Incremental model identification of reaction systems

Diogo Rodrigues, Sriniketh Srinivasan, Nirav Bhatt, Julien Billeter, Michael Amrhein, Dominique Bonvin

Laboratoire d’Automatique
Ecole Polytechnique Fédérale de Lausanne

Santiago de Compostela
March 29, 2017
Outline

- Models of reaction systems and concept of extents
 - Homogeneous reaction systems
 - Distributed reaction systems
 - Generalization to other reaction systems
 - Applications of extents

- Model identification
 - Simultaneous model identification
 - Incremental model identification
 - Example

- Conclusions
Homogeneous reaction systems

Balance equations

Nonisothermal homogeneous reaction system consisting of S species, R independent reactions, p inlet streams, and 1 outlet stream

Mole balances for S species

$$\dot{n}(t) = N^T r_v(t) + W_{in} u_{in}(t) - \omega(t) n(t), \quad n(0) = n_0$$

$$\begin{align*}
(S) & \quad (S \times R) (R) & \quad (S \times p) (p) \quad r_v(t) := V(t) r(t), \quad \omega(t) := \frac{u_{out}(t)}{m(t)}
\end{align*}$$

Mass m, volume V and molar concentrations c

$$\begin{align*}
m(t) &= 1^T_S M_w n(t), & V(t) &= \frac{m(t)}{\rho(t)}, & c(t) &= \frac{n(t)}{V(t)}
\dot{m}(t) &= 1^T_p u_{in}(t) - u_{out}(t), & m(0) &= m_0
\end{align*}$$

Global macroscopic view

Valid regardless of temperature, catalyst or solvent

Redundant information $m(t)$
Homogeneous reaction systems

Objective: Decoupled reaction system in terms of vessel extents

- **S-dimensional model equations**

\[
\dot{n}(t) = \mathbf{N}^T \mathbf{r}_v(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t)n(t), \quad n(0) = n_0
\]

- **Decoupled reaction model in terms of vessel extents**

\[
\begin{align*}
\dot{x}_{r,i}(t) &= r_{v,i}(t) - \omega(t)x_{r,i}(t) \quad x_{r,i}(0) = 0 \quad i = 1, \ldots, R \\
\dot{x}_{in,j}(t) &= u_{in,j}(t) - \omega(t)x_{in,j}(t) \quad x_{in,j}(0) = 0 \quad j = 1, \ldots, p \\
\dot{x}_{ic}(t) &= -\omega(t)x_{ic}(t) \quad x_{ic}(0) = 1
\end{align*}
\]

- **Vessel extents** are extents discounted by the amount of material that has left the reactor

- System of dimension \(d := (R + p + 1) \)

- Only **apparent decoupling** as \(r_{v,i}(t) \) is an endogenous input and not an independent input!
Homogeneous reaction systems

Procedure: Four-way decomposition into extents and invariants

- Model with zero initial conditions

\[\dot{n}(t) = N^T r_v(t) + W_{in} u_{in}(t) + n_0 \delta(t) - \omega(t) n(t), \quad n(0) = 0_S \]

- Assumption: \(\text{rank } [N^T \ W_{in} \ n_0] = R + p + 1 \). Linear transformation

\[
\begin{bmatrix}
 x_r(t) \\
 x_{in}(t) \\
 x_{ic}(t) \\
 x_{iv}(t)
\end{bmatrix} = T \begin{bmatrix}
 n(t)
\end{bmatrix} \quad T = [N^T \ W_{in} \ n_0 \ P]^{-1} \quad [N^T \ W_{in} \ n_0]^T P = 0_{d \times q}
\]

- Vessel extents of reaction \(x_r \), inlet \(x_{in} \), initial conditions \(x_{ic} \), and invariants \(x_{iv} \)

\[
\begin{align*}
 \dot{x}_r(t) &= r_v(t) - \omega(t) x_r(t) \quad x_r(0) = 0_R \\
 \dot{x}_{in}(t) &= u_{in}(t) - \omega(t) x_{in}(t) \quad x_{in}(0) = 0_p \\
 \dot{x}_{ic}(t) &= -\omega(t) x_{ic}(t) \quad x_{ic}(0) = 1 \\
 x_{iv}(t) &= 0_q
\end{align*}
\]

Homogeneous reaction systems

Four subspaces, transformation possible if $S \geq R + p + 1$

\[\mathcal{T} = \begin{bmatrix} R \\ F \\ i^T \\ P^+ \end{bmatrix} = \begin{bmatrix} N^T & W_{in} & n_0 & P \end{bmatrix}^{-1} \]

\[\begin{bmatrix} x_r(t) \\ x_{in}(t) \\ x_{ic}(t) \\ x_{iv}(t) \end{bmatrix} = \mathcal{T} \mathbf{n}(t) \]

\[\mathbf{n}(t) = N^T x_r(t) + W_{in} x_{in}(t) + n_0 x_{ic}(t) \]

\[x_{iv}(t) = P^+ \mathbf{n}(t) = 0_q \]

S-dimensional space of species

\[d = R + p + 1 \text{ variants} \]
\[q = S - R - p - 1 \text{ invariants} \]
Homogeneous reaction systems

Example: Ethanolysis reaction in an homogeneous CSTR

- Seven species \((S = 7)\), three reactions \((R = 3)\), two inlets \((p = 2)\) and one outlet
- Stoichiometric matrix \(N\), inlet-composition matrix \(W_{in}\) and initial conditions \(n_0\):

\[
N = \begin{bmatrix}
-1 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 & 1
\end{bmatrix}
\]

\[
W_{in} = \begin{bmatrix}
w_{in,A} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & w_{in,B} & 0 & 0 & 0 & 0 & 0
\end{bmatrix}^T
\]

\(n_0\)

![Diagram of reaction system](image)

Numbers of moles

![Graph of numbers of moles over time](image)

Reaction extents?
Homogeneous reaction systems

Example: Computation of extents

- Fewer extents than numbers of moles
- Extents are more prone to have mathematically well-defined shapes such as monotonicity, convexity/concavity

\[
\mathcal{T} = \begin{bmatrix} R & F \end{bmatrix}^T
\]

One invariant \(x_{iv}(t) = P^+ n(t) = 0 \)
Mole balances for S species:

$$\frac{\partial c(z, t)}{\partial t} + \nu \frac{\partial c(z, t)}{\partial z} = N^T r(z, t), \quad c(0, t) = c_{in}(t), \quad c(z, 0) = c_0(z)$$

To an observer sitting on a particle of velocity ν, $c(z, t)$ and $r(z, t)$ are viewed as $c_p(\tau)$ and $r_p(\tau)$, with $z = \nu \tau$ and $t = \tau$, where τ is the time spent in the reactor up to position z.

It follows that $\frac{dc_p}{d\tau} = \frac{\partial c}{\partial z} \left(\frac{dz}{d\tau} \right) + \frac{\partial c}{\partial t} \left(\frac{dt}{d\tau} \right) = \frac{\partial c}{\partial z} \nu + \frac{\partial c}{\partial t}$, and the system of PDEs becomes a system of ODEs:

$$\frac{d}{d\tau} c_p(\tau) = N^T r_p(\tau), \quad c_p(0) = c_{in}(0)$$

Deviation variables $\delta c_p := c_p - c_{in}(0)$ without effect of boundary conditions:

$$\frac{d}{d\tau} \delta c_p(\tau) = N^T r_p(\tau), \quad c_p(0) = 0_S$$

Let \(\text{rank}(N^T) = R \) and consider the matrix \(T = [N^T \ P]^{-1} \), where \(NP = 0_{R \times q} \). Then, \(T \) partitions \(\delta c_p \) into two contributions:

\[
\begin{bmatrix}
 x_{p,r}(\tau) \\
 x_{p,iv}(\tau)
\end{bmatrix} = T \delta c_p(\tau) =
\begin{bmatrix}
 T_r \ \\
 T_{iv}
\end{bmatrix} \delta c_p(\tau)
\]

Dynamic equations:

\[
\frac{d}{d\tau} x_{p,r}(\tau) = r_p(\tau), \quad x_{p,r}(0) = 0_R
\]

\[
x_{p,iv}(\tau) = 0_q
\]

Reconstruction:

\[
c_p(\tau) = N^T x_{p,r}(\tau) + c_{in}(0)
\]

Generalization to other reaction systems

- Homogeneous reaction systems with heat balance\(^4\)
 - Additional heat balance equation
 - Additional decoupled extent of heat exchange

- Gas-liquid reaction systems\(^5\)
 - Balance equations for both the gas and liquid phases
 - Additional decoupled extents of mass transfer

- Reaction systems with instantaneous equilibria\(^6\)
 - Balance equations for components conserved by equilibria
 - Extents of kinetically controlled reactions

Applications of extents

- **Linear state transformation**
 - From concentrations and temperatures to decoupled extents
 - Systematic generation of invariant relationships

- **Minimal dimensionality**
 - Redundant states can be eliminated → model-order reduction
 - Invariant relationships → algebraic constraints for data reconciliation

- **Decoupled states**
 - Each state is related to a single rate process
 - Rates can be identified individually → incremental approach with fewer parameters → global optimization
 - Possibility of having additional (0^{th}, 1^{st} and 2^{nd}-order) constraints on the extents → improved data reconciliation, state estimation, ALS, etc.
Applications of extents

- Useful for the investigation of reaction systems:
 - **Kinetic model identification**
 - State reconstruction via invariant relationships\(^7\)
 - Data reconciliation via invariant relationships and shape constraints\(^7\)
 - State estimation via invariant relationships and shape constraints\(^8\)
 - Control via rate estimation\(^9\)
 - Static RTO via rate estimation\(^10\)
 - Model reduction via singular perturbation\(^10\)

- Generally applicable
 - To most reaction systems and reactor types
 - In principle, to systems with more balance equations than rates

Outline

- Models of reaction systems and concept of extents
 - Homogeneous reaction systems
 - Distributed reaction systems
 - Generalization to other reaction systems
 - Applications of extents

- Model identification
 - Simultaneous model identification
 - Incremental model identification
 - Example

- Conclusions
Model identification

- Given experimental concentrations
- Identify unknown functions for the reaction rates
- Subject to a set of candidate models for all reactions
Model identification
Simultaneous and incremental approaches

Experimental values

Model predictions

Experimental data flow
Simulated data flow
Information flow
Identified rate laws

Thick: data regarding the global reaction system
Thin: data specific to a single reaction or mass transfer

Laboratory measurements

Laboratory measurements

Simultaneous approach
Extent-based incremental approach

Experimental data flow
Simulated data flow
Information flow
Identified rate laws

Laboratoire d'Automatique
Incremental model identification of reaction systems
March 29, 2017

Simultaneous model identification

- Define a model candidate for all rate processes.
- Estimate parameters in the model by solving the following problem:

\[
\min_{\theta} \sum_{h=1}^{H} \left(\hat{n}(t_h) - \tilde{n}(t_h, \theta) \right)^T W(t_h) \left(\tilde{n}(t_h) - \hat{n}(t_h, \theta) \right)
\]

s.t.
\[
\dot{\hat{n}}(t, \theta) = N^T V(t) r(\hat{c}(t, \theta), \theta) + W_{in} u_{in}(t) - \omega(t) \hat{n}(t, \theta), \quad \hat{n}(0, \theta) = n_0
\]
\[
\hat{c}(t, \theta) = \frac{\hat{n}(t, \theta) - \omega(t) \hat{n}(t, \theta)}{V(t)}
\]

- Repeat the procedure for all combinations of model candidates.
- The set of model candidates with the best fit is chosen.
Simultaneous model identification leads to optimal parameter estimates in a maximum-likelihood sense for correct model structure.

But it is computationally costly:
- The procedure must be repeated for all combinations of rate candidates
- Convergence is difficult due to the large number of parameters

Rate-based incremental model identification was initially proposed to identify the correct model structure efficiently\(^{12}\)

Extent-based incremental model identification provides tighter confidence intervals and improved model discrimination\(^{13}\)

For the ith reaction, estimation of kinetic parameters θ_i by comparing the experimental extent $\tilde{x}_{r,i}$ with the modeled extent $\hat{x}_{r,i}$, which approximates

$$\dot{x}_{r,i}(t) = V(t) r_i(c(t), \theta_i) - \omega(t) x_{r,i}(t) \quad x_{r,i}(0) = 0.$$

Experimental extent $\tilde{x}_{r,i}(t_h)$ is given by a linear transformation of $V(t_h)\tilde{c}(t_h)$

- Requires measurements $\tilde{c}(t_h)$, $V(t_h)$, $\omega(t_h)$
Incremental model identification (IMI_n)

- Compute $x_r(t)$ for all R reactions

- Identify the model for each reaction individually\(^{14}\)

\[
\begin{align*}
\min_{\theta_i^{(m_i)}} \quad & J(\theta_i^{(m_i)}) = \sum_{h=1}^{H} \left(\tilde{x}_{r,i}(t_h) - \hat{x}_{r,i}^{(m_i)}(t_h, \theta_i^{(m_i)}) \right) W_i(t_h) \left(\tilde{x}_{r,i}(t_h) - \hat{x}_{r,i}^{(m_i)}(t_h, \theta_i^{(m_i)}) \right) \\
\text{s.t.} \quad & \hat{x}_{r,i}^{(m_i)}(t, \theta_i^{(m_i)}) = V(t) \hat{r}_i^{(m_i)}(\tilde{c}(t), \theta_i^{(m_i)}) - \omega(t) \hat{x}_{r,i}^{(m_i)}(t, \theta_i^{(m_i)}), \quad \hat{x}_{r,i}^{(m_i)}(0, \theta_i^{(m_i)}) = 0.
\end{align*}
\]

- Model m_i with the least objective function is the best model

- Use simultaneous approach as final step for optimal parameter estimates

If a reaction rate law \(r \) is linear in \(L \) parameters \(\alpha \) and nonlinear in \(\theta \):

\[
r(c(t), \alpha, \theta) = r_0(c(t), \theta) + \sum_{\ell=1}^{L} \alpha_\ell r_\ell(c(t), \theta)
\]

Assuming the \(i \)th reaction rate is \(r \), the integral solution of \(x_{r,i} \) is:

\[
x_{r,i}(t) = V(t)d_0(t) + \sum_{\ell=1}^{L} \alpha_\ell V(t)d_\ell(t),
\]

where \(d_\ell(t) := \int_0^t \frac{V(\tau)}{V(t)} r_\ell(c(\tau), \theta) e^{-\int_{\tau}^t \omega(\zeta) d\zeta} d\tau \) is estimated as \(\hat{d}_\ell(t_h, \theta) \) from \(\hat{r}_\ell(\tilde{c}(t_h), \theta), V(t_h), \omega(t_h) \)

Modeled extent \(\hat{x}_{r,i}(t_h, \alpha, \theta) := V(t_h)\hat{d}_0(t_h, \theta) + \sum_{\ell=1}^{L} \alpha_\ell V(t_h)\hat{d}_\ell(t_h, \theta) \) is linear in \(\alpha \)
The identification problem is

\[
\min_{\alpha, \theta} J(\alpha, \theta) = \sum_{h=1}^{H} \frac{1}{H} \left(\frac{\hat{x}_{r,i}(t_h, \alpha, \theta) - \check{x}_{r,i}(t_h)}{V(t_h)} \right)^2
\]

The cost function is quadratic in \(\alpha\):

\[
J(\alpha, \theta) = c(\theta) + 2\alpha^T g(\theta) + \alpha^T H(\theta) \alpha
\]

The optimal parameters \(\alpha\) for each \(\theta\) are \(\hat{\alpha}(\theta) = -H(\theta)^{-1} g(\theta)\), and the optimization problem is reformulated with only the decision variables \(\theta\):

\[
\min_{\theta} \bar{J}(\theta) = J(\hat{\alpha}(\theta), \theta) = c(\theta) - g(\theta)^T H(\theta)^{-1} g(\theta)
\]

Problem with few decision variables, solved efficiently to global optimality\(^{15}\)

Incremental model identification (IMIş)

- Identify the model for each reaction individually, by postulating rate expressions with extents as arguments\(^\text{16}\)

\[
\min_{\theta_i^{(m_i)}} J(\theta_i^{(m_i)}) = \sum_{h=1}^{H} \left(\tilde{x}_{r,i}(t_h) - \hat{x}_{r,i}^{(m_i)}(t_h, \theta_i^{(m_i)}) \right) W_i(t_h) \left(\tilde{x}_{r,i}(t_h) - \hat{x}_{r,i}^{(m_i)}(t_h, \theta_i^{(m_i)}) \right) \\
\text{s.t. } \dot{\hat{x}}^{(m_i)}_{r,i}(t, \theta_i^{(m_i)}) = V(t) \phi_{x,i}^{(m_i)}(\hat{x}_{r,i}^{(m_i)}(t, \theta_i^{(m_i)}), \tilde{x}_{r,J}(t), \theta_i^{(m_i)}) - \omega(t) \hat{x}_{r,i}^{(m_i)}(t, \theta_i^{(m_i)}), \\
\hat{x}_{r,i}^{(m_i)}(0, \theta_i^{(m_i)}) = 0.
\]

- \(\tilde{x}_{r,J}\) are the \((R - 1)\) measured extents that need to be interpolated

- Model \(m_i\) with the least objective function is the best model

- Use simultaneous approach as final step for optimal parameter estimates

Incremental model identification
Plug-flow reactors17

- Identification of the rate expression r_i and estimation of the parameters θ_i:

$$\min_{\theta_i} \sum_{p=1}^{P} \sum_{h=1}^{H} \left(\hat{x}_{r,i}(z_p, t_h) - \hat{x}_{r,i}(z_p, t_h, \theta_i) \right)^2$$

s.t. $\frac{\partial}{\partial t} \left(\hat{x}_{r,i}(z, t, \theta_i) \right) + v \frac{\partial}{\partial z} \left(\hat{x}_{r,i}(z, t, \theta_i) \right) = \hat{r}_i(\bar{c}(z, t), \theta_i)$, $\hat{x}_{r,i}(z, 0, \theta_i) = \hat{x}_{r,i}(0, t, \theta_i) = 0$

- Accurate for frequent measurements along the reactor: difficult in practice
- But $\bar{c}_p(\tau_h)$ are concentrations at the reactor exit z_e with the velocity $v_h = \frac{z_e}{\tau_h}$
- Identification problem reformulated as:

$$\min_{\theta_i} \sum_{h=1}^{H} \left(\hat{x}_{p,r,i}(\tau_h) - \hat{x}_{p,r,i}(\tau_h, \theta_i) \right)^2$$

s.t. $\frac{d}{d\tau} \hat{x}_{p,r,i}(\tau, \theta_i) = \hat{r}_{p,i}(\bar{c}_p(\tau), \theta_i)$, $\hat{x}_{p,r,i}(0, \theta_i) = 0$

Consider the acetoacetylation of pyrrole in a semi-batch reactor

The reaction system consists of seven species \((S = 7) \) involved in four independent reactions \((R = 4) \)

\[
\begin{align*}
R1 : & \quad A + B \rightarrow C \\
R2 : & \quad B + B \rightarrow D \\
R3 : & \quad B \rightarrow E \\
R4 : & \quad B + C \rightarrow F
\end{align*}
\]

Reactions R1, R2 and R4 are catalyzed by species K

The reactor initially contains 4 mol of A, 0.5 mol of B, 0.1 mol of C and 1 mol of catalyst K

Pure diketene (B) is fed into the reactor at the constant volumetric flowrate 0.1 L min\(^{-1}\)
Example: Acetoacetylation of pyrrole

Material balance equations:

\[
\begin{align*}
\dot{n}_A(t) &= -V(t) r_1(t) \\
\dot{n}_B(t) &= -V(t) r_1(t) - 2V(t) r_2(t) - V(t) r_3(t) - V(t) r_4(t) + w_{in,B} u_{in}(t) \\
\dot{n}_C(t) &= V(t) r_1(t) - V(t) r_4(t) \\
\dot{n}_D(t) &= V(t) r_2(t) \\
\dot{n}_E(t) &= V(t) r_3(t) \\
\dot{n}_F(t) &= V(t) r_4(t) \\
\dot{n}_K(t) &= 0
\end{align*}
\]

- The simulated numbers of moles of each species are corrupted by additive zero-mean Gaussian noise of standard deviation corresponding to \(\alpha \)% of its maximum value.

- Data sets are generated for 1000 different noise realizations.
Example: Acetoacetylation of pyrrole

A list of rate candidates is available for each reaction

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{1}^{(1)} = k_1 c_A c_B c_K$</td>
<td>$r_{2}^{(1)} = k_2 c_B^2 c_K$</td>
<td>$r_{3}^{(1)} = k_3 c_B$</td>
<td>$r_{4}^{(1)} = k_4 c_B c_C c_K$</td>
</tr>
<tr>
<td>$r_{1}^{(2)} = k_1 c_B$</td>
<td>$r_{2}^{(2)} = k_2 c_B$</td>
<td>$r_{3}^{(2)} = k_3 c_B^2$</td>
<td>$r_{4}^{(2)} = k_4 c_C$</td>
</tr>
<tr>
<td>$r_{1}^{(3)} = k_1 c_A$</td>
<td>$r_{2}^{(3)} = k_2 c_B^2$</td>
<td>$r_{3}^{(3)} = k_3 c_B c_K$</td>
<td>$r_{4}^{(3)} = k_4 c_B$</td>
</tr>
<tr>
<td>$r_{1}^{(4)} = k_1 c_K$</td>
<td>$r_{2}^{(4)} = k_2 c_B c_K$</td>
<td>$r_{3}^{(4)} = k_3 c_B^2 c_K$</td>
<td>$r_{4}^{(4)} = k_4 c_B c_C$</td>
</tr>
<tr>
<td>$r_{1}^{(5)} = k_1 c_A c_B$</td>
<td>$r_{2}^{(5)} = k_2 c_K$</td>
<td>$r_{3}^{(5)} = k_3 c_K$</td>
<td>$r_{4}^{(5)} = k_4 c_C c_K$</td>
</tr>
<tr>
<td>$r_{1}^{(6)} = k_1 c_A c_K$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r_{1}^{(7)} = k_1 c_B c_K$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r_{1}^{(8)} = k_1 c_A^2 c_K$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Acetoacetylation of pyrrole

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_{true}</th>
<th>Data set</th>
<th>α</th>
<th>$#/1000$</th>
<th>k^*</th>
<th>σ_{k^*}</th>
<th>$#/1000$</th>
<th>k^*</th>
<th>σ_{k^*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0.0530</td>
<td>D1</td>
<td>1%</td>
<td>995</td>
<td>0.0529</td>
<td>0.0009</td>
<td>1000</td>
<td>0.0530</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>5%</td>
<td>733</td>
<td>0.0523</td>
<td>0.0041</td>
<td>942</td>
<td>0.0529</td>
<td>0.0023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3</td>
<td>10%</td>
<td>483</td>
<td>0.0519</td>
<td>0.0075</td>
<td>731</td>
<td>0.0530</td>
<td>0.0045</td>
</tr>
<tr>
<td>R2</td>
<td>0.1280</td>
<td>D1</td>
<td>1%</td>
<td>992</td>
<td>0.1275</td>
<td>0.0013</td>
<td>1000</td>
<td>0.1279</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>5%</td>
<td>764</td>
<td>0.1250</td>
<td>0.0059</td>
<td>940</td>
<td>0.1271</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3</td>
<td>10%</td>
<td>425</td>
<td>0.1218</td>
<td>0.0114</td>
<td>924</td>
<td>0.1265</td>
<td>0.0059</td>
</tr>
<tr>
<td>R3</td>
<td>0.0280</td>
<td>D1</td>
<td>1%</td>
<td>983</td>
<td>0.0280</td>
<td>0.0001</td>
<td>984</td>
<td>0.0280</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>5%</td>
<td>870</td>
<td>0.0279</td>
<td>0.0006</td>
<td>818</td>
<td>0.0279</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3</td>
<td>10%</td>
<td>833</td>
<td>0.0278</td>
<td>0.0011</td>
<td>756</td>
<td>0.0278</td>
<td>0.0010</td>
</tr>
<tr>
<td>R4</td>
<td>0.0030</td>
<td>D1</td>
<td>1%</td>
<td>749</td>
<td>0.0035</td>
<td>0.0032</td>
<td>999</td>
<td>0.0028</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>5%</td>
<td>335</td>
<td>0.0038</td>
<td>0.0056</td>
<td>994</td>
<td>0.0028</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3</td>
<td>10%</td>
<td>236</td>
<td>0.0035</td>
<td>0.0059</td>
<td>866</td>
<td>0.0028</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

- IMI_x performs better than IMI_n in identifying the model structures
Outline

- Models of reaction systems and concept of extents
 - Homogeneous reaction systems
 - Distributed reaction systems
 - Generalization to other reaction systems
 - Applications of extents

- Model identification
 - Simultaneous model identification
 - Incremental model identification
 - Example

- Conclusions
Conclusions

- Divide-and-conquer strategy – decoupling provided by extents enables model identification of one reaction at a time.

- Incremental approach allows correct model discrimination and estimates accurately the parameter values.

- This approach avoids the drawbacks of the simultaneous approach.

- Can the incremental approach yield optimal parameter estimates and maintain its advantages? How and in which case?
Thank you for your attention!