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Abstract
We are interested in the study of non-correlation of Fourier coefficients of Maass forms against
a wide class of real analytic functions. In particular, the class of functions we are interested in
should be thought of as some archimedean analogs of Frobenius trace functions.
In the first part of the thesis, we give an axiomatic definition for this class, and prove that
these functions satisfy properties similar to that of Frobenius trace functions. In particular, we
prove non-correlation statements analogous to those given by Fouvry, Kowalski and Michel
for algebraic trace functions.
In the second part of the thesis, we establish the existence of large values of Hecke-Maass
L-functions with prescribed argument. In studying these problems, one encounters sums of
Fourier coefficients of Maass forms against real oscillatory functions. In some cases, one can
prove that these functions satisfy the axioms discussed previously.

Key words: Automorphic forms, trace functions, exponential sums, L-functions.
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Résumé
Nous nous intéressons à l’étude de non-corrélation de coefficients de Fourier de formes de
Maass avec une grande classe de fonctions analytiques réelles. En particulier, la classe de fonc-
tions à laquelle nous nous intéressons devrait être considérée comme analogue archimédien
des fonctions traces de Frobenius.
Dans la première partie de la thèse, nous donnons une définition axiomatique de cette classe
de fonctions, et démontrons que ces fonctions satisfont des propriétés similaires à celles
des fonctions trace de Frobenius. En particulier, nous démontrons des résultats de non-
corrélations analogues aux résultats de Fouvry, Kowalski et Michel dans le cas des fonctions
trace algébriques.
Dans la seconde partie de la thèse, nous démontrons l’existence de grandes valeurs de fonc-
tions L de Hecke-Maass avec angle prédéterminé. En étudiant ce problème, nous devons
estimer des sommes de coefficients de Fourier de formes de Maass avec des fonctions réelles
et oscillantes. Dans certains cas, nous pouvons montrer que ces fonctions satisfont les axiomes
définis précédemment.

Mots clefs : Formes automorphes, fonctions traces, sommes exponentielles, fonctions L.
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Introduction

This thesis investigates archimedean analogs of Frobenius trace functions from an analytic
viewpoint. Namely, we define a class of real analytic, oscillatory, functions that exhibit proper-
ties similar to that of Frobenius trace functions (e.g. square-root cancelations, stability under
Fourier transform . . . ). The main motivation to this problem is to give an archimedean analog
to a non-correlation result of Fouvry, Kowalski and Michel [FKM15a], for sums of Fourier coef-
ficients of modular forms against trace functions. These problems arise naturally in problems
in analytic number theory (see e.g. [Hou16, FKM15b, CFH+14]). In the second part of the
thesis, we study the existence of large values of Hecke-Maass L-functions, in which twisted
sums of Fourier coefficients of Maass forms by real analytic oscillatory functions arise.

0.1 Non-correlation

The main question we are interested in is that of understanding how certain oscillatory
functions interact with Fourier coefficients of Maass forms. In the following section, we recall
well-known facts about Maass forms and their Fourier expansion. In particular, we see that
they are essentially bounded and oscillatory.

Let f be a Maass form. Saying that a bounded analytic function F : R>0 →C does not correlate
with Fourier coefficients of f , (ρ f (n))n≥1, is a way to measure to which extent F (n) �= ρ f (n).
More precisely, we make the following definition.

Definition 0.1. Let (an)n∈N and (bn)n∈N be two sequences of (essentially) bounded complex
numbers. We say that (an) does not correlate with (bn) if for all A ≥ 1 and x > 1, we have

∑
n≤x

anbn �A x(log x)−A .

Non-correlation statements have deep consequences in number theory. For instance non-
correlation between the constant sequence (1)n∈N and (μ(n))n∈N, the Möbius function, is
equivalent to the existence of zero-free regions for the Riemann zeta function, proving the
Prime Number Theorem. Moreover, stronger non-correlation statements with power savings
would imply stronger zero-free regions towards the Riemann hypothesis. Similarly, non-
correlation of (ρ f (n)) and (μ(n)) is equivalent to the existence of zero-free regions of the
L-function associated to f .

1



Contents

0.2 Non-correlation in the context of trace functions

Frobenius trace functions, K : Fp →C, are highly oscillatory functions that arise from algebraic
geometric considerations. We will define trace functions in Chapter 4, in which we will
see that in particular they exhibit strong quasi-orthogonality relations as a consequence of
the Riemann Hypothesis for algebraic varieties over finite fields, due to Deligne [Del74]. In
[FKM15a] Fouvry, Kowalski and Michel establish a non-correlation statement for Fourier
coefficients of modular forms twisted by Frobenius trace functions.

Theorem 0.1 (F-K-M). Let f be a Hecke-Maass form, p be a prime number and V a smooth
compactly supported function on [1/2,2], such that x j V ( j )(x) � 1, for all j ≥ 0. Let K be an
isotypic trace function of modulus p, then

∑
n
ρ f (n)K (n)V

(
n

p

)
� p1−δ,

for any δ< 1/8, where the implied constant depends only on f , δ and on the conductor of the
trace function.

Examples of trace functions include Dirichlet characters of conductor p and Hyper-Kloosterman
sums: for m ≥ 2,

Klm(n; p) := p
1−m

2
∑

x1···xm≡n (mod p)
e

(
x1 +·· ·+xm

p

)
.

In the special case of a Dirichlet character, χ, Theorem 0.1 is essentially equivalent to subcon-
vexity results of Burgess type for L( f ⊗χ,1/2), which was already obtained by Bykovski and
Blomer-Harcos [Byk96, BH08].

0.3 Analytic trace functions

The archimedean analog of Dirichlet characters can be thought of as functions of the form
xi t for some t ∈ R, which are the continuous homomorphisms R>0 → C1. In particular, a
statement of the form (0.1) in the case K (n) = ni t is essentially equivalent to subconvexity
results for L( f ,1/2+ i t ), for which we have even better bounds [Goo82].

In this thesis, we give an axiomatic definition of a family of real analytic functions, Kt : R>0 →C,
indexed on a large real parameter t , that we call analytic trace functions of conductor t . In
analogy to Theorem 0.1, we prove the following theorem.

Theorem 0.2. Let Kt : R>0 →C be an analytic trace function. Let f and V be as in Theorem 0.1.
We have ∑

n
ρ f (n)Kt (n)V

(n

t

)
� t 1−δ,

for any δ< 1/8 and where the implicit constant depends only on f , δ and on ||Kt ||∞.

In particular, Theorem 0.2 covers the special case of Bessel functions of any rank, which should
be thought of as archimedean analogs of Hyper-Kloosterman sums.

As a corollary to Theorem 0.2, we give an ergodic theoretical interpretation in terms of equidis-
tribution of twisted horocycle flows in analogy to that in [FKM15a].

2



0.4. Large values of L( f ,1/2+ i t ) with prescribed argument

Theorem 0.3. Let Kt be an analytic trace function. Let f be a Hecke-Maass form, and V be a
smooth real valued function with compact support in [1/2,5/2] such that V ( j )(x) � 1, for all
j ≥ 0. We then have for any δ> 0,

1

β−α

∫β

α
f (x + i y)K1/y

(
x

y

)
V (x)dx → 0,

uniformly as y → 0 so long as β−α remains bigger than y1/8−δ.

0.4 Large values of L( f ,1/2+ i t ) with prescribed argument

The resonance method [Sou08, Hou16] is a technique to deduce the existence of exceptionally
large values of L-functions from computations of weighted moments. Using the resonance
method, we establish the existence of large values of the Hecke L-function, L( f ,1/2+ i t ), with
prescribed argument. Namely, we prove the following theorem.

Theorem 0.4. For any η< 1, any sufficiently large T ∈R and any θ ∈R/Z, there exists t ∈ [ T
2 ,2T ]

such that

1

2π
argL

(
f ,

1

2
+ i t

)
≡ θ mod Z,and log

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣≥ (η+o(1))

√
logT

loglogT
.

Hough [Hou16] proved a similar statement for the Riemann zeta function. We therefore treat
the case of an L-function of degree 2, for which the arguments are substantially more involved.

Moreover, Hough [Hou16] studies the case of Dirichlet L-functions. He proves that for any
δ> 0 and θ ∈R/Z and for all sufficiently large prime q , there exists a non-principal Dirichlet
character, χ mod q , such that

∣∣∣∣
∣∣∣∣ 1

2π
argL

(
χ,

1

2

)
−θ

∣∣∣∣
∣∣∣∣
R/Z

≤ δ,and log

∣∣∣∣L
(
χ,

1

2

)∣∣∣∣�
√

log q

loglog q
.

In proving this result, Hough requires estimates on sums of the divisor function twisted by
Hyper-Kloosterman sums, and uses Theorem 0.1. In our setting, one is led to estimating certain
sums of Fourier coefficients of Maass forms against real analytic, oscillatory, functions. These
should be seen as being archimedean analogs of the sums appearing in [Hou16]. In order to
prove Theorem 0.4, we actually do not require Theorem 0.2, as in the ranges we consider, these
oscillatory functions are manageable. We however note that in more interesting ranges, one
can show that these functions are analytic trace functions.

0.5 Outline of the Thesis

In Chapter 1, we will recall some background material on Maass forms needed in the sub-
sequent chapters. We also discuss the stationary phase method, that will be crucial in our
understanding of analytic trace functions.

Chapters 2 and 3 are essentially preprints [Peya, Peyb] and contain the proofs of the Theorems
of sections 0.3 and 0.4 respectively.

3
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In Chapter 4 we define Frobenius trace functions and discuss some analogies with analytic
trace functions. We then show how analytic trace functions defined in Chapter 2 appear in the
problem of large values of L-functions discussed in Chapter 3. We conclude the Chapter and
Thesis by giving some insight on possible further work. For instance, given that our definition
of analytic trace functions lack geometric considerations, certain notions, analogous to those
of Frobenius trace functions, have yet to become apparent. We also give a direction in which
to further our work on large values of L-functions, in which the role of analytic trace functions
becomes more apparent.

4



1 Preliminaries

1.1 Notation

We will let f (x) � g (x), f (x) � g (x) and f (x) =O(g (x)) denote the usual Vinogradov symbols.
We emphasize that for us f (x) � g (x) will be taken to mean exactly that f (x) = O(g (x)).
The notation f (x)  g (x) will be used to mean that both f (x) � g (x) and g (x) � f (x) hold.
The notation f (x) ∼ g (x) will be taken to mean that limx→∞ f (x)/g (x) = 1. We will write
f (x) = o(g (x)) to mean that limx→∞ f (x)/g (x) → 0. We also follow the convention that any ε

appearing in the Thesis is defined to be an arbitrarily small unspecified positive real number,
that might vary from one line to the other. Whenever we encounter a zero-free region for an
L-function, we will take the k-th root of L in that region to be the one defined so that L1/k → 1
as L → 1 with s →∞, s ∈ R. The function e(·) will always represent the complex exponential
exp(2πi ·). The notation ā (mod q) will always be used to denote the multiplicative inverse of a
modulo q .

1.2 Maass forms

Let H := {z ∈C|ℑ(z) > 0} denote the upper half plane. A (cuspidal) Maass form with respect to
SL2(Z) is a function, f : H→C such that

• It satisfies the periodicity condition, f (γz) = f (z), for all γ ∈ SL2(Z), where the action of
SL2(Z) on H is given by Möbius transformations, i.e.(

a b
c d

)
z := az +b

cz +d
.

• It is an eigenfunction of the Laplacian, Δ=−y2
(

d2

dx2 + d2

dy2

)
.

• It satisfies the following growth condition at the cusp,

f (x + i y) � e−2πy .

Any Maass form, f , admits a Fourier expansion of the form

f (z) = ∑
n �=0

ρ f (n)|n|−1/2Wi t f (4π|n|y)e(nx),

5



Chapter 1. Preliminaries

where 1/4+ t 2
f denotes its Laplace eigenvalue and Wi t is a Whittaker function,

Wi t (y) := e−y/2

Γ
(1

2 + i t
) ∫∞

0
e−x xi t− 1

2

(
1+ x

y

)i t− 1
2

dx.

The Fourier coefficients, ρ f (n), are normalized so that by Rankin-Selberg,∑
|n|≤x

|ρ f (n)|2 ∼ c f x,

for some constant c f depending on f (see [Iwa02, p. 110]). Moreover, the Fourier coefficients
oscillate substantially, as ∑

n≤x
ρ f (n) � x2/5

holds, where the implied constant may depend on f (see [HI89]).

We define the Hecke operators (Tn)n≥1 acting on the space of Maass forms by

(Tn f )(z) = 1�
n

∑
ad=n

∑
0≤b<d

f

(
az +b

d

)
.

A Maass form that is also an eigenfunction for all the Hecke operators will be called a Hecke-
Maass form. We associate to f the sequence of Hecke-eigenvalues (λ f (n))n≥1. We further note
that λ f (n) ∈R, for all n ≥ 1, as well as the following realtion between Fourier coefficients and
Hecke eigenvalues [Gol15]:

ρ f (n) = ρ f (1)λ f (n),∀n ≥ 1.

We define the associated L-function,

L( f , s) :=∑
n

λ f (n)

ns =∏
p

(1−αp p−s)−1(1−βp p−s)−1,

where αp ,βp are given via αp +βp =λ f (p) and αpβp = 1.

Let ι : H→H denote the antiholomorphic involution ι(x+i y) =−x+i y . A Maass form satisfying

f ◦ ι= f ,or f ◦ ι=− f ,

will be called either even or odd accordingly. Given that the Hecke operators Tn , the involution ι

and the Laplacian Δ all commute with each other [Gol15], we may simultaneously diagonalize
the space of Maass forms, and thus only consider even or odd Hecke-Mass forms.

Proposition 1.1 (Functional Equation). Let f be a Hecke-Maass form as defined above. Let
ξ= 0 if f is even, 1 if f is odd. Let

Λ( f , s) :=π−sΓ

(
s +ξ+ i t f

2

)
Γ

(
s +ξ− i t f

2

)
L( f , s),

be the completed L-function. Then Λ( f , s) has analytic continuation to all s and satisfies the
functional equation

Λ( f , s) = (−1)ξΛ(1− s, f ).

6



1.3. Stationary phase integrals

Proof. See [Gol15].

We will also need the Approximate Functional Equation for L( f , s), that we quote from [IK04].

Proposition 1.2 (Approximate Functional Equation). Let f be a Hecke-Mass form as defined
and with same notation as above. Let ξ= 0 if f is even, 1 if f is odd. Let G(u) be any function
which is holomorphic and bounded in the strip −4 <ℜ(u) < 4, even, and normalized by G(0) = 1.
Let X > 0. Then for s in the strip 0 ≤σ≤ 1 we have

L( f , s) =∑
n

λ f (n)

ns Vs

( n

X

)
+ε( f , s)

∑
n

λ f (n)

n1−s V1−s (nX ) ,

where Vs(y) is a smooth function defined by

Vs(y) = 1

2πi

∫
(3)

y−uG(u)π−u
Γ
(

s+u+ξ+i t f

2

)
Γ
(

s+u+ξ−i t f

2

)
Γ
(

s+ξ+i t f

2

)
Γ
(

s+ξ−i t f

2

) du

and

ε( f , s) = ξπ−1+2s
Γ
(

1−s+ξ+i t f

2

)
Γ
(

1−s+ξ−i t f

2

)
Γ
(

s+ξ+i t f

2

)
Γ
(

s+ξ−i t f

2

) .

We note that in applications we often take G(u) = eu2
. We also note the following proposition

from [IK04].

Proposition 1.3. Suppose ℜ(s) ≥ 3α> 0. Then the derivatives of Vs(y) satisfy

y aV (a)
s (y) �

⎛
⎜⎝1+ y√

(|s + i t f |+3)(|s − i t f |+3)

⎞
⎟⎠
−A

,

y aV (a)
s (y) = δa +O

⎛
⎜⎝
⎛
⎜⎝ y√

(|s + i t f |+3)(|s − i t f |+3)

⎞
⎟⎠
α⎞⎟⎠

where δ0 = 1, δa = 0 if a > 0 and the implied constants depend only on α, a, and A.

Remark 1.1. Combining these two proposition, we obtain that L( f ,σ+ i t ) in the critical strip
may be written as two sums of length roughly t .

1.3 Stationary phase integrals

Throughout the thesis, we will need several stationary phase lemmas to estimate oscillatory
integrals. In particular, we will regularly be faced with a special kind of oscillatory integral
which we now define. Let W be any smooth real valued function, with support in [a,b] ⊂ (0,∞),
and such that W ( j )(x) �a,b, j 1. We then define

W †(r, s) :=
∫∞

0
W (x)e(−r x)xs−1dx, (1.1)

7



Chapter 1. Preliminaries

where r ∈R and s ∈C. Munshi gives in [Mun15] estimations and asymptotics for W †, however
we will also need a slightly more precise version of this asymptotic. To this purpose, we quote
from [BKY13] a version of the stationary lemma.

Lemma 1.1. Let 0 < δ< 1/10, and X ,Y ,V ,V1,Q > 0, Z :=Q +X +Y +V1 +1, and assume that

Y ≥ Z 3δ,V1 ≥V ≥ Q Z δ/2

Y 1/2
.

Suppose that w is a smooth function on R with support on an interval [a,b] of finite length V1,
satisfying

w ( j )(t ) � j X V − j ,

for all j ≥ 0. Suppose that h is a smooth function on [a,b], such that there exists a unique point
t0 in the interval such that h′(t0) = 0, and furthermore that

h
′′
(t ) � Y

Q2 ,h( j )(t ) � j
Y

Q j
, for j = 1,2,3, · · · , t ∈ [a,b].

Then, the integral defined by

I :=
∫∞

−∞
w(t )ei h(t )dt

has an asymptotic expansion of the form

I = ei h(t0)√
h ′′(t0)

∑
n≤3δ−1 A

pn(t0)+O A,δ(Z−A),

and

pn(t0) :=
�

2πeπi /4

n!

(
i

2h ′′(t0)

)n

G (2n)(t0), (1.2)

where A is arbitrary, and

G(t ) := w(t )ei H(t ); H(t ) = h(t )−h(t0)− 1

2
h

′′
(t0)(t − t0)2. (1.3)

Furthermore, each pn is a rational function in h′,h′′, · · · , satisfying

d j

dt j
0

pn(t0) � j ,n X
(
V − j +Q− j

)(
(V 2Y /Q2)−n +Y −n/3) . (1.4)

We want to extract the first five terms in the asymptotic expansion, in order to have a small
enough error term that will be easy to deal with. We therefore compute

p0(t0) =�
2πe(1/8)w(t0),

and
G ′(t ) = w ′(t )ei H(t ) + i w(t )H ′(t )ei H(t ),

G ′′(t ) = ei H(t )(w ′′(t )+2i w ′(t )H ′(t )+ i w(t )H ′′(t )−w(t )H ′(t )2).

8
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We now see that H(t0) = 0, while

H ′(t ) = h′(t )−h′′(t0)(t − t0),

and
H ′′(t ) = h′′(t )−h′′(t0).

Hence, we see that also H ′(t0), H ′′(t0) = 0. We therefore have

p1(t0) =�
2πe(1/8)

i

2h′′(t0)
w ′′(t0).

Noting that only the terms that don’t contain H (i ) for i = 0,1,2 survive, and that H ( j )(t ) = h( j )(t )
for j ≥ 3, we have

G (4)(t0) = w (4)(t0)+4i w ′(t0)h(3)(t0)+ i w(t0)h(4)(t0),

and thus

p2(t0) =−
�

2πe
(1

8

)
8h′′(t0)2 (w (4)(t0)+4i w ′(t0)h(3)(t0)+ i w(t0)h(4)(t0)).

In general, G (2n)(t0) is a linear combination of terms of the form

w (ν0)(t0)H (ν1)(t0) · · ·H (νl ),

where ν0 +·· ·+νl = 2n.
We now wish to use these in the context of the study of W †(r, s), where we write s =σ+ iβ ∈C.
We may thus use the lemma above with

w(x) =W (x)xσ−1,

and
h(x) =−2πr x +β log x.

Then,

h′(x) =−2πr + β

x
, and h( j )(x) = (−1) j−1( j −1)!

β

x j
, (1.5)

for j ≥ 2. The unique stationary point is given by

x0 = β

2πr
.

We now let

W̌ (x) := x1−σ 5∑
n=0

pn(x),

and claim it is non-oscillatory in the following sense.

Lemma 1.2. Suppose that there exists a constant c > 0 such that for any r ∈R, β≥ c. Then for
all j ≥ 0, and x ∈ [a,b],

W̌ j (x) �σ, j ,a,b 1.

9
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Proof. We compute

W̌ ( j )(x) =
j∑

l=0

(
j
l

)
(x1−σ)( j−l )

5∑
n=0

p(l )
n (x).

Now, it is clear that (x1−σ)( j−l ) � j ,σ,a,b 1, and so we just need to control the derivatives of each
pn . Since w is a product of a power of x with W and W ( j )(x) � j 1, we can easily see that
p0(x) � j ,σ,a,b 1. Now

h′′(x0) =− β

x j
,

and since β� 1, by the same argument as for p0, it is clear that p1(x) � 1. We may apply the
same reasoning for p2, and more generally for any pn , since (1.5) implies the higher derivatives
of h don’t grow compared to the powers of h′′ in the denominator.

We may now give the following result for W †(r, s).

Lemma 1.3. Let r ∈R and s =σ+ iβ ∈C, such that x0 = β
2πr ∈ [a/2,2b]. Then,

W †(r, s) =
�

2πe(1/8)√−β

(
β

2πr

)σ ( β

2πer

)iβ

W̌

(
β

2πr

)
+O(min{|β|−5/2, |r |−5/2}).

Proof. This is a direct application of Lemma 1.1 with X = V = Q = 1,Y = max{|β|, |r |},V1 =
b −a, using the above computations as well as (1.4).

We also quote from [Mun15] the following lemma.

Lemma 1.4.

W †(r, s) =Oa,b,σ, j

(
min

{(
1+|β|
|r |

) j

,

(
1+|r |
|β|

) j
})

.

This Lemma follows from the following version of the stationary phase lemma without station-
ary point from [BKY13].

Lemma 1.5. Let Y ≥ 1, let X ,Q,U ,R > 0, and suppose that w is a smooth function with support
on [α,β] satisfying

w ( j )(t ) � j XU− j .

Suppose that h is a smooth function on [α,β] such that

|h′(t )| ≥ R

for some R > 0, and such that

h( j )(t ) � j Y Q− j , for j = 2,3, · · · .

Then the integral I defined by

I =
∫∞

−∞
w(t )ei h(t )dt

satisfies
I �A (β−α)X [(QR/

�
Y )−A + (RU )−A].

10
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1.4 Summation formulae

We start this section by recalling the Poisson summation formula. Let f ∈ L1(R). We define the
Fourier transform of f by

f̂ (y) :=
∫
R

f (x)e(−x y)dx.

Proposition 1.4 (Poisson Summation Formula). Suppose that both f , f̂ are in L1(R) and have
bounded variation. Then ∑

m∈Z
f (m) = ∑

n∈Z
f̂ (n)

where both series converge absolutely.

Proof. See [IK04].

This formula is particularly interesting when estimating a long sum with "conductor smaller
than the square of its length". This concept which is not formulated rigorously will be very
useful to us, and we therefore seek via the following example to motivate it. Suppose there-
fore that V is a smooth real valued function, with support in [a,b] ⊂ (0,∞), and such that
V j )(x) �a,b, j 1. Let t ∈R and N ∈N, and suppose we wish to estimate

∑
m

V
(m

N

)
mi t =∑

n

∫
R

V
( x

N

)
xi t e(−xn)dx

= N 1+i t
∑
n

∫
R

V (y)yi t e(−N yn)dy

= N 1+i t
∑
n

V †(N n, i t +1), (1.6)

by Poisson and where V † is given by (1.1). We therefore see from Lemma 1.4 that the sum is
negligible unless m � t

N . Therefore, we reduced the problem of estimating a sum of length N
to that of estimating a sum of length t/N .

We now recall the Voronoi summation formula for Maass forms, which should be thought of
as a GL2 version of (1.6). We quote from [KMV02] the following formula.

Lemma 1.6. Let g be a Hecke-Maass form over SL2(Z) and spectral parameter tg . Let F be a
smooth function rapidly decaying at infinity, which vanishes in a neighborhood of the origin.
Then, for (a,c) = 1, we have

∑
n≥1

ρg (n)e
(an

c

)
F (n) = 1

c

∑
±

∑
n≥1

ρ f (∓n)e

(
±nā

c

)
V ±

( n

c2

)
,

where

V −(y) =
∫∞

0
F (x)Jg (4π

�
x y)dx

V +(y) =
∫∞

0
F (x)Kg (4π

�
x y)dx,

11
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and

Jg (x) =− π

sin(πi tg )

(
J2i tg (x)− J−2i tg (x)

)
,

and

Kg (x) = 4cos(πi tg )K2i tg (x).

We now use [EMOT54, p. 326, 331] that

K2i r (x) = 1

4

1

2πi

∫
(σ′)

(x

2

)−s
Γ
( s

2
+ i r

)
Γ
( s

2
− i r

)
ds, |ℜ(2i r )| <σ′

J2i r (x) = 1

2

1

2πi

∫
(σ′)

(x

2

)−s Γ(s/2+ i r )

Γ(1− s/2+ i r )
ds, −ℜ(2i r ) <σ′ < 1,

and define

γ−(s) = −π
4πi sin(πi tg )

{
Γ(s/2+ i tg )

Γ(1− s/2+ i tg )
− Γ(s/2− i tg )

Γ(1− s/2− i tg )

}

γ+(s) = 4cos(πi tg )

8πi
Γ
( s

2
+ i tg

)
Γ
( s

2
− i tg

)

to deduce that for any 0 <σ′ < 1,

V −(y) =
∫∞

0
F (x)

∫
(σ′)

(2π
�

x y)−sγ−(s)dsdx,

and

V +(y) =
∫∞

0
F (x)

∫
(σ′)

(2π
�

x y)−sγ+(s)dsdx.

We conclude this section by giving a heuristic by means of an example. The idea being
that the Voronoi summation formula "takes a sum of length N and conductor t to a sum of
length t 2/N ". Suppose therefore that V is a smooth real valued function, with support in
[a,b] ⊂ (0,∞), and such that V j )(x) �a,b, j 1. Let t ∈R, c and N ∈N, and suppose we wish to
estimate ∑

n≥1
ρg (n)e

(n

c

)
V

( n

N

)
ni t .

We estimate in this case

V ±(y) =
∫∞

0
V

( x

N

)
xi t

∫
(σ′)

(2π
�

x y)−sγ±(s)dsdx

= N 1+i t
∫

(σ′)
(2π

√
N y)−sγ±(s)

∫∞

0
V (x)xi t−s/2dxds.

By a stationary phase analysis, the inner integral is negligible unless writing s = σ′ + iτ, we
have t ≤ τ ≤ 3t . We therefore reduced the problem to estimating up to negligible error for
x ∈ [a,b], ∫

R
(2π

√
N y x)−σ

′−iτγ±(σ′ + iτ)W (τ)dτ,

12
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where W is a smooth real valued function with compact support in [t/2,4t ] and satisfying
τ j W ( j )(τ) � j 1. Restricting our attention to the first term of γ− and using Stirling’s formula,
we obtain

∫
R

W (τ)(2π
√

N y x)−σ
′−iτ

∣∣∣tg + τ

2

∣∣∣ σ′−1
2

∣∣∣tg − τ

2

∣∣∣ 1−σ′
2

∣∣∣∣ tg + τ
2

e

∣∣∣∣
i (tg+ τ

2 ) ∣∣∣∣ tg − τ
2

e

∣∣∣∣
i ( τ2−tg )

dτ

=
∫
R

g (τ)e( f (τ))dτ,

where

g (τ) =W (τ)
∣∣∣tg + τ

2

∣∣∣ σ′−1
2

∣∣∣tg − τ

2

∣∣∣ 1−σ′
2

,

and

2π f (τ) =−τ

2
log(4π2N y x)+

(
tg + τ

2

)
log

∣∣∣∣ tg + τ
2

e

∣∣∣∣+ (τ
2
− tg

)
log

∣∣∣∣
τ
2 − tg

e

∣∣∣∣ .

We compute

2π f ′(τ) =−1

2
log(4π2N y x)+ 1

2
log

∣∣∣∣ tg + τ
2

e

∣∣∣∣+ 1

2
log

∣∣∣∣
τ
2 − tg

e

∣∣∣∣+1.

We see that f ′(τ) � 1 unless y � τ2/N � t 2/N . The integral would then be negligible by
Lemma 1.5, and thus Voronoi summation transformed a sum of length N to a sum of length
t 2/N .
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2 Analytic twists of modular forms

2.1 Introduction

In this chapter we are interested in sums of Fourier coefficients of GL2 Maass forms against
a certain class of oscillatory functions. The type of oscillatory functions we consider can be
thought as archimedean analogs of trace functions studied in [FKM15a]. Our main result gives
a non-correlation statement between Fourier coefficients of Maass forms against a family of
functions, Kt : R>0 →C, depending on a large real parameter t .

2.1.1 Setup

We let throughout f be a fixed cuspidal Maass Hecke eigenform for SL2(Z), and denote by
1/4+ t 2

f the associated eigenvalue of the Laplacian. The form f admits a Fourier expansion

f (z) = ∑
n �=0

ρ f (n)|n|−1/2Wi t f (4π|n|y)e(nx),

where Wν is a Whittaker function. The Fourier coefficients, ρ f (n), are normalized so that by
Rankin-Selberg,∑

n≤X
|ρ f (n)|2  X . (2.1)

We moreover know that the Fourier coefficients oscillate substantially. For example, the
following estimate∑

n≤x
ρ f (n)e(αn) � f x1/2+ε (2.2)

holds for any ε> 0 uniformly for all α ∈R (see [Iwa02] Theorem 8.1). In order to understand
better the oscillatory nature of the Fourier coefficients, we make the following definition.

Definition 2.1. Let (K (n))n∈N be a bounded sequence of complex numbers. We say that (K (n))
does not correlate with (ρ f (n)) if we have∑

n≤x
ρ f (n)K (n) � f ,A x(log x)−A ,

for all A ≥ 1, x > 1.
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For example, (2.2) gives a non-correlation statement for the additive twist K (n) = e(αn)
with a power saving of 1/2− ε. Another important example of non-correlation arises when
K (n) = μ(n), the Möbius function, in which case non-correlation is an incarnation of the
Prime Number Theorem (see [FG14] for a general result combining this and additive twists).
Obtaining power saving statements against the Möbius function would be equivalent to prov-
ing a strong zero-free region towards the Riemann Hypothesis for the L-function attached to
f . We give here a final example, which will be the main motivation for our work: let p be a
prime number and let K be an isotypic trace function of conductor p, then [FKM15a] gives a
non-correlation result for (K (n)) with a power saving of 1/8−ε.

We will study non-correlation against a family of functions (Kt )t∈R,

Kt : R>0 →C,

where t is a parameter which we will let grow to infinity.

Definition 2.2. A family of smooth functions (Kt )t∈R,Kt : R>0 →C is called a family of analytic
trace functions if there exist real numbers a < b,b > 0 and a family of analytic functions
(Mt (s))t∈R in the strip a < ℜ(s) < b, such that the following conditions hold uniformly for
a <ℜ(s) < b.

1. The following integral converges for any a <σ< b,

1

2πi

∫
(σ)

Mt (s)x−sds, (2.3)

and is equal to Kt (x) for all x ∈R>0, t ∈R.

2. There exist constants c1,c2 depending on the family (Kt )t∈R , independent of t , such that
we may write Mt (σ+ iν) = gt (σ+ iν)e( ft (σ+ iν)), in such a way that for all x ∈ [t ,2t ], the
following

g ( j )
t (σ+ iν) � j ν

σ−1/2− j ∀ j ≥ 0, (2.4)

holds, as well as the following conditions on ft .

(a) Whenever |ν| ≤ c1t or |ν| ≥ c2t , we have∣∣∣∣ f ′
t (σ+ iν)− 1

2π
log(x)

∣∣∣∣� 1, (2.5)

where the implicit constant does not depend on t.

(b) When c1t ≤ |ν| ≤ c2t , either (2.5) holds, or we have

f ′′
t (σ+ iν) � (1+|ν|)−1, (2.6)

while for all ε> 0, j ≥ 0,

f ( j )
t (σ+ iν) � j ,ε (1+|ν|)1+ε− j , (2.7)

where all the implicit constants do not depend on t.
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(c) Finally, we require that

f ′′
t (σ+ iν)− 1

2πν
� (1+|ν|)−1, (2.8)

whenever c1t ≤ |ν| ≤ c2t , and where the implicit constant does not depend on t.

Remark 2.1. Throughout the paper, we will abuse notation and say that Kt is an analytic trace
function when it arises as part of such a family.

Remark 2.2. Conditions (2.3) - (2.7) guarantee by means of stationary phase that the integral
representation is concentrated around multiplicative character of conductor t . Condition (2.8)
ensures that we avoid functions such as e(x), as motivated in Section 2.4.

Remark 2.3. By the properties of the Mellin transform, we note that if Kt (x) is an analytic trace
function, then for any constant α ∈R>0, we have that Kt (αx) is also an analytic trace function.

Remark 2.4. We note that in interesting examples, in conjunction with condition (2.5), we will
also have some stationary points in the region c1t ≤ |ν| ≤ c2t , guaranteeing that ||Kt ||∞  1.

Remark 2.5. We note that in practice, we may always ensure that condition (2.3) holds, by
studying Kt (x)V

( x
t

)
, where V is a smooth compactly supported function in [ 1

2 ,2]. In that case,
Mt (s) is given by

∫∞
0 Kt (x)xs−1dx, and the integral in (2.3) converges absolutely.

We give here some examples of analytic trace functions (see Section 2.4 for proofs).

Example 2.1. Let Ji t denote the usual Bessel function of order i t (see [EMOT81, p. 4]). The
normalized J-Bessel function of order i t ,

Fi t (x) := t 1/2Γ

(
1

2
+ i t

)
Ji t (x),

is an analytic trace function of conductor t .

This should be thought of as an archimedean analog of Kloosterman sums. We now give as
a second example that of higher rank Bessel functions as appearing in [Qi15], in analogy to
hyper-Kloosterman sums.

Example 2.2. For any n ≥ 3, the n-th rank Bessel function of order t ,

Jn,t := t
n−1

2

2πi n

∫
( 1

4 )
Γ

(
s − i nt

n

)
Γ

(
s

n
+ i t

n −1

)n−1

e
( s

4

)
x−sds,

is an analytic trace function.

We will study sums of the shape

S(t ) :=
∑
n
ρ f (n)Kt (n)V

(n

t

)
,

where Kt is an analytic trace function and V is a smooth function supported in [1,2] and
such that V ( j )(x) � j 1. For convenience we also normalize V so that

∫
V (y)dy = 1. We
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Chapter 2. Analytic twists of modular forms

will show in Section 2.2 that any analytic trace function, Kt , satisfies ||Kt ||∞ � 1, so that by
Cauchy-Schwarz and (2.1), we have that

S(t ) � t .

Our main result improves on that bound.

Theorem 2.1. Let Kt : R→C be an analytic trace function. We have

S(t ) � t 1−1/8+ε,

where the implicit constant depends only on f ,ε and on ||Kt ||∞.

Remark 2.6. For simplicity we have studied the case where n  t . We note that for N ≤ t , one
may study similarly

Z (N ) :=∑
n
ρ f (n)Kt (n)V

( n

N

)
.

If for x  N , conditions (2.5) - (2.8) hold (which is the case in practice), we may show that

Z (N ) � t 1/2+εN 3/8,

which improves on the trivial bound so long as N � t 4/5+ε.

Our bound has an application to the geometric question of equidistribution of horocycle flows
with respect to a twisted signed measure. Let us recall that for every continuous compactly
supported function f on SL2(Z)\H, we have

∫1

0
f (x + i y)dx →μ (SL2(Z)\H)−1

∫
SL2(Z)\H

f (z)dμ(z),

as y → 0, where μ(z) = dxdy
y2 denotes the hyperbolic measure (see [Zag81]). In [Str04] Ström-

bergsson gives a similar result by restricting to subsegments of hyperbolic length y−1/2−δ, i.e.
that for any δ> 0 and f as above,

1

β−α

∫β

α
f (x + i y)dx →μ (SL2(Z)\H)−1

∫
SL2(Z)\H

f (z)dμ(z),

uniformly as y → 0 so long as β−α remains bigger than y1/2−δ. We use Theorem 2.1 to give
the following twisted version of Strömbergsson’s result, which is analogous to what is proven
in [FKM15a] for horocycles twisted by Frobenius trace functions.

Theorem 2.2. Let (Kt )t∈R be a family of analytic trace functions. Let f be a Maass form on
SL2(Z)\H, and V be a smooth real valued function with compact support in [ 1

2 , 5
2 ] such that

V ( j )(x) � 1, for all j ≥ 0. We then have for any δ> 0,

1

β−α

∫β

α
f (x + i y)K1/y

(
x

y

)
V (x)dx → 0,

uniformly as y → 0 so long as β−α remains bigger than y1/8−δ.
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2.1.2 Outline of proof of Theorem 2.1

We will show in Section 2.2 that our definition of analytic trace function implies that we may
essentially write

Kt (x) = 1

2π

∫
νt

gt (σ+ iν)e( ft (σ+ iν))x−σ−iνdν.

Interchanging order of summation and integration, we may therefore write

S(t ) = 1

2π

∫
νt

gt (σ+ iν)e( ft (σ+ iν))
∞∑

n=1
ρ f (n)n−σ−iνV

(n

t

)
dν.

We then adapt the circle method of Munshi, as in [Mun15], allowing us to write the inner sum
essentially as

1

K

∫2K

K

∑
qQ

∑
aQ

(a,q)=1

1

aq

∑
nt

ρ f (n)ni v e

(
nā

q
− nx

aq

) ∑
mt

m−i (ν+v)e

(
−mā

q
+ mx

aq

)
dv,

where K ≤ t is a parameter that will ultimately be chosen optimally to be K = t 1/2, and
Q = (t/K )1/2. We may now apply Poisson summation to the m-sum, and Voronoi summation
to the n-sum to arrive at the following expression for S(t ),

∑
n�K

ρ f (n)�
n

∑
qQ

∑
(m,q)=1

1≤|m|�q

e

(
nm̄

q

)∫K

−K

∫
νt

n−iτ/2g (q,m,τ,ν)e( f (q,m,τ,ν))dνdτ,

where g is a non-oscillatory amplitude function of size K and f is a well understood phase.
In particular, we note that (2.8) implies that f ′′(q,m,τ,ν) �|ν|−1, so that we may use second
derivative bounds for multivariable integrals and save in the integral. Applying the Cauchy-
Schwarz inequality to get rid of the Fourier coefficients, and using the second derivative bound
to save (K t )1/2 in the integral, we arrive at

S(t ) � K t 1/4

⎛
⎜⎜⎝ ∑

q,q ′Q

∑
m,m′Q

⎛
⎜⎜⎝ Q−2

K 1/2
+ ∑

nt
n≡qm′−q ′m mod qq ′

1

K 3/2|n|1/2

⎞
⎟⎟⎠
⎞
⎟⎟⎠

1/2

� K 1/4t 3/4 + t

K 1/4
,

which upon taking K = t 1/2 gives the desired result.

2.2 Analysis of Kt

In this section, we analyse further the integral representation of Kt . We make a partition

of unity in the integral: let I = {0}∪ j≥0 {±(4
3

) j
}, such that for each l ∈ I , we take a smooth

function Wl (x) supported in [ 3l
4 , 4l

3 ] for l �= 0 and such that

xkW (k)
l (x) �k 1,
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Chapter 2. Analytic twists of modular forms

for all k ≥ 0. for l = 0, take W0(x) supported in [−2,2] with W (k)
0 (x) �l 1. and such that

1 =∑
l∈I Wl (x). We then let for any i ∈I ,

Il ,t (x) := 1

2π

∫
R

gt (σ+ iν)e( ft (σ+ iν))x−σ−iνWl (ν)dν.

We prove the following result.

Lemma 2.1. Let Kt be an analytic trace function. We have, for x ∈ [t ,2t ], and any ε> 0,

Kt (x) = ∑
Supp(Wl )⊂[±t 1−ε,±t 1+ε]∪[−t ε,t ε]

Il ,t (x)+O(t−1000).

Moreover, we also have
max

x∈[t ,2t ]
|Kt (x)|� 1.

Proof. Condition (2.3) implies that we may write

Kt (x) = 1

2πi

∫
(σ)

Mt (s)x−sds = 1

2π

∫
R

gt (σ+ iν)e( ft (σ+ iν))x−σ−iνdν, (2.9)

for any σ ∈ [a,b]. We now wish to run a stationary phase argument to localise the integral
around the points without too much oscillation. If l � t ε for some small 0 < ε<σ/(1/2+σ),
then

Ii ,t (x) � t ε+ε(σ−1/2)−σ = o(1),

as long as we take σ> 0. We now fix such an ε and look at l such that Supp(Wl ) ⊂ [±t ε,±∞),
and look at

xσIl ,t (x) =
∫
R

gt (σ+ iν)Wl (ν)e
(

ft (σ+ iν)− ν

2π
log(x)

)
dν,

for x ∈ [t ,2t ]. We now compute a few derivatives, in order to apply stationary phase arguments.
We have by (2.4)

(gt (σ+ iν)Wl (ν))( j )(ν) � j iσ−1/2− j , ∀ j ≥ 0,

while by (2.5)

f ′
t (σ+ iν)− log(x)

2π
� 1,

if ν � t and by (2.7)

f ( j )
t (σ+ iν) � l 1+ε/2− j .

Therefore, in the case that ν � t , we may use Lemma 1.1 (with X = lσ−1/2,U = l ,β−α =
3l /2,R = 1,Y = l 1+ε/2 and Q = l ), to deduce that

Il ,t (x) �A l−A ,

for any A > 0.

In the case that ν t , we use the second derivative bound for oscillatory integrals along with
(2.6) to deduce that

Il ,t (x) � 1.
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2.3. Proof of Theorem 2.1

To conclude this section we note that the case where Supp(Wl ) ⊂ [−t ε, t ε] can be handled as
follows. Since V is a smooth compactly supported function, it admits a Mellin transform,

Ṽ (s) =
∫∞

0
V (x)xs−1dx,

that decays very rapidly in vertical strips. One can thus write for any α ∈R,

V (x) =
∫

(α)
Ṽ (s)x−sds.

Using this, we write for any σ≥ 0,
∞∑

n=1
ρ f (n)Il ,t (n)V

(n

t

)
=
∫
R

Mt (σ+ iν)Wl (ν)
∞∑

n=1
ρ f (n)n−σ−iνV

(n

t

)
dν

=
∫
R

∫
(α)

Mt (σ+ iν)Wl (ν)Ṽ (s)t sL( f ,σ+ iν+ s)dsdν

� t 1/2+ε,

by the rapid decay of Ṽ .

We will therefore only focus on the cases where the support of Wl is close to t . This may
be interpreted as the fact that the spectral decomposition of any analytic trace function, Kt ,
concentrates around multiplicative characters of conductor t .

2.3 Proof of Theorem 2.1

Following Munshi [Mun15] we adapt Kloosterman’s version of the circle method along with a
conductor dropping mechanism. We quote here the following proposition in [IK04].

Proposition 2.1. Let

δ(n) =
{

1 if n = 0;
0 otherwise.

Then, for any real number Q ≥ 1, we have

δ(n) = 2ℜ
∫1

0

∑∗
1≤q≤Q<a≤q+Q

1

aq
e

(
nā

q
− nx

aq

)
dx.

In particular, we will use this proposition with Q := (t/K )1/2, where t ε
′ < K < t 1−ε′ (for some

ε′ > 0) is a parameter to be chosen optimally later. We let

Sl (t ) :=
∞∑

n=1
ρ f (n)Il ,t (n)V

(n

t

)
,

and note that in order to bound non-trivially S(t ), it is sufficient to do so for Sl (t ), for l such
that SuppWl ⊂ [±t 1−ε,±t 1+ε], as follows from the previous section. We may thus write

Sl (t ) =
∞∑

n=1
ρ f (n)Il ,t (n)V

(n

t

)

= 1

K

∫
R

V
( v

K

) ∞∑
n,m=1 n=m

ρ f (n)Il ,t (m)
( n

m

)i v
V

(n

t

)
U

(m

t

)
dv

= S+
l (t )+S−

l (t ),
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Chapter 2. Analytic twists of modular forms

where U is a smooth functions supported in [1/2,5/2], with U (x) = 1 for x ∈ Supp(V ) and
U ( j ) � j 1, and

S±
l (t ) = 1

K

∫1

0

∫
R

V
( v

K

) ∑∗
1≤q≤Q<a≤Q+q

1

aq

×
∞∑

n,m=1
ρ f (n)ni v Il ,t (m)m−i v e

(
± (n −m)ā

q
∓ (n −m)x

aq

)
V

(n

t

)
U

(m

t

)
dvdx.

We will now describe the analysis for S+
l (t ) (the analysis for S−

l (t ) being completely analogous).

2.3.1 Summation formulae

We start with the m-sum, which we split into congruence classes mod q , and after applying
Poisson summation, we obtain

∞∑
m=1

Il ,t (m)m−i vU
(m

t

)
e

(
−mā

q

)
e

(
mx

aq

)

= ∑
m∈Z

m≡ā (mod q)

t 1−σ−i v

2π

∫
R

t−iνMt (σ+ iν)Wl (ν)U †
(

t (ma −x)

aq
,1−σ− i (ν+ v)

)
dν.

We now note that since |ν| ∈ [t 1−ε, t 1+ε], we may as in [Mun15] use Lemma 1.4 to deduce that
only the contribution from 1 ≤ |m|� qt ε is non-negligible. We take a dyadic subdivision to
obtain the following.

Lemma 2.2.

S+
l (t ) = t 1−σ

K

∑
1≤C≤(t/K )1/2

Sl (t ,C )+O(t−1000),

where C runs over dyadic integers and

Sl (t ,C ) = 1

2π

∫
R

∫1

0

∫
R

Mt (σ+ iν)Wl (ν)t−i (v+ν)V
( v

K

) ∑
C<q≤2C

∑
(m,q)=1

1≤|m|�qt ε

1

aq

×U †
(

t (ma −x)

aq
,1−σ− i (v +ν)

) ∞∑
n=1

ρ f (n)ni v e

(
nm

q

)
e

(
−nx

aq

)
V

(n

t

)
dvdxdν

and a = aQ (m, q) is the unique multiplicative inverse of m mod q in (Q, q +Q].

We wish to use the Voronoi summation on the n-sum. We apply Lemma 1.6 to

∑
n≥1

ρ f (n)e

(
nm

q

)
ni v e

(−nx

aq

)
V

(n

t

)
= t 1+i v

q

∑
±

∑
n≥1

ρ f (∓n)e

(
±nm̄

q

)
I (n, q, v, x),

where

I (n, q, v, x) =
∫

(σ′)

(
2π

�
nt

q

)−s

γ±(s)
∫∞

0
yi v e

(−t y x

aq

)
V (y)y−s/2dyds

=
∫

(σ′)

(
2π

�
nt

q

)−s

γ±(s)V †
(

t x

aq
,1+ i v − s/2

)
ds.
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2.3. Proof of Theorem 2.1

By Stirling’s formula:

Γ(σ′ + i t )

=�
2πexp

(−π|t |
2

)
|t |σ′−1/2

∣∣∣∣ t

e

∣∣∣∣i t

exp(sign(t )iπ(σ′ −1/2)/2)(1+O(|t |−1)),

for |t | ≥ 1 and bounded σ′, we deduce that

γ±(σ′ + iτ) � 1+|τ|σ′−1.

Now, by Lemma 1.4,

V †
(

t x

aq
,1+ i v − s/2

)
� min

{
1,

(
(K t )1/2

|v −τ/2|q
) j}

.

Thus, shifting the contour to σ′ = M a large positive integer and taking j = M +1 for instance,
we see that if n � K t ε, then the integral is negligible (by splitting the integral into a box around
|v − τ

2 |q ≤ (K t )1/2 and its complement). In the remaining range, we study this more closely. We
shift our contour to σ= 1 (the γ+ contribution is trivial, so we only consider γ−), and note that

γ−(iτ+1) =
( |τ|

2e

)iτ

Φ−(τ),

where Φ′−(τ) �|τ|−1. We thus have

I (n, q, v, x) = qi

2π
�

nt

∑
J∈J

∫
R

(
2π

�
nt

q

)−iτ

γ±(iτ+1)V †
(

t x

aq
,

1

2
+ i (v −τ/2)

)
WJ (τ)dτ

+O(t−1000),

where J is a collection of O(log t ) integers such that J ∈J if and only if

SuppWJ ⊂ [−(tK )1/2t ε/C , (tK )1/2t ε/C ].

We have proven the following:

Lemma 2.3.

Sl (t ,C ) = i K t 1/2

4π2

∑
±

∑
J∈J

∑
n�K tε

ρ f (∓n)�
n

∑
C<q≤2C

∑
(m,q)=1

1≤|m|�qtε

e
(
±nm̄

q

)
aq

I∗±(q,m,n)

+O(t−10000),

where

I∗±(q,m,n) =
∫
R2

Mt (σ+ iν)Wl (ν)t−iν
(

2π
�

nt

q

)−iτ

γ±(iτ+1)I∗∗(q,m,τ,ν)WJ (τ)dτdν,

and

I∗∗(q,m,τ,ν) =
∫1

0

∫
R

V (v)V †
(

t x

aq
, i
(
kv − τ

2

)
+ 1

2

)

×U †
(

t (ma −x)

aq
,1−σ− i (K v +ν)

)
dvdx.

In the next two subsections we evaluate I∗∗(q,m,τ,ν).
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Chapter 2. Analytic twists of modular forms

2.3.2 Analysis of the integrals

We apply lemma 1.3 to

U †
(

t (ma −x)

aq
,1−σ− i (K v +ν)

)

= e

(
1

8

)(
K v +ν

2π

)1/2−σ ( aq

t (x −ma)

)1−σ ( (K v +ν)aq

2πet (x −ma)

)−i (K v+ν)

×Ǔ

(
(K v +ν)aq

2πt (x −ma)

)
+O(t−5/2).

Hence,

I∗∗(q,m,τ,ν) =c1

∫1

0

∫
R

V (v)V †
(

t x

aq
, i
(
K v − τ

2

)
+ 1

2

)
(K v +ν)1/2−σ

(
aq

t (x −ma)

)1−σ

×
(

(K v +ν)aq

2πet (x −ma)

)−i (K v+ν)

Ǔ

(
(K v +ν)aq

2πt (x −ma)

)
dvdx +O(t−5/2),

for some constant c1. We now use lemma 5 of [Mun15] to

V †
(

t x

aq
, i (K v −τ/2)+ 1

2

)
= (aq)1/2e(− 1

8 )

(t x)1/2

(
(K v − τ

2 )aq

2eπt x

)i (K v− τ
2 )

V

(
(K v −τ/2)aq

2πt x

)

+O

(
min

{
|K v −τ/2|−3/2,

(
t x

aq

)−3/2
})

.

Hence,

I∗∗(q,m,τ,ν) =c2

∫1

0

∫
R

V (v)V

(
(K v − τ

2 )aq

2πt x

)(
(K v − τ

2 )aq

2eπt x

)i (K v− τ
2 )

Ǔ

(
(kv +ν)aq

2πt (x −ma)

)
(aq

t

) 3
2 −σ (ν+K v)

1
2 −σ

(x −ma)1−σ

(
(K v +ν)aq

2πet (x −ma)

)−i (K v+ν)

dv
dx

x1/2
+E +O(t−

5
2 ),

for some constant c2 and where E comes from the error term of V † which we will now describe.

We first note that since V †
(

t x
aq , i (K v −τ/2)+ 1

2

)
does not depend on ν, neither does the error

term, and therefore we may perform the ν-integral without losing control of the phase, before
plugging absolute values. We thus estimate

∫
R

Mt (σ+ iν)Wl (ν)t−iν(K v +ν)1/2−σ
(

(K v +ν)aq

2πet (x −ma)

)−i (K v+ν)

Ǔ

(
(K v +ν)aq

2πt (x −ma)

)
dν

=
∫
R

g (ν)e( f (ν))dν,

where, temporarily, we define

g (ν) = gt (σ+ iν)Wl (ν)(K v +ν)1/2−σǓ

(
(K v +ν)aq

2πt (x −ma)

)
,

and

2π f (ν) = 2π ft (σ+ iν)−ν log t − (K v +ν) log

∣∣∣∣ (K v +ν)aq

2πet (x −ma)

∣∣∣∣ .

We have

2π f ′′(ν) = 2π f ′′
t (σ+ iν)− 1

K v +ν
� ν−1,
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2.3. Proof of Theorem 2.1

by (2.8). Noting that g (ν) � 1, and
∫ |g ′(ν)|� t ε, we may use the second derivative bound for

oscillatory integrals (see [Sri65], Lemma 5) to deduce that

∫
R

g (ν)e( f (ν))dν� t 1/2+ε. (2.10)

Our error term, E , therefore satisfies∫
R

Mt (σ+ iν)Wl (ν)t−iνEdν

� tσ−1/2+ε
∫1

0

∫2

1
min

{∣∣∣K v − τ

2

∣∣∣−3/2
,

(
t x

aq

)−3/2
}

dvdx.

This integral is the same than the one appearing in [Mun15], where it is proved that

∫1

0

∫2

1
min

{∣∣∣K v − τ

2

∣∣∣−3/2
,

(
t x

aq

)−3/2
}

dvdx � 1

K 3/2
min

{
1,

10K

|τ|
}

t ε.

Moreover, we note that ∫
R

gt (σ+ iν)Wl (ν)t−5/2 � t−2+σ,

and thus (keeping in mind that t ε < K < t 1−ε),

∫
R

Mt (σ+ iν)Wl (ν)t−iν(E +O(t−5/2))dν� tσ+ε

t 1/2K 3/2
min

{
1,

10K

|τ|
}

.

We now treat the main term. Let δ′ > 0 to be determined later and examine the contribution
from x < 1/K 1−δ′

. Using (2.10) and that uαǓ (u), vαV (v) � 1, for all α ∈ R, (and thus t(x −
ma)(aq)−1 � t 1−ε), we estimate

(aq

t

)1/2
∫K δ′−1

0

∫
R

V (v)V

(
(K v − τ

2 )aq

2πt x

)(
aq

t (x −ma)

)1−σ ∣∣∣∣
∫
R

g (ν)e( f (ν))dν

∣∣∣∣dv
dx

x1/2

� t ε
∫K δ′−1

0

∫
K v− τ

2  t x
aq

V (v)
tσ

t 1/2(K v − τ
2 )1/2

dvdx � t 1/2+σ+ε

K 3−εaq
,

upon taking δ′ = 2ε/3. We now look at the contribution from x ∈ [K δ′−1,1]. We now reset
temporarily

g (v) = (ν+K v)1/2−σ
(

aq

t (x −ma)

)1−σ
V (v)V

(
(K v − τ

2 )aq

2πt x

)
Ǔ

(
(K v +ν)aq

2πt (x −ma)

)
,

and

f (v) = K v − τ
2

2π
log

(
(K v − τ

2 )aq

2eπt x

)
− K v +ν

2π
log

(
(K v +ν)aq

2πet (x −ma)

)
.

Then,

f ′(v) =− K

2π
log

(
(ν+K v)x

(K v − τ
2 )(x −ma)

)
, f ( j )(v) =− ( j −2)!(−K ) j

2π(ν+K v) j−1
+ ( j −2)!(−K ) j

2π(K v − τ
2 ) j−1

,
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for j ≥ 2, and the stationary point is given by

v0 =− (2ν+τ)x −τma

2K ma
.

Now, since ν� t 1−ε, we have that in the support of the integral,

f ( j )  t x

aq

(
K aq

t x

) j

,

for j ≥ 2, and

g ( j )(v) � t−1/2+ε
(
1+ K aq

t x

) j

,

for j ≥ 0. Moreover, we can write

f ′(v) = K

2π
log

(
1+ K (v0 − v)

ν+K v

)
− K

2π
log

(
1+ K (v0 − v)

K v −τ/2

)
,

and note that in the support of the integral we have 0 ≤ K v − τ/2 � t x/aq � K 1/2t 1/2. It
follows that if v0 �∈ [.5,3], then in the support of the integral we have

| f ′(v)|� K min

{
1,

K aq

t x

}
.

We now use Lemma 1.5 with

X = t−1/2+ε,U (=V ) = min

{
1,

t x

K aq

}
, R = K min

{
1,

K aq

t x

}
,

Y = t x

aq
, Q = t x

K aq
,

so that, choosing K > t 1/3+ε,

∫
R

g (v)e( f (v))dv � t−1/2+ε
[((

t x

aq

)1/2

min

{
1,

K aq

t x

})−A

+K −A

]

� t−1/2+ε
[

(t 3ε/4)−A + (K δ′
)−A +K −A

]
� t−B ,

for any B > 0. In the case where v0 ∈ [.5,3], we will use Lemma 1.1, with δ = 1/100, A =
10000δ′−1 and the same X ,Y ,V and Q as above. We have

∫
R

g (v)e( f (v))dv = e( f (v0))√
2π f ′′(v0)

300A∑
n=0

pn(v0)+Oδ′

((
t x

aq

)−A)

where pn is given by (1.2). Now, since x ∈ [K δ′−1,1], we have t x/aq � K δ′
, and therefore the

error term is negligible.
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2.3.3 Contribution from n ≥ 1 terms

We find that

f (v0) =−ν+τ/2

2π
log

(
− (ν+τ/2)q

2eπtm

)
,

and

f ′′(v0) = K 2(ma)2

2π(ν+τ/2)(x −ma)x
, (2.11)

and

f ( j )(v0) = ( j −2)!(−K ) j (ma) j−1((x −ma) j−1 + (−x) j−1)

2π(ν+τ/2) j−1(ma −x) j−1x j−1
. (2.12)

We also find

g (v0) =
(

tm

(ν+ τ
2 )q

)σ (aq

t

)( −(ν+ τ
2 )

(x −ma)ma

)1/2

×V

(
τ

2K
− (ν+ τ

2 )x

K ma

)
Ǔ

(−(ν+ τ
2 )q

2πtm

)
V

(
− (ν+ τ

2 )q

m2πt

)
. (2.13)

We wish to keep the term n = 0 and show that the terms with n ≥ 1 can be absorbed into an
error term. We thus look to bound∫

R
Mt (σ+ iν)Wl (ν)t−iν e( f (v0))√

f ′′(v0)
pn(v0)dν=

∫
R

g̃n(ν)e( f̃ (ν))dν,

where

g̃n(ν) :=
�

2π(x −ma)1/2x1/2

K ma
gt (σ+ iν)Wl (ν)(ν+τ/2)1/2pn

(
− (2ν+τ)x −τma

2K ma

)
,

and

f̃ (ν) := ft (σ+ iν)− ν

2π
log t − ν+ τ

2

2π
log

(
− (ν+ τ

2 )q

2eπtm

)
.

We compute

f̃ ′(ν) = f ′
t (σ+ iν)− log t

2π
− 1

2π
log

(
− (ν+ τ

2 )q

2eπtm

)
− 1

2π
,

and

f̃ ′′(ν) = f ′′
t (σ+ iν)− 1

2π(ν+ τ
2 )

.

In order to estimate the size of g̃n , we estimate first

p1(v0) � g ′′(v0)

f ′′(v0)
� XQ2

V 2Y
, p2(v0) � XQ4

V 4Y 2 + XQ

V Y
+ X

Y
,

while, by (1.4), for n ≥ 3 we have

pn(v0) � X

((
V 2Y

Q2

)−n

+Y −n/3

)
.
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We now distinguish two cases. If x ≤ K aq
t , then V =Q = t x

K aq , and thus

pn(v0) � X

Y
,

for all n ≥ 1, since Y = t x
aq � K δ′

. We then show by (1.4) that

g̃n
′(ν) � (x −ma)1/2x1/2(ν+ τ

2 )1/2

K maν3/2−σ
X

Y
,

so that by the second derivative bound for oscillatory integrals (using that q  m, by the
support of Ǔ ), ∫

R
g̃n(ν)e( f (ν))dν� tσ+ε(aq)1/2

K t x1/2
.

Therefore the total contribution from this part is dominated by

(aq

t

)1/2
∫1

K δ′−1

tσ+ε(aq)1/2

K t x
dx � tσ+ε

K 2t 1/2
.

For x > K aq
t , we have V = 1, and so

pn(v0) � t 1/2+εx

K 2aq
.

In this region, we first pass the x integral inside the ν-integral, and since the phase does not
depend on x, the same analysis holds, replacing g̃n(ν) by

ĝn(ν) :=
(aq

t

)1/2
∫1

max{K −1+δ′ ,K aq/t }

1�
x

g̃n(ν)dx.

We have, using that m  q ,

ĝn(ν) �
(aq

t

)1/2
g̃n(ν) � tσ+ε

K 3aq
.

In order to control ĝn
′(ν), we will first execute the x-integral, using integration by parts. Look-

ing at the definition of pn , we note that it is a rational function in f ′′(v0), f ′′′(v0), · · · , g (v0), g ′(v0) · · ·
and will describe what the terms of pn depending on x look like. We first recall that by (1.2)
and (1.3),

pn(v0) =
�

2πeπi /4

n!

(
i

2 f̃ ′′(v0)

)n

G (2n)(v0),

where G (2n)(v0) is a linear combination of elements of the form

ĝ (l0)
n (v0) f̃ (l1)(v0) · · · f̃ (l j )(v0),

where l0 +·· ·+ l j = 2n. Using (2.11), (2.12) and (2.13), we therefore have that those terms of pn

depending on x are of the shape

xi (x −ma) j+1/2V (l )
(
τ

2K
− (ν+ τ

2 )x

K ma

)
,
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for some i , j ≥ 1 and l ≥ 0. We thus compute

d

dν

∫1

max{K −1+δ′ ,K aq/t }
xi−1/2(x −ma) j+1/2V (l )

(
τ

2K
− (ν+τ/2)x

K ma

)
dx

= d

dν

([
xi−1/2(x −ma) j+1/2 −K ma

tν+τ/2
V (l−1)

(
τ

2K
− (ν+τ/2)x

K ma

)]1

max{K −1+δ′ ,K aq/t }

+
∫1

max{K −1+δ′ ,K aq/t }
(xi−1/2(x −ma) j+1/2)′

K ma

tν+τ/2
V (l−1)

(
τ

2K
− (ν+τ/2)x

K ma

))
dx

� (ma) j+1/2

ν+ τ
2

.

These calculations show that

∫
R

∣∣∣∣ d

dν
ĝn(ν)

∣∣∣∣dν� t εĝn � tσ+ε

K 3aq
,

and by the second derivative bound for oscillatory integrals,

∫
R

ĝn(ν)e( f̃ (ν))dν� t 1/2+σ+ε

K 3aq
,

which is the same bound we obtained for x ∈ (0,K δ′−1). We therefore obtain

(aq

t

)1/2
∫1

0

∫
R

g (v)e( f (v))dv
dx

x1/2
=
(aq

t

)1/2
∫1

K −1+δ′
g (v0)e( f (v0)+1/8)

x1/2
√

f ′′(v0)
dx +E∗,

where E∗ is an error term such that

∫
R

Mt (σ+ iν)Wl (ν)t−iνE∗dν� t 1/2+σ+ε

aqK 3 .

Now, plugging in the value for v0, we get that the leading term above reduces to

c3
ν+ τ

2

K

(−q

mt

)3/2
V

(−(ν+ τ
2 )q

2πmt

)(
− (ν+ τ

2 )q

2eπtm

)−i (ν+τ/2) (
tm

(ν+ τ
2 )q

)σ

×Ǔ

(
− (ν+ τ

2 )q

2πtm

)∫1

K −1+δ′
V

(
τ

2K
− (ν+ τ

2 )x

K ma

)
dx,

for some absolute constant c3. Set

B(C ,τ,ν) = t−5/2 +E +E∗,

and note that

∫ (T K )1/2 tε

C

− (tK )1/2 tε

C

∫
R

Mt (σ+ iν)Wl (ν)t−iνB(C ,τ,ν)dνdτ� tσ+ε

t 1/2K 1/2

(
1+ t

C 2K 3/2

)
. (2.14)

We may now derive from these computations the following:
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Chapter 2. Analytic twists of modular forms

Lemma 2.4. We have

I∗∗(q,m,τ,ν) = I1(q,m,τ,ν)+ I2(q,m,τ,ν),

where

I1(q,m,τ,ν) = c4

(ν+ τ
2 )1/2K

(
− (ν+ τ

2 )q

2πetm

)3/2−i (ν+ τ
2 )

V

(
− (ν+ τ

2 )q

2πmt

)(
tm

(ν+ τ
2 )aq

)σ

×Ǔ

(
− (ν+ τ

2 )q

2πmt

)∫1

K −1+δ′
V

(
τ

2K
− (ν+ τ

2 )x

K ma

)
dx,

where c4 is an absolute constant, and

I2(q,m,τ,ν) := I∗∗(q,m,τ,ν)− I1(q,m,τ,ν) = B(C ,τ,ν).

Consequently from Lemma 2.3 we arrive at:

Lemma 2.5. We have

Sl (t ,C ) = ∑
J∈J

{
S1,J (t ,C )+S2,J (t ,C )

}+O(t−1000),

where

Sr,J (t ,C ) = i K t 1/2

4π2

∑
±

∑
n�K t ε

ρ f (∓n)�
n

∑
C<q≤2C

∑
(m,q)=1

1≤|m|�qt ε

e
(
±nm̄

q

)
aq

Ir,J ,±(q,m,n),

and

Ir,J ,±(q,m,n) =
∫
R2

Mt (σ+ iν)Wl (ν)t−iν
(

2π
�

nt

q

)−iτ

γ±(iτ+1)Ir (q,m,τ,ν)WJ (τ)dτdν.

2.3.4 Application of Cauchy and Poisson I

We will estimate here
S̃2(t ,C ) := ∑

J∈J

S2,J (t ,C ).

Taking a dyadic subdivision and using the bound |γ±(iτ+1)|� 1, we get

S̃2(t ,C ) � K t 1/2
∫ (tK )1/2 tε

C

−(tK )1/2 tε

C

∑
±

∑
1≤L�K t ε

L dyadic

∑
n∈Z

|ρ f (∓n)|�
n

U
(n

L

)

×

∣∣∣∣∣∣∣∣
∑

C<q≤2C

∑
(m,q)=1

1≤|m|�qt ε

e
(
±nm̄

q

)
aq1−iτ

B(C ,τ)

∣∣∣∣∣∣∣∣
dτ,
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2.3. Proof of Theorem 2.1

where

B(C ,τ) :=
∫
R

Mt (σ+ iν)Wl (ν)t−iνB(C ,τ,ν)dν

� tσ+ε
(

1

t 1/2K 3/2
min

{
1,

10K

|τ|
}
+ 1

C K 5/2

)
By Cauchy and Rankin-Selberg, we get

S̃2(t ,C ) � K t 1/2+ε
∫ (tK )1/2 tε

C

− (tK )1/2 tε

C

∑
±

∑
1≤L�K t ε

L dyadic

L1/2 [S2,±(t ,C ,L,τ)
]1/2 dτ,

where

S2,±(t ,C ,L,τ) = ∑
n∈Z

1

n
U

(n

L

)
∣∣∣∣∣∣∣∣

∑
C<q≤2C

∑
(m,q)=1

1≤|m|�qt ε

e
(
±nm̄

q

)
aq1−iτ

B(C ,τ)

∣∣∣∣∣∣∣∣

2

.

Opening the absolute square and interchanging the order of summation, we obtain

S2,±(t ,C ,L,τ) = ∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qt ε

∑
(m′,q ′)=1

1≤|m′|�q ′t ε

|B(C ,τ)|2
aa′q1−iτq ′1+iτ

T,

where

T := ∑
n∈Z

1

n
U

(n

L

)
e

(
±nm̄

q
∓ nm̄′

q ′

)
.

Splitting in congruence classes mod qq ′ and applying Poisson summation, we get

T = ∑
n∈Z

δ±q ′m̄∓qm̄′+n≡0(mod qq ′)

∫
R

1

y
U (y)e

(
−Lny

qq ′

)
.

We may now truncate the n-sum to n � C 2t ε/L, for otherwise the oscillatory integral is
negligibly small. We may therefore estimate

S2,±(t ,C ,L,τ) � ∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qt ε

∑
(m′,q ′)=1

1≤|m′|�q ′t ε

∑
n�C 2 tε

L

n≡±qm̄′∓q ′m̄ (mod qq ′)

K |B(C ,τ)|2
tC 2

� t εC 3K |B(C ,τ)|2
tL

.

Thus, by (2.14), we have

S̃2(t ,C ) � ∑
1≤L�K t ε

L dyadic

C 3/2K 3/2t ε
∫ (tK )1/2 tε

C

− (tK )1/2 tε

C

|B(C ,τ)|dτ

� tσ+ε
(

C 3/2K

t 1/2
+ t 1/2

C 1/2K 1/2

)
.

The contribution of S2(t ,C ) to S+
l (t ) is therefore bounded by

t ε
(

t 5/4

K 3/4
+ t 3/2

K 3/2

)
.

Upon taking K = t 1/2, we note that this is bounded by t 1−1/8+ε.
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Chapter 2. Analytic twists of modular forms

2.3.5 Application of Poisson and Cauchy II

The analysis for S1,J is more delicate as we need to exploit some cancelation coming from both
the ν and τ integrals. The idea is to use Cauchy and Rankin-Selberg as before, but keeping the
integrals over τ and ν inside. We may bound

S1,J (t ,C ) � K t 1/2
∑
±

∑
1≤L�K t ε

L dyadic

L1/2 [S1,J ,±(t ,C ,L)
]1/2 ,

where

S1,J ,±(t ,C ,L) = ∑
n∈Z

1

n
U

(n

L

)∣∣∣∣
∫
R

∫
R

Mt (σ+ iν)Wl (ν)t−iν(2π
�

nt )−iτ

×γ±(iτ+1)
∑

C<q≤2C

∑
(m,q)=1

1≤|m|�qtε

e
(
±nm̄

q

)
aq1−iτ

I1(q,m,τ,ν)WJ (τ)dτdν

∣∣∣∣∣∣∣∣

2

.

Opening the absolute square and interchanging the order of summation, we find that S1,J ,±(t ,C ,L)
is given by∫

R4
Mt (σ+ iν)Mt (σ+ iν′)Wl (ν)Wl (ν′)t i ( τ

′−τ
2 +ν′−ν)γ±(1+ iτ)γ±(1+ iτ′)WJ (τ)WJ (τ′)

∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qtε

∑
(m′,q ′)=1

1≤|m′|�q ′tε

I1(q,m,τ,ν)I1(q ′,m′,τ′,ν′)
aa′(2π)i (τ−τ′)q1−iτq ′1+iτ′ T ′dτdτ′dνdν′,

where

T ′ = ∑
n∈Z

1

n1+i τ−τ′
2

U
(n

L

)
e

(
±nm̄

q
∓ nm̄′

q ′

)
.

Applying Poisson summation, similarly to the previous section, we obtain

T ′ = Li τ′−τ
2

qq ′
∑

n∈Z
δ± (n,m,m′, q, q ′)U †

(
nL

qq ′ ,−i
τ−τ′

2

)
,

where
δ±(n,m,m′, q, q ′) = qq ′δ±q ′m̄∓qm̄′+n≡0(mod qq ′).

Since |τ−τ′| � (tK )1/2t ε/C and q, q ′ C , we have by Lemma 1.4 that if |n| �C (tK )1/2t ε/L,
then the contribution is negligibly small.

Lemma 2.6. The sum S1,J ,±(t ,C ,L) is dominated by the sum

K

tC 2

∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qt ε

∑
(m′,q ′)=1

1≤|m′|�q ′t ε

∑
|n|�C (tK )1/2t ε/L

n≡±qm̄′∓q ′m̄ (mod qq ′)

|K±|+O(t−1000),

where

K± =
∫
R4

Mt (σ+ iν)Mt (σ+ iν′)Wl (ν)Wl (ν′)t i (ν′−ν) (4π2tL)−i τ−τ′
2

q−iτq ′iτ′ WJ (τ)WJ (τ′)

γ±(iτ+1)γ±(iτ′ +1)I1(q,m,τ,ν)I1(q ′,m′,τ′,ν′)U †
(

nL

qq ′ , i
τ′ −τ

2

)
dτdτ′dνdν′.
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We are thus only left with understanding K±. Writing out explicitly I1(q,m,τ,ν), we obtain

K± = |c4|2
K 2

∫
R4

WJ (q,m,τ,ν)WJ (q ′,m′,τ′,ν′)e( ft (σ+ iν)− ft (σ+ iν′))

× t i (ν′−ν)U †
(

nL

qq ′ , i
τ′ −τ

2

)(
− (ν+ τ

2 )q

2πetm

)−i (ν+ τ
2 ) (

− (ν′ + τ′
2 )q ′

2πetm′

)i (ν′+ τ′
2 )

×γ±(1+ iτ)γ±(1+ iτ′)
(4π2tL)i τ′−τ

2

q−iτq ′iτ′ dτdτ′dνdν′,

where

WJ (q,m,τ,ν) = gt (σ+ iν)
Wl (ν)WJ (τ)

(ν+ τ
2 )1/2

(
− (ν+ τ

2 )q

2πetm

)3/2

V

(
− (ν+ τ

2 )q

2πtm

)

×
(

tm

(ν+ τ
2 )q

)σ
Ǔ

(
− (ν+ τ

2 )q

2πmt

)∫1

K σ′−1
V

(
τ

2K
− (ν+ τ

2 )x

K ma

)
dx.

We note in passing the following estimates

d

dτ
WJ (q,m,τ,ν) � |ν|σ−1

|τ| , (2.15)

and

d

dν
WJ (q,m,τ,ν) �|ν|σ−2. (2.16)

We first analyse the case n = 0; it will be sufficient to consider∫
R2

WJ (q,m,τ,ν)WJ (q ′,m′,τ′,ν′)e( ft (σ+ iν)− ft (σ+ iν′))t i (ν′−ν)

×
(
− (ν+ τ

2 )q

2πetm

)−i (ν+ τ
2 ) (

− (ν′ + τ′
2 )q ′

2πetm′

)i (ν′+ τ′
2 )

dνdν′

=
∫
R2

WJ (q,m,τ,ν)WJ (q ′,m′,τ′,ν′)e( f (ν,ν′))dνdν′,

where we temporarily define

f (ν,ν′) = ft (σ+ iν)− ft (σ+ iν′)+ ν′ −ν

2π
log t

− ν+ τ
2

2π
log

(
− (ν+ τ

2 )q

2πetm

)
+ ν′ + τ′

2

2π
log

(
− (ν′ + τ′

2 )q ′

2πetm′

)
.

We compute
d f

dν
= f ′

t (σ+ iν)− log t

2π
− 1

2π
log

(
− (ν+ τ

2 )q

2πetm

)
− 1

2π
,

d f

dν′
= − f ′

t (σ+ iν′)+ log t

2π
+ 1

2π
log

(
− (ν′ + τ′

2 )q ′

2πetm′

)
+ 1

2π
.
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Chapter 2. Analytic twists of modular forms

and thus
d2 f

dνdν′
= 0,

while by (2.8), we have
d2 f

dν2 = f ′′
t (σ+ iν)− 1

2π(ν+ τ
2 )

�|ν|−1,

and
d2 f

dν′2
=− f ′′

t (σ+ iν′)+ 1

2π(ν′ + τ′
2 )

�|ν′|−1.

We also note that by (2.16), we have

Var(WJ (q,m,τ,ν)WJ (q ′,m′,τ′,ν′)) � t 2σ−2+ε.

We now have by the second derivative bound for oscillatory integrals in multivariables (see
[Sri65]) that∫

R2
WJ (q,m,τ,ν)WJ (q ′,m′,τ′,ν′)e( f (ν,ν′))dνdν′ � t 2σ−1+ε. (2.17)

By integration by parts, if |τ−τ′|� t ε, then U †
(
0, i τ−τ′

2

)
is negligibly small. The contribution

from n = 0 to K± is thus bounded by

K −2
∫∫

|τ−τ′|�t ε

|τ|,|τ′|J

t 2σ−1+ε � t 2σ+ε

C t 1/2K 3/2
.

We now treat the case n �= 0. We have by Lemma 5 of [Mun15] that

U †
(

nL

qq ′ ,−i
τ−τ′

2

)
= c5

(τ′ −τ)1/2
U

(
(τ′ −τ)qq ′

4πnL

)(
(τ′ −τ)qq ′

4πenL

)−i (τ−τ′)/2

+O

(
min

{
1

|τ−τ′|3/2
,

C 3

(|n|L)3/2

})
,

for some constant c5 (which depends on the sign of n). In order to bound the error term, we
use (2.17) to see that the contribution is bounded by

t 2σ−1+ε

K 2

∫
[J ,2J ]2

min

{
1

|τ−τ′|3/2
,

C 3

(|n|L)3/2

}
.

We first estimate

t 2σ−1+ε

K 2

∫
[J ,2J ]2

|τ−τ′|≤|nL|/C 2

C 3

(|n|L)3/2
dτdτ′ � t 2σ−1+εC J

K 2(|n|L)1/2
� t 2σ−1/2+ε

K 3/2(|n|L)1/2
,

and then

t 2σ−1+ε

K 2

∫
[J ,2J ]2

|τ−τ′|>|nL|/C 2

1

|τ−τ′|3/2
dτdτ′ � C t 2σ−1+ε

K 2(|nL|)1/2

∫
[J ,2J ]2

1

|τ−τ′|1−ε dτdτ′

� C J t 2σ−1+ε

K 2(|nL|)1/2
� t 2σ−1/2+ε

K 3/2(|nL|)1/2
.
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We thus set

B∗(C ,0) = t 2σ+ε

K 3/2C t 1/2
,

and for n �= 0,

B∗(C ,n) = t 2σ+ε

K 3/2t 1/2(|n|L)1/2
.

We now consider the main term. As noted in Section 4.1, the contribution from γ+ is simpler,
and thus we will only focus on γ−. We first note that by Fourier inversion, we have

(
4πnL

(τ′ −τ)qq ′

)1/2

U

(
(τ′ −τ)qq ′

4πnL

)
=
∫
R

U †
(
r,

1

2

)
e

(
r

(τ′ −τ)qq ′

4πnL

)
dr.

Pulling out the oscillation from the γ− factors, we conclude that for some constant c6 (depend-
ing on the sign of n), we have

K− = c6

K 2

(
qq ′

|n|L
)1/2∫

R
U †

(
r,

1

2

)∫
R4

g (τ,τ′,ν,ν′)e( f (τ,τ′,ν,ν′,r ))dτdτ′dνdν′dr

+O(B∗(C ,n)),

where

f (τ,τ′,ν,ν′,r ) = ft (σ+ iν)− ft (σ+ iν′)+ ν′ −ν

2π
log t + τ

2π
log

( |τ|
e

)
− τ′

2π
log

( |τ′|
e

)

+ τ′ −τ

4π
log

(
(τ′ −τ)4πt qq ′

en

)
− ν+ τ

2

2π
log

(
− (ν+ τ

2 )q

2πetm

)
+ τ

2π
log q

− τ′

2π
log q ′ + ν′ + τ′

2

2π
log

(
− (ν′ + τ′

2 )q ′

2πetm′

)
+ r (τ′ −τ)qq ′

4πnL
,

and
g (τ,τ′,ν,ν′) =WJ (q,m,τ,ν)WJ (q ′,m′,τ′,ν′)Φ−(τ)Φ−(τ′).

We will use the second derivative bound for multivariable oscillatory integrals as can be found
in [Sri65] and hence compute

2π
d2 f

dτ2 = 1

τ
− 1

4(ν+ τ
2 )

+ 1

2(τ′ −τ)
, 2π

d2 f

dτdτ′
= 1

2(τ−τ′)
, 2π

d2 f

dτdν
=− 1

2(ν+ τ
2 )

,

2π
d2 f

dτ′2
=− 1

τ′
+ 1

4(ν′ + τ′
2 )

+ 1

2(τ′ −τ)
, 2π

d2 f

dτ′dν′
= 1

2(ν′ + τ′
2 )

,

d2 f

dν2 = f ′′
t (σ+ iν)− 1

2π(ν+ τ
2 )

,
d2 f

dν′2
= 1

2π(ν′ + τ′
2 )

− f ′′
t (σ+ iν′),

while
d2 f

dτdν′
= d2 f

dτ′dν
= d2 f

dνdν′
= 0.

Computing the minors of the Hessian matrix , we see from [Sri65, Lemma 5] that for D a box
in R4,∫

D
e( f (τ,τ′,ν,ν′))dτdτ′dνdν′ � t ε J t , (2.18)
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Chapter 2. Analytic twists of modular forms

where we used r1 = r2 = J−1/2 and r3 = r4 = t−1/2 as can be seen from our calculations of
the second derivatives and that τ,τ′ ∈ [J , 4

3 J ]. Using (2.15) and (2.16), we compute the total
variation, using that t 1−ε �|ν|� t 1+ε:

Var(g (τ,τ′,ν,ν′)) :=
∫
R4

∣∣∣∣ dg

dτdτ′dνdν′

∣∣∣∣dτdτ′dνdν′

�
∫
R4

|ν|σ−2|ν′|σ−2

|τ||τ′| J t 1+εdτdτ′dνdν′

� t 2σ−2+ε. (2.19)

By integration by parts, we note that by (2.18) and (2.19), we have

∫
R4

g (τ,τ′,ν,ν′)e( f (τ,τ′,ν,ν′,r ))dτdτ′dνdν′

�
∫
R4

∣∣∣∣ dg

dτdτ′dνdν′

∣∣∣∣ J t 1+εdτdτ′dνdν′

� J t 2σ−1+ε.

Then, integrating trivially over r and using the rapid decay of Fourier transforms, we arrive at
the following result:

Lemma 2.7. We have

K− � B∗(C ,n).

We now write

S1,J ,−(t ,C ,L) = S�
1,J ,−(t ,C ,L)+S�

1,J ,−(t ,C ,L),

where S�
1,J ,−(t ,C ,L) corresponds to n = 0 contribution, while S�

1,J ,−(t ,C ,L) corresponds to the
n �= 0 frequencies. We first estimate

S�
1,J ,−(t ,C ,L) � K

tC 2

∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qt ε

∑
(m′,q ′)=1

1≤|m′|�q ′t ε

δ−qm′+q ′m≡0(mod qq ′)
t 2σ+ε

K 3/2C t 1/2

� t 2σ+ε

t 3/2K 1/2
.
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Taking a dyadic subdivision, we estimate

S�
1,J ,−(t ,C ,L) � K

tC 2

∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qtε

∑
(m′,q ′)=1

1≤|m′|�q ′tε

∑
1≤|n|�C (tK )

1
2 tε

L

n≡−qm′+q ′m (mod qq ′)

B∗(C ,n)

� K

tC 2

∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qtε

∑
(m′,q ′)=1

1≤|m′|�q ′tε

∑
1≤|n|�C (tK )

1
2 tε

L

n≡q ′m−qm′ (mod qq ′)

t 2σ+ε

K 3/2t 1/2(|n|L)
1
2

� t 2σ+ε

t 3/2K 1/2C 2L1/2

∑
H≤C (tK )1/2 tε

L

H Dyadic

∑
C<q,q ′≤2C

∑
(m,q)=1

1≤|m|�qtε

× ∑
(m′,q ′)=1

1≤|m′|�q ′tε

∑
H<|n|≤2H

n≡−qm′+q ′m (mod qq ′)

H−1/2

� t 2σ+ε

t 3/2K 1/2C 2L1/2

∑
H≤C (tK )1/2 tε

L

H Dyadic

H−1/2
∑

C<q,q ′≤2C

∑
H<|n|≤2H

× ∑
1≤|m|�qtε

(m,q)=1

∑
1≤|m′|�q ′tε

(m′,q ′)=1

δ−qm′+q ′m≡n (mod qq ′).

We let d = (q, q ′) and notice that looking at the congruence condition above modulo q implies
that q ′m ≡ n mod q , which in turn implies that d divides n. We let q0 := q/d , q ′

0 = q ′/d and
n0 := n/d , so that

n0 ≡ q ′
0m (mod q0), and n0 ≡ q0m′ (mod q ′

0).

We may thus bound

S�
1,J ,−(t ,C ,L) � t 2σ+ε

t 3/2K 1/2C 2L1/2

∑
H≤C (tK )1/2 tε

L

H Dyadic

H−1/2
∑

C<q,q ′≤2C

∑
H
d <n0≤ 2H

d

× ∑
1≤|m|�qt ε

(m,q)=1

∑
1≤|m′|�q ′t ε

(m′,q ′)=1

δq ′
0m≡n0 (mod q0)δq0m′≡n0 (mod q ′

0)

� t 2σ+ε

t 3/2K 1/2C 2L1/2

∑
H≤C (tK )1/2 tε

L

H Dyadic

H−1/2
∑

C<q,q ′≤2C

∑
H
d <n0≤ 2H

d

t εd 2

� t 2σ+ε(tK )1/4

t 3/2K 1/2C 3/2L

∑
C<q,q ′≤2C

d

� t 2σ+ε(tK )1/4

t 3/2K 1/2C 3/2L

∑
d≤2C

∑
C
d ≤q0,q ′

0≤ 2C
d

d

� t 2σ+ε

tK 1/2L
.

We conclude that

S1,J ,−(t ,C ,L) � t 2σ+ε
(

1

t 3/2K 1/2
+ 1

tK 1/2L

)
.
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The same bound holds for S1,J ,+(t ,C ,L), via the same analysis, so that

S1,J (t ,C ) � K tσ+1/2+ε ∑
1≤L�K t ε

L Dyadic

(
L1/2

t 3/4K 1/4
+ 1

t 1/2K 1/4

)

� tσ+ε
(

K 5/4

t 1/4
+K 3/4

)
.

The same bound holds for all values of J . Since there are O(log t ) many terms, we can sum over
them without worsening the bound, and so the same bound holds for Ŝ1(t ,C ) :=∑

J S1,J (t ,C ).
Thus the total contribution of Ŝ1(t ,C ) to S+

l (t ) is bounded by

t 1+ε

K

(
K 5/4

t 1/4
+K 3/4

)
� t ε

(
t 3/4K 1/4 + t

K 1/4

)
.

Choosing K = t 1/2, we obtain
S+

l (t ) � t 1−1/8+ε.

2.4 Examples

In this section, we study some examples of analytic trace functions to motivate the analogy
with Frobenius trace functions studied in [FKM15a]. The analog of Kloosterman sums is given
in the following example.

Proposition 2.2. Let

Fi t (x) := t 1/2Γ

(
1

2
+ i t

)
Ji t (x)

be the normalized J-Bessel function of order t . Then, Fi t is an analytic trace function.

Proof. By [EMOT54, p. 331], the Mellin inversion theorem holds for Fi t and the Mellin trans-
form is given by

MF,t (s) :=
∫∞

0
Fi t (x)xs−1dx = t 1/2Γ

(
1

2
+ i t

)
2s−1 Γ

( s+i t
2

)
Γ
(
1+ i t−s

2

) ,

for any 0 <σ< 1, where s =σ+ iν. We will assume for simplicity that t ≥ 1, the same argument
holding also for negative t . In order to understand MF,t (σ+ iν), we differentiate between three
cases, using Stirling’s formula for some of the Gamma factors. We first note that∣∣∣∣Γ

(
1

2
+ i t

)∣∣∣∣=�
2πexp

(
−πt

2

)
(1+O(|t |−1). (2.20)

First assume we are in the range where |t ±ν| ≥ 1, then we may apply Stirling’s formula to all
the Gamma factors, and find that

MF,t (s) = t 1/2gF,t (s)e( fF,t (s)),
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where, up to a constant,

gF,t (s) = exp
(π

4
(|t −ν|− |ν+ t |−2t )

)
|(ν+ t )(t −ν)| σ−1

2 (1+O(max{t−1, |t ±ν|−1})),

and

2π fF,t (s) = ν+ t

2
log

∣∣∣∣ν+ t

2e

∣∣∣∣+ ν− t

2
log

∣∣∣∣ t −ν

2e

∣∣∣∣+ν log2.

We note that if ν≥− t
2 , then gF,t (s) is negligible. We therefore only focus on the case where

ν<− t
2 and verify condition (2.5) for fF,t . We thus compute

2π
d

dν
fF,t (s) = 1

2
log

∣∣∣∣ t 2 −ν2

4e2

∣∣∣∣+1+ log2.

Since we only consider ν� t by exponential decay of gF,t otherwise, we find that

log

∣∣∣∣ (t 2 −ν2)1/2

x

∣∣∣∣� 1,

may only occur if ν t , for x ∈ [t ,2t ].

On the other hand, if we are in the range |t −ν| < 1, then we may not apply Stirling’s formula
for the Gamma factor in the denominator. However, we will have that |t +ν|� t , and thus by
(2.20) and the exponential decay of Gamma factors, we get that the contribution is negligible.
Finally, if we are in the range |t +ν| < 1, then the phase of MF,t (s) will be of the form

2π f̃F,t (s) := ν− t

2
log

∣∣∣∣ t −ν

2e

∣∣∣∣+ν log2,

and so

2π
d

dν
f̃F,t (s)− log(x) � 1

in this region, and is thus negligible by integration by parts. Moreover, looking at fF,t , there
can be no stationary point in any region such that ν=−t +o(t ).
We thus assume from now on that we are in the region where |t ±ν|� t , and t � ν≤−t , and
will show that conditions (2.4), (2.6), (2.7) and (2.8) hold for gF,t (s) and fF,t (s). Indeed, in this
region,

t 1/2gF,t (s) = t 1/2|(ν+ t )(ν− t )| σ−1
2 (1+O(t−1)) � tσ−1/2,

and thus

t 1/2 d j

dν j
gF,t (s) � tσ−1/2− j ,

for all j ≥ 0, proving (2.4). We now compute

2π
d2

dν2 fF,t (s) = ν

(ν2 − t 2)
� ν−1,

and thus

2π
d j

dν j
fF,t (s) � j ,ε ν

1+ε− j ,
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for all j ≥ 0, proving (2.6) and (2.7). Finally we look at

2π
d2

dν2 fF,t (s)− 1

ν
= t 2

ν(ν2 − t 2)
� ν−1,

proving (2.8), concluding the proof that Fi t is an analytic trace function.

Another interesting example is that of Bessel functions of high rank. These can be thought of
as analogs to hyper-Kloosterman sums. We study here higher rank Bessel functions appearing
in the Voronoi summation formulas in higher rank (as in [Qi15]).

Proposition 2.3. For any n ≥ 3, let

Jn,t := t
n−1

2

2πi n

∫
( 1

4 )
Γ

(
s − i nt

n

)
Γ

(
s

n
+ i t

n −1

)n−1

e
( s

4

)
x−sds.

Then Jn,t is an analytic trace function.

Proof. Let

MJn,t (s) := t
n−1

2

n
Γ

(
s − i nt

n

)
Γ

(
s

n
+ i t

n −1

)n−1

e
( s

4

)
,

with s = 1
4 + iν. We assume again for simplicity that t > 1 and want to show that MJn,t satisfies

all the conditions in Definition 2.2. As in the case of the Bessel function, we wish to use
Stiriling’s formula to understand the phase and amplitude of MJn,t . Again we distinguish three
different cases. First assume we are in the range |ν− t | ≥ n and |(n −1)ν+nt | ≥ n(n −1). We
may then apply Stirling’s formula to both Gamma factors to obtain

MJn,t (s) = e

(
1

8

)
t

n−1
2

n
g Jn,t (s)e( f Jn,t (s)),

where g Jn,t (s) is given by

exp

(
−π(|ν−nt |+ |(n −1)ν+nt |+nν)

2n

)∣∣∣∣ν−nt

n

∣∣∣∣
1

4n − 1
2
∣∣∣∣νn + t

n −1

∣∣∣∣(n−1)( 1
4n − 1

2 )

×
(
1+O

(
(1+|ν−nt |)−1 +

(
1+

∣∣∣∣νn + t

n −1

∣∣∣∣
)−1))

,

and

2π f Jn,t (s) = (n −1)ν+nt

n
log

∣∣∣∣ ν

en
+ t

e(n −1)

∣∣∣∣+ ν−nt

n
log

∣∣∣∣ν−nt

ne

∣∣∣∣ .

We note that if ν≥− n
2(n−1) t , then g Jn,t is negligible. We therefore only focus on the case where

ν<− n
2(n−1) t and verify condition (2.5) for f Jn,t . We thus compute

2π
d

dν
f Jn,t (s) = n −1

n
log

∣∣∣∣ ν

en
+ t

e(n −1)

∣∣∣∣+ 1

n
log

∣∣∣∣ν−nt

ne

∣∣∣∣+1.
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Since we only consider ν� t by exponential decay of g Jn,t otherwise, we find that

log

∣∣∣∣∣
(

(n −1)ν+nt

n −1

) n−1
n (ν−nt )

1
n

xn

∣∣∣∣∣� 1,

may only occur if ν x, for x  t . Moreover, as in the Bessel function case, we see from this
that in the two cases where we might not use Stirling’s formula for one of the Gamma factors,
either g Jn,t will be negligible, or the phase cannot vanish and the contribution is also negligible.
We thus assume from now on that we are in the region where |(n −1)ν+nt |, |ν−nt |� t and
t � ν≤− n

(n−1) t , and will show that conditions (2.4), (2.6), (2.7) and (2.8) hold for g Jn,t (s) and
f Jn,t (s). Indeed, in this region,

t
n−1

2 g Jn,t (s) = t
n−1

2

∣∣∣∣ν−nt

n

∣∣∣∣
1

4n − 1
2
∣∣∣∣νn + t

n −1

∣∣∣∣(n−1)( 1
4n − 1

2 )

(1+O(t−1)) � t
1
4− 1

2 ,

and thus

t
n−1

2
d j

dν j
g Jn,t (s) � t

1
4− 1

2− j ,

for all j ≥ 0, proving (2.4). We now compute

2π
d2

dν2 f Jn,t (s) = (n −1)ν+nt (2−n)

(ν−nt )((n −1)ν+nt )
� ν−1,

since ν< 0, and thus

2π
d j

dν j
f Jn,t (s) � j ,ε ν

1+ε− j ,

for all j ≥ 0, proving (2.6) and (2.7). Finally, we look at

2π
d2

dν2 f Jn,t (s)− 1

ν
= nt 2

ν(ν−nt )((n −1)ν+nt )
� ν−1,

proving (2.8), concluding the proof that Jn,t is an analytic trace function.

We end this section with an example motivating condition (2.8). Namely, we study e(x) in the
range x ∈ [t ,2t ] and show that it satisfies all the conditions to be an analytic trace function,
besides (2.8). By Mellin inversion, we thus have

V
(x

t

)
e(x) = 1

2π

∫
R

t iνV †(−t , iν)x−iνdν

:= 1

2π

∫
R

Me,t (iν)x−iνdν,

where
Me,t (iν) = t iνV †(−t , iν).

We first note that by Lemma 1.4, we may assume that ν t , for otherwise V †(−t , iν) is negligi-
ble. We now use Lemma 5 in [Mun15] to write in this region

Me,t (iν) = ge,t (iν)e( fe,t (iν),
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where, up to a constant,

ge,t (iν) = ν−1/2V
(
− ν

2πt

)
(1+O(ν−3/2)),

and

fe,t (iν) = ν

2π
log

(
− ν

2πe

)
.

One now verifies that

g ( j )
e,t (iν) � j ν

−1/2− j ,

for all j ≥ 0. We compute

f ′
e,t (iν) = 1

2π
log

(
− ν

2πe

)
+ 1

2π
,

and

f ( j )
e,t (iν) = (−1) j

2πν j−1
,

for j ≥ 2. We thus have that fe,t satisfies (2.6), (2.7), and the only condition not satisfied is (2.8).
Given that our results should generalise to holomorphic forms as well as Eisenstein series, this
example illustrates the necessity of condition (2.8), since the divisor function, d(n), correlates
with additive characters [Tit86, Theorem 7.15].

2.5 Horocycle twists

In this section, we prove Theorem 2.2. We thus let Kt : R>0 →C be an analytic trace function,
and f be a Maass form as in the previous sections. Let [α,β] ⊂ [1,2] and V be a smooth
compactly supported function in [ 1

2 , 5
2 ], such that x j V j (x) � j 1. We study

∫β

α
f (x + i y)K1/y

(
x

y

)
V (x)dx = ∑

n �=0

ρ f (n)

|n|1/2
Wi t f (4π|n|y)

∫β

α
K1/y

(
x

y

)
e(nx)V (x)dx.

The proof of the theorem will then follow from the following proposition.

Proposition 2.4. Let Kt be an analytic trace function. Then there exists an analytic trace
function, K̃t (x), such that the Fourier transform,

K̂t (x) := t 1/2
∫2

1
Kt (tu)V (u)e(−xu)du,

satisfies

K̂t (x) = K̃t (x)+O(t−1/2).

Proof. We have

∫2

1
Kt (tu)V (u)e(−xu)du = 1

2πi

∫
(σ)

Mt (s)
∫2

1
(tu)−sV (u)e(−xu)duds

= 1

2πi

∫
(σ)

Mt (s)t−sV †(x,1− s)ds.
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We note that by the properties of Mt (s), discussed in Section 2.2, it is sufficient to consider
ν t , such that for some x ∈ [t ,2t ],

f ′
t (σ+ iν)− log x

2π
= o(1), (2.21)

for otherwise by repeated integration by parts, the integral is negligible. By Lemma 5 of
[Mun15], we may write

V †(x,1−σ− iν) =
�

2πe(1/8)�
ν

V
(
− ν

2πx

)(
− ν

2πx

)1−σ (
− ν

2πex

)−iν
+O(|ν|−3/2).

We thus have that the main term of K̂t (x) is

e(1/8)t 1/2−σ
�

2πi

∫
(σ)

Mt (σ+ iν)W (ν)
t−iν

�
ν

V
(
− ν

2πx

)(
− ν

2πx

)1−σ (
− ν

2πex

)−iν
dν,

where W is a smooth compactly supported function such that W ( j )(ν) � j ν
− j , and supported

only whenever (2.21) holds. We may thus rewrite the main term as

1

2πi

∫
(1−σ)

M̃t ,x (1−σ+ iν)xσ−1−iνdν,

where up to a constant,

M̃t ,x (1−σ+ iν) = t 1/2−σ+iνMt (σ− iν)W (−ν)V
( ν

2πx

)
ν1/2−σ+iν(2πe)−iν.

We write
M̃t ,x (1−σ+ iν) = g̃ t ,x (1−σ+ iν)e( f̃ t (1−σ+ iν)),

where
g̃ t ,x (1−σ+ iν) = t 1/2−σW (−ν)gt (σ− iν)V

( ν

2πx

)
ν1/2−σ,

and
f̃ t (1−σ+ iν) = ν

2π
log(tν)+ ft (σ− iν).

We compute
d

dν
f̃ t (1−σ+ iν)− 1

2π
log x = 1

2π
log

(
tν

2πx

)
− f ′

t (σ− iν),

and note that if ν
2πx �∈ [ 1

2 , 5
2 ], then by (2.21), we have that (2.5) holds, so that by repeated

integration by parts the integral in that region is negligible. We may therefore write∫
(1−σ)

M̃t ,x (1−σ+ iν)xσ−1−iνdν=
∫

(1−σ)
M̃t (1−σ+ iν)xσ−1−iνdν+O(t−100),

where M̃t (1−σ+ iν) = g̃ t (1−σ+ iν)e( f̃ (1−σ+ iν)), and

g̃ t (1−σ+ iν) = t 1/2−σW (−ν)gt (1−σ+ iν)ν1/2−σ.

In the range ν t , we have

g̃ ( j )
t (1−σ+ iν) � t 1/2−σ− j ,
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and therefore g̃ t satisfies condition (2.4). We moreover have

d2

dν2 f̃ t (1−σ+ iν) = 1

2πν
+ f ′′

t (σ− iν) � ν−1,

by (2.8) and thus (2.6) is satisfied for f̃ t . Moreover, by direct computation, we see that since
(2.7) holds for ft , it also holds for f̃ t . By (2.6), we have

f̃ ′′
t (1−σ+ iν)− 1

2πν
= f ′′

t (σ− iν) � ν−1,

so that (2.8) holds for f̃ t .

We deduce Theorem 2.2 from Proposition 2.4. We first note that the exponential decay of Wi t f

restricts n to the range |n| � y−1. Keeping in mind that the Fourier transform is negligible
unless n  y−1, we only need to show that

1

β−α

∑
ny−1

ρ f (n)

y1/2|n|1/2
y1/2

∫β

α
K1/y

(
x

y

)
e(nx)V (x)dx → 0,

as y → 0. However, by Fourier inversion, we have

y−1/2
∫β

α
K1/y

(
x

y

)
e(nx)V (x)dx =

∫β

α

∫
R

K̂1/y (z)e(zx)e(nx)dzdx

=
∫
R

K̂1/y (z +n)
∫β

α
e(zx)dxdz

= 1

2πi

∫
R

K̂1/y (z +n)
e(βz)−e(αz)

z
dz.

Now by Proposition 2.4 and the properties of analytic trace functions, we must have z+n  y−1,
for otherwise K̃1/y (z +n) is negligible. We may thus apply Theorem 2.1 to conclude that

1

β−α

∑
ny−1

ρ f (n)

y1/2|n|1/2
y1/2

∫β

α
K1/y

(
x

y

)
e(nx)V (x)dx � y1/8−ε

β−α
,

proving Theorem 2.2.
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3 Large values of Hecke-Maass L-
functions with prescribed argument

3.1 Introduction and Setup

The resonance method developed by Soundararajan [Sou08] allows the detection of large
values of certain L-functions on the critical line. Building on this work, Hough [Hou16] proves
the existence of large values of the Riemann zeta function on the critical line with prescribed
argument. In this paper we extend the resonance method to find large values of Hecke-Maass
L-functions on the critical line with prescribed argument. More precisely, we let f be an (even)
Hecke-Maass eigenform for SL2(Z), and denote by 1/4+ r 2 the associated eigenvalue of the
Laplacian. We define the Hecke operators (Tn)n≥1 acting on the space of Maass forms by

(Tn f )(z) = 1�
n

∑
ad=n

∑
0≤b<d

f

(
az +b

d

)
.

We associate to f the sequence of Hecke-eigenvalues (λ f (n))n≥1. We define the associated
L-function,

L( f , s) :=∑
n

λ f (n)

ns =∏
p

(1−αp p−s)−1(1−βp p−s)−1,

where αp ,βp are given via αp +βp =λ f (p) and αpβp = 1. We prove the following theorem.

Theorem 3.1. For any η< 1, any sufficiently large T ∈R and any θ ∈R/Z, there exists t ∈ [ T
2 ,2T ]

such that

1

2π
argL

(
f ,

1

2
+ i t

)
≡ θ mod Z, and log

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣≥ (η+o(1))

√
logT

loglogT
.

We follow Hough’s strategy [Hou16], namely we exploit sign changes of L( f , s) by comparing
the weighted signed moment and unsigned first moment, which we define in the next section.
Several substantial complications, however, arise due to the fact that L( f , s) is of degree 2. We
may no longer exploit combinatorial arguments to handle sums of fractional divisor functions.
We treat these sums by relating them to the symmetric square L-function, L(sym2 f , s), and
exploiting a zero-free region.

We note that the results presented also hold for holomorphic cusp forms, as they exhibit the
same properties as those exploited for Maass forms. Moreover, we expect that the methods are
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

flexible enough to carry over to the case of Maass forms of SLn(Z) 1 , by some more elaborate
calculations.

3.1.1 Outline of proof

Following [Hou16], we implement the resonance method developed in [Sou08]. We thus let
T be a large real number and θ ∈R be a fixed angle. Let ξ> 0 be a small real number and let
N = T 1−3ξ. We set L =√

log N loglog N , and define the multiplicative function, r (n), which is
supported on square-free integers and defined at primes by

r (p) =
{

L�
p log p , if L2 ≤ p ≤ exp((logL)2)

0, otherwise
. (3.1)

We define a preliminary resonating polynomial,

R∗(s) = ∑
n≤N

r (n)λ f (n)

ns .

We also introduce a short Dirichlet polynomial,

A1/2(s) := ∑
n≤T ξ

d1/2(n)λ f (n)

ns ,

where d1/2 are the Dirichlet series coefficients for ζ1/2. In particular d1/2 is multiplicative,
non-negative, and is given at prime powers by

d1/2(pk ) = 1

2k k !

k∏
i=1

(2i −1).

We define our resonating polynomial to be

R(s) = R∗(s)A1/2

(
1

2
+ s

)
=:

∑
n≤T 1−2ξ

an

ns .

In order to prove Theorem 3.1 we compute weighted first moments of L( f , 1
2 + i t ). Namely, we

let

Tθ :=
{

t ∈R|arg

(
L

(
f ,

1

2
+ i t

))
≡ θ (modπ)

}
,

and letting H = T /(logT )2, we define

ωT,θ(t ) = |R(i t )|2
cosh

( t−T
H

)/NW,

where

NW := ∑
t∈Tθ

|R(i t )|2
cosh

( t−T
H

) , (3.2)

is the normalizing weight required to obtain a probability measure. Theorem 3.1 will be
deduced from the following proposition.

1Either for self-dual forms, or in the case that the form satisfies Ramanujan-Petersson by a recent non-zero
region due to Goldfeld and Li [GL].
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Proposition 3.1. We have

∑
t∈Tθ

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣ωT,θ(t ) � (logT )
3
4
∏
p

(
1+

r (p)λ2
f (p)

�
p

)
, (3.3)

and

∑
t∈Tθ

L

(
f ,

1

2
+ i t

)
ωT,θ(t ) � (logT )

1
2
∏
p

(
1+

r (p)λ2
f (p)

�
p

)
. (3.4)

We explain here the strategy that allows us to detect the angle of L( f , s) thus allowing us to
estimate these moments. Let

Λ( f , s) = L∞(s)L( f , s),

be the completed L-function of f , where

L∞(s) :=π−sΓ

(
s + i r

2

)
Γ

(
s − i r

2

)
,

is the local factor at ∞. The L-function satisfies the functional equation:

Λ( f , s) =Λ( f ,1− s).

We let

Δ(s) := L
(

f , 1
2 + s

)
L
(

f , 1
2 − s

) = L∞
(1

2 − s
)

L∞
(1

2 + s
) ,

and observe that the points, t , such that arg(L( f , 1
2 + i t)) = θ (modπ) are the solution set of

Δ(i t) = e2iθ. In particular, we note that Tθ is not empty. By the Residue Theorem, one may
then express the moment as a contour integral of the form

∫
Γ

L

(
f ,

1

2
+ s

)
R(s)R(−s)

Δ′(s)

Δ(s)−e2iθ

ds

cos
( s−i T

H

) ,

where Γ is an appropriate contour supported at height T . Expanding the L-function into
its Dirichlet series we end up having to estimate sums of Hecke eigenvalues against certain
arithmetic functions.

We end this section by showing how Theorem 3.1 follows from Proposition 3.1. By Proposition
3.1, we have

∑
arg(L)=θ

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣ωT,θ(t ) = 1

2

∑
t∈Tθ

(∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣+e−iθL

(
f ,

1

2
+ i t

))
ωt ,θ(t )

� (logT )3/4
∏
p

(
1+ r (p)λ f (p)2

�
p

)
,

so that

max
T
2 ≤t≤2T

arg(L)=θ

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣� (logT )3/4
∏
p

(
1+ r (p)λ f (p)2

�
p

)
.
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

Theorem 3.1 now follows from

log
∏
p

(
1+ r (p)ρ f (p)2

�
p

)
∼ L

∑
L2≤p≤exp(log2 L)

λ f (p)2

p log p

∼
√

(1−3ξ)
logT

loglogT
,

and letting ξ→ 0.

3.2 Preliminary lemmas

In order to estimate these moments, we will require some preliminary lemmas that we prove
in this section.

Lemma 3.1. Let T be large, and 1 ≤ m,n and assume m < T 2−δ, and min(m,n) < T 1−δ for
some δ> 0. We then have for any ω ∈S1 and for any A > 0,

∫
ℜ(s)= 1

2+ε

(m

n

)s Δ′(s)

Δ(s)

Δ(s)

1−ωΔ(s)

ds

cos
( i T±s

H

) =Oδ,A(T −A). (3.5)

Letting

IT :=
∫

t≥20

−2Δ′(i t )/Δ(i t )

cosh
( t−T

H

) dt ,

we also have,

1

2πi

∫
ℜ(s)= 1

2+ε

(m

n

)s Δ′(s)

Δ(s)

ds

cos
( i T±s

H

) =−δm=n

4π
IT +Oδ,A(T −A). (3.6)

Proof. We need some estimates about Δ(s). By Stirling’s formula, we have that for |t |� 1,

|Δ(σ+ i t )|�

∣∣∣∣∣∣∣∣
π2(σ+i t )Γ

(
1
2−σ+i (r−t )

2

)
Γ

(
1
2−σ−i (r+t )

2

)

Γ

(
1
2+σ+i (r+t )

2

)
Γ

(
1
2+σ+i (t−r )

2

)
∣∣∣∣∣∣∣∣
�σ t−2σ.

Writing Δ(s) =π2sΓ1Γ2/(Γ3Γ4), we compute

Δ′(i t )

Δ(i t )
= 2logπ+ Γ′

1

Γ1
(i t )+ Γ′

2

Γ2
(i t )− Γ′

3

Γ3
(i t )− Γ′

4

Γ4
(i t )

=−1

2
log

(
1

16 + 1
4 ((r + t )2 + (t − r )2)+ (t 2 − r 2)2

16π4

)
+O(|t |−1+ε), (3.7)

and thus also
d j

dt j

Δ′

Δ
(i t ) =O j (|t |1− j ),

for j ≥ 2. In order to prove (3.5), we push the line of integration rightwards to ℜ(s) = (A +
1)/δ+δ′, with 0 < δ′ < 1 chosen so that the contour has a distance bounded from any pole
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3.2. Preliminary lemmas

of the integrand. In pushing the line rightwards as indicated above, the only poles we pass
are counter-weighted by the hyperbolic cosine factor (since these poles can only occur for t
bounded away from the real axis) and they therefore contribute a negligible amount. We are
thus left with estimating

∫
ℜ(s)=(A+1)/δ+δ′

(m

n

)s Δ′

Δ
(s)

Δ(s)

1−ωΔ(s)

ds

cos
( i T±s

H

)
�

∫2T

T
2

T (2−δ)
(

A+1
δ

+δ′)
log(|t |)T −2

(
A+1
δ

+δ′)
dt +O(|T |−A)

� T −A .

In order to prove (3.6), we note that Δ(s) has no poles nor zeroes on ℜ(s) = 0, and as before the
only poles we might encounter are negligible, and we may thus shift our line of integration to
ℜ(s) = 0. By (3.7), the integral becomes

− 1

4π

∫
R

(m

n

)i t
log

(
1

16+ 1
4 ((r+t )2+(t−r )2)+(t 2−r 2)2

16π4

)
+O(|t |−1+ε)

cosh
(T±t

H

) dt .

If m �= n, then by repeated integration by parts, the integral is negligible. The lemma follows.

We note that IT satisfies

IT =
∫

t≥20

log

(
1

16+ 1
4 ((r+t )2+(t−r )2)+(t 2−r 2)2

16π4

)
+O(|t |−1)

cosh
( t−T

H

) dt .

We recall that by the analog of Mertens’ Theorem for Rankin-Selberg L-functions, there exists
a constant, C , such that ∑

p≤x

λ f (p)2

p
= loglog x +C +o(1),

and will use it without mention in the proof of the following lemmas.

Lemma 3.2. For any |α| ≤ 1
(logL)3 , we have

log
∏
p

(1+ r (p)2λ f (p)2pα)− log
∏
p

(1+ r (p)2λ f (p)2)

≤α

(
log N − (1+o(1))

log N logloglog N

loglog N

)
.

Proof. We write
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log
∏
p

(1+ r (p)2λ f (p)2pα)− log
∏
p

(1+ r (p)2λ f (p)2)

= ∑
L2≤p≤exp(log2 L)

log

(
1+ r (p)2λ f (p)2(pα−1)

1+ r (p)2λ f (p)2

)

= ∑
L2≤p≤exp(log2 L)

r (p)2λ f (p)2(pα−1)

1+ r (p)2λ f (p)2

(
1+O

(
r (p)2λ f (p)2(pα−1)

1+ r (p)2λ f (p)2

))
.

Since,

(pα−1)
r (p)2λ f (p)2

1+ r (p)2λ f (p)2 ≤ pα−1 �α log p � 1

logL
,

we may bound the difference of logarithms by

∑
L2≤p≤exp(log2 L)

r (p)2λ f (p)2(pα−1)

(
1+O

(
1

logL

))

=αL2
∑

L2≤p≤exp(log2 L)

λ f (p)2

p

1

log p

(
1+O

(
1

logL

))

=αL2
(

log(log2 L)+C +o(1)

log2 L
− loglogL2 +C +o(1)

logL2

+
∫exp(log2 L)

L2

loglog x +C +o(1)

(log x)2x
dx

)(
1+O

(
1

logL

))

=αL2
(

1

2logL
+o

(
1

logL

))(
1+O

(
1

logL

))

=α

(
log N − (1+o(1))

log N logloglog N

loglog N

)
.

As a corollary, we deduce the following lemma.

Lemma 3.3. For any integer l ≥ 1 and for any Z > N exp
(
− log N

(loglog N )2

)
,

∑
n<Z

(n,l )=1

r (n)2λ f (n)2 =
(
1+O

(
exp

(
− L2

(logL)5

)))∏
p�l

(1+ r (p)2λ f (p)2).

Proof. We use Rankin’s trick to write

∑
n<Z

(n,l )=1

r (n)2λ f (n)2 =
∞∑

n=1
(n,l )=1

r (n)2λ f (n)2 − ∑
n≥Z

(n,l )=1

r (n)2λ f (n)2

=∏
p�l

(1+ r (p)2λ f (p)2)+O(Z−α∏
p�l

(1+pαr (p)2λ f (p)2)).

The result then follows immediately from Lemma 3.2.
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We now prove analogously the following two Lemmas.

Lemma 3.4. For any |α| ≤ 1
(logL)3 , and any multiplicative function, g , such that for some m > 0,

0 ≤ g (p) ≤ m for all p, we have

log

(∏
p

1+ r (p)λ f (p)2g (p)pα−1/2

1+ r (p)λ f (p)2g (p)p−1/2

)
�m αL loglogL.

Proof. We may write

∑
L2≤p≤exp(log2 L)

log

(
1+ r (p)λ f (p)2g (p)p−1/2(pα−1)

1+ r (p)g (p)λ f (p)2p−1/2

)

= ∑
L2≤p≤exp(log2 L)

r (p)λ f (p)2g (p)p−1/2(pα−1)

1+ r (p)g (p)λ f (p)2p−1/2

(
1+O

(
r (p)λ f (p)2g (p)p1/2(pα−1)

1+ r (p)λ f (p)2g (p)p−1/2

))
.

Since

(pα−1)
r (p)λ f (p)2g (p)p−1/2

1+ r (p)g (p)λ f (p)2p−1/2
≤ pα−1 �α log p � 1

logL
,

we bound

log

(∏
p

1+ r (p)λ f (p)2g (p)pα−1/2

1+ r (p)λ f (p)2g (p)p−1/2

)

≤ ∑
L2≤p≤exp(log2 L)

r (p)λ f (p)2g (p)p−1/2(pα−1)

(
1+O

(
1

logL

))

�m
∑

L2≤p≤exp(log2 L)

α
L

p
λ f (p)2

(
1+O

(
1

logL

))

=αL(log(log2 L)− loglogL2 +o(1))

(
1+O

(
1

logL

))

�αL loglogL.

As a corollary we deduce the following Lemma.

Lemma 3.5. For Z > exp(L(logL)5), and g multiplicative such that for some m, 0 ≤ g (p) ≤ m
for all p, we have ∑

n≥Z

r (n)�
n
λ f (n)2g (n) ≤ exp

(
−(1+om(1))

log Z

(logL)3

)
,

and ∑
n<Z

r (n)�
n
λ f (n)2g (n) = (

1+Om
(
exp(−cL(logL)2)

))∏
p

(
1+ r (p)�

p
λ f (p)2g (p)

)
.
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Proof. We use Rankin’s trick to write

∑
n<Z

r (n)�
n
λ f (n)2g (n) =

∞∑
n=1

r (n)�
n
λ f (n)2g (n)− ∑

n≥Z

r (n)�
n
λ f (n)2g (n)

=∏
p

(
1+ r (p)�

p
λ f (p)2g (p)

)

+O

(
Z−α∏

p
(1+ r (p)λ f (p)2g (p)pα−1/2)

)
.

The result now follows from Lemma 3.4.

Throughout the paper, we will also require a result of Tenenbaum [Ten15, Theorem 5.2, p. 281],
inspired by previous work of Delange [Del54, Del71], that we give in the following lemma. We
first need to set up some notation. Let z ∈C, and fix c0 > 0,0 < δ≤ 1, M > 0, positive constants.
Writing s = σ+ iτ, we say that a Dirichlet series F (s) has the property P (z;c0,δ, M) if the
Dirichlet series

G(s; z) := F (s)ζ(s)−z

may be continued as a holomorphic function for σ≥ 1−c0/(1+log(2+|τ|)), and, in this domain,
satisfies the bound

|G(s; z)| ≤ M(1+|τ|)1−δ.

If F (s) =∑
an/ns has the property P (z;c0,δ, M), and if there exists a sequence of non-negative

real numbers {bn}∞n=1 such that |an | ≤ bn , (n = 1,2, · · · ), and the series

∑
n≥1

bn

ns

satisfies P (w ;c0,δ, M ) for some complex number w , we shall say that F (s) has type T (z, w ;c0,δ, M ).

Lemma 3.6. Let F (s) :=∑
an/ns be a Dirichlet series of type T (z, w ;c0,δ, M). For x ≥ 3, A >

0, |z| ≤ A, |w | ≤ A, there exist d > 0 such that

∑
n≤x

an = x(log x)z−1
{

G(1; z)

Γ(z)
+O(M(e−d

�
log x + log x−1))

}
.

The constant d and the implicit constant in the Landau symbol depend at most on c0,δ, and A.

3.3 Computing the normalizing weight

In this section we compute the normalizing weight, NW , given by (3.2). We will require the
following estimates on the coefficients an .

Lemma 3.7. We have

∑
n≤T 1−2ξ

a2
n  (logT )1/4

∏
p

(1+ r (p)2λ f (p)2)
∏
p

(
1+ r (p)λ f (p)2

�
p

)
. (3.8)
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Proof. We have

an = ∑
l≤T 1−3ξ

m≤T ξ

lm=n

r (l )λ f (l )
d1/2(m)λ f (m)

m1/2
,

so that

∑
n≤T 1−2ξ

a2
n = ∑

l1,l2≤T 1−3ξ

r (l1)r (l2)λ f (l1)λ f (l2)
∑

n1,n2≤T ξ

l1n1=l2n2

d1/2(n1)d1/2(n2)λ f (n1)λ f (n2)

(n1n2)1/2

= ∑
g≤T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2≤T 1−3ξ/g
(l1,l2)=(l1l2,g )=1

r (l1l2)λ f (l1l2)

× ∑
n1,n2≤T ξ

l1n1=l2n2

d1/2(n1)d1/2(n2)λ f (n1)λ f (n2)

(n1n2)1/2
.

We now let n2 := n2/l1 and n1 := n1/l2, so that we may rewrite this as

∑
g≤T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2≤T 1−3ξ/g
(l1,l2)=(l1l2,g )=1

r (l1l2)

(l1l2)1/2
λ f (l1l2)

∑
n≤T ξ/max(l1,l2)

d1/2(l1n)d1/2(l2n)λ f (l1n)λ f (l2n)

n
.

3.3.1 The n-sum

The idea is to treat the innermost sum by relating it to the fourth root of the Rankin-Selberg
L-function,

L( f × f , s) :=∏
p

(1−p−s)−1(1−α2
p p−s)−1(1−β2

p p−s)−1(1−αpβp p−s)−1

= ζ(s)L(sym2 f , s),

where

L(sym2 f , s) :=∏
p

(1−p−s)−2(1−α2
p p−s)−1(1−β2

p p−s)−1,

denotes the symmetric square L-function as studied by Gelbart and Jacquet [GJ78]. Following
[Ten15, Chapter II.5], we define the generalized binomial coefficient by

(
ω

ν

)
:= 1

ν!

∏
0≤ j<ν

(ω− j ) (ω ∈C,ν ∈N),
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so that

L1/4( f × f , s) =∏
p

(1−p−s)−1/2(1−α2
p p−s)−1/4(1−β2

p p−s)−1/4

=∏
p

( ∞∑
k=0

(
k − 1

2
k

)
p−ks

)( ∞∑
k=0

(
k − 3

4
k

)
α2k

p p−ks

)

×
( ∞∑

k=0

(
k − 3

4
k

)
β2k

p p−ks

)

=∏
p

( ∞∑
k=0

a(pk )p−ks

)
,

where a is a multiplicative function such that

a(p) = λ f (p)2

4
= d 2

1/2(p)λ2
f (p).

Given that L(sym2 f , s) is a cuspidal automorphic L-function (see [GJ78]), writing s =σ+ iτ,
there exists a constant c > 0, depending on f , such that ζ(s)L(sym2 f , s) is non-zero in the
region σ> 1−c/log(2+|τ|) (see [Mic07]). We note that L(sym2 f , s) is entire in that region, so
that

∞∑
n=1

d 2
1/2(n)λ2

f (n)

ns = ζ1/4(s)L1/4(sym2 f , s)F (s),

where F (s) is a non-zero, bounded and holomorphic function in the regionσ> 1−c/log(2+|τ|).
It follows that

∞∑
n=1

d1/2(l1n)d1/2(l2n)λ f (l1n)λ f (l2n)

ns

= ∏
p|l1l2

( ∞∑
k=0

d1/2(pk+1)d1/2(pk )λ f (pk+1)λ f (pk )

pks

)
× ∏

p�l1l2

⎛
⎝ ∞∑

k=0

d 2
1/2(pk )λ2

f (pk )

pks

⎞
⎠

=G(s; l1l2)
∏
p

⎛
⎝ ∞∑

k=0

d 2
1/2(pk )λ2

f (pk )

pks

⎞
⎠

=G(s; l1l2)F (s)L1/4(sym2 f , s)ζ1/4(s),

where

G(s; l ) =∏
p|l

∑∞
k=0

d1/2(pk+1)d1/2(pk )λ f (pk+1)λ f (pk )
pks

∑∞
k=0

d 2
1/2(pk )λ2

f (pk )

pks

.

Observe that the denominator is non-zero because the coefficients are positive. We let

G(s;1/4, l1, l2) := L1/4(sym2 f , s)F (s)G(s, l1, l2),
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and wish to bound |G(s;1/4, l1, l2)| in the aforementioned domain. Noting that k and k +1
have distinct parity, we estimate

|G(s, l1l2)| =

∣∣∣∣∣∣∣
∏

p|l1l2

∑∞
k=0

d1/2(pk+1)d1/2(pk )λ f (pk+1)λ f (pk )
pks

∑∞
k=0

d 2
1/2(pk )λ2

f (pk )

pks

∣∣∣∣∣∣∣
≤ d1/2(l1l2)|λ f (l1l2)

∏
p|l1l2

MG (l1l2)|,

where MG is a multiplicative function supported on squarefree integers satisfying at primes

MG (p)±1 ≤ (1+C1p−δ1 ), (3.9)

for some δ1 > 0 and an absolute constant C1 (one may use bounds towards the Ramanujan-
Petersson conjecture as given in [Kim03]). Since L1/4(s, sym2 f ) � τδ for any arbitrarily small
δ> 0, and letting M > 0 be such that F (s) ≤ M in that region, we conclude that

|G(s;1/4, l1, l2)| ≤ M |λ f (l1l2)|d1/2(l1l2)MG (l1l2)(1+|τ|δ).

By Lemma 3.6, we conclude that for max(l1, l2) ≤ T ξ−ε,

max(l1, l2)
∑

n≤T ξ/max(l1,l2)

d1/2(l1n)d1/2(l2n)λ f (l1n)λ f (l2n)

= T ξ

log( T ξ

max(l1,l2) )3/4
G(1;1/4, l1, l2)

1

Γ( 1
4 )

+O

(
T ξ|λ f (l1l2)|d1/2(l1l2)MG (l1l2)

(logT ξ/max(l1, l2))7/4

)
.

It then follows by summation by parts, that whenever max(l1, l2) ≤ T ξ−ε, we can estimate

∑
n≤T ξ/max(l1,l2)

d1/2(l1n)d1/2(l2n)λ f (l1n)λ f (l2n)

n
(3.10)

= 4
1

Γ
(1

4

)G(1;
1

4
, l1, l2) log

(
T ξ

max(l1, l2)

)1/4

+O

⎛
⎝ |λ f (l1l2)|d1/2(l1l2)MG (l1l2)

(log T ξ

max(l1,l2) )3/4

⎞
⎠ .

3.3.2 The li and g sums

We let Z = exp((log N )2/3) and consider first the contribution from the main term above when
max(l1, l2) < Z . Namely, we estimate

∑
g≤T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2≤T 1−3ξ/g
max(l1,l2)<Z

(l1,l2)=(l1l2,g )=1

r (l1l2)

(l1l2)1/2
λ f (l1l2)2d1/2(l1l2)H(l1l2)

(
logT

)1/4 ,
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

where H (l ) is a non-negative multiplicative function supported on squarefree integers, satisfy-
ing (3.9) on primes, possibly with a different constant. By Lemma 3.3 we thus estimate

(logT )1/4
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)√
l1l2

λ f (l1l2)2d1/2(l1l2)H(l1l2)
∑

g≤ T 1−2ξ

max(l1,l2)

(g ,l1l2)=1

r (g )2λ f (g )2

∼ (logT )1/4
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)√
l1l2

λ f (l1l2)2d1/2(l1l2)H(l1l2)
∏

p�l1l2

(1+ r 2(p)λ f (p)2)

= (logT )1/4
∏
p

(1+ r (p)2λ f (p)2)
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)√
l1l2

λ f (l1l2)2d1/2(l1l2)H̃(l1l2),

where H̃(l ) is a non-negative, multiplicative function, absolutely bounded on primes and
satisfying

H̃(p) = H(p)

(1+ r (p)2λ f (p)2)
.

We make the change of variables l = l1l2 to reduce our estimation to that of

∑
l<Z

r (l )�
l
λ f (l )2H̃(l ) ∼∏

p

(
1+ r (p)�

p
λ f (p)2H̃(p)

)
∼∏

p

(
1+ r (p)�

p
λ f (p)2

)
,

by Lemma 3.5. The contribution from the tail max(l1, l2) ≥ Z is bounded by

logT
∑

g≤T 1−3ξ

r (g )2λ f (g )2
∑

l1≤T 1−3ξ/g

r (l1)λ f (l1)2√
l1

∑
Z<l2≤T 1−3ξ/g

r (l2)λ f (l2)2√
l2

� logT exp(−(log N )2/3−ε)
∏
p

(1+ r (p)2λ2
f (p))

∏
p

(
1+ r (p)λ f (p)2

�
p

)
,

by Lemma 3.5, which is negligible. We are only left with estimating the contribution coming
from the error term in (3.10), with max(l1, l2) < Z . We thus care to bound

(logT )−3/4
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)√
l1l2

λ f (l1l2)2d1/2(l1l2)MG (l1l2)
∑

g≤ T 1−3ξ

max(l1,l2)

(g ,l1l2)=1

r (g )2λ f (g )2

∼ (logT )−3/4
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)√
l1l2

λ f (l1l2)2d1/2(l1l2)MG (l1l2)
∏

p�l1l2

(1+ r (p)2λ f (p)2)

∼ (logT )−3/4
∏
p

(1+ r (p)2λ f (p)2)
∏
p

(
1+

r (p)MG (p)λ2
f (p)

�
p(1+ r (p)2λ f (p)2)

)

which is negligible. Putting all of the estimates together, we obtain (3.8).

We conclude this section by computing the normalizing weight.
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3.4. The unsigned moment

Proposition 3.2. We may estimate the normalizing weight,

NW  (logT )1/4
∏
p

(1+ r (p)2λ f (p)2)
∏
p

(
1+ r (p)�

p
λ f (p)2

)
IT .

Proof. We denote by Γε the contour defined by the line ℜ(s) = 1/2+ε clockwards and ℜ(s) =
−1/2−ε anticlockwards, so that up to negligible error, we have

NW ∼ 1

2πi

∫
Γε

R(s)R(−s)
Δ′(s)

Δ(s)−e2iθ

ds

cos
( i T−s

H

) .

The integral on ℜ(s) = 1
2 +ε is negligible by (3.5). On ℜ(s) =−1

2 −ε, we substitute s �→ −s and
thus need to estimate∫

ℜ(s)= 1
2+ε

R(s)R(−s)

(
−Δ′(s)

Δ(s)

1

1−e2iθΔ(s)

)
ds

cos
( i T+s

H

)
=

∞∑
k=0

∫
ℜ(s)= 1

2+ε
R(s)R(−s)

(
−Δ′(s)

Δ(s)
Δk (s)e2i kθ

)
ds

cos
( i T+s

H

)
=−

∫
ℜ(s)= 1

2+ε
R(s)R(−s)

Δ′(s)

Δ(s)

ds

cos
( i T+s

H

)
−
∫
ℜ(s)= 1

2+ε
R(s)R(−s)Δ′(s)

e2iθ

1−e2iθΔ(s)

ds

cos
( i T+s

H

)
=− ∑

m,n≤T 1−2ξ

am an

∫
ℜ(s)= 1

2+ε

(m

n

)s Δ′(s)

Δ(s)

ds

cos
( i T+s

H

)
−e2iθ

∑
m,n≤T 1−2ξ

am an

∫
ℜ(s)= 1

2+ε

(m

n

)s Δ′(s)

Δ(s)

Δ(s)

1−e2iθΔ(s)

ds

cos
( i T+s

H

) .

Using Lemma 3.1 and Lemma 3.7, we conclude that

NW  (logT )1/4
∏
p

(1+ r (p)2λ f (p)2)
∏
p

(
1+ r (p)�

p
λ f (p)2

)
IT .

3.4 The unsigned moment

We denote by EwT,θ the expectation over Tθ with respect to the measure wT,θ and wish to give
a lower bound to

NW.EwT,θ

[∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣
]
≥ NW.

∣∣∣∣∣EwT,θ

[
L

(
f ,

1

2
− i t

)
A1/2

(1
2 + i t

)2

∣∣A1/2
(1

2 + i t
)∣∣2

]∣∣∣∣∣
∼ 1

2π

∣∣∣∣∣
∫
Γε

L

(
f ,

1

2
− s

)
A1/2

(
1

2
+ s

)2

R∗(s)R∗(−s)
Δ′(s)

Δ(s)−e2iθ

ds

cos
( i T−s

H

)
∣∣∣∣∣ (3.11)

= 1

2π

∣∣∣∣
∫
ℜ(s)=1/2+ε

· · ·+
∫
ℜ(s)=−1/2−ε

· · ·
∣∣∣∣ .
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Chapter 3. Large values of Hecke-Maass L-functions with prescribed argument

3.4.1 Contribution from the integral along the line ℜ(s) = 1
2 +ε

We show that the contribution from this term is negligible. We first note that by Mellin
inversion, for a smooth φ : R → [0,1] compactly supported in [−1,1] such that φ ≡ 1 in a
neighborhood of 0, we have uniformly in {s = σ+ i t : T /2 ≤ t ≤ 2T,0 ≤ σ ≤ 2}, and for all
ε> 0, A > 0,

L( f , s) = ∑
n≥1

λ f (n)

ns φ
( n

T 2+ε
)
+O(T −A).

By the definition of Δ(s), the integral becomes

∫
ℜ(s)= 1

2 +ε
L

(
f ,

1

2
+ s

)
A1/2

(
1

2
+ s

)2

R∗(s)R∗(−s)
Δ′

Δ
(s)

1

Δ(s)−e2iθ

ds

cos
( i T−s

H

)
= ∑

n≥1

λ f (n)

n1/2
φ
( n

T 2+ε
) ∑

l1,l2<T 1−3ξ

∑
m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

× r (l1)r (l2)λ f (l1)λ f (l2)
∫
ℜ(s)= 1

2 +ε

(
l2

nm1m2l1

)s Δ′

Δ
(s)

1

Δ(s)−e2iθ

ds

cos
( i T−s

H

) +O(T −A).

We write

(Δ(s)−e2iθ)−1 =−e−2iθ−e−4iθ Δ(s)

1−e−2iθΔ(s)
,

and the contribution of the second term to the s-integral is

∫
ℜ(s)= 1

2+ε

(
l2

nm1m2l1

)s Δ′

Δ
(s)

Δ(s)

1−e−2iθΔ(s)

ds

cos
( i T−s

H

) ,

which by (3.5) is negligible. It remains to bound the contribution of the first term above, which
is

1

2πi

∫
ℜ(s)= 1

2+ε

(
l2

nm1m2l1

)s Δ′

Δ
(s)

ds

cos
( i T−s

H

) =− 1

4π
δl2=nm1m2l1 IT +O(T −A),

by (3.6). We therefore just need to estimate

∑
l1,l2<T 1−3ξ

√
l1r (l1)r (l2)λ f (l1)λ f (l2)√

l2

∑
m1,m2<T ξ

nm1m2= l2
l1

λ f (n)d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)IT

= ∑
l1,l2<T 1−3ξ

λ f (l2)2
√

l1r (l1)r (l2)√
l2

∑
m1,m2<T ξ

nm1m2= l2
l1

d1/2(m1)d1/2(m2)IT ,
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After making a change of variables l2 = l2/l1, we thus estimate

∑
l1<T 1−3ξ

r (l1)2λ f (l1)2
∑

l2≤ T 1−3ξ

l1
(l1,l2)=1

λ f (l2)2r (l2)√
l2

∑
m1,m2<T ξ

nm1m2=l2

d1/2(m1)d1/2(m2)IT

≤ ∑
l1<T 1−3ξ

r (l1)2λ f (l1)2
∑

l2≤ T 1−3ξ

l1
(l1,l2)=1

λ f (l2)2r (l2)√
l2

∑
m|l2<T 2ξ

d(m)d1/2(m)IT

≤ ∑
l1<T 1−3ξ

r (l1)2λ f (l1)2
∑

l2≤ T 1−3ξ

l1
(l1,l2)=1

λ f (l2)2r (l2)√
l2

d(l2)IT

�∏
p

(1+ r (p)2λ f (p)2)

(∏
p

(
1+ r (p)�

p
λ f (p)2

))2

IT .

Dividing by the normalizing weight, using Proposition 3.2, we see that the contribution from
ℜ(s) = 1/2+ε in (3.11) is bounded by

� (logT )−1/4
∏
p

(
1+ r (p)�

p
λ f (p)2

)
,

which is smaller than (3.3) by a factor of logT .

3.4.2 The main term

The integral along the line ℜ(s) =−1/2−ε contributes to (3.11) as a main term. We make the
change of variables s →−s, and estimate∫

ℜ(s)= 1
2 +ε

L

(
f ,

1

2
+ s

)
A1/2

(
1

2
− s

)2

R∗(s)R∗(−s)
Δ′(−s)

Δ(−s)−e2iθ

ds

cos
( i T+s

H

)
=
∫
ℜ(s)= 1

2 +ε
L

(
f ,

1

2
+ s

)
A1/2

(
1

2
− s

)2

R∗(s)R∗(−s)
Δ′

Δ
(s)

1

1−e2iθΔ(s)

ds

cos
( i T+s

H

)
= ∑

n≥1

λ f (n)

n1/2
φ
( n

T 2+ε
) ∑

l1,l2<T 1−3ξ

∑
m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

× r (l1)r (l2)λ f (l1)λ f (l2)
∫
ℜ(s)= 1

2 +ε

(
m1m2l2

nl1

)s Δ′

Δ
(s)

1

1−e2iθΔ(s)

ds

cos
( i T+s

H

) .

We write

(1−e2iθΔ(s))−1 = 1+ e2iθΔ(s)

1−e2iθΔ(s)
,

and by the same observation as before, only the contribution from the first term above is
non-negligible. By (3.6), this term yields, up to negligible error term,

∑
l1,l2<T 1−3ξ

r (l1)r (l2)λ f (l1)λ f (l2)
∑

m1,m2<T ξ

m1m2l2=nl1

λ f (n)d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(nm1m2)1/2
IT

= ∑
g≤T 1−3ξ

S(g )IT , (3.12)
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where S(g ) is defined as

∑
l1,l2≤ T 1−3ξ

g
(l1,l2)=(l1l2,g )=1

r (l1)r (l2)λ f (l1)λ f (l2)
∑

m1,m2<T ξ

m1m2l2=nl1

λ f (n)d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)
�

nm1m2
.

We let l11 = (l1,m1), l12 = l1/l11 and m1 := m1/l11,m2 := m2/l12, so that

S(g ) = ∑
l1,l2≤ T 1−3ξ

g

(l1,l2)=(l1l2,g )=1

r (l1)r (l2)λ f (l1)λ f (l2)√
l1l2

∑
l11l12=l1

× ∑
l11m1,l12m2<T ξ

λ f (m1m2l2)d1/2(l11m1)d1/2(l12m2)λ f (l11m1)λ f (l12m2)

m1m2
.

We will estimate the outer sum by repeated use of Lemma 3.6. We first evaluate the m1-sum
and then the m2-sum.

The m1-sum

Writing l for l11 and m for m1, we study the series

∞∑
m=1

λ f (m2l2m)d1/2(lm)λ f (lm)

ms =G1(s;m2, l2, l )
∏
p

( ∞∑
k=0

λ f (pk )2d1/2(pk )p−ks

)
,

where

G1(s;m2, l2, l ) := ∏
p|m2l2l

∑∞
k=0λ f (pνp (m2l2)+k )d1/2(pνp (l )+k )λ f (pνp (l )+k )p−ks∑∞

k=0λ f (pk )2d1/2(pk )p−ks
.

We wish to relate our Euler product to L1/2(sym2 f , s). We have

L1/2( f × f , s) =∏
p

(1−p−s)−1(1−α2
p p−s)−1/2(1−β2

p p−s)−1/2

=∏
p

( ∞∑
k=0

p−ks

)( ∞∑
k=0

(
k − 1

2
k

)
α2k

p p−ks

)

×
( ∞∑

k=0

(
k − 1

2
k

)
β2k

p p−ks

)

=∏
p

( ∞∑
k=0

b(pk )p−ks

)
,

where b is a non-negative multiplicative function such that

b(p) = λ f (p)2

2
= d1/2(p)λ2

f (p).
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Writing s =σ+ iτ, we thus have

∏
p

( ∞∑
k=0

λ f (pk )2d1/2(pk )p−ks

)
= ζ(s)1/2L1/2(sym2 f , s)B(s), (3.13)

where B(s) is a bounded holomorphic function in the region σ> 1−c/log(2+|τ|). We write

∞∑
m=1

λ f (m2l2m)d1/2(lm)λ f (lm)

ms =G1

(
s;

1

2
,m2, l2, l

)
ζ(s)1/2,

where

G1

(
s;

1

2
,m2, l2, l

)
:= L1/2(sym2 f , s)B(s)G1(s;m2, l2, l ).

We define M1(m2, l2, l ) to be

∏
p|m2l2l

sup
σ>1− c

log(2+|τ|)

∣∣∣∣∣
∑∞

k=0 |λ f (pνp (m2l2)+k )d1/2(pνp (l )+k )λ f (pνp (l )+k )|p−ks∑∞
k=0λ f (pk )2d1/2(pk )p−ks

∣∣∣∣∣ ,

and deduce by Lemma 3.6 the following lemma.

Lemma 3.8. For l ≤ T ξ−ε, we have

∑
m< T ξ

l

λ f (m2l2m)d1/2(lm)λ f (l m)

m
= 2+o(1)

Γ
(1

2

)
(

log
T ξ

l

)1/2

G1

(
1;

1

2
,m2, l2, l

)

+O

(
M1

log1/2 T

)
.

The m2-sum

We now evaluate the contribution of the main term of Lemma 3.8 and study the associated
Dirichlet series∑

m2

d1/2(l12m2)λ f (l12m2)G1 (1;m2, l2, l11)

ms
2

=G2(s; l11, l12, l2)
∏
p

∞∑
k,k ′=0

d1/2(pk )λ f (pk )λ f (pk+k ′
)d1/2(pk ′

)λ f (pk ′
)

pks+k ′

∑∞
k=0λ f (pk )2d1/2(pk )p−k

,

where G2(s; l11, l12, l2) is defined as ∏
p|l2l11l12

G2,p (s; l11, l12, l2),

and G2,p is given by

∞∑
k,k ′=0

d 1
2

(pνp (l12)+k )λ f (pνp (l12)+k )λ f (pνp (l2)+k+k ′
)d 1

2
(pνp (l11)+k ′

)λ f (pνp (l11)+k ′
)p−ks−k ′

∞∑
k,k ′=0

d 1
2

(pk )λ f (pk )λ f (pk+k ′
)d 1

2
(pk ′

)λ f (pk ′
)p−ks−k ′

.

We note that the prime factors of l1, l2 are, by the support of r , large enough so that the denominator

above does not vanish.
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Claim 3.1. Let s =σ+ iτ; there exists a function, C (s), bounded and holomorphic in the region
σ> 1−c/log(2+|τ|) such that

∏
p

∞∑
k,k ′=0

d 1
2

(pk )λ f (pk )λ f (pk+k ′
)d 1

2
(pk ′

)λ f (pk ′
)

pks+k ′

∞∑
k=0

λ f (pk )2d 1
2

(pk )p−k
= ζ1/2(s)L1/2(sym2 f , s)C (s).

Proof. We have

∏
p

∑∞
k,k ′=0 d1/2(pk )λ f (pk )λ f (pk+k ′

)d1/2(pk ′
)λ f (pk ′

)p−ks−k ′

∑∞
k=0λ f (pk )2d1/2(pk )p−k

=∏
p

(
1+d1/2(p)λ f (p)2p−s +O(p−s− 1

2 )
)

,

and the claim follows immediately.

By the above claim, we have

∑
m2

d1/2(l12m2)λ f (l12m2)G1(1;m2, l2, l11)

ms
2

= ζ1/2(s)G2

(
s;

1

2
, l11, l12, l2

)
,

where

G2

(
s;

1

2
, l11, l12, l2

)
=G2(s; l11, l12, l2)L1/2(sym2 f , s)C (s).

We let
M2(l11, l12, l2) = ∏

p|l11l12l2

sup
σ>1− c

log(2+|τ|)

|M2,p (s)|

where M2,p (s) is given by

∞∑
k,k ′=0

∣∣∣d 1
2

(pνp (l12)+k )λ f (pνp (l12)+k )λ f (pνp (l2)+k+k ′
)d 1

2
(pνp (l11)+k ′

)λ f (pνp (l11)+k ′
)
∣∣∣p−ks−k ′

∞∑
k,k ′=0

|d 1
2

(pk )λ f (pk )λ f (pk ′
)λ f (pk+k ′

)d 1
2

(pk ′
)|p−ks−k ′

.

We note that by the parity of νp (l12)+k,νp (l2)+k +k ′, and νp (l11)+k ′, we have

M2(l11, l12, l2) ≤ d1/2(l1)|λ f (l1l2)|M2(l1l2),

where M2(l ) is a positive multiplicative function supported on squarefree integers and satisfy-
ing

M2(p)±1 ≤ (1+C2p−δ2 ), (3.14)

for some absolute constant C2 and some δ2 > 0. By Lemma 3.6, we obtain for l12 < T ξ−ε,

∑
m2< T ξ

l12

d1/2(l12m2)λ f (l12m2)G(1;m2, l2, l11)

m2
= 2+o(1)

Γ
( 1

2

) G2

(
1;

1

2
, l11, l12, l2

)
log1/2

(
T ξ

l12

)

+O

(
d1/2(l1)|λ f (l1l2)|M2(l1l2)

log1/2 T

)
.
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We may control the contribution from the error term in Lemma 3.8 similarly. Namely, with
s =σ+ iτ and z = δ+ iγ, we let

M3(l11, l12, l2) := ∏
p|l11l12l2

sup
σ>1− c

log(2+|τ|)

∞∑
k=0

sup
δ>1− c

log(2+|γ|)

|G3,p (k; s, z, l11, l12, l2)|

∞∑
k=0

sup
δ>1− c

log(2+|γ|)

|G†
3,p (k; s, z, l11, l12, l2)|

,

where G3,p (k; s, z, l11, l12, l2) is given by

∞∑
k ′=0

|λ f (pνp (l2)+k+k ′
)d1/2(pνp (l11)+k ′

)λ f (pνp (l11)+k ′
)d1/2(pνp (l12)+k )λ f (pνp (l12)+k )|p−ks−k ′z

∞∑
k ′=0

λ f (pk ′
)2d1/2(pk ′

)p−k ′z
,

and G†
3,p (k; s, z, l11, l12, l2) is given by

∞∑
k ′=0

|λ f (pk+k ′
)d1/2(pk ′

)λ f (pk ′
)d1/2(pk )λ f (pk )|p−ks−k ′z

∞∑
k ′=0

λ f (pk ′
)2d1/2(pk ′

)p−k ′z
.

We note that we also have

M3(l11, l12, l2) ≤ d1/2(l1)|λ f (l1l2)|M3(l1l2),

where M3 ≥ M2 is a function satisfying (3.14) possibly with a different constant. Using these to
bound the contribution from the error term, we conclude the following lemma.

Lemma 3.9. For l11, l12 < T ξ−ε, we have

∑
l11m1,l12m2<T ξ

λ f (m1m2l2)d1/2(l11m1)d1/2(l12m2)λ f (l11m1)λ f (l12m2)

m1m2

=
(

4+o(1)

Γ
(1

2

)
)2 (

log
T ξ

l11

)1/2 (
log

T ξ

l12

)1/2

G2

(
1;

1

2
, l11, l12, l2

)

+O(d1/2(l1)|λ f (l1l2)|M3(l1l2)).

The l1 and l2 sums

We let Z = exp((log N )2/3) and note that by Lemma 3.5 the contribution from l1, l2 ≥ Z to S(g )
is negligible. We first consider the contribution from the main term in Lemma 3.9 to (3.12),
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yielding

logT
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)λ f (l1l2)√
l1l2

∑
l11l12=l1

G2

(
1;

1

2
, l11, l12, l2

) ∑
g≤ T 1−3ξ

max(l1,l2)

(g ,l1l2)=1

r (g )2λ f (g )2IT

∼ logT
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)λ f (l1l2)√
l1l2

∑
l11l12=l1

G2

(
1;

1

2
, l11, l12, l2

) ∏
p�l1l2

(1+ r (p)2λ f (p)2)IT

∼ logT
∑

l1,l2<Z
(l1,l2)=1

r (l1l2)λ f (l1l2)√
l1l2

d(l1)G2(l1, l2)
∏
p

(1+ r (p)2λ f (p)2)IT ,

where up to a constant G2(l1, l2) is given by

∏
p|l1l2

∞∑
k,k ′=0

d 1
2

(pνp (l1)+k )λ f (pνp (l1)+k )λ f (pνp (l2)+k+k ′
)d 1

2
(pk ′

)λ f (pk ′
)p−k−k ′

(1+ r (p)2λ f (p)2)
∞∑

k,k ′=0

d 1
2

(pk )λ f (pk )λ f (pk+k ′
)d 1

2
(pk ′

)λ f (pk ′
)p−k−k ′

.

Since for any l1, l2,k,k ′, one of νp (l1)+k,νp (l2)+k +k ′ and k ′ must be odd, we may factorize
λ f (l1l2) and obtain

λ f (l1l2)G2(l1, l2) ≥ d1/2(l1)λ f (l1l2)2G(l1l2),

where G is some multiplicative function supported on squarefree integers and satisfying

G(p)±1 ≤ (1+C3p−δ3 ),

for some absolute constant C3 and some δ3 > 0. From Lemma 3.5 we have the following
sequence of estimates:

∑
l<Z

d(l )r (l )λ f (l )2

�
l

G(l ) ∼∏
p

(
1+ 2r (p)λ f (p)2

�
p

G(p)

)
∼∏

p

(
1+ 2r (p)λ f (p)2

�
p

)
. (3.15)

The lower bound (3.3) follows after dividing by the Normalizing Weight.

We now consider the contribution from the error terms in Lemma 3.9. We estimate

∑
l1,l2<Z
(l1,l2)=1

r (l1l2)|λ f (l1l2)|√
l1l2

∑
l11l12=l1

d1/2(l1)|λ f (l1l2)|M3(l1l2)
∏

p�l1l2

(1+ r (p)2λ f (p)2) (3.16)

= ∑
l1,l2<Z
(l1,l2)=1

r (l1l2)|λ f (l1l2)|2√
l1l2

M̃3(l1, l2)
∏
p

(1+ r (p)2λ f (p)2),

where M̃3 is a multiplicative function supported on squarefree integers defined on primes by

M̃3(p) = M3(p)

(1+ r (p)2λ f (p)2)
.

We then may evaluate (3.16) as in (3.15), however the contribution from this term is smaller as
we save a factor of logT in the error term of Lemma 3.9.
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3.5 The signed moment

In this section we prove (3.4), by studying

NW.EwT,θ

[
L

(
f ,

1

2
+ i t

)]

∼
∫
Γε

L

(
f ,

1

2
+ s

)
A 1

2

(
1

2
+ s

)
A 1

2

(
1

2
− s

)
R∗(s)R∗(−s)

Δ′(s)

Δ(s)−e2iθ

ds

cos
( i T−s

H

) .

The contribution of the integral along the line ℜ(s) = 1/2+ε is

−e−2iθ
∑

n≥1

λ f (n)

n1/2
φ
( n

T 2+ε
) ∑

l1,l2<T 1−3ξ

∑
m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

× r (l1)r (l2)λ f (l1)λ f (l2)
∫
ℜ(s)= 1

2+ε

(
m2l2

nm1l1

)s Δ′

Δ
(s)

Δ(s)

1−e−2iθΔ(s)

ds

cos
( i T−s

H

) ,

which by (3.5) is negligible. We thus only care to estimate the integral along the line ℜ(s) =
−1/2−ε. We make a change of variables s →−s and use the definition of Δ(s) to find∫

ℜ(s)= 1
2 +ε

L

(
f ,

1

2
+ s

)
A1/2

(
1

2
+ s

)
A1/2

(
1

2
− s

)
R∗(s)R∗(−s)

Δ′(−s)

1−e2iθΔ(s)

ds

cos
( i T+s

H

)
= ∑

n≥1

λ f (n)

n1/2
φ
( n

T 2+ε
) ∑

m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

× ∑
l1,l2<T 1−2ξ

r (l1)r (l2)λ f (l1)λ f (l2)
∫
ℜ(s)= 1

2 +ε

(
m2l2

nm1l1

)s Δ′(−s)

1−e2iθΔ(s)

ds

cos
( i T+s

H

) .

We write

(1−e2iθΔ(s))−1 = 1+e2iθΔ(s)+ e4iθΔ2(s)

1−e2iθΔ(s)

to obtain the following three terms

I := ∑
l1,l2<T 1−3ξ

r (l1)r (l2)λ f (l1)λ f (l2)
∑

m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

×
∫
ℜ(s)= 1

2+ε
L

(
f ,

1

2
+ s

)(
m2l2

m1l1

)s

Δ′(−s)
ds

cos
( i T+s

H

) ,

II := e2iθ
∑

n≥1

λ f (n)

n1/2
φ
( n

T 2+ε
) ∑

m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

× ∑
l1,l2<T 1−2ξ

r (l1)r (l2)λ f (l1)λ f (l2)
∫
ℜ(s)= 1

2+ε

(
m2l2

nm1l1

)s Δ′

Δ
(s)

ds

cos
( i T+s

H

) ,

and

III := e4iθ
∑

n≥1

λ f (n)

n1/2
φ
( n

T 2+ε
) ∑

m1,m2<T ξ

d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(m1m2)1/2

× ∑
l1,l2<T 1−2ξ

r (l1)r (l2)λ f (l1)λ f (l2)
∫
ℜ(s)= 1

2+ε

(
m2l2

nm1l1

)s Δ′(s)

1−e2iθΔ(s)

ds

cos
( i T+s

H

) .

We can see from (3.5) that III is negligible, and we shall therefore focus solely on I and II.
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3.5.1 Bounding II

Using (3.6), II is bounded up to negligible error term by∑
g<T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2<T 1−3ξ/g
(l1,l2)=(l1l2,g )=1

λ f (l1l2)r (l1l2)

× ∑
m1,m2<T ξ

nm1l1=m2l2

λ f (n)d1/2(m1)d1/2(m2)λ f (m1)λ f (m2)

(nm1m2)1/2
IT .

We let l21 = (l2,m1), l22 = (l2,n) and replace m1 := m1
l21

,n := n
l22

to reduce the problem to esti-
mating

∑
g<T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2<T 1−3ξ/g
(l1,l2)=(l1l2,g )=1

λ f (l1l2)r (l1l2)√
l1l2

×

∑
l21l22=l2

∑
nm1l1,l21m1<T ξ

λ f (l22n)d1/2(l21m1)d1/2(m1nl1)λ f (l21m1)λ f (m1nl1)

nm1
.

We note that the innermost sum is bounded by

∑
nl1,l21m1<T ξ

|λ f (l22n)d1/2(l21m1)d1/2(l1m1n)λ f (l21m1)λ f (m1nl1)|
nm1

. (3.17)

Bounding (3.17)

We study

∑
n

|λ f (l22n)d1/2(l1m1n)λ f (m1nl1)|
ns =∏

p

( ∞∑
k=0

λ f (pk )2d1/2(pk )p−ks

)
G3(s; l1,m1, l22),

where

G3(s; l1,m1, l22) := ∏
p|l1m1l22

∞∑
k=0

|λ f (pνp (l22)+k )d 1
2

(pνp (l1m1)+k )λ f (pνp (l1m1)+k )|p−ks

∞∑
k=0

λ f (pk )2d 1
2

(pk )p−ks
.

By (3.13), we conclude that

∑
n

|λ f (l22n)d1/2(l1m1n)λ f (m1nl1)|
ns = ζ1/2(s)G3

(
s;

1

2
, l1,m1, l22

)
,

where

G3

(
s;

1

2
, l1,m1, l22

)
=G3(s; l1,m1, l22)L1/2(sym2 f , s)B(s),

where B(s) is given in (3.13). Letting M3(l1,m1, l22) denote

∏
p|l1m1l22

sup
σ>1−c/log(2+|τ|)

∣∣∣∣∣∣
∑∞

k=0 |λ f (pνp (l22)+k )d 1
2

(pνp (l1m1)+k )λ f (pνp (l1m1)+k )|p−ks

∑∞
k=0λ f (pk )2d 1

2
(pk )p−ks

∣∣∣∣∣∣ ,
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we use Lemma 3.6 to conclude that for l1 < T ξ−ε, we have

∑
l1n<T ξ

|λ f (l22n)d1/2(l1m1n)λ f (m1nl1)|
n

� (logT )1/2G3

(
1;

1

2
, l1,m1, l22

)

+O

(
M3

(logT )1/2

)
. (3.18)

We estimate the contribution from the first term of (3.18); the contribution of the second term
is analogous. We thus study

∑
m1

d1/2(l21m1)|λ f (l21m1)|G3 (1; l1,m1, l22)

ms
1

=∏
p

(∑∞
k,k ′=0 |d1/2(pk )λ f (pk )λ f (pk ′

)d1/2(pk+k ′
)λ f (pk+k ′

)|p−k ′−ks∑∞
k=0λ f (pk )2d1/2(pk )p−k

)
G4(s; l1, l2),

where

G4(s; l1, l2) = ∏
p|l1l2

G4,p (s; l1, l2),

and G4,p (s; l1, l2) is given by

∞∑
k,k ′=0

|d 1
2

(pνp (l21)+k )λ f (pνp (l21)+k )λ f (pνp (l22)+k ′
)d 1

2
(pνp (l1)+k+k ′

)λ f (pνp (l1)+k+k ′
)|p−k ′−ks

∞∑
k,k ′=0

|d 1
2

(pk )λ f (pk )λ f (pk ′
)d 1

2
(pk+k ′

)λ f (pk+k ′
)|p−k ′−ks

.

Claim 3.2. Let s =σ+ iτ; there exists a function, D, bounded and holomorphic in the region
σ> 1−c/log |τ| such that

∏
p

∞∑
k,k ′=0

|d 1
2

(pk )λ f (pk )λ f (pk ′
)d 1

2
(pk+k ′

)λ f (pk+k ′
)|

pk ′+ks

∞∑
k=0

λ f (pk )2d 1
2

(pk )p−k
= ζ1/4(s)L1/4(s ym2 f , s)D(s).

Proof. We have

∏
p

∑∞
k,k ′=0 d1/2(pk )λ f (pk )λ f (pk+k ′

)d1/2(pk+k ′
)λ f (pk ′

)p−ks−k ′

∑∞
k=0λ f (pk )2d1/2(pk )p−k

=∏
p

(
1+d1/2(p)2λ f (p)2p−s +O(p−s− 1

2 )
)

,

and the claim follows immediately.

We let M4(l1l2) be a positive multiplicative function, supported on squarefree integers, such
that

M4(p)±1 ≤ (1+C4p−δ4 ),
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for some constant C4 > 0 and some δ4 > 0, chosen so that

∏
p|l1l2

sup
ℜ(s)>1−c/log |τ|

G4,p (s; l1, l2) ≤ |λ f (l1l2)|d1/2(l21l1)M4(l1l2),

and use Lemma 3.6 to conclude the following lemma.

Lemma 3.10. For l1, l2 < T ξ−ε, we have

∑
nl1,l21m1<T ξ

|λ f (l22n)d1/2(l21m1)d1/2(l1m1n)λ f (l21m1)λ f (m1nl1)|
nm1

� (logT )3/4G4(1; l1, l2)+O
(
M4(logT )−1/4)

Estimating the outer sums

We estimate the contribution from the first term of Lemma 3.10 to II, the second term being
treated similarly. We notice that letting Z = exp(log2/3 N ) the contribution from max(l1, l2) > Z
is negligible, and thus only care to estimate

∑
g<T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2<T 1−3ξ/g ,Z
(l1,l2)=(l1l2,g )=1

λ f (l1l2)r (l1l2)√
l1l2

∑
l21l22=l2

G4(1; l1, l2)

� ∑
g<T 1−3ξ

r (g )2λ f (g )2
∑

l1,l2<T 1−3ξ/g ,Z
(l1,l2)=(l1l2,g )=1

λ f (l1l2)r (l1l2)√
l1l2

d1/2(l1)d3/2(l2)G̃4(l1l2),

where G̃4 is a multiplicative function supported on squarefree integers such that

G̃4(l ) =∏
p|l

(|λ f (pνp (l ))|+O(p−δ5 ),

for some δ5 > 0. By Lemma 3.3 and 3.5 we obtain that the contribution of II is bounded by

(logT )3/4
∏
p

(1+ r (p)2λ f (p)2)
∏
p

(
1+ λ f (p)2r (p)

2
�

p

)∏
p

(
1+ 3λ f (p)2r (p)

2
�

p

)
IT

� (logT )3/4
∏
p

(1+ r (p)2λ f (p)2)
∏
p

(
1+ 2λ f (p)2r (p)

�
p

)
IT ,

so that dividing by NW we obtain an acceptable upper bound towards (3.4).

3.5.2 Estimating I

We have reduced the proof of the upper bound of Proposition 3.1 to bounding I. We will do so
by showing it is bounded by II. By Proposition 1.2, we have that

L

(
f ,

1

2
+ iν

)
=∑

n

λ f (n)

n1/2+iν
Vν(n)+Δ(iν)

∑
n

λ f (n)

n1/2−iν
V−ν(n),
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where

Vν(y) := 1

2πi

∫
(3)

y−ueu2 L∞
(1

2 + iν+u
)

L∞
(1

2 + iν
) du

u
.

We may thus write∫
R

L

(
f ,

1

2
+ iν

)(
m2l2

m1l1

)iν

Δ′(−iν)
dν

cosh
(T+ν

H

) = S1 +S2,

where

S1 :=∑
n

λ f (n)

n1/2

∫
R

(
m2l2

m1l1n

)iν

Vν(n)Δ′(−iν)
dν

cosh
(T+ν

H

) ,

and

S2 :=∑
n

λ f (n)

n1/2

∫
R

(
m2l2n

m1l1

)iν

V−ν(n)Δ(iν)Δ′(−iν)
dν

cosh
(T+ν

H

) .

We note that by the support of Vν (see Proposition 1.3), we only need to consider the contribu-
tion from |ν|  T and n � T 1+ε, for both S1 and S2 . We also note that in the definition of Vν

only the contribution from u � T ε is non-negligible. We thus estimate

S1 =
∑

n�T 1+ε

λ f (n)

2πn1/2

∫
u�T ε

e(3+i u)2

n3+i u(3+ i u)
KT (n;m1,m2, l1, l2,u)du +O(T −A),

where KT (n;m1,m2, l1, l2,u) is defined to be∫
R

(
m2l2

m1l1n

)iν L∞
(7

2 + i (ν+u)
)

L∞
(1

2 + iν
) Δ′(−iν)W (ν)

dν

cosh
(T+ν

H

) ,

and W is a smooth function supported on [−2T,−T /2] such that W ( j )(x) � x− j for all j ≥ 0.

We recall that by (3.7),

Δ′(−iν) =−Δ(−iν)

2
log

(
1

16 + 1
4 ((r +ν)2 + (ν− r )2)+ (ν2 − r 2)2

16π4

)
+O(|ν|−1+ε),

and

L∞
(7

2 + i (ν+u)
)

L∞
(1

2 + iν
) Δ(−iν) = c1π

−2iν
∣∣∣r +u +ν

2e

∣∣∣i r+u+ν
2 + 5

4
∣∣∣ν+u − r

2e

∣∣∣i ν+u−r
2 + 5

4

×
∣∣∣r +ν

2e

∣∣∣i (r+ν)
2 + 1

4
∣∣∣ν− r

2e

∣∣∣i (ν−r )
2 + 1

4
e

πu
2 (1+O(|ν|−1)),

for some absolute constant c1. We then write

KT (n;m1,m2, l1, l2,u) =
∫
R

gT (ν)e( fT (ν))dν,

where

gT (ν) = c2

log

(
1

16+ 1
4 ((r+ν)2+(ν−r )2)+(ν2−r 2)2

16π4

)
+O(|ν|−1+ε)

cosh
(T+ν

H

) W (ν)

×
∣∣∣r +u +ν

2

∣∣∣5/4 ∣∣∣ν+u − r

2

∣∣∣5/4 ∣∣∣r +ν

2

∣∣∣1/4 ∣∣∣ν− r

2

∣∣∣1/4
eπu ,
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fore some absolute constant c2, and

2π fT (ν) = ν log

(
m2l2

nm1l1π2

)
+ r +ν

2
log

∣∣∣r +ν

2e

∣∣∣+ ν− r

2
log

∣∣∣ν− r

2e

∣∣∣
+ r +u +ν

2
log

∣∣∣r +u +ν

2e

∣∣∣+ ν+u − r

2
log

∣∣∣ν+u − r

2e

∣∣∣ .

We now wish to run a stationary phase analysis on KT , and we therefore compute

2π f ′
T (ν) = log

(
m2l2

nm1l1π2

)
+ 1

2
log

∣∣∣r +ν

2e

∣∣∣+ 1

2
log

∣∣∣ν− r

2e

∣∣∣+2

+ 1

2
log

∣∣∣r +u +ν

2e

∣∣∣+ 1

2
log

∣∣∣ν+u − r

2e

∣∣∣ .

We note that in the support of the integral, | f ′
T (ν)| ≥ 1 as otherwise we would require to

have m2l2T 2  nm1l1, however the right hand side is always bounded by T 2−ε. By repeated
integration by parts, we find

KT (n;m1,m2, l1, l2,u) � eπuT −A ,

so that the contribution from S1 is negligible. Similarly, we now study

S2 =
∑

n�T 1+ε

λ f (n)

2πn1/2

∫
u�T ε

e(3+i u)2

(πn)3+i u(3+ i u)
K̃T (n;m1,m2, l1, l2,u)du +O(T −A),

where K̃T (n;m1,m2, l1, l2,u) is defined to be

∫
R

(
m2l2n

m1l1

)iν L∞
(7

2 + i (u −ν)
)

L∞
(1

2 − iν
) Δ(iν)Δ′(−iν)

W (ν)dν

cosh
(T+ν

H

) .

We write

K̃T (n;m1,m2, l1, l2,u) =
∫
R

g̃T (ν)e( f̃T (ν))dν,

where up to a constant, g̃T (ν) is given by

e−
πu
2

∣∣∣u + r −ν

2

∣∣∣5/4 ∣∣∣u −ν− r

2

∣∣∣5/4 ∣∣∣r −ν

2

∣∣∣1/4 ∣∣∣r +ν

2

∣∣∣1/4

× log

(
1

16 + 1
4 ((r +ν)2 + (ν− r )2)+ (ν2 − r 2)2

16π4

)
W (ν)

cosh
(T+ν

H

) (1+O(|ν|−1+ε)),

and

2π f̃T (ν) = ν log

(
m2l2n

m1l1

)
+ u + r −ν

2
log

∣∣∣u + r −ν

2e

∣∣∣+ u −ν− r

2
log

∣∣∣u −ν− r

2e

∣∣∣
+ ν− r

2
log

∣∣∣r −ν

2e

∣∣∣+ ν+ r

2
log

∣∣∣ν+ r

2e

∣∣∣ .

We compute

2π f̃ ′
T (ν) = log

(
m2l2n

m1l1

)
− 1

2

(
log

(
1+ u

r −ν

)
+ log

(
1− u

ν+ r

))
,

70



3.5. The signed moment

We thus see that if m2l2n �= m1l1, then f̃ ′
T (ν) � T ξ−1. Computing higher derivatives, one finds

that f̃ ( j )
T � T ε− j , so that by Lemma 1.5 one concludes that

K̃T (n;m1,m2, l1, l2,u) �O(T −A).

Using the bound V−ν(n) � 1, we consider thus have

S2 � δm2l2n=m1l1

|λ f (n)|
n1/2

IT +O(T −A).

The contribution from the main term thereof to I is therefore bounded by

∑
l1,l2<T 1−3ξ

r (l1)r (l2)|λ f (l1)λ f (l2)|
∑

m1,m2<T ξ

m2l2n=m1l1

d 1
2

(m1)d 1
2

(m2)|λ f (m1)λ f (m2)λ f (n)|
(nm1m2)1/2

IT ,

which is the same sum as that appearing in II. This concludes the proof of the upper bound of
Proposition 3.1.
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4 Analogies with Frobenius Trace Func-
tions and further directions

We give the definition of Frobenius trace functions as studied in [FKM15a] and look at certain
analytic properties for which we have analogs in the context of analytic trace functions as
defined in Chapter 2.

The class of analytic trace functions we consider unfortunately don’t have a clear geometric
nature as that of Frobenius trace functions. However we give some heuristics as to how we
may define similar concepts.

4.1 Frobenius Trace Functions

Let p be a prime, and let l �= p be an auxiliary prime, and fix

ι : Ql →C,

an isomorphism of fields. Let K := Fp (X ) be the function field of P1(Fp ), and let K s denote
a separable closure of K in which an algebraic closure Fp is contained. We have an exact
sequence

1 →Gg := Gal(K s/Fp (X )) →Ga := Gal(K s/K ) → Gal(Fp /Fp ) → 1.

Definition 4.1. Let U ⊂P1
Fp

be an open set. An l -adic sheaf lisse on U is a continuous represen-
tation

ρ : Ga → GL(V ),

for some finite-dimensional Ql−vector space, V , such that for all closed point x ∈U , the inertia
group Ix acts trivially on V .

For any closed point x ∈A1
Fp

, let kx denote its residue field. We have an isomorphism

Dx /Ix
∼= Gal(Fp /kx ) = 〈Frx〉,

where Dx is the decomposition group and Frx denotes the geometric Frobenius element, i.e.
the inverse of the usual Frobenius element x �→ x |kx |.

73



Chapter 4. Analogies with Frobenius Trace Functions and further directions

Definition 4.2. Let ρ be an l -adic sheaf. The trace function attached to ρ, tρ : A1(Fp ) = Fp →C,
is defined to be

tρ(x) := ι
(
Tr(ρ(Frx |V Ix ))

)
,

where V Ix denotes the subspace of V that is invariant under Ix .

We define the complexity of the trace function tρ by the conductor, a geometric invariant given
by

c(tρ) := dim(V )+p +1−|U |+Swan(ρ),

where Swan(ρ) is a non-negative integer called the Swan conductor of ρ.

In order to finalise our definition of Frobenius trace functions, we require the notion l-adic
sheafs of weight 0.

Definition 4.3. Let ρ be an l -adic sheaf. We say that ρ is of weight 0 if for all closed point x ∈U ,
we have that the eigenvalues of ρ(Frx ) are of absolute value 1

We are now in a position to define formally Frobenius trace functions.

Definition 4.4. A function t : Fp → C is said to be a Frobenius trace function if there exists ρ,
some l -adic sheaf of weight 0, such that t = tρ . We define the conductor of t ,c(t ), to be

c(t ) := min{c(ρ)|t = tρ}.

We now give some examples of trace functions.

Example 4.1. Let ψ : Fp → C∗ be a non-trivial additive character. Then ψ is a Frobenius
trace function. In particular, there exists an l-adic sheaf Lψ, satisfying tLψ

= ψ, called the
Artin-Schreier sheaf attached to ψ.

Example 4.2. Let χ : F∗p → C be a non-trivial multiplicative character. Then χ is a Frobenius
trace function. In particular, there exists an l-adic sheaf Lχ, satisfying tLχ

= χ, called the
Kummer sheaf attached to χ.

Example 4.3. We define the Kloosterman sum by

Kl2(x) := p−1/2
∑

m∈F∗p
e

(
xm +m−1

p

)
.

The Kloosterman sum is a Frobenius trace function.

Example 4.4. For any n ≥ 3 we define the Hyper-Kloosterman sum by

Kln(x) := p
1−n

2
∑

m1···mn≡x
e

(
m1 +·· ·+mn

p

)
.

All Hyper-Kloosterman sums are Frobenius trace functions.
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4.1. Frobenius Trace Functions

Remark 4.1. The complex conjugate of any Frobenius trace function is again a Frobenius
trace function (Via the dual representation). The sum of any two Frobenius trace functions is
also a Frobenius trace function (via the direct sum representation). The product of any two
Frobenius trace functions is close to being a Frobenius trace function (via the tensor product
representation). We won’t make the last statement precise.

We conclude this section by giving two deep theorems of Deligne. First we give the quasi-
orthogonality relation by means of the Riemann hypothesis over finite fields [Del74]. We
then define the Fourier transform and give a theorem explaining that generically the Fourier
transform of a Frobenius trace function is also a Frobenius trace function [Lau87, Kat88,
Del80].

We first require the notion of geometric irreducibility and isomorphism.

Definition 4.5. Let ρ : Ga → GL(V ) be an l -adic sheaf. We say that ρ is geometrically irreducible
if its restriction to Gg is irreducible.

Let t be a trace function. We say that t is geometrically irreducible if there exist a geometrically
irreducible l -adic sheaf, ρ, such that t = tρ .

We note here the following fact, for which one may imagine an analog when considering
irreducibility in the context of analytic trace functions.

Fact 4.1. Let t be a Frobenius trace function that decomposes as a sum of n geometrically
irreducible components. We have ∑

Fp

|K (x)|2 = (n +o(1))p.

Definition 4.6. Let ρ1 : Ga → GL(V1) and ρ2 : Ga → GL(V2) be two l-adic sheaves. We say that
ρ1 and ρ2 are geometrically isomorphic if their restrictions to Gg are isomorphic.

Let t1 and t2 be two Frobenius trace functions. We say that t1 and t2 are geometrically isomorphic
if there exist two geometrically isomorphic l-adic sheaves, ρ1 and ρ2, such that t1 = tρ1 and
t2 = tρ2 .

We may now state the Riemann hypothesis.

Theorem 4.1. Let K1 and K2 be two geometrically irreducible Frobenius trace functions, of
conductors c1 and c2 respectively.

• If K1 and K2 are not geometrically isomorphic, then∣∣∣∣∣
∑

x∈Fp

K1(x)K2(x)

∣∣∣∣∣≤ 4c2
1c2

2 p1/2.

• If K1 and K2 are geometrically isomorphic, then there exists α ∈C1 such that K2 =αK1,
and we have ∣∣∣∣∣

∑
x∈Fp

K1(x)K2(x)−αp

∣∣∣∣∣≤ 4c2
1c2

2 p1/2.
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Chapter 4. Analogies with Frobenius Trace Functions and further directions

Note that Fact 4.1 follows from the second statement of the Theorem.

We conclude this section by describing the Fourier transform, that is crucial in the proof of
Theorem 0.1.

Definition 4.7. Let

ψ : Fp →C∗

be a fixed non-trivial additive character. Let C (Fp ) be the space of functions Fp →C. The Fourier
transform with respect to ψ is the linear operator

FTψ : C (Fp ) →C (Fp )

defined by

FTψ(ϕ)(y) =−p−1/2
∑

x∈Fp

ϕ(x)ψ(x y)

for any ϕ ∈C (Fp ) and any y ∈ Fp .

We have the following deep theorem of Deligne.

Theorem 4.2. Let ρ be a geometrically irreducible l -adic sheaf that is not geometrically isomor-
phic to an Artin-Schreier sheaf. Then there exists a geometrically irreducible l-adic sheaf, the
Fourier sheaf FTψ(ρ), such that

tFTψ(ρ) = F Tψ(tρ).

Moreover, c(tFTψ(ρ)) ≤ 10c(tρ)2.

This theorem therefore tells us that the Fourier transform of a Frobenius trace function is also
a Frobenius trace function (generically). We note that the bound on the conductor of the
Fourier sheaf is proved by means of a geometric analog of the stationary phase method.

4.2 Analytic trace functions

In this section, we compare certain properties of analytic trace functions, as defined in Chapter
2, to those of Frobenius trace functions. We recall their definition here.

Definition 4.8. A family of smooth functions (Kt )t∈R,Kt : R>0 →C is called a family of analytic
trace functions if there exist real numbers a < b,b > 0 and a family of analytic functions
(Mt (s))t∈R in the strip a < ℜ(s) < b, such that the following conditions hold uniformly for
a <ℜ(s) < b.

1. The following integral converges for any a <σ< b,

1

2πi

∫
(σ)

Mt (s)x−sds, (4.1)

and is equal to Kt (x) for all x ∈R>0, t ∈R.
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4.2. Analytic trace functions

2. There exist constants c1,c2 depending on the family (Kt )t∈R , independent of t , such that
we may write Mt (σ+ iν) = gt (σ+ iν)e( ft (σ+ iν)), in such a way that for all x ∈ [t ,2t ], the
following

g ( j )
t (σ+ iν) � j (1+|ν|)σ−1/2− j ∀ j ≥ 0, (4.2)

holds, as well as the following conditions on ft .

(a) Whenever |ν| ≤ c1t or |ν| ≥ c2t , we have∣∣∣∣ f ′
t (σ+ iν)− 1

2π
log(x)

∣∣∣∣� 1, (4.3)

where the implicit constant does not depend on t.

(b) When c1t ≤ |ν| ≤ c2t , either (4.3) holds, or we have

f ′′
t (σ+ iν) � (1+|ν|)−1, (4.4)

while for all ε> 0, j ≥ 0,

f ( j )
t (σ+ iν) � j ,ε (1+|ν|)1+ε− j , (4.5)

where all the implicit constants do not depend on t.

(c) Finally, we require that

f ′′
t (σ+ iν)− 1

2πν
� (1+|ν|)−1, (4.6)

whenever c1t ≤ |ν| ≤ c2t , and where the implicit constant does not depend on t.

We first give a quasi-orthogonality relation for analytic trace functions, reminiscent of Theorem
4.1.

Proposition 4.1. Let K1,t and K2,t be two analytic trace functions, with associated Mellin
transforms given by Mk,t (σ+ iν) = gk,t (σ+ iν)e( fk,t (σ+ iν)) for k = 1,2. Let ci 1,ci 2 be the
constants attached to Ki ,t appearing in condition (4.3). Let further C1 = min(c11,c21) and
C2 = max(c12,c22). Suppose that f ′′

1,t (σ+ iν)− f ′′
2,t (σ′ + i (ν+a)) � ν−1 for C1 ≤ |ν| ≤ C2t and

a � t ε. Let V be a smooth compactly supported function in [1,2] satisfying x j V ( j )(x) � 1 for all
j ≥ 0, then ∫

R
K1,t (x)K2,t (x)V

(x

t

)
dx � t 1/2+ε.

Proof. Following the notation in Chapter 2, we let I = {0}∪ j≥0 {±(4
3

) j
}, such that for each

l ∈I , we take a smooth function Wl (x) supported in [ 3l
4 , 4l

3 ] for l �= 0 and such that

xkW (k)
l (x) �k 1,
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for all k ≥ 0. For l = 0, take W0(x) supported in [−2,2] with W (k)
0 (x) �l 1, and such that

1 =∑
l∈I Wl (x). We then let for any i ∈I and k = 1,2,

Ik,l ,t (x) := 1

2π

∫
R

gk,t (σk + iν)e( fk,t (σk + iν))x−σk−iνWl (ν).

We recall that by Lemma 2.1 only the contributions from |l | ≤ t ε and |l | ∈ [t 1−ε, t 1+ε] are
non-negligible.

If |l | ≤ t ε, up to replacing Kk,t by the functions Kk,t V (x/t ), we may take the Mellin transform
for any σ> 0, and therefore Ik,l ,t is negligible for x ∈ [t ,2t ].

We therefore assume that |l | ∈ [t 1−ε, t 1+ε]. By changing the order of summation, we have∫
R

I1,l1,t (x)I2,l2,t (x)V
(x

t

)
dx =

1

4π2

∫
R2

M1,t (σ1 + iν1)M2,t (σ2 + iν2)Wl1 (ν1)Wl2 (ν2)
∫
R

x−σ1−σ2+i (ν2−ν1)V
(x

t

)
dxdν1dν2.

Now by Lemma 1.5, the innermost integral is negligible unless |ν1 −ν2| � t ε. We therefore
need to estimate for x ∈ [t ,2t ],∫
R

∫
|ν2−ν1|�t ε

g1,t (σ1+iν1)g2,t (σ2 + iν2)Wl1 (ν1)Wl2 (ν2)e( f1,t (σ1+iν1)− f2,t (σ2+iν2))xi (ν2−ν1)dν.

We will estimate this integral by the two variables second-derivative bound for oscillatory
integrals as in [Mun15]. We therefore rewrite this integral as∫

a�t ε

∫
R

g (ν, a)e( f (ν, a))dνda,

where
g (ν, a) = g1,t (σ1 + iν)g2,t (σ2 + i (ν+a))Wl1 (ν)Wl2 (ν+a)W (a),

where W is a smooth, non-oscillatory, compactly supported function on [−t ε, t ε], and

f (ν, a) = f1,t (σ1 + iν)− f2,t (σ2 + i (ν+a))+ a

2π
log x.

We compute

d2

dν2 f (ν, a) = d2

dν2 f1,t (σ1 + iν)− d2

dν2 f2,t (σ2 + i (ν+a)) � ν−1,

and
d2

da2 f (ν, a) = log x

2π
− d2

da2 f2,t (σ2 + i (ν+a)) � 1.

We also need to compute the total variation of g . By the properties of gk,t for k = 1,2 and of
Wl , we have

d2

dνa
g (ν, a) � νσ1+σ2−2,

so that

var(g ) :=
∫t 1+ε

t 1−ε

∫t ε

−t ε

∣∣∣∣ d2

dνda
g (ν, a)

∣∣∣∣� tσ1+σ2−1+ε.

78



4.2. Analytic trace functions

By the second derivative bound for multivariable oscillatory integrals [Mun15], we thus obtain∫
a�t ε

∫
R

g (ν, a)e( f (ν, a))dνda � tσ1+σ2−1/2+ε.

We therefore have ∫
R

I1,l1,t (x)I2,l2,t (x)V
(x

t

)
dx � t−1/2+ε,

concluding the proof of the proposition.

Hyper-Kloosterman sums of different weights are not geometrically isomorphic. We now give
an archimedean analog of this fact.

Proposition 4.2. Let Fi t denote the normalized Bessel function,

Fi t (x) = t 1/2Γ

(
1

2
+ i t

)
Ji t (x),

where Jν denotes the usual J-Bessel function of order ν. Then for any n ≥ 3, the higher rank
Bessel function,

Jn,t = t
n−1

2

2πi n

∫
( 1

4 )
Γ

(
s − i nt

n

)
Γ

(
s

n
+ i t

n −1

)n−1

e
( s

4

)
x−sds,

satisfies ∫
R

Fi t (x)Jn,t (x)V
(x

t

)
dx � t 1/2+ε,

for any smooth, compactly supported in [1,2] function, satisfying V ( j )(x) � j 1 for all j ≥ 0.

Proof. It suffices to check the conditions of Proposition 4.1. We denote by MF,t (s) = gF,t (s)e( fF,t (s))
and MJn ,t (s) = g Jn ,t (s)e( f Jn ,t (s)) the Mellin transforms respectively associated to Fi t and Jn,t .
We recall (see Propositions 2.2 and 2.3) the regions of interest for MF,t (σ+iν) and MJn ,t (σ′+iν′)
are respectively contained in −100t ≤ ν≤−t and −100nt ≤ ν′ ≤ − n

n−1 t , where

2π
d2

dν2 fF,t (σ+ iν) = ν

ν2 − t 2 ,

and

2π
d2

dν′2
f Jn ,t (σ′ + iν′) = (n −1)ν′ +nt (2−n)

(ν′ −nt )((n −1)ν′ +nt )
.

For any a � t ε and −100t ≤ ν≤− n
n−1 t , we check that

(n −1)ν+nt (2−n)

(ν−nt )((n −1)ν+nt )
− ν+a

(ν+a)2 − t 2 = νt 2(n −n2 −1)+nt 3(2−n)+O(t 2)

(ν−nt )((n −1)ν+nt )((ν+a)2 − t 2)

� ν−1,

concluding the proof.

We also prove an analogous result for two higher rank Bessel functions of different rank.
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Proposition 4.3. Let 3 ≤ n < m and let Jn,t , Jm,t denote higher rank Bessel functions,

Jk,t =
t

k−1
2

2πi k

∫
( 1

4 )
Γ

(
s − i kt

k

)
Γ

(
s

k
+ i t

k −1

)k−1

e
( s

4

)
x−sds,

for k ≥ 3. Then ∫
R

Jm,t (x)Jn,t (x)V
(x

t

)
dx � t 1/2+ε,

for any smooth, compactly supported in [1,2] function, satisfying V ( j )(x) � j 1 for all j ≥ 0.

Proof. It suffices to check the conditions of Proposition 4.1. We denote by MJm ,t (s) = g Jm ,t (s)e( f Jm ,t (s))
and MJn ,t (s) = g Jn ,t (s)e( f Jn ,t (s)) the Mellin transforms respectively associated to Jm,t and Jn,t .
As in the proof of Proposition 4.2, the region of interest here is given by −100nt ≤ ν≤− m

m−1 t ,
where

2π
d2

dν2 f Jm ,t (σ+ iν) = (m −1)ν+mt (2−m)

(ν−mt )((m −1)ν+mt )
,

and

2π
d2

dν′2
f Jn ,t (σ′ + iν′) = (n −1)ν′ +nt (2−n)

(ν′ −nt )((n −1)ν′ +nt )
.

For any a � t ε and −100nt ≤ ν≤− m
m−1 t , we check that

(m −1)ν+mt (2−m)

(ν−mt )((m −1)ν+mt )
− (n −1)(ν+a)+nt (2−n)

(ν+a −nt )((n −1)(ν+a)+nt )

= t 2 (n2 −n2m +m2n −m2)ν+2nm(m −n)t +O(1)

(ν−mt )((m −1)ν+mt )(ν+a −nt )((n −1)(ν+a)+nt )
� ν−1,

concluding the proof.

We now wish to investigate the analog of Theorem 4.2, in the context of analytic trace functions.
This was encapsulated by Proposition 2.4, that we recall here.

Proposition 4.4. Let Kt be an analytic trace function. Then there exists an analytic trace
function, K̃t (x), such that the Fourier transform,

K̂t (x) := t 1/2
∫2

1
Kt (tu)V (u)e(−xu)du,

satisfies

K̂t (x) = K̃t (x)+O(t−1/2).

Indeed Proposition 4.4 tells us that up to a small error, the Fourier transform of an analytic trace
function is also an analytic trace function. We also note that in Theorem 4.2, it is important to
avoid Artin-Schreier sheaves. However in our definition of analytic trace functions, we already
noted that condition (4.6) was in some sense a way to impose not being "too close" to an
additive character.
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4.3 Connection between Chapters 2 and 3

We make a link between the work on analytic twists of modular forms and large values of
L-functions with prescribed argument. We start by giving a very rough sketch of the work of
Hough on large values of L(χ,1/2), for χ a Dirichlet character (mod q), a large prime going to
infinity. In his work, Hough requires Theorem 0.1 to bound sums of divisor functions against
Hyper-Kloosterman sums. We then describe the analogies with our work and look at the links
with Theorem 0.2.

4.3.1 Large values of L(χ,1/2)

Let χ be a non-principal Dirichelt character (mod q), a large prime. We assume that χ is even
for simplicity. We then attach the Dirichlet L-function

L(χ, s) :=∑
n

χ(n)

ns , ℜ(s) > 1,

and the completed L-function

Λ(χ, s) :=
(q

π

)s/2
Γ
( s

2

)
L(χ, s).

The completed L-function satisfies the functional equation

Λ(χ, s) = ε(χ)Λ(χ,1− s),

where

ε(χ) := τ(χ)�
q

= 1�
q

∑
a mod q

χ(a)e

(
a

q

)

is the normalized Gauss sum attached to χ.

Theorem 4.3 (Hough). Let F (x) be a growth function, satisfying for all large x, F (x) = o((log x)1/2)
and fix η< 1/32. For all primes q > q0(F ), for all θ ∈ R/Z, for all δ> 1

F (q) , there exists a non-
principal χ (mod q) such that,

∣∣∣∣
∣∣∣∣ 1

2π
arg

(
L

(
χ,

1

2

))
−θ

∣∣∣∣
∣∣∣∣
R/Z

≤ δ, ℜ
(
logL

(
χ,

1

2

))
≥
√

η
log q

loglog q
.

We now explain some of the ideas involved in the proof of this Theorem. We let θχ denote the
argument of L(χ,1/2), and note that if L

(
χ, 1

2

) �= 0, since

L
(
χ, 1

2

)
L
(
χ, 1

2

) = ei 2θχ ,

we have

e2iθχ = τ(χ)�
q

.

Unlike in the continuous case, we may not pin down exactly 2θχ = θ. Instead of using the
residue theorem, Hough therefore uses a sort of equidistribution result for typical values of
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L(χ,1/2). We let L = log q
∏

p

(
1+ r (p)�

p(1+r (p)2)

)
, where r is given by (3.1). The idea is to compute

certain signed and unsigned moments. We let N = qη for some 0 < η< 1/32 and

R(χ) = ∑
n≤N

r (n)χ(n),

be a resonating polynomial. By a clever argument involving a quantitative equidistribution
result, he captures large values by proving that

∑
χ (mod q)

[∣∣∣∣L
(
χ,

1

2

)∣∣∣∣2 ∣∣R(χ)
∣∣2
]
� ∑

χ (mod q)

[∣∣R(χ)
∣∣2
]
L 4,

while ∑
χ (mod q)

[
L

(
χ,

1

2

)k ∣∣R(χ)
∣∣2

]
= o

( ∑
χ (mod q)

[∣∣R(χ)
∣∣2
]
L 4

)
,

for k = 1,2. He then encapsulates the equidistribution properties by proving that for all m ≥ 1,

∑
χ (mod q)

[
L

(
χ,

1

2

)k

e(2mθχ)
∣∣R(χ)

∣∣2

]
�m,ε qη−1/8+ε ∑

χ (mod q)

[∣∣R(χ)
∣∣2
]
L 4, (4.7)

for k = 1,2.

We now focus on the ideas behind the proof of (4.7), as that is where a non-correlation
problem similar to that of Theorem 0.1 appears. We will focus on the case k = 2 which is the
hardest. By the approximate functional equation for L(χ,1/2), opening the square and writing
e(2mθχ) = ε(χ)m , the left hand side of (4.7) is essentially given by

∑
l1,l2<qη

r (l1)r (l2)
∑

χ (mod q)
χ(l1)χ(l2)ε(χ)m

∑
n

χ(n)d(n)�
n

V

(
n

q

)
, (4.8)

for a smooth, non-oscillatory, compactly supported function on [1,2]. By orthogonality of
characters, we have the following proposition.

Proposition 4.5. Let a,b �≡ 0(mod q). For each m ≥ 0, we have

q1/2

q −1

∑
χ (mod q)

χ(a)χ(b)ε(χ)m = Klm(ab).

From this Proposition, we conclude that (4.8) is given by

q −1

q1/2

∑
l1,l2<qη

r (l1)r (l2)
∑
n

d(n)�
n

Klm(l1nl2)V

(
n

q

)
,

which is small by Theorem 0.1.
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4.3.2 Large values of L( f ,1/2+ i t )

The proof of Theorem 0.4 follows analogous steps, however since we may use the Residue
theorem to capture the angle of L( f ,1/2+ i t), we only need to compute first signed and
unsigned moments. We recall that in the computation of the signed moment, we have to
estimate sums I, II and III (see p. 65). We recall that term III is negligible, while term II contains
a sum of Fourier coefficients twisted by a non-oscillatory function. These terms should be
seen as analogs to the moments

∑
χ (mod q)

[
L

(
χ,

1

2

)
e(2mθχ)

∣∣R(χ)
∣∣2
]

for m ≥ 2, and ∑
χ (mod q)

[
L

(
χ,

1

2

)∣∣R(χ)
∣∣2
]

,

respectively. Term III is analogous to the case m = 1 above. As explained in the previous
section, Hough bounds this moment by relating it to sums of the divisors function against
Kloosterman sums.

In our context, we don’t see this analogy exactly. That is due to the fact that the estimates for
term III essentially boil down to bounding a sum of the shape

∑
n
λ f (n)V

(n

t

)
KT (n; l1, l2)

for l1, l2 < T 1−ε, and where

KT (n; l1, l2) :=
∫
ℜ(s)= 1

2+ε

(
l2

l1n

)s

Δ′(−s)
ds

cos
( s+i T

H

) . (4.9)

In said region, we prove that KT (x; l1, l2) � T −A , by the stationary phase method, and therefore
we don’t require Theorem 0.2.

However, as soon as the range of l1, l2 is allowed to go beyond T , we can no longer estimate
trivially KT (n; l1, l2). In fact, we may prove that Kt (n; l1, l2) is an analytic trace function.

Proposition 4.6. For any l  T , there exists an analytic trace function, KT,l (x), such that the
function KT (x; l ,1) satisfies

KT (x; l ,1) = T 1/2(logT )KT,l (x)+O(T ε).

Proof. We may, up to negligible error, shift the line of integration to ℜ(s) = 0, and using the
relation (3.7), we obtain

KT (x; l ,1) =−1

2

∫
R

(
1

l x

)iν

Δ(−iν) log

(
1

16 + 1
4 ((r +ν)2 + (ν− r )2)+ (ν2 − r 2)2

16π4

)
dν

cosh
(T+ν

H

)+O(T ε).

We now let

KT,l (x) := T −1/2 − 1

2

∫
R

(
1

l x

)iν Δ(−iν)

logT
log

(
1

16 + 1
4 ((r +ν)2 + (ν− r )2)+ (ν2 − r 2)2

16π4

)
dν

cosh
(T+ν

H

) ,
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and we prove this is an analytic trace function. Let

MT (iν) =−πT −1/2(logT )−1l−iνΔ(−iν) log

(
1

16 + 1
4 ((r +ν)2 + (ν− r )2)+ (ν2 − r 2)2

16π4

)
1

cosh
(T+ν

H

) ;

we check it satisfies condition (4.2- 4.6). By Stirling’s formula, we have

Δ(−iν) =π−2iν
Γ

(
1
2+i (ν+r )

2

)
Γ

(
1
2+i (ν−r )

2

)

Γ

(
1
2+i (r−ν)

2

)
Γ

(
1
2−i (ν+r )

2

)

=π−2iν
∣∣∣ν+ r

2e

∣∣∣i (ν+r ) ∣∣∣ν− r

2e

∣∣∣i (ν−r )
(1+O(ν−1)).

We thus write MT (iν) = gT (iν)e( fT (iν)), where

gT (iν) =−πT −1/2(logT )−1 log

(
1

16 + 1
4 ((r +ν)2 + (ν− r )2)+ (ν2 − r 2)2

16π4

)
1+O(ν−1)

cosh
(T+ν

H

) ,

and

2π fT (iν) = ν log
1

lπ2 + (ν+ r ) log
∣∣∣ν+ r

2e

∣∣∣+ (ν− r ) log
∣∣∣ν− r

2e

∣∣∣ .

We easily check that

g ( j )
T (iν) � j ν

−1/2− j , ∀ j ≥ 0.

We now compute

2π f ′
T (iν) = log

∣∣∣∣ (ν2 − r 2)

4π2l

∣∣∣∣ ,

so that for x ∈ [T,2T ], ∣∣∣∣ f ′
T (iν)− 1

2π
log x

∣∣∣∣� 1,

whenever ν � T . We also compute

2π f ′′
T (iν) = 2ν

ν2 − r 2 � ν−1,

and
f ( j )

T (iν) � j ,ε ν
1+ε− j ,

for all j ≥ 0. It remains to check condition (4.6):

f ′′
T (iν)− 1

2πν
= ν2 + r 2

2πν(ν2 −ρ2)
� ν−1,

concluding the proof.

4.4 Further directions

We conclude the thesis by giving some ideas for further research and developments.
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4.4.1 Analytic trace functions

We have presented some analogies between Frobenius and analytic trace functions, however
many notions and properties remain elusive. Most importantly, the analogy between the
algebraic geometric considerations leading to the formalism of Frobenius trace functions
and a geometric structure behind the definition of analytic trace functions is lacking. For
instance one could imagine considering sheafs arising as D-modules, and building similar
geometric invariants such as irreducibility, isomorphisms and others in an analogous way as
for Frobenius trace functions.

Remark 4.2. For irreducibility, one could imagine to have an analytic statement defining
irreducibility by giving an analog of Fact 4.1. More precisely, by computing the L2-norm of an
analytic trace function, one might be able to detect what would be the number of irreducible
components.

Remark 4.3. The property that analytic trace functions are closed under addition does not
to follow from the definition. One could imagine to bypass this issue by defining the space of
analytic trace functions as being functions generated as sums of analytic trace functions as
defined in this thesis.

We encapsulate in the following table the analogies we do have, and those for which work has
yet to be done.

Frobenius trace functions Analytic trace functions
Algebraic geometric

considerations
Yes: constructions arising as

l-adic sheaves.
Unclear: constructions arising

as D-modules?

Notion of
irreducibility

Yes: via representation theory.

Unclear: one could expect an
answer here if given a more

algebraic interpretation. Also
see Remark 4.2

Notion of
isomorphism

Yes: via representation theory.

Unclear: one could expect an
answer here if given a more

algebraic interpretation. Note:
The hypotheses in Proposition

4.1 could also hint to a more
analytic description.

Quasi-orthogonality
relations

Yes: via the Riemann
hypothesis for varieties over

finite fields.
Yes: this is Proposition 4.1

Stability under
Fourier transform

Yes: this is Theorem 4.2 Yes: this is Proposition 4.4

Stability under
addition

Yes: via representation theory.

Unclear: one could expect an
answer here if given a more

algebraic interpretation. Also
see Remark 4.3.

Stability under
multiplication

Essentially Yes: via
representation theory, however

with some subtleties.

Unclear: one could expect an
answer here if given a more

algebraic interpretation.
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4.4.2 Large values of L( f ,1/2+ i t ) with prescribed argument

Theorem 0.4 proves the existence of large values of L( f ,1/2+ i t ), however it doesn’t give any
information on the density of such large values. As noted previously, our proof of Theorem 0.4
only relies on estimates for the first moments of L( f ,1/2+ i t ).

Let Tθ = {t ∈R|arg
(
L
(

f , 1
2 + i t

))= θ (modπ)} and H = T /log2 T . In order to obtain information
about the density of large values, one is led to the study of the second moment

∑
t∈Tθ

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣2 1

cosh
( t−T

H

) .

One way to link these two problems may be given by means of the Cauchy-Schwartz inequality,

∑
t∈Tθ

|L|�exp(
√

logT
loglogT )

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣≤
⎛
⎜⎜⎜⎜⎝

∑
t∈Tθ

|L|�exp(
√

logT
loglogT )

1

⎞
⎟⎟⎟⎟⎠

1/2⎛⎜⎜⎜⎜⎝
∑

t∈Tθ

|L|�exp(
√

logT
loglogT )

∣∣∣∣L
(

f ,
1

2
+ i t

)∣∣∣∣2

⎞
⎟⎟⎟⎟⎠

1/2

,

so that given a lower bound for the first moment and an upper bound for the second moment,
one obtains information about the number of elements with large value.

By the Residue theorem, analogously to the first moment, one is led to estimating type I sums,
i.e. sums of the type

∑
n,m�T

ρ f (n)ρ f (m)KT (n;m,1), (4.10)

where Kt (n;m,1) is given by (4.9). Now by Proposition 4.6, we see that in each variable
KT (n;m,1) is an analytic trace function. Motivated by this problem, a natural continuation of
this work would be to study bilinear sums of type (4.10).

4.4.3 Graphs of certain analytic trace functions

We include graphs of the normalized Bessel function and of Bessel functions of higher rank,
which were the main examples of analytic trace functions. The first two graphs correspond,
respectively, to the plots of the Bessel function and the Bessel function of rank 3, against a
cos function to illustrate that these example do not resemble the additive character. The last
graph plots the Bessel function and the Bessel function of rank 3 which do not correlate as
proven in Proposition 4.1.
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Plot of Bessel function against additive character
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Figure 4.1 – Blue: J100i , Red: cos(1.3x)

Plot of Bessel function of rank 3 against additive character
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Figure 4.2 – Blue: J3,100i , Red: cos(1.3x)
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Plot of Bessel function of rank 3 against Bessel function
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Figure 4.3 – Blue: J3,100i , Red: J100i
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EDUCATION École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Ph.D. in Mathematics, Expected February 2017
Thesis Advisor: Prof. Philippe Michel

University College London (UCL), London, UK
Master in Science (Msci) in Mathematics with Theoretical Physics, September 2012
Including a third year abroad at the University of Toronto

EMPLOYMENT Stanford University, Stanford, USA March 2017- September 2018
Postdoctoral Fellow, supported by a
Swiss National Science Foundation grant

RESEARCH
INTERESTS

My research interests lie in analytic number theory and the study of L-functions. My
thesis works towards giving an archimedean analog of Frobenius trace functions and
on finding applications to problems in analytic number theory.

PREPRINTS Analytic twists of modular forms
Preprint (arXiv:1608.08044), 2016

Large values of Hecke-Maass L-functions with prescribed argument
Preprint (arXiv:1611.09679), 2016
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AWARDS Prime Spéciale (Award for Ph.D. students at EPFL) 2014 & 2016

Departmental Undergraduate First Year Prize (UCL) 2009

TEACHING
EXPERIENCE

Teaching Assistant (EPFL)
Introduction to Geometry 2015-2016
Linear Algebra 2012-2015

CONFERENCES
ATTENDED

Spectral Theory, Automorphic Forms and Arithmetic
University of Copenhagen, Denmark November 2016

École Jeunes Chercheurs en Théorie des Nombres
Université Blaise Pascal, France June 2016

Arizona Winter School
University of Arizona, USA March 2016

Analytic Aspects of Number Theory
ETH Zurich, Switzerland May 2015

Analysis, Spectra and Number Theory
Princeton & IAS, USA December 2014

Analytic Number Theory Summer School
Institut des Hautes Études Scientifiques, France July 2014

The 17-th Midrasha Mathematicae
Institute for Advanced Studies, Israel December 2013

Arithmetics & Geometry: 25 Years Number Theory Seminar
ETH Zurich June 2013

Equidistribution in Number Theory and Dynamics
ETH Zurich March 2013
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