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Abstract

This contribution presents a kinetic model identification scheme that guarantees convergence
to global optimality. The use of the extent-based incremental approach allows one to (i)
identify each reaction individually, and (ii) reduce the number of parameters to identify via
optimization to the ones that appear nonlinearly in the investigated rate law. Via Taylor
expansion, the identification problem can be rearranged as a polynomial optimization problem
with coefficients computed only once prior to optimization. The optimization problem is
then reformulated as a convex optimization problem, namely a semidefinite program, which
converges to global optimality. The approach is demonstrated via a simulated example.
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1. Introduction

The identification of reaction kinetics represents the main challenge in building models for
reaction systems. The identification task can be performed via a simultaneous or an incremental
approach. In simultaneous model identification, a rate law is postulated for each reaction,
and all rate parameters are estimated simultaneously, which often leads to slow and difficult
convergence due to the large number of model parameters. This procedure is repeated for
all combinations of rate candidates, which makes the approach computationally expensive.
In extent-based incremental model identification, each reaction is dealt with individually.
Consequently, for one reaction at a time, only the rate candidates for that reaction need to be
compared, which requires estimating only the parameters of a given rate candidate (Bhatt et al.,
2012). The measured concentrations are first transformed to experimental extents (Rodrigues
et al., 2015), and then the rate laws are identified individually by comparing the experimental
extents with the modeled extents that result from integration of the candidate rate laws.

Most parameter estimation methods only enforce local optimality, which may result in an
incorrect model. The incremental approach is suited to global optimization since each estima-
tion sub-problem involves only a small set of parameters. This paper presents an extension to
extent-based incremental model identification that guarantees global optimality by solving a
semidefinite program that results from the reformulation of a polynomial optimization problem
with constant coefficients (Lasserre, 2001).

2. Extent-based incremental model identification

This section reviews the fundamental features of extent-based incremental model identification.

2.1. Rate law

As mentioned in the introduction, the extent-based incremental approach deals with one rate
candidate at a time. The rate candidates for a given reaction correspond to plausible rate laws,
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thus involving selected combinations of parameters that can only take values in a finite set.
Hence, each optimization problem in this paper considers a single rate law of known structure,
with the decision variables being limited to the parameters that can take any value in the set of
real numbers.

Let us assume that the reaction rate law r is a function of the S-dimensional vector of concen-
trations c(t). Furthermore, r is also linear in the L parameters ααα = (α1, . . . ,αL) and nonlinear
in the N parameters θθθ = (θ1, . . . ,θN), which can be exploited to simplify the treatment of the
parameters ααα , as will be shown in the sequel. Hence, the reaction rate is expressed as

r
(
c(t),ααα,θθθ

)
= r0

(
c(t),θθθ

)
+

L

∑
`=1

α`r`
(
c(t),θθθ

)
. (1)

The goal of the method is to estimate the rate parameters ααα and θθθ from measured data.

2.2. Identification problem

Considering the ith reaction rate as the rate r in Eq. (1), the ith vessel extent of reaction is
(Amrhein et al., 2010)

xr,i(t,ααα,θθθ) =
∫ t

0
V (τ)r

(
c(τ),ααα,θθθ

)
e−

∫ t
τ ω(ζ )dζ dτ =V (t)d0(t,θθθ)+

L

∑
`=1

α`V (t)d`(t,θθθ), (2)

where V (t) and ω(t) are the volume and the inverse of the residence time, and d`(t,θθθ) :=∫ t
0

V (τ)
V (t) r`

(
c(τ),θθθ

)
e−

∫ t
τ ω(ζ )dζ dτ , ∀`= 0, . . . ,L.

In practice, the noisy measurements c̃ are available only at the time instants th := hT , for
h = 0, . . . ,H. Then, upon numerical integration and replacing r`

(
c(th),θθθ

)
by its estimate

r̂`
(
c̃(th),θθθ

)
, d`(th,θθθ) is approximated by d̂`(th,θθθ), ∀`= 0, . . . ,L.

Assuming each element of c̃(t) is corrupted by i.i.d. noise, the identification problem reads

min
ααα,θθθ

J(ααα,θθθ) =
H

∑
h=1

1
H

(
x̂r,i(th,ααα,θθθ)− x̃r,i(th)

V (th)

)2

, (3)

with the modeled extent x̂r,i(th,ααα,θθθ) :=V (th)d̂0(th,θθθ)+∑
L
`=1 α`V (th)d̂`(th,θθθ) linear in ααα , and

the experimental extent x̃r,i(th) given by the linear transformation of the measurements c̃(th)

x̃r(th) =V (th)Tr

(
c̃(th)−Win

xin(th)
V (th)

−V0 c0
xic(th)
V (th)

)
, (4)

where Tr is constructed such that Tr NT = IR, with the R× S stoichiometric matrix N, and
Win is the S× p inlet-composition matrix, with R and p the numbers of independent reactions
and independent inlets, respectively. The extents of inlet xin and of initial conditions xic can
be computed from the knowledge of inlet and outlet flowrates (Rodrigues et al., 2015).

2.3. Reformulation of the identification problem

The cost function in Eq. (3) is quadratic in ααα , that is, J(ααα,θθθ) = c(θθθ)+2αααTg(θθθ)+αααTH(θθθ)ααα .
Then, since the optimal parameters ααα can be computed for each θθθ as

ααα
∗(θθθ) =−H(θθθ)−1g(θθθ), (5)

the problem in Eq. (3) can be reformulated as a problem with only the decision variables θθθ ,

min
θθθ

J̄(θθθ) = J
(
ααα
∗(θθθ),θθθ

)
= c(θθθ)−g(θθθ)TH(θθθ)−1g(θθθ). (6)
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One can also compute ∂ J̄
∂θk

(θθθ),∀k = 1, . . . ,N, analytically to speed up convergence of the
nonlinear optimization algorithm. However, the optimization problem in Eq. (6) may have
several local minima. Furthermore, the functions d̂0(t,θθθ), . . . , d̂L(t,θθθ) need to be computed at
each iteration, since θθθ varies.

3. Convex extent-based incremental model identification

This section presents a method that solves the identification problem to global optimality
without requiring function evaluation at each iteration.

3.1. Taylor series expansion of the rate law

Let us consider the rate law given in Section 2. The rate r can be written as a multivariate
Taylor series if r0, . . . ,rL are infinitely differentiable functions and there exists a vector θ̄θθ and
a set P such that the Taylor series converges ∀∆∆∆θθθ ∈P , that is,

r
(
c(t),ααα,θθθ

)
= lim

n→∞
∑

k∈Kn

(
1
k!

∂ kr0
∂θθθ k

(
c(t),θ̄θθ

)
+

L

∑
`=1

α`
1
k!

∂ kr`
∂θθθ k

(
c(t),θ̄θθ

))
∆∆∆θθθ

k, ∀∆∆∆θθθ ∈P, (7)

where ∆∆∆θθθ := θθθ − θ̄θθ is the deviation of θθθ around θ̄θθ , k := (k1, . . . ,kN) is the vector of powers of
a monomial, Kn :=

{
(k1, . . . ,kN) ∈ NN

0 : 0≤ k1 + . . .+ kN ≤ n
}

in the case of a polynomial

of degree n, k! := k1! . . .kN!, ∆∆∆θθθ k :=
(
θ1− θ̄1

)k1 . . .
(
θN− θ̄N

)kN and ∂ k

∂θθθ k := ∂
k1+...+kN

∂θ
k1
1 ...∂θ

kN
N

.

3.2. Approximate identification problem

From Eqs. (2) and (7), the ith vessel extent of reaction is

xr,i(t,ααα,θθθ) = lim
n→∞

∑
k∈Kn

V (t)d0,k(t)∆∆∆θθθ
k +

L

∑
`=1

α` ∑
k∈Kn

V (t)d`,k(t)∆∆∆θθθ
k, ∀∆∆∆θθθ ∈P, (8)

where d`,k(t) :=
∫ t

0
V (τ)
V (t)

1
k!

∂ kr`
∂θθθ k

(
c(τ),θ̄θθ

)
e−

∫ t
τ ω(ζ )dζ dτ , ∀`= 0, . . . ,L, ∀k ∈Kn.

In practice, by integrating numerically and replacing ∂ kr`
∂θθθ k

(
c(th),θ̄θθ

)
by its estimate f̂`,k

(
c̃(th)

)
,

d`,k(th) is approximated by d̂`,k(th), ∀`= 0, . . . ,L, ∀k ∈Kn.

This leads to the identification problem

min
ααα,∆∆∆θθθ

Jc(ααα,∆∆∆θθθ) =
H

∑
h=1

1
H

(
x̂r,i(th,ααα,∆∆∆θθθ)− x̃r,i(th)

V (th)

)2

, (9)

with x̂r,i(th,ααα,∆∆∆θθθ) := ∑k∈Kn V (th)d̂0,k(th)∆∆∆θθθ k +∑
L
`=1 α` ∑k∈Kn V (th)d̂`,k(th)∆∆∆θθθ k for finite n.

3.3. Reformulation as a polynomial optimization problem

The cost function in Eq. (9) is quadratic in ααα , that is, Jc(ααα,∆∆∆θθθ) = cc(∆∆∆θθθ)+ 2αααTgc(∆∆∆θθθ)+
αααTHc(∆∆∆θθθ)ααα , where the elements of cc(∆∆∆θθθ), gc(∆∆∆θθθ) and Hc(∆∆∆θθθ) are polynomials of degree
2n in ∆∆∆θθθ with coefficients computed analytically from d̂0,k(th), . . . , d̂L,k(th) and x̃r,i(th)

V (th)
.

Since the optimal parameters ααα can be computed for each ∆∆∆θθθ as

ααα
∗
c(∆∆∆θθθ) =−Hc(∆∆∆θθθ)−1gc(∆∆∆θθθ), (10)

the problem in Eq. (9) can be reformulated as a problem with only the decision variables ∆∆∆θθθ ,

min
∆∆∆θθθ

J̄c(∆∆∆θθθ) = Jc
(
ααα
∗
c(∆∆∆θθθ),∆∆∆θθθ

)
= cc(∆∆∆θθθ)−gc(∆∆∆θθθ)THc(∆∆∆θθθ)−1gc(∆∆∆θθθ) =

det
(
M(∆∆∆θθθ)

)
det
(
Hc(∆∆∆θθθ)

) , (11)
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where M(∆∆∆θθθ) :=
[

cc(∆∆∆θθθ) gc(∆∆∆θθθ)T

gc(∆∆∆θθθ) Hc(∆∆∆θθθ)

]
, and Pa(∆∆∆θθθ) := det

(
Hc(∆∆∆θθθ)

)
and Pb(∆∆∆θθθ) := det

(
M(∆∆∆θθθ)

)
are polynomials in ∆∆∆θθθ . The reformulation of J̄c(∆∆∆θθθ) as a rational function is possible since it
is the determinant of the Schur complement of Hc(∆∆∆θθθ) in M(∆∆∆θθθ) (Boyd and Vandenberghe,
2004). One can then write the problem in Eq. (11) as the polynomial optimization problem

max
τ

τ s.t. Pb(∆∆∆θθθ)−Pa(∆∆∆θθθ)τ ≥ 0, ∀∆∆∆θθθ . (12)

Since the coefficients of Pa(∆∆∆θθθ) and Pb(∆∆∆θθθ) do not depend on ∆∆∆θθθ , they do not have to be
computed at each iteration. Hence, the problem in Eq. (12) is an algebraic estimation problem.

3.4. Reformulation as a convex optimization problem

Let us define ak and bk as the coefficients of Pa(∆∆∆θθθ) and Pb(∆∆∆θθθ) such that Pa(∆∆∆θθθ) =

∑k∈K2d
ak ∆∆∆θθθ k and Pb(∆∆∆θθθ) = ∑k∈K2d

bk ∆∆∆θθθ k, with d ≥ n(L+1), and assume that the optimal
∆∆∆θθθ is in a compact set C =

{
y : ∑q∈K2

cqyq ≥ 0
}

. By using the equivalence of nonneg-
ative polynomials and conical combination of sum-of-squares polynomials on a compact
set (Lasserre, 2001), the optimization problem in Eq. (12) can be written as the convex
semidefinite program (SDP)

max
τ,Q0,Q1

τ (13)

s.t. Q0 � 0s(N,d)×s(N,d)

Q1 � 0s(N,d−1)×s(N,d−1)

bk−akτ = tr(R0,kQ0)+ ∑
q∈K2

k−q∈K2d

cq tr(R1,k−qQ1) , ∀k ∈K2d ,

where s(N,d) :=
(N+d

d

)
, and R0,k and R1,k are localizing matrices such that ∑k∈K2d

R0,k ∆∆∆θθθ k =

vd(∆∆∆θθθ)vd(∆∆∆θθθ)T and ∑k∈K2d
R1,k ∆∆∆θθθ k = vd−1(∆∆∆θθθ)vd−1(∆∆∆θθθ)T, with the s(N,d)-dimensional

vector of monomials up to degree d in the N variables ∆∆∆θθθ defined as vd(∆∆∆θθθ).

This SDP is constrained by a linear matrix inequality (LMI) of size s(N,d) and another of size
s(N,d−1). However, one expects a small problem size, since the numbers L and N of model
parameters are usually low in the incremental approach. The degree n of the Taylor series
should be large enough to allow a good approximation of the rate r, but not too large, since
otherwise the size of the SDP would grow too much and the matrices that describe it would
become ill-conditioned.

Note that the optimization problems in Eqs. (12) and (13) are equivalent with d = n(L+1)
if Pa(∆∆∆θθθ) and Pb(∆∆∆θθθ) are univariate polynomials (N = 1). In the case of multivariate poly-
nomials (N ≥ 2), the equivalence between these optimization problems holds only for some
d ≥ n(L+1) such that rank

(
∑k∈K2d

R0,k µk
)
= rank

(
∑k∈K2d

R1,k µk
)
, where µk is the dual

variable of the equality constraint in Eq. (13), ∀k ∈K2d (Lasserre, 2009).

3.5. Computing solutions

The SDP in Eq. (13) yields the minimum J̄c(∆∆∆θθθ ∗) = τ∗, but it does not provide an explicit
way of finding the global solution ∆∆∆θθθ ∗ (and thus ααα∗).

For numerical reasons, the solutions to the primal and dual problems should be combined
to obtain the best solution ∆∆∆θθθ ∗. For the primal problem, vd(∆∆∆θθθ ∗) lies in the null space of
Q∗0, whereas for the dual problem, vd(∆∆∆θθθ ∗) lies in the row space of L∗0, where L0 is the dual
variable of the LMI Q0 � 0s(N,d)×s(N,d) in Eq. (13). An algorithm that computes the solutions
∆∆∆θθθ ∗, using the knowledge of the space where vd(∆∆∆θθθ ∗) lies, is described by Lasserre (2009).

Finally, the optimal values ααα∗ =ααα∗c(∆∆∆θθθ ∗) can be computed according to Eq. (10).
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Figure 1: Contour plot of the cost function J(Vmax,KD). The contour lines are shown with increasingly
lighter shading for J(Vmax,KD) ∈ {0.03,0.09,0.17,0.25,0.5,1,2,3,4,5,6,8,10}.

4. Simulated example

This section presents the example of an extent-based incremental model identification problem
for which more than one local minimum exists. This example consists in the identification of
the maximum rate Vmax and inhibition constant KD of the enzymatic decomposition S→ 2 I
in a batch reactor. The reaction I→ P also takes place in the reactor. The concentrations of
S, I and P are denoted as cS, cI and cP, and c =

[
cS cI cP

]T. The stoichiometry is given by
N =

[−1 2 0
0 −1 1

]
. The kinetics of the first reaction results from the model of an enzyme with

two binding sites of equal binding affinity, no cooperativity, and previously known substrate
inhibition (Lin et al., 2001). The dynamics of cS is described by

ċS =−r(c,α,θ), cS(0) = 2 mol L−1, (14)

with

r(c,α,θ) = α

cS
θ
+0.1 c2

S
θ 2

1+2 cS
θ
+

c2
S

θ 2

, (15)

where α =Vmax = 3 mol L−1 min−1 and θ = KD = 0.32 mol L−1, that is, L = 1 and N = 1.

Let us assume that an experiment is run for 3 min and noise-free measurements of the concen-
tration cS are obtained at the sampling interval of 5 s. For these data, a contour plot of the cost
function J(Vmax,KD) can be drawn, as shown in Figure 1, which shows that two local minima
exist. Depending on the initial guess, a regular optimization algorithm may not converge
to the correct values of the parameters Vmax and KD. For example, a regular optimization
algorithm with user-supplied gradients and using the initial guess KD = 0.04 mol L−1 yields
the solution V ∗max = 6.63 mol L−1 min−1, K∗D = 0.001 mol L−1, with J(V ∗max,K

∗
D) = 0.0702.

However, the convex optimization algorithm, using n = 20 and θ̄ = 1 mol L−1, yields the cor-
rect solution V ∗max = 3 mol L−1 min−1, K∗D = 0.32 mol L−1, with J(V ∗max,K

∗
D) = 4.4× 10−9.

Figure 2 shows that the fitted curves that result from these two solutions are clearly different,
and only the convex algorithm predicts a concentration profile that matches the measured data.

5. Conclusions

This paper has shown that extent-based incremental model identification can be used to
converge quickly to global optimality. Several features of extent-based incremental model
identification contribute to this result. The cost function that results from this approach
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Figure 2: Measured concentration (circles) and fitting profiles that result from the solution to the
identification problem using regular (dashed line) and convex (solid line) optimization algorithms.

involves only the parameters of a single rate candidate and is a quadratic function of the
parameters in which the rate expression is linear. Then, this cost function can be converted
via a Taylor series expansion into a rational function of the parameters in which a single rate
expression is nonlinear. This rational function is used in the formulation of the identification
problem as a polynomial optimization problem with constant coefficients computed prior
to optimization. Finally, this polynomial optimization problem can be converted to an SDP,
which can be handled by SDP solvers that efficiently attain global solutions upon convergence.

Consequently, guaranteed convergence to global optimality exists for virtually all identifica-
tion problems in reaction systems, provided that some mild technical conditions are satisfied.
For many of these problems, it would be practically infeasible to obtain global optimality
via the standard simultaneous approach, due to the large number of model parameters and
combinations of rate candidates. As shown by the simulated example in this paper, identifica-
tion problems with more than one local minimum exist, and regular optimization algorithms
may converge to a local minimum that is not the global one, whereas the proposed convex
formulation guarantees convergence to the global minimum.

It is known that simultaneous model identification yields statistically optimal parameter
estimators in the maximum-likelihood sense. These estimators are consistent, that is, they
converge to the true values of the parameters as the number of data points tends to infinity, and
have an acceptable quality in many practical situations (Bard, 1974). Hence, the next step in
future work is to show that extent-based incremental model identification not only converges
to global optimality, but can also be used to provide parameter estimates with similar quality.
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