

Incremental model identification of reaction systems

<u>Diogo Rodrigues</u>, Sriniketh Srinivasan, Nirav Bhatt, Julien Billeter, Michael Amrhein, Dominique Bonvin

> Laboratoire d'Automatique Ecole Polytechnique Fédérale de Lausanne

> > Santiago de Compostela March 29, 2017

Outline

- Models of reaction systems and concept of extents
 - Homogeneous reaction systems
 - Distributed reaction systems
 - Generalization to other reaction systems
 - Applications of extents
- Model identification
 - Simultaneous model identification
 - Incremental model identification
 - Example
- Conclusions

Balance equations

Nonisothermal homogeneous reaction system consisting of *S* species, *R* independent reactions, *p* inlet streams, and 1 outlet stream

Mole balances for S species

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathsf{T}} \mathbf{r}_{\mathbf{v}}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t) \mathbf{n}(t), \quad \mathbf{n}(0) = \mathbf{n}_{0}$$

(S)
$$(S \times R)$$
 (R) $(S \times p)$ (p) $\mathbf{r}_{v}(t) := V(t)\mathbf{r}(t), \quad \omega(t) := \frac{u_{out}(t)}{m(t)}$

Mass m, volume V and molar concentrations c

$$m(t) = \mathbf{1}_S^{\mathsf{T}} \, \mathbf{M}_{\scriptscriptstyle W} \, \mathbf{n}(t), \qquad V(t) = rac{m(t)}{
ho(t)}, \qquad \mathbf{c}(t) = rac{\mathbf{n}(t)}{V(t)}$$

$$\dot{m}(t) = \mathbf{1}_{p}^{\mathsf{T}} \mathbf{u}_{in}(t) - u_{out}(t), \qquad m(0) = m_{0}$$

Valid regardless of temperature, catalyst or solvent

Redundant information m(t)

Objective: Decoupled reaction system in terms of vessel extents

• S-dimensional model equations

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathsf{T}} \mathbf{r}_{\mathbf{v}}(t) + \mathbf{W}_{\scriptscriptstyle in} \mathbf{u}_{\scriptscriptstyle in}(t) - \omega(t) \mathbf{n}(t), \quad \mathbf{n}(0) = \mathbf{n}_0$$

Decoupled reaction model in terms of vessel extents

$$\dot{x}_{r,i}(t) = r_{v,i}(t) - \omega(t) x_{r,i}(t)$$
 $x_{r,i}(0) = 0$ $i = 1, ..., R$
 $\dot{x}_{in,j}(t) = u_{in,j}(t) - \omega(t) x_{in,j}(t)$ $x_{in,j}(0) = 0$ $j = 1, ..., p$
 $\dot{x}_{ic}(t) = -\omega(t) x_{ic}(t)$ $x_{ic}(0) = 1$

- Vessel extents are extents discounted by the amount of material that has left the reactor
- System of dimension d := (R + p + 1)
- Only apparent decoupling as r_{v,i}(t) is an endogenous input and not an independent input!

Procedure: Four-way decomposition into extents and invariants¹

Model with zero initial conditions

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathsf{T}} \mathbf{r}_{v}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) + \mathbf{n}_{0} \frac{\delta(t)}{\delta(t)} - \omega(t) \mathbf{n}(t), \quad \mathbf{n}(0) = \mathbf{0}_{S}$$

• Assumption: rank $([N^T W_{in} n_0]) = R + p + 1$. Linear transformation

$$\begin{bmatrix} \mathbf{x}_r(t) \\ \mathbf{x}_{in}(t) \\ \mathbf{x}_{ic}(t) \\ \mathbf{x}_{iv}(t) \end{bmatrix} = \mathcal{T} \mathbf{n}(t)$$

$$\mathcal{T} = \begin{bmatrix} \mathbf{N}^T \ \mathbf{W}_{in} \ \mathbf{n}_0 \ \mathbf{P} \end{bmatrix}^{-1} \qquad \begin{bmatrix} \mathbf{N}^T \ \mathbf{W}_{in} \ \mathbf{n}_0 \end{bmatrix}^T \mathbf{P} = \mathbf{0}_{d \times q}$$

• Vessel extents of reaction \mathbf{x}_r , inlet \mathbf{x}_{in} , initial conditions x_{ic} , and invariants \mathbf{x}_{iv}

$$\dot{\mathbf{x}}_r(t) = \mathbf{r}_v(t) - \omega(t) \, \mathbf{x}_r(t) & \mathbf{x}_r(0) = \mathbf{0}_R \\
\dot{\mathbf{x}}_{in}(t) = \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{x}_{in}(t) & \mathbf{x}_{in}(0) = \mathbf{0}_p \\
\dot{\mathbf{x}}_{ic}(t) = -\omega(t) \, \mathbf{x}_{ic}(t) & \mathbf{x}_{ic}(0) = 1 \\
\mathbf{x}_{iv}(t) = \mathbf{0}_q$$

¹Rodrigues, D. et al. Comp. Chem. Eng. 2015, 73, 23-33.

Four subspaces, transformation possible if $S \ge R + p + 1$

S-dimensional space of species

$$d = R + p + 1$$
 variants
 $q = S - R - p - 1$ invariants

$$\mathcal{T} = \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{F} \\ \boldsymbol{i}^T \\ \boldsymbol{p}^+ \end{bmatrix} = \begin{bmatrix} \boldsymbol{N}^T \ \boldsymbol{W}_{\textit{in}} \ \boldsymbol{n}_0 \ \boldsymbol{P} \end{bmatrix}^{-1}$$

$$egin{bmatrix} \mathbf{x}_{r}(t) \ \mathbf{x}_{in}(t) \ \mathbf{x}_{ic}(t) \ \mathbf{x}_{iv}(t) \end{bmatrix} = \mathcal{T} \, \mathbf{n}(t)$$

$$\mathbf{n}(t) = \mathbf{N}^{\mathsf{T}} \mathbf{x}_{\mathsf{r}}(t) + \mathbf{W}_{\mathsf{in}} \mathbf{x}_{\mathsf{in}}(t) + \mathbf{n}_0 x_{\mathsf{ic}}(t)$$

$$\mathbf{x}_{\scriptscriptstyle i
u}(t) = \mathbf{P}^+ \, \mathbf{n}(t) = \mathbf{0}_q$$

Example: Ethanolysis reaction in an homogeneous CSTR

- Seven species (S = 7), three reactions (R = 3), two inlets (p = 2) and one outlet
- Stoichiometric matrix N, inlet-composition matrix W_{in} and initial conditions n₀:

$$\mathbf{N} = \left[\begin{smallmatrix} -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 1 \end{smallmatrix} \right]$$

$$\mathbf{N} = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{W}_{in} = \begin{bmatrix} w_{in,A} & 0 & 0 & 0 & 0 & 0 \\ 0 & w_{in,B} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \qquad \mathbf{n}_0$$

Reaction extents?

Example: Computation of extents

Distributed reaction systems

Plug-flow reactor: balance equations²

• Mole balances for S species:

$$\frac{\partial \mathbf{c}(z,t)}{\partial t} + v \frac{\partial \mathbf{c}(z,t)}{\partial z} = \mathbf{N}^{\mathsf{T}} \mathbf{r}(z,t), \qquad \mathbf{c}(0,t) = \mathbf{c}_{in}(t), \ \mathbf{c}(z,0) = \mathbf{c}_0(z)$$

- To an observer sitting on a particle of velocity v, $\mathbf{c}(z,t)$ and $\mathbf{r}(z,t)$ are viewed as $\mathbf{c}_p(\tau)$ and $\mathbf{r}_p(\tau)$, with $z=v\tau$ and $t=\tau$, where τ is the time spent in the reactor up to position z
- It follows that $\frac{dc_p}{d\tau} = \frac{\partial c}{\partial z} \left(\frac{dz}{d\tau} \right) + \frac{\partial c}{\partial t} \left(\frac{dt}{d\tau} \right) = \frac{\partial c}{\partial z} v + \frac{\partial c}{\partial t}$, and the system of PDEs becomes a system of ODEs:

$$\frac{\mathsf{d}}{\mathsf{d} \tau} \mathbf{c}_p(\tau) = \mathbf{N}^{\mathsf{T}} \mathbf{r}_p(\tau), \qquad \mathbf{c}_p(0) = \mathbf{c}_{in}(0)$$

• Deviation variables $\delta \mathbf{c}_p := \mathbf{c}_p - \mathbf{c}_{\textit{in}}(0)$ without effect of boundary conditions:

$$\frac{\mathsf{d}}{\mathsf{d} \tau} \delta \mathbf{c}_{p}(\tau) = \mathbf{N}^{\mathsf{T}} \mathbf{r}_{p}(\tau), \qquad \mathbf{c}_{p}(0) = \mathbf{0}_{S}$$

²Rodrigues, D. et al. Chem. Eng. Sci. 2017, submitted; Rodrigues, D. et al. In IFAC ADCHEM'15, Whistler, 2015.

Distributed reaction systems

Plug-flow reactor: two-way decomposition³

• Let rank $(\mathbf{N}^{\mathsf{T}}) = R$ and consider the matrix $\mathcal{T} = [\mathbf{N}^{\mathsf{T}} \ \mathbf{P}]^{-1}$, where $\mathbf{NP} = \mathbf{0}_{R \times q}$. Then, \mathcal{T} partitions $\delta \mathbf{c}_p$ into two contributions:

$$\begin{bmatrix} \mathbf{x}_{p,r}(\tau) \\ \mathbf{x}_{p,i\nu}(\tau) \end{bmatrix} = \mathcal{T} \, \delta \mathbf{c}_p(\tau) = \begin{bmatrix} \mathcal{T}_r \\ \mathcal{T}_{i\nu} \end{bmatrix} \, \delta \mathbf{c}_p(\tau)$$

Dynamic equations:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\tau}\mathbf{x}_{p,r}(\tau) &= \mathbf{r}_p(\tau), \qquad \mathbf{x}_{p,r}(0) = \mathbf{0}_R \\ \mathbf{x}_{p,i\nu}(\tau) &= \mathbf{0}_q \end{split}$$

Reconstruction:

$$\mathbf{c}_{p}(au) = \mathbf{N}^{\mathsf{T}} \mathbf{x}_{p,r}(au) + \mathbf{c}_{in}(0)$$

²Rodrigues, D. et al. In IFAC ADCHEM'15, Whistler, 2015

Generalization to other reaction systems

- Homogeneous reaction systems with heat balance⁴
 - Additional heat balance equation
 - Additional decoupled extent of heat exchange
- Gas-liquid reaction systems⁵
 - Balance equations for both the gas and liquid phases
 - Additional decoupled extents of mass transfer
- Reaction systems with instantaneous equilibria⁶
 - Balance equations for components conserved by equilibria
 - Extents of kinetically controlled reactions

⁴Rodrigues, D. et al. Comp. Chem. Eng. 2015, 73, 23-33.

⁵Bhatt, N. et al. *Ind. Eng. Chem. Res.* **2010**, *49*, 7704–7717.

⁶Srinivasan, S. et al. *Ind. Eng. Chem. Res.* **2016**, *55*, 8034–8045.

Applications of extents

Linear state transformation

- From concentrations and temperatures to decoupled extents
- Systematic generation of invariant relationships

Minimal dimensionality

- ullet Redundant states can be eliminated o model-order reduction
- ullet Invariant relationships o algebraic constraints for data reconciliation

Decoupled states

- Each state is related to a single rate process
- \bullet Rates can be identified individually \to incremental approach with fewer parameters \to global optimization
- Possibility of having additional (0th, 1st and 2nd-order) constraints on the extents \rightarrow improved data reconciliation, state estimation, ALS, etc.

Applications of extents

- Useful for the investigation of reaction systems:
 - Kinetic model identification
 - State reconstruction via invariant relationships⁷
 - Data reconciliation via invariant relationships and shape constraints⁷
 - State estimation via invariant relationships and shape constraints⁸
 - Control via rate estimation⁹
 - Static RTO via rate estimation¹⁰
 - Model reduction via singular perturbation¹⁰

Generally applicable

- To most reaction systems and reactor types
- In principle, to systems with more balance equations than rates

⁷Srinivasan, S. et al. Comp. Chem. Eng. 2017, 101, 44-58.

⁸Srinivasan, S. et al. In *DYCOPS 2016*, Trondheim, 2016.

⁹Rodrigues, D. et al. In *PSE-12/ESCAPE-25*, Copenhagen, 2015.

¹⁰Bonvin, D. et al. In FOCAPO-CPC 2017, Tucson, 2017.

Outline

- Models of reaction systems and concept of extents
 - Homogeneous reaction systems
 - Distributed reaction systems
 - Generalization to other reaction systems
 - Applications of extents

Model identification

- Simultaneous model identification
- Incremental model identification
- Example

Conclusions

Model identification

- Given experimental concentrations
- Identify unknown functions for the reaction rates
- Subject to a set of candidate models for all reactions

Model identification

Simultaneous and incremental approaches¹¹

Simultaneous model identification

- Define a model candidate for all rate processes
- Estimate parameters in the model by solving the following problem:

$$\begin{split} \min_{\theta} \quad & \sum_{h=1}^{H} \left(\tilde{\mathbf{n}}(t_h) - \hat{\mathbf{n}}(t_h, \theta) \right)^{\mathsf{T}} \, \mathbf{W}(t_h) \, \left(\tilde{\mathbf{n}}(t_h) - \hat{\mathbf{n}}(t_h, \theta) \right) \\ \text{s.t.} \quad & \dot{\hat{\mathbf{n}}}(t, \theta) = \mathsf{N}^{\mathsf{T}} \, V(t) \, \mathbf{r} \left(\hat{\mathbf{c}}(t, \theta), \theta \right) + \mathsf{W}_{in} \, \mathbf{u}_{in}(t) - \omega(t) \, \hat{\mathbf{n}}(t, \theta), \quad \hat{\mathbf{n}}(0, \theta) = \mathsf{n}_0 \\ & \hat{\mathbf{c}}(t, \theta) = \frac{\hat{\mathbf{n}}(t, \theta)}{V(t)} \end{split}$$

- Repeat the procedure for all combinations of model candidates
- The set of model candidates with the best fit is chosen

Model identification

Simultaneous and incremental approaches

- Simultaneous model identification leads to optimal parameter estimates in a maximum-likelihood sense for correct model structure
- But it is computationally costly:
 - The procedure must be repeated for all combinations of rate candidates
 - Convergence is difficult due to the large number of parameters
- Rate-based incremental model identification was initially proposed to identify the correct model structure efficiently¹²
- Extent-based incremental model identification provides tighter confidence intervals and improved model discrimination¹³

¹²Bardow, A.; Marquardt, W. Chem. Eng. Sci. **2004**, *59*, 2673–2684; Brendel, M. et al. Chem. Eng. Sci. **2006**, *61*, 5404–5420.

¹³Bhatt, N. et al. Chem. Eng. Sci. 2012, 83, 24–38.

Incremental model identification

• For the *i*th reaction, estimation of kinetic parameters θ_i by comparing the experimental extent $\tilde{x}_{r,i}$ with the modeled extent $\hat{x}_{r,i}$, which approximates

$$\dot{\mathbf{x}}_{\mathbf{r},i}(t) = V(t) \, \mathbf{r}_i(\mathbf{c}(t), \boldsymbol{\theta}_i) - \omega(t) \, \mathbf{x}_{\mathbf{r},i}(t) \qquad \mathbf{x}_{\mathbf{r},i}(0) = 0.$$

- Experimental extent $\tilde{x}_{r,i}(t_h)$ is given by a linear transformation of $V(t_h)\tilde{\mathbf{c}}(t_h)$
- Requires measurements $\tilde{\mathbf{c}}(t_h)$, $V(t_h)$, $\omega(t_h)$

Incremental model identification (IMI_n)

- Compute $\mathbf{x}_r(t)$ for all R reactions
- Identify the model for each reaction individually¹⁴

$$\min_{\substack{\theta_{i}^{(m_{i})} \\ \theta_{i}^{(m_{i})}}} J(\theta_{i}^{(m_{i})}) = \sum_{h=1}^{H} \left(\tilde{\mathbf{x}}_{r,i}(t_{h}) - \hat{\mathbf{x}}_{r,i}^{(m_{i})}(t_{h}, \theta_{i}^{(m_{i})}) \right) W_{i}(t_{h}) \left(\tilde{\mathbf{x}}_{r,i}(t_{h}) - \hat{\mathbf{x}}_{r,i}^{(m_{i})}(t_{h}, \theta_{i}^{(m_{i})}) \right) \\
\text{s.t.} \quad \dot{\hat{\mathbf{x}}}_{r,i}^{(m_{i})}(t, \theta_{i}^{(m_{i})}) = V(t) \hat{\mathbf{r}}_{i}^{(m_{i})}(\tilde{\mathbf{c}}(t), \theta_{i}^{(m_{i})}) - \omega(t) \hat{\mathbf{x}}_{r,i}^{(m_{i})}(t, \theta_{i}^{(m_{i})}), \quad \hat{\mathbf{x}}_{r,i}^{(m_{i})}(0, \theta_{i}^{(m_{i})}) = 0.$$

- Model m_i with the least objective function is the best model
- Use simultaneous approach as final step for optimal parameter estimates

¹⁴Bhatt, N. et al. Ind. Eng. Chem. Res. **2011**, 50, 12960-12974.

Incremental model identification (IMI_n)

Simplified identification problem

• If a reaction rate law r is linear in L parameters α and nonlinear in θ :

$$r(\mathbf{c}(t), \boldsymbol{\alpha}, \boldsymbol{\theta}) = r_0(\mathbf{c}(t), \boldsymbol{\theta}) + \sum_{\ell=1}^{L} \alpha_{\ell} r_{\ell}(\mathbf{c}(t), \boldsymbol{\theta})$$

• Assuming the *i*th reaction rate is r, the integral solution of $x_{r,i}$ is:

$$\mathbf{x}_{r,i}(t) = V(t) \mathbf{d}_0(t) + \sum_{\ell=1}^{L} \alpha_{\ell} V(t) \mathbf{d}_{\ell}(t),$$

where $d_{\ell}(t) := \int_{0}^{t} \frac{V(\tau)}{V(t)} r_{\ell}(\mathbf{c}(\tau), \boldsymbol{\theta}) e^{-\int_{\tau}^{t} \omega(\zeta) d\zeta} d\tau$ is estimated as $\hat{d}_{\ell}(t_h, \boldsymbol{\theta})$ from $\hat{r}_{\ell}(\tilde{\mathbf{c}}(t_h), \boldsymbol{\theta})$, $V(t_h)$, $\omega(t_h)$

• Modeled extent $\hat{x}_{r,i}(t_h, \alpha, \theta) := V(t_h)\hat{d}_0(t_h, \theta) + \sum_{\ell=1}^L \alpha_\ell V(t_h)\hat{d}_\ell(t_h, \theta)$ is linear in α

Incremental model identification (IMI_n)

Simplified identification problem

• The identification problem is

$$\min_{\boldsymbol{\alpha},\boldsymbol{\theta}} J(\boldsymbol{\alpha},\boldsymbol{\theta}) = \sum_{h=1}^{H} \frac{1}{H} \left(\frac{\hat{\mathbf{x}}_{r,i}(t_h,\boldsymbol{\alpha},\boldsymbol{\theta}) - \tilde{\mathbf{x}}_{r,i}(t_h)}{V(t_h)} \right)^2$$

- The cost function is quadratic in α : $J(\alpha, \theta) = c(\theta) + 2\alpha^T \mathbf{g}(\theta) + \alpha^T \mathbf{H}(\theta)\alpha$
- The optimal parameters α for each θ are $\hat{\alpha}(\theta) = -\mathbf{H}(\theta)^{-1}\mathbf{g}(\theta)$, and the optimization problem is reformulated with only the decision variables θ :

$$\min_{\boldsymbol{\theta}} \, \bar{J}(\boldsymbol{\theta}) = J(\hat{\boldsymbol{\alpha}}(\boldsymbol{\theta}), \boldsymbol{\theta}) = c(\boldsymbol{\theta}) - \mathbf{g}(\boldsymbol{\theta})^\mathsf{T} \mathbf{H}(\boldsymbol{\theta})^{-1} \mathbf{g}(\boldsymbol{\theta})$$

Problem with few decision variables, solved efficiently to global optimality¹⁵

¹⁵Rodrigues, D. et al. In ESCAPE-27, Barcelona, 2017.

Incremental model identification (IMI_x)

 Identify the model for each reaction individually, by postulating rate expressions with extents as arguments¹⁶

$$\begin{split} \min_{\boldsymbol{\theta}_{i}^{(m_{i})}} \quad J(\boldsymbol{\theta}_{i}^{(m_{i})}) &= \sum_{h=1}^{H} \left(\tilde{\mathbf{x}}_{r,i}(t_{h}) - \hat{\mathbf{x}}_{r,i}^{(m_{i})}(t_{h}, \boldsymbol{\theta}_{i}^{(m_{i})}) \right) W_{i}(t_{h}) \left(\tilde{\mathbf{x}}_{r,i}(t_{h}) - \hat{\mathbf{x}}_{r,i}^{(m_{i})}(t_{h}, \boldsymbol{\theta}_{i}^{(m_{i})}) \right) \\ \text{s.t.} \quad \hat{\hat{\mathbf{x}}}_{r,i}^{(m_{i})}(t, \boldsymbol{\theta}_{i}^{(m_{i})}) &= V(t) \varphi_{\mathbf{x},i}^{(m_{i})} \left(\hat{\mathbf{x}}_{r,i}^{(m_{i})}(t, \boldsymbol{\theta}_{i}^{(m_{i})}), \tilde{\mathbf{x}}_{r,\mathcal{J}}(t), \boldsymbol{\theta}_{i}^{(m_{i})} \right) - \omega(t) \hat{\mathbf{x}}_{r,i}^{(m_{i})}(t, \boldsymbol{\theta}_{i}^{(m_{i})}), \\ \hat{\mathbf{x}}_{r,i}^{(m_{i})}(0, \boldsymbol{\theta}_{i}^{(m_{i})}) &= 0. \end{split}$$

- ullet $ilde{\mathbf{x}}_{r,\mathcal{J}}$ are the (R-1) measured extents that need to be interpolated
- Model m_i with the least objective function is the best model
- Use simultaneous approach as final step for optimal parameter estimates

¹⁶Srinivasan, S. On Decoupling Chemical Reaction Systems - Methods, Analysis and Applications., Doctoral thesis No. 7376, EPFL, Switzerland, 2017.

Incremental model identification

Plug-flow reactors¹⁷

• Identification of the rate expression r_i and estimation of the parameters θ_i :

$$\min_{\boldsymbol{\theta}_{i}} \sum_{p=1}^{r} \sum_{h=1}^{n} \left(\tilde{\mathbf{x}}_{r,i}(z_{p}, t_{h}) - \hat{\mathbf{x}}_{r,i}(z_{p}, t_{h}, \boldsymbol{\theta}_{i}) \right)^{2}$$
s.t.
$$\frac{\partial}{\partial t} \left(\hat{\mathbf{x}}_{r,i}(z, t, \boldsymbol{\theta}_{i}) \right) + v \frac{\partial}{\partial z} \left(\hat{\mathbf{x}}_{r,i}(z, t, \boldsymbol{\theta}_{i}) \right) = \hat{\mathbf{r}}_{i}(\tilde{\mathbf{c}}(z, t), \boldsymbol{\theta}_{i}), \quad \hat{\mathbf{x}}_{r,i}(z, 0, \boldsymbol{\theta}_{i}) = \hat{\mathbf{x}}_{r,i}(0, t, \boldsymbol{\theta}_{i}) = 0$$

- Accurate for frequent measurements along the reactor: difficult in practice
- But $\tilde{\mathbf{c}}_p(au_h)$ are concentrations at the reactor exit z_e with the velocity $v_h=rac{z_e}{ au_h}$
- Identification problem reformulated as:

$$\begin{split} & \underset{\boldsymbol{\theta}_{i}}{\text{min}} & \sum_{h=1}^{H} \left(\tilde{\mathbf{x}}_{p,r,i}(\tau_{h}) - \hat{\mathbf{x}}_{p,r,i}(\tau_{h},\boldsymbol{\theta}_{i}) \right)^{2} \\ & \text{s.t.} & \frac{d}{d\tau} \hat{\mathbf{x}}_{p,r,i}(\tau,\boldsymbol{\theta}_{i}) = \hat{\mathbf{r}}_{p,i} \big(\tilde{\mathbf{c}}_{p}(\tau),\boldsymbol{\theta}_{i} \big), & \hat{\mathbf{x}}_{p,r,i}(\mathbf{0},\boldsymbol{\theta}_{i}) = 0 \end{split}$$

¹⁷Rodrigues, D. et al. In IFAC ADCHEM'15, Whistler, 2015.

- Consider the acetoacetylation of pyrrole in a semi-batch reactor
- The reaction system consists of seven species (S = 7) involved in four independent reactions (R = 4)

R1:
$$A + B \rightarrow C$$

R2: $B + B \rightarrow D$
R3: $B \rightarrow E$
R4: $B + C \rightarrow F$

- Reactions R1, R2 and R4 are catalyzed by species K
- \bullet The reactor initially contains 4 mol of A, 0.5 mol of B, 0.1 mol of C and 1 mol of catalyst K
- Pure diketene (B) is fed into the reactor at the constant volumetric flowrate 0.1 L min⁻¹

Material balance equations:

```
\begin{split} \dot{n}_{A}(t) &= -V(t) \, r_{1}(t) \\ \dot{n}_{B}(t) &= -V(t) \, r_{1}(t) - 2V(t) \, r_{2}(t) - V(t) \, r_{3}(t) - V(t) \, r_{4}(t) + w_{in,B} \, u_{in}(t) \\ \dot{n}_{C}(t) &= V(t) \, r_{1}(t) - V(t) \, r_{4}(t) \\ \dot{n}_{D}(t) &= V(t) \, r_{2}(t) \\ \dot{n}_{E}(t) &= V(t) \, r_{3}(t) \\ \dot{n}_{F}(t) &= V(t) \, r_{4}(t) \\ \dot{n}_{K}(t) &= 0 \end{split}
```

- ullet The simulated numbers of moles of each species are corrupted by additive zero-mean Gaussian noise of standard deviation corresponding to lpha % of its maximum value
- Data sets are generated for 1000 different noise realizations

A list of rate candidates is available for each reaction

Table: Rate candidates for the acetoacetylation of pyrrole system.

R1	R2	R3	R4
$r_1^{(1)} = k_1 c_A c_B c_K$	$r_2^{(1)}=k_2c_B^2c_K$	$r_3^{(1)}=k_3c_B$	$r_4^{(1)} = k_4 c_B c_C c_K$
$r_1^{(2)}=k_1c_B$	$r_2^{(2)}=k_2c_B$	$r_3^{(2)} = k_3 c_B^2$	$r_4^{(2)} = k_4 c_C$
$r_1^{(3)} = k_1 c_A$	$r_2^{(3)} = k_2 c_B^2$	$r_3^{(3)}=k_3c_Bc_K$	$r_4^{(3)}=k_4c_B$
$r_1^{(4)} = k_1 c_K$	$r_2^{(4)}=k_2c_Bc_K$	$r_3^{(4)} = k_3 c_B^2 c_K$	$r_4^{(4)}=k_4c_Bc_C$
$r_1^{(5)}=k_1c_Ac_B$	$r_2^{(5)} = k_2 c_K$	$r_3^{(5)}=k_3c_K$	$r_4^{(5)}=k_4c_Cc_K$
$r_1^{(6)}=k_1c_Ac_K$			
$r_1^{(7)}=k_1c_Bc_K$			
$r_1^{(8)} = k_1 c_A^2 c_K$			

Table: Comparison between the extent-based incremental approaches IMI_n and IMI_x using different noise levels and H=61 sampling points.

Reaction	k _{true}	Data set	α	IMI _n				IMI_{x}		
				#/1000	k*	σ_{k^*}	#/1000	k*	σ_{k^*}	
R1	0.0530	D1	1%	995	0.0529	0.0009	1000	0.0530	0.0005	
		D2	5%	733	0.0523	0.0041	942	0.0529	0.0023	
		D3	10%	483	0.0519	0.0075	731	0.0530	0.0045	
R2 0.12		D1	1%	992	0.1275	0.0013	1000	0.1279	0.0007	
	0.1280	D2	5%	764	0.1250	0.0059	940	0.1271	0.0028	
		D3	10%	425	0.1218	0.0114	924	0.1265	0.0059	
R3 0.02										
		D1	1%	983	0.0280	0.0001	984	0.0280	0.0001	
	0.0280	D2	5%	870	0.0279	0.0006	818	0.0279	0.0006	
		D3	10%	833	0.0278	0.0011	756	0.0278	0.0010	
R4	0.0030	D1	1%	749	0.0035	0.0032	999	0.0028	0.0001	
		D2	5%	335	0.0038	0.0056	994	0.0028	0.0001	
		D3	10%	236	0.0035	0.0059	866	0.0028	0.0002	

• IMI_x performs better than IMI_n in identifying the model structures

Outline

- Models of reaction systems and concept of extents
 - Homogeneous reaction systems
 - Distributed reaction systems
 - Generalization to other reaction systems
 - Applications of extents
- Model identification
 - Simultaneous model identification
 - Incremental model identification
 - Example
- Conclusions

Conclusions

- Divide-and-conquer strategy decoupling provided by extents enables model identification of one reaction at a time
- Incremental approach allows correct model discrimination and estimates accurately the parameter values
- This approach avoids the drawbacks of the simultaneous approach
- Can the incremental approach yield optimal parameter estimates and maintain its advantages? How and in which case?

References

Thank you for your attention!

- Bardow, A.; Marquardt, W. Chem. Eng. Sci. 2004, 59, 2673–2684.
- Bhatt, N.; Amrhein, M.; Bonvin, D. Ind. Eng. Chem. Res. 2010, 49, 7704–7717.
- Bhatt, N.; Amrhein, M.; Bonvin, D. Ind. Eng. Chem. Res. 2011, 50, 12960–12974.
- Bhatt, N.; Kerimoglu, N.; Amrhein, M.; Marquardt, W.; Bonvin, D. Chem. Eng. Sci. 2012, 83, 24–38.
- Bonvin, D.; Srinivasan, S.; Rodrigues, D.; Billeter, J.; Amrhein, M. In FOCAPO-CPC 2017, Tucson, 2017.
- Brendel, M.; Bonvin, D.; Marquardt, W. Chem. Eng. Sci. 2006, 61, 5404–5420.
- Rodrigues, D.; Billeter, J.; Bonvin, D. In PSE-12/ESCAPE-25, Copenhagen, 2015.
- Rodrigues, D.; Billeter, J.; Bonvin, D. In ESCAPE-27, Barcelona, 2017.
- Rodrigues, D.; Billeter, J.; Bonvin, D. In IFAC ADCHEM'15, Whistler, 2015.
- Rodrigues, D.; Billeter, J.; Bonvin, D. Chem. Eng. Sci. 2017, submitted.
- Rodrigues, D.; Srinivasan, S.; Billeter, J.; Bonvin, D. Comp. Chem. Eng. 2015, 73, 23–33.
- Srinivasan, S. On Decoupling Chemical Reaction Systems Methods, Analysis and Applications., Doctoral thesis No. 7376, EPFL, Switzerland, 2017.
- Srinivasan, S.; Billeter, J.; Bonvin, D. Comp. Chem. Eng. 2017, 101, 44-58.
- Srinivasan, S.; Billeter, J.; Bonvin, D. Ind. Eng. Chem. Res. 2016, 55, 8034–8045.
- Srinivasan, S.; Kumar, D.; Billeter, J.; Narasimhan, S.; Bonvin, D. In DYCOPS 2016, Trondheim, 2016.