Scaling trends and performance evaluation of 2-dimensional polarity-controllable FETs

Two-dimensional semiconducting materials of the transition-metal-dichalcogenide family, such as MoS<sub>2</sub> and WSe<sub>2</sub>, have been intensively investigated in the past few years, and are considered as viable candidates for next-generation electronic devices. In this paper, for the first time, we study scaling trends and evaluate the performances of polarity-controllable devices realized with undoped mono- and bi-layer 2D materials. Using ballistic self-consistent quantum simulations, it is shown that, with the suitable channel material, such polarity-controllable technology can scale down to 5 nm gate lengths, while showing performances comparable to the ones of unipolar, physically-doped 2D electronic devices.


Published in:
Scientific Reports, 7, 45556
Year:
2017
Laboratories:




 Record created 2017-05-22, last modified 2018-06-22

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)