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Abstract

We are interested in the study of non-correlation of Fourier coefficients of Maass forms against
a wide class of real analytic functions. In particular, the class of functions we are interested in
should be thought of as some archimedean analogs of Frobenius trace functions.

In the first part of the thesis, we give an axiomatic definition for this class, and prove that
these functions satisfy properties similar to that of Frobenius trace functions. In particular, we
prove non-correlation statements analogous to those given by Fouvry, Kowalski and Michel
for algebraic trace functions.

In the second part of the thesis, we establish the existence of large values of Hecke-Maass
L-functions with prescribed argument. In studying these problems, one encounters sums of
Fourier coefficients of Maass forms against real oscillatory functions. In some cases, one can
prove that these functions satisfy the axioms discussed previously.

Key words: Automorphic forms, trace functions, exponential sums, L-functions.

iii






Résumé

Nous nous intéressons a |’étude de non-corrélation de coefficients de Fourier de formes de
Maass avec une grande classe de fonctions analytiques réelles. En particulier, la classe de fonc-
tions a laquelle nous nous intéressons devrait étre considérée comme analogue archimédien
des fonctions traces de Frobenius.

Dans la premiére partie de la thése, nous donnons une définition axiomatique de cette classe
de fonctions, et démontrons que ces fonctions satisfont des propriétés similaires a celles
des fonctions trace de Frobenius. En particulier, nous démontrons des résultats de non-
corrélations analogues aux résultats de Fouvry, Kowalski et Michel dans le cas des fonctions
trace algébriques.

Dans la seconde partie de la theése, nous démontrons I'existence de grandes valeurs de fonc-
tions L de Hecke-Maass avec angle prédéterminé. En étudiant ce probleme, nous devons
estimer des sommes de coefficients de Fourier de formes de Maass avec des fonctions réelles
et oscillantes. Dans certains cas, nous pouvons montrer que ces fonctions satisfont les axiomes
définis précédemment.

Mots clefs : Formes automorphes, fonctions traces, sommes exponentielles, fonctions L.
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Introduction

This thesis investigates archimedean analogs of Frobenius trace functions from an analytic
viewpoint. Namely, we define a class of real analytic, oscillatory, functions that exhibit proper-
ties similar to that of Frobenius trace functions (e.g. square-root cancelations, stability under
Fourier transform ...). The main motivation to this problem is to give an archimedean analog
to a non-correlation result of Fouvry, Kowalski and Michel [FKM15a], for sums of Fourier coef-
ficients of modular forms against trace functions. These problems arise naturally in problems
in analytic number theory (see e.g. [Houl6, FKM15b, CFH*14]). In the second part of the
thesis, we study the existence of large values of Hecke-Maass L-functions, in which twisted
sums of Fourier coefficients of Maass forms by real analytic oscillatory functions arise.

0.1 Non-correlation

The main question we are interested in is that of understanding how certain oscillatory
functions interact with Fourier coefficients of Maass forms. In the following section, we recall
well-known facts about Maass forms and their Fourier expansion. In particular, we see that
they are essentially bounded and oscillatory:.

Let f be a Maass form. Saying that a bounded analytic function F : R5¢ — C does not correlate
with Fourier coefficients of f, (0f(n))n=1, is a way to measure to which extent F(n) # p r(n).
More precisely, we make the following definition.

Definition 0.1. Let (a,)nen and (by) nen be two sequences of (essentially) bounded complex
numbers. We say that (a,) does not correlate with (by,) if for all A= 1 and x > 1, we have

Z anb, <4 x(logx)_A.

n=sx

Non-correlation statements have deep consequences in number theory. For instance non-
correlation between the constant sequence (1) ,eny and (u(n)) nen, the Mébius function, is
equivalent to the existence of zero-free regions for the Riemann zeta function, proving the
Prime Number Theorem. Moreover, stronger non-correlation statements with power savings
would imply stronger zero-free regions towards the Riemann hypothesis. Similarly, non-
correlation of (p () and (u(n)) is equivalent to the existence of zero-free regions of the
L-function associated to f.
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0.2 Non-correlation in the context of trace functions

Frobenius trace functions, K : [F,, — C, are highly oscillatory functions that arise from algebraic
geometric considerations. We will define trace functions in Chapter 4, in which we will
see that in particular they exhibit strong quasi-orthogonality relations as a consequence of
the Riemann Hypothesis for algebraic varieties over finite fields, due to Deligne [Del74]. In
[FKM15a] Fouvry, Kowalski and Michel establish a non-correlation statement for Fourier
coefficients of modular forms twisted by Frobenius trace functions.

Theorem 0.1 (F-K-M). Let f be a Hecke-Maass form, p be a prime number and V a smooth
compactly supported function on [1/2,2], such that x) VY (x) < 1, forall j = 0. Let K be an
isotypic trace function of modulus p, then

pr(n)K(n)V(Z) <p'?,

forany 6 < 1/8, where the implied constant depends only on f, 6 and on the conductor of the
trace function.

Examples of trace functions include Dirichlet characters of conductor p and Hyper-Kloosterman
sums: for m =2,
(X1 et Xm )
el ———|.
p

In the special case of a Dirichlet character, y, Theorem 0.1 is essentially equivalent to subcon-
vexity results of Burgess type for L(f ® y, 1/2), which was already obtained by Bykovski and
Blomer-Harcos [Byk96, BHO8].

Kl (n;p):=p' 2" >

X1-Xpm=n(mod p)

0.3 Analytic trace functions

The archimedean analog of Dirichlet characters can be thought of as functions of the form
x'! for some t € R, which are the continuous homomorphisms Rso — C!. In particular, a
statement of the form (0.1) in the case K(n) = n'! is essentially equivalent to subconvexity
results for L(f,1/2 + it), for which we have even better bounds [Goo82].

In this thesis, we give an axiomatic definition of a family of real analytic functions, K; : R>g — C,
indexed on a large real parameter ¢, that we call analytic trace functions of conductor ¢. In
analogy to Theorem 0.1, we prove the following theorem.

Theorem 0.2. Let K;:R-¢ — C be an analytic trace function. Let f and V be as in Theorem 0.1.
We have

Y prmKmv(Z) <,
7] t

for any 6 < 1/8 and where the implicit constant depends only on f, 6 and on || K¢||co-

In particular, Theorem 0.2 covers the special case of Bessel functions of any rank, which should
be thought of as archimedean analogs of Hyper-Kloosterman sums.

As a corollary to Theorem 0.2, we give an ergodic theoretical interpretation in terms of equidis-
tribution of twisted horocycle flows in analogy to that in [FKM15a].



0.4. Large values of L(f,1/2 + it) with prescribed argument

Theorem 0.3. Let K; be an analytic trace function. Let f be a Hecke-Maass form, and V be a
smooth real valued function with compact support in [1/2,5/2] such that VU (x) < 1, for all
j = 0. We then have for any d >0,

Lfﬁf(xﬂ‘)K (f)v’(x)dx 0
f—a Y)Kiry y )

a

uniformly as y — 0 so long as B — a remains bigger than /879,

0.4 Large valuesof L(f,1/2+ it) with prescribed argument

The resonance method [Sou08, Houl6] is a technique to deduce the existence of exceptionally
large values of L-functions from computations of weighted moments. Using the resonance
method, we establish the existence of large values of the Hecke L-function, L(f,1/2+it), with
prescribed argument. Namely, we prove the following theorem.

Theorem 0.4. Foranyn <1, any sufficiently large T € R and any 0 € R/ Z, there exists t € [%, 2T]

such that
1 [ logT
L\f,— > 1 e E—
(f2+lt)'>(77+0( 2 loglog T

Hough [Houl6] proved a similar statement for the Riemann zeta function. We therefore treat
the case of an L-function of degree 2, for which the arguments are substantially more involved.

=60 mod Z,and log

! ar L(f 1+it
on 8E05

Moreover, Hough [Houl6] studies the case of Dirichlet L-functions. He proves that for any
6 > 0and 6 € R/Z and for all sufficiently large prime ¢, there exists a non-principal Dirichlet

character, y mod g, such that
1 1
L (X’ _) ‘ > Lq.
2 loglogg

! L L 0
5wt (v:2)-

In proving this result, Hough requires estimates on sums of the divisor function twisted by
Hyper-Kloosterman sums, and uses Theorem 0.1. In our setting, one is led to estimating certain
sums of Fourier coefficients of Maass forms against real analytic, oscillatory, functions. These
should be seen as being archimedean analogs of the sums appearing in [Houl6]. In order to
prove Theorem 0.4, we actually do not require Theorem 0.2, as in the ranges we consider, these
oscillatory functions are manageable. We however note that in more interesting ranges, one
can show that these functions are analytic trace functions.

<9,and log
R/Z

0.5 Outline of the Thesis

In Chapter 1, we will recall some background material on Maass forms needed in the sub-
sequent chapters. We also discuss the stationary phase method, that will be crucial in our
understanding of analytic trace functions.

Chapters 2 and 3 are essentially preprints [Peya, Peyb] and contain the proofs of the Theorems
of sections 0.3 and 0.4 respectively.
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In Chapter 4 we define Frobenius trace functions and discuss some analogies with analytic
trace functions. We then show how analytic trace functions defined in Chapter 2 appear in the
problem of large values of L-functions discussed in Chapter 3. We conclude the Chapter and
Thesis by giving some insight on possible further work. For instance, given that our definition
of analytic trace functions lack geometric considerations, certain notions, analogous to those
of Frobenius trace functions, have yet to become apparent. We also give a direction in which
to further our work on large values of L-functions, in which the role of analytic trace functions
becomes more apparent.



|} Preliminaries

1.1 Notation

We will let f(x) < g(x), f(x) > g(x) and f(x) = O(g(x)) denote the usual Vinogradov symbols.
We emphasize that for us f(x) < g(x) will be taken to mean exactly that f(x) = O(g(x)).
The notation f(x) = g(x) will be used to mean that both f(x) <« g(x) and g(x) < f(x) hold.
The notation f(x) ~ g(x) will be taken to mean that lim,_., f(x)/g(x) = 1. We will write
f(x) = 0(g(x)) to mean that limy_.o, f(x)/g(x) — 0. We also follow the convention that any e
appearing in the Thesis is defined to be an arbitrarily small unspecified positive real number,
that might vary from one line to the other. Whenever we encounter a zero-free region for an
L-function, we will take the k-th root of L in that region to be the one defined so that LYk
as L — 1 with s — oo, s € R. The function e(-) will always represent the complex exponential
exp(2mi-). The notation a (mod g) will always be used to denote the multiplicative inverse of a
modulo q.

1.2 Maass forms

Let H:= {z € C|3(z) > 0} denote the upper half plane. A (cuspidal) Maass form with respect to
SL,(2) is a function, f:H — C such that

e It satisfies the periodicity condition, f(yz) = f(z), for all y € SL,(Z), where the action of
SL,(Z) on H is given by Mobius transformations, i.e.

( a b ) az+b
zi=—.
c d cz+d

e Itis an eigenfunction of the Laplacian, A = —y? (dd—; + dd—;z).
* It satisfies the following growth condition at the cusp,

flx+iy) < e 2.

Any Maass form, f, admits a Fourier expansion of the form

f@ =Y prmlnl"*W;,, @ninly)e(nx),
n#0
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where 1/4 + t]% denotes its Laplace eigenvalue and W;, is a Whittaker function,

e V2 o0 , x\it~3
Wi (y):= 1—[ e xit=2 (1+—) dx.
I'(5+it)Jo y

The Fourier coefficients, p ¢(n), are normalized so that by Rankin-Selberg,

Y o ~cyx,

In|l=x

for some constant ¢y depending on f (see [Iwa02, p. 110]). Moreover, the Fourier coefficients
oscillate substantially, as

Y prn) < x*P

n=sx

holds, where the implied constant may depend on f (see [HI89]).

We define the Hecke operators (T},) ;=1 acting on the space of Maass forms by

(Tnf)(z)=% Y XY f

N gd=no<b<d

(az+b
p .

A Maass form that is also an eigenfunction for all the Hecke operators will be called a Hecke-
Maass form. We associate to f the sequence of Hecke-eigenvalues (1 (M) p=1. We further note
that A¢(n) €R, for all n > 1, as well as the following realtion between Fourier coefficients and
Hecke eigenvalues [Gol15]:

prn)= pf(l)ﬂtf(n), Yn=1.

We define the associated L-function,

A¢(n)
nS

L(f,9):=) =[[a-app™H'a-B,p 7,
n p

where a ), ), are given via ap + ), = A¢(p) and ap fp = 1.

Let::H — H denote the antiholomorphic involution t(x+iy) = —x+1y. A Maass form satisfying

fou=f,or for=—f,

will be called either even or odd accordingly. Given that the Hecke operators T}, the involution
and the Laplacian A all commute with each other [Gol15], we may simultaneously diagonalize
the space of Maass forms, and thus only consider even or odd Hecke-Mass forms.

Proposition 1.1 (Functional Equation). Let f be a Hecke-Maass form as defined above. Let
E=0iffiseven, 1if f isodd. Let

A(f,8):=n"°T L(f,s),

s+{+ity r s+¢—ity
=)
be the completed L-function. Then A(f,s) has analytic continuation to all s and satisfies the
functional equation
A(f,9)= (1D A0 =, f).



1.3. Stationary phase integrals

Proof. See [Gol15]. O

We will also need the Approximate Functional Equation for L(f, s), that we quote from [IK04].

Proposition 1.2 (Approximate Functional Equation). Let f be a Hecke-Mass form as defined
and with same notation as above. Let{ =0 if f is even, 1 if f is odd. Let G(u) be any function
which is holomorphic and bounded in the strip —4 < R(u) < 4, even, and normalized by G(0) = 1.
Let X > 0. Then for s in the strip0 < 0 < 1 we have

f()

=% (%) +etrs )Z Vi),

where Vs(y) is a smooth function defined by

r Stu+E+ity r stu+&—ity
f y B E (F(s+if;itf;r£s+fzitf) )du

Vs (y

and

e(f,5) = 5n‘1+2sr(l_s+§+ﬂf)F(l_s+§_itf)

r (s+£;itf)r(s+52—itf)

We note that in applications we often take G(u) = e’ . We also note the following proposition
from [IKO04].
Proposition 1.3. Suppose R(s) =3a > 0. Then the derivatives of Vi(y) satisfy
-A
y

YV <1+ :
VUstitpl+3)(s—itp+3)

a

y
Vs +itpl+3)(s—itf]+3)

YVP(y) =6,+0

wherebg =1, 0, =0 ifa> 0 and the implied constants depend only on a, a, and A.

Remark 1.1. Combining these two proposition, we obtain that L(f,o + it) in the critical strip
may be written as two sums of length roughly t.

1.3 Stationary phase integrals

Throughout the thesis, we will need several stationary phase lemmas to estimate oscillatory
integrals. In particular, we will regularly be faced with a special kind of oscillatory integral
which we now define. Let W be any smooth real valued function, with supportin [a, b] < (0,00),
and such that W' (x) <45, ; 1. We then define

w'ir,s) ::f W(x)e(-rx)x* 'dx, (1.1)
0
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where r € R and s € C. Munshi gives in [Mun15] estimations and asymptotics for W, however
we will also need a slightly more precise version of this asymptotic. To this purpose, we quote
from [BKY13] a version of the stationary lemma.

Lemmal.l. Let0<6<1/10,and X,Y,V,V,Q0>0,Z:=Q+ X+ Y + V] + 1, and assume that

Z5/2

30
Y279 VizVz-tn

Suppose that w is a smooth function on R with support on an interval [a, b] of finite length V1,
satisfying ' .

w () <; XV,
forall j =0. Suppose that h is a smooth function on [a, b, such that there exists a unique point

to in the interval such that h'(ty) = 0, and furthermore that

" s » l
el A Q)] L P
h (t)>>Q2,h (1) < o forj=1,2,3,---,t€[a,b].

Then, the integral defined by
I::f w(t)eih(t)dt

has an asymptotic expansion of the form

ih(to) P
I=———= ) palt) +046(Z7Y,
VI (f) n<35-1a
and
\/ﬁeniM i n
fo) := G®" (1), 1.2
p}’l( 0) ! (zh//(to)) (O) ( )
where A is arbitrary, and
. 1 "
G == w(®) e H(t) = h(t) - h(ty) - Sl (o) (= o). (1.3)
Furthermore, each py, is a rational function in h', h",--- | satisfying
d/ . . /
— palio) <n X(V‘f + Q‘f) (V2Y1QH) "+ Y~ "3). (1.4)
dr
0

We want to extract the first five terms in the asymptotic expansion, in order to have a small
enough error term that will be easy to deal with. We therefore compute

po(to) = V2me(1/8)w(ty),

and . ‘
G'(t)=w eV +iwt H (e,

G'(t) =MD" () +2iw' (OH () +iw()H' (1) — w(t) H (H)?).



1.3. Stationary phase integrals

We now see that H(ty) = 0, while
H'(t) =1 (1) - h" (1) (£ — ty),

and
H'(t)=h"t) - h"(ty).
Hence, we see that also H'(fy), H" (t5) = 0. We therefore have
i
2h"(to)

p1(to) = V2me(1/8) w (to).

Noting that only the terms that don’t contain H”) for i = 0, 1,2 survive, and that H'/)(£) = h'/) ()
for j = 3, we have

G (tg) = w™ (to) + 4iw' (1) K (£o) + i w(te) K™ (to),

and thus
\/ﬁe(%)
8h”(l‘0)2

In general, G?™ () is a linear combination of terms of the form

pa(to) = — (W™ (to) + 4iw' (1)) h® (1) + iw (1) Y (1)).

w(Vo) (t())H(Vl) (tO) e H(Vl),

where vo+---+v;=2n.
We now wish to use these in the context of the study of W (r, 5), where we write s= o + i € C.
We may thus use the lemma above with

w(x)=Wx)x® L

and
h(x) = —2nrx+ Blogx.
Then,
h'(x)=—2nr + g and h' (x) = (-1)/71(j - 1)!%, (1.5)
X

for j = 2. The unique stationary point is given by

B
Xo=—.
0 2nr

We now let

5
W) :=x"7Y pux),

n=0
and claim it is non-oscillatory in the following sense.
Lemma 1.2. Suppose that there exists a constant ¢ > 0 such that for anyr € R, = c¢. Then for

all j =0, and x € [a, b], .
W/ (x) <40 1.
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Proof. We compute
. Jo( i .5
W(])(x):Z( ; )(xla)(]l) Zp(nl)(x)
1=0 n=0
Now, it is clear that (x! =)0 ~) <jgabl, and so we just need to control the derivatives of each

pn. Since w is a product of a power of x with W and W (x) « j 1, we can easily see that
Po(x) <j0,a,b 1. Now

h/, (xO) =- ﬁv
x/

and since > 1, by the same argument as for py, it is clear that p; (x) < 1. We may apply the
same reasoning for p», and more generally for any p,,, since (1.5) implies the higher derivatives
of h don’t grow compared to the powers of i’ in the denominator. O

We may now give the following result for WT(r, s).

Lemma 1.3. Letr eRands=o0+ipeC, such that xy = % €lal2,2b]. Then,

\/Z_\Jr/e_(_;/S)( B )G(Zfer)iﬁvi/(i)+O(min{m'_S/Z"r'_S/z})‘

2nr
Proof. This is a direct application of Lemma 1.1 with X =V =Q =1,Y = max{|f], |7}, \} =
b — a, using the above computations as well as (1.4). O

wi(r,s) =

2nr

We also quote from [Mun15] the following lemma.

Lemma 1.4.
1+pI

7]

W'(r,$) = 04,0, (min{ (

i ( 1+]r]| )f
\ 1Bl .
This Lemma follows from the following version of the stationary phase lemma without station-

ary point from [BKY13].

Lemmal.5. LetY =1, let X,Q,U,R > 0, and suppose that w is a smooth function with support
on la, Bl satisfying . .
w () <; XU,

Suppose that h is a smooth function on |a, B] such that
|h' (D= R
for some R >0, and such that
W (1) <;YQ™, forj=2,3,---.

Then the integral I defined by
oo .
sz w(t)e"Vdr
—00

satisfies
<2 (B—a)X[(QRIVY)™ +(RU)™].

10



1.4. Summation formulae

1.4 Summation formulae

We start this section by recalling the Poisson summation formula. Let f € L' (R). We define the
Fourier transform of f by

f(y)3=fRf(X)e(—xy)dx.

Proposition 1.4 (Poisson Summation Formula). Suppose that both f, f arein L*(R) and have
bounded variation. Then

Y fm=Y fm

meZ ne”Z

where both series converge absolutely.
Proof. See [IK04]. O

This formula is particularly interesting when estimating a long sum with "conductor smaller
than the square of its length". This concept which is not formulated rigorously will be very
useful to us, and we therefore seek via the following example to motivate it. Suppose there-
fore that V is a smooth real valued function, with support in [a, b] < (0,00), and such that
V7 (x) <gp,; 1. Let te Rand N €N, and suppose we wish to estimate

my X\
Vi—=|m'= fV Zxtte(-xn)dx
LviF)m=2 vz
:N””Z/ Vy)y'le(-Nyn)dy
n JR
=N VIR, it+ 1), (1.6)
n
by Poisson and where V' is given by (1.1). We therefore see from Lemma 1.4 that the sum is

negligible unless m « % Therefore, we reduced the problem of estimating a sum of length N
to that of estimating a sum of length ¢/ N.

We now recall the Voronoi summation formula for Maass forms, which should be thought of
as a GL, version of (1.6). We quote from [KMV02] the following formula.

Lemma 1.6. Let g be a Hecke-Maass form over SLy(Z) and spectral parameter tg. Let F be a
smooth function rapidly decaying at infinity, which vanishes in a neighborhood of the origin.
Then, for (a,c) =1, we have

> pg(n)e(ﬂ)F(n) = %Z > pﬂ?n)e(in?a) v* (ﬁ),

2
n=1 ¢ + n=1 ¢

where

Vo) :fo F(x)Jg(4m\/xy)dx

Vi) = fo F(x)Kg(4m\/xy)dx,

11



Chapter 1. Preliminaries

and

Jg(x) = - (J2ir, (%) = T 211, (X)),

sin(mi tg)
and

Kg(x) = 4cos(nitg)K2itg(x).

We now use [EMOT54, p. 326, 331] that

11 X\=S_(s . s . . ,
K2ir(x)—z% o (5) F(E+lr)l“(§—lr)ds, IRQ2ir)| <o
11 x\—s T(s/2+ir) . /
. = - —————ds, -RQ2ir)<o <1,
Jeirl0) = 5o (0/)(2) TA—-s/2+in " @in<o
and define
(9o " { T(s/2+itg) I(s/2 - itg) }
V== disin(rity) \TA—s/2+it) T(l—s/2—ity)

OE %r(énrg)r(g_itg)

to deduce that forany0 <o’ <1,

V=(y) :fo F(x)f( /)(2n\/x_y)_sy,(s)dsdx,

and -
Vi) :fo F(x)f( /)(2n\/x_y)_s)f+(s)dsdx.

We conclude this section by giving a heuristic by means of an example. The idea being
that the Voronoi summation formula "takes a sum of length N and conductor ¢ to a sum of
length 12/ N". Suppose therefore that V is a smooth real valued function, with support in
[a, b] < (0,00), and such that V7 (x) <gp,jl. Lett€R, cand N € N, and suppose we wish to

estimate " "
Z pg(n)e(z) V(N) nit,

n=1

We estimate in this case
+ _ o X it —s
V=) = Vi—|x 2r\/xy) " y+(s)dsdx
0 N (@)

. (o8] .
= NI+t f @r\/Ny) " Sy+(s) f V(x) x5 2dxds.
(") 0

By a stationary phase analysis, the inner integral is negligible unless writing s = o’ + i, we
have t = 7 < 3¢. We therefore reduced the problem to estimating up to negligible error for
x €la,b],

f @/ Nyx) ™" Ty, (¢’ +inW(T)dr,
R

12



1.4. Summation formulae

where W is a smooth real valued function with compact support in [#/2,4¢] and satisfying

/WU (1) «; 1. Restricting our attention to the first term of y_ and using Stirling’s formula,
G-ty

we obtain
o1 1=’ T i(tg+]) T
—o'—i T| =2 T2 |lgts 8§72 lg—73
W@ CayvNyx) % 7 |ty + = fo— — dr
fR o yx) &2 & 2 e e
=ng(T)e(f(T))dT,
where ,
(@) W()’t+T%’t T
T)=W(r — - = ,
g gt3 g5
and
27rf(T)=—Ilog(47r2Nyx)+(t +f)10g fg+3 +(I—t )log 3 Ig
2 g 2 2 8 .
We compute
tg+3| 1 It
8 2 + —log 281,
e 2

1 1
2nf(r)=— > log(4n*Nyx) + > log

We see that f'(7) > 1 unless y < 12/N < t?/N. The integral would then be negligible by
Lemma 1.5, and thus Voronoi summation transformed a sum of length N to a sum of length

t2/N.






Analytic twists of modular forms

2.1 Introduction

In this chapter we are interested in sums of Fourier coefficients of GL, Maass forms against
a certain class of oscillatory functions. The type of oscillatory functions we consider can be
thought as archimedean analogs of trace functions studied in [FKM15a]. Our main result gives
anon-correlation statement between Fourier coefficients of Maass forms against a family of
functions, K; : R-¢ — C, depending on a large real parameter ¢.

2.1.1 Setup

We let throughout f be a fixed cuspidal Maass Hecke eigenform for SL,(Z), and denote by
1/4+ tjzf the associated eigenvalue of the Laplacian. The form f admits a Fourier expansion

f@=Y prm)nl""* Wi, (nlnly)e(nx),
n#0
where W, is a Whittaker function. The Fourier coefficients, p r(n), are normalized so that by

Rankin-Selberg,

Y lprm* = X. @2.1)
n<X

We moreover know that the Fourier coefficients oscillate substantially. For example, the

following estimate

(ne(an) < ¢ x/?*€ 2.2)
2 Pf f

n=sx

holds for any € > 0 uniformly for all a € R (see [Iwa02] Theorem 8.1). In order to understand
better the oscillatory nature of the Fourier coefficients, we make the following definition.

Definition 2.1. Let (K(n)) ,en be a bounded sequence of complex numbers. We say that (K (n))
does not correlate with (p r(m) if we have

Y pr(mK(n) <4 x(logx) ™4,

n=x

forallA=1,x>1.
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Chapter 2. Analytic twists of modular forms

For example, (2.2) gives a non-correlation statement for the additive twist K(n) = e(an)
with a power saving of 1/2 —e. Another important example of non-correlation arises when
K(n) = pu(n), the Mobius function, in which case non-correlation is an incarnation of the
Prime Number Theorem (see [FG14] for a general result combining this and additive twists).
Obtaining power saving statements against the Mobius function would be equivalent to prov-
ing a strong zero-free region towards the Riemann Hypothesis for the L-function attached to
f- We give here a final example, which will be the main motivation for our work: let p be a
prime number and let K be an isotypic trace function of conductor p, then [FKM15a] gives a
non-correlation result for (K(n)) with a power saving of 1/8 —e¢.

We will study non-correlation against a family of functions (K;) reg,
Kt : [R>O - G:r
where ¢ is a parameter which we will let grow to infinity.

Definition 2.2. A family of smooth functions (K;) ser, Kr : R>9 — C is called a family of analytic
trace functions if there exist real numbers a < b,b > 0 and a family of analytic functions
(M:(8))ter in the strip a < R(s) < b, such that the following conditions hold uniformly for
a<R(s)<b.

1. The following integral converges forany a <o < b,

1
— | M(s)x"’ds, (2.3)
271 Jo)

and is equal to K¢ (x) for all x € R-, t € R.

2. There exist constants cy, ¢, depending on the family (K;):egr , independent of t, such that
we may write My(o + iv) = gi(o +iv)e(f: (o + iv)), in such a way that for all x € [t,2t], the
following

g +iv) < vo 2 Vj=0, (2.4)
holds, as well as the following conditions on f;.
(a) Whenever|v| < citor|v|=cyt, we have

! . 1
filo+iv)— = log(x)| > 1, (2.5)

where the implicit constant does not depend on t.
(b) When cit <|v| <cyt, either (2.5) holds, or we have

o+ iv)> A +|v)7 (2.6)
while for alle >0, j =0,

)

Lo+ iv) <je A+ v, @.7)

where all the implicit constants do not depend on t.

16



2.1. Introduction

(¢) Finally, we require that
1" . 1 -1
F(O+iv)———>(1+]|v]) 7, (2.8)
2nv

whenever c1t < |v| < co t, and where the implicit constant does not depend on t.

Remark 2.1. Throughout the paper, we will abuse notation and say that K; is an analytic trace
function when it arises as part of such a family.

Remark 2.2. Conditions (2.3) - (2.7) guarantee by means of stationary phase that the integral
representation is concentrated around multiplicative character of conductor t. Condition (2.8)
ensures that we avoid functions such as e(x), as motivated in Section 2.4.

Remark 2.3. By the properties of the Mellin transform, we note that if K;(x) is an analytic trace
function, then for any constant a € R, we have that K;(a x) is also an analytic trace function.

Remark 2.4. We note that in interesting examples, in conjunction with condition (2.5), we will
also have some stationary points in the region c, t < |v| < cat, guaranteeing that || K¢||oo = 1.

Remark 2.5. We note that in practice, we may always ensure that condition (2.3) holds, by
studying K;(x)V (’—t‘) , Where V is a smooth compactly supported function in [%,2]. In that case,
M;(s) is given by f(;’o K, (x)x*'dx, and the integral in (2.3) converges absolutely.

We give here some examples of analytic trace functions (see Section 2.4 for proofs).

Example 2.1. Let J;; denote the usual Bessel function of order it (see [EMOT81, p. 4]). The
normalized ] -Bessel function of order it,

2l
Fir(x):= 07T\ 5 + i) Ji (),
is an analytic trace function of conductor t.

This should be thought of as an archimedean analog of Kloosterman sums. We now give as
a second example that of higher rank Bessel functions as appearing in [Qil5], in analogy to
hyper-Kloosterman sums.

Example 2.2. For any n = 3, the n-th rank Bessel function of order t,

7 s—int\ (s it \"' sy
Tnti=—— r r—+ e(—)x ds,
2win Ji) n n n-1 4

is an analytic trace function.

We will study sums of the shape
n
Sw:=Y prmKmv (=),
7 r

where K; is an analytic trace function and V is a smooth function supported in [1,2] and
such that V7 (x) «; 1. For convenience we also normalize V so that [V(y)dy = 1. We

17



Chapter 2. Analytic twists of modular forms

will show in Section 2.2 that any analytic trace function, K;, satisfies || K|l < 1, so that by
Cauchy-Schwarz and (2.1), we have that

S« t.
Our main result improves on that bound.

Theorem 2.1. Let K;:R — C be an analytic trace function. We have

S(t) < t1_1/8+€,

where the implicit constant depends only on f,e and on || K¢||co-

Remark 2.6. For simplicity we have studied the case where n = t. We note that for N < t, one
may study similarly

n
Z(N) := Xn:pf(n)Kt(n)V (N) .
Iffor x = N, conditions (2.5) - (2.8) hold (which is the case in practice), we may show that

Z(N) «< t1/2+€N3/8,

which improves on the trivial bound so long as N > t*/5*¢

Our bound has an application to the geometric question of equidistribution of horocycle flows
with respect to a twisted signed measure. Let us recall that for every continuous compactly
supported function f on SLy(Z)\H, we have

1

f flx+iy)dx— ,u(SLg(Z)\I]-[I)_lf f(2)du(2),
0 SL2(2)\H

dxdy
y2

bergsson gives a similar result by restricting to subsegments of hyperbolic length y

that for any 6 > 0 and f as above,

as y — 0, where u(z) = denotes the hyperbolic measure (see [Zag81]). In [Str04] Strom-

—1/2—5, ie.

1 B
—f f(x+iy)dx—>u(SL2(Z)\|]-l])_1f f(2)du(z),
p-ala SLy(Z)\H

uniformly as y — 0 so long as  — @ remains bigger than y'/>~%. We use Theorem 2.1 to give
the following twisted version of Strémbergsson’s result, which is analogous to what is proven
in [FKM15a] for horocycles twisted by Frobenius trace functions.

Theorem 2.2. Let (K;)er be a family of analytic trace functions. Let f be a Maass form on
SLy(2)\H, and V be a smooth real valued function with compact support in [%, g] such that
VW (x) < 1, forall j = 0. We then have for any 5 > 0,

1
B-a

uniformly as y — 0 so long as 5 — a remains bigger than y

B X
f Fx+iy) Ky (;) V(x)dx — 0,

1/8-6
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2.2. Analysis of K;

2.1.2 Outline of proof of Theorem 2.1

We will show in Section 2.2 that our definition of analytic trace function implies that we may
essentially write

K;(x) = if gt(0+iv)e(f[(a+iv))x_"_ivdv.
271 v=t

Interchanging order of summation and integration, we may therefore write
1 . . o -0—iv n
S() = —f gilo+ivie(filo+iv)) ) pr(mn V(—)dv.
27 v=t n=1 t

We then adapt the circle method of Munshi, as in [Mun15], allowing us to write the inner sum
essentially as

1 2K Z Z 1
KJk 420 a=q 4 n=:
(a,q)=1

: na nx : ma mx
o (n)n“’e(———) m_’("+”)e(——+—)dv,
2Pr 7 aq) = g aq

where K < t is a parameter that will ultimately be chosen optimally to be K = ¢!/2, and
Q = (t/K)"2. We may now apply Poisson summation to the m-sum, and Voronoi summation
to the n-sum to arrive at the following expression for S(t),

(n) n\ K :
> % > ) e(%)fl(fv tn_”’zg(q, m,t,v)e(f(q, m,7,v))dvdr,
<K =Q (m,q)=1 - =

" I QlQer«q

where g is a non-oscillatory amplitude function of size K and f is a well understood phase.
In particular, we note that (2.8) implies that f" (g, m,t,v) > lv|~!, so that we may use second
derivative bounds for multivariable integrals and save in the integral. Applying the Cauchy-
Schwarz inequality to get rid of the Fourier coefficients, and using the second derivative bound
to save (Kt)!/? in the integral, we arrive at

1/2

Q 1
SH<Kt| Y Y | S5+ Y ——
o ombo| K12 = K372|p| 172
n=qm’'—q'm mod qq’
t
1/4 .3/4
<K't +W,

which upon taking K = t'/2 gives the desired result.

2.2 Analysis of K;

In this section, we analyse further the integral representation of K;. We make a partition
of unity in the integral: let .# = {0} Uj>o {+ ( %)] }, such that for each [ € .#, we take a smooth
function W;(x) supported in [%’, %l] for [ # 0 and such that

WP ) < 1,
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Chapter 2. Analytic twists of modular forms

for all k = 0. for [ = 0, take Wy(x) supported in [-2,2] with Wo(k) (x) <; 1. and such that
1= jcs Wi(x). We then let forany i € .#,

1 .
I (%)= ngg[(awLiv)e(ft(aJriv))x_”_”Wl(v)dv.

We prove the following result.

Lemma 2.1. Let K; be an analytic trace function. We have, for x € [t,2t], and anye > 0,

K (x) = > I, (x) + O~ 1%).
Suppwpcixtl=¢, +rl+ejul-1¢, 1]

Moreover, we also have

max |K¢(x)| < 1.
x€e[1,21]

Proof. Condition (2.3) implies that we may write

K;(x) = L M, (s)x *ds= if gila+ivie(filo+ iv)x o Vv, (2.9)
211 Jo) 27 Jr
for any o € [a, b]. We now wish to run a stationary phase argument to localise the integral
around the points without too much oscillation. If / « ¢ for some small0 <e <o /(1/2+0),
then
Ii,t(x) « te+€(071/2)70 — 0(1),

as long as we take o > 0. We now fix such an € and look at [ such that Supp (W) c [+1€, +00),
and look at

X1 (x) = [ gilo+ivIWi(v)e (ft(o +iv)— llog(x)) dv,
R 27

for x € [¢,2t]. We now compute a few derivatives, in order to apply stationary phase arguments.
We have by (2.4) . ‘
(g1l +iW,(v)V (v) < 7712, Vj=0,

while by (2.5)

log(x)
(o +iv)— 1,
filo+iv) Py >

if v # ¢t and by (2.7) .
Do +iv) < 111270,

Therefore, in the case that v # ¢, we may use Lemma 1.1 (with X = [o-Y2 gy = LB—a=
31/2,R=1,Y = 1'*/2 and Q = 1), to deduce that

I () < 174,

for any A> 0.

In the case that v = ¢, we use the second derivative bound for oscillatory integrals along with
(2.6) to deduce that
I (x) < 1.

20



2.3. Proof of Theorem 2.1

To conclude this section we note that the case where Supp(W;) c [—¢, t°] can be handled as
follows. Since V is a smooth compactly supported function, it admits a Mellin transform,

- (o0}
V(s) = f V(x)x*dx,
0
that decays very rapidly in vertical strips. One can thus write for any a € R,
Vx) = f V(s)x~*ds
(@)
Using this, we write for any o = 0,

pr(n)ll,(n)v fMt(a+zv)Wl(v) Y prtmn " WV( Jdv

=f M (o +iv)IW WV () t*L(f, 0 + iv + s)dsdv
RJ(a)

<« t1/2+€,

by the rapid decay of V.

We will therefore only focus on the cases where the support of W; is close to ¢. This may
be interpreted as the fact that the spectral decomposition of any analytic trace function, K,
concentrates around multiplicative characters of conductor t.

2.3 Proofof Theorem 2.1

Following Munshi [Mun15] we adapt Kloosterman’s version of the circle method along with a
conductor dropping mechanism. We quote here the following proposition in [IK04].

Proposition 2.1. Let

|1 ifn=0;
o) _{ 0 otherwise.
Then, for any real number Q = 1, we have
1 . 1 =
6(n) =2R Y —e(ﬂ—ﬁ)dx.
01=g=<Q<a=q+Q @4 \ 4 aq

In particular, we will use this proposition with Q := (#/K)'/2, where ¢ < K < t'~¢ (for some
¢’ > 0) is a parameter to be chosen optimally later. We let

Si0:= Y. promhmv (2,
n=1 4

and note that in order to bound non-trivially S(#), it is sufficient to do so for S;(#), for [ such
that SuppW; < [+117¢, +¢!%¢], as follows from the previous section. We may thus write

Si(0) = Z pr(mI;, t(n)v( )

Kf pf(l’l)ll,t(nﬂ(%)iUV(g)U(T)dV

nmlnm

= SH(D)+S7 (D),

21



Chapter 2. Analytic twists of modular forms

where U is a smooth functions supported in [1/2,5/2], with U(x) = 1 for x € Supp(V) and
v <;1,and

1 ! " 1
s,i(t)z—f fv(ﬁ)l Yy —
KJo Jr 'K <g=Q<a=<Q+q 49

(e o]

iv _iv (n—m)d_(n—m)x) n m
xn;‘:lpf(n)n I (mym e+ . T 2 V(t)U(t)dde'

We will now describe the analysis for S;r (¢) (the analysis for S; (¢) being completely analogous).

2.3.1 Summation formulae

We start with the m-sum, which we split into congruence classes mod ¢, and after applying
Poisson summation, we obtain

ma

nzl Il,t(m)m_i”U(%) e(——) e(

q
mezZ
m=a(mod q)

mx)
aq
tl—cf—iv

J1—o—i(v+v)|dv.
27

[ Ziv . T(t(ma—x)
" M(o+iviIWWU' | ——
R

We now note that since |v| € [t} ¢, £1¥¢], we may as in [Mun15] use Lemma 1.4 to deduce that
only the contribution from 1 < |m| <« g€ is non-negligible. We take a dyadic subdivision to
obtain the following.

Lemma 2.2.
l1-o

K

t _
S; ()= Y S, 0+ 01,
1=C=(t/K)!/2

where C runs over dyadic integers and

1 . )
Sl(t,C)z—ff fMt(0+iv)Wl(v)t"(””)V(K) —
2n JrJo Jr K/ cigzec map=1 44
1<|m|<qt®
t(ma-— x) x . nm nx n
VAN R i NP e[ 1M o[22 v (™) dudxd
x ( " o—i(v+v) n;lpf(n)n e( p )e( aq) (t) vdxdv

and a = ag(m, q) is the unique multiplicative inverse of m mod q in (Q, g+ Q].

We wish to use the Voronoi summation on the n-sum. We apply Lemma 1.6 to

nm) ; —nx n pltiv nm
’;lpf(”)e(7) nzve(a—q) V(;) = p ;glpf(in)e(i7)l(n, q,v,x),
where
2nvnt\ "’ P
I(n,q,v,x)zf ( d n) Yi(s)f y’”e( yx)V(y)y‘S’zdyds
(") q 0 aq
2mvnt\ "’ t
:f ( UARL ) yi(s)VT(—x,1+iv—s/2)ds.
(0" aq
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2.3. Proof of Theorem 2.1

By Stirling’s formula:

T +it)

-7\t ' t
zx/ﬁexp(—zl l)ltl"‘”2 -

for |#| = 1 and bounded o', we deduce that

i

t
exp(sign(nin(o’ —1/2)/2)1+O0(¢]™")),

yi(o +it) < 1+7|7 L
Now, by Lemma 1.4,
(X (Kl.)I/Z J
V*(—,1+iv—s/2)<<min 1(—) .
aq lv—1/2|q

Thus, shifting the contour to ¢’ = M a large positive integer and taking j = M + 1 for instance,
we see that if n > K, then the integral is negligible (by splitting the integral into a box around
lv—3lg < (Kt) /2 and its complement). In the remaining range, we study this more closely. We
shift our contour to o =1 (the y, contribution is trivial, so we only consider y_), and note that

y-(it+1)= (m)ﬁ D_(1)
2e ’

where @’ (1) < |7|~1. We thus have

j 2mvnt) " tx 1
In,q,v,x) = —1° f(ﬂ) yeGr+ DV 2 v iw—12) | wymdr
2nv/nt ey Jr\ g aq 2
+O(t_1000),

where _¢ is a collection of O(log #) integers such that J € _¢ if and only if
SuppW; c [-(tK)'2¢€/C, (1K) ? 1€/ C).

We have proven the following:

Lemma 2.3.
iK 12 pr(Fn) e(i%)
S;(t,C) =
! 472 ;]Gz(:fn«zl"(ﬁ vn C<qX;2C (m%:l
1<|m|<qt®

I3 (g, m,n)
+ O( [—10000)
where

I;(g,m,n)= fz My(o+ivyW(ne™™
R

2 —iT
(”Tm) Yo (T + DI (g, m,1,v)W)()drdv,

and

1 tx Ty 1
* %k _ 1— i . _ -
I (q,m,r,v)—fo fRV(V)V (aq,z(kv 2)+2)

<t ( t(ma—x)

,1—0—i(Kv+v))dvdx.
aq

In the next two subsections we evaluate I** (g, m, 1, v).
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Chapter 2. Analytic twists of modular forms

2.3.2 Analysis of the integrals

We apply lemma 1.3 to

UT(—t(m“_X),l—a—i(Kuw))
aq
(1)(Kv+v 1’2—0( aq )1—0( (Kv+v)aq )—"(K””)
=e|—
8 27 t(x—ma) 2met(x—ma)
x (J(—(K””)“q )+0(r‘5’2).
2nt(x—ma)
Hence,
1 tx Ty 1 _ ag \'7°
5% _ Ll _ - 12— ___ Y
I (q,m,r,v)—clfo fRV(u)V (aq,z(Kv 2)+2 (Kv+v) (t(x_ma))

x( (Kv+v)aq )_i(K””) v( (Kv+v)aq

)dvdx+0(f5’2),
2nt(x—ma)

2met(x — ma)
for some constant ¢;. We now use lemma 5 of [Mun15] to

i(Kv-1)

1/2 1 T
i tx . 1\ (aq)""e(-g) ((Kv-3)aq
1% (a—q,z(Kv—T/2)+—) 12

2
t -3/2
+ O(min{ \Kv—1/2]732, (—x) }) .
aq

V((Kv—r/Z)aq)

2emtx 2mtx

Hence,

i(Kv-1%)

* % 1 (KU—%)aq (KU—%)aq
' (q’m’T’V)_CZ-[O -[RV(U)V( 2ntx )( 2emtx )
(ﬂ)%—lf (V+Ky);_(7( (Kv+v)aq )—i(Kl/+v)

t 2met(x—ma)

v( (kv+v)aq )
2nt(x —ma)

dv=> +E+0(t %)

V—or )
(x_ma)l—a x1/2

for some constant ¢, and where E comes from the error term of V' which we will now describe.
We first note that since V' (2_2' i(Kv—1/2)+ %) does not depend on v, neither does the error

term, and therefore we may perform the v-integral without losing control of the phase, before
plugging absolute values. We thus estimate

. —i(Kv+v)
fMt(0+iv)Wl(V)t_W(KU+V)1/2_U( (Rvrviag ) U(—(K””)“q )dv
R

m 2nt(x—ma)
= ng(V)e(f(V))dv,
where, temporarily, we define
gW) = gio +iVIW(W)(Kv+wW'?70 (%) :
and (Kp+7)
2rnf(v) =2nfi(o+iv)—vlogt— (Kv+v)log W‘:ZZ) .
We have

1
2nf"wv)y=2nf"(o+iv) - >y L
o f[( ) Kv+v
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2.3. Proof of Theorem 2.1

by (2.8). Noting that g(v) < 1, and f lg' (V)| < t€, we may use the second derivative bound for
oscillatory integrals (see [Sri65], Lemma 5) to deduce that

fg(v)e(f(v))dv < t1/2re, (2.10)
R
Our error term, E, therefore satisfies

f M; (o +iv)W;(v)t "VEdv
R

1 p2 —3/2 -3/2
T tx
< t0_1/2+6f f min ‘KV— —) ,(—) dvdx.
0 J1 2 aq
This integral is the same than the one appearing in [Mun15], where it is proved that

1 2 T1-3/2 (tx) 32 1 10K
f f min )KU——| ,(—) dvdx < —min{l,—}te.
o J1 2 aq K3/2 7|

Moreover, we note that
f g+ ivW (V)12 « 7249
R

and thus (keeping in mind that ¢ < K < t!7¢),

O+€
Mo +iv Wt Y (E+O0(t™%?))dv « ———min<1 10K
—— ! 2302 e [
We now treat the/main term. Let 6’ > 0 to be c}etermined later and examine the contribution
from x < 1/K'7%". Using (2.10) and that u®U(u), v*V (v) < 1, for all @ € R, (and thus #(x —
ma)(aq)’1 > t17¢), we estimate

aq llsz6’1f ((KV—%)aq)( aq )1—af i
- Vin)v
( L ) 0 R’ (%) 27TLX t(x — ma) Rg(v)e(f(v))dv dl/—xl/2
K t? tl/2+o+e
t V() ——  dvd R
< fo fku—;:;g (v) 172 (Ky— 1)1 vdx < K cag

upon taking 6’ = 2¢/3. We now look at the contribution from x € [K‘s’_l, 1]. We now reset
temporarily

1-0 K _ T 5
g(y):(v+Kv)1/2—U(a—q) V(v)v(( v z)aCI)U((KU-H/)aq),

t(x—ma) 2mWLX 2nt(x—ma)
and . .
Kv-3 (Kv—3)a K K
fwv)= 2log( 2 q)_ Vo ( (Kv+viag )
27 2emtx 27 2met(x—ma)
Then,

(v+Kv)x

(j-2)U-K)/ Y —2)I(=K)/
(Kv - %)(x— ma)

2n(v+Kv)i-! " 2n(Kv—5)i-V

o K D) = _
fln = anog( ),f (v)=
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Chapter 2. Analytic twists of modular forms

for j =2, and the stationary point is given by

2v+T1)xX—Tma
py=————"—"—/"—.

2Kma

Now, since v > t'7¢, we have that in the support of the integral,

Kagqg
) =
! aq( tx ) ’

for j =2, and

: Kaag\!
g (v) « 17112 (1 + %q) ,

for j = 0. Moreover, we can write

K(vo—u))_ Klo ( K(uo—v))
v+ Kv 27 Kv—-1/2

f(v) —lo ( +

and note that in the support of the integral we have 0 < Kv - 7/2 < tx/aq < K22 1t
follows that if vy ¢ [.5, 3], then in the support of the integral we have

Ka
THOES Kmin{l,—q}.
tx
We now use Lemma 1.5 with
tx Ka
X=r112* y(= V)=min{1 —} R=Kmin{1,—q},
Kaqg tx
Y = rx Q 3 x
= aq’ - Kaqy

so that, choosing K > t1/3+¢,

1/2 —-A
fg(v)e(f(v))dv < (l2re [((I—x) min{l,@}) +K 4
R aq tx

« pl/2te [(t3e/4)—A+ (Ké’)—A+K—A] « 1B

for any B > 0. In the case where vy € [.5,3], we will use Lemma 1.1, with § = 1/100, A =
100006'~! and the same X, Y,V and Q as above. We have

f(u)e(f(v))dv—Mg% (vo) +0 ((E)A)
R Vanwg Az ag

where p,, is given by (1.2). Now, since x € [K 5’_1, 1], we have tx/aq > K 5’, and therefore the
error term is negligible.
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2.3. Proof of Theorem 2.1

2.3.3 Contribution from »n = 1 terms

We find that /2 ( 12)
_ V4T _(v+1/2)q
f(wo) = lo ( 2entm )
and
v K?(ma)?
f (UO)_Zn(v+T/2)(x—ma)x’ @1
and
; (j = 2U=K) (ma)! " (x— ma)) ™! + (-x)/71)
D () — : S 2.12
F () 21(v+1/2)iY(ma—x)i1xj-1 (212)
We also find
T /12
() ey ()
g(UO)_((v+§)q) ( t )((x—ma)ma
W EaNs L YRS s ) o1
2K Kma 2ntm m2mnt

We wish to keep the term n = 0 and show that the terms with n = 1 can be absorbed into an
error term. We thus look to bound

e(f(vo))

Vv [ (vo)

fRMt(UHV)Wz(V)t‘” pn(vO)dv=L§n(V)e(f(V))dv,

where
} V2 (x—ma)'/?x!/? _ 12 Qv+T)x—Tma
gnv) = Xma gilo+ivYW(v)v+T1/2) " “py (_W)
and . v+ D)
_ . v v+ 5 v+ 5 6])
= +iv)— —logt— log|— .
fW):=filo+iv) 27 o8 27 og( 2emtm

We compute

, logt 1 v+3)q) 1
/ — f! +iv)— =" _ (_ 2 ) -
FO=fio+iv) 27 27 8 2entm 27
and
/i 1! .
= + -
Fo=filotivi-oro )
In order to estimate the size of g, we estimate first
g'(vy)  XQ? XQ* XQ X
< < , L ——+—+—,
p1(vo) g S vey PVl < st oyt Y

while, by (1.4), for n = 3 we have

2 —n
pn(vo) < X((%) yy 3
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Chapter 2. Analytic twists of modular forms

We now distinguish two cases. If x < @, thenV=Q= Kt; 7 and thus

X
pl’l(v()) << ?’
foralln=1,since Y = fl—’fi > K% . We then show by (1.4) that

. (x—ma)l/zxuz(v+%)“2 X
g (V) < Kmav3/2-0 Y’

so that by the second derivative bound for oscillatory integrals (using that g < m, by the
support of ),

_ t0+€(a6])1/2
ngn(v)e(f(v))dv < W

Therefore the total contribution from this part is dominated by

aar1/2 1 V¢ (a 1/2 (ote
R N
t K51 Ktx K2¢l/2
Forx>@,wehave V =1, and so
( ) t”2+€x
Vp) < .

In this region, we first pass the x integral inside the v-integral, and since the phase does not
depend on x, the same analysis holds, replacing g, (v) by

) aq 1/2f1 1 _
W) :=(— — g, (v)dx.
&n ( t ) max{K-1*' Kaq/t} \/}gn

We have, using that m = g,
g+e€

K3aq

1/2
gnlv) < (a—tq) gnv) <

In order to control g, (v), we will first execute the x-integral, using integration by parts. Look-

ing at the definition of p,,, we note that it is a rational functionin " (vg), " (vo),---, g(vo), &' (vo) - -

and will describe what the terms of p,, depending on x look like. We first recall that by (1.2)

and (1.3), /
V2me't ( i )"
n = ~ G(zn) ’
pn(vo) o 27 () (vo)

where G?™ (1) is a linear combination of elements of the form
(1, = =(l:
g1 W) F MW (W) -+ F17 (vp),

where [ +---+1; = 2n. Using (2.11), (2.12) and (2.13), we therefore have that those terms of p,,
depending on x are of the shape

T (V+3x
2K Kma )
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2.3. Proof of Theorem 2.1

for some i, j = 1 and / = 0. We thus compute

d ! ; : T V+T/2)X
_f xl—l/Z(x_ma)]+l/2v(l)(__( ) )dx
dv Jmaxik—1+%' Kaq/1} 2K Kma
1
_ d V2 (5 a2 —Kma V(l—l)(i_ (V+T/2)X)
dV t'V+T/2 2K Kma max{K‘“"’,Kaq/t}
+f1 (xi~V2(x — ma)i+112y Kma V(l—l)(i_ (V+T/2)x))dx
max{K~-1+%' Kaq/t} tv+1/2 2K Kma
(ma)j+1/2
< iz
V+§
These calculations show that
d g+e€
— W |dvk g, <« ,

and by the second derivative bound for oscillatory integrals,

~ 1/2+0+€
ngn(V)e(f(V))dv < K3—aq’

which is the same bound we obtained for x € (0, K‘S/‘l). We therefore obtain

aqg\l/z 1 dx (aq\V2 (1 g(vg)e(f(vy) +1/8)
(7) fofmg(v)e(f(v))dvm—(T) fKM, SN dx

+E*,
where E* is an error term such that

) 1/2+0+e
f Mo +ivIW Wt VE dy < ————.
R aqgk

Now, plugging in the value for vy, we get that the leading term above reduces to

CS'V+% (—_6])3/2V(_(V+%)q)(_ (V+%)q)—i(V+T/2)( tm )O’
K \mt 2nmt 2emwtm (v+%)q

L v+ D 1 v+ Hx
XU(——Zq)f V(L——z)dx,
2ntm K-1+0' 2K Kma
for some absolute constant c3. Set

B(C,T,v)=t°?+E+E*,

and note that
(TK)UZIC . l-0'+5 t
. -1V
e RMt((T+ ivYW;(v)t """ B(C,T,v)dvdTr < RV lE (1 + Cszlz)' (2.14)
C

We may now derive from these computations the following:
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Chapter 2. Analytic twists of modular forms

Lemma 2.4. We have
I"*(g,m,7,v) = L1(g,m,7,v) + I,(q,m,1,v),

where

3/2-i(v+3)

cs (_(v+§)q) V(_(v+§)q)( tm )“
v+ HV2K\ 2metm 2emt J\(v+3)aq

. + L 1 +I
o-LEBa [(n
2nmt K1+ 2K Kma

where ¢y is an absolute constant, and

L(g,mt,v)=

L(g,m,t,v):=1""(q,m,t,v) - I,(q,m,7,v) = B(C, T,V).

Consequently from Lemma 2.3 we arrive at:

Lemma 2.5. We have

Si(t,C) = Y {S1,(£,0) +S2,5(£, O} + O™,

Je g
where
iKt'? pr(Fn)
Sry(1,C) = >
An® T ke VR
nin
o2
—Ir,],i(q)m)n)’
C<q=2C (m,q)=1 a
1<|m|<qt®
and

2 —iT
(”Tm) Yol + DI, (g, m,7,v)W;(T)dTdv.

Ir,],i(q; m; n) :fz M[(U"l' iV)Wl(V)t_lv
R

2.3.4 Application of Cauchy and Poisson I

We will estimate here
$2(£,C):= ) S55(1,0).
Je g

Taking a dyadic subdivision and using the bound |y+ (it + 1)| < 1, we get

K26 _
a lp(Fn)|

~ 1/2 C n
S2(t,C) < Kt \/(tK)cl/ZtGZ Z Z TU(I)

+ 1<L<Kt° nezZ

L dyadic
e(+ nﬁz)
- q
X fB(C,T) dT,
-1 aq'"
C<qg=2C (m,q)=1
1<|m|<qt®
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2.3. Proof of Theorem 2.1

where

B(C,1) :=f M (o +iv)W;(v) t_i"B(C,T,v)dv
R

< (L _mind, 2K, 1
/2312 ’ 7| CKb/2

By Cauchy and Rankin-Selberg, we get

(tK)l/Zte
G 1/2+€ ¢ 1/2 1/2
S2(t,C) < Kt f_(rmé/ztf ; 1<L§Kt€ L' [S2,+(1,C,L,7)] '“d1,

L dyadic
where
i 2
nm

1 (n e(i—)

S2:(1,C L7 =Y. ~U(7) —1B(C,0)
nez 1 L C<g=2C (m,q)=1 aq
1<|ml<qt®

Opening the absolute square and interchanging the order of summation, we obtain

|B(C,7)|?
aa/ql—irq/lﬂ'r

So,+(t,C, L) = ) >

C<q,q's2C (mp=1 (m',q)=1
1=Iml<qt1<|m'|<q't¢

i

where

1 (n nm _ nm'
ri= ¥ SU(7)e[+ 0 ).
n%:Z n (L) a 4
Splitting in congruence classes mod gq' and applying Poisson summation, we get

1 Lny
T=> 5iq,m;q,;lr+n50(modqq’)fw}U(y)e(_ qq’' )

nez

We may now truncate the n-sum to n < C?¢/L, for otherwise the oscillatory integral is
negligibly small. We may therefore estimate

K|B(C,1)|?

So:(t,C, L)< ). > 2 2 rC2

C<q,q's2C (mq)=1 (m,q")=1 ne C3°
1< 1€ ! ! € _ L
slml<qt® 1g|m'|<q't n=+qm'Fq' m(modqq)
t“C3K|B(C,1)|?
L —F .
tL
Thus, by (2.14), we have

(tK]l/zte
SO < Y C3/2K3/2t€f ¢ IB(C,DIdr

(k)12 €
1<L<Kt® -~ c

L dyadic
C3/2K t1/2 )

g+€
<t ( t1/2 + clizgli2

The contribution of S, (¢, C) to SZ“ () is therefore bounded by

. t5/4 t3/2
e T en )

Upon taking K = t'/2, we note that this is bounded by #!~1/8+€,
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Chapter 2. Analytic twists of modular forms

2.3.5 Application of Poisson and Cauchy II

The analysis for S; ; is more delicate as we need to exploit some cancelation coming from both
the v and 7 integrals. The idea is to use Cauchy and Rankin-Selberg as before, but keeping the

integrals over T and v inside. We may bound
Suy(t, Q)< Kt'2Y. Y LV2[s,;.t,C, D],
+ 1<L<Kt*

L dyadic

where

1 n
S1y+(6,C, L) —H;Z;U(z)

ffMt(a+iv)W,(v)r‘”(zm/ﬁ)‘”
RJR

el
xpsGr+1) Y Y —— (g, mT,v)Wndrdy
C<g=2C (mq)=1 44
1<|ml<qt®

Opening the absolute square and interchanging the order of summation, we find that S; ; . (¢, C, L)
is given by
f M0+ V)M (o + IVIW () W (V) Ty L+ D)y (L+ iT) Wy () Wy (T)
R

Li(g,mt,VL(q',m', 1V

— — —
C<q,q'=2C (m,@)=1 (m’,q’):1 aa’(2n)t(r T)ql l‘[qll+l‘[
1<|Im|<qt® 1<|m/|<q't¢

g'drdr'dvdv/,

where

1 n nm _nm'
7e T U)o 2= ),
nez pltiz L q q
Applying Poisson summation, similarly to the previous section, we obtain
l Li T/Z_T l Nl
T'=——)3) 6x(n,mm,q,q"U
99" nez

—1

nL ,T—T’)
qq/) 2 )

where
/ N _ / ~
6+(n,m,m,q,q)=qq 5J_rq’rh¢qm/+n50(modqq’)'

Since |7 —7'| < (tK)"?t¢/C and q, q' = C, we have by Lemma 1.4 that if |n| > C(tK)/?¢¢/L,
then the contribution is negligibly small.

Lemma 2.6. Thesum Sy ;. (t,C, L) is dominated by the sum

K _

2 > | A |+ O™,
C<qq'=s2C (m@=1  (m',q)=1 Inl<C(tK) 2 1€/ L

1<|m|<qt°1<|m/|<q't° n=+gm'Tq' m (mod g4q')

where

iy @2 tL) T

Hy = f M (o + iv)M (o + ivV)W;(v) W;(v) ¢t — W (T)W;(T)
R4 q—qu/lr

nL 1 -1

l

ye(it+ Dyt + DL(g, m,1,M (g, m', T/ v U' ( ) drdr’dvdv'.

q"’
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2.3. Proof of Theorem 2.1

We are thus only left with understanding £... Writing out explicitly I, (g, m, 1, v), we obtain

2
C _—
e = llg fw Wy(q, m, T, VW(q',m',t",ve(fi(o +iv) - fi(o +iV)
—i(v+3) ’ N i(v’+L/)
aq’ 2 2metm 2metm’

4n?tL)i=

xy+(1+iT)y+(1+i1") T drdr’dvdv/,

where

W;(v)Wj (1) ( (v+ %)q)g/z V(_ v+ %)6])

W, , M, T,V)= O'+iV -
1(q ) = 8l ) (V+%)1/2 2metm 2wtm

o . +I 1 +I
s el G | R P o L
(v+ E)q 2nmt Ko'-1 2K Kma

We note in passing the following estimates

V|U—l

d
EW](q, m,T,v) << 7]

and
—W(quV)«|V|U2
dv S TS5 '

We first analyse the case n = 0; it will be sufficient to consider

fz Wy (g, m, 1, VW, (g, m', 7, v)e(f;(o +iv) - fi(o +iv)) iV
R

T —i(v+1) TN i(vr"'r?,)
x(_(“z)q) Y +3q dvdv’
2metm 2metm’

=f Wy(q, m, T, VWy(q',m',7’,v)e(f(v,v")dvdV,
RZ

where we temporarily define

!

fw, V)= filo+iv) - filo+iv) + Vz_vlogt
7T
v+ 1L wv+1 v+ L W +Z)qg
- 2 1o (— 2 q)+ 2 log _rreg
2n 2metm 2n 2mwetm’
We compute
daf ., . logr 1 ( (v+§)q) 1
— = +iv)— ———-—log|- -—,
dv filo+iv) 2n 2w © 2mwetm 2
af ., ., logt 1 V+54q\ 1
— =- —— + —log|———|+—.
dv/ filo+ivy+ on 21 8\ 2metm’ |2

(2.15)

(2.16)
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Chapter 2. Analytic twists of modular forms

and thus
d’f
=0,
dvdyv’
while by (2.8), we have
af . 1 -1
— = +iV) - ——— > ,
dv2 7t (o+v) 2n(v+3) vl
and )
d f 11 .7 =1
—=—f(0+iV)+ ———>|v| .
dv’? t 21 (V' + %)
We also note that by (2.16), we have

Var(Wj(q, m,‘[,v)m) « 2o2+e

We now have by the second derivative bound for oscillatory integrals in multivariables (see
[Sri65]) that

fR Wilg,m, T, W (g, m’, T V)e(fv, Vv))dvdy' « 2971, (2.17)

By integration by parts, if |7 — 7| > ¢, then U" (0, i T_TT’) is negligibly small. The contribution
from n =0 to %~ is thus bounded by

t20+€
K—Z t20—1+e
A

We now treat the case n # 0. We have by Lemma 5 of [Mun15] that

UT(I’lL _i‘[—‘[')_ cs ((T/_T)qq/)((T/_T)qq/)—i(r—r’)/z
qaq’’ 2 ] @ -2 4nnL 4menL

min ) ’
|T—T'|3/2 (InIL)3’2

for some constant c¢5 (which depends on the sign of 7). In order to bound the error term, we
use (2.17) to see that the contribution is bounded by

t20—1+€f . { 1 C3 }
min , .
K2 Jyep lT—7/132" (In|L)3/2

We first estimate

p2o—1+e c3 f20-1+eC] 20112+
— ——drdt’' <« « ,
K Ir—r[’\jflgzuCZ (InlLy*2 K2(InID)Y2 — K32(|n| D)V
and then
t20—1+e 1 Ct20—1+e 1
s — — drdi’ « —f —dzd7’
K2 1,212 |7 —7/[3/2 K2(InL)1/2 J.2)12 T —7/[1-¢€

|T=7'|>|nL|/C?
C]t20—1+e t20—1/2+e

< < .
K2(|HL|)1/2 K3/2(|nL|)1/2
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2.3. Proof of Theorem 2.1

We thus set
20+€
* —
BACO=mmem
and for n #0,
t20+e
B*(C,n) =

K3/2 t1/2(|l’l|L)1/2 '

We now consider the main term. As noted in Section 4.1, the contribution from vy is simpler,
and thus we will only focus on y_. We first note that by Fourier inversion, we have

1/2
LT R VA A T
(t'-1)qq9 4nnL R 2 4wnL
Pulling out the oscillation from the y_ factors, we conclude that for some constant cs (depend-
ing on the sign of n), we have

1/2
_& 6761' f T( l)f l ! ! ' ’ ,
_KZ(InIL) LU0 2] 8T v Vief Ty, v r)drdrdvdyidr

+O(B*(C,n)),

where

’_ / /
f@ T vV n=filo+iv)— filo+iv)+ VZJTV log+ % IOg( i ) - IOg(m)

? 21 e
f— '_Ddntgg\ v+ v+3)
+T Tlog((T nantqq )— 2 lo (— 2 q)+ilogq
% en 27 2metm 27
/ V/+T_' (V’+T_') / r_ /
—T—logq’+ Z log|- 291, rir —14q
27 27 2metm’ 4nnl

and

g, ', v,v) =Wi(q,mT,vIW;(q',m/,t/,v)®_(1)D_(7').

We will use the second derivative bound for multivariable oscillatory integrals as can be found
in [Sri65] and hence compute

anzf_l L S af 1 anzf 1
dr2 1t 4(v+ ) 20’ —1) T drdry 20-1)" " drdv 2(v+ %)’
daf 1 1 1 d’f 1

n—m =5+ ;T + Ry ;LT
dr T AW+ %) 2(t'=1) dr’dv 2(v' + =)

de 1 . ]' d2f ]' 1! . ]

- 5 — - » = T + »

while
a?f  d*f  d*f 0
drdv'  dr'dv  dvdv
Computing the minors of the Hessian matrix , we see from [Sri65, Lemma 5] that for D a box
in RY,

f e(f(r,7',v,v))drdr'dvdv' < °Jt, (2.18)
D
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Chapter 2. Analytic twists of modular forms

where we used r; = r» = J™Y2 and r3 = r, = t12 as can be seen from our calculations of

the second derivatives and that 7,7’ € [/, % J1. Using (2.15) and (2.16), we compute the total
variation, using that !¢ <« |v| <« !¢

dg
drdr’'dvdv’
O—=21,,/10-2
<<f u]tlﬂdrdr’dvdv’
Rt Tl
<« (202e, (2.19)

drdr’'dvdv’

Var(g(t,7’,v,v")) ::f
R4

By integration by parts, we note that by (2.18) and (2.19), we have

fg(T,T',v,v')e(f(r,r',v,v',r))deT'dvdv'
[R4
dg

< [ _
rt |drdr/dvdy’
« ]I,‘2U_1+€

Jr'tedrdr'dvdv

Then, integrating trivially over r and using the rapid decay of Fourier transforms, we arrive at
the following result:

Lemma 2.7. We have

J_ < B*(C,n).

We now write

$1-(4,C,L) =S, (£,C,L+S; ,_(£C,L),

where S? ;,_(£,C, L) corresponds to n = 0 contribution, while Sji ;._(£,C, L) corresponds to the
n # 0 frequencies. We first estimate

t20+e

K
s’ _(t,C, Ly« — O — N
1], tC2 C<q,Zq’SZC (m%zl (m’%"‘):l —qm'+q m:O(modqq)K?:/ZCtllz
15|m|<<qt615|m’|<<q’t’:

t20+€

< prge
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2.3. Proof of Theorem 2.1

Taking a dyadic subdivision, we estimate

f K .
S1y-0CD < - > > > Y B*(C,n)
C<q,q's2C (m,q)=1 m',q"h=1

1

2 (€

Is|ml<qt®1<|m’|<q 1€ 1=|n|< S 2L
n=—gm’+q'm@modqq’)

K
<Ky v ¥ >

C<q,q's2C (mq)=1 (m',q")=1 1
1<Iml<qt® 1|m'|«<q' € 1=Inl< =L

t20+e

—

KS/Z t1/2(|l’l|L)%

n=q'm-qm’ (modqq’)
t2¢7+e

<<—
321202712 "
EKECEL MCW q'=2¢_ (mag=1

HDYadlc Lslmiqs®
x H—1/2
(m',q")=1 _H<|n|<2H
1<|m’'|<q't¢ n=—qm'+q'm (mod qq")
t20+e 12
<« Bl2112c2 172 Z H
< UK 26 C<q,q's2C H<|n|<2H
=TI
H Dyadic

« Y Y 6
Is|ml<qt€1<|m’|<q' ¢
(m,q)=1  (m/,q")=1

—gm+q'm=n(modqq")’

We let d = (¢, q') and notice that looking at the congruence condition above modulo g implies

that g¢'m = n mod g, which in turn implies that d divides n. We let qo := q/d, q; = q'/d and
ng := nld, so that

no = qym (mod go), and ng = gom’ (mod gp).

We may thus bound
20+€e
S, (LG D)< BTG Zm He oy
< QUK € C<q,q's2C Hepy<2
H Dyadlc

X

6 M= (mod LIO)(SqOWE 1o (mod g)
I<s|mlxqt1<|m’|< q't¢

(m,g)=1  (m',q"=1

t20+€ 1 s
<wmmepe L MU L LT
C(IK i€ C<q,q526g<nos%
HDyadlc
t2cr+6(tK)1/4 4
Bl2g120312], Cediatzac
t20+€(tK)1/4

< t3/2K1/2C3/2L Z c Z Cd
dSZCESqqu[;S?
t20+€

We conclude that ) )

20+e€
S17- G L <t BRIz Kz
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Chapter 2. Analytic twists of modular forms

The same bound holds for S; ; . (t, C, L), via the same analysis, so that

1/2
S17(t,C) < Kto¥12re % L, _1
LIS el \ AR T Az
L Dyadic
s
g+€
<t (t”“ + K )

The same bound holds for all values of J. Since there are O(log t) many terms, we can sum over
them without worsening the bound, and so the same bound holds for $; (£,C) := ¥.; Sy ;(¢, C).
Thus the total contribution of Sl (t,C) to Sl+ (#) is bounded by

tl+€ (K5/4

K1/4)'

_ 412

Choosing K , we obtain

S?'(Z.) < t1_1/8+€-

2.4 Examples

In this section, we study some examples of analytic trace functions to motivate the analogy
with Frobenius trace functions studied in [FKM15a]. The analog of Kloosterman sums is given
in the following example.

Proposition 2.2. Let
12p(l .
Fi(x):=t""°T > +it|Ji(x)
be the normalized ] -Bessel function of order t. Then, F;; is an analytic trace function.

Proof. By [EMOT54, p. 331], the Mellin inversion theorem holds for F;; and the Mellin trans-
form is given by

()

o0 1
MFE;(s) :zf Fi (x)x* 'dx = t”zl"(—+it)2“‘_1—.t,
0 2 I(1+ 1)

forany 0 < o < 1, where s = 0 + iv. We will assume for simplicity that ¢ = 1, the same argument
holding also for negative ¢. In order to understand Mp (o + iv), we differentiate between three
cases, using Stirling’s formula for some of the Gamma factors. We first note that

3+
I'i=—+it
2

‘ = \/ﬁexp(—?) a+o(f™h. (2.20)

First assume we are in the range where |f + v| = 1, then we may apply Stirling’s formula to all
the Gamma factors, and find that

Mg () = t"2 gr 1 (s)e(fre(s),
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2.4. Examples

where, up to a constant,
T o-1 — -
gre(9) = exp (U1 =vi= v+ 11 -20)Iv+ 0t =12 (L+ Omaxtr™, [ £v ™),

and
v+

2e

v+1i r—v
27 fr(8) = > log

+V_t1
(o)
> g

+vlog2.

We note that if v = —%, then gr;(s) is negligible. We therefore only focus on the case where
V< —% and verify condition (2.5) for fr;. We thus compute

2.2

102 +1+log2.
e

d 1
2n— =—1
o, Jri(s) =5 log

Since we only consider v > ¢ by exponential decay of gr; otherwise, we find that

2 _ 212
log’¥ «1,

may only occur if v = £, for x € [£,21].

On the other hand, if we are in the range | — v| < 1, then we may not apply Stirling’s formula
for the Gamma factor in the denominator. However, we will have that |z + v| > ¢, and thus by
(2.20) and the exponential decay of Gamma factors, we get that the contribution is negligible.
Finally, if we are in the range | ¢ + v| < 1, then the phase of MF(s) will be of the form

r—v
2e

~ -t
27 fr(8) = VTlog +vlog2,

and so

d -
ZHEfF,t(s) —log(x) > 1

in this region, and is thus negligible by integration by parts. Moreover, looking at fr;, there
can be no stationary point in any region such that v = —t + o().
We thus assume from now on that we are in the region where [t +v| > f,and t < v < —¢, and
will show that conditions (2.4), (2.6), (2.7) and (2.8) hold for gr;(s) and fr(s). Indeed, in this
region,

12 gr () = 12w+ Dv— 01T L+ 00 < 17712,

and thus _
dvi®” '
forall j =0, proving (2.4). We now compute
2
v -1
2n— S)=——F—— >V ,
dv? Tr(s) (V2 —12)

and thus
d/
Zﬂ—.fEt(S) <<jy€ v

1+e—j
dvJ ’
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Chapter 2. Analytic twists of modular forms

for all j =0, proving (2.6) and (2.7). Finally we look at

2 dzf () ! e >yt
T— S——=—o—— >V,
dv2 /bt v v(vZ-t2)

proving (2.8), concluding the proof that F;; is an analytic trace function.
]
Another interesting example is that of Bessel functions of high rank. These can be thought of

as analogs to hyper-Kloosterman sums. We study here higher rank Bessel functions appearing
in the Voronoi summation formulas in higher rank (as in [Qil15]).

Proposition 2.3. Foranyn =3, let

t's s—int
Tni= r r
2min Jdy n

Then ], ; is an analytic trace function.

s it \"1 s
-+ ) e(—) x~%ds.
n n-1 4

Proof. Let

t's _(s—int s it \*! s
My, (8)i= —T r(<+ e(3),
' n n n n-1 4

with s = i + iv. We assume again for simplicity that # > 1 and want to show that M, , satisfies
all the conditions in Definition 2.2. As in the case of the Bessel function, we wish to use
Stiriling’s formula to understand the phase and amplitude of M}, ,. Again we distinguish three
different cases. First assume we are in the range |v—t| = nand |(n—-1)v+ nt| = n(n—1). We
may then apply Stirling’s formula to both Gamma factors to obtain

n-1

1\ 12
My, 0 =e(5) g, et

where g, . (s) is given by

it (n-1(E-1)
( n(lv—nt|+|(n—1)v+nt|+nv)) v—nt|lmT2|v t 3
exp|— -
2n n n n-1
-1
-1 v t
X(1+0 (1 +|v—nt|) +(1+ —+—) ))
n n-1
and
27 fy (s) (n—l)v+ntlo % N v—nt v—nt
yiA = — _
Tn n & en e(n-1) ne
We note thatifv = — S 1)z‘ then g, , is negligible. We therefore only focus on the case where
V< - 2(n 5 ¢ and verify condition (2.5) for fj, ,. We thus compute
2 df (s) Lo L ioe Y2 4
T— S) = .
dv?/mt 8len en e(n 1) & ne
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2.4. Examples

Since we only consider v > ¢ by exponential decay of gj, , otherwise, we find that

((n—l)v+nt)n;1 (V—I’lt)%

1
o8 n—1

<1,

xn

may only occur if v = x, for x = . Moreover, as in the Bessel function case, we see from this
that in the two cases where we might not use Stirling’s formula for one of the Gamma factors,
either gy, , will be negligible, or the phase cannot vanish and the contribution is also negligible.
We thus assume from now on that we are in the region where |(n —1)v + nt|,|v — nt| > t and
t <v<-——-_¢ and will show that conditions (2.4), (2.6), (2.7) and (2.8) hold for gJ,.(s) and

(n—=1)
f7,..(5). Indeed, in this region,

1 1 1
n-1 ) w1 |[v=nt|m2|v t |V 5)(1 oY) 1.1
t2 s)=tz2 —+ +O(t K ta 2,
Eni n n-1
and thus )
tnT_l—d] (5) < tl_%_f
4
dV] g]n,l S 4
forall j = 0, proving (2.4). We now compute
d? (n—1)v+nt2-n) 4

2 2 = T v

since v < 0, and thus
d/
20— <
ﬂdvf J7,,,(8) Kjev

forall j =0, proving (2.6) and (2.7). Finally, we look at

1+e—j
)

2 2

2 d 7.8 ! n > vl
T— -—= ,
dv2 /me v v(v—nt)((n-1)v+nt)
proving (2.8), concluding the proof that J, ; is an analytic trace function. O

We end this section with an example motivating condition (2.8). Namely, we study e(x) in the
range x € [£,2¢] and show that it satisfies all the conditions to be an analytic trace function,
besides (2.8). By Mellin inversion, we thus have

x _ 1 vt Y
V(;)e(x)—gfwt V=t iv)x "dv
1 ,
:=—fMe,t(iv)x_de,
27 JR

where
Mg (iv) = "V (=t,iv).

We first note that by Lemma 1.4, we may assume that v = ¢, for otherwise V' (—¢, iv) is negligi-
ble. We now use Lemma 5 in [Mun15] to write in this region

M ((iv) = ge,t(iV)e(fe,t(iV),

41



Chapter 2. Analytic twists of modular forms

where, up to a constant,
N i -3/2
gea(iv) =v™ 2V (-] @+ 002,

and

fer(iv) = %log(—i).

One now verifies that

ggt)(iv) < vy V2=
for all j = 0. We compute
1 v 1
! .
iv)= —log|——|+—,
Jeuiv) 2n g( Zne) 2n
and )
G),. o (=1
fe,t (lV) - znvj—l’

for j = 2. We thus have that f, ; satisfies (2.6), (2.7), and the only condition not satisfied is (2.8).
Given that our results should generalise to holomorphic forms as well as Eisenstein series, this
example illustrates the necessity of condition (2.8), since the divisor function, d(n), correlates
with additive characters [Tit86, Theorem 7.15].

2.5 Horocycle twists

In this section, we prove Theorem 2.2. We thus let K; : R>o — C be an analytic trace function,
and f be a Maass form as in the previous sections. Let [a, ] < [1,2] and V be a smooth
compactly supported function in [%, %], such that x/ V/(x) <« 1. We study

p (n) p
f f(x+iy)K1/y(f)V(x)dx= Y pf—mWi[f(4ﬂ|n|y)f Kl,y(f)e(nx)V(x)dx.
a y n£0 || a y

The proof of the theorem will then follow from the following proposition.

Proposition 2.4. Let K; be an analytic trace function. Then there exists an analytic trace
function, K,(x), such that the Fourier transform,

2
K (x):= t”z[ K (tw)V(uwe(-xu)du,
1

satisfies
K (x) = Ko (x) + Ot~ V?).

Proof. We have

2 2
f K/ (tu)V(we(—xu)du = L[ Mt(s)f (tw) " V(we(—xu)duds
1 271 J (o) 1

1
=— | M)t Vix1-sds.
2mi Jo
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2.5. Horocycle twists

We note that by the properties of M;(s), discussed in Section 2.2, it is sufficient to consider
v = t, such that for some x € [£,21],

1
flo+iv)— (;inx = o(1), (2.21)

for otherwise by repeated integration by parts, the integral is negligible. By Lemma 5 of
[Munl5], we may write

Vi lme i = m\jglg) v (_ Z;x) (_ 27:x)1_0 (_znvex)—iv OV,

We thus have that the main term of K, +(x)is

e(1/8)tl/2-o M,(0 + V)W) t_ivv( % )( v )1—0( v )—ivdv
V2mi @ Vv 2nx)\ 27mx 2mex ’

where W is a smooth compactly supported function such that W/ (v) « j v~/, and supported
only whenever (2.21) holds. We may thus rewrite the main term as

1 _ .
— M; (1 -0 +iv)x° 17y,
271 J(1-0)

where up to a constant,

- . v . .
My (1—0+iv) = tY2 7Y M (0 — i)W (=) V (2—) YU2Z=0HiY (o o)V,
X

We write
M x(1—0+iv) =g (1 -o+ivie(fi(l—o +iv)),
where v
~ _ ) = f1/2-0 _ o _ 7 4120
grx(l—0o+iv)=t W(-v)g:(o W)V(an)v ,
and

Fl—a+iv) = zllog(tv) + filo—iv).
b4
We compute
d - . 1 1 v .
Eft(l —o+1iv)— glogx = glog(%) —f;(O'— v),

and note that if 5~ ¢ [%, g], then by (2.21), we have that (2.5) holds, so that by repeated

integration by parts the integral in that region is negligible. We may therefore write

M, (1-0+iv)x? V" Vdy = M,(1-0+iv)x° 1"dv+ 019,
(1-0) (1-0)

where M;(1-0+iv)=g,(1-0+ iv)e(f(l —0+1iv)), and

gil-o+iv)= II/Z_GW(—V)gt(l — o+ ivvi2e.

In the range v = t, we have

g0 -0 +iv) < V170,
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Chapter 2. Analytic twists of modular forms

and therefore g; satisfies condition (2.4). We moreover have

d* - 1 1 -1
Wft(l—g+iv)=%+ To—iv)>vl,

by (2.8) and thus (2.6) is satisfied for f;. Moreover, by direct computation, we see that since
(2.7) holds for f;, it also holds for f;. By (2.6), we have

< 1
TQ—o+iv)—— = fl(c—iv)>v],
2mv

so that (2.8) holds for ft. O

We deduce Theorem 2.2 from Proposition 2.4. We first note that the exponential decay of W;;,
restricts n to the range |n| < y~!. Keeping in mind that the Fourier transform is negligible
unless = y~1, we only need to show that

1 pr(n) 1/2fﬁ (x)
Ky | = V(x)dx — 0,

as y — 0. However, by Fourier inversion, we have
1z [P X Pros
y f Kyry (;) e(nx)V(x)dx :f f Ky/y(z)e(zx)e(nx)dzdx
a a JR

. p
:le/y(z+ n)f e(zx)dxdz
R 11

1 R
=— | Ryyz+n
zm'fR y(z+n)

Now by Proposition 2.4 and the properties of analytic trace functions, we must have z+n = y~!,
for otherwise K, y(z+ n) is negligible. We may thus apply Theorem 2.1 to conclude that

e(fz) ; e(az) dz.

p 1/8-¢€
y”zf Kl/y(g)e(nx)V(x)dx <X
a

1 pr(n)
>

’3 —a eyl y1/2|n|1/2

proving Theorem 2.2.
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8] Large values of Hecke-Maass L-
functions with prescribed argument

3.1 Introduction and Setup

The resonance method developed by Soundararajan [Sou08] allows the detection of large
values of certain L-functions on the critical line. Building on this work, Hough [Houl6] proves
the existence of large values of the Riemann zeta function on the critical line with prescribed
argument. In this paper we extend the resonance method to find large values of Hecke-Maass
L-functions on the critical line with prescribed argument. More precisely, we let f be an (even)
Hecke-Maass eigenform for SL,(Z), and denote by 1/4 + r? the associated eigenvalue of the
Laplacian. We define the Hecke operators (713),>1 acting on the space of Maass forms by

1 az+b
TfHD=—7Y ¥ f( )

" VI qa=no<ped d
We associate to f the sequence of Hecke-eigenvalues (1 (M) p=1. We define the associated
L-function,

Ar(n) e e
L9 =Y L =T -app ™ =7,
n p

where a), B, are given via a), + f, = A¢(p) and a5, = 1. We prove the following theorem.

Theorem 3.1. Foranyn <1, any sufficiently large T € R and any 0 € R/ Z, there exists t € [%, 2T]

such that
logT
= (n+o(1)) —loglog T

We follow Hough'’s strategy [Houl6], namely we exploit sign changes of L(f, s) by comparing
the weighted signed moment and unsigned first moment, which we define in the next section.
Several substantial complications, however, arise due to the fact that L(f, s) is of degree 2. We
may no longer exploit combinatorial arguments to handle sums of fractional divisor functions.
We treat these sums by relating them to the symmetric square L-function, L(sym2 f,s), and
exploiting a zero-free region.

1 1
gargL(f,§+it) =60 modZ, and log

L(f,%+it)

We note that the results presented also hold for holomorphic cusp forms, as they exhibit the
same properties as those exploited for Maass forms. Moreover, we expect that the methods are
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

flexible enough to carry over to the case of Maass forms of SL,,(Z) ! , by some more elaborate
calculations.

3.1.1 Outline of proof

Following [Houl6], we implement the resonance method developed in [Sou08]. We thus let
T be alarge real number and 6 € R be a fixed angle. Let £ > 0 be a small real number and let
N=T!3 WesetL= v/log Nloglog N, and define the multiplicative function, r(n), which is
supported on square-free integers and defined at primes by

L ) 2
rp) = { Jplogp’ if [ < p <exp((logL)”) . 3.1)
0, otherwise
We define a preliminary resonating polynomial,
. r(mAg(n)
R*(s)= ) —

nsN

We also introduce a short Dirichlet polynomial,

di12(n)A¢(n)
ns ’

Arjp(8):i= )
n<Ts
where d;;» are the Dirichlet series coefficients for { 12 In particular d,,, is multiplicative,
non-negative, and is given at prime powers by

1 k
[Tei-.

dl/Z(Pk) = ﬁ
=1

We define our resonating polynomial to be

1 n
R(s):R*(s)Al/g(EJrs) = ) an

n<T1-% n’

In order to prove Theorem 3.1 we compute weighted first moments of L(f, % + it). Namely, we
let

Ty :={t€|R|arg(L(f,%+it)) EG(modn)},

and letting H = T'/(log T)?, we define

wre(t) = M/NW
Lo cosh(%) ’

where
R(in)|?
Nw= Y B0 (3.2
teT, cosh (577)

is the normalizing weight required to obtain a probability measure. Theorem 3.1 will be
deduced from the following proposition.

IEither for self-dual forms, or in the case that the form satisfies Ramanujan-Petersson by a recent non-zero
region due to Goldfeld and Li [GL].
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Proposition 3.1. We have

)3

teTy

, r(p)A(p)
L(f,%+it)’wm(t) > (logT)4H(l+T;:), 3.3)
p

and

( r(p)aﬁ(p))
1+ ——|. (3.4)

1 . 1
ZL(f,5+zt)wT,9(t) < (logD:]] 7

teTy p

We explain here the strategy that allows us to detect the angle of L(f, s) thus allowing us to
estimate these moments. Let

A(f,s) = Loo(S)L(f, $),
be the completed L-function of f, where
s—ir
f(5)
2

is the local factor at co. The L-function satisfies the functional equation:

S+ir
2

Loo($) ::n_sl“(

A(f,$) = A(f,1-9).

We let . .
L(fi3+5) Leo(3-5)
A(S) := 1 = 1 R
L(f,3-5) Leo(5+5)
and observe that the points, ¢, such that arg(L(f, % +it)) = 8 (mod ) are the solution set of

A(it) = €% In particular, we note that Ty is not empty. By the Residue Theorem, one may
then express the moment as a contour integral of the form

A(s) ds

A(s) — €210 cos (1T’

fL(f, 1 + S)R(S)R(—S)
T 2

where I is an appropriate contour supported at height T. Expanding the L-function into
its Dirichlet series we end up having to estimate sums of Hecke eigenvalues against certain
arithmetic functions.

We end this section by showing how Theorem 3.1 follows from Proposition 3.1. By Proposition
3.1, we have

Y L(f,l+it)‘wm(t):l Y (L(f,l+it) +e*"9L(f,l+iz))wt9(z)
arg(L)=0 2 ' 2 teTy 2 2 '
> (log T)3/4l_[ (1 + M)
P VP
so that )
1 r(p)A
max L(f,—+it) >>(logT)3/4H(l+M).
T<t<oT 2 p VP
arg(L)=0
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

Theorem 3.1 now follows from

2 A 2
10gn(l+w) L r(p)
VP

I2<p=<exp(log® L) plogp

logT
~1/ Q=38 ——,
\/( ¢) loglog T

p

and letting £ — 0.

3.2 Preliminary lemmas

In order to estimate these moments, we will require some preliminary lemmas that we prove
in this section.

Lemma 3.1. Let T be large, and 1 < m,n and assume m < T>~°, and min(m,n) < T'~ for
somed > 0. We then have for any w € S' and for any A> 0,

f (ﬂ)s A/(S) A(S) ds -0 (T_A) (3 5)
R9=tee ' n) D) T-wA(s) cos(LEs) 04 7 '
Letting
—2A/(i j
Ipi= f “2AUN/AGY 4
=20 cosh (&)

we also have,

1 (m)s A'(s) ds

A(s) cos (L£2)

Sm= _
=~ 14 05 A(T7H). (3.6)
Vi 47

2mi %(5):%+g n

Proof. We need some estimates about A(s). By Stirling’s formula, we have that for [¢| > 1,

n2(0-+it)r(;—0‘+i(r—t))l_, ( ;—O’—i(l‘+t))

2 2

INCERDIES T Tp— <g 1727
s+o+i(r+t s+o+i(t—r
e e e
Writing A(s) = 25T T2/ (I'3T'4), we compute
A(it) ry Ty Ty T
=2logm+—(it)+=(it)— =—(it)— =—(it
AGD g 1,1( ) 1qz( ) 1ﬂa( ) F4( )
1,1 2 2 2 2y2
1 =+ ((r+D°+E-r))+@"—r°)
= ——log[lo—2 +0(|t1719, 8.7)
2 1674

and thus also )

&A= 0,00M)

ar AP T '
for j = 2. In order to prove (3.5), we push the line of integration rightwards to R(s) = (A+
1)/6 + &', with 0 < ¢’ < 1 chosen so that the contour has a distance bounded from any pole
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of the integrand. In pushing the line rightwards as indicated above, the only poles we pass
are counter-weighted by the hyperbolic cosine factor (since these poles can only occur for ¢
bounded away from the real axis) and they therefore contribute a negligible amount. We are
thus left with estimating

Lo rs () S 20
R($)=(A+1)/6+6' * B/ A l—wA(s)COS(iTI;_rs)

2T N , + 1
<<f 7@+ 10g(1 ) 77205 +9)dr + 0 T4

T

2
< T4,

In order to prove (3.6), we note that A(s) has no poles nor zeroes on (s) = 0, and as before the
only poles we might encounter are negligible, and we may thus shift our line of integration to
R(s) =0. By (3.7), the integral becomes

11 2 2 2_12)2
151 (r+ 0%+ (t=1)2)+ (2 =1?) —1+e€
e o o U
1 m L.
i Jr\n COSh(%)

If m # n, then by repeated integration by parts, the integral is negligible. The lemma follows.
O

We note that I satisfies

EA L+ 02+ (-2 + (2 -r?)?

log( e roqu™
=
"7 Jiz20 cosh (&)

dt.

We recall that by the analog of Mertens’ Theorem for Rankin-Selberg L-functions, there exists
a constant, C, such that

Ar(p)?

=loglogx+C+o0(1),

p=x

and will use it without mention in the proof of the following lemmas.

Lemma 3.2. Foranylal < we have

_1
(logL)3”’

log[TA+r(p*Ar(p)*p™) —log[ [+ r(p)*As(p)*)
14 p

log Nlogloglog N
< allogN = (1 +0(1)) 2808108108

loglog N

Proof. We write
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log[J(1+r(p)*Ar(p)*p®) —log[ T+ r(p)*As(p)*)
p p
> log(1+ r(p)z)lf(p)z(l’a_l))
I2<p=<exp(log® L) 1+ I‘(p)z/lf(p)z

~ r(p*Ap(p)*(p*—1) L0 r(p*Ap(p)*(p*—1)
B 1+r(p)2As(p)? 1+r(p)2Ar(p)?

I2<p<exp(log® L)

Since,

2 2
« r(p)“As(p) o 1
-1)—————— < -1 1 F—
(p )1 TP, (0 <p < alogp <« ogL

we may bound the difference of logarithms by

1
Y r(p)PAr(p)P(p® -1 (1 +o(—))
L2=p=exp(log® L) logL

A 2
=al? > 7P L(1+O(L))
I2<p<exp(log® L) p logp logL
al? (log(log2 L)+C+o0(1) loglogL?+C+o(1)
log’ L log L2
+feXP(1°gzL) loglogx + C + o(1) (1+O( 1 ))
12 (logx)?x logL

g i)+l )
=al +0 1+0(——
2logL logL logL

logNlogloglogN)
loglog N '

dx

=a (logN— (1+o0(1))

As a corollary, we deduce the following lemma.

Lemma 3.3. For any integer | = 1 and for any Z > N exp (_(10;015%) ,

L2
Y r(n)z/lf(n)2=(1+0(exp(— 5)))]‘[(1+r(p)2/1f(p)2).
i OB

Proof. We use Rankin’s trick to write

Y rmPArmP= Y. rmFArm*— Y. r(m)*Ap(n)?

n<Zz n=1 n=7
(n,l)=1 (n,h=1 (n,1)=1
=[Ta+rm*Ar@* +0Z [+ p*r(p)*Ar(p)?)).
pil pil

The result then follows immediately from Lemma 3.2.
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3.2. Preliminary lemmas

We now prove analogously the following two Lemmas.

Lemma 3.4. Forany|a| < (log oD’ and any multiplicative function, g, such that for some m >0,
0 < g(p) < m forall p, we have

a—1/2

1 Ar(p)?
log(n +r(p)Ar(p) g(p)p

<, alLloglogL.
; 1+r(p)/1f(p)2g(p)p‘”2) m 410808

Proof. We may write

5 tog1 + r(pAs(p)?g(pp~ 2 (p*-1)
1+7r(p)g(pAs(p)2p=1/2

L2<p=<exp(log® L)

~ r(pAr(p)’gpp 2 (p-1) o r(pAr(p)’g(p)p?(p®-1)
2<pzepiog sy LT TPIEPIA(p)?p~12 L+r(p)Ar(p)?g(p)p~1/2

Since
r(pAs(p)?g(p)p 1
(p*-1 P2sP gpiz s <p'-l<alogp < —,
1+7(p)g(p)As(p)2p~Y logL
we bound
o 1_[1+r(/v)ﬂtf(p)zg(p)p"“”z
& » 1+r(pAs(plg(p)p~1/?

1
< Y AP e 1)(1+o(l L))
I2<p=<exp(log® L) 0g

L2<p<exp(log’ L)
1
= aL(log(log” L) —loglog L* + o(1)) (1 +0 (logL))

< aLlogloglL.

As a corollary we deduce the following Lemma.

Lemma 3.5. For Z > exp(L(logL)°), and g multiplicative such that for some m,0 < g(p) <m
forall p, we have

r(n) logZ )
r;z_" Ar(n)®g(n) < exp (1+0m(1))( I
and
Y QA (m2g(m) = (1+0,, (exp(—cL(logL)z)))H( /1 7(p) g(p))
n<z VI p
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

Proof. We use Rankin’s trick to write

> ﬂ/l (n)?g(n) = @)Lf(n)zg(n)— > (—n)/l (n)*g(n)

(e0)

n<Zz n nzl n=7
=11
p

1+ ﬂaf(p) g(p))

+0

z7 Tl +r(pAr(p)g(p) p“‘”z)).
p

The result now follows from Lemma 3.4. O

Throughout the paper, we will also require a result of Tenenbaum [Ten15, Theorem 5.2, p. 281],
inspired by previous work of Delange [Del54, Del71], that we give in the following lemma. We
first need to set up some notation. Let z € C, and fix ¢y > 0,0 < § < 1, M > 0, positive constants.
Writing s = 0 + it, we say that a Dirichlet series F(s) has the property 2(z; ¢y,0, M) if the
Dirichlet series

G(s;2):= F(s){(s)™*

may be continued as a holomorphic function for o = 1—-¢y/(1+log(2+|7l)), and, in this domain,
satisfies the bound
G(s; )| < M(1L+|7)' .

If F(s) = Y a,/n® has the property 22 (z; ¢o, 6, M), and if there exists a sequence of non-negative
real numbers {bn}OO , such that |a,| < by, (n=1,2,--+), and the series

by
S
n=11

satisfies 22 (w; ¢y, 8, M) for some complex number w, we shall say that F(s) has type 9 (z, w; ¢y,0, M).

Lemma 3.6. Let F(s) := Y. a,/n® be a Dirichlet series of type I (z, w; ¢y,0, M). For x =3, A >
0,|zl < A, |w| < A, there exist d > 0 such that

Y an = x(logx)*~ 1{% O(M(e~ V198 logx~ ))}

n=sx

The constant d and the implicit constant in the Landau symbol depend at most on ¢y, 0, and A.

3.3 Computing the normalizing weight

In this section we compute the normalizing weight, NW, given by (3.2). We will require the
following estimates on the coefficients a,.

Lemma 3.7. We have

A 2
( +M). 3.8)

as = log D" [T+ r(p?As(pH ] |1
)3 1 sl NG

n<T1-2
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3.3. Computing the normalizing weight

Proof. We have

an= Y. r(DAsW0)

<73
ms<T¢
Im=n

so that

> d- ¥

rU)r)A (A1)

dr12(m)A g(m)

ml/2 ’

dir2(m)d2(n2) A f(n)A g (n2)
(n1np)'/?

n<T1-2¢ ll,lZSTl_S{ nl,nziT:
l1n1=lzn2
= Y r@*As(g)? Y r(i)A s b)

gSTl_Sf ll,lgsTl"%/g

(h,12)=(h12,8)=1

dl/z(nl)dl/z(nz)/lf(ﬂl)/lf(nz)

<)
nl,nst‘t
lln1=lgl’l2

(n1np)/?

We now let np := ny/1; and n; := n;/1, so that we may rewrite this as

Y r(@*As(g)?

gSTl—Sf (lll )1/2

ll,IZSTlisf/g
(L, B)=(h1,8)=1

Il
Z r(IZ) Af(lllz)

)3

n<T¢/max(l,l») n

3.3.1 The n-sum

dij2(hn)dy2(lbmAp(lhn)Ay(lan)

The idea is to treat the innermost sum by relating it to the fourth root of the Rankin-Selberg

L-function,

L(f x f,9):= H(l p~H™!

=C(S)L(sym 9,

where

L(sym?f,s) :=

H(l 9721 -

=B - apfpp

S)—l(l _ﬁip—é')—ly

denotes the symmetric square L-function as studied by Gelbart and Jacquet [G]78]. Following
[Ten15, Chapter I1.5], we define the generalized binomial coefficient by

( )z—H(w )

0=j<v

(weC,veN),
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

so that

ME B
(B

where a is a multiplicative function such that

Ar(p)
ap) = L = a2 .

Given that L(sym?f, s) is a cuspidal automorphic L-function (see [G]78]), writing s = o + i,
there exists a constant ¢ > 0, depending on f, such that ¢ (s)L(s,ym2 f,$) is non-zero in the
region o > 1 - c/log(2 +|7]) (see [Mic07]). We note that L(sym? f, s) is entire in that region, so
that

oo di,(MA%(N)

Y —— =" sym® [ 9F(9),
n=1

where F(s) is a non-zero, bounded and holomorphic function in the region o > 1—-c/log(2+|1|).
It follows that

di2(hn)dy () A r(hmAy(lan)

o0
nX::l n’

% di2(p* a2 (pIA (P A4 (pP) & i, (PHAFPY
( 1/2(p 12\P7)Afp f\p x}l—[l Zu
plirt2

2 k=0 pks

k=0 pks

=11

plhl,
0o d?,(p")A2(ph)
/
= G(S}lllZ)H Z %
p \ k=0 p

= G(s; L L)F(s)LY* (sym? f, $) V4 (s),

where
d k+1 d k A k+1 A k
oo Gi(p*)di(pP)Ar (=T )Ar(PY)
k=0 pks
G(s; )= - -
' l,;! o i (PIA (PR
k=0 pks

Observe that the denominator is non-zero because the coefficients are positive. We let
G(5;1/4, 1, bp) := LV* (sym® £, $)F(5)G(s, Iy, Ip),
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3.3. Computing the normalizing weight

and wish to bound |G(s;1/4, 1, [5)| in the aforementioned domain. Noting that k and k+1
have distinct parity, we estimate

oo di2(P" a1 (PF)AF(PFT A (pF)

k=0 pks
G(s, L) =
o= ) e
k=0 pks
<dip(h)Ap(lhily) [] Me(hl),
plhl

where Mg is a multiplicative function supported on squarefree integers satisfying at primes
Mg(p)*' =1+ Cip™™, 3.9)

for some §; > 0 and an absolute constant C; (one may use bounds towards the Ramanujan-
Petersson conjecture as given in [Kim03]). Since LYA4(s, sym2 < 79 for any arbitrarily small
6 >0, and letting M > 0 be such that F(s) < M in that region, we conclude that

1G(s;1/4, 11, )| < MIAf (L ) dy 2 (I ) Mg (L ) (1 + 171%).
By Lemma 3.6, we conclude that for max(ly, l») < TS,

max(ly, I) > dvo(hn)dy2(m)Ap(him)As(lan)

n<T¢/max(l;,l»)

Té 1 TSN ¢ (I o) dy 2 (11 ) Me (11 1)
G(L;1/4, 1, ) —~ + ( A 12: 2 2412)
log(max(h ) I'() (log T* /max(ly, I2))

It then follows by summation by parts, that whenever max(/y, l») < T5~€, we can estimate

dijp(lhn)dy(lbn)Ar(lin)Ar(l
Z 12(hin)dyj2(ln) A (Lhin)A ¢ (lan) (3.10)

n<T¢/max(l;,l») n

T¢ )1/4+O(Mf(lll2)|d1/2(lll2)MG(l1l2))

1
=4 G(l ll,lz) log(

r(3)

max(ly, lr) )314

(log

T¢
max(ly,l)

3.3.2 The!; and g sums

We let Z = exp((log N)?’%) and consider first the contribution from the main term above when
max(ly, l) < Z. Namely, we estimate

r(lyl
Y @i Y U b it H b (log T,
gST1—3{ ll,l25T1—3f/g (lllZ)

max(ly,l)<Z
(h,L)=(h1,8)=1
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

where H([) is a non-negative multiplicative function supported on squarefree integers, satisfy-
ing (3.9) on primes, possibly with a different constant. By Lemma 3.3 we thus estimate

r(l1lp)
logD'* Y 2 Ap(hb)dvp(WB)H(LL) Y. r(@°Ap(g)?
ll,lg<Z ll 12 1= -2¢
(h,1)=1 8= max(ll lz)

(g hl)=

r(lyl
~QlogD)* Y g 2)Af(lllz)zduz(lllz)H(lllz) [T A+r*(mAs(p)®
lll,llz)<Z hil pthls
(h,)=1

r(ll)
= log [T +r(*Ap(pd Y A2
D <z Vil

(h,1)=1

Ar(h )2 dyjp(h ) H (L ),

where H(I) is a non-negative, multiplicative function, absolutely bounded on primes and
satisfying

H(p)
A+r(p?As(p)?)’

We make the change of variables [ = [, [, to reduce our estimation to that of

H(p) =

r(l) r(p) r(p)
—A (2HD ~T]|1+ —=A¢(p) H(p)) ( —Ar(p) )
z R R B

by Lemma 3.5. The contribution from the tail max(/;, [y) = Z is bounded by

r(l)As(l)? r(l)As(lp)?
logT Y r(@°Ar(g? Y ———— —
g=T!-% netisrg VI zepemong Vb

r(pmf(p)z)
\/ﬁ )

by Lemma 3.5, which is negligible. We are only left with estimating the contribution coming
from the error term in (3.10), with max(/y, ) < Z. We thus care to bound

« log T exp(—(log N)?/37¢) [Ta+ r(p)zﬂl?c(l?)) I1 (1 +
Z p

_ r(li 1)
logD)** Y ——ZAp(hb)Pdip(hil)Melhl) Y, r(g)As(g)?
hL,lLb<Z 1 2 71-3¢
(h,b)=1 8= max(ll 12)
(g hLhk)=
-3/4 r(ll) )
~ (logT) Y —= A Pdip(hb)Mghk) [T A+ r(p*Ar(p)®)
l] 12<Z 1 2 P“llz
(h,b)=1
r(p)Mg(p)A%(p)

(o T)34TT(1 + 22 +(p)? 1+
Uog D10+ A1+ 5 or o

which is negligible. Putting all of the estimates together, we obtain (3.8).

We conclude this section by computing the normalizing weight.
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3.4. The unsigned moment

Proposition 3.2. We may estimate the normalizing weight,

NW:(logT)1/4H(1+r(p)2/1f(p)2)l—[(1+ﬂﬂ (p )
P p

NG

Proof. We denote by I'c the contour defined by the line R(s) = 1/2 + € clockwards and R(s) =
—1/2 — ¢ anticlockwards, so that up to negligible error, we have

NW 1 f R(R(=s) A'(s) ds
~— SR(-s
2mi Jr, A(s) — e2i0 cos(lzs)
The integral on R(s) = 5 + € is negligible by (3.5). On R(s) = —5 —¢, we substitute s — —s and

thus need to estimate

f R(s)R(—s)(—A’(S) 1 ) ds
R(s)=1+e A(s) 1-€*9A(s) ) cos (1L£)

) A's) ) A 2ik9) ds
= R R(— _ds
ICX::O-/S‘Q(S):;+6 (SR S)( A( s) (S)e

cos ()
——f ROR9AWD __ds
 Jre=tee A(s) cos (%)
e2i0 ds

- R()R(=s)A’ . :
f(s):;+e R TG cos (L22)

B mhs A'(s) ds
_— amanfw:be(—) :

m,n<T1-2% n A(S) cos (LI;”Q)

i mysA'(s)  A() ds
e > amanfms) 1 (n) : -

m,n<T1-2 =3+e A(s) 1-e20A(s) cos (£

+s)'

Using Lemma 3.1 and Lemma 3.7, we conclude that

NW:(1ogT)“4]"[(1+r(p)2/1f(p)2)]‘[( +ﬂa (» )
P 14

VP

3.4 The unsigned moment

We denote by E,,, the expectation over Ty with respect to the measure wr,y and wish to give
a lower bound to

l
1 1 1
NW.E,,, L(f,—+it ]zNW. Eu,, L(f,——i) ”Zf H
2 2 | Avga (3 + 1)
! f L(f ! )A (1+ )ZR*( IR (—5)— 2 3.11)
~— ,=—§ —+s S)R*(—s :
2m |Jr, 2 11213 A(s) — e2i0 Cos( 1;;5)
1

R(s)=1/2+€ R(s)=—1/2—€

:2n
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

3.4.1 Contribution from the integral along the line R (s) = % +e€

We show that the contribution from this term is negligible. We first note that by Mellin
inversion, for a smooth ¢ : R — [0,1] compactly supported in [-1,1] such that ¢ =1 in a
neighborhood of 0, we have uniformly in {s=0+it: T/2<t<2T,0 < 0 < 2}, and for all
€>0,A>0,

Ar(n)
L9 = Y () + 0T,

n=1

By the definition of A(s), the integral becomes

ds
A(s) — e210 COS(LH_S)

dij2(my)dyj2(ma) A p(my) A g(mz)

1 2 A
A1 (5 + S) R*(9)R* (_S)K(S)

1
f L(f,—+s
%(s):%ﬂ: 2

-y U] ¥

(mymy)'/?

nz=1 11,12<T1_3{}’)11,77‘12<T‘f
lz )s A, 1 ds —A
W r)A ()AL —_— — - - +O(T™).
x i) A (Ar ) %(s)—§+e(nm1mzll A (S)A(S)—ez”9 cos (Z=5) o
We write
i Y Y A(S)
(A(S)_eZZH) 1:_6 ZZG_e 4l9 - ,
1—e210A(s)

and the contribution of the second term to the s-integral is

f (l—z)sél(s) AGs) ds
R(s)=2+e \nmMImMaly ) A 1_6_2i6A(5)COS(i755),

which by (3.5) is negligible. It remains to bound the contribution of the first term above, which
is

1 l SA ds 1 _
o () O = - Btemammt I+ OT,

270 Jp(s)=t+e \nmyimply ) A cos(’TI;S)

by (3.6). We therefore just need to estimate

Lr(Dr)A+(IDAr(l)
VALCICLV IOV Y Apmdia(m)dya(m)As(mpAs(ma) Iy

11,l2<T1’3{ \/E mp ,m2<T5
nmlmzz%
Ap()2/Iir () r ()
= X ! Y. dip(my)dip(m)Ir,
ll,lz<T1_3‘f \/l_z ml,mz<T£
nmlmgz%
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3.4. The unsigned moment

After making a change of variables I, = [/1;, we thus estimate

1(12)27’([2)
Z r(l1)2)lf(ll)2 Z 2 Z dyjo(my)dy 2 (mo) It
her lz<L3§ \/E my,my<T*
11 nmymy=ly
Ap(l2)?r (L)

< Y rPArm* Y Y. dm)dy(m)Ir

I <T1-3% 125%73{ \/E m|l,<T?
(llylz)l=1
Af(l2)?r(ly)
< Y rPArsm* Y f—d(lz)IT
l]<T173ir 125%73{ \/E
(llylz)l=1
r(p) ’
<[la+rpPArpp® (]‘[(H—paf(p)z)) Ir.
p P iz

Dividing by the normalizing weight, using Proposition 3.2, we see that the contribution from
R(s) =1/2+¢in (3.11) is bounded by

_ r(p) 2
< (logT)™1* (1+—/1 (p) ),
LI=252

which is smaller than (3.3) by a factor of log T'.

3.4.2 The main term

The integral along the line R(s) = —1/2 — € contributes to (3.11) as a main term. We make the
change of variables s — —s, and estimate

A(=s) ds

1 1\
LIf,=+s|Ai2|=—=5s| R*(SR"(-s) _ A
L(s):é+€ (f 2 ) 1/2(2 ) A(_s)_eZIH COS(ﬂ;_}'s)

f L(f Ly )A (1 )ZR*( R (2 (5 — ds
= o TS ~—S N —5)—(s - -
mo=yee U020 )2 A T-e2PA(S) cos (L)

Ap(n) n dyj2(my)dy2(ma) A p(my) A (my)
- () L X

_n21 n1/2 (P T2+€ ll,lg<T173£m1,m2<T£ (mlmz)l/z
mlleg)s A, 1 ds
l D)As(IDA (1 — - - .
xr(L)r(L)Ap(L)Af(l2) ws)_%%( iy A (S)l—eZZGA(s) cos (12)
We write )
eZlGA(s)

1-2OA) =1+ ———2
( ) 1—e2i0A(s)

and by the same observation as before, only the contribution from the first term above is
non-negligible. By (3.6), this term yields, up to negligible error term,

A d d A A
Y rriA Al Y r(m)dyj2(my)dy2(mz)A g (my) f(mZ)I

T
1/2
I, lL<T1-3 ml,m2<T“r (nml m2)
mllegznll
= Y S@Ir, 8.12)
g=sT'=3%¢
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

where S(g) is defined as

Ap(mdy2(my)dy2(me) A p(mi)A g (mz)
r()r)Ap)As(l) .
ZTl—:s{ ! ! m1,mZz<T‘t VN msy

L, h<s+——
g mymylo=nl
(l1,l2)=(11 1o, )=1 e

Welet [1; = (I1,my), lip = 1/ 111 and my := my /111, my := my/ [, so that

S(g) = Z rd)ri)Ap(l)Af(lp) Z
111125%73{ v Ll hilha=h

(llylz):(ll lg,g)zl
y Z Af(mlmzlz)dllz(lnml)d1/2(112m2)/1f(111ml)lf(llzmz)

Lymy,lipmp<T¢ mym;

We will estimate the outer sum by repeated use of Lemma 3.6. We first evaluate the 72;-sum
and then the my-sum.

The m;-sum

Writing [ for [;; and m for m;, we study the series

X Ap(malam)dy2(Im)Ap(Im)

> S =Gi(s;ma, b, D[] Z/lf(Pk)zdl/z(Pk)P_ks ,
m=1 m p \k=0

where

Gi(sma, b, 1):= ] Xizo Af(pv”(mzlzprk)d1/2(PV”UHka(PV”UHk)P_ks
1\, L2, L2,L) .— .
plma 1 20 Af(Pk)Zdllz(Pk)p"“

We wish to relate our Euler product to L'/?(sym? f, s). We have

Ll/Z(f x f, S) :l;[(l _ p—S)—l(l _ aip—S)—l/Z(l _ﬁip—s)—lu

TS (E( e

where b is a non-negative multiplicative function such that

Ar(p)?

b(p) = 5

= dl/z(P)/lic(P)-
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3.4. The unsigned moment

Writing s = 0 + i1, we thus have

H(Z Ar(p52dy12(p") p"“) = ()AL (sym® f, $)B(s), (3.13)
p \k=0

where B(s) is a bounded holomorphic function in the region o > 1 — ¢/log(2 + |7[). We write

0 Ar(molom)dy»(Im)Ar(Im) 1

y S T G (s;—,mz,lz,z)as)“z,
m=1 m 2

where

1
G (s; 5 M2 b, l) =LY% (sym? £, $) B(s) Gy (s; my, Ip, 1).
We define M (my, I», 1) to be
ZZO:O |Af(pvp(m2l2)+k)d1/2(pvp(l)+k)/lf(pvp(l)+k)|p—ks

su
P Y2 oA r(pF)2dy 2 (pF) pks

C
plmaly 1 0>1= 15000

’

and deduce by Lemma 3.6 the following lemma.

Lemma 3.8. Forl < T°¢, we have

Ar(maplom)dypp(Im)Ap(lm) 2+ 0(1) TS 1z 1
> == |log | Gi|Ligma bl
mets m I'(3) 2
+o| M
logI/ZT :

The m,-sum

We now evaluate the contribution of the main term of Lemma 3.8 and study the associated
Dirichlet series

d172(liama) A f(hamo) Gy (1;myg, I, 1)
> .
my 2

x d1/2(Pk)ﬂf(Pk)ﬂf(PkJrk’)dl/z(l?k,)/lf(pk/)
Z pks+k’

k,K'=0
= Go(s; 11, 12, 1) .
1 l;[ YR o Ar(pB2dya(pF)pF

where G, (s; 11, l12, I2) is defined as

[T Gop(sihin, bz b,

pllahihy
and Gy, is given by
oo
vp(l2)+k vp(h2)+k vy (L) +k+k' vp(l)+k vp(h)+k'y  —ks—k'
kg,zod%(l? r JAr(p'? JAf(p*? )dy (p™” JAf(p*? )p

) ! / / ’
Z d% (pk)/lf(pk)/'lf(kark )d% (pk )Af(pk)pfksfk
k,k'=0

We note that the prime factors of [, I, are, by the support of r, large enough so that the denominator
above does not vanish.
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Claim 3.1. Let s = 0 + i1, there exists a function, C(s), bounded and holomorphic in the region
o >1-cl/log(2+|t]) such that

i dy (PRI Ap(POIAL (P F)dy (p*) A5 (p*)
1_[ k=0 pks+k’
p

= = (Y2 (5L (symP £, 9)Cs).
Ar(p*2d. (pFp~F
Z e

Proof. We have

m Y20 o d12(PIA (PRI AL (P ) 12 (pF) A (pF Y p koK
p

ZZOZO Af(Pk)zdl/z (pk)p—k
=[1[1+diepappp +0(p™ ),
p

and the claim follows immediately.

By the above claim, we have

O
dio(l1om)A r(l1omo) Gy (1; mo, 1o, 1171) 1
)y e 32 1 s =(1/2(8)G2(S;—,lu,llz,lz),
ny m2 2
where )
Go (S; X hi, ho, 12) = Go(s; 11, ho, I) LY 2 (sym? f, 5)C(s).
We let
Mo(liy, hia )= [] sup [ Ma,p(s)]
plhnhal 0>1- iy
where M, (s) is given by
>
k,k'=0

d% (pvp(112)+k)Af(pvp(l12)+k)/lf(pvp(lz)+k+k’)d% (pvl’(lll)"'k’)lf(pr(lllHk') p—ks—k’

Y 1dy (PO PPN (s (R p R

k,k'=0

We note that by the parity of v, (I12) + k, v (I2) + k+ k', and v, (111) + k', we have

where M> (1) is a positive multiplicative function supported on squarefree integers and satisfy-
ing

Mo(p)* <1+ Cop7%),

M (hy, ho, 1) < dija (WA p (L ) IMa (1 1),

<
m2<T

for some absolute constant C, and some 6, > 0. By Lemma 3.6, we obtain for /15 < T5€,
ny
g

(3.14)
¥ dvj2(hama)Ap(hama)G(1;ma, o, hn) 2+ 0(1)

1 TS
Gy 1;=, 1, o, I | log' /2 | —
F(%) 2( 5 11, b2 2) 0og I

di (DA (I L) | Mo (111
+O( 12D (L )] 2(12)).
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3.4. The unsigned moment

We may control the contribution from the error term in Lemma 3.8 similarly. Namely, with
s=o+itand z=0+iy, welet

o0
Y. sup |G p(k;s, 2z, b, b))
k=00>1~ i
Ms(hy, ho, )= [] sup ,
___¢c
plhihal0>1 Tog@2+17D sup |G;p(k; $,2, 011, 112, )|
k=06>1——~X—
log(2+y)

where Gs , (k; s, z, 11, 12, I2) is given by

(e} , , ’ ’
> |/1f(l?v”(12)+k+k Ydyjp (p¥rhTk )/lf(pvn”HHk )dl/z(pv,,(hz)+kmf(pv,,(112)+k)|p_ks_kz
=0

)

x / I
Y A" (pFrpFe
k=0

and G;p(k; s, 2,011, L2, 1) is given by

0o
Z |Af(pk+k )dl/Z(pk )Af(pk )dl/Z(pk)Af(pk”p_ks_k z
k'=0

o0
3 A0 2dy 2 (pF)pFE
k'=0

We note that we also have
M3 (hy, liz, ) < dvjp(W)IA (L 1) IM3 (L 1),

where M3 = M is a function satisfying (3.14) possibly with a different constant. Using these to
bound the contribution from the error term, we conclude the following lemma.

Lemma 3.9. For 1,112 < TS~€, we have

5 Ap(mymaly)dyj2(liymy)di2(hiame) A p(hym) A (lizmy)

hymy, lpmy<T¢ myn

4+ 0(1) 2 T 1/2 T 1/2 )
=| —- 1 _— l e G 1;_)1 ;l )l
[ (oers] ers) el

+O0(d12(L)A p (L ) M3 (11 1))

The [; and /; sums

We let Z = exp((log N)2/3) and note that by Lemma 3.5 the contribution from 1,/ = Z to S(g)
is negligible. We first consider the contribution from the main term in Lemma 3.9 to (3.12),
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

yielding
rih)Ap(h ) 1
logT ) ———— ). Gz(l:—yln.llz,lz) Y r@PAs(g) Iy
ll,lg<Z V lllz lllllgzll 2 < r1-3¢ f
(h,1x)=1 g_max(ll,lz)
(g,h1h)=1
r(hil)Ar(hlz) 1
~logT ) ————— 3}, Gz(l;—,ln,llz,lz) [T a+r*Ar(p>Ir
h,L<Z \% hiy Ihhe=0 2 pthly !
(h,1)=1
r(hi)Ap(h )
~logT ———————d)G(l, L) [+ r(p)* A (P IT,
ll,géz Vil l;[ /

(h,l)=1

where up to a constant G»([;, l») is given by

(o)

Z d% (pvp(ll)+k)/1f(p\/p(l1)+k)/1f(pr(lz)+k+k')d% (Pk/)/lf(pkl)l?_k_k’

k,k'=0
l_[ ) ! / / !‘
PIE (4 r(p)?Ap () Y di(POIA(IA (") dy (P)A(p* T E
k,k'=0

Since for any 1y, I, k, k', one of v, (I1) + k, v, (I2) + k + k' and k' must be odd, we may factorize
A¢(lIp) and obtain
Ap(h1)Ga(ly, b)) = dy o (WA (11 12)* Gl 1),

where G is some multiplicative function supported on squarefree integers and satisfying
G(p)t < (1+Cp™%),

for some absolute constant C3 and some 63 > 0. From Lemma 3.5 we have the following
sequence of estimates:
2r(p)As(p)?

FIOOYOE 2r(p)As(p)?
3 (OrHAFWD) o ~T1[1+ ) (1+ r(p)As(p) )
I<Z \/7 p \/ﬁ \/ﬁ

The lower bound (3.3) follows after dividing by the Normalizing Weight.

(3.15)

~11

p

We now consider the contribution from the error terms in Lemma 3.9. We estimate

r(LiL)|Ar (1))
2 S dp WA )IMs(hl) [T A+ r(p2Ar () (3.16)

L b<Z Vil hnha=h pthlp

(h,)=1

- ll,%éz vl

(I, l)=1

rh A (L)1
L2 N (h, ) [T+ r(2As(p)),
p

where Ms is a multiplicative function supported on squarefree integers defined on primes by

M;s(p)
A+r(pP?As(p)?)

Ms(p) =

We then may evaluate (3.16) as in (3.15), however the contribution from this term is smaller as
we save a factor of log T in the error term of Lemma 3.9.
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3.5. The signed moment

3.5 The signed moment
In this section we prove (3.4), by studying
NW.Eu,, [L(f,%+ it ]

[l e -
I, 1 |2 A(9) = 20 cos (11=3)"

The contribution of the integral along the line R(s) = 1/2 +¢ is

Af(n) n dyj2(my)dya(ma) A p(my)Ar(mp)
—2i6 f 1/2(my)dy2(m) A p(my)A g (myp
’ Z nl/2 (T2+€) Z Z

1/2
ll,l2<T1_3'{ ml,m2<T‘5 (ml m2)
mol, )S A A(S) ds

< P F)A (DA (D) ( s : s
1 )N FULIA fUR2 R(9=1+e nmily) A 1—6'_219A(5)COS(LI;S)

which by (3.5) is negligible. We thus only care to estimate the integral along the line R(s) =
—1/2 —e. We make a change of variables s — —s and use the definition of A(s) to find

f L(f 1+s)A (1+S)A (1 s)R*(s)R*( g2 ds
po-tee 2 123 1235 1= e2ifA(s) cos(”;{s)

-y Agp(n) ( n ) ¥ dyj2(my)dyj2(m2)Ap(my)Ap(my)

= n1/2 T2+e - m2<Tf (mlm2)1/2

moly \*  A'(=$) ds
x DA A ) [ ( ) : s

ll,lzél_zg 1 2)A UL A U2 Rs)=1+e nlmh 1—6216A(S) COS(”;;—S)

We write )
e4“9A2(s)

(1—e20A(s) " =1+ e20A(s) +

1-e2i0A(s)
to obtain the following three terms

d d Ap(m)A
L= Y rUoridrply Y, Aetmduetm)lim)d; om)

1/2
11,12<T1_3‘{ mlym2<Tf (mlmz)

1 A d
xf L(f,—+s)(@) A=) — e,
R(s)=1+e 2 mil cos (£74)

I := g2i0 Ag(n) ( n ) y dyj2(my)dyj2(mo) A p(my)A r(mp)

= = 1’11/2 T2+€ —rr (m1m2)1/2

myl ds
2l> ) Al

x ) rri)ApU)Asl) 2 cos ()’
COS

Iyl <T1-% %(s)zéﬂ(ﬂml h

and

A0 f(n) n dyj2(my)dyj2(ma) A g (mi)A r(my)
l Z 1/2 (T2+e) Z - (m1m2)1/2
my,my<T¢

myly \*  A'(s) ds
x r(I)r)A (1A r (L) ( ) - - .
11,12;1-25 B Ris)=t+e \ My ] 1-e?0A(s) cos (LLE)

H
We can see from (3.5) that III is negligible, and we shall therefore focus solely on I and II.
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

3.5.1 Bounding]II
Using (3.6), I is bounded up to negligible error term by

Y or@*Ar* Y., Aphlr(hlk)

g<T1’3“t l],l2<T173§/g
(h,L)=h1,8)=1

Ap(mdyj2(my)dyj2(ma) A g (ma) Ay (my) I
(nmymyp)'/?

<X

x
my,my<T*
nm, llszlz

T-

We let lo; = (I, my), Lo = (I, n) and replace m; := %, n:= % to reduce the problem to esti-
mating

Ap(hl)r(ll)
Y r(@)*As(g)? Y —_——x
g<T1—3$ ll,l2<T173{/g vV ll lz

(L, )=(l15,8)=1
Af(lan)dy2(lymy)dy2(mynl) A g (lymy) A p(mynl)
nmy ’

>

by ly=1, nny ll,lgl m1<T‘5

We note that the innermost sum is bounded by

>

nl1,121 my <T{

[Ay(laan)dj2(lyma)dyja(hmin)Ap(lym) A p(mynl)| (3.17)
nm ' '

Bounding (3.17)
We study
|A (lgzn)dl/z(llmln)/l (mlnll)l oo _
> ! P ! =TT X Ar(p™) 2 dia(p™)p™ | Gs(s; 1, ma, 122),
n p \k=0

where

(o]
Z |/lf(pvp(lzz)+k)d% (pr(l] mlHk)/lf(pV’”(ll m1)+k) |pfks
k=0

Gs(s;h,my, )= ] >
pllimylzm Z Af(pk)zd% (pk)p—ks
k=0

By (3.13), we conclude that

)3

7 n?

[Af(loam)dyj2(hmin) Ay (mynly)|

1
={Y2(5)Gs (8;5,11,7"1,122),
where )

Gs (S; > L, my, 122) = Gs(s; Iy, my, lop) L* (sym? f, 5) B(s),
where B(s) is given in (3.13). Letting M3(l;, my, l»2) denote
0o V,(lon)+k v,(lymy)+k v,(limy))+k —ks
Yo Ap(p P Ry dy (pPr TR A (pTr T p
0o ky2 kY —k
Yo Ar(p)2dy(pFyp*s

sup
pllimy by o>1-c/log2+]|1])

’
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3.5. The signed moment

we use Lemma 3.6 to conclude that for [; < T~¢, we have

[Af(loam)dyj2(hmin)Ag(mynl)|

1
« (log T)1/2G3 (1; > I, my, 122)

M;s

ll n<T¢ n

We estimate the contribution from the first term of (3.18); the contribution of the second term
is analogous. We thus study

dy/2(lymy) A p(Lym)|Gs (1; 1, my, I20)

> i

mg 1

1 Yo ld12(PRIA L (PEY A (PR )y 2 (PF ) A p (R R p ks
b YR oA r(pF)2dyn(pF)pk

Ga(s; 1, 1p),

where

Gi(ssh, )= [] Ga,p(s; 11, ),
plhl,

and Gy, (s; [, I2) is given by

s / / 7 /
Z |d% (pr(121)+k)/1f(pvl;(121)+k)ﬂf(pr(122)+k )d% (pr(ll)+k'+k' )//‘If(pr(ll)+k+k )|p—k‘ —ks
k,k'=0

Y 1y (pMIAL(POA Py (PFFO A pE RS
k,k'=0

Claim 3.2. Lets =0 + i1, there exists a function, D, bounded and holomorphic in the region
o >1-c/logl|t| such that

|d% (pk)/lf(pk)ﬂf(pk’)d% (pk+k')/lf(pk+k’)|

kkz,_o pREs
[1— = =MLY (sym? f,9)D(s).
14 Z Af(pk)Zd%(pk)p—k
i=0

Proof. We have
1 X r=0 di2(PIIA L (P (PR K dr 1o (PFHF) A p (pF ) pRsF
p Z]ocozo Af(pk)zdl/g(pk)p_k
=11 (1 +di2(p)°Ar(p)p S+ O(p_s_%)),
p

and the claim follows immediately. O

We let My (l; 1) be a positive multiplicative function, supported on squarefree integers, such
that

My(p)* <1+ Cp™),
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

for some constant C4 > 0 and some 04 > 0, chosen so that

sup G4,p(3; L, < Mf(ll D) dy 2o ) My (1),
plhl, R(s)>1-c/log|t|

and use Lemma 3.6 to conclude the following lemma.

Lemma 3.10. Forlj,l, < T*~¢, we have

)3

n11,121 m1<Tf

< (log1*"*Gy(1; 11, I) + O (My(log T) 14

A (a2n)dhj2(lyma)dy o (hmim) A g (loymi) A p(mynly)|

nmy

Estimating the outer sums

We estimate the contribution from the first term of Lemma 3.10 to II, the second term being
treated similarly. We notice that letting Z = exp (log2/ 3 N) the contribution from max(ly, ) > Z
is negligible, and thus only care to estimate

Ar(lhil)r(lil)
Y or@se? Y HEEY Gaih b
g<T-3%¢ L,lb<T' 3 g,Z V hip bo1lp=1
(L, L)=(l115,8)=1

Ap(hil)r(hl)
< Y r(@*Ap©* > S
g<T!=3¢ L,L<T'"%/g,2 Vil

(h,L)=(h1,8)=1

dy2(1)d3/2(1) Gyl 1),

where G, is a multiplicative function supported on squarefree integers such that

Ga() =TTUA s (p"* D)+ O(p™%),
pll

for some 65 > 0. By Lemma 3.3 and 3.5 we obtain that the contribution of II is bounded by

( 3Af(p)2r(p))
— Iy

Ar(p)?r(p)
Qog DT+ r(p?A;(p)?) (1+— 1+
1] sl 2 )] NG

21 ¢(p)?
(+ £(p) r(p))l

< log D**TTa+r(p)?A,(A]] |1 T,
p p

so that dividing by NW we obtain an acceptable upper bound towards (3.4).

3.5.2 Estimatingl

We have reduced the proof of the upper bound of Proposition 3.1 to bounding I. We will do so
by showing it is bounded by II. By Proposition 1.2, we have that

1 (n) (n)
L(f’§+iv) Z 1];2+1VVV(71)+A(Z )Z 1/2 iv Voy(n),
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3.5. The signed moment

where (1 )
1 s L5 tiv+u)du
Vup)i=s— | yte mE———.
2mi J) Leo(5+iv) u
We may thus write

fL(f Ly 'v)(mzlz)wA’( vy — S1+S
o —iV)——— = :
R 2 mily cosh (L£¥) b

where

Af(n) moly v ,
S;:= Vi A (=i ,
! ; nl/2 fue(mllln) V(WA (=iv) M)

cosh (-5

and

Ar(n) molon\™Y %

So 1= Voy(MAGV)A (—iv) ————.
’ ; nl/2 f[R( milh ) VIAEMAT )cosh(%)
We note that by the support of V,, (see Proposition 1.3), we only need to consider the contribu-
tion from |v| = T and n < T'*¢, for both S; and S, . We also note that in the definition of V;,

only the contribution from u <« T*¢ is non-negligible. We thus estimate

Ar(n) e

B+iuw)?
S1= 1/2[ 3+ :
necTie 27N u<Te B> (3 +1u)

Kr(n;my, my, Iy, b, wydu+O(T™%),

where K7 (n; my, my, 1, b, u) is defined to be

f ( msly )iv Loo (3 +i(v+uw)
R

milhin Loo(% +iv)

Neiwe) —2
cosh (L)’

and W is a smooth function supported on [-27T, —T/2] such that W/ (x) < x~/ forall j = 0.

We recall that by (3.7),

. 1 1 2 2 2 272
A(=iv wtra((r+v) +(v-r)+ v —r9
AN (=iv)=- Civ) e[ 1671 +O(v|719,
1674
and
Loo(%+i(v+u))A( i) = e 2 F+u+v it v u— i
Loo (L +iv) ' 2e 2e
S(r+v) 1 s (v=r) | 1
r+vil Yz ta | v—-riji—5+3 mu
x| 5 o o Loter a+o(viTY,

for some absolute constant c¢;. We then write

Kr(n; ml,mZ,ll,lz,u)=ngT(V)e(fT(V))dv,

where

5+ 3 (r+VP+(v=n)A)+ (V2 -r?)?

16 4
log( 1677
T+v
cosh (-7¥)
|r+ u+V|5/4|v+ u—r|5/4’r+V|1/4|v—r)l/4
X
2 2 2 2

+0(v|~1*9)

griv)=c W)

Tu
e,
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fore some absolute constant ¢y, and

3 mylo r+v r+v| v-r v—r
Z”fT(v)_VIOg(nmlllnz) 5 lo ’ o ‘+ 5 log’ o ‘

r+u+v r+u+v| v+u-r v+u-—r
lo | |+ 1 | |
2 2e 2 2e

+

We now wish to run a stationary phase analysis on K7, and we therefore compute

2nf}(v)=log(#llfn2) —lo g’ﬂ + = log|—|+2
1 r+u+v 1 v+u—r
+ Liog| LY Lygg 8ot
2 2e 2 2e

We note that in the support of the integral, |f;.(v)| = 1 as otherwise we would require to
have myl, T? = nm I}, however the right hand side is always bounded by T27¢. By repeated
integration by parts, we find

Kr(m;my, my, Iy, l,u) < e T4,

so that the contribution from S is negligible. Similarly, we now study

/lf(n) e(3+zu)2 ~
Sy = —f . K n;m,m,l,l,udu+OT_A,
? ,,«ZTM 2nn'? Jycre (mn)3HIU(3 + iu) iz, b b0 o

where Kr(n; my, my, Ih, b, u) is defined to be

iv Loo T4 (1 —
f(mZIgn) (f+i(u V))A(iV)A/(—iV) W)dv
R\ myl;

Leo(}-1V) cosh (5)’
We write
Kr(n;my, mo, Iy, I, u) =ngT(V)e(fT(V))dv,

where up to a constant, gr(v) is given by

2

u u+r—V|5/4|u—v—r|5/4'r—V|1/4|r+V|1/4

2 2 2 2
T+ r+v?2+v-m+02-1?\ W)
1 16 " 14 1+ 0(v|~1*Y),
N 08( T67t )Cosh(T+V)( (vl )
and
~ molon u+r—v Uu+r—-v| u-v-r u—v-—r
2 =vl 1 + 1
mfr(v) vog( mlll) 5 og’ 2 | 5 og‘ )
v—r r—v| Vv+r v+r
+ =y log| [+ 5 log | |
e

We compute

2y ) = log| S22 | - (tog 1+ 2 ) +1og 1~ 1),
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3.5. The signed moment

We thus see that if mylon # m; [;, then f;(v) > T°~1. Computing higher derivatives, one finds
that f;’ ) T , so that by Lemma 1.5 one concludes that

Rr(n;my, my, Iy, b, u) < O(T™).

Using the bound V_, (n) <« 1, we consider thus have

Ar(
%IPLO(T‘A).

82 < 5m2l2n:m1 ll nl

The contribution from the main term thereof to I is therefore bounded by

di(my)dy (m)|Ap(myAg(mz)Ar(n)]
Y. rrIA A Y 7
11,12<T1735 ml,m2<T§ (nml mz)

mglgn:rmh

Ir,

which is the same sum as that appearing in II. This concludes the proof of the upper bound of
Proposition 3.1.
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Analogies with Frobenius Trace Func-
tions and further directions

We give the definition of Frobenius trace functions as studied in [FKM15a] and look at certain
analytic properties for which we have analogs in the context of analytic trace functions as
defined in Chapter 2.

The class of analytic trace functions we consider unfortunately don’t have a clear geometric
nature as that of Frobenius trace functions. However we give some heuristics as to how we
may define similar concepts.

4.1 Frobenius Trace Functions
Let p be a prime, and let [ # p be an auxiliary prime, and fix
L: @ - C,

an isomorphism of fields. Let K := [, (X) be the function field of P! (Fp), and let K S denote
a separable closure of K in which an algebraic closure E is contained. We have an exact
sequence

1 — G8:=Gal(K®/F (X)) — G*:= Gal(K®/K) — Gal(F,/F ) — 1.

Definition 4.1. LetU c IP[lF be an open set. An [-adic sheaflisse on U is a continuous represen-
P
tation

p:G%— GL(V),

for some finite-dimensional Q;—vector space, V, such that for all closed point x € U, the inertia
group I acts triviallyon V.

For any closed point x € Alp, let k. denote its residue field. We have an isomorphism

Dy /1, = Gal(F/ ky) = (Fry),

where D, is the decomposition group and Fr, denotes the geometric Frobenius element, i.e.
the inverse of the usual Frobenius element x — x'%x!,
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

Definition 4.2. Let p be an l-adic sheaf. The trace function attached to p, t, : Al (Fp) =F,—C,
is defined to be
tp(x) := 1 (Tr(p(Fre| V1)),

where V1= denotes the subspace of V that is invariant under I .

We define the complexity of the trace function ¢, by the conductor, a geometric invariant given
by
c(tp) :=dim(V) + p+1—|U| + Swan(p),

where Swan(p) is a non-negative integer called the Swan conductor of p.

In order to finalise our definition of Frobenius trace functions, we require the notion /-adic
sheafs of weight 0.

Definition 4.3. Let p be an l-adic sheaf. We say that p is of weight 0 if for all closed point x € U,
we have that the eigenvalues of p(Fry) are of absolute value 1
We are now in a position to define formally Frobenius trace functions.

Definition 4.4. A function t:F, — C is said to be a Frobenius trace function if there exists p,
some l-adic sheaf of weight 0, such that t = t,. We define the conductor of t ,c(t), to be

c(t) :=minfc(p)|t = Ip}.

We now give some examples of trace functions.

Example 4.1. Let ¢ : F,, — C* be a non-trivial additive character. Then v is a Frobenius
trace function. In particular, there exists an l-adic sheaf £y, satisfying te, =y, called the
Artin-Schreier sheaf attached toy.

Example 4.2. Let y :F,, — C be a non-trivial multiplicative character. Then y is a Frobenius
trace function. In particular, there exists an l-adic sheaf £y, satisfying t, = ¥, called the
Kummer sheaf attached to y.

Example 4.3. We define the Kloosterman sum by

Kh(x):=p~ /2 Y e

(xm +m™! )
me[F;;

p
The Kloosterman sum is a Frobenius trace function.

Example 4.4. For any n = 3 we define the Hyper-Kloosterman sum by

mp+---+mpy

K):=p2 Y P

My My=x

All Hyper-Kloosterman sums are Frobenius trace functions.

74



4.1. Frobenius Trace Functions

Remark 4.1. The complex conjugate of any Frobenius trace function is again a Frobenius
trace function (Via the dual representation). The sum of any two Frobenius trace functions is
also a Frobenius trace function (via the direct sum representation). The product of any two
Frobenius trace functions is close to being a Frobenius trace function (via the tensor product
representation). We won't make the last statement precise.

We conclude this section by giving two deep theorems of Deligne. First we give the quasi-
orthogonality relation by means of the Riemann hypothesis over finite fields [Del74]. We
then define the Fourier transform and give a theorem explaining that generically the Fourier
transform of a Frobenius trace function is also a Frobenius trace function [Lau87, Kat88,
Del80].

We first require the notion of geometric irreducibility and isomorphism.

Definition 4.5. Let p : G% — GL(V) be an l-adic sheaf. We say that p is geometrically irreducible
if its restriction to G8 is irreducible.

Let t be a trace function. We say that t is geometrically irreducible if there exist a geometrically
irreducible l-adic sheaf, p, such that t = t,.

We note here the following fact, for which one may imagine an analog when considering
irreducibility in the context of analytic trace functions.

Fact 4.1. Let t be a Frobenius trace function that decomposes as a sum of n geometrically
irreducible components. We have

Y IK@)? = (n+oL)p.
F

p

Definition 4.6. Letp; : G% — GL(V}) and 02 G2 — GL(V») be two 1-adic sheaves. We say that
p1 and p» are geometrically isomorphic if their restrictions to G8 are isomorphic.

Let t1 and t, be two Frobenius trace functions. We say that t; and t, are geometrically isomorphic
if there exist two geometrically isomorphic l-adic sheaves, p\ and p,, such that t, = t, and

tz = th'

We may now state the Riemann hypothesis.

Theorem 4.1. Let Ky and K> be two geometrically irreducible Frobenius trace functions, of
conductors c1 and ¢, respectively.

* IfK; and K> are not geometrically isomorphic, then

2.2 1/2

Y KKz (x)| <4ciespt'e.

x€elF,

« IfK; and K, are geometrically isomorphic, then there exists a € C' such that K, = a Ky,
and we have

2.2 1/2

Y KKz (x)-ap|<4dcicp’.

xel,
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

Note that Fact 4.1 follows from the second statement of the Theorem.

We conclude this section by describing the Fourier transform, that is crucial in the proof of
Theorem 0.1.

Definition 4.7. Let

y:F,—C"
be a fixed non-trivial additive character. Let C(Fp) be the space of functionsF, — C. The Fourier
transform with respect to y is the linear operator

FTy : C(F,) — C(Fp)

defined by
FTy( @) =-p "2 Y py(xy)

x€lF,

foranyp e C(Fp) and anyy € Fp.

We have the following deep theorem of Deligne.

Theorem 4.2. Let p be a geometrically irreducible l-adic sheaf that is not geometrically isomor-
phic to an Artin-Schreier sheaf. Then there exists a geometrically irreducible | -adic sheaf, the
Fourier sheaf FTy (p), such that

IFT, (o) = F Ty (tp)-

Moreover, c(tFT, (,)) < 10¢(tp)*.

This theorem therefore tells us that the Fourier transform of a Frobenius trace function is also
a Frobenius trace function (generically). We note that the bound on the conductor of the
Fourier sheaf is proved by means of a geometric analog of the stationary phase method.

4.2 Analytic trace functions

In this section, we compare certain properties of analytic trace functions, as defined in Chapter
2, to those of Frobenius trace functions. We recall their definition here.

Definition 4.8. A family of smooth functions (Ky) ser, K¢ : R>o — C is called a family of analytic
trace functions if there exist real numbers a < b,b > 0 and a family of analytic functions
(M (5))ter in the strip a < R(s) < b, such that the following conditions hold uniformly for
a<R(s)<b.

1. The following integral converges forany a <o < b,

1
— | M(s)x"ds, 4.1
271 J(o)

and is equal to K;(x) for all x € R>, t € R.
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4.2. Analytic trace functions

2. There exist constants c, ¢, depending on the family (K;):er , independent of t, such that
we may write M;(o +iv) = g,(o +iv)e(f;(0 + iv)), in such a way that for all x € [t,2t], the
following

g +iv)<; A+ )TV Yz, (4.2
holds, as well as the following conditions on f;.

(a) Whenever|v| < ctor|v|=cyt, we have
/ . 1
filo+iv)— py= log(x)| > 1, (4.3)
T

where the implicit constant does not depend on t.

(b) When cy1t < |v| < cot, either (4.3) holds, or we have

o +iv)> A+ vl (4.4)

while foralle >0, j =0,
Dig+iv) < (L+v)HT, (4.5)
where all the implicit constants do not depend on t.

(¢) Finally, we require that
I/( . 1 -1
L (O+iv)———> (1+]|v]) ", (4.6)
2nv

whenever ¢t < |v| < o t, and where the implicit constant does not depend on t.

We first give a quasi-orthogonality relation for analytic trace functions, reminiscent of Theorem
4.1.

Proposition 4.1. Let K;,; and K ; be two analytic trace functions, with associated Mellin
transforms given by My ;(0 +iv) = gi.((0 +iv)e(fk (0 +iVv)) for k = 1,2. Let c;1,ci2 be the
constants attached to K; ; appearing in condition (4.3). Let further C; = min(cy1,c21) and
C» = max(cy2, ¢22). Suppose thatfl’f[(a+ iv) — 2l,,t(0, +iv+a) > v forC, <|vl< Cyt and
a < t°. Let V be a smooth compactly supported function in [1,2] satisfying xJ V) (x) < 1 for all
j =0, then

‘[Kl’t(X)mV(f)dx « pli2te.
R t

Proof. Following the notation in Chapter 2, we let # = {0} U > {+ (%)j 1, such that for each
[ € #, we take a smooth function W;(x) supported in [%l, %’] for [ # 0 and such that
WP ) < 1,
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

for all k = 0. For [ =0, take Wy(x) supported in [-2,2] with Wo(k) (x) <; 1, and such that
1=Ycs Wi(x). We thenletforanyie .# and k=1,2,

1 .
I ¢ (x) = gfﬂgk,t((fk"'iV)e(fk,t(Uk+iV))x TEYW (V).

We recall that by Lemma 2.1 only the contributions from || < € and || € [£!7¢, t'*¢] are
non-negligible.

If |I] < t¢, up to replacing Ky ; by the functions Kj. ,V (x/t), we may take the Mellin transform
for any o > 0, and therefore I ; ; is negligible for x € [¢,21].

We therefore assume that |1] € [£17€, t17€]. By changing the order of summation, we have

—_— (X
fIl,ll,t(x)fz,b,z(x)V(—)dx=
R t

1

_Zf M]y,f(O'] +l'V1)M2't(O'2+l'V2)Wll (Vl)le(Vg)f X_al_02+i(v2_v1)v(f)ddeldVZ.
474 JR2 R t

Now by Lemma 1.5, the innermost integral is negligible unless |v; — v»| <« t¢. We therefore
need to estimate for x € [t,21],

fRfl | g1,:(01+iv1) g2, (02 + IV Wy, (V) Wi, (V) e(fi, (01 +iv1) = fo 1 (02 +iv2)) x V2" d.
Vo—V1| <KL 1€

We will estimate this integral by the two variables second-derivative bound for oscillatory
integrals as in [Mun15]. We therefore rewrite this integral as

f fg(v, a)e(f(v,a))dvda,
a<tt JR

where

gW,a)=g1(01+iv)g (o2 +i(v+a) W, (V)W (v+ a)W(a),

where W is a smooth, non-oscillatory, compactly supported function on [—¢¢, ], and

fv,a)=filo1+iv)— fo o2+ i(v+a))+ %logx.

We compute

2 d2 d2 )
mf(% a) = mfl,t(o'l +iv)— WfZ,t(UZ +iv+a)>»v -,

and ) ,
d logx d )
Wf(\/, a)= % - @fg,[(ag +i(v+a)>1.
We also need to compute the total variation of g. By the properties of g ; for k =1,2 and of

W;, we have
2

—g(v,a) < V7119272
dvag
so that
t1+5 te d2 .
var( )::[ f (v, a)| <« orro2-1%€,
§ A J_se dvdag
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4.2. Analytic trace functions

By the second derivative bound for multivariable oscillatory integrals [Mun15], we thus obtain

f f g, @e(f(v,a)dvda < (71+o271/2%¢,
a<tt JR

We therefore have
— (X
[ BTGy (2 dx e 1025,
R t
concluding the proof of the proposition. O
Hyper-Kloosterman sums of different weights are not geometrically isomorphic. We now give

an archimedean analog of this fact.

Proposition 4.2. Let F;; denote the normalized Bessel function,
2L
Fit(x)=1¢""T §+lt Jit(x),

where ], denotes the usual J-Bessel function of order v. Then for any n = 3, the higher rank
Bessel function,

n-1

tz s—int\_(s it \"' sy
Tne=—— r I'(—+ e(—)x ds,
2win Jid) n n n-1 4

an(x)mv(f)dx « (l/2He
R t

satisfies

for any smooth, compactly supported in [1,2] function, satisfying VU (x) < jljforall j=0.

Proof. Ttsuffices to check the conditions of Proposition 4.1. We denote by Mg ;(s) = gr:(s)e(fr+(s))
and Mj, ,(s) = g, ((S)e(f7,:(s)) the Mellin transforms respectively associated to F;; and J, ;.
We recall (see Propositions 2.2 and 2.3) the regions of interest for Mg (o +iv) and M;, (o' +iv")
are respectively contained in ~100¢ <v < —fand —-100nt <v' < — -5 t, where

2
2 fr (0 +iV) = ———
dvz’" v2— 2’

and
2

a y o (m=DV'+nt2-n)
anv’zf]’“t(a tv)= W —-nt)(n-DV' +nt)’

Forany a <« t€ and —100t <v < —% t, we check that

(n-Dv+nt@-n  v+a _ viPm-n*-D+nt2-n)+0(%)
v—nt((n-Dv+nt) w+a2-t2 w-nt)((n-Dv+nd(v+a)?-t2)
> v‘l,
concluding the proof. O

We also prove an analogous result for two higher rank Bessel functions of different rank.
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

Proposition 4.3. Let3 < n < m and let ], 1, Jm,; denote higher rank Bessel functions,

k-1
2

J =L F(—S_ikt)l“(£+—it )k_le(f)x_sds
ST omik Joy k k k-1 4 ’

fork=3. Then
R t

for any smooth, compactly supported in [1,2] function, satisfying VU (x) < jlforall j=0.

Proof. Itsuffices to check the conditions of Proposition 4.1. We denote by Mj, (s) = g7, ((s)e(f7,,.+(s))
and Mj, ((s) = g7, «(s)e(f7,,:(s)) the Mellin transforms respectively associated to J,, ; and J,,;.
As in the proof of Proposition 4.2, the region of interest here is given by —100nt <v < -,

where
2

. (m-1)v+mt2—-m)
Zan/m,t(a+ iv) =

v-—mt((m-1v+mt)’

and 2
d (n—l)v’+nt(2—7l)
2 ! ./ — .
ﬂdvlzf]n’t(o- +lV) (V/_n[)((n—l)v’+7lt)

Forany a < t€ and —-100nt<v < —% t, we check that

(m-1)v+mt(2-—m) 3 (n-1)wv+a)+nt(2—n)
v—mt)(m-1)v+mt) w4+a—-nt)(n-1)(v+a)+nt)
,  (MP=n’m+m?n-m?)v+2nm(m-n)t+0(1) 4

v—-mt)(m-1Dv+mt)(v+a—nt)(n—-1)(v+a)+nt)

concluding the proof. O

We now wish to investigate the analog of Theorem 4.2, in the context of analytic trace functions.
This was encapsulated by Proposition 2.4, that we recall here.

Proposition 4.4. Let K; be an analytic trace function. Then there exists an analytic trace
function, K,(x), such that the Fourier transform,

2
K (x) = t”zf K:(rw)V(we(-xu)du,
1

satisfies
Ry (x) = K (x) + O(t71?).

Indeed Proposition 4.4 tells us that up to a small error, the Fourier transform of an analytic trace
function is also an analytic trace function. We also note that in Theorem 4.2, it is important to
avoid Artin-Schreier sheaves. However in our definition of analytic trace functions, we already
noted that condition (4.6) was in some sense a way to impose not being "too close" to an
additive character.
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4.3 Connection between Chapters 2 and 3

We make a link between the work on analytic twists of modular forms and large values of
L-functions with prescribed argument. We start by giving a very rough sketch of the work of
Hough on large values of L(y,1/2), for y a Dirichlet character (mod q), a large prime going to
infinity. In his work, Hough requires Theorem 0.1 to bound sums of divisor functions against
Hyper-Kloosterman sums. We then describe the analogies with our work and look at the links
with Theorem 0.2.

4.3.1 Large valuesof L(y,1/2)

Let y be a non-principal Dirichelt character (mod g), a large prime. We assume that y is even
for simplicity. We then attach the Dirichlet L-function

x(n)
ns’

L(yx,s) ::Z R(s)>1,

and the completed L-function
. ﬂ s/2 f
A()(,s).—(”) F(Z)L()(,s).
The completed L-function satisfies the functional equation

Ay, ) =e(A(,1-9),

where

T(x) 1 (a)
eY)i=—=— x(a)e|—
\/ﬁ \/ﬁa godq q

is the normalized Gauss sum attached to y.

Theorem 4.3 (Hough). Let F(x) be a growth function, satisfying for all large x, F(x) = o((log x)'/?)
and fixn < 1/32. For all primes q > qo(F), for all® € R/Z, for all § > =, there exists a non-

Flg)’
principal y (mod q) such that,
1 1
[aroreefv:3)) -

We now explain some of the ideas involved in the proof of this Theorem. We let 6, denote the
argument of L(y,1/2), and note that if L(y, %) # 0, since

logg
77loglog q

1
<9, %(logL(x,—))z
R/Z 2

L(X’%) — i20
L(Y3)
we have
va

Unlike in the continuous case, we may not pin down exactly 26, = 6. Instead of using the
residue theorem, Hough therefore uses a sort of equidistribution result for typical values of
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

L(x,1/2).Welet £ = logq]_[p (1 + %), where r is given by (3.1). The idea is to compute

certain signed and unsigned moments. We let N = g" for some 0 <7 < 1/32 and

Ry =) rmym,

nsN

be a resonating polynomial. By a clever argument involving a quantitative equidistribution
result, he captures large values by proving that

> ’L(xé)rm(x)lz

x (mod q)

>[Il 2

x (mod q)

while

>

x (mod q)

=o( ) [IR(x)IZ]f“)»

1\F )
L(Xyg) |R(V|
X (mod q)

for k =1,2. He then encapsulates the equidistribution properties by proving that forall m=1,

1 k
> L(x,é) e@m0) |R(|* | <me "8 Y [|R(7()| ]24 (4.7)
x (mod gq) x (mod q)
fork=1,2.

We now focus on the ideas behind the proof of (4.7), as that is where a non-correlation
problem similar to that of Theorem 0.1 appears. We will focus on the case k =2 which is the
hardest. By the approximate functional equation for L(y, 1/2), opening the square and writing
e(2mb,) =e(y) " the left hand side of (4.7) is essentially given by

— e xmdn)_(n
r(l)r(l) 1D xU2)eln) —V(—), (4.8)
ll,lzz<q" o x(ngdq) s ; vn q

for a smooth, non-oscillatory, compactly supported function on [1,2]. By orthogonality of
characters, we have the following proposition.

Proposition 4.5. Leta,b # 0(mod q). For each m = 0, we have

1/2

q Y x@yBe(n)™ = Kl (@b).
91 ymodq)

From this Proposition, we conclude that (4.8) is given by

q-1
q'’2

Y r(ll)r(lz)z—Klm(hnlz)v(q)

hib<q?
which is small by Theorem 0.1.
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4.3.2 Largevaluesof L(f,1/2+it)

The proof of Theorem 0.4 follows analogous steps, however since we may use the Residue
theorem to capture the angle of L(f,1/2 + it), we only need to compute first signed and
unsigned moments. We recall that in the computation of the signed moment, we have to
estimate sums [, Il and III (see p. 65). We recall that term III is negligible, while term II contains
a sum of Fourier coefficients twisted by a non-oscillatory function. These terms should be
seen as analogs to the moments

)3

X (mod q)

1
L (x 5) e2mb,) |R(y) |2]

for m =2, and

1 2
> |Llvg]RWEY,
X (mod q)

respectively. Term III is analogous to the case m = 1 above. As explained in the previous
section, Hough bounds this moment by relating it to sums of the divisors function against
Kloosterman sums.

In our context, we don'’t see this analogy exactly. That is due to the fact that the estimates for
term III essentially boil down to bounding a sum of the shape

n

YAV (=) Kr(mily, )

for 13,1, < T'¢, and where

(Z_Z)SA’(_S)L (4.9)
hn cos ($£T) '

Kr(n; 1y, 1) :=f
H

R(s)=1+e

In said region, we prove that K (x; [1, [») < T4, by the stationary phase method, and therefore
we don'’t require Theorem 0.2.

However, as soon as the range of [, [, is allowed to go beyond T, we can no longer estimate
trivially Kr(n; 1, Io). In fact, we may prove that K;(n; [1, [2) is an analytic trace function.

Proposition 4.6. For any | = T, there exists an analytic trace function, Kr,;(x), such that the
function Kr(x;1,1) satisfies

Kr(x;1,1) = TY?(log T) K7, (x) + O(T®).

Proof. We may, up to negligible error, shift the line of integration to (s) = 0, and using the
relation (3.7), we obtain

L

1[(1\" L+ (r+v)2+ (-2 + v -r?)? dv
KT(x;l,1)=——f (—) A(-iv)log +0O(T").
Cos

2Je 1z 167 h(Z2)

We now let

T+vy)’

1/( 1 )"VA(—iv) E+1(r+v2+v-r?)+ 2 -rH? dv
log
R cosh (%)

Kpi(x):=T7Y2-2
110 log T 167

2 Ix
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

and we prove this is an analytic trace function. Let

. Ll r+vP+v-nNH+nr-r??
MT(iv):—JIT_I/Z(logT)_ll_”’A(—iv)log(16 (P =+ v ) !

167* cosh (T5%)’

we check it satisfies condition (4.2- 4.6). By Stirling’s formula, we have

Zivr ( §+i(2v+r))l_,(;+i(2v—r))
A(=iv)=m"
( ) %+i(r—v) %—i(v+r)
I 2 I 2

Vv+riv+n)  y —pilv-r
2e 2e

) -1
1+0MW ).

_ 7_[—211/

We thus write M (iv) = gr(iv)e(fr(iv)), where

1,1 2 2 2 .2y2 -
s+ ((T+V V=) + v =r)* ) 1+0vhH
7 [ T—1/2 1 T —11 16 4 ,
grizv)=—nl "{og1) "log 167" cosh (L:¥)
H
and
2r fr(iv) =vlo L+(v+r)lo ’V—H|+(v—r)lo |u|
TV =VI08 T2 & 2e 8% I
We easily check that .
g(T])(iv) < v Vj=0.
We now compute
. )
27 fr(iv) =log L
so that for x € [T,2T],
1
I (iv)— —1 > 1,
friv) oy ogx
whenever v # T. We also compute
2v
- _ -1
ZﬂfT(ZV)—VZ—_rZ>>V ,
and .
;])(iv) <<j,€ 'V1+€_],
for all j = 0. It remains to check condition (4.6):
T(iv) — __ v >yt
r 2mv - 2mv(v2 — p?) '
concluding the proof. O

4.4 Further directions

We conclude the thesis by giving some ideas for further research and developments.
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4.4.1 Analytic trace functions

We have presented some analogies between Frobenius and analytic trace functions, however
many notions and properties remain elusive. Most importantly, the analogy between the
algebraic geometric considerations leading to the formalism of Frobenius trace functions
and a geometric structure behind the definition of analytic trace functions is lacking. For
instance one could imagine considering sheafs arising as D-modules, and building similar
geometric invariants such as irreducibility, isomorphisms and others in an analogous way as
for Frobenius trace functions.

Remark 4.2. For irreducibility, one could imagine to have an analytic statement defining
irreducibility by giving an analog of Fact 4.1. More precisely, by computing the L? -norm of an
analytic trace function, one might be able to detect what would be the number of irreducible
components.

Remark 4.3. The property that analytic trace functions are closed under addition does not
to follow from the definition. One could imagine to bypass this issue by defining the space of
analytic trace functions as being functions generated as sums of analytic trace functions as
defined in this thesis.

We encapsulate in the following table the analogies we do have, and those for which work has
yet to be done.

Frobenius trace functions Analytic trace functions
Algebraic geometric Yes: constructions arising as Unclear: constructions arising
considerations l-adic sheaves. as D-modules?
Unclear: one could expect an
Notion of answer here if given a more

. o e Yes: via representation theory.
irreducibility p Y

algebraic interpretation. Also
see Remark 4.2
Unclear: one could expect an
answer here if given a more
Notion of . . algebraic interpretation. Note:
. . Yes: via representation theory. . .
isomorphism The hypotheses in Proposition
4.1 could also hint to a more

analytic description.

. . Yes: via the Riemann
Quasi-orthogonality

. hypothesis for varieties over Yes: this is Proposition 4.1
relations .
finite fields.
Stability under
v Yes: this is Theorem 4.2 Yes: this is Proposition 4.4

Fourier transform

Unclear: one could expect an

Stability under . . answer here if given a more
s Yes: via representation theory. . .
addition algebraic interpretation. Also
see Remark 4.3.

. Essentially Yes: via Unclear: one could expect an
Stability under . e

N representation theory, however answer here if given a more
multiplication . . . .

with some subtleties. algebraic interpretation.
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

4.4.2 Large valuesof L(f,1/2+ it) with prescribed argument

Theorem 0.4 proves the existence of large values of L(f,1/2 + i), however it doesn’t give any
information on the density of such large values. As noted previously, our proof of Theorem 0.4
only relies on estimates for the first moments of L(f,1/2+it).

Let Ty = {t € Rlarg (L(f, % +it)) =0 (modn)}and H=T/ log? T. In order to obtain information
about the density of large values, one is led to the study of the second moment

)3

teTy

2

L(f,%+it)

-T *
cosh (57)
One way to link these two problems may be given by means of the Cauchy-Schwartz inequality,

1/2 1/2

< > 1 ) ‘L(f,%+it)

teTy teTy

2

> ‘L(f,%+it)

teTy

logT
&)

log T )
loglog T

log T )
loglog T

|L|>>exp( Toglog T

|L|>exp( |L|>exp(

so that given a lower bound for the first moment and an upper bound for the second moment,
one obtains information about the number of elements with large value.

By the Residue theorem, analogously to the first moment, one is led to estimating type I sums,
i.e. sums of the type

Y. prmprm)Kr(n;m,1), (4.10)

nm<T

where K;(n;m,1) is given by (4.9). Now by Proposition 4.6, we see that in each variable
Kr(n;m,1) is an analytic trace function. Motivated by this problem, a natural continuation of
this work would be to study bilinear sums of type (4.10).

4.4.3 Graphs of certain analytic trace functions

We include graphs of the normalized Bessel function and of Bessel functions of higher rank,
which were the main examples of analytic trace functions. The first two graphs correspond,
respectively, to the plots of the Bessel function and the Bessel function of rank 3, against a
cos function to illustrate that these example do not resemble the additive character. The last
graph plots the Bessel function and the Bessel function of rank 3 which do not correlate as
proven in Proposition 4.1.
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4.4. Further directions

Plot of Bessel function against additive character
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Figure 4.1 — Blue: J1go;, Red: cos(1.3x)
Plot of Bessel function of rank 3 against additive character
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Figure 4.2 — Blue: J3 100, Red: cos(1.3x)
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

Plot of Bessel function of rank 3 against Bessel function
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Figure 4.3 — Blue: J3,100;, Red: Jigo;
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