
Collision Avoidance with Limited Field of View Sensing:
A Velocity Obstacle Approach

Steven Roelofsen1,2, Denis Gillet2 and Alcherio Martinoli1

Abstract— Collision avoidance, in particular between robots,
is an important component for autonomous robots. It is a
necessary component in numerous applications such as human-
robot interaction, automotive or unmanned aerial vehicles.
While many collision avoidance algorithms take into account
actuation constraints, only a few consider sensing limitations.
In this paper, we present a reciprocal collision avoidance
algorithm based on the velocity obstacle approach that guar-
antees collision-free maneuvers even when the robots are only
capable to sense their environment within a limited Field Of
View (FOV). We also present the challenges associated to
sensors with limited FOV, show the conditions under which
maneuvering can be safely done, and the modifications that a
velocity obstacle approach requires to satisfy such conditions.
We provide simulations and real robot experiments to validate
our approach.

I. INTRODUCTION

Collision avoidance is of importance in robotics; many
robotic applications rely, at least partially, on collision avoid-
ance to safely navigate an environment. Examples of robotic
systems that require a collision avoidance of some sort can
be found in human-robot interaction [1], automotive [2]
or unmanned aerial vehicles [3]. Over the years, several
collision avoidance paradigms have emerged such as, for
example, potential fields [4], the dynamic window approach
[1], or the vector field histogram [5].

A successful approach to collision avoidance is based
on the concept of Velocity Obstacle (VO), resulting in
avoidance maneuvers that are efficient and proven safe [6],
and is applicable to a large variety of systems [7], [8]. VO-
based methods have the advantage to generate well-behaved,
efficient maneuvers while keeping the computational cost
low. Those methods have been successfully used on different
robotic platforms [9], [10].

However, up to date the focus of collision avoidance algo-
rithms has been on mitigating constraints on the actuation or
improving the resulting trajectory, assuming that each robot
is able to sense every other robot. The effect of a robot’s
Field Of View (FOV) on maneuvering is not well studied. A
few notable exceptions are as follows. A study investigates
the link between a small FOV and the probability of collision
[11]. Other works are able to deal with a limited FOV [12],

This work has been financially supported by Honeywell, and has
benefitted of the administrative and technical coordination of the EPFL
Transportation Center.

1 S. Roelofsen and A. Martinoli are with the Distributed Intelligent
Systems and Algorithms Laboratory, School of Architecture, Civil and
Environmental Engineering, École Polytechnique Fédérale de Lausanne.

2 S. Roelofsen and D. Gillet are with the the Coordination and Interaction
System Group, School of Engineering, École Polytechnique Fédérale de
Lausanne.

[13], usually as a consequence of the control scheme rather
than a design requirement.

In this paper, we present our approach to perform collision
avoidance within the VO paradigm when the robots are only
able to detect other robots in a limited FOV. We previously
designed a collision avoidance algorithm based on potential
fields that takes into account the FOV of the sensor [14], but
the algorithm shows unwanted spinning behavior [15], [16].
By moving to a VO-based approach, we seek to produce
more effective trajectories and, in particular, eliminate the
spinning issue.

The contribution of this paper is three-fold. First we
show the importance of FOV and the possible consequences
when ignoring the constraints that a limited field of view
imposes. Second, we formulate the conditions under which
safe maneuvering can be performed with sensors that have
limited FOV. Third, we present our Sensor-Aware Velocity
Obstacle (SAVO) algorithm that guarantees no collision
under limited FOV constraints. We leverage work found in
the VO literature (e.g., [6]) as foundation of our work, and
borrow many of the ideas throughout this paper.

The paper is organized as follows: Section I introduces
the subject and presents related works. Section II presents
the problem and describes the system of interest. Section III
presents the relation between the FOV of a robot and its
allowed motion. Section IV presents the algorithms. Results
are presented in Section V. The paper is concluded in
Section VI.

II. PROBLEM STATEMENT

In this paper we consider a set of N robots in the plane
R2. A robot H has a position pH , a velocity vH and
a heading angle θH . In this paper, all angles are defined
between −π and π. The heading direction is defined as
dH = [cos(θH), sin(θH)]

T . The robots are assumed to have
a disk shape with radius rH . The actuation is constrained
by a maximum speed ||vH || ≤ vmaxH , and a maximum speed
change ∆vmaxH that the robot can perform during a time step
∆t. The robot is also assumed to be able to come to a full
stop. The set of allowed velocities can be summarized by
the following actuation set:

UH = D(vH ,∆v
max
H) ∩D(0, vmaxH) (1)

with D(c, r) the closed disk of radius r centered at c. The
robot also has a maximum turning rate u ≤ θ̇maxH .

A robot H is able to detect another robot if it is in the
FOV FH of its own sensor:

FH =
{
p
∣∣ ||p−pH || < rsH , |∠(dH ,p−pH)| ≤ αsH

}
(2)

with rsH the sensor range and π/2 < αsH < π sensor’s
FOV half-angle. A robot H is able to estimate the position,
velocity, and radius of a detected robot B if it is in the
sensor’s range and FOV of robot H . It is also able to identify
the type of robot, and knows the actuation set UB of robot
B (or at least an estimation ÛB such that UB ⊂ ÛB).

The problem of interest is for a robot H to avoid collision
with other robots despite the limited FOV of its sensing
capability, while keeping its velocity vH as close as possible
to its prefered velocity vprefH . State of the art VO-based algo-
rithm will fail to avoid in some situation. This is because the
sensor’s limited FOV is in contradiction with the assumption
that every robot has at least a noisy estimate of other robots’
states. For scenarios illustrating the problem, see Section V.

III. COLLISIONS AND FIELD OF VIEW

The main concept of collision avoidance under FOV sens-
ing constraints is to limit the motion of the robots in order to
guarantee that they cannot collide with each other because
of their intrinsic blind zones. In this paper we propose that
the velocity remains in the following set, called the sensor-
constraint set:

SH =
{
v
∣∣ |∠(v,dH)| ≤ αsH −

π

2

}
. (3)

We will now prove that constraining the velocity within the
set defined by Equation 3 will be sufficient to ensure safe
maneuvering. First, we show that robots that do not see each
other will not get closer if they choose their velocity in their
respective sensor-constraint sets.

Lemma 1: A robot A that chooses vA ∈ SA will not go
towards the position of another robot B that robot A is unable
to detect.

Proof: First note that because robot A does not detect
robot B we have that |∠(dA,pB − pA)| > αsH . Define a
line Γ ⊥ (pB − pA) that passes somewhere between robots
A and B, with a distance of at least rA and rB from robot
A and B, respectively. Because vA ∈ SA, it is possible to
find a lower bound for the angle between vA and the vector
pB − pA:∣∣∠(dA,pB − pA) + ∠(vA,dA)

∣∣ ≥ (4)∣∣∠(dA,pB − pA)
∣∣− ∣∣∠(vA,dA)

∣∣ > αsH − (αsH −
π

2
) =

π

2

As a result the velocity vA points away from the line Γ and
moves away from the position of robot B.

Using Lemma 1, we will now prove there is no collision
possible between two robots that do not see each other.
Figure 1 summarizes the principle behind the following
proposition:

Proposition 1: Two robots A and B that do not detect
each other are guaranteed to be collision free if and only if
vA ∈ SA and vB ∈ SB .

Proof: The proof that vA ∈ SA is a sufficient condition
for no collision is a direct consequence of Lemma 1. If both
robots do not see each other, then they both move away from
the line Γ that divides the space between the two robots. They
thus move away from each other.

Fig. 1. Illustration of a situation for which choosing vA /∈ SA leads to
a collision. Robot A is the dark red disk, robot B is the dark blue disk.
The FOV of the robots are shown as light green circular sectors. The dark
green circular sectors are the sensor-constraint sets for each robot. The light
red and blue disks represent position of robot A and B, respectively, that
collided due to robot A choosing a velocity outside of SA.

The proof of necessity goes as follows: suppose that there
is a velocity vA /∈ SA that does not lead to a collision for
any pB , dB and vB ∈ SB . Choose pB and a small ε such
that |∠(dA,pB − pA)| = αsH + ε. It follows that pB /∈ FA
and that robot A does not see robot B. Now take, without
loss of generality, a velocity vA such that |∠(vA,dA)| >
αsA − π/2 + ε, and that ∠(vA,dA) has the same sign as
∠(dA,pB−pA). Note that by definition vA /∈ SA. It follows
that |∠(vA,pB−pA)| < π/2. Define the line Γ ⊥ (pB−pA)
that goes between the two robots at a distance of rB + rA/2
from robot B. Because ∠(vA,pB−pA) < π/2, the center of
robot A will cross Γ at point Pcoll in some time in the future
∆tcoll. It is now possible to choose vB such that vB ∈ SB
and that the distance between the robot B and the line Γ is
less than rB + rA when robot B is closest to Pcoll. It is thus
possible to find a triplet pB , dB and vB ∈ SB that will lead
to a collision between robots A and B. It is thus not possible
to have vA /∈ SA without risking a collision with B.

Remark 1: The result remains true when more than two
robots are involved because a single collision is essentially
a two-robot problem.

Remark 2: The angle αs has to be larger than π/2 for the
sensor-constraint set to exist. If αs < π/2, then no guarantee
about collision can be given. The risk of collision when αs <
π/2 is studied in [11].

In fact, it is possible to derive Equation 3 directly from the
VO framework. The argument goes as follows: consider two
robots A and B that do not detect each other and are about
to collide. As robot B is not responsible of the collision, the
worst case scenario is that robot B stays stopped. Because
the two robot are about to collide, their distance is exactly
rA + rB . Robot B can be anywhere around robot A as long
as ∠(dA,pB − pA) > αsA. As a result, the VO of robot
B that robot A has to avoid is a half plane at the collision
point between robots A and B and tangent to robot B at that
point. As a result, the set of velocities that can potentially
lead robot A to collide with robot B because they cannot
detect each other is:

I =
{
v |
(
∠(vA,dA) > αsA −

π

2

)
∨(

∠(vA,dA) < −αsA +
π

2

)}
(5)

To guarantee no collision, robot A has to pick a velocity in
the set Ī = SA.

IV. VELOCITY OBSTACLE

Our approach starts from the classical definition of VO; a
VO of robot B from the point of view of robot H is defined
as:

V OτH|B =
{
v
∣∣ ∃t ∈ [0, τ] :: tv ∈

D(pB − pH , rB + rH + σr)⊕ Σp
}
, (6)

with Σp a set of possible position error and σr the error
on the estimated radius. Care is taken to choose a value of
τ large enough for the robot H to go from ||v|| = vmaxH

to ||v|| = 0 in less than time τ . In a similar fashion, the
maximum velocity should remain low enough in order for
the robot to come at a full stop in less than half its sensor
range. Those conditions can be summarized as follows:τ >

vmaxH

∆vmaxH
∆t

vmaxH <
√

∆vmaxH rsH
∆t ,

(7)

with ∆t the time step between two computations.
As it is not always possible to know the behavior of other

robot(s) due to the limited FOV, we take the conservative
approach to build the set of velocities that will lead to a
collision with robot B, named CτH|B , by taking into account
all the possible future velocities of robot B. To take into
account a possible uncertainty on the estimated velocity of
the other robot B, the actuation set UB is augmented by
performing the Minkowski sum with the set of velocity
uncertainty Σv . Furthermore, to guarantee that all robots have
as solution the possibility to stop, the zero velocity point is
added to the actuation set of another detected robot B. To
keep a convex set, a convex hull operation is performed after
the addition of the zero velocity, resulting in the augmented
actuation set:

U0
B = Conv

({
UB ⊕ Σv, (0, 0)

})
. (8)

From the sets V OτH|B and U0
B it is now possible to build

CτH|B , the set containing all velocities of H that will lead to
a collision with B in the next time τ , as follows:

CτH|B = V OτH|B ⊕ U
0
B . (9)

The set of velocities that avoids collision with all detected
robots and respects the constraints imposed by both the
sensing and the actuation of robot H is given by:

CAτH =

v
∣∣ v /∈

⋃
B 6=H

CτH|B ∧ v ∈ SH ∩ UH

 . (10)

The new velocity vnewH ∈ CAτH to apply is then chosen to
be the closest to some desired velocity vprefH . If we choose
a quadratic function as optimization function, the search for
a solution is limited to the border of the collision avoidance
set ∂CAτH . Note that due to the conservative approach, it is

possible that CAτH = ∅. If it is the case, the robot chooses
vnewH = [0, 0]T as a last resort avoidance maneuver:

vnewH =

arg min
∂CAτH

||v − vprefH ||, if CAτH 6= ∅

[0, 0]T , otherwise.
(11)

Proposition 2: N robots with velocity defined with Equa-
tion 11 will not collide.

Proof: If Equation 11 finds a solution, then by the
construction of the velocity obstacle and because of Propo-
sition 2, each robot will choose a velocity that will not collide
with any other robot.

If no solution can be found (i.e. CAτH = ∅), a robot A will
try to stop as quickly as possible (i.e. as fast as UA allows
for). The other robots fall into two categories. Either a robot
B does not detect robot A, in which case it is of no threat
to robot A because of Proposition 1. Or robot B does detect
robot A, in which case, if robot B finds a solution, it will
avoid robot A with the consideration that robot B will leave
the possibility to robot A to stop.

Finally, if several robots are not able to find a solution,
consider the moment where they first are not able to find
a solution and start to brake. This can only happen if the
sensors of the robots give detections of robots that were not
in the FOV before. A robot B can enter the FOV of another
robot in two ways. First, the robot B either comes from the
rear, and was not seen by some robot A because |∠(dA,pB−
pA)| > αsA. In this case, robot B is moving towards robot A
(otherwise there would be no collision). As a consequence,
robot B was able to detect robot A at previous time step and
to find a solution to avoid A (as this is the first time step that
robot B does not find a solution). If robot B could find a
solution previously, the solution includes the possibility that
robot A would suddenly brake and stop, even if robot B has
to perform an emergency brake too because of the condition
described by Equation 7. The second possibility is that robot
A could not sense other robots previously because they were
out of range. In which case all robots have, according to the
conditions of Equation 7, enough time to come to a full stop
before colliding with the other robots.

A. Heading Control

The control of the robot’s heading, and thus the sensor’s
FOV, is essentially what allows SAVO to reach any point in
the plane (as long as it is reachable) and not just the points
in SH . In this paper, we propose to steer the sensor heading
based on the robot’s velocity outputted by the collision
avoidance algorithm. To avoid a deadlock due to no robot
finding a solution, we also propose that when a robot uses its
last resort avoidance maneuver, it spins in a defined direction
at maximum turn rate:

u =

{
−ka∠(dH ,vH), if CAτH 6= ∅
θ̇maxH , otherwise.

(12)

To have a smooth transition between deadlock and normal
maneuvering on one of the sides, and to use the full range

of turning rate, ka should be set as follows:

ka =
θ̇maxH

αsH −
π
2

. (13)

If the gain ka is found to be too aggressive, it is possible to
use a smaller value for θ̇maxH .

B. Reciprocity

Due to the limited FOV, it is not always possible for a
robot to know if it is seen by an other robot, especially when
the sensors are noisy. As a consequence, a robot is not able
to rely on the fact another robot will cooperate, which is
an important assumption for algorithms such as ORCA [6]
or HRVO [10]. We propose the following to mitigate the
oscillations common to non-reciprocal VO: the robot checks
if only giving half of the change of velocity is also collision
free:

vhalfH =
vnewH + vprevH

2
/∈
⋃
B 6=H

CτH|B , (14)

with vprevH the velocity computed at previous time step.
The velocity vprevH is preferred over the actual velocity vH
because experiments with our quadrotors showed that the
use of vH amplifies the noise on the actuation. If vhalfH

is collision free, it is used instead of vnewH , resulting in a
maneuver aggressiveness similar to what is obtained with
reciprocal algorithms. When robots meet, the second colli-
sion avoidance computation is usually enough to perform the
avoidance with vhalfH instead of vnewH . Note that vhalfH ∈ SH
and vhalfH ∈ UH because both sets are convex and both vnewH

and vprevH are in those two sets.

V. RESULTS

In this section, we present the results obtained with SAVO.
First, the implementation differences with well-known state-
of-the-art algorithms are explained. Second, simulation re-
sults are presented, followed by experimental results. The
results are also presented in the supplementary video, in
which the timings of the trajectories appear more clearly.1

A. Implementation

Due to the complex shapes that this method can create,
it is not possible to apply the commonly used “triangle”
approach for the computation on the velocity sets (e.g., [10]).
It is not possible to simplify the problem into half-planes
as in [6] due to the possible lack of reciprocity. To stay as
close as possible to the mathematical formulation, the sets are
implemented as convex polytopes. This has the drawback to
be more computationally heavy and in principle scale with
O(n2), n being the number of robots observed. However,
the computational cost is physically limited by the sensor’s
range. This method is thus well suited for robots with a
small sensor range or that navigate in sparsely populated
environments.

1The video and more information about the project can be found at
http://disal.epfl.ch/research/UAVCollisionAvoidance

Fig. 2. Trajectories obtained with the first scenario. Top: the algorithm
is not aware of the FOV. Bottom: The SAVO algorithm. The solid blue
and green lines are robots’ trajectories. The markers and numbers give an
indication of the timing of the trajectories. The FOV of some robots at the
timings indicated by numbers are represented by circular sectors. The color
of the circular sectors match the color of the trajectories. The FOV range is
not to scale. The red solid lines are distances between two robots that are
less than the sum of their radii.

For both simulations and real experiments, the robots had
a goal position pgoal from which the preferred velocity was
derived:

vprefH = sprefH

pgoalH − pH

||pgoalH − pH ||+ rg
(15)

with sprefH the preferred speed of robot H and rg a term that
will slow down the robot as it reaches its goal position.

B. Simulations

To illustrate the importance of FOV constraints in collision
avoidance, we designed two scenarios where an implemen-
tation of VO that does not take the constraints into account
fails to safely maneuver. The canonical VO implementation
differs from the SAVO algorithm in only two points. First, it
does not constrain the velocity of a robot H to stay in SH .
Second, it does not include the zero velocity in what would
be U0

B for the SAVO algorithm. It uses, instead of U0
B , the

set UΣ
B = UB⊕Σv . This conservative implementation of VO

allows us to demonstrate that the problem is indeed due to
violating the constraints imposed by the limited FOV of the
sensor. The parameters of our simulations are r = 0.4 m,
rs = 2.5 m, αs = 110◦, ∆vmax = 0.12 m/s, vmax =
4 m/s, θ̇max = 0.5 rad/s and τ = 1 s. The simulations
are performed with a time step ∆t = 0.05 s. The same
parameters are used for both SAVO and the normal VO

http://disal.epfl.ch/research/UAVCollisionAvoidance

Fig. 3. Trajectories obtained with the second scenario. Top: the algorithm is
not aware of the FOV. Bottom: The SAVO algorithm. The solid blue, black,
green and cyan lines are robots’ trajectories. The markers and numbers give
an indication of the timing of the trajectories. The FOV of some robots at
the timings indicated by numbers are represented by circular sectors. The
color of the circular sectors match the color of the trajectories. The FOV
range is not to scale. The red solid lines are distances between two robots
that are less than the sum of their radii.

implementations. If one algorithm gives a command that the
robot is not able to follow, the actual actuation saturate.

The first scenario involves two robots that start back-to-
back. Both robots have their destination on the left side of
the horizontal axis. One slower robot has the right orientation
and simply has to go forward to reach its destination. The
other, faster, robot faces away from its destination. The
fastest trajectory is for the robot to go in a straight line, which
leads to a collision in the case the algorithm is not aware
of the each other constraints, as shown in the top plot of
Figure 2. When the SAVO algorithm is used, the faster robot
stays at the same position until it has turned enough for the
sensor to see a clear path towards the destination, resulting
in the trajectories shown in the bottom plot of Figure 2.

The second scenario involves four robots. Two slow robots
avoid each other and thus get close. Just when the two slow
robots successfully avoid the collision and go out of each
other’s detection range, each one sees a fast robot approach-
ing from the other side they performed the avoidance. In
case where the algorithm is not respecting the constraints
imposed by the sensor, the slow robots will perform an
aggressive maneuver towards each other to avoid the faster
robots. That maneuver will lead them to collide (top plot of
Figure 3). With the SAVO algorithm, the two slow robots
will stop instead and remain safe (bottom plot of Figure 3).
Notice how SAVO, although more constrained, generates

Fig. 4. The AscTec Hummingbird used in the experiments.

smoother and faster trajectories compared than the normal
VO implementation.

C. Experiments

To further validate our approach, we performed experi-
ments with real quadrotors. Although they do move in a
three dimensional space, avoidance with quadrotors should
be performed horizontally as it is hazardous to maneuver in
the down-wash of another quadrotor. Furthermore, quadro-
tors typically are more agile at translational compared to
yaw rotation, making it an ideal case study for the SAVO
algorithm.

Our experimental setup is composed of two Humming-
birds quadrotors from Ascending Technologies (see Fig-
ure 4). Each quadrotor is equipped with an ARM-based CPU
that runs a Linux distribution with the Robotic Operating
System (ROS) installed. The link between ROS and the
quadrotor is done using [17]. The quadrotors fly in a room
with dimensions 11.8 m by 9.8 m and 5 m high, and
equipped with a Motion Capture System (MCS) that tracks
the quadrotors with a millimetric accuracy. Each quadrotor
receives the pose of both quadrotors through WiFi at 100 Hz.
The sensor range and FOV is emulated before the MCS data
is used in the SAVO algorithm.

Because the motion of a quadrotor is disturbed by non-
deterministic air flows, small accelerations performed by the
quadrotor have little effect on its motion. As a result the
quadrotor is not able to properly accelerate and maneuver if
∆vmax is too small. As a result, we chose ∆vmax = 0.3 m/s.
The desired speed was set to spref = 0.6 m/s The other
parameters have the same values as used in simulation.

To test the SAVO algorithm, two scenarios were designed.
Those scenarios are to demonstrate that the algorithm is able
to run on a real platform rather than to show the conse-
quences of a limited FOV. The first scenario involves two
quadrotors in a head-on configuration. The first quadrotor
starts at the position [3.5, 0] m and has its goal position
at [−3.5, 0] m. The other robot does the opposite: it goes
from the position [−3.5, 0] m and tries to reach position
[3.5, 0] m. The second scenario illustrates a crossing scenario.
The first quadrotor starts at [−3.5, 2] m and has its goal
at [3.5,−2] m. The second robot starts at [3.5, 2] m and
has its goal at [−3.5,−2] m. In both scenarios, the robots
start oriented facing the goal. The resulting trajectories are
shown in Figure 5. Notice that the robot move back at some
points of the trajectory. This is an overshoot of the braking
maneuver and is inherent to the propulsion method of the

X [m]

-4 -3 -2 -1 0 1 2 3 4

Y
 [
m

]

-1

0

1

0s

15s5s

10s

10s

5s
15s

0s

X [m]

-4 -3 -2 -1 0 1 2 3 4

Y
 [
m

]

-2

-1

0

1

2

15s

0s

5s10s

10s

5s

15s

0s

Fig. 5. Trajectories obtained for the experiments with quadrotors. Top:
Head on collision. Bottom: Cross intersection. The black and red solid lines
represent the trajectory of each quadrotor. The arrow ends show the direction
of motion. The markers and numbers give an indication of the timing of
the trajectory.

quadrotor. It can be accounted for by increasing the radius
of the quadrotors in the SAVO algorithm. This issue should
not be present for ground robots because when they brake,
their velocity goes to zero with respect to the ground. For
each scenario, the minimum distance between the robots
during the avoidance maneuver was recorded and is shown
in Figure 6. Each scenario was run at least 19 times and at
no moment did the distance between the robots drop below
0.8 m, the distance at which they would collide. In fact, the
robots stayed at a safe distance. This is a consequence of
the conservative approach required by the limited FOV of
the robots.

VI. CONCLUSION

In this paper, we have presented a VO-based collision
avoidance that remains safe when the robot’s sensors only
detect other robots in a limited FOV. The conditions and
constraints to satisfy safe maneuvering are presented and
scenarios where ignoring the FOV constraints lead to col-
lision are shown. We validate our approach with simulations
and real robot experiments.

As future work, the relation between reciprocity and
FOV should be investigated, as for a significant part of
possible scenario all robots involved are able to detect each
other. In that case, the presented algorithm can be improved
by applying the concept of reciprocity. Other future work
would extend this work to the third dimension for aerial
applications. Finally, the possibility of deadlocks and means
to mitigate them should be investigated.

REFERENCES

[1] S. Thrun, D. Fox, and W. Burgard, “The dynamic window approach to
collision avoidance,” IEEE Transactions on Robotics and Automation,
vol. 4, p. 1, 1997.

Scenario

Head on Cross

M
in

im
u

m
 d

is
ta

n
c
e

 [
m

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 6. Boxplot of the minimum distance between the quadrotors during
the avoidance maneuvers. The red dashed line represents the distance at
with the quadrotors would collide.

[2] L. Makarem and D. Gillet, “Decentralized coordination of autonomous
vehicles at intersections,” in IFAC World Congress, vol. 18, no. 1,
2011, pp. 13 046–13 051.

[3] T. Zsedrovits, Á. Zarándy, B. Vanek, T. Péni, J. Bokor, and T. Roska,
“Collision avoidance for UAV using visual detection,” in IEEE Inter-
national Symposium on Circuits and Systems, 2011, pp. 2173–2176.

[4] D. E. Chang and J. E. Marsden, “Gyroscopic forces and collision
avoidance with convex obstacles,” in New trends in nonlinear dynamics
and control and their applications, 2003, pp. 145–159.

[5] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 278–288, 1991.

[6] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Proc. Int. Symp. on Robotics Research
2009, ser. Springer Tracts in Advanced Robotics. Springer, 2011, pp.
3–19.

[7] D. Bareiss and J. van den Berg, “Generalized reciprocal collision
avoidance,” The International Journal of Robotics Research, vol. 34,
no. 12, pp. 1501–1514, 2015.

[8] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart,
“Reciprocal collision avoidance for multiple car-like robots,” in IEEE
International Conference on Robotics and Automation, 2012, pp. 360–
366.

[9] P. Conroy, D. Bareiss, M. Beall, and J. van den Berg, “3-D reciprocal
collision avoidance on physical quadrotor helicopters with on-board
sensing for relative positioning,” arXiv preprint arXiv:1411.3794,
2014.

[10] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “The hybrid
reciprocal velocity obstacle,” IEEE Transactions on Robotics, vol. 27,
no. 4, pp. 696–706, 2011.

[11] Q. Zhang, G. Leng, and V. Govindaraju, “Duration of collision-free
motion of unmanned vehicles in a confined area,” Robotica, vol. 34,
no. 02, pp. 347–360, 2016.

[12] B. Fankhauser, L. Makarem, and D. Gillet, “Collision-free intersection
crossing of mobile robots using decentralized navigation functions on
predefined paths,” in IEEE International Conference on Cybernetics
and Intelligent Systems, 2011, pp. 392–397.

[13] A. Mcfadyen, L. Mejias, P. Corke, and C. Pradalier, “Aircraft collision
avoidance using spherical visual predictive control and single point
features,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2013, pp. 50–56.

[14] S. Roelofsen, A. Martinoli, and D. Gillet, “Distributed deconfliction
algorithm for unmanned aerial vehicles with limited range and field of
view sensors,” in American Control Conference, 2015, pp. 4356–4361.

[15] S. Roelofsen, D. Gillet, and A. Martinoli, “Reciprocal collision avoid-
ance for quadrotors using on-board visual detection,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2015, pp.
4810–4817.

[16] S. Roelofsen, A. Martinoli, and D. Gillet, “3D collision avoidance
algorithm for unmanned aerial vehicles with limited field of view
constraints,” in IEEE 55th Conference on Decision and Control, 2016,
pp. 2555–2560.

[17] “asctec hl framework ROS package,” http:http://wiki.ros.org/asctec
mav framework, 2015-02-04.

http:http://wiki.ros.org/asctec_mav_framework
http:http://wiki.ros.org/asctec_mav_framework

	Introduction
	Problem Statement
	Collisions and Field of View
	Velocity Obstacle
	Heading Control
	Reciprocity

	Results
	Implementation
	Simulations
	Experiments

	Conclusion
	References

