only 4x worse than the simulated hardware. However,

the threshold is set to a larger value of 1KB for optimal performance, and the bandwidth is

1/10th of the simulated hardware. The relatively low bandwidth and a different threshold are

due to the overheads of running the fine-grain communication protocol entirely in software

(§4.7.2).

4.7.4 Comparison with InfiniBand/RDMA

To put our key results in perspective, Table 4.2 compares the performance of our simulated

soNUMA system with an industry-leading commercial solution that combines the Mellanox

ConnectX-3 [115] RDMA host channel adapter connected to host Xeon E5-2670 2.60Ghz via

a PCIe-Gen3 bus. In the Mellanox system [47], the servers are connected back-to-back via

a 56Gbps InfiniBand link. We consider four metrics – read bandwidth, read latency, atomic

operation latency, and IOPS.

As Table 4.2 shows, compared to the state-of-the-art RDMA solution, soNUMA reduces the

latency to remote memory by a factor of four, in large part by eliminating the PCIe bus

overheads. soNUMA is also able to operate at peak memory bandwidth. In contrast, the

77



Chapter 4. Scale-Out NUMA: An Integrated RSMP Design

PCIe-Gen3 bus limits RDMA bandwidth to 50 Gbps, even with 56Gbps InfiniBand. In terms

of IOPS, the comparison is complicated by the difference in configuration parameters: the

RDMA solution uses four QPs and four cores, whereas the soNUMA configuration uses one of

each. Per core, both solutions support approximately 10M remote memory operations.

We also evaluate the performance of atomic operations using fetch-and-add, as measured by

the application. For each of the three platforms, the latency of fetch-and-add is approximately

the same as that of the remote read operations on that platform. Also, soNUMA provides

more desirable semantics than RDMA. In the case of RDMA, fetch-and-add is implemented by

the host channel adapter, which requires the adapter to handle all accesses, even from the

local node. In contrast, soNUMA’s implementation within the node’s local cache coherence

provides global atomicity guarantees for any combination of local and remote accesses.

4.7.5 Rack-Scale Graph Analytics

Rack-scale analytics and distributed NoSQL databases are the obvious candidate applications

for soNUMA. All of them perform very little work per data item (if any) and operate on large

datasets, and hence typically require a scale-out configurations to keep all the data memory

resident. Most importantly, they exhibit poor locality as they frequently access non-local data.

We first study the impact of soNUMA on rack-scale graph analytics, and, in the next chapter,

we show how soNUMA can be used as a building block (i.e. RSMP unit) in large-scale key-value

stores.

We picked the canonical PageRank algorithm [136], and compared three parallel implementa-

tions of it. All three are based on the widely used Bulk Synchronous Processing model [160],

in which every node computes its own portion of the dataset (range of vertices) and then

synchronizes with other participants, before proceeding with the next iteration (so-called

superstep). Our three implementations are:

(i) SHM(pthreads): The baseline is a standard pthreads implementation that assumes cache-

coherent memory rather than soNUMA. For the simulated hardware, we model an eight-core

multiprocessor with 4MB of LLC per core. We provision the LLC so that the aggregate cache size

equals that of the eight machines in the soNUMA setting. Thus, no benefits can be attributed to
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Figure 4.14 – PageRank speedup on simulated HW (left) and on the development platform
(right).

larger cache capacity in the soNUMA comparison. For the development platform, we simply

run the application on our ccNUMA server described in §4.7.1, but without a hypervisor

running underneath the host OS. In this implementation, the application stores two rank

values for each vertex: the one computed in the previous superstep and the one currently

being computed. Barrier synchronization marks the end of each superstep.

(ii) soNUMA(bulk): This scale-out implementation leverages aggregation mechanisms and

exchanges ranks between nodes at the end of each superstep (after the barrier) using soNUMA’s

one-sided reads. A similar approach is supported by Pregel [112] as it amortizes high inter-

node latencies and makes use of high-capacity Ethernet links. In this implementation we

exploit spatial locality within the global address space by using multi-line requests at the RMC

level. At the end of each superstep, every node uses multiple rmc_read_async operations

(one per peer) to pull the remote vertex information from each of its peers into the local

memory. This allows a concurrent shuffle phase limited only by the bisection bandwidth of

the system.

(iii) soNUMA(fine-grain): This variant leverages the fine-grain memory sharing capabilities

of soNUMA, as shown in Fig. 4.5. Each node issues one rmc_read_async operation for each

non-local vertex. This implementation resembles the shared-memory programming model

of SHM(pthreads), but has consequences: the number of remote memory operations scales

with the number of edges that span two partitions rather than with the number of vertices per

partition.
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We evaluate the three implementations of PageRank on a subset of the Twitter graph [95]

(30GB) using a naive algorithm that randomly partitions the vertices into sets of equal cardi-

nality. We run 30 supersteps for up to 16 soNUMA nodes on the development platform. On

the simulator, we run a single superstep on up to eight nodes because of the high execution

time of the cycle-accurate model. We do not compare soNUMA against a scale-out Ethernet

configuration because of disproportionate latency and bandwidth.

Fig. 4.14 (left) shows the speedup over the single-threaded baseline of the three implemen-

tations on the simulated hardware. Both SHM(pthreads) and soNUMA(bulk) have near

identical speedup. In both cases, the speedup trend is determined primarily by the im-

balance resulting from the graph partitioning scheme, and not the hardware. However,

soNUMA(fine-grain) has noticeably greater overheads, primarily because of the limited

per-core remote read rate (due to the software API’s overhead on each request) and the fact

that each reference to a non-local vertex results in a remote read operation. Indeed, each

core can only issue up to 10 million remote operations per second. As shown in Fig. 4.10, the

bandwidth corresponding to 64B requests is a small fraction of the maximum bandwidth of

the system.

Fig. 4.14 (right) shows the corresponding speedup on the software development platform. We

identify the same general trends as on the simulated hardware, with the caveat that the higher

latency and lower bandwidth of the development platform limit performance.

4.8 Discussion

We now discuss the lessons learned in developing our soNUMA prototype, known open issues,

killer applications, and deployment and packaging options.

Lessons learned. During our work, we appreciated the value of having a software develop-

ment platform capable of running at native speeds. By leveraging hardware virtualization and

dedicating processing cores to emulate RMCs, we were able to run an (emulated) soNUMA

fabric at wall-clock execution time, and use that platform to develop and validate the protocol,

the kernel driver, all user-space libraries, and applications.
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Open issues. Our design provides the ability to support many variants of remote memory

operations that can be handled in a stateless manner by the peer RMC. This includes read,

write, and atomic operations. A complete architecture will probably require extensions such

as the ability to issue remote interrupts as part of an RMC command, so that nodes can

communicate without polling. This will have a number of implications for system software,

e.g., to efficiently convert interrupts into application messages, or to use the mechanisms to

build system-level abstractions such as global buffer caches.

Killer applications. Our primary motivation behind soNUMA is the conflicting trend of (i)

large dataset applications that require tight and unpredictable sharing of resources; and (ii)

manycore designs, which are optimized for throughput rather than resource aggregation. Our

soNUMA proposal aims to reconcile these two trends. In our evaluation, we chose a simple

graph application because it allows for multiple implementation variants that expose different

aspects of the programming model, even though the regular, batch-oriented nature of that

application is also a good fit for coarse-grain, scale-out models. Implementing these variants

using the RMC API turned out to be almost as easy as using the conventional shared-memory

programming abstractions.

Many applications such as on-line graph processing algorithms, in-memory transaction pro-

cessing systems, and key-value stores demand low latency [145] and can take advantage of

one-sided read operations [117]. These applications are designed to assume that both client

and server have access to a low-latency fabric [117, 132], making them killer applications for

soNUMA. In §5, we show how a scale-out key-value store can take advantage of soNUMA. We

design and implement a KVS that leverages the soNUMA fabric for load balancing purposes,

delivering better application throughput. Beyond these, we also see deployment opportunities

in upper application tiers of the datacenter. For example, Oracle Exalogic today provides a flexi-

ble, low-latency platform delivered on a rack-scale InfiniBand cluster [134]. Such deployments

are natural candidates for tighter integration using SoC and soNUMA.

System packaging options. The evaluation of the impact of system scale and fabric topolo-

gies is outside of the scope of this thesis since we focused on the end-behavior of the RMC.

To be successful, soNUMA systems will have to be sufficiently large to capture very large
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datasets within a single cluster, and yet sufficiently small to avoid introducing new classes

of problems, such as the need for fault containment [42]. Industry solutions today provide

rack-insert solutions that are ideally suited for soNUMA, e.g., HP’s Moonshot with 45 car-

tridges or Calxeda-based Viridis systems with 48 nodes in a 2U chassis. Beyond that, rack-level

solutions seem like viable near-term options; a 44U rack of Viridis chassis can thus provide

over 1000 nodes within a two-meter diameter, affording both low wire delay and massive

memory capacity.

NUMA vs. IP over lossless Ethernet/Infiniband. The Scale-Out NUMA (soNUMA) transport

assumes a NUMA memory subsystem as the underlying mechanism for transferring data from

remote to local memory and vice verse. Unlike soNUMA, the Infiniband transport relies either

on lossless Ethernet or an actual Infiniband network. With Infiniband reaching the bandwidth

of local DRAM [109], it is not hard to imagine a rack-scale system based on Infiniband that is

similar to soNUMA, even though folding a full-blown RDMA HCA into the cache hierarchy of

the CPU is not a trivial task.

An integrated Infiniband design would feature a lightweight hardware-software interface, just

like soNUMA, but it would still incur overhead associated with other components on the

data path. First, to initiate and complete operations it would require the same amount of

work done by the CPU (i.e., instruction footprint). Second, assuming the same feature set

supported by the original Infiniband, the amount of state kept in the network end-points

would still be the same (e.g. connections). Finally, the typical size of the MTU in Infiniband is

4KB, and the smallest supported MTU is 256B, whereas the header overhead is 98 bytes for

RDMA operations [5].

The header overhead of 98 bytes in size assumes the original feature set, such as routing across

L2 domains, which requires network headers - global IDs in Infiniband (40B). The 4KB MTU

increases the propagation delay, which may impact the latency for small messages, whereas

for 256B MTU the headers take up much of the packet space (almost 40%) and, thus, requires

more packets in aggregate size to be transferred for the same amount of data. On top of that, a

single Ethernet switch introduces an additional delay of 0.2us [114].

On soNUMA, we strip much of the RDMA functionality and simplify the transport protocol.

82



4.8. Discussion

The choice of NUMA encouraged us to implement fewer features to reduce the header over-

head to 16 bytes due to the fixed MTU supported by NUMA (64 bytes). The MTU of 64 bytes,

in combination with low-latency switches, significantly reduces the propagation delay and

improves the latency for small messages. Because of the simple NUMA request/reply network

protocol, the RMC maintains much less state, which further simplifies the design and enables

integration. Finally, the simplified API leads to smaller intruction footprint and, hence, lower

CPU overhead as compared to Infiniband.

We now provide a quick comparison between Infiniband and soNUMA at the wire level. That is,

we ignore the hardware-software interface overheads, and focus only on actual data transfers

crossing the network links and switches. We assume the same link bandwidth (100Gbps), but

different MTU, different header sizes, and different physical interconnect implementations

(i.e., switch-based vs. “glueless”). The MTU sizes supported by Infiniband range from 256B to

4KB, whereas the header size is 98B, independent of the MTU [138]. On soNUMA, the MTU

is 64B and the header size is 16B. We leverage the following formula to compute the transfer

time T:

T = pr opag ati on_del ay + tr ans f er _si ze −MTU

band wi d th

The propagation_delay is the time that it takes for the first packet, which is maximum MTU

in size, to reach the destination, and includes the time to acquire all the resources for the

subsequent packets that are part of the flow. The second half of the equation represents the

serialization delay for the rest of the transfer. The equation is trivial in sense that it assumes

an uncongested network - no queuing delay in network elements.

The propagation_delay is computed as follows:

pr opag ati on_del ay = l i nk_del ay ∗ hop_cnt + swi tch_cnt ∗ swi tch_l atenc y

l i nk_del ay = MTU

band wi d th
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MTU size 4KB 50MB

4KB (RDMA/IB) 0.8us 4.8ms
256B (RDMA/IB) 0.7us 6.5ms
64B (soNUMA) 0.5us 5.1ms

Table 4.3 – Remote write performance comparison of Infiniband and soNUMA for different
MTU sizes and header overhead.

To compute the propagation delay, we assume one switch (i.e., two hops) for Infiniband and

the average of eight hops (seven switches) for a 2D torus soNUMA. We focus on two transfer

sizes, 4KB and 50MB, and three different MTU sizes; 4KB Infiniband, 256 bytes Infiniband, and

64 bytes soNUMA. The header overhead on Infiniband is 98B, whereas on soNUMA it is 16B.

We assume low-radix routers in soNUMA with 10ns pin-to-pin latency [118]. The comparison

focuses on one-way transfers, such as remote writes.

Table 4.3 shows the transfer times computed using the model. For 4KB transfer size and 4KB

IB MTU, the serialization delay is small and the propagation time dominates the total transfer

time. For 256B MTU, the propagation time is smaller, but the serialization delay is much

higher due to a high per-byte header overhead; 38% versus 2% for 4KB MTU. soNUMA’s per-

byte header overhead is 24%, but the propagation delay is much smaller than on Infiniband,

resulting in 200-300ns improvement in latency.

For 50MB transfer size, the MTU of 4KB on Infiniband is superior to smaller MTU sizes. This

is because the serialization delay dominates the transfer time for all three MTU sizes and

4KB MTU provides the lowest per-byte header overhead. However, soNUMA could provide

multi-path routing to utilize the multiple links coming in and out of each soNUMA server

node, which may require higher core count, a high-throughput RMC implementation [50], and

more memory controllers. In such a scenario, soNUMA would provide much higher bisection

bandwidth, which would further lead to better application performance.

Follow-up research and future directions. This work has demonstrated the benefits on

simple microbenchmarks and one application. We have also evaluated the impact of soNUMA

on latency-sensitive applications such as in-memory distributed databases (NoSQL). We

also see research questions around system-level resource sharing: for example, to create a

single-system image or a global filesystem buffer cache, or to rethink resource management
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in hypervisor clusters. Multikernels, such as Barrelfish [21], could be an ideal candidate for

soNUMA.

We have investigated the micro-architectural aspects of the RMC. This includes further opti-

mizations in the RMC and the processor that reduce the remote latency, a reassessment of

the RMC’s design for SoC’s with high core counts [50], and new one-sided primitives such as

atomic bulk reads [51].

Our study focused on data sharing within a single soNUMA fabric. For very large datasets,

datacenter deployments could connect multiple soNUMA systems using conventional net-

working technologies. This opens up new system-level research questions in the areas of

resource management and networking (e.g., how to use the soNUMA fabric to run standard

network protocols).

4.9 Related Work

Many of the concepts found in remote memory architectures today and our soNUMA proposal

originate from research done in the ’80s and ’90s. In this section we look at the relationship

between soNUMA and several related concepts. We group prior work into six broad categories.

Partitioned global address space. PGAS relies on compiler and language support to provide

the abstraction of a shared address space on top of non-coherent, distributed memory [44].

Languages such as Unified Parallel C [168, 44] and Titanium [168] require the programmer

to reason about data partitioning and be aware of data structure non-uniformity. However,

the compiler frees the programmer from the burden of ensuring the coherence of the global

address space by automatically converting accesses to remote portions into one-sided re-

mote memory operations that correspond to soNUMA’s own primitives. PGAS also provides

explicit asynchronous remote data operations [26], which also easily map onto soNUMA’s

asynchronous library primitives. The efficiency of soNUMA remote primitives would allow

PGAS implementations to operate faster.
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Software distributed shared memory. Software distributed shared memory (DSM) provides

global coherence not present in the memory hierarchies of PGAS and soNUMA. Pure software

DSM systems such as IVY [100], Munin [37] and Threadmarks [10] expose a global coherent

virtual address space and rely on OS mechanisms to “fault in” pages from remote memory

on access and propagate changes back, typically using relaxed memory models. Similarly,

software DSM can be implemented within a hypervisor to create a cache-coherent global

guest-physical address space [43], or entirely in user-space via binary translation [147]. Like

software DSM, soNUMA operates at the virtual memory level. Unlike software DSM, soNUMA

and PGAS target fine-grained accesses whereas software DSM typically operates at the page

level. Shasta [147] and Blizzard [148] offer fine-grain DSM through code instrumentation and

hardware assistance, respectively, but in both cases with non-negligible software overheads.

Cache-coherent memory. ccNUMA designs such as Alewife [7], Dash [99], FLASH [94],

Typhoon [143], Sun Wildfire [124], and today’s Intel QPI and AMD HTX architectures create a

compute fabric of processing elements, each with its own local memory, and provide cache-

coherent physical memory sharing across the nodes. FLASH and Sun’s Wildfire also provide

advanced migration and replication techniques to reduce the synchronization overheads [66].

soNUMA shares the non-uniform aspect of memory with these designs and leverages the

lower levels of the ccNUMA protocols, but does not attempt to ensure cache coherence. As a

result, soNUMA uses a stateless protocol, whereas ccNUMA requires some global state such

as directories to ensure coherence, which limits its scalability. The ccNUMA designs provide

a global physical address space, allowing conventional single-image operating systems to

run on top. The single-image view, however, makes the system less resilient to faults [42]. In

contrast, soNUMA exposes the abstraction of global virtual address spaces on top of multiple

OS instances, one per coherence domain.

User-level messaging. User-level messaging eliminates the overheads of kernel transitions

by exposing communication directly to applications. Hybrid ccNUMA designs such as

FLASH [77], Alewife [7], and Typhoon [65] provide architectural support for user-level mes-

saging in conjunction with cache-coherent memory. In contrast, soNUMA’s minimal design
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allows for an efficient implementation of message passing entirely in software using one-sided

remote memory operations.

SHRIMP [25] uses a specialized NIC to provide user-level messaging by allowing processes

to directly write the memory of other processes through hardware support. Cashmere [155]

leverages DEC’s Memory Channel [71], a remote-write network, to implement a software DSM.

Unlike SHRIMP and Cashmere, soNUMA also allows for direct reads from remote memory.

Fast Messages [137] target low latency and high bandwidth for short user-level messages.

U-Net [162] removes the entire OS/Kernel off the critical path of messaging. These systems

all focus on the efficient implementation of a message send. In soNUMA, the RMC provides

architectural support for both one-sided read and write operations; messaging is implemented

on top of these basic abstractions.

Remote memory access. Unlike remote write networks, such as SHRIMP and DEC Memory

Channel, Remote Memory Access provides for both remote reads and remote writes. Such

hardware support for one-sided operations, similar to soNUMA’s, was commercialized in

supercomputers such as Cray T3D [92] and T3E [150]. Remote memory access can also be

implemented efficiently for graph processing on commodity hardware by leveraging aggressive

multithreading to compensate for the high access latency [122]. soNUMA also hides latency

but uses asynchronous read operations instead of multithreading.

Today, user-level messaging and RDMA is available in commodity clusters with RDMA host

channel adapters such as Mellanox ConnectX-3 [115] that connect into InfiniBand or Con-

verged Ethernet switched fabrics [86]. To reduce complexity and enable SoC integration,

soNUMA only provides a minimal subset of RDMA operations; in particular, it does not

support reliable connections, as they require keeping per-connection state in the adapter.

NI integration. One advantage of soNUMA over prior proposals on fast messaging and

remote one-sided primitives is the tight integration of the NI into the coherence domain. The

advantage of such an approach was previously demonstrated in Coherent Network Interfaces

(CNI) [119], which leverage the coherence mechanism to achieve low-latency communication
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of the NI with the processors, using cacheable work queues. More recent work showcases the

advantage of integration, but in the context of kernel-level TCP/IP optimizations, such as a

zero-copy receive [24]. Our RMC is fully integrated into the local cache coherence hierarchy

and does not depend on local DMA operations. The simple design of the RMC suggests that

integration into the local cache-coherence domain is practical. Our evaluation shows that

such integration can lead to substantial benefits by keeping the control data structures, such as

the QPs and page tables, in caches. soNUMA also provides global atomicity by implementing

atomic operations within a node’s cache hierarchy.

4.10 Summary

Scale-Out NUMA (soNUMA) is an architecture, programming model, and communication

protocol for low-latency RSMP. soNUMA eliminates kernel, network stack, and I/O bus over-

heads by exposing a new hardware block –the remote memory controller– within the cache

coherent hierarchy of the processor. The remote memory controller is directly accessible by

applications and connects directly into a NUMA fabric. Our results based on cycle-accurate

full-system simulation show that soNUMA can achieve remote read latencies that are within 4x

of local DRAM access, stream at full memory bandwidth, and issue up to 10M remote memory

operations per second per core.

The purpose of soNUMA is primarily to empower modern datacenters to execute software

faster. However, how to take advantage of RSMP solutions, such as soNUMA, in various

software systems running in datacenters is not a given. We previously showed how graph

computation can use the soNUMA fabric to perform the shuffle phase faster. Batching of

vertex updates during the communication phase alone over soNUMA improves the end-to-

end performance. Unlike graphs, other software systems require some more thought to figure

out how to take advantage of RSMP. The purpose of the next chapter is exactly that: to study

one such scale-out application and identify the pain points that RSMP can help neutralize.
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To provide low latency and high throughput guarantees, distributed NoSQL databases keep

the data in the memory of many servers. Despite the natural parallelism across lookups,

the load imbalance, introduced by heavy skew in the popularity distribution of keys, limits

performance. To avoid violating tail latency service-level objectives, systems tend to keep

server utilization low and organize the data in micro-shards, which provides units of migration

and replication for the purpose of load balancing. These techniques reduce the skew, but

incur additional monitoring, data replication and consistency maintenance overheads.

In this chapter, we explore how data in distributed NoSQL databases, such as key-value stores,

can be aggregated at rack-scale granularity using rack-scale memory pooling (RSMP) in order

to reduce load imbalance. We will refer to this technique as Rack-Out KVS throughout this

chapter. In Rack-Out KVS, all of the participating servers in each rack are jointly servicing all

of the rack’s micro-shards using the underlying fabric’s one-sided primitives.

We develop a queuing model to evaluate the impact of Rack-Out KVS at datacenter scale.

In addition, we implement a proof-of-concept Rack-Out KVS (RO-KVS), evaluate it on two

experimental platforms based on RDMA and soNUMA, and use these results to validate the

model. Our results show that Rack-Out KVS increases throughput up to 6× for RDMA and 8.6×
for Scale-Out NUMA compared to a scale-out deployment, while respecting tight tail latency

service-level objectives.
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5.1 Introduction

Datacenter services and cloud applications such as search, social networking, and e-commerce

are redefining the requirements for system software. A single application can comprise

hundreds of software components, deployed on thousands of servers organized in multiple

tiers. Such applications must support high connection counts and operate with tight user-

facing service-level objectives (SLO), often defined in terms of tail latency [16, 54, 123]. To meet

these objectives, most such applications keep the data (e.g., a social graph) in memory-resident

distributed NoSQL databases, such as distributed key-value stores (KVS) [56, 62, 69, 146].

Distributed KVS use consistent hashing to shard and distribute the data among the servers of

the leaf tier.

The use of sharding has inherent scalability benefits: applications perform lookups in parallel

by leveraging a hash function to locate the requested data in the leaf tier. In its basic form,

however, sharding data limits the maximum throughput respecting the SLO whenever the

popularity distribution of data items is skewed and unknown. A large popularity skew among

data items can result in severe load imbalance, as a small subset of the leaf servers will saturate

either their CPUs or their NICs, thereby violating the tail latency SLO, while the majority of the

other leaf servers remains mostly idle.

In this chapter, we introduce an application of RSMP to large distributed key-value stores

that we refer to as Rack-Out KVS. The conclusions we make about using RSMP in KVS also

apply to other instances of distributed NoSQL databases, because of similar data layout and

workload properties [31, 41]; for example, a NoSQL database could use a lexicographically

ordered index instead of a hash, and store data in tables rather than key-value tuples [41].

Nevertheless, only the simple put/get operations on individual data items (rows) would apply,

while the index is distribution-agnostic. A Rack-Out KVS unit is equivalent to an RSMP unit, a

group of servers (i.e., a rack) augmented with an internal secondary fabric allowing any node

within the rack to read from the memory of other nodes through one-sided operations (i.e.,

without involving the remote CPU). Consequently, the data in Rack-Out KVS is partitioned at

rack-scale granularity, with the entire rack responsible for a collection of data items mapped

to the rack’s servers. Rack-Out KVS leverages the concurrent-read/exclusive-write (CREW) data
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access model within individual RSMP units, which has previously been shown to dramatically

improve the scalability of single-server performance on multicore servers [58, 102, 117]. By

decoupling data access from data storage, Rack-Out KVS substantially reduces the negative

impact of skew on the entire KVS’ performance.

To support the CREW model in Rack-Out KVS, the client identifies the server holding the

target micro-shard and therefore the RSMP unit it belongs to. Read requests are load-balanced

among all the servers within each RSMP unit, while write requests are always directed to

the server holding the micro-shard. Even though data is never replicated within an RSMP

unit, Rack-Out KVS is compatible and synergistic with dynamic replication [31, 54, 79, 81].

Since the Rack-Out KVS technique already balances requests within an RSMP unit (using

one-sided operations rather than replication), replication is only required across RSMP units,

which reduces the overheads associated with load monitoring, creating replicas, and ongoing

consistency maintenance.

This chapter describes the following contributions:

• We provide a detailed analysis of the impact of rack-level aggregation on mitigating the

effect of skew. We develop a queuing model for Rack-Out KVS that assumes globally accessible

memory within the rack. We evaluate the benefits of Rack-Out KVS as a function of server

count, RSMP unit size, and read/write ratio for datasets following a power-law popularity

distribution. For a Zipfian read-only distribution with α= 0.99, the model predicts that a Rack-

Out KVS deployment of 512 servers grouped into 16-server RSMP units increases throughput

by 6× with RDMA and 8.6× with Scale-Out NUMA (soNUMA) [50, 51, 126] without violating

SLO.

• We evaluate the combination of Rack-Out KVS with an idealized dynamic replication scheme.

Our results show that the Rack-Out KVS model is synergistic with dynamic replication and

dramatically reduces the number of replicas required for load balancing.

• We implement Rack-Out KVS (RO-KVS), a proof-of-concept KVS using a conventional net-

work for client access and an RDMA fabric for memory access. RO-KVS is based on FaRM [58]

and is ported to both Mellanox RDMA [116] and soNUMA. We evaluate RO-KVS in terms of

its 99th percentile tail latency for the hottest rack of a 512-server deployment. We show that
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organizing this rack as a 16-server RSMP unit using soNUMA can deliver 6× more requests

than 16 independent servers for a workload with 5% writes and 8.2× more requests for a

read-only workload. Discrepancies between the model and the measured system remain

below 6%, which validates the model.

The rest of the paper is organized as follows: §5.2 discusses the key architectural trends

providing cost-effective RSMP. §5.3 provides a detailed analysis of the Rack-Out KVS queuing

model, which we validate in §5.4 using an implementation of our proof-of-concept RO-KVS.

We discuss related work in §5.6 and conclude in §5.7.

5.2 Rack-Scale Memory Pooling

An intuitive approach to mitigating the effects of shard skew while avoiding the challenges

and overheads of dynamic replication is to reduce the number of nodes involved by increasing

each node’s size in order to have fewer larger shards. As we showed in §2, a reduction in the

node count can dramatically reduce the shard skew. Even though the overall architecture

remains that of a KVS consisting of multiple independent building blocks, each building block

is designed to scale in terms of throughput and memory capacity using RSMP. The design

space for such solutions is broad, but can be broken down into architectural considerations

(§5.2.1), concurrency issues (§5.2.2) and fault tolerance (§5.2.3).

5.2.1 Architectural Building Blocks

Since the CPU or the NIC is the performance bottleneck at high load, growing the node

size mandates increasing the per-node processing and networking capacity. Addressing this

challenge involves either building bigger, more capable server nodes or aggregating multiple

existing server nodes into larger logical entities, which is the main topic of this thesis.

The first approach simply leverages the technologies enabled in large-scale cache-coherent

NUMA servers (e.g., based on Intel’s QuickPath Interconnect or AMD’s HyperTransport tech-

nology). Such machines provide the convenient shared memory abstraction and a low-latency

high-bandwidth inter-node network. The downside of such large-scale machines is that their
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cost grows exponentially with the number of CPUs due to the complexity of scaling up the

coherence protocol, increased system design and manufacturing cost, as well as a focus on

low-volume, high-value applications such as online transaction processing for a market that is

less price sensitive.

The second approach, that we refer to as rack-scale memory pooling (RSMP) leverages con-

ventional datacenter-grade servers or individually less capable server building blocks [11, 39,

60, 63, 111, 157] augmented with a rack-level RDMA fabric. A similar approach is used in

commercial products providing analytical (e.g., Oracle ExaData / Exalogic [133]) or storage (e.g.

EMC/Isilon [59]) solutions to clients connected via a conventional network. AppliedMicro’s

X-Gene2 server SoC [107] and Oracle’s Sonoma [73] integrate the RDMA controller directly

on chip, HP Moonshot [78] combines low-power processors with RDMA NICs, and research

proposals further argue for on-chip support for one-sided remote access primitives [50, 126].

Building larger logical entities using the RSMP approach instead of the cache-coherent NUMA

approach comes at lower cost and complexity.

The fundamental premise for RSMP is that all servers within a rack can access the whole

memory of the rack within a small premium over local memory, thus the rack’s aggregate

memory can be perceived as a single, partitioned global address space. We further assume that

remote memory can be accessed through one-sided operations, and that the fabric efficiently

supports the access of data items residing in remote memory. Such remote access capability is

readily available in commercial fabrics such as InfiniBand or RoCE [116].

5.2.2 Concurrency Model

In a traditional scale-out deployment, each server manages a collection of micro-shards,

stored in its own memory. Despite the simplicity of the design, such deployments offer a

wide range of concurrency models that can independently provide concurrent or exclusive

access to either read or write objects. The concurrent-read/exclusive-write (CREW) data access

model has been shown to provide solid scalability at low complexity. In CREW, the memory

is managed as a single read-only pool, with changes being handled by a specific thread

based on the location of the object in memory. Recent work has demonstrated the scalability
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benefits of the CREW model on Xeon-class servers [101, 102]. As most workloads are read-

dominated [16, 31, 46, 140], CREW offers a sweet spot in terms of scalable performance by

keeping synchronization requirements to a minimum.

The suitability of the CREW model has also been demonstrated on rack-scale systems using

RDMA. FaRM [58] and Pilaf [117] follow a CREW model where each server is responsible for

the modification of objects stored in its memory, but other servers can directly read them

using one-sided RDMA read operations.

5.2.3 Availability and Durability

RSMP is not a substitute for replication when it comes to data availability and durability. In-

deed, scale-out applications are fundamentally designed to handle node failures [56, 135, 156].

In such cases, the central system relies on replication across nodes to ensure the availability

of the data, and removes the faulty node from the KVS. While this may seem problematic

when an individual node consists of an entire rack, datacenter deployments already assume

that physical racks have single points of failure in the infrastructure (e.g., in terms of power

distribution and top-of-rack networking [34]) and thus fault tolerance must be handled across

rack-scale building blocks. Failures must also be handled within the rack to detect and report

partial system failures, such as individual node failures, which would make portions of the

dataset inaccessible.

5.3 Rack-Out Data Serving

The basic building block of Rack-Out KVS is an RSMP unit, a group of servers, typically within

the same datacenter rack, that are tightly interconnected with an internal high-bandwidth,

low-latency fabric and can directly access each other’s memory using one-sided operations.

Thanks to this internal fabric, the aggregate memory of the server group is perceived as unified.

RSMP leverages the capability for fast memory access within the boundaries of a rack to

achieve better load balancing across the set of servers participating in memory pooling. In

Rack-Out KVS, we refer to the number of intra-rack servers pooling memory as the Grouping
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Figure 5.1 – Rack-Out KVS architecture using RDMA hardware. N x 4 micro-shards within each
rack perceived as one super-shard. Non-local micro-shards accessed through RDMA reads.

Factor (GF). Popular data residing in the local memory of heavily loaded servers can be directly

accessed by less loaded servers in the same rack, thus alleviating the queuing effects on the

busy server owning that memory. This optimization is enabled by the fact that the rack’s

internal fabric and each individual server’s memory bandwidth are under-subscribed while

the CPU or the external-facing NIC of the hot server is fully utilized.

By aggregating the memory of a rack through RSMP, the per-node load increases, but only

marginally, while the compute power grows almost linearly with GF. For example, for a work-

load with one billion keys, going from 512 servers to 32 racks increases the load on the hottest

rack only by 5%, as compared to the hottest server of the equivalent scale-out configuration.

In §5.3.1, we provide a detailed analysis of this phenomenon.

Fig. 5.1 illustrates the RSMP architecture of a datacenter and how Rack-Out KVS takes ad-

vantage of it. Each unit connects the servers via an internal RDMA fabric (either RoCE or

Infiniband), which supports one-sided read and write operations. Each server in the unit

stores a group of micro-shards forming a shard, as in conventional KVS, while RSMP unit

exposes the abstraction of a super-shard comprising all the micro-shards within a unit.

Fig. 5.1 also clearly illustrates the key assumption behind the model: by confining the fabric

to the unit, the RSMP model sits between the traditional scale-out model and the full-scale
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RDMA fabric deployment. From an application perspective, the proposed RSMP and scale-out

models are similar: clients connect to servers via the network (assuming clients and servers

run in different racks [64]) and applications rely on replication to scale beyond the unit of

capacity (i.e., rack or server) and ensure data availability.

Recent work has shown that scaling RDMA over commodity Ethernet introduces issues of

congestion, dealing with deadlocks and livelocks, and other subtleties of priority-based flow

control [74, 170]. Even though the flow-control issues of commodity Ethernet may go away [74,

170], complementing datacenter-scale RDMA (or equivalent) fabrics with specialized ultra-

low-latency rack-scale fabrics [15, 126, 130] will be of great importance to balance the load

across small groups of servers using the Rack-Out KVS approach, without the cost of data

replication. In such designs, the bottleneck would possibly shift from the CPU to the network

interface, still requiring RSMP or a similar mechanism to mitigate the imbalance (see §5.5). To

make RSMP compatible with future networking technologies, it will be key to provision enough

network bandwidth among the servers of different racks and also enable high-throughput

access to rack-local data for load balancing purposes. In §3.2, we state two key requirements

for two-fabric solutions to provide a performance impact over single-fabric solutions.

Rack-Out KVS leverages the CREW model. This means that write requests must be directed

to the specific server within the rack that owns the data, but that read requests can be load-

balanced to any server of the rack. Therefore, from the perspective of a KVS, the hash function

determines the micro-shard and its associated server, which is used directly to select a specific

server on write requests. For reads, the client schedules the request to a random server within

the target server’s RSMP unit.

In the rest of this section, we present a first-order analysis showing the maximal speedup

attainable by Rack-Out KVS as a function of the read/write mix and the GF (§5.3.1), and

subsequently build a queuing model for Rack-Out KVS to study service time implications

at the tail latency (§5.3.2). We analyze the sensitivity of the skew to the dataset distribution

(§5.3.3), the synergy of Rack-Out KVS with dynamic replication and migration (§5.3.4), and

the impact of remote read penalties on performance (§5.3.5). Throughout the analysis, we

assume identical server building blocks in terms of processing and memory capacity for both
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scale-out and Rack-Out KVS configurations.

5.3.1 Load Balancing in Rack-Out Data Serving

We define the rack skew as the rack-scale analog to the shard skew, specifically as the ratio of

the traffic on the most popular rack over the average traffic per rack. In the following analysis,

we use Lmax to refer to the load (expressed as a fraction of requests) of the server/rack with

the hottest shard/super-shard, and Lav g for the average server load. The straggler (i.e., the

system’s node with the highest load) determines the highest aggregate stable throughput. The

straggler in a traditional scale-out environment is the server with the highest load:

Lmax = shar d_skew1 ×Lav g

where shar d_skew1 is the shard skew in the scale-out deployment. In a Rack-Out KVS

organization, the building blocks are racks rather than servers. In such a deployment with a

rack size of GF servers, the straggler rack’s load is:

Lmax = r ack_skewGF ×GF ×Lav g

where r ack_skewGF is the rack skew in a Rack-Out KVS environment with a Grouping Factor

of GF .

The time a straggler needs to crunch through its load is inversely proportional to the available

resources that can be utilized. We assume that the single-server compute power that can

be used to serve the hottest shard in the scale-out model is compute1. The compute power

that can be used on the hottest super-shard in the case of Rack-Out KVS is computeGF =
GF × compute1. Overall, for a read-only workload, the ideal speedup derived from the Rack-

Out KVS model over the scale-out model is:

I deal speedup =
shar d_skew1×Lav g

compute1

r ack_skewGF×GF×Lav g

computeGF

= shar d_skew1

r ack_skewGF
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Figure 5.2 – Read-only, perfect intra-rack balancing.

Figure 5.3 – 5% writes, CREW access.

Given the CREW model, Ideal speedup provides only an upper bound on the speedup for

read-write workloads, as writes cannot be balanced within the rack.

We are not aware of a closed-form formula that determines the per-server load, Lser ver . In-

stead, we perform the following experiment: we generate a 250M-key dataset built out of a

randomly-generated sparse key space, then allocate keys to micro-shards according to a hash

function, and, finally, compute each key’s popularity according to the power-law distribution.

A server’s popularity is the sum of its keys’ popularities; for Rack-Out KVS, a GF-sized rack’s

popularity is the sum of the popularity of the GF servers in that rack.

Fig. 5.2 shows the benefit of perfect load balancing within a rack of a given GF according to

the Ideal speedup equation; for a given 512-server configuration, grouping the servers into

RSMP units of 64 servers (i.e., GF=64) provides an ideal speedup opportunity of 16×. Fig. 5.3
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Figure 5.4 – Sensitivity to write %, 512 servers.

quantifies the impact of having 5% of writes on the ideal throughput speedup. Even though

such a workload is clearly read-dominated, the CREW model bounds the speedup, similar to

Amdahl’s law; the maximum performance improvement with GF=64 drops from 16× to 9×.

Fig. 5.4 illustrates the sensitivity to the read/write mix for various GF configurations.

5.3.2 A Queuing Model for Rack-Out Data Serving

Ideal speedup suggests that the expected benefit of a Rack-Out KVS organization is com-

mensurate to the reduction in shard skew. We now reinforce the claim that this is a good

approximation metric for the expected improvement in performance under a given SLO by

leveraging basic queuing theory principles.

Under a simple open-queuing system approach for real-world systems that service millions

of client requests and serve huge datasets, we assume that the requests follow a Poisson

distribution, data popularity follows a power-law (Zipfian) distribution, and that each key

has the same average read/write ratio. The three distributions are orthogonal, but equally

critical to the queuing effects that arise in the system. Given Poisson request arrivals, queuing

theory provides the tools to determine stability conditions (λ < μ), as well as each server’s

performance under a given SLO.

Fig. 5.5 describes the queuing model’s key elements. Requests follow an open-loop arrival

process with a given rate λ and Poisson inter-arrivals. Each request carries a timestamp, a key
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selected randomly according to popularity, and a read/write tag selected uniformly according

to the modeled probability. The client-side process maps the key to a micro-shard using a

perfect hash function. Requests for each micro-shard P follow a Poisson arrival process with a

rate:

λP =λ× ∑

k∈KP

zi p f (k);KP = {k|hash(k) = P }

According to CREW, the micro-shard directly determines the server node for write requests,

but read requests are load-balanced among the nodes of the selected RSMP. In our model,

queuing happens on the server side, with one queue per server, and requests are served in

FIFO order. The model distinguishes between three types of requests T : (i) read requests

that can be served from the local memory of the server (LR), (ii) read requests that require

one-sided operations over the fabric interconnect (RR), and (iii) local write requests (LW ). On

any given server i , the power-law distribution of the keys, the hash function, the GF and the

read/write mix together determine the per-server arrival rate for each request type t , λi t :

λ=
Nnodes∑

i=1

∑

{t∈T }
λi t ;T = {LR,RR,LW }
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The system is stable if and only if:

∀i ∈ {1..Nnodes} :
∑

{t∈T }
λi t × S̄t < 1

The resulting queuing model depends on the service time distributions St . To extract perfor-

mance results from our queuing model, we instrument it with realistic service times, which we

derive from a Rack-Out KVS implementation (RO-KVS) described in §5.4. Using RO-KVS, we

measure the maximum node throughput 1/S̄t for each of the three request types. To simplify

the model, we assume that each of these has a deterministic distribution of service times equal

to its average. Local reads are the most lightweight operations, and as such are associated with

the lowest service time. In RO-KVS running on top of our Mellanox RDMA cluster, local writes

and remote reads are 1.38× and 1.68× slower than local reads, respectively (see Table 5.1). The

service times include all the CPU processing, such as network packet processing, to service a

single key-value lookup or update.

Fig. 5.6a and Fig. 5.6b study the 99th percentile behavior of this queuing model for a deploy-

ment of 512 nodes and a Zipfian key popularity distribution with α= 0.99. Given the lack of

a closed form, we rely on discrete event simulation with 10 million arrival events for each

measurement. We configure the model with RO-KVS service times and the propagation delay

that we obtain on RDMA (Table 5.1). We define the datacenter throughput (on the x-axis) as

the fraction of the throughput achieved compared to a uniform workload with 100% read

requests on a scale-out deployment (GF=1). We use the model to determine the maximum

utilization at an SLO defined as handling 99% of requests in less than 1 millisecond, provided

that none of the nodes are saturated.

Fig. 5.6a shows the impact of Rack-Out KVS organization on read-only workloads. For smaller

GFs (including scale-out, GF=1), the datacenter-wide tail latency spikes rapidly as the hottest

RSMP unit (or scale-out node) reaches saturation. With larger groupings, the intra-rack load

balancing reduces the skew in arrival rates and the tail latency rises with load according to the

familiar pattern of open-loop models. When considering the SLO, Rack-Out KVS with GF=16

achieves a speedup of 6× over scale-out. This is a substantial increase in performance due

to better load-balancing, even though the majority of requests will suffer the 1.68× penalty
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Figure 5.6 – Datacenter-wide 99th percentile latency vs. utilization, determined using the
queuing model and RDMA parameters (512 servers, Zipfian α= 0.99).

associated with accessing remote memory over RDMA. In comparison, Fig. 5.2’s idealized

model predicts the maximum speedup for the same power-law distribution of keys to be of

9.9×. However, the idealized model does not account for the remote memory access penalty

or the requirement to meet any particular SLO.

Fig. 5.6b shows the same results for a workload with 5% of writes. While the key distribution

remains identical, the inability to balance the write requests limits the performance improve-

ments. The imbalance in writes is also the reason for the latency spike at the saturation point:

while the average datacenter utilization is still low, resulting in low 99th percentile latency, the

server with the hottest shard saturates while all the other servers, including the ones in the
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same RSMP unit, are still far from saturated. This is particularly obvious with GF ≥ 16, where

the tail latency hardly increases before saturation.

5.3.3 Sensitivity to Skew

Fig. 5.6a and Fig. 5.6b show the result of experiments conducted on a single, randomly gener-

ated dataset of sparse keys, using a balanced hash function. We performed these experiments

multiple times, with different random seeds and noticed some non-trivial variability in the

results.

Fig. 5.7 shows the CDF of the saturation points for 500 different datasets of 50 million objects,

for the configuration of 512 servers with 5% writes. Each point in this figure corresponds to

the datacenter saturation point of one randomly generated dataset. The distribution of these

saturation points shows that (i) traditional scale-out achieves consistently very low utilization,

as it always suffers from high shard skew; (ii) the distributions do not overlap, meaning that the

datacenter’s utilization grows monotonically with an increase in GF; (iii) the relative standard

deviation for the five shown GFs ranges from 2.7% to 8.6%.
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Figure 5.7 – Datacenter utilization for 500 different datasets of 50 million objects with Zipfian
α= 0.99 data popularity distribution (5% writes). The red dots represent the key distribution
used throughout this paper.
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5.3.4 Synergy with Dynamic Replication and Migration

The results of the queuing model in §5.3.2, including Fig. 5.6a and Fig. 5.6b, assume that

the key-value store has no provision for dynamic replication or migration. We extend the

queuing model to include the dynamic migration and replication of micro-shards. The model

extension runs a greedy algorithm operating as follows: (i) it identifies the hottest server

node in the cluster and its corresponding RSMP unit; (ii) for that RSMP unit, it identifies the

micro-shard contributing most to the load; (iii) if this micro-shard has never been migrated or

replicated, it first migrates it to the least loaded node in the cluster; (iv) else it replicates the

micro-shard to the least loaded node in the cluster; (v) in both cases, the hash table metadata

is updated and the system load-balances the read traffic equally across replicas. Replicas are

only made across different RSMP units. The model assumes that all writes to a micro-shard

eventually propagate to all of its replicas. Using this model, we determine analytically the

datacenter-wide utilization after each migration/replication step.

The model is optimistic in a number of ways: first, it assumes that migration and replica-

tion events do not impact CPU utilization, but instead happen instantly. The model does

account for the full cost of maintaining consistency, but only to the extent of updating each

replica. Furthermore, the model assumes perfect monitoring of the load on each server, and

that the popularity distribution does not change over time. Any realistic implementation

of micro-shard dynamic replication and migration would incur higher CPU overhead (e.g.,

load monitoring) and consistency maintenance costs, and would have to rely on partial and

potentially outdated metrics to make policy decisions [56, 67, 79, 81].

Fig. 5.8a and Fig. 5.8b evaluate the improvement in datacenter utilization after each step

in the greedy algorithm for the scale-out (GF=1) and Rack-Out (GF>1) configurations. As

in previous experiments, the model is sized with RDMA service times from Table 5.1. The

model is configured with 1 billion keys, with Zipfian α = 0.99 key popularity, hashed into

512×1000 micro-shards on the cluster (i.e., with 1000 micro-shards per server). The key-space

is representative of key-value stores used in large social networks, and the granularity of

micro-sharding is aggressive for modern key-value stores (e.g., FaRM [58] defaults to ∼100

micro-shards on a server with only 16 GB of RAM). Fig. 5.8a shows the trend for a read-

104



5.3. Rack-Out Data Serving

 0%

10%

20%

30%

40%

50%

60%

 0  20  40  60  80  100

D
C

 t
h

ro
u

g
h

p
u

t 

 (
%

 o
f 

m
ax

 c
ap

ac
it

y
)

(a) Number of replications, read-only

 0%

10%

20%

30%

40%

50%

60%

 0  20  40  60  80  100

D
C

 t
h

ro
u

g
h

p
u

t 

 (
%

 o
f 

m
ax

 c
ap

ac
it

y
)

(b) Number of replications, 5% writes

Model (GF1)

Model (GF2)  

Model (GF4)  

Model (GF8)  

Model (GF16)

Figure 5.8 – Dynamic replication applied to Rack-Out KVS.

only workload. This is a degenerate case where consistency maintenance is a non-issue.

All configurations converge to a point where skew is eliminated and utilization is primarily

determined by the local:remote service times; hence scale-out can outperform Rack-Out KVS

when given enough replicas, simply because all of its accesses are local.

Fig. 5.8b shows the trend assuming a workload with 5% writes. We observe that: (i) the recur-

ring cost of maintaining replica consistency with each write inherently limits the performance

in all configurations; (ii) for small replica counts, Rack-Out KVS configurations with larger

GFs outperform smaller GFs; (iii) given enough replicas, all configurations tend to converge

to roughly the same overall datacenter utilization; (iv) the number of replication/migration

steps required increases substantially for smaller GFs and scale-out (GF=1). All curves plateau
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at a datacenter utilization of ∼30%. For GF1, 45 replicas are required to reach the plateau,

including 20 for the hottest micro-shard alone. In practice, scale-out KVS systems tend to cap

the number of replicas to a much smaller number, e.g., according to Huang et al., Facebook

allows for up to 10 replicas of each micro-shard [81]. With GF16, only 3 replicas achieve the

same result as GF1 with 45 replicas. Therefore, Rack-Out KVS is superior to scale-out KVS as it

requires fewer replicas to absorb a given load skew, and consequently reduces the overheads

associated with dynamic replication.

5.3.5 The Impact of Faster Remote Reads

The impact of RSMP in Rack-Out KVS depends on the ratio between RR and LR service times.

The higher the ratio, the smaller the impact. So far, we relied on the performance of Rack-

Out KVS on RDMA to estimate its impact through simulation. Modern RDMA technology

already provides remote memory access latency that is low enough for effective RSMP [145].

In addition, the increasing trend toward higher integration and low-latency fabrics will further

lower the RR/LR ratio and improve the effectiveness of the Rack-Out KVS approach.

A representative of such emerging tightly integrated solutions is Scale-Out NUMA (soNUMA) [50,

51, 126], which we discussed in detail in §4. As a reminder, soNUMA is an architecture and

protocol that supports one-sided remote read and write operations, i.e., a strict subset of

RDMA operations. soNUMA relies on a remote memory controller (RMC), which is integrated

within the cache-coherence hierarchy of the CPU, and layers a lean remote memory access

protocol on top of the standard NUMA transport, thereby removing all major sources of latency

and throughput overheads found in today’s commodity networks: the PCIe bus, DMA, and

deep network stack. Prior work showed that soNUMA delivers memory access latency that is

3−4× of local DRAM access, with low CPU overheads.

Fig. 5.9 shows the speedups at saturation of Rack-Out KVS over a traditional scale-out deploy-

ment for different grouping factors as a function of the RR/LR ratio, derived by our Rack-Out

KVS queuing model, using the same server configuration and dataset as in §5.3.2 (Fig. 5.6a,

Fig. 5.6a). We present only the read-only data as it is the most sensitive to the RR/LR ratio and

highlight two points on the RR/LR curve, which correspond to: (i) the actual ratio measured
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Figure 5.9 – Speedup for different RR/LR ratio (read-only).

on a commercially available solution based on Mellanox ConnectX-3 Pro adapters and (ii) the

soNUMA ratio extracted from a soNUMA cycle-accurate simulation model [50] (Table 5.1).

While Rack-Out KVS using RDMA already delivers substantial performance improvements

over the traditional scale-out approach, soNUMA’s faster remote memory access further high-

lights the potential of Rack-Out KVS. For instance, for GF16, soNUMA delivers 1.45× higher

performance improvement than RDMA.

5.4 A Rack-Out Key-Value Store (RO-KVS)

This section describes a Rack-Out KVS implementation (RO-KVS), a proof-of-concept KVS

tailored to the Rack-Out KVS model which we use to validate the queuing model.

5.4.1 RO-KVS Architecture

RO-KVS is built on top of the RSMP software framework described in §3.5. RO-KVS consists

of (i) a coordinator server managing the key hash space; (iii) a set of Rack-Out KVS nodes -

RSMP units holding the data in a key-value format; (ii) a large number of clients running a

key-value workload; The coordinator maintains a distributed hash table (DHT) ring mapping

key hash ranges to servers and a map associating each server with its respective RSMP unit.
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Figure 5.10 – Experimental setup for Rack-Out KVS evaluation.

This information is available to both the clients and the servers. The clients use the DHT ring

to route requests directly to the appropriate server for writes or RSMP unit for reads.

To initiate a key-value operation on a server, the clients use RpcRead from Table 3.1. RO-KVS

servers rely on the DHT ring to ensure the integrity of the KVS. They leverage the server-side

API of the RSMP software framework to allocate space for the data in a simple key-value format.

That is, each server allocates a contiguous array of objects, where each object represents a hash

table bucket. The servers use AtomicRead from Table 3.1 to access hash table buckets from the

global address space. After they read the target bucket, they search for the requested key-value

pair, which sometimes requires additional remote accesses in case there is an overflow chain.

By default, RO-KVS clients rely on random selection of nodes within RSMP units for read

requests for load balancing purposes, whereas for writes, RO-KVS always selects the server

owning the key-value pair, which is in accordance with the CREW concurrency model. §6 de-

scribes a modified version of the RO-KVS client that accounts for the skew in write distribution

and average service times to improve the throughput over the original static model.

We decided to study a key-value store as a representative of the NoSQL family of in-memory

distributed databases [4]. What distinguishes one NoSQL database from another on RSMP is:

(i) the data layout within the global virtual address space (e.g. arrays of objects representing

rows - tables or stand-alone tuples), and (ii) the metadata used for routing (DHT or index).
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Thus, it is easy to imagine any other type of NoSQL database built on top of the RSMP ab-

straction using the same framework API [31, 41]. Because of the scale-out property, most such

systems suffer from skew and the conclusions we make in this thesis using RO-KVS are equally

applicable to the general class of NoSQL databases.

5.4.2 Experimental Methodology

We evaluate RO-KVS on two platforms: RDMA and soNUMA. We use the former to measure

the latencies of basic RO-KVS operations on existing hardware, used to instrument the model,

as described in §5.3.2. We use the latter to measure the throughput of RO-KVS under SLO tail

latency constraints for different RSMP configurations, and compare the results to the queuing

model.

Our RDMA setup comprises six Intel Xeon E5-based servers running at 2.4GHz, each featuring

128GB of DRAM and a Mellanox ConnectX-3 Pro adapter. The adapters connect the servers

via Converged Ethernet (RoCE), allowing them to access each other’s memory using standard

RDMA verbs. We use this setup to measure the throughput of RO-KVS performing GET and

PUT operations that drive the elementary CREW operations: local read (LR), remote read (RR),

and local write (LW).

Table 5.1 shows the average service times measured on our RDMA platform, as well as the

client propagation delay, which is a constant offset used to compare latency measurements

done from a client machine. These service times are used to size the queuing model for figures

5.6a, 5.6b, 5.7, 5.8a, 5.8b and 5.9. Table 5.1 also shows projected service times for soNUMA,

which does not currently exist in hardware.

We derive the remote read service time for RO-KVS for soNUMA to be 5.8μs by adjusting the

measured RDMA RR latency (8.4μs) by the difference between the bare latency of a remote

read operation on RDMA (measured to be 2.8μsin our RDMA setup for a 512-byte hashtable

bucket) and the soNUMA remote read latency (∼240ns [50]). For that projected latency, the

resulting RR/LR ratio for soNUMA is 1.16.
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Table 5.1 – Average service time of basic operations used to size the queuing model.

Operation LR RR LW RR/LR Propagation

RDMA

5μs

8.4μs

6.9μs

1.68

34.9μssoNUMA
5.8μs 1.16

(projected)

Fig. 5.10 describes the emulation platform for the soNUMA architecture. This platform [126]

is designed to (i) run server nodes at regular wall-clock speed, and (ii) approximate the latency

and bandwidth of the fabric. The emulation platform relies on hardware virtualization to

create a RSMP unit of up to 16 nodes. Each node comprises a dedicated CPU, dedicated NIC

for client-facing traffic (exposed via PCI SR-IOV), and an RMC, implemented on a dedicated

CPU. We fine-tune the remote access latency exposed by the RMC to match the RR/LR ratio of

1.16 (Table 5.1).

The load generators use the RO-KVS client library to run a YCSB workload [46]. The client

library uses SpookyHash [87], a public domain hash function that produces well-balanced hash

values, to map keys to servers. Nine external servers generate load, and a tenth runs a closed-

loop YCSB process issuing synchronous read/insert/update requests to the RO-KVS nodes,

for the purpose of measuring the latency. Another eight servers run 128 throughput YCSB

generators in total, whose purpose is to put a specific load on the system under evaluation.

Each generator issues up to 8 concurrent operations, each on a separate TCP/IP connection.

5.4.3 Validation of the Queuing Model

We use our soNUMA platform to evaluate RO-KVS for a workload that follows the key distri-

bution highlighted in Fig. 5.7. Even though the system manages a distributed hash table ring

for 512 servers, the clients only issue requests to the same group of 16 servers with the most

traffic (i.e., hottest rack). These 16 servers are organized in 16/GF RSMP units for the various

experiments. Focusing only on a subset of servers is sufficient as long as that subset processes

a significant fraction of the incoming traffic (hottest). This is because in a full-scale RSMP

environment, typically, the hottest RSMP unit alone determines the tail latency. We report the
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Figure 5.11 – 99th percentile latency vs. throughput for the hottest rack measured on the
experimental platform.

tail latency of requests issued to the hottest 16-server group in our testbed. For comparison

purposes, we extract the tail latency for the same group of servers from the queuing model.

Fig. 5.11a and Fig. 5.11b show the 99th percentile latency for the hottest rack, with throughput

expressed as a fraction of the maximum processing capacity of 16 nodes. We compare the

experimental results with the behavior predicted by the Rack-Out KVS queuing model con-

figured with the soNUMA parameters (Table 5.1). We do not deploy a dynamic replication

algorithm as the experimental setup is limited to a single rack.

The platform’s behavior is closely predicted by the model, with the tail latency spiking as the

server saturates. For the YCSB-C read-only workload (Fig. 5.11a), each node observes the

same arrival rate, but the node with the least popular keys issues mostly remote read requests,
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which are more expensive than local memory accesses. For YCSB-B workload with 5% writes

(Fig. 5.11b), the inability to load-balance writes limits the maximum rack throughput with

GF=16 to 57% vs. 84% in the read-only workload. We observe a difference below 6% between

the model and the platform at 1ms SLO. The difference is likely due to contention within the

emulation platform that is not captured by the model. Despite such system complexity of the

Rack-Out KVS platform—in terms of the application itself, the robust FaRM framework, the

soNUMA fabric, and the underlying emulation platform—the queuing model provides a solid

approximation of the behavior of the actual system, including the tail latency behavior. The key

to the model’s precision was to: i) implement a simple, run-to-completion request processing

in the RSMP software framework (no pipelining), which is how requests get processed in our

discrete event-based simulation environment, and ii) instrument the model with the service

times measured on a real platform.

A Rack-Out KVS workload with 20% of writes reduces the speedup from 6× for YCSB-B to 3.2×,

and YCSB-A (50% writes) reduces it to 1.7×. However, workloads with atypically high fraction

of writes are rare [16, 31, 46, 140]. In the next chapter, we extend the original RO-KVS design

with support for adaptive load balancing and demonstrate how RSMP and CREW can help

improve throughput for workloads with a larger fraction of writes.

Overall, the Rack-Out KVS queuing model serves as a useful tool to analyze the impact of skew

and skew mitigation techniques on KVS. Furthermore, it enables us to accurately predict the

performance improvement for arbitrarily large datacenter configurations and Rack-Out KVS

organizations with larger GFs, which exceed our platform’s scale limitations.

5.5 Discussion

User-level network stacks and domain-specific operating systems. A key assumption of

RSMP is that servers have low-latency access to each other’s memory within their respective

racks, enabling efficient load balancing. The major source of overhead in processing client

requests on Linux-based systems comes from TCP/IP. Yasukata et al. [167] showed that pro-

cessing a single packet on a Linux server takes 3.75us. The local read service time (LR) on

Rack-Out KVS is 5us (Table 5.1), which means a significant fraction of time is spent on packet

112



5.5. Discussion

processing. To balance such a high network overhead accross an RSMP unit, it is sufficient to

use a microsecond-scale fabric (even in the synchronous mode), such as RDMA, to enable

shared access to data.

The emergence of lightweight, user-level network stacks [88] and specialized, domain-specific

operating systems [23] will change the trade-offs in RSMP. In particular, like it does not make

much sense to use TCP/IP to enable shared access under Linux-based RSMP, in the future, it

will not make much sense to combine synchronous RDMA and a specialized OS enabling a high

packet processing rate at low latency. Our expectation is that a more advanced, nanosecond-

scale fabric, such as Scale-Out NUMA, will be necessary for RSMP to make an impact and

maintain good productivity (i.e., ease of programming). An extreme case of this would be to

use RDMA user-level messaging for the RPC traffic (client-server), which has become popular

recently [90], and soNUMA for remote access. Also, in such a design, it would make sense to

enable the RDMA HCAs to convert remote accesses into soNUMA rack-local remote accesses,

because an HCA could saturate due to skew, while the rest of the HCAs are underutilized. So,

the same load balancing approach as in Rack-Out KVS would be applicable to distribute the

load across a rack, assuming sufficient fabric bisection bandwidth.

Network oversubscription. The Rack-Out KVS model assumes that the maximum server

processing rate is limited by the CPU and the latency of the internal fabric. The high packet

processing overhead puts significant pressure on the CPU and, thus, the rate at which a server

processes client key-value requests is quite low. As a consequence of the low processing rate,

the network carrying the client-server traffic is underutilized. It takes three hyper-threaded

cores and a specialized, domain-specific OS that has been optimized for high-throughput,

low-latency key-value processing to saturate a 10Gbps NIC, assuming only local accesses to

memory (i.e., no RSMP) [23]. The Rack-Out KVS assumes Linux for packet processing and

RDMA or soNUMA for memory accesses, allowing for high network oversubscription at the

rack level. Our soNUMA configuration allocates 1.6Gbps per server node; one 10Gbps Intel

NIC connected via SRIOV to 16 servers (GF=16). Assuming only local reads (LR), a single server

node processes 200.000 key-value lookups per second, which is 0.76Gbps, assuming 512 byte

messages. Thus, a 10 to 1 oversubscription ratio seems more than sufficient for our system.
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ACID transactions and consistency. A key advantage of distributed NoSQL databases over

traditional relational databases is the ability to horizontaly scale the server resources at the

expense of weaker consistency guarantees. Unlike relational databases, NoSQL systems

store data in an unstructured or semi-structured format rather than tabular relations. The

combination of scale-out architecture and unstructured data formats limits the programming

semantics of NoSQL databases. They typically expose a narrow API, consisting of trivial get

and put operations, without support for ACID transactions. FaRM does not assume scale-out

architecture and, thus, provides serializable transactions over RDMA. Unlike FaRM, RSMP is

a scale-out system where transaction may span multiple racks, making them costly for the

user. Even though transactions are not efficient under RSMP, a consistency model is necessary

for replication. In RSMP, replication happens only across different racks and never within the

same rack. For performance reasons, we assume an eventual consistency model, which is

what most distributed NoSQL databases assume.

5.6 Related Work

Resource pooling. RSMP leverages fast remote access within a rack to tackle shard-skew

through memory pooling. Multi-socket shared memory machines also offer this feature, but

have known scalability limitations. Disaggregated memory [103] introduces dedicated mem-

ory blades to increase the memory-to-compute capacity ratio and enable sharing between

servers, but does not consider fast remote memory access to combine memory chunks into a

larger memory pool. Finally, the benefits of resource pooling powered by rack-level RDMA

solutions are also leveraged in commercial database and storage solutions [59, 133].

Concurrency models in KVS. State-of-the-art KVS implementations represent a compro-

mise between maximum theoretical performance and implementation complexity. Specif-

ically, (i) concurrent-read/concurrent-write (CRCW): the memory is managed as a single

pool, which can be concurrently accessed for reading and writing by any thread running on

the server. This is the case of a single-instance deployment of memcached; (ii) exclusive-

read/exclusive-write (EREW): the memory is managed as N distinct pools. This is typical for

multi-instance deployments of memcached; (iii) concurrent-read/exclusive-write (CREW)
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specifically has been proven to provide solid scalability at low complexity. MICA [102] shows

that CREW delivers scalable performance for read-dominated workloads, circumventing the

complexity and synchronization overhead of CRCW.

Most RDMA-based distributed KVS systems also avoid the complexity of CRCW. RamCloud [135]

is based on EREW, while FaRM [58] and Pilaf [117] implement CREW, where reads are direct

one-sided accesses to remote memory, while writes are transformed into RPCs. To our knowl-

edge, DrTM [163] is the only RDMA-based distributed KVS system that implements CRCW by

building a sophisticated concurrency mechanism that relies on HTM. Our RO-KVS is based

on a modified version of FaRM for soNUMA that uses TCP/IP to receive and reply to client

requests.

Replication. Replication is the common remedy for load imbalance in scale-out environ-

ments. Static replication is a simple technique providing robustness to skew, but incurs

fixed increased memory requirements, and is not flexible to skew changes. Dynamic repli-

cation effectively addresses these limitations, but has intrinsic CPU, memory and network

overheads [81, 141]. Rack-Out KVS is synergistic with dynamic replication and substantially

reduces the need to dynamically replicate content. Fan et al. [67] observe that the load imbal-

ance introduced by highly popular data items can be turned into an opportunity by exploiting

temporal locality using software caching techniques at the front-end (client). Our work focuses

on the back-end without assuming front-end caching, steering clear of the consistency issues.

Front-end caching. Besides dynamic replication and RSMP, an alternative way to deal with

popularity skew is caching. Fan et al. [67] proposed leveraging skew to achieve better locality

through caching the most popular items in front-end servers (i.e. web servers). This approach

assumes distributions in which very few items contribute to the imbalance. Less skewed

distributions in which a larger number of somewhat popular items contribute to the imbalance

may be harder to deal with due limited cache capacity. Most importantly, front-end caching

introduces consistency issues among front-end servers, as well as between front-end and

back-end servers. Depending on scale (GF), an RSMP datacenter configuration is highly

likely to be sufficient for an online service provider to absorb the skew, thus, steering clear of

consistency overheads.
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5.7 Summary

The recent evolution of datacenters points to a steady increase in the overall size of the

deployment, and to a standardization of the compute infrastructure at the rack level, with

each rack a unit of purchase, operation, IP routing, and possibly failure domain. With RSMP,

we advocate for augmenting this building block with a NUMA-style internal fabric and a fast

one-sided read primitive to enable memory pooling at the rack level. The Rack-Out KVS

model quantifies the scalability benefits of the internal fabric as a function of key popularity

distribution, the number of nodes within each rack, the number of racks, and input load. We

study the benefits of Rack-Out KVS when serving datasets that follow a power-law distribution,

and show, both analytically and with a proof-of-concept prototype, that the approach can

provide substantial benefits over the scale-out baseline, and that it is synergistic with dynamic

replication of micro-shards.
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for Data Serving

Rack-scale memory pooling (RSMP) reduces the scale-out-induced load imbalance that exists

in data serving workloads. In the previous chapter, we showed how using RSMP in distributed

key-value stores (KVS) reduces skew and, thus, facilitates resource utilization, while respecting

tight tail latency SLO. However, the impact of RSMP gradually diminishes with the increase

in write load, which is a direct consequence of using the concurrent-read/exclusive write

(CREW) model in combination with random scheduling of reads. This chapter proposes a

new scheduling mechanism for Rack-Out KVS that provides greater performance benefits of

RSMP for read-write data serving workloads (≥ 5% writes). To distinguish between different

scheduling approaches in Rack-Out KVS, we refer to the original stateless (random) scheduling

that we described in the previous chapter as Static-Rack-Out, and we refer to the new

adaptive scheduling as Adaptive-Rack-Out.

6.1 Skew and Service Time Variability

High-performance fabrics with support for one-sided access primitives, such as Infiniband or

Scale-Out NUMA (soNUMA), are the key enablers of RSMP. RSMP leverages such fabrics to

expose a global address space to software and ease application development, while providing

significant performance benefits to the user. Using RSMP, a group of servers can be perceived

as one giant server, where the RSMP software framework allocates resources on behalf of

applications and exposes an API for transparent access to the global address space (Table 3.1).
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However, building scalable capacity units using RSMP can lead to load imbalance within a

single unit. In particular, scheduling read requests randomly across an RSMP unit may not be

the optimal choice; the larger the RSMP unit and the lower the read/write ratio, the higher the

impact of writes on imbalance due to CREW [128]. On top of that, performance interference

with either background services or other applications leads to high variance in service times

and, hence, tail latency violations [54].

The skew that exists within an RSMP unit is the work that is not distributed evenly across

the rack and leads to non-uniform utilization of resources. In the case of Rack-Out KVS, that

work represents the write portion of the input load. Even for what most people consider to be

a read-dominated workload - 5% writes, rack-level load imbalance is visible and negatively

impacts the application throughput. Under CREW, writes are hashed to individual servers and,

thus, an RSMP unit is typically not uniformly utilized because the time spent on processing

writes varies across the servers. For workloads with a larger fraction of writes in particular,

the Static-Rack-Out scheduling may not be sufficient, as writes represent a major source of

imbalance.

Besides writes, any service that is triggered periodically, such as garbage collection, may

contribute to load imbalance. Next, processing times of different requests may vary depending

on the amount of work that needs to be done. Longer processing times require from a server to

stall other incoming requests, which reduces the processing rate. In addition to that, because

of the high fan-out nature of data serving, the larger the number of servers involved in servicing

a single user request, the higher the likelihood that the tail latency SLO will be violated [54].

To deal with load imbalance within RSMP units more effectively, we propose adaptive load

balancing - Adaptive-Rack-Out. Our approach consists of a monitoring system that keeps

track of the servers’ load, and a client-side scheduler that leverages the metrics obtained

from the monitor to take smarter scheduling decisions. In the following text, we describe the

design and implementation of the monitor and the Adaptive-Rack-Out algorithms, the goal

of which is to improve upon the original static design (Static-Rack-Out) of Rack-Out KVS

from the previous chapter.
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Figure 6.1 – Illustration of combined read/write distributions for Static-Rack-Out (left) and
Adaptive-Rack-Out (right).

6.2 Adaptive Load Balancing for Read-Write Workloads

Static-Rack-Out is an efficient, stateless approach to load balancing for skewed workloads

dominated by reads. The key limitation of Static-Rack-Out is that it does not account for

the imbalance within individual RSMP units. Such imbalance exists due to performance

interference, periodic activity within applications (e.g. garbage collection), skewed write distri-

bution, remote accesses or accesses to disk, etc. For instance, Static-Rack-Out is oblivious

to the CREW-induced skew and it randomly schedules read requests across an RSMP unit,

without taking into account the exclusive-writes property of CREW. Thus, Static-Rack-Out

often leads to skewed aggregate distribution of load across the servers, which is illustrated

on the left hand side of Fig. 6.1. Static-Rack-Out also does not account for variable service

times, but assumes that each server of an RSMP unit processes incoming requsts at similar

pace. Uniform service times is, at least, not trivial to achieve in shared envirnoments where

slowdowns happen regularly.

Adaptive load balancing for Rack-Out KVS - Adaptive-Rack-Out is a scheduling mecha-

nism that adapts the read workload to the load imbalance within individual RSMP units.

For read-write workloads (≥ 5% writes), Adaptive-Rack-Out generates a read distribution

for each RSMP unit that is inversely proportional to its write distribution. The outcome of

Adaptive-Rack-Out is illustrated on the right hand side of Fig. 6.1, where the read and the

write distributions form a uniform aggregate distribution. By sampling the computed read

distribution when scheduling read requests, the clients adapt to the write load to achieve, in

the ideal case, uniform utilization of the RSMP unit. To cope with non-uniform service times,
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Adaptive-Rack-Out further adjusts the read distribution to reflect the processing rates of

different servers.

The Adaptive-Rack-Outmechanism consists of a server-side monitoring system and a client-

side scheduler. To tackle the load imbalance at the level of a rack, the monitors maintain

statistics about each individual server’s progress and transfer that data to the coordinator

clients periodically and upon request (Fig. 6.2). A coordinator client uses the information

collected by the monitors to generate the read distribution of its associated RSMP unit that

it subsequently broadcast to the other clients. All the clients then regularly sample the read

distributions when scheduling read requests. We first look at the monitor design and explain

how the clients take advantage of the collected information.

6.2.1 Load Monitoring

The monitor in Adaptive-Rack-Out is an application component that keeps track of the

number of processed requests and the average service time on the local server. The coordinator

clients periodically obtain this information and use it to determine how to schedule read

requests in the future to achieve fair resource utilization and better throughput. Figure 6.2

illustrates the process of periodically obtaining the number of processed writes (wr_cnt) and

the average service time (avg_st) from each server of a single rack. The coordinator clients

compute the read distributions for their respective RSMP units based on the information

obtained from the servers.

Collecting one of the two metrics alone is not sufficient. The average service time indicates

how long it takes to complete one request, but it does not capture the skew in the input key

distribution. In particular, the concept of Rack-Out KVS assumes single writer (i.e., CREW)

and thus writes cannot be balanced. The servers receiving larger fractions of writes due to

skew will be under higher load than those processing fewer writes. Thus, to capture the skew,

we propose keeping track of the number of processed write requests on each server of the rack,

and transfering these counters along with the average service times to the coordinator clients.

The service time varies across the servers due to interference with background activities, such

as garbage collection or interference with collocated applications. The overhead coming
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Figure 6.2 – Message exchange in Adaptive-Rack-Out.

from remote reads alone is negligible as compared to disk writebacks, garbage collection, or

interference with any batch application performing heavy computation.

6.2.2 Scheduling Algorithms

In Adaptive-Rack-Out, clients take scheduling decisions for reads based on the current write

distribution and average service times. By knowing which servers are slower (i.e., have longer

processing times) and/or execute a larger fraction of write requests, the client schedules

read requests such that each server’s CPU within an RSMP unit is, in the ideal case, equally

occupied. This is achieved by periodically computing a read probability distribution that in

combination with the current write probability distribution should, in the ideal case, lead to

uniform utilization of the associated RSMP unit. For workloads with a large fraction of writes

(i.e. above 10%), it is not possible to distribute the load evenly across the servers, which is a

limitation of CREW.

Coordinator clients retrieve the information collected by the monitors periodically either
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through an out-of-band mechanism or using regular data traffic (piggybacking) (Fig. 6.2).

The polling interval is configurable and for short intervals the overhead may be high, but the

scheduler may be taking more accurate decisions. With longer intervals, the polling overhead

reduces, but the scheduler’s accuracy may degrade. The interval should be set based on how

dynamic the system is; that is, how often the popularity data distribution and the service times

change. In reality, we do not expect the key distribution to change frequently [81].

Using the information collected by the monitor, the scheduler computes the following: (i)

fraction of reads (Fr ), (ii) fraction of writes (Fw ), (iii) write distribution (Pw ), and (iv) read distri-

bution (Pr ). The Adaptive-Rack-Out mechanism comprises two algorithms: (i) Algorithm 1,

which generates the read probability distribution based on the current write distribution, and

(ii) Algorithm 2, which adjusts the read distribution generated by Algorithm 1 to reflect the

variability in average service times.

Figure 6.1 illustrates the effect of Alg. 1; the figure on the left illustrates the output of the original,

Static-Rack-Out scheduling, and the figure on the right shows how Adaptive-Rack-Out

adjusts the read distribution such that each server receives an equal amount of read and

write requests. The coordinator clients compute the read probability for each server i of their

associated RSMP units as follows:

Pr [i ] =
1

GF −Pw [i ]×Fw

Fr

Pr [i ] is computed such that the total fraction of the input load per server equals 1
GF , where

GF is the grouping factor (i.e. the size of an RSMP unit). Algorithm 1 does not account for the

variability in mean service times, but only considers the skew imposed by the workload and

the CREW access model.

Algorithm 2 adjusts the read distributions using the mean service times obtained from the

monitors. The scheduler first normalizes the service times to 0-1 range and, then, adjusts the

read probabilities using the standard deviation of service times - the difference between the

mean service time of each server STnor m[i ] and 1
GF .
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Instead of computing the variance and then standard deviation, the algorithm subtracts the

difference from the read probability:

Pr [i ] = Pr [i ]− (STnor m[i ]− 1

GF
)

For negative differences, for example, the read probability will increase, because a negative

difference means the mean service time on that server is lower than the global mean and that

server should be able to process more requests.

In the following text, we disclose the algorithms for computing the read distribution based on

the write distribution and the mean service times. Algorithm 1. shows the pseudo code for

creating and Algorithm 2. for adjusting the read probability distributions.

Algorithm 1 Computing read distribution based on skewed write distribution

1: Input: Write count from each server, total read and write counts
2: Output: Read probability distribution

3: wr _ f r ← wr _tot al / (wr _tot al + r d_tot al )
4: r d_ f r ← 1 − wr _ f r

5: for i ← 0, i <GF , i+= 1 do
6: wr _pr [i ] ← wr _cnt [i ] / wr _tot al

7: if wr _tot al > 0 and r d_tot al > 0 then
8: for i ← 0, i <GF , i+= 1 do
9: di f f ← (1 / GF − wr _pr [i ] ∗ wr _ f r ) / r d_ f r

10: if di f f < 0 then
11: to_sub ← abs(di f f ) / (GF − 1)
12: r d_pr [i ] ← 0
13: else
14: r d_pr [i ] ← di f f

15: if to_sub > 0 then
16: for i ← 0, i <GF , i+= 1 do
17: if r d_pr [i ] > 0 then
18: r d_pr [i ] = r d_pr [i ] − to_sub

Algorithm 1 first computes the read to write ratio of the workload using the counters obtained

from the monitor. Then, using the previously computed write distribution, the algorithm

computes the read distribution, such that the aggregate probability of selecting any server
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equals 1
GF , in the ideal case. For low read to write ratios, the algorithm will assign 0 probability

for reads to the hottest server and adjust other read probabilities accordingly. For highly

skewed workloads with more than 10% of writes, the aggregate probability of selecting the

hottest server is above the ideal target of 1
GF , which imposes balancing only across GF-1

servers. Algorithm 1 assumes at most one overloaded server, but it can be extended to support

less skewed Zipfian distributions where we may have more than one server with probability

above 1
GF .

Algorithm 2 Adjusting read distribution based on average service times

1: Input: Average service time for each server, read probability distribution
2: Output: Read probability distribution

3: for i ← 0, i <GF , i+= 1 do
4: av g _st_tot al ← av g _st_tot al + av g _st [i ]

5: for i ← 0, i <GF , i+= 1 do
6: av g _st_nr [i ] ← av g _st [i ] / av g _st_tot al

7: for i ← 0, i <GF , i+= 1 do
8: di f f ← r d_pr [i ] − (av g _st_nr [i ] − 1 / GF )
9: if di f f < 0 then

10: to_sub ← abs(di f f ) / (GF − 1)
11: r d_pr [i ] ← 0
12: else
13: r d_pr [i ] ← di f f

14: if to_sub > 0 then
15: for i ← 0, i <GF , i+= 1 do
16: if r d_pr [i ] > 0 then
17: r d_pr [i ] = r d_pr [i ] − to_sub

Algorithm 2 first normalizes the service times to 0-1 range and computes the mean service

time across all the servers. The algorithm then adjusts the read distribution computed using

Algorithm 1 based on the standard deviation of service times. Algorithm 2 is necessary if

the service time varies across the servers due to, for example, resource contention among

multiple processes running on the same server or periodic background activity such as garbage

collection [54].

By using the periodically adjusted read distribution, each client decides which server within

the target RSMP unit should process the next request. Each request results in: (i) determining
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the RSMP unit ID based on key, and (ii) sampling the read distribution of the associated rack

to pick a server.

6.3 Implementation in RO-KVS

We implement the Adaptive-Rack-Out scheduling mechanism in RO-KVS. The implementa-

tion is contained within the hash table module of RO-KVS, and includes modifications to both,

the client and server portions of the code. We extend the server code with extra variables to

keep track of the metrics that are necessary to create and adjust the per-rack read probability

distributions.

The client code uses the RO-KVS’s RPC mechanism to retrieve these variables from the servers.

We set the polling interval to 10 seconds, which we find sufficient given that key distributions

in general do not change frequently [81]. When a coordinator client receives the updated

variables, it adjusts the read distribution of its associated RSMP unit accordingly using one or

both of the algorithms described in the previous section. The read distributions are regularly

sampled upon new key-value read requests.

The monitor computes the average service time for a server as a simple moving average of

the N most recent service times. In our RO-KVS envirnoment, we identify remote accesses

and background processes as the main sources of service time variability. RO-KVS itself does

not perform periodic activities (e.g., no garbage collection) and it is a replicated in-memory

key-value store that does not use disks. Nevertheless, our Adaptive-Rack-Out mechanism

(Alg. 2, in particular) accounts for even the slightest variations in service times, such as those

caused by remote accesses.

For the purpose of evaluating the impact of Adaptive-Rack-Out, we use the same setup

described in the previous chapter and focus only on platform evaluation. We focus on the

most popular group of 16 servers in a 512-server configuration. We dedicate another 5 servers

to run a group of load generator clients, plus one more server for the coordinator client.

We evaluate Adaptive-Rack-Out using our RSMP unit configuration based on soNUMA

comprising 16 nodes.
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Figure 6.3 – Combined read/write probability distribution for the hottest RSMP unit in
Static-Rack-Out
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Figure 6.4 – Combined read/write probability distribution for the hottest RSMP unit in
Adaptive-Rack-Out (Alg. 1)

6.4 Impact of Adaptive Load Balancing on Throughput

To emphasize the benefits of Adaptive-Rack-Out (ARO), we focus on read-write workloads

and the GF=16 RSMP configuration. We assume the same workload with 5% of writes as in

the previous experiments. We, first, study how Algorithm 1 (RO-KVS (ARO1)) adjusts the read

probability distribution based on writes. We, then, look at how Algorithm 1 (RO-KVS (ARO1))

impacts the 99th-percentile latency and improves the speedup as we vary the fraction of writes

from 0% to 20%.
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Figure 6.5 – Static-Rack-Out vs. Adaptive-Rack-Out (Alg. 1), 99th-pct latency for 5% of
writes
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Figure 6.6 – Speedup at saturation for different write percentages.

Fig. 6.3 shows the combined read/write probability distribution for Static-Rack-Out (SRO)

for the hottest 16-server RSMP unit. Server 2 is the hottest server in the rack and, thus, is

the first to saturate as we drive the input load. To improve the throughput without prema-

ture SLO violation, Algorithm 1 creates a read distribution such that each server within the

hottest RSMP unit processes a similar aggregate amount of read and write requests (Fig. 6.4).

The impact of Adaptive-Rack-Out is illustrated on Fig. 6.5, where Algorithm 1 (RO-KVS

(ARO1)) outperforms Static-Rack-Out and reaches almost 80% of rack utilization, similar

to Static-Rack-Out scheduling and a read-only workload (Fig 5.11a), and a speedup of

1.36× over Static-Rack-Out for the same 95/5 workload. The improvement comes from

making the read distribution inversely proportional to the write distribution, as illustrated on

Fig. 6.4. Unlike Static-Rack-Out scheduling, where a single server saturates and drives the
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Figure 6.8 – Combined read/write probability distribution in Adaptive-Rack-Out (Alg. 1 and
Alg. 2). Server 13. is slowed down due to interference and is assigned with 0 read probability.

99th-percentile latency above the SLO, with Adaptive-Rack-Out, all the servers of the hottest

RSMP unit saturate concurrently, utilizing the servers uniformly and pushing the aggregate

throughput (Fig. 6.5). The behavior of RO-KVS under Adaptive-Rack-Out scheduling is as

expected; that is, the latency increases as the load reaches the maximum aggregate processing

rate. We observe that for workloads with more than 10% of writes, it is not possible to achieve

uniform utilization of the rack’s servers, simply because the probability of selecting the hottest

server for writes is above 1
GF . The last code snippet of Algorithm 1. handles this special case.

Fig. 6.6 shows the speedups for different write percentages. 0% is a read-only workload where

both scheduling techniques achieve similar performance. As we increase the write percentage,
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Figure 6.9 – Adaptive-Rack-Out (Alg. 1) vs Adaptive-Rack-Out (Alg. 1 and Alg. 2), 99th-pct
latency for 5% of writes, with interference on one node injected.

the speedup decreases. We observe that the standard Static-Rack-Out scheduling with

uniform read distribution performs worse than Adaptive-Rack-Out because the hottest

server of the rack saturates faster; it handles both read and write load, whereas with adaptive

load balancing the hottest server is unballasted from the read load at the expense of handling

a higher read load on the other servers. In Static-Rack-Out, the larger the fraction of write

requests, the faster the system saturates and the smaller the speedup, due to CREW. Similarly,

with Adaptive-Rack-Out, the larger the fraction of writes, the harder it is to utilize the servers

of an RSMP unit uniformly. In particular, we observe that for read-write workloads with more

than 10% of writes, the speedup deteriorates even with adaptive load balancing, because write

operations start dominating and CREW becomes the main performance obstacle.

Finally, to evaluate Algorithm 2 (RO-KVS (ARO1+2)), we inject interference into one of the

servers and study how the scheduler adjusts the read distribution accordingly. We, first, look

at the service times that the clients periodically obtain from the monitors. Figure 6.7 shows

the service times normalized to 0-1 range, where Server 13. appears much slower as compared

to the rest of the servers. Thus, Algorithm 2 further adjusts the read distribution to reflect the

skewed service times, as illustrated on Figure 6.8. Server 13 is assigned with 0 read probability

because of the high average service time.

Figure 6.9 illustrates the combined impact of Algorithm 1 and Algorithm 2 (RO-KVS (ARO1+2))

on the 99th-percentile latency and throughput. First, by injecting interference on one server,
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with RO-KVS (ARO1) the throughput decreases by 30% and is only 1.03× higher than the

throughput achieved using RO-KVS (SRO), without injected interference. RO-KVS (ARO1+2)

combines Algorithm 1 and Algorithm 2 to deal with both write distribution skew and variable

service times. In our experiment, (RO-KVS (ARO1+2)) adjusts the read distribution as illus-

trated on Fig. 6.8, boosting the rack’s utilization to 65% at saturation. We measure the overhead

of code profiling to be 9% and the throughput loss for one node is 6.2%. Reducing the sampling

frequency leads to smaller profiling overhead, but it degrades the accuracy and, consequently,

results in untimely SLO violation. One approach to reducing the cost and improving the

effectiveness of Algorithm 2 would be to measure the service time on the network interface for

each inbound packet carrying a key-value request, and tag the reply packet with the service

time.

6.5 Summary

We further explored the role of RSMP in scale-out data serving using CREW. The static schedul-

ing approach - Static-Rack-Out described in the previous chapter assumes read-dominated

workloads where writes have negligible impact on the overall throughput. For lower read

to write ratios, scheduling reads uniformly across racks is not optimal as some servers will

be under higher load than the other because of exclusive writes. Therefore, we proposed a

monitoring system and a new scheduling mechanism - Adaptive-Rack-Out that accounts for

skewed server utilization to make smarter scheduling decisions. We observe an improve-

ment of 1.36× as compared to Static-Rack-Out for workloads with 5% of writes using

Adaptive-Rack-Out.
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7 Conclusion

Rack-scale memory pooling (RSMP) is a research proposal to aggregate the resources of a rack

using a one-sided fabric, and use such a rack as the building block for large-scale datacenters.

This thesis studies the necessary requirements to efficiently connect the servers within a

rack and provide the abstraction of a virtual global address space. On top of that, the thesis

describes how to take advantage of a coarser-grain scale-out architecture comprising a smaller

number of larger capacity units - RSMP units or racks in core datacenter software.

We first looked at an RSMP design leveraging RDMA technology. To build an RSMP unit using

RDMA hardware, it is necessary to equip each server with an RDMA controller - host channel

adapter (HCA) and connect them to a secondary top-of-rack switch supporting RDMA. We

concluded that the existing RDMA technology is sufficient for RSMP, providing an improve-

ment over the standard scale-out deployment. This thesis also showed that existing RDMA

designs have scalability limitations, such as the PCIe/DMA mechanism that is commonly used

to connect network adapters.

To improve the effectiveness of RSMP, we proposed a set of design principles that significantly

improve upon the RDMA technology. In particular, we proposed Scale-Out NUMA (soNUMA),

which is a rack-scale system design leveraging a memory subsystem (NUMA) to connect a

group of servers and provide low-latency, high-bandwidth access to remote memory. soNUMA

does not provide global cache coherence within the rack for scalability reasons, but exposes a

hardware-software interface for explicit remote memory access. The key concept in soNUMA is
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to fold the fabric controller into the cache hierarchy of the CPU, reducing the cost of interaction

between applications and the controller. The use of a NUMA interconnect simplifies the

protocol design and, thus, reduces the amount of state and header size. This simplification of

the underlying interconnect allowed us to reduce the complexity of the transport protocol that

is in charge of transferring data from and to remote memory, and make it easier to intergrate

the protocol controller. We showed that soNUMA reduces the remote access latency by 5x as

compared to the best RDMA hardware available at the time of writing.

We described how future datacenter software could take advantage of RSMP. A scale-out

architecture comprising a set of RSMP units can help improve the throughput of in-memory

data serving workloads, without violating application’s SLO. Our distributed NoSQL design,

dubbed Rack-Out KVS, treats RSMP units as large KVS nodes hosting super-shards, where

each server can look up any key within its local rack using one-sided reads. By effectively

reducing the number of participating units, the load imbalance induced by heavily-skewed

popularity distribution becomes less significant, leading to better application throughput,

while maintaining low latency. To demonstrate the impact of this KVS design, we use both

RDMA and soNUMA hardware, with up to 16 servers per RSMP unit. Our results show that

Rack-Out KVS achieves an increase of 6x in throughput with RDMA over the standard scale-

out alternative, and 8.6x using soNUMA. In addition to a working prototype, we introduced

a queueing model that one can use to evaluate Rack-Out KVS under an arbitrary RSMP

configuration and predict the performance impact. We validated the model using the results

obtained on our RSMP platforms.

Finally, we proposed an adaptive load balancing algorithm that makes the most out of CREW.

In particular, our algorithm uses the information about server load and average service time to

schedule read requests such that each server of an RSMP unit is, in the ideal case, equally occu-

pied. We showed how this new approach to scheduling leads to additional 1.36× improvement

for workloads with 5% of writes over the original RSMP design.
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