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Homogeneous reaction systems
Balance equations

Nonisothermal homogeneous reaction system
consisting of S species, R independent reactions, p
inlet streams, and 1 outlet stream

Mole balances for S species

ṅ(t) = NT rv (t) + Win uin(t) − ω(t) n(t), n(0) = n0

(S) (S×R) (R) (S×p) (p) rv (t) := V (t) r(t), ω(t) :=
uout (t)
m(t)

Mass m, volume V and molar concentrations c

m(t) = 1T
S Mw n(t), V (t) =

m(t)
ρ(t)

, c(t) =
n(t)
V (t)

ṁ(t) = 1T
puin(t) − uout(t), m(0) = m0

Global macroscopic view

Valid regardless of temperature, catalyst or solvent

Redundant information m(t)

Win, uin

n

m N

rv

n, uout
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Homogeneous reaction systems
Objective: Decoupled reaction system in terms of vessel extents

S-dimensional model equations

ṅ(t) = NT rv (t) + Win uin(t) − ω(t)n(t), n(0) = n0

Decoupled reaction model in terms of vessel extents

ẋr ,i(t) = rv ,i(t)− ω(t) xr ,i(t) xr ,i(0) = 0 i = 1, . . . ,R

ẋin,j(t) = uin,j(t)− ω(t) xin,j(t) xin,j(0) = 0 j = 1, . . . , p

ẋic(t) = −ω(t) xic(t) xic(0) = 1

Vessel extents are extents discounted by the amount of material that has left
the reactor

System of dimension d := (R + p + 1)

Only apparent decoupling as rv,i (t) is an endogenous input and not an
independent input!
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Homogeneous reaction systems
Procedure: Four-way decomposition into extents and invariants1

Model with zero initial conditions

ṅ(t) = N
T
rv (t) + Win uin(t) + n0 δ(t)− ω(t)n(t), n(0) = 0S

Assumption: rank
(

[NT Win n0]
)

= R + p + 1. Linear transformation









xr (t)
xin(t)
xic(t)
xiv(t)









= T n(t) T =
[

N
T
Win n0 P

]−1 [

N
T
Win n0

]T
P = 0d×q

Vessel extents of reaction xr , inlet xin, initial conditions xic , and invariants xiv

ẋr (t) = rv (t)− ω(t) xr (t) xr (0) = 0R

ẋin(t) = uin(t)− ω(t) xin(t) xin(0) = 0p

ẋic(t) = −ω(t) xic(t) xic(0) = 1

xiv(t) = 0q

1Rodrigues, D. et al. Comp. Chem. Eng. 2015, 73, 23–33.

Laboratoire d’Automatique Incremental model identification of reaction systems March 29, 2017 5 / 31



Homogeneous reaction systems
Four subspaces, transformation possible if S ≥ R + p + 1

.

invariant subspace    initial condition

 subspace

 reaction  

subspace   inlet  

subspace









xr(t)
xin(t)
xic(t)
xiv(t)









= T n(t)

T =









R

F

iT

P+









=
[

NT Win n0 P
]−1

xiv(t) = P+ n(t) = 0q

n(t) = NT xr(t) +Win xin(t) + n0 xic(t)

NTR
Win F

n0i
T PP+

R p

1 q

S-dimensional space of species

d = R + p + 1 variants

q = S − R − p − 1 invariants
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Homogeneous reaction systems
Example: Ethanolysis reaction in an homogeneous CSTR

Seven species (S = 7), three reactions (R = 3), two inlets (p = 2) and one outlet

Stoichiometric matrix N, inlet-composition matrix Win and initial conditions n0:

N =
[

−1 −1 1 1 0 0 0
0 −1 −1 1 1 0 0
0 −1 0 −1 0 1 1

]

Win =
[

win,A 0 0 0 0 0 0

0 win,B 0 0 0 0 0

]T

n0
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Homogeneous reaction systems
Example: Computation of extents
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x i
c
[-
]- Fewer extents than numbers of moles

- Extents are more prone to have mathematically
well-defined shapes such as monotonicity, convexity/concavity
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Distributed reaction systems
Plug-flow reactor: balance equations2

Mole balances for S species:

∂c(z , t)

∂t
+ v

∂c(z , t)

∂z
= NT r(z , t), c(0, t) = cin(t), c(z , 0) = c0(z)

To an observer sitting on a particle of velocity v , c(z , t) and r(z , t) are
viewed as cp(τ) and rp(τ), with z = vτ and t = τ , where τ is the time
spent in the reactor up to position z

It follows that
dcp
dτ = ∂c

∂z

(

dz
dτ

)

+ ∂c
∂t

(

dt
dτ

)

= ∂c
∂z v + ∂c

∂t , and the system of
PDEs becomes a system of ODEs:

d

dτ
cp(τ) = NT rp(τ), cp(0) = cin(0)

Deviation variables δcp := cp − cin(0) without effect of boundary conditions:

d

dτ
δcp(τ) = NT rp(τ), cp(0) = 0S

2Rodrigues, D. et al. Chem. Eng. Sci. 2017, submitted; Rodrigues, D. et al. In IFAC ADCHEM’15, Whistler, 2015.
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Distributed reaction systems
Plug-flow reactor: two-way decomposition3

Let rank (NT) = R and consider the matrix T =
[

NT P
]−1

, where
NP = 0R×q. Then, T partitions δcp into two contributions:

[

xp,r (τ)
xp,iv(τ)

]

= T δcp(τ) =

[

Tr

Tiv

]

δcp(τ)

Dynamic equations:

d

dτ
xp,r (τ) = rp(τ), xp,r (0) = 0R

xp,iv (τ) = 0q

Reconstruction:
cp(τ) = NT xp,r (τ) + cin(0)

2Rodrigues, D. et al. In IFAC ADCHEM’15, Whistler, 2015
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Generalization to other reaction systems

Homogeneous reaction systems with heat balance4

Additional heat balance equation

Additional decoupled extent of heat exchange

Gas-liquid reaction systems5

Balance equations for both the gas and liquid phases

Additional decoupled extents of mass transfer

Reaction systems with instantaneous equilibria6

Balance equations for components conserved by equilibria

Extents of kinetically controlled reactions

4Rodrigues, D. et al. Comp. Chem. Eng. 2015, 73, 23–33.
5Bhatt, N. et al. Ind. Eng. Chem. Res. 2010, 49, 7704–7717.
6Srinivasan, S. et al. Ind. Eng. Chem. Res. 2016, 55, 8034–8045.
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Applications of extents

Linear state transformation

From concentrations and temperatures to decoupled extents

Systematic generation of invariant relationships

Minimal dimensionality

Redundant states can be eliminated → model-order reduction

Invariant relationships → algebraic constraints for data reconciliation

Decoupled states

Each state is related to a single rate process

Rates can be identified individually → incremental approach with fewer
parameters → global optimization

Possibility of having additional (0th, 1st and 2nd-order) constraints on
the extents → improved data reconciliation, state estimation, ALS, etc.

Laboratoire d’Automatique Incremental model identification of reaction systems March 29, 2017 12 / 31



Applications of extents

Useful for the investigation of reaction systems:

Kinetic model identification

State reconstruction via invariant relationships7

Data reconciliation via invariant relationships and shape constraints7

State estimation via invariant relationships and shape constraints8

Control via rate estimation9

Static RTO via rate estimation10

Model reduction via singular perturbation10

Generally applicable

To most reaction systems and reactor types
In principle, to systems with more balance equations than rates

7Srinivasan, S. et al. Comp. Chem. Eng. 2017, 101, 44–58.
8Srinivasan, S. et al. In DYCOPS 2016, Trondheim, 2016.
9Rodrigues, D. et al. In PSE-12/ESCAPE-25, Copenhagen, 2015.

10Bonvin, D. et al. In FOCAPO-CPC 2017, Tucson, 2017.
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Model identification

Given experimental concentrations

Identify unknown functions for the reaction rates

Subject to a set of candidate models for all reactions
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Model identification
Simultaneous and incremental approaches11

N

n0

Win V (t)

Thick: data regarding the global reaction system
Thin: data specific to a single reaction or mass transfer

Experimental data flow

Simulated data flow

Information flow

Identified rate laws

Laboratory

measurements

ñ(t)

ñ(t)
m(t)

uin(t)

uout (t)

Experimental
values

Model predictions

Numbers
of moles

Vessel
extents

Linear
transformation

S ≥ R + p + 1

LS problem LS problem

Simultaneous approach
Extent-based

rate laws

x̂r,i (t)

incremental approach

[

NT Win n0
]+

x̃r,i (t)

∫

(·) dt
∫

(·) dt

n̂(t)

Rate law
candidates

Library of

11Bhatt, N. et al. Ind. Eng. Chem. Res. 2011, 50, 12960–12974.
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Simultaneous model identification

Define a model candidate for all rate processes

Estimate parameters in the model by solving the following problem:

min
θ

H
∑

h=1

(

ñ(th)− n̂
(

th,θ
)

)T

W(th)
(

ñ(th)− n̂
(

th, θ
)

)

s.t. ˙̂n
(

t,θ
)

= NT V (t) r
(

ĉ
(

t,θ
)

,θ
)

+Win uin(t) − ω(t) n̂
(

t, θ
)

, n̂
(

0, θ
)

= n0

ĉ
(

t, θ
)

=
n̂
(

t,θ
)

V (t)

Repeat the procedure for all combinations of model candidates

The set of model candidates with the best fit is chosen
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Model identification
Simultaneous and incremental approaches

Simultaneous model identification leads to optimal parameter
estimates in a maximum-likelihood sense for correct model structure

But it is computationally costly:

The procedure must be repeated for all combinations of rate candidates
Convergence is difficult due to the large number of parameters

Rate-based incremental model identification was initially proposed to
identify the correct model structure efficiently12

Extent-based incremental model identification provides tighter
confidence intervals and improved model discrimination13

12Bardow, A.; Marquardt, W. Chem. Eng. Sci. 2004, 59, 2673–2684; Brendel, M. et al. Chem. Eng. Sci. 2006, 61, 5404–5420.
13Bhatt, N. et al. Chem. Eng. Sci. 2012, 83, 24–38.
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Incremental model identification

For the ith reaction, estimation of kinetic parameters θi by comparing the
experimental extent x̃r ,i with the modeled extent x̂r ,i , which approximates

ẋr ,i (t) = V (t) ri
(

c(t), θi

)

− ω(t) xr ,i (t) xr ,i (0) = 0.
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Modeled extent x̂r,i
(

th, θi
)

Time [min]

minθi
‖x̃r,i (·)− x̂r,i (·, θi )‖

Experimental extent x̃r ,i (th) is given by a linear transformation of V (th)c̃(th)

Requires measurements c̃(th), V (th), ω(th)

Laboratoire d’Automatique Incremental model identification of reaction systems March 29, 2017 19 / 31



Incremental model identification (IMIn)

Compute xr (t) for all R reactions

Identify the model for each reaction individually14

min
θ
(mi )

i

J(θ
(mi )
i ) =

H
∑

h=1

(

x̃r,i (th)− x̂
(mi )
r,i

(

th,θ
(mi )
i

)

)

Wi (th)
(

x̃r,i (th)− x̂
(mi )
r,i

(

th, θ
(mi )
i

)

)

s.t. ˙̂x
(mi )
r,i

(

t,θ
(mi )
i

)

= V (t) r̂
(mi )
i

(

c̃(t), θ
(mi )
i

)

− ω(t) x̂
(mi )
r,i

(

t,θ
(mi )
i

)

, x̂
(mi )
r,i

(

0, θ
(mi )
i

)

= 0.

Model mi with the least objective function is the best model

Use simultaneous approach as final step for optimal parameter estimates

14Bhatt, N. et al. Ind. Eng. Chem. Res. 2011, 50, 12960–12974.
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Incremental model identification (IMIn)
Simplified identification problem

If a reaction rate law r is linear in L parameters α and nonlinear in θ:

r
(

c(t),α, θ
)

= r0
(

c(t), θ
)

+

L
∑

ℓ=1

αℓrℓ
(

c(t), θ
)

Assuming the ith reaction rate is r , the integral solution of xr ,i is:

xr ,i (t) = V (t)d0(t) +
L

∑

ℓ=1

αℓV (t)dℓ(t),

where dℓ(t) :=
∫ t

0
V (τ )
V (t) rℓ

(

c(τ), θ
)

e−
∫

t
τ
ω(ζ)dζdτ is estimated as d̂ℓ(th, θ)

from r̂ℓ
(

c̃(th), θ
)

, V (th), ω(th)

Modeled extent x̂r ,i (th,α, θ) := V (th)d̂0(th, θ) +
∑L

ℓ=1 αℓV (th)d̂ℓ(th, θ) is
linear in α
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Incremental model identification (IMIn)
Simplified identification problem

The identification problem is

min
α,θ

J(α, θ) =

H
∑

h=1

1

H

(

x̂r ,i (th,α, θ)− x̃r ,i (th)

V (th)

)2

The cost function is quadratic in α: J(α, θ) = c(θ)+2αTg(θ)+α
TH(θ)α

The optimal parameters α for each θ are α̂(θ) = −H(θ)−1g(θ), and the
optimization problem is reformulated with only the decision variables θ:

min
θ

J̄(θ) = J
(

α̂(θ), θ
)

= c(θ)− g(θ)TH(θ)−1g(θ)

Problem with few decision variables, solved efficiently to global optimality15

15Rodrigues, D. et al. In ESCAPE-27, Barcelona, 2017.
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Incremental model identification (IMIx)

Identify the model for each reaction individually, by postulating rate
expressions with extents as arguments16

min
θ
(mi )

i

J(θ
(mi )
i ) =

H
∑

h=1

(

x̃r,i (th)− x̂
(mi )
r,i

(

th,θ
(mi )
i

)

)

Wi (th)
(

x̃r,i (th)− x̂
(mi )
r,i

(

th, θ
(mi )
i

)

)

s.t. ˙̂x
(mi )
r,i

(

t,θ
(mi )
i

)

= V (t)ϕ
(mi )
x,i

(

x̂
(mi )
r,i

(

t,θ
(mi )
i

)

, x̃r,J (t), θ
(mi )
i

)

− ω(t) x̂
(mi )
r,i

(

t,θ
(mi )
i

)

,

x̂
(mi )
r,i

(

0, θ
(mi )
i

)

= 0.

x̃r ,J are the (R − 1) measured extents that need to be interpolated

Model mi with the least objective function is the best model

Use simultaneous approach as final step for optimal parameter estimates

16Srinivasan, S. On Decoupling Chemical Reaction Systems - Methods, Analysis and Applications., Doctoral thesis No. 7376,
EPFL, Switzerland, 2017.
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Incremental model identification
Plug-flow reactors17

Identification of the rate expression ri and estimation of the parameters θi :

min
θi

P
∑

p=1

H
∑

h=1

(

x̃r,i (zp , th)− x̂r,i (zp , th,θi )
)2

s.t. ∂
∂t

(

x̂r,i (z , t, θi )
)

+ v ∂
∂z

(

x̂r,i (z , t,θi )
)

= r̂i (c̃(z , t), θi ), x̂r,i (z , 0, θi ) = x̂r,i (0, t, θi ) = 0

Accurate for frequent measurements along the reactor: difficult in practice

But c̃p(τh) are concentrations at the reactor exit ze with the velocity vh = ze
τh

Identification problem reformulated as:

min
θi

H
∑

h=1

(

x̃p,r,i (τh)− x̂p,r,i (τh,θi )
)2

s.t.
d

dτ
x̂p,r,i (τ, θi ) = r̂p,i

(

c̃p(τ), θi
)

, x̂p,r,i (0, θi ) = 0

17Rodrigues, D. et al. In IFAC ADCHEM’15, Whistler, 2015.
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Example: Acetoacetylation of pyrrole

Consider the acetoacetylation of pyrrole in a semi-batch reactor

The reaction system consists of seven species (S = 7) involved in four
independent reactions (R = 4)

R1 : A+ B → C

R2 : B + B → D

R3 : B → E

R4 : B + C → F

Reactions R1, R2 and R4 are catalyzed by species K

The reactor initially contains 4 mol of A, 0.5 mol of B, 0.1 mol of C
and 1 mol of catalyst K

Pure diketene (B) is fed into the reactor at the constant volumetric
flowrate 0.1 L min−1
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Example: Acetoacetylation of pyrrole

Material balance equations:

ṅA(t) = −V (t) r1(t)

ṅB (t) = −V (t) r1(t) − 2V (t) r2(t) − V (t) r3(t) − V (t) r4(t) + win,B uin(t)

ṅC (t) = V (t) r1(t) − V (t) r4(t)

ṅD(t) = V (t) r2(t)

ṅE (t) = V (t) r3(t)

ṅF (t) = V (t) r4(t)

ṅK (t) = 0

The simulated numbers of moles of each species are corrupted by
additive zero-mean Gaussian noise of standard deviation
corresponding to α % of its maximum value

Data sets are generated for 1000 different noise realizations
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Example: Acetoacetylation of pyrrole

A list of rate candidates is available for each reaction

Table: Rate candidates for the acetoacetylation of pyrrole system.

R1 R2 R3 R4

r
(1)
1 = k1cAcBcK r

(1)
2 = k2 c

2
BcK r

(1)
3 = k3 cB r

(1)
4 = k4 cB cC cK

r
(2)
1 = k1 cB r

(2)
2 = k2 cB r

(2)
3 = k3 c

2
B r

(2)
4 = k4 cC

r
(3)
1 = k1 cA r

(3)
2 = k2 c

2
B r

(3)
3 = k3 cBcK r

(3)
4 = k4 cB

r
(4)
1 = k1 cK r

(4)
2 = k2 cBcK r

(4)
3 = k3 c

2
B cK r

(4)
4 = k4 cB cC

r
(5)
1 = k1cAcB r

(5)
2 = k2 cK r

(5)
3 = k3cK r

(5)
4 = k4cC cK

r
(6)
1 = k1cAcK

r
(7)
1 = k1cBcK

r
(8)
1 = k1c

2
AcK
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Example: Acetoacetylation of pyrrole

Table: Comparison between the extent-based incremental approaches IMIn and IMIx
using different noise levels and H = 61 sampling points.

Reaction ktrue Data set α
IMIn IMIx

#/1000 k∗ σk∗ #/1000 k∗ σk∗

R1 0.0530
D1 1% 995 0.0529 0.0009 1000 0.0530 0.0005
D2 5% 733 0.0523 0.0041 942 0.0529 0.0023
D3 10% 483 0.0519 0.0075 731 0.0530 0.0045

R2 0.1280
D1 1% 992 0.1275 0.0013 1000 0.1279 0.0007
D2 5% 764 0.1250 0.0059 940 0.1271 0.0028
D3 10% 425 0.1218 0.0114 924 0.1265 0.0059

R3 0.0280
D1 1% 983 0.0280 0.0001 984 0.0280 0.0001
D2 5% 870 0.0279 0.0006 818 0.0279 0.0006
D3 10% 833 0.0278 0.0011 756 0.0278 0.0010

R4 0.0030
D1 1% 749 0.0035 0.0032 999 0.0028 0.0001
D2 5% 335 0.0038 0.0056 994 0.0028 0.0001
D3 10% 236 0.0035 0.0059 866 0.0028 0.0002

IMIx performs better than IMIn in identifying the model structures
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Conclusions

Divide-and-conquer strategy – decoupling provided by extents enables
model identification of one reaction at a time

Incremental approach allows correct model discrimination and
estimates accurately the parameter values

This approach avoids the drawbacks of the simultaneous approach

Can the incremental approach yield optimal parameter estimates and
maintain its advantages? How and in which case?
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