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Abstract
Locomotion is a very diverse phenomenon that results from the interactions of a body and its

environment and enables a body to move from one position to another. Underlying control

principles rely among others on the generation of intrinsic body movements, adaptation and

synchronization of those movements with the environment, and the generation of respective

reaction forces that induce locomotion. We use mathematical and physical models, namely

robots, to investigate how movement patterns emerge in a specific environment, and to what

extent central and peripheral mechanisms contribute to movement generation. We explore

insect walking, undulatory swimming and bimodal terrestrial and aquatic locomotion. We

present relevant findings that explain the prevalence of tripod gaits for fast climbing based on

the outcome of an optimization procedure. We also developed new control paradigms based

on local sensory pressure feedback for anguilliform swimming, which include oscillator-free

and decoupled control schemes, and a new design methodology to create physical models

for locomotion investigation based on a salamander-like robot. The presented work includes

additional relevant contributions to robotics, specifically a new fast dynamically stable walking

gait for hexapedal robots and a decentralized scheme for highly modular control of lamprey-

like undulatory swimming robots.

Key words: insect walking, swimming, local sensory feedback, decentralized control, bimodal

locomotion, robotics
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Zusammenfassung
Lokomotion ist ein sehr variantenreiches Phänomen, dass hauptsächlich aus Interaktionen

eines Körpers mit seiner Umwelt resultiert und es erlaubt sich von einem Ort an den näch-

sten fortzubewegen. Die zugrunde liegenden Kontrollmechanismen beinhalten verschiedene

Aspekte, wie die Erzeugung von wesentlichen Körperbewegungen, die Anpassung und Syn-

chronisierung dieser Bewegungen mit der Umwelt und schlussendlich die Erzeugung von

entsprechenden Reaktionskräften, welche Lokomotion induzieren. Wir benutzen mathe-

matische und physikalische Modelle, im Speziellen Roboter, um zu untersuchen wie sich

Bewegungsmuster in spezifischen Umgebungen ergeben und zu welchem Grad zentrale und

periphere Mechanismen zur Bewegungsentstehung beitragen. Wir untersuchen Laufmuster

in Insekten, undulierendes Schwimmen und bimodal terrestrisch-aquatische Lokomotion.

In diesem Kontext präsentieren wir relevante Erkenntnisse, die die Vorherrschaft von Tripod

Laufmustern für schnelles Klettern basierend auf den Resultaten einer Optimierungspro-

zedur erklären. Des Weiteren stellen wir neue Kontrollparadigmen vor für anguilliformes

Schwimmmen, welche, basierend auf lokaler Druck-Sensorrückführung, Oszillator-freie und

entkoppelte Kontrollschemen beinhalten. Letztendlich schlagen wir eine neue Designmetho-

dologie zur Entwicklung von physikalischen Modellen zur Untersuchung von Lokomotion am

Beispiel eines salamanderähnlichen Roboters vor. Die Arbeit beinhaltet zusätzlich relevante

Beiträge zur Robotik mit Thesen für eine neuartige dynamisch stabile Gangart für sechsbei-

nige Roboter und ein dezentrales Schema für hochmodulare Kontrolle von undulierenden

Schwimmrobotern.

Stichwörter: Insekten-Laufmuster, Schwimmen, lokale Sensorrückführung, Dezentrale Kon-

trolle, Bimodale Lokomotion, Robotik
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Résumé
La locomotion est un phénomène très varié qui apparaît suite aux interactions d’un corps avec

son environnement, lui permettant ainsi de se déplacer d’un point à un autre. Les principes

de contrôle sous-jacents se basent entre autre sur la génération des mouvements intrinsèques

du corps, sur l’adaptation et la synchronisation de ces mouvements avec l’environnement,

ainsi que sur la production des forces de réaction qui induisent la locomotion. On utilise

des modèles mathématiques et physiques, implémentés en tant que robots, pour examiner

comment des séquences de mouvements émergent dans un environnement spécifique, et en

quelle mesure les mécanismes de contrôle centraux et périphériques contribuent à engendrer

le mouvement. On explore la marche des insectes, la nage ondulatoire, ainsi que la locomotion

bimodale amphibie. On présente des résultats pertinents qui expliquent la prévalence des dé-

marches tripodes pour la grimpe rapide, sur la base du résultat d’un processus d’optimisation.

On a également développé de nouveaux paradigmes de contrôle pour la nage anguilliforme

basés sur un feedback sensoriel local de la pression, incluant des schémas de contrôle sans

oscillateur ni couplage ; ainsi qu’une nouvelle méthode de conception, basée sur un robot

salamandre, pour la création de modèles physiques destinés à l’analyse de la locomotion.

Le travail présenté inclut d’autres contributions au domaine de la robotique, en particulier

un nouveau type de marche rapide dynamiquement stable pour robots hexapodes, ainsi

qu’un schéma de contrôle décentralisé hautement modulaire utilisable avec des robots à nage

ondulatoire de type lamproie.

Mots clefs : marche des insectes, nage, feedback sensoriel local, contrôle décentralisé, locomo-

tion bimodale, robotique
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Introduction

What appears to be the beginning of this thesis is at the same time the end of a very enjoyable

journey. This document is the last piece of this journey which I like to see as a way to share my

thoughts and insights that have developed over the last four and a half years in our unique

Laboratory at EPFL in Lausanne and in collaboration with many people all around the world.

If I had to frame the topic of the presented work here at day one of the project, I would

probably have said, it settles around learning about locomotion in animals and the transfer

to engineering systems. Today I’ll say the same but I’ll add ... and vice versa at the end, as it

has been a very valuable experience to use our engineering tools to pursue questions of why

things behave as they do. Thus, please let me put this short comment and say that based on

my, of course personally biased, exposure to related questions and the consequent quest for

answers, I encourage anyone to apply their engineering expertise also in interdisciplinary

fields. For me, this challenge to work in different subjects and with people from different fields

has been very rewarding! Now that this is said, let me introduce you to the general topic of this

thesis.

Locomotion, simulated Creatures and Newton

Let us start with a tale, where for almost a century, starting with Johannes Schmidt (1923),

researchers have been investigating what could be called the Eel mystery. It described the

paradox that in their larval stages the American and European Eel are located in the Sargasso

sea (mid North Atlantic). However, as adults they live far far away along the North American

and European coast and had never been observed migrating to the open sea or their spawning

region. It was estimated that for a migration process of this kind the eels had to swim thousands

of kilometers in a relatively short amount of time. Researchers collected more and more

evidence to prove this, and in a breakthrough a team (Ginneken et al., 2005) was able to show

under laboratory conditions in flow tanks that those eels have the capability to cover distances

of about 5500 km within 173 days. As if this was not impressive enough, these eels were able to

achieve this in a fasting state. A few years later this was validated by another team (Béguer-Pon

et al., 2015) which was finally able to track a group of eels of which one individual migrated

traveling a distance of 2400 km in a bit more than 45 days. Given their relatively small size of

around 70 cm this would correspond to an average swimming speed of 0.55 body lengths per

1



Introduction

second. This is an extraordinary achievement and one can hardly imagine the impact of a

similarly efficient artificial swimming machine.

But nevertheless, the example of the eel is only one of many that shows how organisms are able

to extract the most out of their bodies to excel in their specific living environment with optimal

locomotion strategies. In the case of the eel, its specific style of swimming by propagating

traveling waves of undulations from head to tail turns out to be very energy efficient. Other

fish, although in the same aquatic environment as the eel, like e.g. the trout, use more of

a tail-based propulsion, which results in different characteristic abilities such as maximally

achievable speeds, maneuverability, etc (Sfakiotakis et al., 1999). Other aquatic animals have

completely different locomotion strategies, such as the jellyfish, which uses almost a jet-like

propulsion to navigate in water (Gemmell et al., 2015). In other environments the locomotor

patterns change even further. Flapping wing birds, running horses, crawling snakes and

hopping kangaroos are just a few to mention. The important point to make is that in general,

animals in their respective environments have found adapted locomotor strategies for their

specific body morphologies, which both have been developed and improved over the course

of evolution.

It is both difficult, yet intriguing, to reason what the underlying principles of specific loco-

motion control for certain morphologies and corresponding environments are. Traditionally

biologists, neuroscientists, functional morphologists and biomechanists have been studying

animal locomotion in a variety of (controlled) experiments. For this purpose, usually detailed

measurements regarding generated dynamics (e.g. ground reaction forces) and kinematic

patterns (e.g. motion capture techniques) are extracted and then related to the nervous system

and the muscle apparatus (e.g. electromyography). Following this methodology, locomotion-

relevant control strategies have been identified in many organisms. In this thesis, we combine

traditional methods, with engineering tools as suggested among others by Ijspeert (2014):

Animal locomotion control is investigated by mathematical models and by means of physical

robotic models. The idea hereby is to develop or test control strategies in artificial animal

bodies. This offers us additional key insights as we are able to explore and vary relevant

parameters (e.g. neural connectivity, influence of sensory pathways, change in environment,

etc.) and observe their effects on the locomotion. Moreover, measurements to characterize

locomotion performance, e.g. energy consumption, are often much easier to extract from

these artificially designed systems.

To develop models of locomotion control, many approaches have been proposed over the

last years. Locomotion is generated by means of a variety of dedicated subsystems such as

the nervous system, clever mechanical body properties, muscle actuation and sensors. Our

focus is however less pointed on the detailed reconstruction and reproduction of each of

those subsystems, but rather on higher level interaction mechanisms between the relevant

subsystems and the resulting features for locomotion. As mentioned before, the environment

constrains locomotor strategies to a great extent, which is why we are especially interested to

analyze how gait patterns are specifically shaped by environmental influences. A key aspect in
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our work is therefore to investigate emergent locomotor behavior in animals. Probably, one

of the first to promote related ideas was Karl Sims (1994), who looked at the emergence of

behavior and morphology in computer simulated creatures. By introducing a competitive

selection criterion within an optimization procedure, he was able to evolve structures which

were able to locomote in various environments using different morphologies. In this sense, the

concept of emergence relates to the idea of letting a system evolve until a movement pattern

is established. How the system evolves is highly variable and can be realized in different

ways (e.g. goal-directed rules). Important is the ultimate goal to identify key components

which inherently lead to locomotion as a result of the interplay between body movement

and environment. Subsequently, this can help us to understand the essential underlying

principles that explain why and how animals with their specific bodies locomote in their

natural environment. Learning these principles will further be useful to design efficient

machines and robots for locomotion in dedicated environments, but might also enable insight

to evolutionary developments and why some locomotion strategies proved to be more efficient

than others, especially over the course of changing environmental conditions.

Locomotion is the result of the interaction between a body and its environment. To investi-

gate possible underlying control mechanisms it is required to identify the relevant physical

principles that let a body move from one point to another. It turns out that animals and

locomotor systems in general exploit Newton’s third law: For every action, there is an equal and

opposite reaction. Thus, systems that propel themselves will try to generate reaction forces

in their respective environment. When these reaction forces are generated in a coordinated

fashion, a non-zero resulting external force will cause the system to locomote. Depending

on the environment, the types of forces will highly differ and can span a wide spectrum from

aerodynamic drag for flying animals, friction forces for terrestrial runners, up to adhesive

forces for climbers. All animals rely on asymmetry to achieve efficient locomotion patterns.

Although, it is often not evident in symmetric or periodic movement patterns, such as flapping

wing birds or crawling snakes, the key is to generate asymmetric reaction forces with respect

to the desired movement direction. To improve our understanding of locomotor control in

different environments, analyzing these physical interaction mechanisms is important to

determine desired reaction forces and their implications for coordinating body movements.

Additionally, the relevant physical interaction forces need to be known to model and simulate

possible control strategies in corresponding environments.

Tightly coupled to the importance of body-environment interaction for locomotion control is

the ability to generate cyclic movements with the body, which could be seen as an analogon to

the wheel in nature. The spinal cord in vertebrates plays hereby a very dedicated role. Whereas,

high-level centers such as the motor cortex combine visual information and direct overall loco-

motion in terms of speed, direction and navigation in general, low-level centers in the spinal

cord are mainly responsible for periodic locomotion patterns. In many animals, the existence

of distributed local Central Pattern Generators (CPGs) is well-known. These CPGs represent

neuron populations that are able to produce spontaneous rhythmic outputs for other interneu-

rons and motoneurons, which in the end coordinate muscle contractions and the consequent
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Introduction

movements. While movement generation itself is a prerequisite for locomotion, adaptation

depending on environmental conditions is crucial for it to be efficient. In this context, sensors

provide information about generated reaction forces with the environment and movement

patterns can be adjusted accordingly. These feedback mechanisms often act locally which

in many organisms help to react quickly to environmental changes. Rather than conducting

the sensory information all the way back to the brain and back to the point of interaction,

sensory information is processed in local reflex-loops in the spinal cord. Examples of such

reflex behaviors are for instance stumbling corrective reflexes (Forssberg, 1979) in cats that

almost instantaneously correct leg motion when an unexpected obstacle is encountered. Thus,

sensory feedback loops are arguably beneficial to coordinate and adapt locomotion patterns.

As we will see further in the text, movement can also be purely generated based on sensory

driven cues, as it has been already shown in other work on human locomotion (Geyer and

Herr, 2010) and invertebrates (Fischer et al., 2001). We will also encounter questions related to

peripheral vs central control mechanisms for movement generation and coordination.

In summary, locomotion enables great performances in various types of environments. It is

a very complex process that involves many components that interact with each other. A few

pivotal mechanisms can be identified and therefore, we propose the following key aspects that

are of great importance:

� The reaction forces between the body and the immediate environment.

� The inherent generation of movements in the body.

� The adaptation and synchronization of body movements with the environment.

Throughout this work we create and use mathematical and physical models, in order to explore

questions related to these key facets of locomotion in different environments and for different

body morphologies. We analyze insect walking by means of the fruit fly which is a widely used

model organism for six-legged locomotion. Furthermore, at a more macroscopic scale, we

look at undulatory swimming in aquatic environments and create models that are relevant

for invertebrate (e.g. leech) as well as vertebrate (e.g. lamprey or eel) organisms. Finally,

salamander locomotion in a bimodal terrestrial and aquatic environment is analyzed.

Our general approach follows the idea to capture the most relevant aspects of specific analyzed

locomotion and develop models that are as simple as possible, though still capable to describe

the important causes and mechanisms that render it feasible.
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Thesis Organization and Main Contributions

The thesis is structured in three main chapters, where each of which covers a few locomotion-

relevant questions in specific environments. A final chapter discusses the overall findings and

draws conclusions for future work.

Chapter 1 explores insect locomotion in different environments such as adhesive surfaces

and vertical walls. In-silico optimizations in simulations and robot experiments led us to

possible explanations for the prevalence of tripod gaits in insects as well as to possibly more

efficient locomotor strategies for six-legged robots.

Chapter 2 investigates local sensory feedback based undulatory locomotion in aquatic envi-

ronments. Simulations with an elongated lamprey-like swimming model revealed feedback

driven mechanisms for the generation of oscillatory body bending as well as for the establish-

ment of coordinated swimming patterns.

Chapter 3 analyzes the proposition of a biomimetic robot design to be used in terrestrial

as well as aquatic environments. Along with a design methodology, important considera-

tions regarding scaling laws for proper reaction forces and their validation in experiments is

provided.

Main Contributions

• We demonstrate that the tripod gait in insect walking satisfies the requirements of

fast locomotion for climbing.

• We present a new dynamically stable bipod gait for hexapedal locomotion that is

faster than the tripod gait.

• We show that Drosophila with blocked adhesion does not perform the tripod gait

anymore, but a gait that features bipod-like characteristics.

• We show that local pressure feedback in undulatory swimming

– can correct wrong CPG induced phase lags.

– can coordinate and establish a traveling wave of body bending in a decoupled

oscillatory network.

– can generate rythms and traveling waves in combination with central cou-

pling in the absence of neural oscillators.

• We propose a new design methodology with corresponding validation and analysis

for a physical locomotion model by means of a salamander-like robot.
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1 Insect Walking

Particularly in legged locomotion, very specific gait patterns adapted to specific environments

and desired performance are present. It could enable us to create efficient legged locomotor

machines and possibly give us insight in required control mechanisms if we understood which

patterns should be used under which conditions. Therefore, we asked in this chapter how gait

patterns should be selected for the case of six-legged systems. We studied insect locomotion

and explored a variety of gaits in terms of variable inter-leg coordination. A corresponding

insect model was created for this purpose along with a model of relevant reaction forces,

such as friction, adhesion and gravitation, between the body and the ground. Based on these

questions and the corresponding modeling approach we are able to present new findings

explaining the prevalence of tripod gaits in insects as well as a new gait that can be used for

fast locomotion in six-legged robots.

The following sections are based on the newly published article ”P. Ramdya,

R. Thandiackal ∗, R. Cherney, T. Asselborn, R. Benton, A. J. Ijspeert, D. Floreano.

Climbing favours the tripod gait over alternative faster insect gaits. Nature Com-

munications (2017)” in which I was co-lead author. Parts of the text and figures of

the original paper have been reorganized in this chapter.

My original contributions

• Work on the development of the in silico model

• Optimizations with the in silico model in different environments and different scales

• Analysis and evaluation of optimized gait patterns

• Helping to formulate research questions

• Inputs to the manuscript, in particular for the methods
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Chapter 1. Insect Walking

1.1 Abstract

To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal

ground contact. By contrast, most insects use a tripod gait with three legs on the ground. One

prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion

allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally

discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the

tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward

climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat

terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg

structures are covered in real Drosophila, animals exhibit atypical bipod-like leg coordination.

We propose that the requirement to climb vertical terrain may drive the prevalence of the

tripod gait over faster alternative gaits with minimal ground contact.
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1.2. Introduction

1.2 Introduction

Since the pioneering photographic studies of Eadweard Muybridge (1887), it has been widely

appreciated that animals use distinct gaits at different locomotor speeds. These discontinuous

shifts in leg coordination are hypothesized to minimize energy consumption by changing

the number and relative timing of legs in motion (Hoyt and Taylor, 1981; Srinivasan and

Ruina, 2005). For example, horses transition from a slow walk, lifting only one or two legs

simultaneously, to a trot, canter, and, finally, a fast gallop that further reduces the number of

legs on the ground at any one time (Hildebrand, 1965). Above a certain threshold speed most

vertebrates use gaits that are characterized by having little to no ground contact during part of

the stepping cycle and require dynamic stability to remain upright (Alexander, 2003).

Like vertebrates, insects also exhibit gait transitions as they increase locomotor speed although

it is less clear to what extent these transitions are true gaits (Bender et al., 2011; Smolka et al.,

2013), or continuous changes over walking speed (Graham, 1972; Bässler and Büschges, 1998;

Schilling et al., 2013). For example, Drosophila melanogaster, a popular model for studying

insect locomotion (Mendes et al., 2013; Wosnitza et al., 2013; Strauss and Heisenberg, 1990),

transitions from a slow wave gait, to a tetrapod gait, and finally to a fast tripod gait (Mendes

et al., 2013; Wosnitza et al., 2013; Strauss and Heisenberg, 1990; Wilson, 1966), always keeping

at least five, four, or three legs on the ground at a given time, respectively. During tripod

ground locomotion the front and rear legs on one side of the body move nearly synchronously

with the middle leg on the other side. This tends to keep the animal’s projected center of mass

(COM) within a three-point polygon of support formed by the legs: a defining feature of static

stability (Alexander, 2003). Therefore, in sharp contrast to fast vertebrate running gaits that

have at most one or two feet in contact with the ground, an overwhelming majority of running

insects do not reduce the number of legs on the ground below three. Importantly, this is not

an inherent difference between hexapods and quadrupeds: in rare cases insects can have just

two legs (Full and Tu, 1991), or no legs (Wahl et al., 2015) on the ground (i.e., flight phases)

during tripod running. More commonly, to further increase ground locomotor speed, insects

increase stride length, increase stride frequency, invoke spring-mass dynamics (Full and Tu,

1990), and reduce duty factors (Ting et al., 1994).

Fast gaits are critical for survival: they are used to hunt and to escape (Schaefer et al., 1994).

Therefore, despite the capacity for other gaits (Smolka et al., 2013; Wosnitza et al., 2013), the

ubiquity of the tripod gait across diverse insect species (Wilson, 1966) (e.g., flies (Wosnitza

et al., 2013), ants (Zollikofer, 1994), stick insects (Graham, 1972), cockroaches (Goldman et al.,

2006), and dung beetles (Smolka et al., 2013)) suggests that it has been subject to selection

as a means for achieving fast locomotion. However, the factors - ethological, biomechanical,

and/or developmental - causing the prevalence of this locomotor strategy over vertebrate-like

gaits that minimize ground contact remain unknown. In nature, many small insects, including

Drosophila, exhibit strong phototaxis and negative gravitaxis, compelling them to navigate and

seek higher altitudes (Jander, 1963) by climbing up obstacles in their surroundings. Therefore,

one long-standing but untested hypothesis for why the tripod gait is so pervasive is that
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Chapter 1. Insect Walking

it allows insects to rapidly traverse challenging terrain, like vertically oriented vegetation,

without falling off (Hughes, 1952; Reinhardt and Blickhan, 2014).

It is not yet possible to test this hypothesis by changing the gaits of real insects or by measuring

the ancestral origins of extant locomotor behaviors. Therefore, computational approaches

can be used to address experimentally intractable biological questions (Srinivasan and Ruina,

2005; Ackermann and Van den Bogert, 2012; Floreano and Keller, 2010; Ijspeert, 2014; Ijspeert

et al., 2007; Wischmann et al., 2012). To investigate factors favoring the prevalence of the

insect tripod gait, we discovered fast locomotor gaits for an in silico insect model using an

optimization algorithm (Particle Swarm Optimization or PSO, Clerc and Kennedy 2002). Gaits

can be characterized by their footfall patterns (e.g., tripod, or tetrapod), duty factors (above

0.5 for walking, or below 0.5 for running, Hildebrand 1965), and ground stability (static, or

dynamic). Here we focused on footfall patterns since we were interested in understanding

why insects rely on the tripod rather than alternative three-legged or even dynamically stable

two-legged gaits during fast locomotion.

We find that the classic tripod gait is uniquely optimal for fast upward climbing using leg

adhesion. It is also strongly favored during downward and sideways climbing. However, this

is not due to adhesion alone: a variety of other gaits are also optimal for fast ground walking

with leg adhesion. Furthermore, when optimizing for rapid ground locomotion in the absence

of adhesion, novel dynamically stable two-legged gaits emerge. These bipod gaits are similar

to the vertebrate running trot and are faster than the tripod gait in the insect model and in a

hexapod robot. Intriguingly, when the structures subserving leg adhesion are blocked in real

Drosophila melanogaster, flies abandon the tripod gait and instead exhibit atypical bipod-like

leg coordination. These data suggest that the prevalence of tripod locomotion in insects – over

faster, vertebrate-like gaits with minimal leg-substrate contact – is related to the requirement

to climb three-dimensional surfaces using leg adhesion.
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1.3. Gait optimization in an insect model

1.3 Gait optimization in an insect model

Our aim was to discover fast insect gaits for climbing, or for ground locomotion. Therefore,

we designed a physics-based insect model but minimized its complexity to reduce the com-

putational cost of gait optimization. Specifically, we used the simulation engine, Webots

(Michel, 2004), to build a model based on the morphology and leg kinematics of Drosophila

melanogaster (Fig. 1.1a-c and Fig. 1.2). To control each leg, instead of using complex neurome-

chanical methods (Beer and Gallagher, 1992; Daun-Gruhn and Büschges, 2011), we measured

and reproduced periodic Drosophila leg motions during fast walking. In this way, we could

isolate the contribution of gait on locomotor speed by varying the relative phases of motion of

each leg while keeping stride frequency and foot trajectories fixed.

In our model, a vector of five numbers encodes a single gait: Each number represents a single

leg’s phase of motion relative to the left front leg which is fixed at 0° phase (Fig. 1.1b). For

example, the simplest way to generate a tripod gait in our model is to fix the front left (θL1),

middle right (θR2), and rear left (θL3) legs at a phase of 0° while the remaining three legs are

set to 180°. The resulting gait has two power strokes per walking cycle (Fig. 1.1d) and can be

characterized using a footfall or gait diagram that illustrates which legs are (stance) or are not

(swing) in contact with the ground at each point in time (Fig. 1.1e). This gait produces ground

reaction forces that rely on the front legs and, to some extent, the middle legs for propulsion

(Supplementary Fig. A.1a; note that diverse mechanisms for propulsion have been observed

across insect species (Reinhardt et al., 2009; Dallmann et al., 2016; Full et al., 1991)).

Notably, these phase lags are used for open loop control of our model. By contrast, insects are

thought to depend on a distributed control mechanism whereby the movements of each leg

depend on their phases relative to those of other segmental legs (e.g., hind leg movements

take into account the current state of the middle legs) (Graham, 1972; Bässler and Büschges,

1998; Strauss and Heisenberg, 1990; Wilson, 1966; Hughes, 1952; Cruse, 1990; Cruse et al.,

2007; Delcomyn, 2004). The advantage of our compressed method for encoding locomotor

gaits with only five parameters is that it allows for a more rapid computational search for

optimally fast gaits. Alternatively, if we had used existing neuromechanical insect models

composed of many free parameters (Beer and Gallagher, 1992; Daun-Gruhn and Büschges,

2011; Szczecinski et al., 2014; Schmitz et al., 2001), the time for gait optimization would be

have been prohibitively long, it would have been more difficult to analyze the data, and it

would have been more challenging to extract general principles from the results.

During climbing, in addition to frictional forces, insects rely on adhesive forces (Mendes et al.,

2014; Hüsken et al., 2015) generated by biomechanical specializations like claws and pulvilli

on their legs (Goldman et al., 2006; Haas and Gorb, 2004; Federle et al., 2002). Frictional

and adhesive forces differ in that they act in different directions – tangential and normal,

respectively, to the contact surface – and therefore have different effects on the legs: friction

reduces slipping while adhesive forces act against lift-off of the legs. Therefore, in addition to

frictional forces, for some experiments we added a contact-dependent adhesion force to the

11



Chapter 1. Insect Walking

tips of the model’s legs. The detailed physics of adhesion can vary depending on whether they

originate from interlocking, capillary, or dry mechanisms, but at a higher level of abstraction

these all generate normal forces that prevent the foot from lifting. Since different adhesion

mechanisms for vertical climbing can be modeled using a common template (Goldman et al.,

2006), we did not incorporate fine-scale physical mechanisms for adhesion and substrate-

release into our model.

We optimized our insect model’s gait for forward velocity, resulting in gaits that generate

straight locomotion. Optimization for energy efficiency (via measurements of cost of trans-

port), or using a different optimization method (genetic algorithm) yielded similar results.

We began each optimization experiment by generating a population of fifty insect models

with random gaits (i.e., random phases of motion for each leg). We then measured forward

velocities for each model and used the fastest gaits – as well as the stochasticity inherent in PSO

algorithms (Clerc and Kennedy, 2002) – to define gaits to be tested in the next iteration of the

algorithm. In this way, each model’s forward velocity steadily improved while the population’s

phase vectors converged over the course of 150 optimization iterations (Supplementary Fig.

A.2). After each optimization experiment, we identified and studied the single fastest gait

found over all iterations.
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Figure 1.1 – Gait optimization in an insect model. (a) A ventral view of a Drosophila
melanogaster female. Each leg is labeled as belonging to the right (R) or left (L) side and
the prothoracic (1), mesothoracic (2), or metathoracic (3) leg pair. Scale bar is 0.4 mm. (b) A
ventral view of the in silico insect model used in this study. A vector of five numbers encodes a
single gait: each number represents a leg’s phase of motion relative to the left front leg whose
phase is fixed at 0°. Scale bar is 0.4 mm. (c) A side view of the insect model in its in silico
environment. (d) The classic tripod gait has two power strokes per locomotor cycle. During
each power stroke three legs are on the surface (stance phase, black circles) while the other
three legs are off the surface (swing phase, grey circles). Grey arrowheads point in the direction
of motion. (e) An idealized gait diagram of stance (black) and swing (white) phases for each
leg during two cycles of tripod locomotion. The phase of motion for each leg is indicated.
Each power stroke is numbered.
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1.4 Methods

1.4.1 Insect model morphology

We designed an insect model using Webots 6.4.4 (Michel, 2004) (Cyberbotics Ltd., Lausanne

Switzerland), a three-dimensional, physics simulation environment built on top of the Open

Dynamics Engine (ODE). Using this software, solid geometric objects can be combined to

build structures of arbitrary shape and actuated by simulated motors (see description below).

We used Webots rather than a custom-designed physics engine and simulation environment

to facilitate the reproduction and extension of our results by other researchers. To develop

our model we combined published anatomical information (Soler et al., 2004; Sink, 2007)

with microscope (Leica Microsystems, Wetzlar, Germany) images of 2 days post eclosion (dpe)

awake and anaesthetized female Drosophila melanogaster of the Canton S background raised

at 25°C. Since specimens were of variable size, we normalized measurements of each body

and leg segment using the length of the thoracic segment as a reference (French et al., 1998).

These values were then used to determine the size of our insect model. The mass of the model

was also based on the average weight of 2 dpe Drosophila females (0.85mg). The head, thorax

and abdomen of the model together comprise one rigid body. However, each component has

its own homogeneous mass. This determines the mass and inertia of the rigid body as a whole.

The head and abdomen are modeled as rigid capsules while the thorax is modeled as a rigid

sphere. Each of the legs has six degrees of freedom (DOFs). Each DOF is implemented as a

hinge joint. There are three hinge joints in series (i.e., overlaid joint axes) at the body-coxa

junction, one hinge joint at the coxa-femur junction, one hinge joint at femur-tibia junction,

and one hinge joint at tibia-tarsus junction. The segments of each leg are modeled as rigid

capsules. The pretarsus, which is connected to the tarsus, is modeled as a rigid sphere. Fig. 1.2

shows an illustration of the model and the geometric dimensions of the body and the legs are

given in tables 1.1 and 1.2.

Body part Type
Diameter
(mm)

Length
(mm)

Thickness
(mm)

Mass (mg)

Abdomen Capsule 0.8925 0.595 - 0.0062
Thorax Sphere 0.952 - - 0.0124
Head Capsules 0.595 0.1785 - 0.0124
Wing Pill-shaped 1.19 1.2495 0.0595 1.236 ·10−5

Eye Sphere 0.4165 - - (part of head)

Table 1.1 – Geometric dimensions of the insect model body

We also performed experiments with larger models (25 mm and 250 mm in length). For these

models all dimensions were scaled up while keeping the density of each body part the same.
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Body part Type Diameter (mm) Length (mm)
Mass
(mg)

Coxa Capsule 0.1547;0.1547;0.1547 0.1547;0.0952;0.2737 0.0494
Trochanter/Femur Capsule 0.1309;0.1309;0.1309 0.5653;0.5177;0.4879 0.0247
Tibia Capsule 0.0952;0.0952;0.0952 0.5534;0.4879;0.4165 0.0247
Tarsus Capsule 0.0714;0.0714;0.0714 0.6069;0.5415;0.5355 0.0247
Pretarsus Sphere 0.1190;0.1190;0.1190 -;-;- 0.0124

Table 1.2 – Geometric dimensions of the insect model legs (hind/metathoracic; middle/me-
sothoracic; front/prothoracic)
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Figure 1.2 – Insect model based on Drosophila melanogaster. (a) Side and ventral images
of adult female flies used to calculate the sizes of body and leg segments. Scale bar is 0.3
mm. Green, yellow, and red lines illustrate examples of leg, head, and thoracic measurements,
respectively. (b) Corresponding side and ventral views of the insect model. Scale bar is 0.3
mm. (c) Image of the model’s front right leg. Leg segments and the degrees of freedom for
each joint are labeled in black and grey, respectively. (d, e) Sample high-speed video images of
Drosophila walking (grey) are overlaid by semi-transparent images of the insect model as seen
from the side (d) or from below (e).
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1.4.2 Leg motion kinematics

We use Webots position-controlled (internal P-controller) motors at each of the leg joints.

These use angular position as a reference and determine the motor torque based on the

P-controller. We used position control with strictly imposed leg movements since it simplifies

the optimization landscape compared with more complex simulations that include muscle

dynamics. Each of the leg joints is implemented as a servo node (i.e., a hinge joint with a

rotational motor). The motor is operated in position control with a P-controller of constant

gain. Based on the target reference position, the P-controller computes the current velocity

and the necessary torque, which is then applied directly at the joint by the physics simulator.

At each simulation step, the P-controller computes the current velocity vc as in equation 1.1:

vc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−vd vc ≤−vd

P · (pt −pc ) −vd <−vc < vd ,

vd vc ≥ vd

(1.1)

where vc is the current servo velocity, P is the P-control parameter specified in the controlP
field, pt is the target position of the servo (predefined), pc is the current servo position, vd is

the desired velocity as specified by the maxVelocity field. This is a standard implementation

of the ODE/Webots P-controller. We did not limit acceleration. ODE joint motors have two

essential parameters: velocity and maximum torque. The maximum torque is predefined for

each joint, whereas the velocity is computed by the P-controller. The effective torque that has

to be applied is then computed such that the desired velocity is reached within one time step.

The general and joint parameter values are given in table 1.3 as follows:

Δt vmax τmax p-gain a γ δ

0.2ms 100 r ad
s 2.1·10−8N m 50 not limited 0 0

Table 1.3 – General and joint parameter values for simulation of the insect model

, where Δt denotes the basic simulation time step, vmax the maximum speed, τmax the

maximum torque, a the acceleration, γ the spring constant, δ the damping constant.

We defined the range of motion for each leg joint based on observations of freely walking

Drosophila using high-speed videography (Gloor Instruments, Uster Switzerland) and by

referring to previous studies on insect locomotion and leg organization (Cruse et al., 2007;

Soler et al., 2004; Sink, 2007). During ground locomotion, gravitational surface friction is the

main interaction force. The movements of the legs relative to the head-thorax-abdomen rigid

body are the same for all gaits. Based on observations of Drosophila walking in high-speed

videos, the movements of each leg were preprogrammed as sinusoidal joint angle movements

within an observed range of motion and fixed phase lags between the motions for each joint

(Fig. 1.2). Although the movements of the legs are fixed, their duty factor - how long a foot is in
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contact with the ground - varies and is free to emerge during our gait optimization. This is

because foot contacts depend on the roll, pitch, and elevation movements of the whole body,

which vary over time and depend on the gait. Similarly, the stride length (progress per cycle)

emerges during optimization. However, the stride frequency is kept constant at 20 Hz, a stride

frequency that we measured from rapidly walking Drosophila. For larger models (25 mm and

250 mm), stride frequencies were scaled based on the Froude number (F r = v/
√

g l ) and the

Strouhal number (St = f l /v) 1. Specifically, 20Hz in the 2.5 mm model corresponds to 6.32 Hz

for the 25 mm model and 2 Hz for the 250mm model. To have an integer number of simulation

steps, a frequency of 5 Hz was used for the 25 mm model.

The ranges of motion for each joint is (in degrees - intervals indicate ranges, single values

indicate constant position without oscillation):

Leg Body- Coxa Body- Coxa
Body-
Coxa

Coxa-
Femur

Femur-
Tibia

Tibia-
Tarsus

Type
promotion/
remotion

abduction/
adduction

rotation
flexion/
extension

flexion/
extension

flexion/
extension

Hind [-75, -45] [40, 59] [-55, -20] [40, 107.2] [50, 135] 20.5
Middle [-25, 25] 25.44 0 [80, 90] [80, 90] 25.5
Front [70, 80] [-40, 10] [0, 40] [90, 160] [55, 125] 21

Table 1.4 – Ranges of motion for the different joints in degrees. Intervals indicate ranges, single
values indicate constant position without oscillation

The relative phase of oscillation for each joint is given as follows (in degrees):

Leg
Body-
Coxa

Body- Coxa
Body-
Coxa

Coxa-Femur
Femur-
Tibia

Tibia-
Tarsus

Type
promotion/
remotion

abduction/
adduction

rotation
flexion/ ex-
tension

flexion/
exten-
sion

flexion/
exten-
sion

Hind 180 0 180 200 180 0
Middle 180 0 0 270 90 0
Front 0 210 0 0 20 0

Table 1.5 – Relative phase of oscillation for each joint in degrees

1v : speed , g : gravitational acceleration, l : body size, f : frequency
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1.4.3 Relevant reaction forces

We computed the frictional forces with the surface according to equation 1.2:

FR =μFN ∼μmg = 1.4 ·10−7N , (1.2)

where the friction coefficient μ= 0.1, leg mass m = 1.42.10−7kg , and gravitational acceleration

g = 9.81 m
s2 . The ODE uses a simple Coulomb friction model. Specifically, we use symmetric

coulomb friction in Webots and default values for bounce and bounceVelocity. The bounce

parameter defines the type of collision (1: elastic collision, < 1: inelastic collision). Our

contactProperties node was set to the following -
[
coulombFriction = 4; bounce = 0.5;

bounceVelocity = 0.01; forceDependentSlip = 0
]
. A friction pyramid (approximation of

a friction cone) is used to determine when slipping begins. We use a friction coefficient of

μ= 4. This represents an upper bound rather than the classical coulomb friction coefficient.

A contact point with a ground reaction force that lies within the friction cone leads to a non-

slipping contact. When the ground reaction force moves out of the friction cone, a slipping

contact is established. In Webots/ODE the friction cone is approximated by a friction pyramid

(i.e., apex at the contact point, axis aligned with the normal force direction, base defined by

two orthogonal tangential directions of ground plane). To compute the effective friction force,

the ODE first assumes that the contact is frictionless and computes the resulting normal force

Fn . Based on this, the maximum frictional force in either of the two tangential directions is

computed as Ft ,max = μ|Fn |. The ODE then continues to solve the system based on these

limits for two cases:

1. Static friction: the ground reaction force lies inside the friction pyramid. Therefore, the

frictional force will be computed to compensate for tangential forces.

2. Dynamic friction: the ground reaction force lies outside the friction pyramid, therefore

the frictional force is computed as Ft ,max .

In addition to a universal frictional force, a leg-adhesion force is present on the pretarsus of

each of the model’s legs to mimic adhesive structures (claws and pulvilli). The adhesion force

is applied during sticking and sliding conditions as soon as there is contact (collision) between

the foot and the substrate plane. The strength of this force was determined by measuring how

many pretarsi are required for Drosophila to suspend inverted from a cotton substrate for

more than 1 s. In our experiments one pretarsus was sufficient for substrate adhesion (two

pretarsi: 10/10 flies hanging > 1 s; one pretarsus: 11/11 flies hanging for > 1 s; no pretarsi:

0/10 flies hanging for > 1 s). Therefore, in our insect model, a minimal adhesive force, Fad ,

equivalent to that required for a single contact point/pretarsus to suspend the model in an

inverted orientation is considered a 100 % adhesion level. For our experiments we used 200 %

adhesion since this was the minimal amount required for gait optimization to be successful
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in all possible travel orientations (e.g., vertical). Although leg adhesion forces have not been

formally measured for Drosophila melanogaster, this is likely a lower bound based on studies

of other species (Federle and Endlein, 2004; Eisner and Aneshansley, 2000). Adhesive forces

are implemented as constant normal forces acting on the pretarsus when it is in contact with

the substrate. Since the normal force plays a role in the friction model, the adhesion force

also has an impact on friction. For example, with 200 % adhesion, each leg that is in contact

with the ground experiences an additional normal force due to adhesion that corresponds to

twice the weight of the insect model. As explained above, this normal force, Fn , represents

an upper bound inside the friction pyramid. The effective tangential friction force will be

much smaller and just enough to ensure static contact. In other words, the adhesive force

modifies the friction pyramid criterion to make tangential slipping much harder. Note that

the issues concerning a closed kinematic chain are resolved for our model. A kinematic chain

is a series of rigid bodies connected via joints whose movements are therefore coupled. A

closed kinematic chain implies a series that contains at least two fixed joints, thereby creating

a loop. When the model is using a tripod gait and three legs are in sticking contact with the

ground, a closed kinematic chain is present with three fixed points/joints on the ground.

Each leg has a predefined movement based on the model’s kinematics, leaving us with three

degrees of freedom for each leg’s phase of motion. One might therefore expect that there

are not enough degrees of freedom to achieve forward movement while using the tripod gait.

However, the tripod gait can be exploited in two ways. First, in the absence of adhesion,

slipping (reduced normal force) is present. Therefore, legs in contact with the substrate may

be not be in sticking contact, relaxing the constraints imposed by the closed kinematic chain.

Second, in the presence of leg adhesion, the P controlled joint trajectories exhibit a minimal

compliant behavior that is sufficient to make the tripod gait possible. Evidence of our model’s

ability to overcome restrictions imposed by the closed kinematic chain can be seen in the

results of our optimization experiments: the tripod gait emerges in each of the five conditions,

either with or without adhesion.

We did not model air drag in our simulations. While drag is an important factor for insect

flight, we found that it is not nearly as relevant as frictional forces for walking. We computed

drag forces for a single leg according to equation 1.3:

FD = 1

2
ρv2cD A = 2.8563 ·10−10N , (1.3)

where ρ = 1.225 kg
m3 (density of air), cD = 1.05 (drag coefficient for a cube). The velocity was

computed based on the frequency of leg motion and length of each leg: v = 2π f L = 0.0628 m
s ,

where f = 20H z and L = 0.0005m. We considered the area of a leg as the drag area A = d ·L =
5.10−8m2, where d = 100μm. Frictional forces are therefore three orders of magnitude larger

and dominate drag forces. Similar results were obtained, if drag forces are calculated for the

whole body with the velocity v = 0.02 m
s (the approximate maximum walking speed of a fly)
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and the drag area A = 0.00252m2 (the cross-sectional area approximated by the square of a

fly’s length). In this case FD = 1.6 ·10−9N and is still several orders of magnitude smaller than

frictional forces.

1.4.4 Gait optimization

We used Particle Swarm Optimization (PSO) (Clerc and Kennedy, 2002), a stochastic optimiza-

tion algorithm (Floreano and Mattiussi, 2008), to discover gaits that optimize forward velocity

under different adhesion and travel orientation conditions. We implemented PSO using the

inspyred (inspyred.github.com) Python (python.org) framework. Briefly, 50 candidate gaits

(particles) were randomly initialized within a 5-dimensional search space of possible solutions.

Each dimension represents one leg’s phase of motion relative to the front left leg, which was

fixed at 0° phase. During PSO, the phases of the five remaining legs could vary between 0° and

360°. For example, in this formulation a phase vector
[

L1 = 0°; R1 = 180°; L2 = 180°; R2 = 0°; L3

= 0°; R3 = 180°
]

defines the classic tripod gait – which we call tripod-A to distinguish it from

alternative three-legged gaits.

Each particle was initialized with a random velocity that defined its movement within this

search space during an iteration of the algorithm. Then, each particle’s gait was simulated

in the model. We measured its forward velocity (fitness) over 0.5 s of simulated time. This

allowed us to bias optimization for straight locomotion. Notably, we did not explicitly optimize

for energy efficiency but nevertheless obtained more energy efficient gaits as a by-product of

speed optimization. For each iteration particle positions were adjusted according to equations

1.4 and 1.5:

v t+1
i = w v t

i +c1r1(pt
b,i −xt

i )+c2r2(pt
n,i −xt

i ) , (1.4)

xt+1
i = xt

i + v t
i , (1.5)

where v t+1
i is the velocity of particle i at the time t +1, v t

i is the current velocity of the particle,

xt
i is the current position of the particle, pt

b,i is the position of the personal best solution of

particle i , pt
n,i is the position of the neighborhood best solution, r1 and r2 are random numbers

in the range [0,1], and the coefficients w (inertia weight), c1 (cognitive rate), and c2 (social

rate) are fixed. For our simulation, we used the suggested (Clerc and Kennedy, 2002; Deb and

Padhye, 2010) values w = 0.729, c1 = 1.49, and c2 = 1.49. Additionally we limited the maximum

particle velocity to 0.4 (a fraction of the parameter space). The approach described here and

implemented in inspyred is outlined in (Deb and Padhye, 2010). Because our search space

is periodic/circular ( f (0) = f (2π)), we implemented a specialized bounding function using

a custom PSO class that inherits the inspyred class, and replaces the vector determination

function. For each experimental condition, we ran 15 experiments with 50 particles each

over 150 iterations. This number of iterations was chosen after assessing the convergence
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time of the optimization process. This number of experiments was chosen to best explore the

search space of possible gaits while also limiting computing time. We optimized for different

geometric conditions (e.g., ground and vertical locomotion) by changing the global direction

of gravitational acceleration. If a model fell off of the substrate during vertical locomotion,

the forward distance traveled before falling was taken into account when calculating speed

rather than setting the fitness to zero. This procedure helped smooth the fitness landscape

and assisted optimization.

1.4.5 Gait classification

We classified optimized gaits based primarily on footfall patterns (as assessed using a footfall

diagram) and, to a lesser extent, phase vectors. Footfall patterns were emphasized over phase

vectors since gaits are highly dependent on leg adhesion conditions and locomotor orientation

even for those with similar phase vectors. Therefore, footfall patterns are more closely linked

to the success or failure of a given gait than the underlying phases of motion for each leg. For

the sake of completeness, we also present a quantification of the degree to which a gait’s phase

vector approximates the ideal phase vector for each class (tripod-A, tripod-B, tripod-C, bipod-

A, bipod-B, and bipod-C, Fig. 1.3). An ideal phase vector for each gait class was determined

by considering the average phases across all gaits jointly comprising a class and, whenever

possible, by biasing these phases to be left/right leg symmetric. Then, the phase vector for

each optimized gait was compared to this ideal phase vector of a given class to generate an

error metric (εm) according to equation 1.6:

εm =
5∑

l eg=1
|cos(θi deal

leg )−cos(θopti mi zed
leg )|+ |si n(θi deal

leg )− si n(θopti mi zed
leg )| , (1.6)

where leg is the leg being examined, θi deal is the phase vector for the ideal version of a

given gait class, and θopti mi zed is the phase vector for the optimized gait being studied. After

studying each optimized gait in this way, cases with high error values were re-examined to

identify potentially incorrect classifications. Ultimately, however, ambiguities in classification

between two potential gait classes were resolved by examining how well footfall diagrams for

each gait resembled those of each gait class. Unique, unstructured (i.e., asymmetric) gaits

were classified as ‘unclear’.

1.4.6 Gait analyses

We measured actual leg contacts with the surface (stance periods) to generate footfall/gait dia-

grams. To calculate the mean number of legs in stance phase, we averaged the number of legs

in stance phase over multiple walking cycles. To measure duty factors, we averaged the relative

amount of time that a given leg was in stance phase over five locomotor cycles. We measured
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Figure 1.3 – Gait classes and quantitative justification of gait classification. (a) Representa-
tive and (b) idealized footfall diagrams showing stance (black) and swing (white) phases for
each of the six gait classes identified. Two walking cycles are shown for each footfall diagram.
The phase of motion for each leg is indicated. (c-h) Sum of the difference between leg phases
of motion for each optimized gait (sorted by class) versus the idealized (c) tripod-A, (d) tripod-
B, (e) tripod-C, (f ) bipod-A, (g) bipod-B, or (h) bipod-C gait. Optimized gaits are color-coded
by class. Data points are randomly scattered along the x-axis for clarity. Grey boxes highlight
optimized gaits within their own, assigned class.
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ground reaction forces (GRFs) using touch sensors on each pretarsus. These sensors measure

the 3D-contact force of the ball foot with the environment. 3D-forces are first measured in the

local coordinate frame of the pretarsus rigid body and then transformed to global coordinates

by measuring the orientation of the pretarsus with respect to the global frame. We consider

straight gaits, and therefore we can relate anterioposterior and mediolateral forces to x and y

coordinates of the global frame. We smoothed noisy sensor measurements in post-processing.

As a measure of the potential for static stability, we asked if the projection of the center of mass

(COM) to the surface plane fell inside a convex support polygon formed by the foot endpoints

in contact with the substrate (Alexander, 2003). This COM criterion can only relate to static

stability for the ground case and not for vertical locomotion. Therefore, to measure the stability

of gaits optimized during vertical climbing, we retested these gaits during ground locomotion

with adhesion. In several instances we found that gaits optimized for vertical sideways and

vertical downward locomotion were unable to support ground locomotion. These gaits failed

in the first walking cycle and were excluded from subsequent analysis. We measured the

percentage of time that body postures fulfilled this criterion to determine the overall stability

characteristics of a particular gait. For each analyzed gait the first locomotor cycle was omitted

(to achieve steady state) and the remaining 9 cycles were evaluated. Calculating metabolic

cost in biological systems is complicated for a number of reasons (Full, 1997). However, as

a first approximation we equated mechanical energy as metabolic cost in our insect model.

Specifically, as an estimate of energy consumption, we measured the cost of transport (COT),

a dimensionless value, according to equation 1.7:

COT = E

mg d
, (1.7)

where E represents the energy needed to move the system along a distance d . m denotes the

mass and g the gravitational acceleration. E is defined as the integral of power according to

equation 1.8:

E =
∫T

0

( N∑
i=1

|τiωi |
)
d t , (1.8)

where τi and ωi denote the applied torque and angular velocity at the i-th joint, respectively.

T corresponds to the simulation time (0.5 s) and N is the number of motors across all the legs.

1.4.7 Hexapod robot experiments

To test our in silico results in a physical system, we built a Bioloid hexapod robot (Robotis Inc.,

Seoul, Korea). This robot is 57 cm long from front leg tip to rear leg tip at full leg extension and
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weighs 1.9 kg. The morphology of the robot is quite different from the insect model since it is

much larger and lacks a head, abdomen, and several leg segments. However, since morpho-

logically diverse insects have similar footfall patterns we reasoned that these characteristics

of locomotor gaits might be robust to morphological differences in our experiments as well.

To ensure adequate friction between the robot and the ground, a piece of latex with a static

friction coefficient, μ, of 0.71 was bound to the tip of each leg. The robot has three leg degrees

of freedom (1 promotion/remotion and 2 flexion/extension) compared to the six degrees of

freedom in the insect model (1 rotation, 1 promotion/remotion, and 4 flexion/extension).

Therefore, to implement the model’s cyclical motions for each leg, we discarded the rotation

joint from the model, linked the promotion/remotion joints of the model directly to the robot,

and used an inverse kinematics approach to map four flexion/extension joints of the model

to the robot’s two flexion/extension joints. To compute this mapping between the robot and

insect model we first wrote a custom Python script to measure the joint angles of the model

through time. With the known angles and segment lengths of our model (Supplementary Fig.

A.6b), we could identify the leg tip positions in their plane of motion by solving equations 1.9

and 1.10:

x = acos(α)+bcos(α+β)+ccos(α+β+γ)+dcos(α+β+γ+δ) , (1.9)

y = asi n(α)+bsi n(α+β)+csi n(α+β+γ)+d si n(α+β+γ+δ) , (1.10)

where a, b, c and d are the lengths of the model’s leg segments (proximal to distal) and α, β , γ

, δ and are their respective joint angles. Using these data, our next goal was to find the angles,

and that will place the tips of the robot’s legs in the same position (x1, y1) as the model’s legs.

To do this we solved equations 1.11 and 1.12:

x = ecos(λ)+ f cos(λ+σ) , (1.11)

y = esi n(λ)+ f si n(λ+σ) , (1.12)

where e and f are the lengths of the robot’s leg segments (proximal to distal) and λ and ω are

their respective joint angles. Of the two solutions, we identified the one that was physically

feasible in the robot. Additionally, a bias was added to ensure that the model’s range of

promotion/remotion angles could be matched in the robot. To produce different gaits, as

for the insect model, we shifted the relative phase of each leg’s motion cycle. The resulting

trajectories of the robot’s foot tips are shown in Figure A.6c. We video recorded (Canon,

Melville, NY USA) the robot at 25 fps to quantify leg kinematics and speed. We then used

custom Matlab scripts (The Mathworks, Natick, Massachusetts, USA) to track the motion

of red markers on the leg tips, for leg kinematic measurements, or on the dorsal surface of

the robot, for speed measurements. We performed ten experiments for each condition but
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found very few differences between experimental replicates. Data were analyzed using the

two-sample t-test since data were normally distributed. We show all the raw data points for

each experiment to illustrate the variance for each condition and that this variance is the same

between compared groups.

1.4.8 Drosophila experiments

Experiments were performed at 22°C in the late afternoon Zeitgeber Time (ZT) on 2-4 days

post-eclosion female Drosophila ( 2.5 mm long and 0.85 mg) of the Canton S background

raised at 25°C on a 12h light:12h dark cycle. We filmed individual flies in a small Poly(methyl

methacrylate) arena (3 cm x 3 cm) illuminated by a dim red ring light (FALCON Illumination

MV, Offenau, Germany). We continuously acquired images at 500 fps using a high-speed video

camera (Gloor Instruments, Uster Switzerland). To motivate fast forward locomotion, we

grazed the wings with a small metallic disc (1 mm diameter) to elicit an escape response. If a

fly exhibited a long bout of straight locomotion (i.e., without premature voluntarily stopping

and without encountering the arena wall), a video was captured and manually analyzed to

measure stance and swing phases for each leg. This criterion for data inclusion was pre-

established. No randomization or blinding was performed. Fast gaits are typically very

consistent across animals. Nevertheless, we performed multiple replicates (N = 9-10) for each

condition to account for trial-to-trial differences in UV polymer coating and inter-animal

variability. Data were typically not normally distributed. Therefore, we used a Wilcoxon

rank sum test for statistical comparisons. We show all raw Tripod Coordination Strength and

Atypical bipod-like leg coordination strength data points for each experiment to illustrate the

variance for each condition and that this variance is not the same between compared groups.

This difference is due to the floor effect on Tripod Coordination Strength and Atypical bipod-

like leg coordination metrics. For polymer coating, flies were first briefly anaesthetized with

CO2. We then placed a small drop of UV-curing glue (Ivoclar Vivadent AG, Schaan, Principality

of Liechtenstein) on the pretarsus, or on the tarsus of each leg using a fine hair or tungsten

wire. The polymer was then hardened by 20 s exposure to UV light. Flies were allowed to

recover for 1-2 h in humidified 25°C incubators. Prior to behavior experiments, we confirmed

the absence of adhesion by testing if flies could hang vertically on the smooth walls of a plastic

vial. For substrate coating experiments, we dried a layer of Fluon (Whitford GmbH, Diez,

Germany) on the walking surface. We also clipped each fly’s wings to permit visualization of

every leg from a dorsal perspective. To measure the static coefficient of friction of animals, we

placed flies (with or without polymer coating) on a horizontal surface (with or without Fluon

coating) and measured the tilt angle, θ, at which animals began to slide. The static coefficient

of friction, μs , was then calculated according to equation 1.13:

μs = t an(θ) . (1.13)
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We analyzed locomotor gaits using several metrics of leg coordination. First, we used a Tripod

Coordination Strength (TCS) metric functionally similar to one used previously (Wosnitza et al.,

2013) to compare measured gaits to the classic insect tripod gait. Specifically, after initiating

fast touch-evoked escape walking, we measured the first frame during which the right front

leg was in stance phase and, following three walking cycles, the final frame during which the

front right leg was in swing phase. This period of three walking cycles was deemed t1. Then,

we measure the proportion of time, t2, during this period during which an animal is in a tripod

stance (only R1, L2, R3 are in stance, or only L1, R2, L3 are in stance). TCS values are the ratio
t2
t1

. Similarly, we quantified atypical bipod-like leg coordination by measuring the proportion

of time that the contralateral front and rear legs (L1 and R3, or L3 and R1), or middle legs (L2

and R2) moved synchronously in swing phase. These kinds of leg synchronization are not

normally observed during fast Drosophila locomotion (Mendes et al., 2013; Wosnitza et al.,

2013).
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1.5 Results

1.5.1 Tripod gaits are optimal for fast climbing using leg adhesion

Using this gait discovery approach, we first asked to what extent, if at all, the tripod gait would

be discovered as fastest under different conditions. Specifically, we optimized gaits for (i)

upward climbing, (ii) downward climbing, (iii) or sideways climbing using leg adhesion, (iv)

ground locomotion with leg adhesion, or (v) ground locomotion in the absence of leg adhesion

(N = 15 each). These five conditions allowed us to measure the influence of travel orientation

and/or leg adhesion on optimally fast gaits. For each experiment, gaits were classified based

primarily on the model’s footfall patterns since even gaits that share similar leg motion phase

vectors can behave differently depending on the model’s orientation (vertical, or horizontal),

and whether the model has leg adhesion. Across all five conditions we often discovered gaits

with similar footfall patterns. Thus, we were able to classify most gaits as belonging to one of

six categories (Fig. 1.3 and Supplementary Fig. A.3): the classic tripod gait (tripod-A), as well

as alternative three-legged gaits (tripod-B, tripod-C) and two-legged gaits (bipod-A, bipod-

B, bipod-C) that we later describe in more detail. Gaits discovered as optimal for upward

climbing using leg adhesion had high Tripod Coordination Strength (TCS, functionally similar

to the quantification used in Wosnitza et al. 2013) values (Fig. 1.4a, left), indicating that their

footfall diagrams resemble that of the classic tripod gait (Fig. 1.1e). These values were only

slightly lower than those measured for real Drosophila melanogaster during touch-evoked fast

locomotion (Ramdya et al., 2015) (Fig. 1.4a, far right, ‘Drosophila TCS’; P = 0.004, Wilcoxon

rank sum test). Moreover, nearly all of the discovered gaits closely resembled one another and

were classified as tripod-A since their footfall patterns were quite similar to the classic tripod

gait (Fig. 1.6c). One gait had a low Tripod Coordination Strength (TCS = 0.16, experiment 5)

and was also the slowest (Fig. 1.4b, left). Upward climbing gaits had on average three legs on

the ground at any one time (Fig. 1.5a, left), forming a polygon of support within which the

model’s center of mass (projected normal to the surface) would rest when used for ground

locomotion (Fig. 1.5b, left).

Interestingly, when optimizing for downward and sideways climbing using leg adhesion, in

addition to the classic tripod gait, an alternative form of tripod coordination, the tripod-B

gait, also emerged (Fig. 1.4, center-left and center). For the tripod-B gait, the front and middle

legs on one side of the body move in near synchrony with the rear leg on the other side of the

body (Fig. 1.3a-b). This too yields an average of nearly three legs on the substrate at any given

moment (Fig. 1.5a, center-left and center) and the potential for static stability when used for

ground locomotion (Fig. 1.5b, center-left and center). In contrast to climbing gaits, when

optimizing for fast ground locomotion with leg adhesion, we discovered a variety of novel

gaits that were as fast or even faster than the classic tripod gait (Fig. 1.4b, center-right) and

could also have fewer legs in stance phase at any given moment (Fig. 1.5a, center-right). Taken

together, these data demonstrate that a requirement to rapidly navigate vertically oriented

terrain is sufficient to favor the classic tripod gait during optimization. Leg adhesion by itself

has only a weak effect on the optimality of the classic tripod gait over alternative gaits.
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Figure 1.4 – Tripod gaits are optimal for fast climbing using leg adhesion. Gaits were opti-
mized for forward velocity while climbing upward (left), downward (center-left), or sideways
(center) on a vertical surface using leg adhesion, walking on the ground with leg adhesion
(center-right), or walking on the ground without leg adhesion (right). (a) Tripod coordination
strength (TCS) values indicating the degree of similarity to the classic tripod gait footfall
diagram (tripod-A). N = 15 for each condition. For comparison, TCS values for Drosophila
melanogaster during rapid, touch-evoked ground walking are shown on the far right (black,
N = 10). (b) The average velocity of each gait. Optimized gaits are color-coded by class. Data
points are randomly scattered along the x-axis for clarity. N = 15 for each condition.
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1.5.2 Bipod gaits are optimal for fast ground locomotion without adhesion

Large vertebrates typically do not depend on leg adhesion to locomote (but note the excep-

tional climbing abilities of smaller vertebrates such as geckos and squirrels). Instead, they rely

on frictional forces to traverse the ground. By contrast, many insects use adhesive structures

during ground locomotion. We hypothesized that this difference may have influenced the

starkly different fast locomotor strategies used by vertebrates (dynamically stable running

gaits) and insects (tripod gait). An interesting prediction of this hypothesis is that if insect gaits

are optimized to locomote rapidly on the ground without leg adhesion, they might employ

dynamically stable fast gaits instead of the tripod gait. To test this possibility, we optimized

our insect model to generate gaits for rapid ground locomotion in the absence of leg adhesion.

Indeed, we found that a large majority of optimized gaits bore little to no resemblance to the

classic tripod gait (Fig. 1.4a, right, T C S ∼= 0). Moreover, two gaits that could be classified as

tripod-A (experiments 4 and 15) were also the slowest (Fig. 1.4b, right, red circles).

Instead, the fastest gaits had on average nearly two legs on the ground at any given moment

(Fig. 1.5a, right) and low duty factors (< 0.5, Supplementary Fig. A.4e). Therefore, we named

these bipod gaits. In many cases, during bipod locomotion a model’s projected center of

mass almost never lies within a polygon of support circumscribed by the legs (Fig. 1.5b,

right) causing them to be statically unstable – like many fast vertebrate running gaits. In the

American cockroach, during extremely fast tripod locomotion (> 1 m
s ), aerodynamic forces lift

the front and middle legs off the ground resulting, effectively, in two-legged running (Full and

Tu, 1991). By contrast, in our insect model, two-legged bipod locomotion arises solely from

leg coordination without a contribution from aerodynamics. During bipod-A and bipod-B

locomotion, each front leg moves in near synchrony with the opposite rear leg, and the middle

legs move together (Fig. 1.6a). This generates three power strokes per locomotor cycle (Fig.

1.6a-b). Therefore, all else being equal (e.g., same leg speeds), bipod gaits can generate more

continuous, and consequently faster, forward locomotion than the tripod gait (Fig. 1.6c).

Notably, although we did not optimize for it, bipod coordination is also energy efficient: It

has a lower cost of transport than the tripod gait during ground locomotion without adhesion

(Supplementary Fig. A.5, right).
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1.5.3 The bipod gait is faster than the tripod gait in a hexapod robot

In silico findings can be sensitive to simulation conditions and may fail to capture the com-

plexities of the physical world (Floreano and Mattiussi, 2008). Since it is not yet possible

to genetically reprogram insect leg-coordination, we used a hexapod robot to validate our

finding that bipod locomotion is faster than tripod locomotion. This also allowed us to explore

whether our newly discovered bipod gaits could be used to effectively control hexapod ground

robots. First, we transferred the classic tripod (tripod-A) gait and the bipod-B gait to a robot

(Fig. 1.7a) using an inverse kinematic approach. In this way we could map the trajectories

of the tips of the model’s legs onto the tips of the robot’s legs (Supplementary Fig. A.6; see

Methods). We found that, as for the model, the robot produced two power strokes per walking

cycle using the tripod gait (Fig. 1.7b, red) and three power strokes using a bipod gait (Fig.

1.7b, cyan). Remarkably, although it is profoundly morphologically different from the insect

model (e.g., size discrepancies and different degrees of freedom for each leg), the robot is also

nearly 25% faster when using the bipod gait rather than the tripod gait (Fig. 1.7c-d, P < 0.001,

two-sample t-test). These data confirm that a bipod gait is indeed faster than the classic tripod

gait during ground walking in the absence of leg adhesion and that these gaits can be used to

control fast locomotion in hexapod ground robots.
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1.5.4 Blocking adhesion in Drosophila uncovers atypical bipod-like leg coordina-
tion

Despite being faster than the tripod gait, our dynamically stable bipod gaits are, to the best

of our knowledge, not used by insects. This might be due to inherent neural or biomechan-

ical constraints on limb control i.e., during fast locomotion, insects might be incapable of

synchronizing their middle (mesothoracic) legs, and synchronizing their contralateral front

(prothoracic) and rear (metathoracic) legs. We define these kinds of novel leg synchronization

as ‘atypical bipod-like leg coordination’ to distinguish them from bipod gaits. Importantly, by

this definition, atypical bipod-like leg coordination can occur even when more than two legs

on the ground at one time. Since, in our model, removing leg adhesion led to a reduction in

tripod gaits and enrichment in bipod gaits (Fig. 1.4, comparing ground locomotion with and

without adhesion), we wondered how removing leg adhesion might influence fast locomotor

gaits in real Drosophila. To impair leg adhesion, we covered the claws and pulvilli of each leg

with a UV curable, hard polymer (Fig. 1.8a). We then elicited a rapid walking response through

gentle mechanical stimulation of the wings or abdomen (Ramdya et al., 2015). Animals did

not switch to dynamically stable bipod gaits with two legs on the ground in response to this

perturbation. In fact, they often had four legs on the ground (Fig. 1.8b). However, these

gaits did exhibit atypical bipod-like leg coordination: footfall patterns showed synchronized

movement of the middle legs with one another and synchronized movement of contralateral

front and hind legs with one another (Fig. 1.8b and Fig. 1.8c, top panel, right). Concomitantly,

there was a nearly complete loss of Tripod Coordination Strength (Fig. 1.8c, bottom panel,

right). By contrast, control animals without any perturbation or with a polymer coating on the

more proximal tarsal segments (i.e., leaving adhesion by the claws and pulvilli intact) did not

exhibit atypical bipod-like leg coordination (Fig. 1.8c, top panel, left and center-left). Instead

they used gaits exhibiting normal, high Tripod Coordination Strength values (Fig. 1.8c, bottom

panel, left and center-left).

One potentially trivial explanation for these results is that animals whose adhesive leg struc-

tures are covered simply slip and are unable to coordinate their limbs in any meaningful way.

To examine this possibility and to more generally test the role of slipping on fast locomotor

gaits, we studied flies walking rapidly on a surface coated with Fluon. Fluon coating lowers the

coefficient of friction (Bowden and Tabor, 1950) and also blocks claw and adhesive pad contact

with the underlying substrate (Endlein and Federle, 2008). This causes slipping, making it very

difficult for insects to adhere to surfaces, and preventing climbing (Merton, 1956; Dankert

et al., 2009). We measured similar coefficients of static friction, μs, for unperturbed animals on

a Fluon-coated surface (μs = 0.84±0.13) as for animals with polymer coating on their distal

tarsal segments on an uncoated surface (μs = 0.83±0.04). Atypical bipod-like leg coordination

was completely absent in animals walking rapidly on Fluon-coated surfaces (Fig. 1.8c, top

panel, center-right, P < 0.001 for a Wilcoxon rank sum test when compared with Pretarsus

polymer experiments). Moreover, while reduced, the gaits of flies walking on Fluon could still

have high Tripod Coordination Strength values (Fig. 1.8c, bottom panel, center-right, P < 0.001

for a Wilcoxon rank sum test compared with Pretarsus polymer coating). These results reveal
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Figure 1.8 – Blocking leg adhesion in Drosophila abolishes the tripod gait and uncovers
the potential for atypical bipod-like leg coordination. (a) The pretarsus, the distal-most
segment of the Drosophila leg (grey dashed box, right), houses a claw (black arrowhead) and
pulvillus attachment pad (grey arrowhead), which are used to adhere to surfaces (left, top).
We used a UV-curing polymer to cover pretarsal adhesive structures (left, bottom). Scale
bar is 40 μm. (b) Footfall diagram for a fly walking with polymer coating on each pretarsus.
Contact with the ground during stance phase (black) and no ground contact during swing
phase (white) are indicated for each leg over time. Blue blocks indicate periods of atypical
bipod-like leg coordination. This animal exhibits atypical bipod-like leg coordination 40 %
of the time. (c) Atypical bipod-like leg coordination (top) and Tripod Coordination Strength
(bottom) for unperturbed flies (left), flies with polymer on each tarsus (green, middle-left),
flies walking on a Fluon-coated substrate (pink, middle-right), or flies with polymer on each
pretarsus (green, right). N = 10, 9, 10, and 10 flies, respectively. A triple asterisk (***) indicates
that P < 0.001 for a Wilcoxon rank sum test.
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that atypical bipod-like leg coordination does not emerge simply because flies are slipping on

the ground. Instead, leg adhesion structures and/or their associated sensory feedback likely

play an important role in determining which gaits are used during fast ground locomotion.

When leg adhesion structures are blocked, flies replace tripod gaits with alternative gaits

including those with atypical bipod-like leg coordination.
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1.6 Discussion

In this study we asked which conditions might have led to the near universality of the tripod

gait as a fast locomotor strategy among insects (Smolka et al., 2013; Graham, 1972; Wosnitza

et al., 2013; Wilson, 1966; Zollikofer, 1994; Goldman et al., 2006). We used an optimization

algorithm to discover fast locomotor gaits for a simulated insect model. Our modeling efforts

were focused on optimizing the relative phases of motion for each leg: defining features of

an animal’s gait that are under direct control of the nervous system (Andersson et al., 2012;

Talpalar et al., 2013). We did not model limb compliance and dynamical effects – like spring-

mass dynamics with in phase transitions of energy between gravitational and kinetic energy –

that are well established as important for fast insect gaits (Full and Tu, 1991; Ting et al., 1994)

but independent of leg coordination. We found that the tripod gait systematically emerges as

optimally fast for climbing up vertical surfaces. Tripod locomotion was also well represented

among gaits that are optimal for fast downward and sideways climbing. By contrast, diverse

gaits were optimal for flat ground locomotion with leg adhesion. Among these, the tripod

gait was not the fastest. These data support the possibility that the tripod gait may be favored

by insects since it permits rapid navigation of three-dimensional terrain. At first glance, this

result seems rather intuitive: three-legged gaits form a closed polygon of attachment and allow

an animal to pause in mid-stride without falling or swinging from vertically oriented surfaces.

However, the tripod-B gait – an alternative three-legged gait that would not as strongly satisfy

the requirements for static stability on the ground – also emerged as optimal for fast downward

and sideways climbing. Therefore, upward climbing likely has more stringent requirements

for achieving a good balance between speed and stability that may uniquely be met using

the classic tripod gait. Contrasting with optimal gaits for rapid climbing, we found that

dynamically stable, two-legged gaits are optimal for fast ground locomotion in the absence of

leg adhesion. These novel bipod insect gaits resemble the quadruped running trot (Hildebrand,

1965), a gait used by large vertebrates. Bipod ground locomotion is also faster than the tripod

gait in a hexapod ground robot. Therefore, while the tripod gait may still be a favorable

approach for controlling climbing robots (Goldman et al., 2006; Chou et al., 2012), bipod

gaits confer significant speed advantages on the ground (Baisch et al., 2011; Hoover et al.,

2008). We hypothesize that bipod gaits are faster than tripod gaits since they generate one

additional power stroke per leg motion cycle. However, this additional power stroke causes

the model to use a statically unstable locomotor strategy. Although we emphasize the role of

vertically oriented climbing in driving the optimality of tripod locomotion, adhesion alone

might also serve to constrain available locomotor strategies: If adhesion is strong enough,

the push-off force provided by three legs may be required to detach another set of three legs

from the substrate. Additionally, isotropic push-off afforded by the tripod gait may be required

to avoid toppling. Models contribute to our understanding of biology by allowing us to test

otherwise experimentally intractable questions. In this work, we aimed to disentangle the

potential impacts of environmental (climbing) and biomechanical (leg adhesion) constraints

on the optimality of extant insect locomotor strategies. Although simple models are powerful

tools for testing mechanistic hypotheses in a systematic manner, their scope can be limited.
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There are many ways to augment our insect model in future studies to strengthen its ability

to increase our understanding of insect locomotion. First, our model’s P controller has a

high gain that currently allows for only limited limb compliance. In future work, the model’s

limbs might be made more compliant by decreasing P gain and/or increasing joint elasticity

(Schneider et al., 2006; Schmitt and Holmes, 2003). Second, insects come in a variety of

sizes and morphologies (Snodgrass, 1935). We obtained similar results using models that

are several orders of magnitude larger than our original model (Supplementary Fig. A.7). By

testing models with a variety of body shapes we might also gain insight into the relationship

between morphology and optimal locomotor strategies (Zollikofer, 1994). Finally, the details

of leg adhesion can vary across species (Haas and Gorb, 2004; Arzt et al., 2003), suggesting

another parameter that may influence gait optimality. In line with a potentially critical role

for adhesion, in our model, lack of adhesion led to an enrichment of bipod gaits in place of

tripod gaits. When we covered leg adhesion structures in Drosophila, flies also abandoned

the tripod gait in favor of gaits that exhibit synchronization of the middle legs and of the

contralateral front and rear legs. This is notable since middle leg synchronization is normally

never observed in the fly. While front and rear leg synchronization can be seen during slow

Drosophila walking (Mendes et al., 2013; Wosnitza et al., 2013), it is absent when animals

generate rapid locomotion. These instances of what we refer to as ‘atypical bipod-like leg

coordination’ can have more than two legs on the ground and are therefore quite different

from the dynamically stable bipod gaits discovered in our model. However, these kinds of

changes in leg coordination might represent early adaptations to new environments that may

ultimately become fixed. For example, dung beetles and water striders traverse sand and water

surfaces, respectively. To do this, they use unique bounding and sculling gaits for which the

middle legs are synchronized (Smolka et al., 2013; Hu et al., 2003). This impressive capacity for

flexible leg coordination suggests that neural and biomechanical constraints may not shape

the locomotor strategies of insects as strongly as the need to solve specific challenges posed

by the environment.
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1.7 Conclusion

In summary, we investigated insect walking based on an in silico insect model and used

Particle Swarm optimization as a means to find that the tripod gait is the result of a need for

fast gaits for climbing. If we loosen the requirement to climb, but rather focus on gaits on

the flat ground, adhesion is not necessary. When we optimized for speed in these modified

conditions, a new bipod gait that is faster than the tripod gait was found. This particular gait

can be potentially very interesting for roboticists to use on insect-like hexapod robots for fast

locomotion on flat ground. Finally when blocking the means of adhesion in Drosophila, the

tripod gait disappeared and bipod-like features were present. This does supports our findings

from simulation.

Our study highlights the importance of environmental constraints for the occurrence of

specific locomotion patterns that are found in nature. Different types of reaction forces such

as gravitational forces acting from different angles on the body (depending on the orientation

in space, e.g on the wall or on the ground), adhesion forces increasing the attachment to the

substrate, or friction properties, have shown to be crucial for the emergence of specific gait

patterns such as the tripod gait for insects.
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2 Undulatory Swimming

The previous chapter presented a study of locomotion in terrestrial environments. Our key

question was related to the prevalence of a distinct gait pattern observed in insects and our

goal was to find the crucial constraining conditions for them to emerge. In that case it was

sufficient to develop a model that was able to produce different gaits in a relatively simple

manner (target phase shifts between legs achieved through position control). The focus was

pointed on the exploration of different gait patterns and how they would excel under different

environmental conditions. Thus, we intentionally investigated gaits and their performance

rather than asking how they could be generated and modulated. Both questions are arguably

very interesting. Nonetheless, to keep it simple, it can be useful to look at these aspects once

at a time.

In this second chapter, we now focus on the generation of gaits and asked how internal body

movement can be created such that it exploits the environment best for efficient locomotion.

We explored this for undulatory swimming in water and were curious to test to what extent

local sensory information can be beneficial in this process. Therefore, we developed a model

capable of generating periodic rhythms and adapting them based on sensory signals. As a

result, abstract phase oscillators along with local pressure feedback and viscoelastic body

properties revealed new insights into the control of efficient undulatory swimming.

2.1 Introduction

Undulatory propulsion is a widely spread means of locomotion for many species and has

been adopted in a variety of environments (Maladen et al., 2009; Sfakiotakis et al., 1999; Guo

and Mahadevan, 2008). Different types of undulations can be distinguished and include

among others retrograde waves from head to tail (Cohen and Boyle, 2010). In this particular

undulatory pattern, waves of body bending travel in the opposite direction of motion along the

body, and it appears that in fluid environments these undulations provide a potent locomotor

strategy for a diverse group of organisms across different sizes (e.g. leeches, lampreys, eels and

water snakes). Remarkably low energy expenditure of migrating eels (Ginneken et al., 2005;
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Béguer-Pon et al., 2015) show another advantageous property of undulatory swimming.

A crucial ingredient for efficient swimming is the adaptation to the local aquatic environment

(Gemmell et al., 2015). Imposing arbitrary traveling waves of undulations will not lead to

efficient swimming, as properties like body geometry and stiffness (Tytell et al., 2010), but also

external influences such as viscosity and vortices, determine the resulting reaction forces with

a fluid. Adaptation and synchronization of the locomotor body to and with the environment

is required. Therefore, the control of the body has to be organized appropriately.

The generation of oscillation patterns of muscle activation along the body is an essential part

of the control organization. Corresponding distributed neural oscillators have been identified

in the spinal cord of vertebrate fish. Also known as central pattern generators (CPGs), these

neural networks are able to produce rhythmic activity without receiving rhythmic input. CPGs

have been found in several vertebrates (Grillner and Wallén, 1985) as well as in invertebrate

(Kennedy and Davis, 1977; Clarac and Pearlstein, 2007) undulatory animals, e.g. leeches.

Moreover, recordings of fictive locomotion (Grillner et al., 1981) show oscillations, in the

absence of sensory information. Fictive locomotion patterns have further shown that the

intersegmental coordination between neural oscillators is not solely determined by local

coupling, but can also be modified and modulated by sensory cues of proprioception (Yu et al.,

1999; Cang and Friesen, 2000; Wen et al., 2012; Hsu et al., 2013) aiming at synchronization

between the internal neural commands and the body in response to the environment.

Computational models of leech (Iwasaki et al., 2014) and lamprey (Ekeberg, 1993) swimming

have explored the interaction between body, CPGs, local proprioceptive receptors and a hydro-

dynamic environment. These models could explain and reproduce animal behaviors under

changing viscosity and have therefore highlighted the importance of proprioceptive feedback

loops regarding the adaptation to environmental changes. In C.elegans even pattern gener-

ation solely induced by proprioceptive stretch receptors (Niebur and Erdös, 1991) without

CPGs has been suggested.

Intriguingly, the role of exteroceptive sensors such as flow, touch and pressure from the local

environment has been subject to much less consideration (Phelan et al., 2010; Venturelli et al.,

2012), which is surprising as these sensor modalities provide a genuine link from a swimming

body to its environment. Studies on larval zebra-fish have shown that mechanosensory recep-

tors in the lateral line can elicit swimming bouts (Haehnel-Taguchi et al., 2014). Furthermore,

the lateral line organ across many fish species has been regarded as a hydrodynamic antenna

that is able to detect pressure changes (Schwarz et al., 2011; Ristroph et al., 2015) and to pro-

vide fish with information about the hydrodynamic environment. This leads to an untested

hypothesis: In order to optimize gaits and to adapt to the local environment, undulatory

locomotion could be modulated by local measurements of pressure (Ristroph et al., 2015).

We tested this hypothesis using a neuromechanical model that relies on local sensory pres-

sure measurements in a simulated hydrodynamic environment ensuring correct interaction

dynamics between the undulatory swimmer and the water. In our study we propose and test
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three conceptually intriguing paradigms, combined, decoupled, and sensory-driven, for the

generation and control of undulatory wave patterns. We find that local pressure feedback

loops can independently generate retrograde traveling waves of body undulations in a decou-

pled distributed network of neural oscillators. In a control system with coupled oscillators and

fixed non-optimal phase lags - originating from central control instances - the same feedback

loops further adapt these patterns towards energy and speed efficient swimming. The local

feedback loops are further able to generate coordinated undulatory locomotion in a control

scheme without neural oscillators and minimal coupling between segments.

Our results suggest that control for undulatory swimming can be achieved at different levels

of complexity, in the absence of genuine oscillators but also in a decentralized manner, which

gives new insights to the interplay between central and peripheral mechanisms necessary for

swimming locomotion. Our investigations open new venues to understand locomotor control

in undulatory swimming animals and to control undulatory swimming engineering systems,

arising from the fundamental importance of local pressure feedback loops.
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2.2 Concept

2.2.1 Neuromechanical model for undulatory swimming

Our goal was to investigate a minimal comprehensive neuromechanical model in order to

explore necessary control mechanisms for undulatory swimming. Our model includes neural

oscillators, local sensory feedback mechanisms, virtual muscles and a segmented elongated

swimming body. All of these elements were abstracted as much as possible to identify key

interaction mechanisms between them, resulting in efficient and robust swimming behavior.

Animals, like e.g. leech and lamprey, have finely segmented bodies, which help them to

achieve the necessary local body bending for their particular undulatory swimming style.

Based on computational and technological limitations we abstracted our mechanical model

of an elongated body to N = 10 joints (some investigations are also presented for 20 joints to

show a certain generalization of the model), which allows to project at least one wave along

the body to sufficiently achieve undulatory swimming. Figure 2.1 shows the segmented robot

body that we use in our study.

Figure 2.1 – Simulation model. The body consists of 11 segments connected by 10 hinge
joints. Each joint can be actuated by applying torque. The tail fin is passive and consists of 5
short thin segments. Pink arrows indicate hydrodynamic forces for the given time instance
where the snapshot was taken.

To induce body movements in our robot model we use a simplified muscle model inspired by

Ekeberg (1993):

τi =α ui −γ θi −δ θ̇i . (2.1)

It generates a torque τi in the i -th joint of the segmented body. It is derived from a antagonist
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muscle pair, modeled as linear spring-dampers and contains motoneuron activation (ui ), an

activation gain (α), stiffness (γ) and damping (δ). The stiffness and damping terms contribute

to a (passive) viscoelastic behavior of the robot depending on the kinematic state of the body

(joint angle θi and angular speed θ̇i ), whereas the activation allows to influence the internal

torque. The muscle model in Ekeberg’s original contribution contained an additional actively

controlled stiffness term (co-contraction of muscles), that we omit here.

Active control originates from Central Pattern Generators (CPGs). Many types of models exist

for those CPGs, from highly elaborate Hodgkin-Huxley-like models (Rybak et al., 2002; Ivashko

et al., 2003) to more elementary neuron models (Knüsel et al., 2013; Bicanski et al., 2013). We

use simple phase oscillators in this study, as we are interested in questions about the role and

importance of inherent neural oscillations for undulatory locomotor control. Equations (2.2)

and (2.3) define the model dynamics.

ui = cos(φi ) , (2.2)

φ̇i =ω+σ1

N∑
j=1

wi j si n(φi −φ j −ψi j )

︸ ︷︷ ︸
A

+σ2w f bFi cos(φi )︸ ︷︷ ︸
B

. (2.3)

To reduce the complexity, we consider a single chain of oscillators (as opposed to a double

chain, Grillner et al. 1995) along the body with one oscillator for each joint of the robot model

(Figure 2.3). Consequently, ui represents the activation signal of the contralateral muscles of

either the left (ui < 0) or the right (ui > 0) side at the joint i . The phase of the activation signal

is given by φi , and ω denotes the intrinsic oscillator frequency, which can be modulated by

descending drives from the brainstem (Cabelguen et al., 2003).

Besides local neural oscillators themselves, we are also interested in the modulation and

interaction between oscillators. Thus, central coupling between CPGs, which is present in

lampreys (Cohen et al., 1992; Matsushima and Grillner, 1992) and leeches (Cang and Friesen,

2002) was implemented (equation 2.3, A) by coupling the phases of activation based on defined

phase shifts ψi j (Ijspeert et al., 2007). To enclose the coupling locally, we exclusively consider

nearest neighbor coupling (wi j ) between oscillators.

In addition to local couplings we consider sensory inputs which modulate the CPGs for

locomotion control. In this study we take into account the pressure changes along the body,

and consequently equipped the mechanical model with pressure sensors on the left and right

sides of each segment. We examine how the measurement of pressure difference between

contralateral sides can contribute to adaptive undulatory swimming. Based on the sensed

contralateral pressure difference in one segment, one can estimate that a corresponding

resulting external force is exerted. On a very local level, the force indicates from which side

the surrounding water is pushing (or pulling) the body. The principal goal of the feedback

loop is to locally modulate the activation in the corresponding muscles depending on the

pressure measurements they receive and the current state of the muscles. This is schematically
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illustrated in Figure 2.2. At this point there is no biological evidence for such pressure feedback

loops, however we hypothesize that similar mechanisms might exist related to the lateral line

organ (Ristroph et al., 2015) or that corresponding mechanisms could also indirectly relate to

local stretch receptors.

Ideally, muscle activations should follow a pattern which drives the local body segments in

a sequence A → B →C → D. This could be achieved with a simple open loop oscillator that

constantly increases the phase. However, it is crucial that the appropriate external forces

which are beneficial for forward locomotion are generated while going through the different

states of contraction. Therefore, we propose the following feedback loop that depends on the

local state of contraction: Progression to the next state (increase of phase speed) is encouraged

when the measured external force is appropriate for forward locomotion. Waiting or going

back (decrease of phase speed) to a previous state is favored when the forces are not desirable.

In our model, this sensory feedback mechanism is incorporated in equation (2.3, B), where

Fi denotes the estimated resulting force proportional to the pressure difference and w f b

represents the feedback gain. Using σ1 and σ2 we can modulate the influence of coupling

between oscillators vs feedback, with respect to the phase.

2.2.2 Details of the feedback rule

Desired force distribution

As explained in section 2.2.1, our proposed feedback rule relies on a desired force distribution

along the body during undulatory swimming. To explain the force profile along the body it is

useful to introduce two definitions first:

1. Body inflection point: During undulatory locomotion, waves of undulation pass through

the body. Freezing the movement at a given time instance, one can observe locations

which are maximally bent and locations which are almost straightly aligned. We define

the latter areas as body inflection points, as at those characteristic points the body

bending along the body switches the side (e.g. from left to right). At the same time these

points are the node of the undulatory traveling wave.

2. Force inflection point: Assuming the body is performing a periodic undulatory move-

ment, forces along the body are also going through a periodic time course. Zero force

will occur in this process, as the forces switch signs (pushing/pulling from the left or

the right of a segment). We define the location along the body where zero external force

occurs as force inflection point.

The force profile along the body is given in Figure 2.2 and based on observations from open

loop swimming with 100% phase lag (one complete wave along the body). Thus, the body and

force inflection points coincide. At the same time, the absolute force maxima occur in the

maximally bent body areas.
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FiF >0

i>0
i A

B

C

D

Fi <0

i>0

ui

Fi >0

A

B
C

D

Figure 2.2 – Working principle of the sensory feedback loop. (top) Red (Fi < 0) and blue (Fi >
0) arrows indicate desirable external forces from the water for forward undulatory locomotion.
The forces are estimated based on measurements of pressure on contralateral sides of a
segment. (bottom right) Illustration of the phase φi on the unit circle. Activation ui = cos(φi )
is determined as projection onto the x-axis, where positive values indicate contraction to the
right (A) and negative values show contraction to the left (C). The feedback accelerates the
phase when the corresponding forces are desirable and slows down the rythm when forces are
non-desirable. (bottom left) Conventions for segments around joint i with Force Fi , torque τi

and joint angle θi .
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Open loop behavior

To understand the feedback rule, it is useful to study the open loop behavior on the unit circle

first. Let us consider the following reduced system (without central coupling and feedback):

φ̇i =ω , (2.4)

ui = cos(φi ) . (2.5)

As shown in Figure 2.2, the behavior of the system described above can be represented on the

unit circle. The constant increase of the phase φi drives the phase from 0 to 2π, which will lead

the activation as defined in equation (2.5) from ui = 1 (maximal bending to the right) to ui = 0

(body inflection point B), to ui =−1 (maximal bending the left) to ui = 0 (body inflection point

D) and back to ui = 1.

Feedback rule

The proposed feedback rule has the goal of synchronizing the oscillatory muscle activation

with the desired force profile along the body. At a given joint, for a given force measurement,

the corresponding phase is manipulated in such a way that it is encouraged to progress if the

measured force matches the desired one at that phase instance and slowed down otherwise.

In detail this can be explained as follows by looking at the different quadrants in the unit circle:

• 1. Quadrant (A → B): Ideally, the two segments progress from maximal bending to the

right to the body inflection point B , while experiencing external forces from the left

(Fi > 0).

• 2. Quadrant (B →C ): Following the desired force distribution, B is both a body as well as

a force inflection point. Therefore, in this quadrant the phase is encouraged to progress,

when the measured force is pushing from the right (Fi < 0).

• 3. Quadrant (C → D): The desired forces in this quadrant are again negative and should

decrease towards the force inflection point in D .

• 4. Quadrant (D → A): Phase is increased by the feedback when the forces are increasingly

positive towards maximum force from the left at a maximal bending to the right.

The corresponding rule to achieve the desired feedback behavior is described by manipulating

the phase with φ̇i = ...+Fi · cos(φi ).
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2.3 Methods

2.3.1 Simulated model

We modeled the elongated swimming body in Webots 6.4.4 ((Michel, 2004), Cyberbotics Ltd.,

Lausanne, Switzerland). Webots is a simulator based on the ODE (Open Dynamics Engine). It

provides a simulation environment for rigid bodies, which can be linked and constrained to

one another, as well as actuated by servo motors or user-defined external forces. Besides pre-

defined contact models between objects (e.g. friction), Webots also offers custom definition

and implementation of physics via ODE, which we used to simulate hydrodynamic forces.

Our segmented elongated swimming body consists of 10 identical body segments with an

additional segmented tail. The body segments are linked with 2-dimensional hinge joints

which restricts the movements of the swimmer within a plane. The tail segments are also

connected via the same type of hinge joints. The tail joints have spring-damper properties

and are passive (not actively controlled). Corresponding dimensions and weights as well as

tail stiffness and damping are given in Table 2.1. As defined in section 2.2.1 and equation (2.1),

the segmented body is actuated by torques in the joints between body segments. We refer the

reader to simulations that were performed with a 20-segment-model without tail. Additional

corresponding results can be found in chapter B. The segment geometries and weights follow

the ones of our robot model.

Characteristics Body segment Tail segment
Count 11 (21∗) 5 (0∗)
Shape cube + half cylinder cube
Dimensions [cm] 4.5×5.9×7.25, r = 2.25 0.1×5.9×2.49
Mass [kg] 0.22 (0.094∗∗) 0.0013
Stiffness [Nm/rad] variable 2
Damping [Nms/rad] variable 0

Table 2.1 – Dimensions and properties of the simulated elongated body for undulatory swim-
ming. ∗ indicates the number of segments for the 20 joint model and ∗∗ denotes the mass for
the head segment.

2.3.2 Hydrodynamics

We consider buoyancy as part of the hydrodynamics model. This is related to the immersion in

water. As a consequence the swimming body will occupy a specific volume in water. According

to Archimedes’ principle, this leads to a buoyant force counteracting the gravitational force

equal to the weight of the displaced water. Hence, aquatic organisms, can in a way compensate

their weight by their volume, which also explains the impressive sizes of uniquely big animals

such as the blue whale. Since we model surface swimming (based on restriction of our robot

model), we have a small positive buoyancy in our simulations.
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Whereas, buoyant forces act mainly normal to the water surface, propulsion of an elongated

swimmer originates from a variety of different mechanisms such as vorticity, inertial and

viscous forces. An accurate model of fluid flow and the corresponding exerted forces on a

swimmer would require to solve the N-S-equations. However, as they remain analytically

unsolvable to date and numerical solutions prove to be computationally costly, we use a

recently published hydrodynamics model proposed by Porez et al. (2014). This model is

based on Lighthill’s large amplitude elongated body theory (Lighthill, 1971) and considers

reactive forces stemming from the acceleration of the fluid moved by the swimming body,

as well as resistive (drag) forces from viscous stresses in the boundary layer of the body. The

model has been tested and validated with swimming kinematics of Amphibot, an anguilliform

swimming robot. Furthermore, the authors of that work apply a Newton-Euler modeling

approach which allows for numerical integration in real-time. These advantages justified the

use of this particular hydrodynamics model in our study. For further details, the reader is

referred to the corresponding publication by Porez et al. (2014).

For completeness (not used in our simulations), we mention here also another simpler model

that has been used to study lamprey locomotion, namely in Ekeberg (1993). It considers solely

resistive drag forces F ∼ v2, where v denotes the speed of a respective body moving in a fluid.

Important considerations are further the drag coefficients which depend on shape and surface

properties. In models for elongated swimmers, one can assume that the drag coefficients in

axial segment direction are significantly smaller than in lateral direction.

2.3.3 Metrics for characterization

In order to characterize and evaluate the performance of the segmented swimming body for

different undulatory control strategies, we introduce several metrics that describe the move-

ments of the body with respect to the environment, but also the relative internal movements

of the body.

Frequency

Except for the open loop control scheme in which the control frequency of locomotion is

directly given by the intrinsic oscillator, frequency is an emergent property. It is defined by the

interaction between oscillators and the local feedback loops that influence the phase of the ac-

tivation signals. Assuming straight swimming (due to symmetric control scheme, as explained

later), the zero-crossings of the joint angles provide sufficient information about the period

of their rythmic pattern. We then arbitrarily consider periods between zero-crossings from

positive to negative joint angle values, within a given estimation time frame. The frequency is
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determined by the average period over different joints angles:

f = 1∑N
i=1

∑K
k=1 T Δtest

i ,k

, (2.6)

where f denotes frequency and T Δtest

i ,k describes the k− th period in the measurements of joint

i during an estimation time interval of Δtest seconds.

Speed

The speed of locomotion is computed based on the absolute traveled distance within one

gait cycle (and therefore requires a frequency estimation beforehand). The direction (for-

ward/backward) is determined by the projection of the progression vector in one cycle and

the current tail-to-head vector:

v = si g n(�d ·�r )∗|d |∗ f , (2.7)

�d = �ph(t )− �ph(t −T ) , (2.8)

�r = �ph(t )− �pt (t ) , (2.9)

where v denotes the current speed, �d the progression vector,�r the current tail-to-head vector,

f the frequency (T the corresponding period), and ph(t ) and pt (t ) the head and tail positions

at time t , respectively. The current mean speed is estimated as the average over the last two

cycles.

Cost of Transport (COT)

This metric relates expended energy of a system to the locomotor progression it goes through

and is defined as follows:

CoT = E · f

m · g · v
, (2.10)

E =
N∑

i=1

∫t+T

t
W (t )d t , (2.11)

where E denotes the used energy, f = 1
T the gait frequency, m the mass, g the gravitational

acceleration and v the speed. The energy is defined in terms of mechanical work, with the
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torque τi (t) and the corresponding joint angle velocity θ̇i (t) of the joint i at time t . We

compute the COT for one cycle in steady state. For convenience, we define also the following

quantities:

Epos =
N∑

i=1

∫t+T

t
Wpos(t )d t , (2.12)

Wpos(t ) =
⎧⎨
⎩τi (t ) · θ̇i (t ) , for τi (t ) · θ̇i (t ) > 0

0 , for τi (t ) · θ̇i (t ) ≤ 0
, (2.13)

Eneg =
N∑

i=1

∫t+T

t
Wneg (t )d t , (2.14)

Wneg (t ) =
⎧⎨
⎩0 , for τi (t ) · θ̇i (t ) ≥ 0

τi (t ) · θ̇i (t ) , for τi (t ) · θ̇i (t ) < 0
, (2.15)

where Epos and Wpos define positive energy and work, and Eneg and Wneg the corresponding

negative counterparts. Finally we define the total spent energy if negative work can be fully

restored as follows:

Etot = Epos +Eneg . (2.16)

Phase lag

Assuming periodic oscillations in the different joints along the body, one way to characterize

their coordination pattern is to look at the differences in relative phases between them. One

can consider the individual intersegmental phase lags or the overall phase lag from head to

tail. Both are related to the number of waves traveling along the body. We defined the overall

phase lag ΔΦ along a body in our simulations as follows:

ΔΦ= 1

2π

N−1∑
i=1

Δφi , (2.17)

where Δφi denotes the intersegmental phase lag from joint i to i +1 in radians. We compute

the intersegmental phase lags based on the phase lags between zero-crossings of consecutive

joints. Moreover, we distinguish the phase lag ΔΦact in the activation signals (inputs to the

muscle model) and ΔΦki n in the joint angles (kinematics).
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2.3.4 Exploration of model parameters

Our results are based on extensive parameter variations of our neuromechanical model in

order to characterize the proposed control schemes (explained in section 2.4) and quantify

them with respect to different performance metrics (see section 2.3.3). The model parameters

of interest are related to central coupling, feedback, muscle model and environmental condi-

tions. A list of parameters and corresponding ranges is presented in Table 2.2 for a series of

simulations that have been performed for the different models, respectively.

Setting f [Hz] α [Nm] γ [Nm/rad] ΔΦnom [%] w f b [-]
Open loop 0.5:0.25:2 0.5:0.5:2 1.0:0.5:2 -50:10:250 -
Combined model (I) 0.5:0.25:2 0.5:0.5:2 1.0:0.5:2 -50:10:250 1
Decoupled model (II) 0.5:0.25:2 0.5:0.5:2 1.0:0.5:2 - 1
Sensory-driven model (III) - 0.5:0.5:2 1.0:0.5:2 - 1:0.5:3

Table 2.2 – Parameter exploration (minimum value : step size : maximum value) for the
different undulatory swimming control schemes
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2.4 Results

Given our proposed neuromechanical model, we investigated three distinct control model

topologies as shown in Figure 2.3:

• (I) Combined model - represents a model based on CPGs with central coupling and local

sensory feedback

• (II) Decoupled model - denotes a scheme with decoupled CPGs and local sensory feed-

back

• (III) Sensory-driven model - serves as a model without neural oscillators but central

coupling between segments and local sensory feedback.

In all the topologies, the local sensory inputs are present and result from local contralateral

pressure differences along the swimming body.

0∼∼
0∼∼
0∼∼
0∼∼
0∼∼
0∼∼
0∼∼
0∼∼

I II III

Figure 2.3 – Control paradigms for undulatory swimming. (I) Combined model with neural
oscillators (CPGs), central coupling and local sensory feedback. (II) Decoupled model based
on decoupled neural oscillators and local sensory feedback. (III) Sensory-driven model only
based on local sensory feedback and central coupling between joints. All models include
sensory feedback loops exploiting pressure differences on contraleral sides of the body. Light
green arrows indicate motor outputs, Light orange arrows define sensory inputs.
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2.4.1 Local pressure feedback can reshape and correct phase-lag patterns

We first examined locomotion control for undulatory swimming based on centrally coupled

CPGs influenced by local sensory inputs (Fig. 2.3, Combined Model I). As it is known from

salamanders (Delvolvé et al., 1999; Knuesel, 2013), the variability of intersegmental phase lags

in isolated spinal cord preparations is large. Forward and backward traveling waves as well

as standing waves have been observed. In intact animals however, the observed phase lags

are in a much narrower range. It can be hypothesized that these particular characteristics

are a product of the closed loop system in the animal, which incorporates sensory feedback

mechanisms. With our neuromechanical model, we therefore asked to what extent the sensory

inputs influence a variety of open loop patterns, which in our model are represented by fixed

phase lags in the central coupling between oscillators. To evaluate the effects of the sensory

feedback, we compared open loop swimming gaits with corresponding closed loop gaits. We

measured locomotion speed, and emerged phase lags and frequencies (Definition of metrics,

see section 2.3). Results are shown in Figures 2.4, 2.5 and 2.6 for the 10-joint and for the

20-joint model. The key differences between these two models are the distinct number and

the absence of a tail fin for the 20-joint model. The analysis for the model with the higher

number of joints was motivated, as we wanted to reduce the effects of the passive tail fin and

explore the effects of a more finely segmented body, that brings more challenges in terms of

intersegmental synchronization.

In open loop, we notice different characteristic speed performances for the short and the long

model with different optimal number of waves along the body. Whereas for the short model

a clear peak towards one wave (100% phase lag) is observed, the long model has two peaks

in general and one peak for higher frequencies. The two peaks are located near 100% and

200% phase lag. In both models, the speed drops drastically for higher numbers of waves,

i.e. higher phase lags, along the body. Closed loop swimming with local sensory pressure

feedback can correct many of the suboptimal phase lag patterns by imposing wave numbers

around 100% for the short and around 200% for the long model. Overall, the performance of

the local feedback brings more improvement in the case of the long model, as in closed loop,

high speeds over the entire spectrum of phase lags are achieved ([0.59,0.75] m/s). These come

close to the maximum speed peaks of the open loop model (0.8 m/s). Similar characteristics

are observed for the short model, however a saturation of speeds is visible. At high frequencies

(1.75 and 2 Hz) the speed peaks of the open loop are clearly outperforming the feedback

solution.

We observed that adding feedback increased frequencies and thus, increased oscillatory

rhythms compared to open loop patterns, which is consistent with observations in lampreys

and leech (Friesen and Cang, 2001). Nonetheless, it is important to note that the speed-optimal

swimming behavior for local feedback-induced coordination patterns, originates not only

from faster rhythms but also from adapted phase lag patterns. Especially for high nominal

phase lags the frequency increase does not explain the significant increase of speed. Adapted

phase lag patterns (and also respective amplitude patterns) contribute as well. In Figure 2.7
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we show an example of how a nominally ”wrong” large phase lag gets corrected by the local

feedback mechanism. This can be seen in the activation patterns as well as in the snapshot

sequence where initially two body waves are present and eventually are corrected to one body

wave.

We conclude that the local pressure feedback can correct various nominal phase lags to more

beneficial regimes such as one or two body waves along the body. In addition, the feedback

loops lead to increased oscillator rhythms and overall high speeds are achieved. The results

also indicate that such a closed loop system is beneficial for different body morphologies as

we have found qualitatively similar characteristics for a short and a more finely segmented

body.
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(a) 10-joint model
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(b) 20-joint model

Figure 2.4 – Combined model I in comparison with open loop patterns. Evaluation of open
and closed loop performance for same fixed phase lag values and same parameters for the
10 and 20 joint models. Muscle parameters correspond to α = 1 Nm, γ = 2 Nm/rad, δ =
0.1 Nms/rad and w f b = 1. Connected lines show open loop data, filled markers indicate
Combined model I (closed loop) measurements. Same colors indicate corresponding same
neural oscillator frequencies. (left) Mean speed (middle) Emerged frequency (right) Emerged
average phase lag.
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Figure 2.5 – Combined model I in comparison with open loop patterns - 10-joint model.
Evaluation of open and closed loop performance for same fixed phase lag values and same
parameters. Muscle parameters correspond to α = 1 Nm, γ = 2 Nm/rad, δ = 0.1 Nms/rad
and w f b = 1. Connected lines show open loop data, filled markers indicate Model I closed
loop measurements. (left) Mean speed (middle) Emerged frequency (right) Emerged average
phase lag.
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Figure 2.6 – Combined model I in comparison with open loop patterns - 20-joint model.
Evaluation of open and closed loop performance for same fixed phase lag values and same
parameters. Muscle parameters correspond to α = 1 Nm, γ = 2 Nm/rad, δ = 0.1 Nms/rad
and w f b = 1. Connected lines show open loop data, filled markers indicate Model I closed
loop measurements. (left) Mean speed (middle) Emerged frequency (right) Emerged average
phase lag.
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Figure 2.7 – Emergence of undulatory swimming for the Combined model I. (A) Shows a plot
of the activation dynamics over the course of 4 seconds in corresponding colors over time
along with the kinematics in terms of joint angles in black lines. (B) 20 Snapshots over the
course of the same 4 seconds show the evolution of an undulatory swimming pattern with
parameters α= 1 Nm, γ= 2 Nm/rad, δ= 0.1 Nms/rad, f = 1.5 Hz, ΔΦ= 200% and w f b = 1.
Red (F > 0) and blue (F < 0) arrows denote external forces from the water, light orange and
light brown bars along the body indicate that muscles on the respective sides are contracted.
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2.4.2 Decoupled oscillators together with local pressure feedback lead to well-
coordinated swimming behavior

Decentralized control has been investigated in various previous works and has proven to

explain locomotor modes of different kinds (Owaki et al., 2013; Cruse et al., 2007). With our

neuromechanical model we wanted to investigate to what extent such a decentralized control

scheme, relying on pressure measurements, could generate undulatory swimming. For this

purpose we removed the central coupling in our model and analyzed a model purely based on

local oscillators and sensory feedback (Fig. 2.3, Decoupled model II). Our motivation was, as

observed in Owaki et al. (2013), that the neural oscillators subject to sensory inputs, would

synchronize with the forces exerted by the water and thus exploit the natural dynamics of the

environment.

We found that coordinated swimming emerges spontaneously. Figure 2.8 shows an example

of this emergent behavior. Starting from a straightly aligned body position and decoupled

local oscillators, the local pressure feedback succeeds in modulating the phases of the CPGs

such that the desired force distribution along the body is attained. Thus, bending to the left

induces opposing reaction forces from the left and analogously for right side bending. As a

result traveling waves of (neural) activation from head to tail are generated (Figure 2.8). The

corresponding kinematic wave (local body bending) has a slight phase lag with respect to the

neural wave, which is expected due to stiffness and damping effects and the fact that the joints

are controlled via torques applied in the joints (with relatively low gains). In previous studies

also different propagation speeds of the neural and kinematic have been observed (McMillen

et al., 2008), in our results this is less evident, and is most likely related to the choice of muscle

parameters.

The emergent behavior in this control scheme has several advantageous characteristics. Figure

2.9 presents a comparison of the different models in terms of speed, Cost of Transport (COT,

definition in section 2.3.3) and average phase lag. We show the latter two characteristics

selectively for fast swimming gaits across different models (above the dashed-threshold line

in Figure 2.9, left). The first observation is that the phase lags for the decoupled oscillator

model converge to a similar range as the proposed Combined model I (Figure 2.9, right), which

is beneficial for fast swimming. Figure 2.9 (left) confirms this, as the emerged speeds can

compete with the Combined model I and with the fastest swimming speeds that were observed

for open loop swimming. Measures of COT show that the emergent coordinated behavior is at

the lower bound among the selected gaits, indicating that high speeds along with low COT are

obtained for this model.

We also carried out the same analysis for the longer model with 20 joints and obtained similar

results (Appendix B, Figure B.1). In summary, the local decoupled oscillator model modulated

by local pressure feedback leads to coordinated swimming with approximately one body wave

traveling from head to tail. In addition, measurements indicate that the swimming behavior is

fast and energy efficient.
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Figure 2.8 – Emergence of undulatory swimming for the Decoupled model II. (A) Shows a
plot of the activation dynamics over the course of 4 seconds in corresponding colors over time
along with the kinematics in terms of joint angles in black lines. The filled circles indicate
maxima of the signals for activation (connected by solid line) and kinematics (white diamonds,
dashed line) and visualize the phase lag between segments as well as the time delay between
neural and kinematic wave. (B) 20 Snapshots over the course of the same 4 seconds show
the evolution of an undulatory swimming pattern with parameters α= 1 Nm, γ= 2 Nm/rad,
δ= 0.1 Nms/rad, f = 1.5 Hz. Red (F > 0) and blue (F < 0) arrows denote external forces from
the water, light orange and light brown bars along the body indicate that muscles on the
respective sides are contracted.
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Figure 2.9 – Comparison of Models I, II, III and open loop - 10 joint model. Open loop
patterns (gray), Combined model I (red), Decoupled model II (orange) and Sensory-driven
model III (purple). Muscle parameters for Open loop, model I, II and III correspond to α= 1
Nm and γ= 2 Nm/rad, δ= 0.1 Nms/rad and w f b = 1. For the Sensory-driven model III nominal
phase lags as well as feedback gains were varied. Based on a threshold minimum speed for
different frequencies (dashed line), only COT and average phase lags above this threshold are
presented. (left) Mean speed (middle) Cost of transport (right) Emerged average phase lag.
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2.4.3 Local pressure feedback is sufficient to generate oscillations

Purely reflex-based control as opposed to centralized control has been target of different

locomotion studies, in humans (Geyer and Herr, 2010), stick insects (Fischer et al., 2001)

and C. elegans (Niebur and Erdös, 1991). In those control schemes, it has been shown that

periodic movements do not necessarily need to result from neural oscillators, but can be

generated as a product of reflex-based feedback loops. Therefore, we asked if we could further

simplify our control model for undulatory swimming, by removing the neural oscillators and

see whether pressure induced oscillations could be generated. This was done by setting the

intrinsic frequency of the CPG to zero (ω= 0) and exploring a model exclusively with central

intersegmental coupling and sensory feedback (Figure 2.3, Sensory-driven model III).

Using the same local sensory feedback rules that were introduced before, we identified oscilla-

tory patterns that emerged along the body. Moreover, we found that it was possible to generate

traveling waves of body undulations in this control scheme, however exclusively when central

coupling was present. Figures 2.10 and 2.11 show examples of emerged gaits for two differ-

ent feedback gains. We found that this gain for the sensory driven model serves as a tuning

parameter for the gait frequency and possibly the speed of swimming. Additionally different

body shapes were observed depending on the feedback gain, e.g. lateral displacements were

much larger for lower gains (slower speeds). Moreover, we identified characteristic patterns in

activation along the body. For both gains, longer activation periods were observed rostrally,

with an almost gradual increase of duration towards the tail. For lower feedback gains, also

lower phase lag patterns were identified. In comparison to the previous Combined model and

Decoupled model, the Sensory-driven model showed longer convergence times. Indications

are shown in the aforementioned figures, which are plotted on a double time-scale compared

to the previous emergence snapshot figures.

Figure 2.9 shows the corresponding emerged characteristics (purple) in comparison to the

other models. We note that simulations were carried out including higher feedback gains

than in the previous two models. The increased weight for the feedback can be seen as a

compensation for the loss of the intrinsic oscillation. In contrast to the previous control

schemes, primarily swimming patterns at lower frequencies were found. The frequencies

could potentially be increased for other stiffness, damping and feedback gains. The number

of emerged body waves in the swimming patterns correlates well with the results that were

found for the previous models.

Finally, we note that the Sensory-driven model requires a starting stimulus in order to initiate

movements, as in the straight initial position of the body no reaction forces with the environ-

ment are generated. Consequently, equal pressure on both sides of the body does not lead

to any feedback that could start oscillations. In our testing setup, it was sufficient to start

from randomly initialized phases, which in turn would initiate movements through the central

coupling. Alternatively, one could also introduce initial force stimulation.
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Figure 2.10 – Emergence for the Sensory-driven model III with low feedback gain. (A) Shows
a plot of the activation dynamics over the course of 8 seconds in corresponding colors over
time along with the kinematics in terms of joint angles in black lines. (B) 20 Snapshots over
the course of the same 8 seconds show the evolution of an undulatory swimming pattern with
parameters α= 1 Nm, γ= 2 Nm/rad, δ= 0.1 Nms/rad, ΔΦ= 120%, w f b = 1. Red (F > 0) and
blue (F < 0) arrows denote external forces from the water, light orange and light brown bars
along the body indicate that muscles on the respective sides are contracted.
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Figure 2.11 – Emergence for the Sensory-driven model with high feedback gain. (A) Shows
a plot of the activation dynamics over the course of 8 seconds in corresponding colors over
time along with the kinematics in terms of joint angles in black lines. (B) 20 Snapshots over
the course of the same 8 seconds show the evolution of an undulatory swimming pattern with
parameters α= 1 Nm, γ= 2 Nm/rad, δ= 0.1 Nms/rad, ΔΦ= 100%, w f b = 3. Red (F > 0) and
blue (F < 0) arrows denote external forces from the water, light orange and light brown bars
along the body indicate that muscles on the respective sides are contracted.
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2.4.4 Energy recovery through negative work

So far, we reported our results regarding the performance of the proposed control schemes.

Along with this investigations we also measured energy consumption on our simulated model

and found the following:

Until now we had considered positive mechanical work of the motors as a means to compute

energy expenditure and the cost of transport. However, as suggested in previous work (Wiens,

2013), a substantial amount of energy during anguilliform swimming has been identified as

negative work that could be potentially recovered in a specifically engineered system (using

motors as generators when braking motion is present). We therefore asked to what extent

our control schemes could profit from such a system and how the overall energy expenditure

changes when parts of it are recovered. The results in terms of power consumption are

presented in Figure 2.12 for the 10-joint model.
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Figure 2.12 – Energy recovery through negative work - 10 joint model. Graphs show power
depending on frequencies for high speeds (as indicated in Figure 2.9). Gray dots indicate open
loop model, red dots Combined model (I), orange dots correspond to the Decoupled model (II)
and purple dots show the Sensory-driven model (III) (left) Positive power computed based on
positive mechanical work. (right) Effective power, if negative work can be fully recovered.

We found that negative work is present across all control schemes. If we consider a full recovery

of the negative work (Figure 2.12, right) we found that the overall power can be decreased

significantly as shown in Table 2.3. The corresponding numbers are computed as the ratio

of energy from positive and negative work (details are presented in the methods, section

2.3). Higher numbers indicate therefore, more negative work that could be restored. For the

Combined model, potential can be seen at speeds above 0.2 m/s and less at lower speeds.

Also in the Decoupled and Sensory-driven models, negative work plays a big role and shows

therefore that great energy recovery potential exists.
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speed [m/s] open loop Combined Decoupled
Sensory-
driven

[0.0,0.2] 0.07±0.08 0.02±0.02 − 0.23±0.02
[0.2,0.4] 0.26±0.20 0.31±0.22 − 0.24±0.04
[0.4,0.6] 0.16±0.10 0.20±0.04 0.23±0.02 0.24±0.01
[0.6,0.8] 0.16±0.07 0.27±0.04 0.34±0.03 −
[0.8,∞] 0.17±0.03 − − −

Table 2.3 – Energy recovery potential for the different swimming models - 10 joint body. Num-

bers represent
|Eneg |
Epos

, where Epos denotes the energy based on positive work, and Eneg indicates

energy based on negative work. The quantities are presented for different speed ranges and
corresponding models. Mean±std are computed among all the simulations performed for
that specific speed range and model.
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2.4.5 Sensitivity to muscle model gains

The muscle model is an important intersection between the neural control and the move-

ments of the body. In this section we explored the sensitivity of the corresponding muscle

parameters with respect to a few important performance metrics. Additionally, we evaluated

swimming performances of the different muscle parameters α, γ, δ for different intrinsic

oscillator frequencies f to see how parameters like stiffness and damping relate to different

locomotion rhythms. Our goal was to get insights into the influence of the viscoelastic prop-

erties and possibly make suggestions towards advantageous parameter regimes. The results

of the parameter exploration are presented in following, where we analyzed the Decoupled,

Combined, and Sensory-driven model.

Parameters in the Decoupled model

Figures 2.13, 2.14 and 2.15 show variations of the four parameters α, γ, δ and f and their

influence on speed, emerged phase lag, cost of transport, emerged amplitudes and emerged

frequencies. The following main observations can be made:

• Low damping and intermediate or high activation gains: No stable swimming is ob-

tained. Especially for high gains it is necessary that a certain smoothness in the move-

ments is preserved. This can only be achieved with sufficiently high damping. Otherwise

jerky movements will induce non-desirable reaction forces, and thus no stable swim-

ming can emerge.

• Correlation between intrinsic frequency and emerging phase lag: Increasing intrinsic

oscillator frequency for this model is related to increasing emerging phase lags. Except

for very low swimming speeds, the phase lags are between 1 and 1.3 waves along the

body.

• Correlation between amplitude and activation gain and stiffness: higher amplitudes

emerge for low stiffness and higher activation gain across all frequencies and damping

properties.

• Cost of transport is mainly linked to activation gain and intrinsic frequency. Higher

activation gains lead to higher costs of transport, which is mainly linked to higher

amplitudes. Interestingly, the cost of transport appears almost stiffness independent

across different damping coefficients (except for very low intrinsic frequencies) for given

activation gains. Overall we find higher cost of transport for higher intrinsic oscillator

frequencies.

Parameters in the Combined model

For this model we looked at a case where the nominal phase lag in the central coupling

between oscillators was 200 %, which the local feedback would ideally correct to a regime
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for faster swimming. Results are presented in figures 2.16 and 2.17, where speed, phase lag

measurements and emerged frequencies for the different parameter combinations are shown.

These were the observations:

• It is necessary that the activation gain is sufficiently high in order to correct wrong phase

lag patterns.

• High damping coefficients make it more difficult for the local sensory feedback to correct

nominal central patterns.

• The emerged phase lags are around 1-1.3 body waves. As for the Decoupled model,

higher intrinsic oscillator frequencies encourage slightly larger phase lags.

Parameters in the Sensory-driven model

Parameters in this model were explored for a central coupling with a nominal phase lag of 1

body wave for a feedback gain of w f b = 1 and for different random initial conditions. This

analysis was especially valuable to identify a parameter range of viscoelastic properties where

the Sensory-driven model could work. Emerged speeds, phase lags as well as frequencies

are presented in figures 2.18 and 2.19. We found the following main characteristics for the

corresponding parameters:

• This model is much more sensitive to the choice of viscoelastic parameters than the

other models, as it can be seen by the sparseness of the plot. High damping inhibits the

emergence of a swimming pattern.

• Stiffness and activation gain need to be both high in order to achieve swimming.

• The overall speeds (highly correlated to the emerged frequencies) are lower and the

phase lags smaller (below 1 body wave) than in the other models. As shown in figures

2.10 and 2.11 this is can be changed for higher feedback gains.

• Very similar performances are achieved for different initial conditions, which indicates a

good robustness of this model, although it is missing an intrinsic oscillation mechanism.
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Figure 2.13 – Parameter exploration for the Decoupled model. Uniform variation of intrinsic
oscillator frequency ( f = [0.5,2.0] Hz), activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0]
Nm/rad) and damping (δ = [0.05,0.2] Nms/rad). Feedback gain is w f b = 1, phase lags are
given in terms of number of body waves. White areas indicate non-periodic solutions.
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Figure 2.14 – Parameter exploration for the Decoupled model. Uniform variation of intrinsic
oscillator frequency ( f = [0.5,2.0] Hz), activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0]
Nm/rad) and damping (δ= [0.05,0.2] Nms/rad). Feedback gain is w f b = 1, white areas indicate
non-periodic solutions. Amplitude is represented by average amplitude of the 4-th joint.
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Figure 2.15 – Parameter exploration for the Decoupled model. Uniform variation of intrinsic
oscillator frequency ( f = [0.5,2.0] Hz), activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0]
Nm/rad) and damping (δ= [0.05,0.2] Nms/rad). Feedback gain is w f b = 1, white areas indicate
non-periodic solutions.
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Figure 2.16 – Parameter exploration for the Combined model. Uniform variation of intrinsic
oscillator frequency ( f = [0.5,2.0] Hz), activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0]
Nm/rad) and damping (δ = [0.05,0.2] Nms/rad). Feedback gain is w f b = 1, phase lags are
given in terms of number of body waves. Nominal phase lag is set to 200% (2 body waves).
White areas indicate non-periodic solutions.
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Figure 2.17 – Parameter exploration for the Combined model. Uniform variation of intrinsic
oscillator frequency ( f = [0.5,2.0] Hz), activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0]
Nm/rad) and damping (δ= [0.05,0.2] Nms/rad). Feedback gain is w f b = 1. Nominal phase lag
is set to 200% (2 body waves). White areas indicate non-periodic solutions.
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Figure 2.18 – Parameter exploration for the Sensory-driven model. Uniform variation of
activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0] Nm/rad) and damping (δ= [0.05,0.2]
Nms/rad) for different random phase initial conditions φi ,0. Phase lags are given in terms of
number of body waves. Nominal phase lag in the central coupling is set to 100% (1 body wave)
and the feedback gain w f b = 1. White areas indicate non-periodic solutions.
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Figure 2.19 – Parameter exploration for the Sensory-driven model. Uniform variation of
activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0] Nm/rad) and damping (δ= [0.05,0.2]
Nms/rad) for different random phase initial conditions φi ,0. Nominal phase lag in the central
coupling is set to 100% (1 body wave) and the feedback gain w f b = 1. White areas indicate
non-periodic solutions.
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2.4.6 Steady-state swimming vs acceleration maneuvers

An important consideration in our proposed neuromechanical model is that the local sensory

feedback mechanism aims to achieve a synchronization between muscle activation and

desired reaction forces. We presented the characteristics of the force distribution in section

2.2.2. Maxima in external force magnitude are thus defined in the maximally bent regions of

the body and force inflection points coincide with body inflection points. Figure 2.20 (left)

shows a schematic representation. Assuming that lateral reaction forces from drag for a body

segment are much higher than in axial direction, the force vectors act, as shown, orthogonally

to the body (axial drag is omitted in the drawing). The resulting force for this scheme would

ideally be zero since both forces in moving as well as lateral direction would cancel out, due

to the symmetry in the body shape. The zero resulting force is reasonable for this theoretical

system, as it would correspond to the force distribution along the body in steady-state, when

the moving speed is constant.

Figure 2.20 – Conceptual steady-state vs high acceleration swimming.

One could agree that the aforementioned force distribution is desirable in steady-state, how-

ever if acceleration (or deceleration) is required it seems not optimal. Figure 2.20 (right) shows

an alternative force distribution that is governed by the same assumptions (larger drag lateral

to a segment, zero axial drag). The resulting force in this scheme is non-zero and points in

forward direction, lateral forces ideally cancel out again. Hence, this force distribution is more

suitable for an acceleration of the body. Our feedback scheme is not limited to a particular

force distribution and can also be defined for the acceleration-beneficial scheme. This would

result in the following feedback:
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φ̇i = ... − σ2Fi · si n(φi ) , (2.18)

= ... + σ2Fi · cos(φi + π

2
) . (2.19)

Equation (2.19) indicates that this feedback rule is realized by a phase shift of π
2 compared

to the initial rule that is desirable for steady-state. In the unit circle scheme, this shifts

the attractors from {π2 ,−π
2 } to {0,π}. Based on equation (2.19) we can now formulate the

acceleration and steady-state based control methods with nearly the same feedback rule.

Consequently, we can now formulate a continuous change in the force distribution between

acceleration towards steady-state by changing the attractor fixed points in the feedback system.

φ̇i = ... + σ2Fi · cos(φi +κ(v)) , (2.20)

where κ(v) varies from [−π
2 , π2 ] and can be linked to the speed v of the body. For small speeds,

acceleration is desired, thus κ→ π
2 and for larger (steady-state) speeds, κ→ 0. κ can also be

used for deceleration, where κ→−π
2 .

All our considerations in this section have assumed zero drag forces in axial direction of the

segments. In reality, there is a little contribution of those forces. Fortunately, this can be easily

incorporated in our analysis. Assuming small forces in axial direction, they will cancel out in

the overall lateral moving direction but will form a small resulting resistance force against the

moving direction. In steady-state, this resistance force has to be compensated for. Assuming

that the axial drag is small, the resulting force in moving direction is also small and just

enough to compensate this drag. In practice this means that the maximal reaction force peaks

should lie just slightly behind the maximum bending positions. This could be achieved by an

asymmetric force distribution with bigger force magnitudes behind the maximum bending

positions.
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2.5 Discussion

Our aim in this study was to find the essential control mechanisms that lead to efficient undu-

latory swimming. Efficient locomotion results from well coordinated reaction forces which in

water are determined by drag, depending on the velocity of the different body segments. To

exploit the aquatic environment to its fullest and generate forward propulsion, it is necessary

to synchronize body movements with beneficial reaction forces. As previously hypothesized

(Schwarz et al., 2011; Ristroph et al., 2015), efficient swimming could be modulated by means

of pressure sensing. Based on this, we formulated a generic control scheme containing three

components: oscillators for rhythm generation, central coupling and local sensory feedback.

We tested the resulting neuromechanical model including viscoelastic properties and asked if

and how well swimming patterns could emerge. We characterized the resulting locomotion

patterns and analyzed speed and energy-related quantities to determine efficiency of the

obtained patterns.

In our first model we were able to show that initially ”wrong” phase patterns stemming

from central coupling are corrected by local sensory feedback loops. This is consistent with

previous studies (Cang and Friesen, 2000) in which fictive motor patterns in isolated spinal

cord preparations showed smaller intersegmental phase lags than in intact animals. It also

shows that the spinal cord can generate a variety of patterns (Delvolvé et al., 1999; Ryczko

et al., 2015) and still achieve selective behaviors such as forward swimming by closing the loop

with the environment.

The decoupled oscillator model is less intuitive from a biological perspective because central

coupling is known to be present in the spinal cord and nerve cord of vertebrates (lamprey,

Cohen et al. 1992; Matsushima and Grillner 1992) and invertebrates (leech, Cang and Friesen

2002). We found that coordinated behavior based on sensory feedback can also be achieved in

a dissociated network, where all the segments are separated. In preparations where parts of

the network (not all segments) were disconnected in severed nerved cords (Yu et al., 1999),

it has been shown that sensory feedback could still enable a fully coordinated behavior.

Moreover, our model indicates that the emergence of a traveling wave is not necessarily linked

to a predefined oscillation pattern with fixed phase lags. Exploiting the natural dynamics of

drag forces between the body and the water is sufficient to achieve fast and energy-efficient

swimming. The findings are very interesting from a biological point of view. It seems that

there are two redundant mechanisms for generating coordinated wave patterns: 1) central

coupling and 2) sensory feedback. This implies a good robustness of the locomotor system,

for instance, to handle lesions along the spinal cord (or nerve cord).

Also interesting for robotics, this characteristic behavior can be beneficial for modular robot

design, where benefits of distributed control can be exploited. Identically programmed units

can be connected together, and do not require any internal communication between them to

coordinate the overall swimming behavior. This would significantly reduce computational

demands as well as control complexity. Additionally, one could easily achieve fast and energy-
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efficient swimming gaits in such robotic swimmers through the self-tuning property from the

sensed pressure signals, independent of often unknown robot properties such as joint friction

and/or damping.

The last swimming control scheme that we explored, led us to a rather unexpected finding. We

showed that coordinated undulatory swimming could emerge also in the absence of intrinsic

oscillators. Intersegmental coupling together with local sensory feedback loops were sufficient

to induce this behavior. Therefore, as opposed to the Decoupled model, the feedback is useful

for rhythm generation in addition to coordination. To the best of our knowledge we know only

of a similar case in C.elegans (Niebur and Erdös, 1991; Wen et al., 2012), where a model in the

absence of CPGs was proposed. Oscillations were generated due to proprioceptive sensory

feedback loops. However, head or tail elements were required to oscillate in that case. In

our model we noticed that besides the sensory feedback loops, the intersegmental coupling

was crucial to establish a traveling wave pattern. Therefore, we hypothesize that sensory

feedback in combination with body stiffness can establish oscillations, whereas additional

intersegmental coupling can impose the coordination of the segmental feedback oscillators.

An alternative hypothesis could be that the local feedback loops contribute also partly to the

intersegmental coordination, as our feedback control scheme targets a desired reaction force

distribution along the body. The resulting traveling wave could be a product of that force

distribution. Nevertheless, this last model showed less robust characteristics (lower speeds

and frequencies) than the other models. We also noticed that higher feedback gains were

required to achieve stable locomotion patterns, suggesting also that additional ”energy” or

”drive” has to be put into the control system to generate oscillations.

In our study we explicitly investigated the role of pressure (or in general force) feedback to

modulate CPGs or generate rhythms. It can be argued that the sense of pressure is related to

proprioceptive stretch receptors as they were identified both in lampreys (Grillner et al., 1984)

and leech (Cang and Friesen, 2000; Iwasaki et al., 2014). As proprioception is by definition

related to the sense of the own body, also pressure or tension information could be captured

by these types of sensors (possible function as tension sensors hypothesized in Cang and

Friesen 2000). More precisely, one can imagine that different resulting reaction forces from

the surrounding fluid will lead to different body movements, given the same level of activation

in the muscles. Therefore, proprioceptive sensing such as incorporated by stretch receptors

can implicitly give indirect information about the local environment.

The findings presented in this study are however subject to some limitations. Firstly, there

are constraints regarding fluid dynamics. It has to be noted that our models for undulatory

swimming is operating in a range with high Reynolds number (Re = ρvL
μ = 2 ·107, ρ = 1000 kg

m3 ,

v = 0.2 m
s , L = 1 m, μw ater = 10−5Pa s), where inertial forces are more dominant. This is

very different to small animals such as the C.elegans swimming in more viscous fluids (e.g.

methylcellulose), which swim in a regime where the Reynolds (Re ≈ 0.4, Sznitman et al. 2010;

Korta et al. 2007) numbers are very low, i.e. viscous forces are more important. It can be argued

whether control strategies are the same or deviate in the different Reynolds regimes. This
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should be part of future studies.

So far we tested our neuromechanical model in a simulated hydrodynamics environment

(see methods section 2.3.1 for more details). It was based on the model proposed by Porez

et al. 2014, which uses main ideas from the large amplitude elongated body theory developed

by Lighthill. Our considerations of sensory feedback rely on the produced resulting reaction

forces applied from this hydrodynamics model. Therefore, experiments and validation of

the proposed models on a robot 1 in a real world hydrodynamic environment will be of great

importance. Especially the role and influence of vorticity (Triantafyllou and Triantafyllou,

1995; Liao et al., 2003; Liao, 2004; Gemmell et al., 2015) will be important to analyze.

Following the validation, the next steps can involve more detailed analyses and extensions

of the components. Firstly, the robustness of the different paradigms should be quantified

with respect to adaptation to perturbations such as viscosity changes, variable water flow, etc.

Secondly, more elaborate neuron models can be tested and possibly reveal interesting effects

and implications for the neural control based on environmental sensing. Possible extensions

can start with integrate-and-fire (Knuesel, 2013; Holmes et al., 2006) or leaky-integrator neuron

models (Ijspeert, 2001; Billard and Ijspeert, 2000) but can also be expanded upon conductance-

based Hodgkin-Huxley-like neuron networks (Ivashko et al., 2003; Bicanski et al., 2013) that

incorporate detailed ionic mechanisms.

Finally, our study shows that the essential components for undulatory swimming include local

oscillations and intersegmental coordination (coupling), both in agreement and exploiting

the environment. This can be achieved in different ways: a) neural (open loop) oscillations

and intersegmental coordination via sensory feedback or direct coupling b) feedback induced

oscillations and central intersegmental coupling.

1initial experiments with Envirobot equipped with pressure sensors showed promising swimming behaviors for
the decoupled model.
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2.6 Conclusion and Future work

Our aim in this chapter was to identify the central principles of undulatory swimming gaits.

Thus, rather than observing and assessing different locomotion patterns, we were interested

to explain how movements for locomotion can be generated and which key mechanisms are

necessary for undulatory swimming. Using a simple local sensory feedback mechanism we

asked how internal body movements can be generated and synchronize in a way that they

exploit the environment towards efficient locomotion. The main components of our model

contain neural oscillators, a central coupling and a local pressure feedback mechanism. In

three different control schemes we found that 1) local feedback was able to correct wrong

phase lag patterns, 2) decoupled oscillators were able to generate a coordinated swimming

behavior along the body induced by local feedback, and finally 3) the same sensory feedback

loops together with central coupling were able to generate oscillatory rhythms and coordi-

nated swimming without oscillators. A question that can be asked is how these different

concepts relate to biology and how plausible they are. In table 2.4 we summarized the different

properties of the models based on our obtained results and conceptual aspects. Most evident

are the major drawbacks of the Sensory-driven model with respect to maneuvering capabilities.

Although possible to generate coordinated traveling waves, control of frequency (related to

speed) is hardly achievable (only through modulation of feedback gains), as this is an emergent

property. Same holds for heading control. Overall, the Combined and Decoupled model have

similar characteristics, albeit the former offers a more redundant system in case of failure of

sensory or central mechanisms. As also highlighted by Kuo (2002), in a system with both feed-

forward (CPG) as well as feedback components, performance can be improved, as it provides

both robustness to imperfect sensor measurements and to unexpected disturbances. From

a biological point of view, we know that lampreys and leeches have these two components

(oscillators and sensory feedback loops). Nevertheless, other organisms such as C.elegans

have a very primitive nervous system were local oscillators are less likely to exist.

Property Combined model Decoupled model Sensory-driven model
fast swimming ++ ++ +
energy cost ++ ++ ++
convergence time + + −
control of specific speed + + −
heading control ++ + −−
robustness to sensor noise ++ + −
robustness to lesions + + −

Table 2.4 – Conceptual evaluation of the different locomotor paradigms for undulatory swim-
ming. (+) indicates good achievability and (−) missing property or bad performance.

In the work so far the main concepts have been introduced and their feasibility is shown,

future work should further assess also the robustness of these swimming control strategies

with respect to perturbations, sensor noise, maneuverability and convergence time. The study

as presented here was furthermore tested in a model, where both the segmented elongated
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swimming body and the hydrodynamics were numerically simulated. In a next step these

findings have yet to be validated in a real physical environment. Therefore, we have started to

implement our control strategies in Envirobot (Bayat et al., 2016), an anguilliform swimming

robot used for pollution detection in lakes and open waters. Preliminary tests, in which the

robot segments were equipped with pressure sensors on contralateral sides showed notions

of coordinated swimming for the decentralized control scheme (Decoupled model II) and

encourage further tests for validation of all the models. Furthermore, as we briefly highlighted

in section 2.4.4, the idea of energy recovery is very interesting for robots like Envirobot,

which would profit from long term missions that require efficient locomotion. Adaptations

in the electronics, which enable short term storage of negative work could increase energy

efficiency in this robot, and show the benefits of undulatory swimming platforms for real-

world applications. Especially from a technological point of view for nautical applications it

is crucial to design systems that efficiently convert the given energy to forward propulsion

for locomotion. The most widely used classical designs are rotatory propellers in ships and

underwater vehicles. However, as argued in Triantafyllou and Triantafyllou (1995) alternative

propulsors than conventional propellers are required, in order to overcome the extreme

constraints on energy storage on board of such vehicles. The presented study here, could

bring us a step closer to achieve this.
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3 Bimodal Locomotion in Water and on
Land

In the previous chapters we developed models that both aimed to explain movement genera-

tion as well as the emergence of optimal gait patterns depending on environmental constraints.

Mostly numerical simulations were used to approximate the reaction forces between the loco-

motor body and the environment. Given the possiblity to explore extensive solution spaces for

gaits and relevant parameters, the use of those simulations is greatly justified. Nevertheless, in

order to strengthen the effectiveness of such derived findings, real world experiments should

be encouraged for validation.

Therefore, we asked in this chapter how we can investigate locomotion with more elaborate

physical models (namely robots). In this process we focused on important aspects of how reac-

tion forces are generated between body and environment. Our study was set in a challenging

bimodal condition, with both terrestrial as well as aquatic properties, where we investigated

salamander locomotion by means of walking and swimming.

The subsequent sections are based on our published article ”K. Karakasiliotis, R.

Thandiackal, K. Melo, T. Horvat, N. K. Mahabadi, S. Tsitkov, J. M. Cabelguen, A.

J. Ijspeert. From cineradiography to biorobots: an approach for designing robots

to emulate and study animal locomotion. Journal of The Royal Society Interface

(2016)”, in which I contributed as a main co-author.

My original contributions

• Major contribution to the written manuscript

• Analysis of cineradiographic recordings and transfer of movements to the robot

• Programming and control of the robot

• Design and evaluation of robot experiments

• Waterproofing of the robot

• Minor contributions to the robot design with CAD
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3.1 Abstract

Robots are increasingly used as scientific tools to investigate animal locomotion. However,

designing a robot that properly emulates the kinematic and dynamic properties of an animal

is difficult because of the complexity of musculoskeletal systems and the limitations of current

robotics technology. Here we propose a design process that combines high-speed cineradio-

graphy, optimization, dynamic scaling, 3D printing, high-end servomotors, and a tailored

dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological

counterpart, Pleurodeles waltl. Our previous robots helped us test and confirm hypotheses

on the interaction between the locomotor neuronal networks of the limbs and the spine to

generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process

that will enable studies of richer motor skills in salamanders. In particular, we are interested

in how these richer motor skills can be obtained by extending our spinal cord models with

the addition of more descending pathways and more detailed limb central pattern generators

(CPG) networks. Pleurobot is a dynamically-scaled amphibious salamander robot with a large

number of actuated degrees of freedom (27 in total). Because of our design process, the robot

can capture most of the animal’s degrees of freedom and range of motion, especially at the

limbs. We demonstrate the robot’s abilities by imposing raw kinematic data, extracted from

X-ray videos, to the robot’s joints for basic locomotor behaviors in water and on land. The

robot closely matches the behavior of the animal in terms of relative forward speeds and lateral

displacements. Ground reaction forces during walking also resemble those of the animal.

Based on our results we anticipate that future studies on richer motor skills in salamanders

will highly benefit from Pleurobot’s design.
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3.2 Introduction

Agile locomotion in animals results from a complex interplay of various components, involv-

ing: the central nervous system, the peripheral nervous system, the musculoskeletal system,

and interactions with the environment (Dickinson et al., 2000). This makes decoding the

mechanisms of locomotor control a difficult problem. Researchers have been trying to deter-

mine the role of each component with different approaches: (i) locomotion studies involving

kinematic and dynamic recordings (Daley and Biewener, 2006), (ii) electromyographic studies

(Engberg and Lundberg, 1969), (iii) neurophysiological studies in vitro and in vivo (Grillner

et al., 1995), (iv) electrical stimulation studies (Cabelguen et al., 2003), and more. In addition

to animal experiments, computational and robotic studies can be very useful in investigating

interactions between the different components (Holmes et al., 2006; Floreano et al., 2014;

Ijspeert, 2014). “Robots have multiple properties to complement animal studies: Their actions

are repeatable, they offer access to variables or quantities that would be difficult to measure

on animals, they can perform movements that are unnatural or dangerous for animals, and

their morphology can be systematically changed.” (Ijspeert, 2014). Used as physical models

of animals, robots are interesting as complements to neuromechanical simulations because

they provide real physics. This is particularly important for locomotion that relies on com-

plex interactions with the environment, such as swimming, crawling on mud, etc., since the

motions involved are very difficult to simulate properly. Biorobots are therefore increasingly

used as tools in locomotion studies to test hypotheses about biomechanics and neural control

(see Ijspeert 2014 for a review). There are several examples of studies(Dickinson et al., 1999;

Ijspeert et al., 2007; Maladen et al., 2009; Marvi et al., 2014; Libby et al., 2012) in which robots

have been instrumental in understanding some properties of animal locomotion.

Two approaches can be distinguished among computational and physical models: template

and anchor models (Full and Koditschek, 1999). “A template is the simplest model (least number

of variables and parameters) that exhibits a targeted behavior.” An anchor is “a more realistic

model fixed firmly or grounded in the morphology and physiology of an animal.” Templates are

useful for studying general principles of locomotion. The same template model can represent

several types of animals, such as the spring-loaded inverted pendulum (SLIP) model for legged

running (Blickhan and Full, 1993). Physical models (i.e. robots) have been designed based on

template models, for instance the biped ATRIAs robot (Grimes and Hurst, 2012), the hexapod

RHex robot (Saranli et al., 2001), and the salamander-like Salamandra robotica (Ijspeert et al.,

2007). These robots were designed to use the lowest number of degrees of freedom to obtain

and study a particular type of locomotion. Depending on the specific targeted behavior,

template models can be made as complex as necessary (but not more). Anchor models can

then be used to validate the templates and to analyze multi-leg coordination, joint torques

and neuromechanical aspects.

Salamanders have attracted the attention from researchers from various fields. In particular,

they have garnered the interest of neuroscientists for investigating the neural mechanisms

that produce their various aquatic and terrestrial locomotor modes as well as the cellular
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and molecular mechanisms underlying their impressive regenerative abilities (Chevallier

et al., 2008; Ryczko et al., 2010; Kragl et al., 2009; Kumar and Simon, 2015). Moreover, since

salamanders resemble the early tetrapods in their skeletal morphology and locomotor modes

more than any other extant species (Schaeffer, 1941; Carroll, 1988; Worthington and Wake,

1972; Romer and Byrne, 1931; Howell, 1944; Barclay, 1946; Gray, 1968; Edwards, 1989; Gao

and Shubin, 2001; Clack, 2002a; Petti et al., 2014) they can be used as experimental models to

have some insights into the neural mechanisms underlying aquatic-to-terrestrial transition in

primitive tetrapods (Ijspeert et al., 2007). We are currently investigating the interplay between

central pattern generation, sensory feedback and descending modulation for producing the

large variety of motor behaviors involving whole body movements as exhibited by salaman-

ders. In previous work (Ijspeert et al., 2007), we designed a simple template robot model

of the salamander with a CPG model that could generate two motor behaviors of the sala-

mander (swimming and walking trot) and that included two descending pathways (left-right

stimulation). But the salamander is capable of producing a larger variety of motor behaviors

and is known to have more descending pathways. This motivated the design of an anchor

model of the salamander. So far we have mainly explored two descending pathways (left-right

stimulation) but more pathways exist in the salamander. In the neural models, additional

descending pathways can be added to stimulate subparts of the complete locomotor circuit

(e.g. only the tail, only the hind left limb) similar to the action of strings in a marionette. The

way in which specific behaviors are generated, when only the marionette is visible but not its

strings, can be inferred from a model. The better the model captures the DoF of the marionette

the closer one can estimate the number of strings needed for the model to reproduce the

observed behaviors. In the same way, if the behavior of the marionette depends on external

interactions one has to be able to simulate those interactions with the model. Capturing

those interactions accurately, especially when they cannot be properly simulated, is important

and, for that reason, a physical model – in our case a salamander-like robot – is necessary.

It is important to try to include all the components that influence locomotion: the spinal

cord circuits, the sensory feedback, the descending modulation, the internal body dynamics

(i.e. muscle dynamics, the musculoskeletal dynamics), and the external body-environment

dynamics. Locomotion will likely never be completely understood without investigating the

interaction of all these components (i.e. while necessary, it is not sufficient to investigate

these components in isolation). At the same time, we realize that any of these components

will only be approximations, and future work will involve investigating the effect of these

approximations, for instance by comparing the results of experiments carried out with com-

ponents implemented at different levels of abstraction, e.g. coupled oscillator models versus

spiking neural network models for the spinal circuits (Knüsel et al., 2013), and different types

of muscle models.

Our previous robots Salamandra robotica I and II were designed to investigate the transition

between swimming and walking (Ijspeert et al., 2007; Crespi et al., 2013). Those robots have

10 and 12 actuated degrees of freedom (DOFs), respectively, and use simple 1 DOF rotational

limbs like the RHex robot (Saranli et al., 2001) for ground locomotion. They can be seen as
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template models with just the minimal number of DOFs to investigate inter-limb and body-

limb coordination in steady state swimming and walking gaits. However, the limited number

of DOFs not only restricts our ability to study the organization of the limb CPG networks, but

prevents the study of richer motor skills (e.g. aquatic stepping gaits, turning, paddling etc.)

where multiple DOFs are used (Ashley-Ross, 1994; Karakasiliotis et al., 2012). For example, we

showed in previous work (Crespi et al., 2013; Karakasiliotis and Ijspeert, 2009) that a single

rotational DoF at each limb is a limiting factor for understanding turning in salamanders and

discussed the importance of a knee joint. It is also easy to show that for aquatic stepping and

paddling single-DoF limbs cannot capture the necessary interactions with the environment

(e.g. regulating the distance between the feet and the girdles so that traction with the ground

is maintained, or orienting the limb in such way that the hydrodynamics are similar to the

ones that the animal experiences).

Building an anchor robot involves multiple design challenges: (i) designing the proper kine-

matic structure, i.e., the topology and number of DOFs, capable of emulating the desired

animal behaviors, (ii) matching similar dimensions and mass distributions, and (iii) replicating

muscle-like properties and more generally viscoelastic properties of the body. But even in

anchor models many trade-offs and simplifications need to be made. The constraints relate

to technological limitations in actuation (size, weight, torque, power density and velocity

limits) and sensing (size and accuracy), price and manufacturability which highly affect the

accessibility of the platform to various researchers as well as studies of morphological vari-

ability. Variations of the optimized platform – possibly, but not necessarily, drawn from the

variability found in salamanders and other sprawling animals – will give hints on the role of

body-morphology with respect to the organization of the locomotor network and the pathways

that regulate it.

Here we present an approach to designing a biorobot as an anchor model and use it to create

Pleurobot, an amphibious salamander-like robot that emulates Pleurodeles waltl (P. waltl).

Key elements of Pleurobot’s design are the number and placement of locomotion-relevant

joints. Our approach is then composed of the following steps: (i) collecting three-dimensional

kinematics of skeletal elements using biplanar high speed cineradiography; (ii) optimization

of the robot kinematic structure using a genetic algorithm to be able to replay the set of

collected gaits; (iii) dynamic scaling, i.e. performing an analysis of the animal and robot

dynamics to ensure that the animal and robot gaits are carried out within the same regimes

of interaction forces with the environment; (iv) constructing the robot using 3D printed

parts, high-end servomotors, and a tailored dry-suit; and (v) comparing the robot and animal

gaits with motion capture and force plate measurements. The main features compared to

previous design methods are the combination of cineradiography and optimization to identify

important locomotion-relevant degrees of freedom for making the robot structure which

can easily change depending on the hypothesis being tested. Cineradiography, in our case

bi-planar, is increasingly used to characterize animal locomotion (Fischer and Lehmann,

1998; Brainerd et al., 2010). In biorobotics, it has been used to compare animal and robot

locomotion, e.g. during sand swimming (Maladen et al., 2009), or to extract design principles
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for template-like robots (Andrada et al., 2013) or robot simulations (El Daou et al., 2010), but

to the best of our knowledge it has not yet been used together with optimization algorithms to

design a physical anchor-like robot model. An important feature that makes P. waltl a excellent

animal to model is its low dynamic behaviors, especially during ground locomotion. Many

of the skills which can enrich our understanding of the salamander’s locomotor network are

much less dynamic than other animals, like mammals for instance. Our methodology is based

on this fact. Not only current technology reaching its limits in producing reliable dynamic

platforms, but also muscle, tendon and bone-properties become much more important during

dynamic locomotion.

3.3 Pleurobot’s design methodology and development

Our robot is based on P. waltl, a salamander that exhibits both terrestrial and aquatic loco-

motion. This salamander represents a good candidate for our design approach, having been

subject to neurophysiological (Ryczko et al., 2010; Delvolvé et al., 1999), electromyographic

(Delvolvé et al., 1997) and biomechanical (Ijspeert et al., 2007; Karakasiliotis et al., 2012) stud-

ies in the past. Its morphology is composed of an elongated body (trunk and tail) and four

limbs located at the pectoral and pelvic girdles (Fig. 3.1). The average body length and weight

of P. waltl specimens (n = 2, 8.45± 0.078 cm snout-vent length) considered for this study

were approximately 17.6 cm and 23.8 g. Biplanar high-speed cineradiographic (Neurostar®

Siemens AG) recordings at 500 fps and image resolution of 1536x1024 were performed at

the University of Jena, Germany. The data presented here has been partially published else-

where (Karakasiliotis et al., 2012) and in detail in a doctoral thesis (Karakasiliotis, 2013). More

specifically, walking gaits have been described in (Karakasiliotis et al., 2012), whereas data for

aquatic stepping and swimming are original. A comparison between animal and robot sizes is

provided in Table 3.1.

Characteristic length P. waltl Pleurobot
Snout-vent length [m] 0.085 0.73
Body length [m] 0.176 1.52
Mass [kg] 0.024 7.40
Scaling factor [-] 1 8.6

Table 3.1 – Comparison of animal and robot dimensions

As discussed in the introduction, several constraints guide the design of an anchor robot.

Some are related to technology and some are driven by the designer’s goals. For Pleurobot, we

consider one of the most important constraints to be the ability to easily produce copies and

variations of the robot at a reasonable price and time, while still being able to test hypotheses

on rich motor skills. Most of the rich behaviors of the salamander depend on its segmented

limbs (turning, paddling and more), so particular focus was given in replicating the DOFs of

the limbs. An important technological constraint is actuation. Currently the most accessi-

ble, efficient and cost effective actuator is the DC motor. However, DC motors still remain

90



3.3. Pleurobot’s design methodology and development

TOP VIEW

SIDE VIEW

Tail Trunk Cervical Head

Phalanges

TarsusMetatarsus

Crus

Tibia

Fibula

Femur
Trochanter

Pelvic Girdle Humerus
Pectoral Girdle

Radius

UlnaAntebrachium

Carpus
Metacarpus

Pes

Sacrum Atlas

0.01m

LimbsScapulae SpineAtlas/SacrumHead

Figure 3.1 – P. waltl skeletal system. The basis of the design methodology is built from a
careful analysis of cineradiographic recordings, the subsequent tracking of the bone structure
and the 3D reconstruction. Top and side view of a CT-scan are shown, where the markers
indicate tracked points: 3 points for the head, 4 points for the scapulae, 5 points for each limb,
16 points in the trunk and 20 points in the tail were included in the analysis. The Sacrum was
used to separate between trunk and tail.

inefficient in very small scales and we had to choose larger DC motors than we would have

liked. Therefore, the motors’ size guides the robot’s final size, which is larger than the animal

(Table 3.1). Given these constraints, the key element of Pleurobot’s design is to determine two

important engineering considerations: (i) the number of locomotion-relevant joints and (ii)

the placement of each joint along the robot’s body.

Therefore, we developed a dataset of sequential whole-body postures for walking, swimming

and aquatic stepping using the cineradiographic recordings and the 3D reconstruction of

kinematics obtained from experiments with P. waltl. In order to derive the 3D reconstruction

from the cineradiographic recordings, the salamander skeleton was manually tracked in all

the videos where the animals showed straight and steady state locomotion. For this purpose a

custom software based on OpenCV (open graphics C/C++ library) was developed and used.

The top and side views were digitized at a frame rate of 40 Hz for swimming and 80 Hz for

walking. The dataset of body postures was then used to guide an optimization problem with

two goals: (i) optimal segmentation of the robot, i.e., minimum number of joints and (ii) their

optimal placement so that the segmented body can reproduce recorded animal postures in

our dataset. The spine, forelimbs, and hind limbs were optimized as three separate kinematic

chains.
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Figure 3.2 – Spine optimization based on cineradiographic data. We used the cineradio-
graphic recordings of P. waltl and the resulting 3D kinematics of the skeletal structure to
design the robot’s spine: (A) Top and side view snapshots for walking and (B) top view for
swimming. The markers indicate which points were tracked. Assuming mostly constant bend-
ing in the sagittal plane, the spinal movements in the transverse plane were approximated by
a segmented spine (C) (BL: Body length). The segmentation was derived via an optimization
procedure (D), in which separate optimizations for various numbers of joints were carried out.
For each joint configuration the segment lengths were derived via an optimization using a GA
(Genetic algorithm). The error area (E) between observed spinal bending in P. waltl and the
segmented line was used as a fitness function. A resulting number of 10 joints (red data points)
was chosen as a trade-off between accuracy of the approximation and a minimal number of
joints.

3.3.1 Spine

The cineradiographic data for the axial movements of the salamander show that during steady

state locomotion (both in walking and swimming gaits), salamanders undulate mainly in the

transverse (horizontal) plane; bending in the sagittal (vertical) plane was almost constant

(Karakasiliotis et al., 2012), (Karakasiliotis, 2013) . This reduced the problem of designing the

robot spine to its optimal segmentation in the transverse plane.

Each snapshot of the salamander spine was represented as a continuous curve in the transverse

plane (Fig 3.2A, 3.2B). The mean length of all the curves in the dataset was used to define the

length of the segmented line that represents the spine of the robot (including head). Note that

the length we refer to here represents part of the animal’s spine, in particular 79% of the body

length. The remaining 21% (end of the tail) presented rather irregular kinematics between

cycles, suggesting that mostly passive dynamics shape the end of the tail during walking or

swimming (Fig. 3.2C).

We performed several optimization runs with different predefined numbers of joints using a
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Figure 3.3 – Pleurobot. Following our design methodology, Pleurobot with a total of 29 DOFs
(degrees of freedom) was derived. In (A) blue axes indicate the 27 motorized DOFs, whereas
the green axes indicate 2 passive DOFs (i.e. unactuated free joints). The results from the
spine optimization together with segmented limbs (B), allow replicating various gaits, such as
walking, swimming and aquatic stepping. The robot design (C) comprises 3D printed parts
(white), 27 off-the-shelf servomotors (black), silicon feet and a flexible tail. (D) A waterproof
swimming suit out of a Lycra®Nylon fabric laminated with a 1mm layer of polyurethane
completes the design that allows locomotion in terrestrial as well as aquatic environments.

genetic algorithm1 (GA). Having the craniocervical joint (i.e. neck joint) fixed, the position

of each of the other joints was open for optimization. Arbitrarily, 3 to 15 joints were used in

different optimization runs (Fig. 3.2D). The GA generated new positions for the corresponding

number of joints at each iteration. To evaluate how well the given joints and their positions

could reproduce the curvature of the salamander’s spine, we introduced an error metric as

the sum of squared areas between the segmented line and each curve found in the dataset

of animal postures (Fig. 3.2E). This was done for 80 trials, which corresponds to a total of

2798 analyzed postures both in water and on ground. For each specific number of joints, the

optimal positions were assumed when the fitness function converged to a very small value

(10−6). For the GA in our spine optimization of the robot we used the GA implementation from

Matlab (Matlab 2014b) with default parameters. As such we used the following parameters: a

population size of 200, a crossover fraction of 0.8 and a migration fraction (guarantees survival

from one to next generation) of 0.05.

As expected, the higher the number of joints the better the segmented line can capture the

shapes of the animal’s spine during locomotion (Fig. 3.2D). The approximately exponential

convergence of the total error value allowed us to arbitrarily select a number of 10 joints which

we considered as a good trade-off based not only on the geometry but also the resulting length

of the robot. Including the craniocervical joint, that makes a total of 11 spine joints (Fig. 3.3A).

This number and their corresponding optimal positions allow Pleurobot to imitate the bending

of the salamander’s spine in different gaits to a good extent as illustrated in the accompanying

videos and discussed below. Notice in Fig. 3.3B and Table 3.2 how the optimization found that

1A type of evolutionary optimization algorithm that evolves a population of candidate solutions by altering and
mutating them with the goal to maximize a selected fitness criterion.
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a higher curvature is needed around the hind but not around the front girdle. This is a result

of both the limited bending of the front part of the body for all gaits (Karakasiliotis et al., 2012)

and the increasing curvature of the spine towards the tail during swimming. Two passive DOFs

(green in Fig. 3.3A) were placed at the first and the last segment of the tail to account for the

passive bending of the salamander’s tail in the sagittal (vertical) plane. It is important to note

here that this partially optimal segmentation, guided by a subset of the behaviors observed in

salamanders, might prove less optimal for behaviors for which data is not yet available and

were not used in the optimization. However, we strongly believe that except for turning gaits,

most other behaviors are based on either walking or swimming patterns or a mix of the two

(e.g. underwater stepping ro paddling). Future experiments will show whether Pleurobot’s

’optimal’ design captures poorly turning gaits, in which case the ease of producing variations

in the robot design will prove significant.

Segment Length [m]
Head 0.190
Joint 1 – Joint 2 0.128
Joint 2 – Joint 3 0.114
Joint 3 – Joint 4 0.096
Joint 4 – joint 5 0.087
Joint 5 – joint 6 0.089
Joint 6 – joint 7 0.106
Joint 7 – joint 8 0.084
Joint 8 – joint 9 0.072
Joint 9 – joint 10 0.076
Joint 10 – joint 11 0.093
Joint 11 - Tail 0.066
Tail fin 0.320
Forelimb upper leg 0.143
Forelimb lower leg 0.100
Hind limb upper leg 0.118
Hind limb lower leg 0.100
Ball foot radius 0.015

Table 3.2 – Pleurobot segment dimensions

3.3.2 Limbs

The hind limb of the salamander consists of two main segments (Fig. 3.1), the thigh and the

crus. In Karakasiliotis et al. 2012 we described those two segments as a four DOF manipulator

with three DOFs at the hip joint and one at the knee. The analysis of the kinematics suggested

that all four DOFs are used during locomotion and they were therefore all included in Pleu-

robot. Adjoining the two main segments is the foot, which has a highly complex structure with

compliant elements as well as bones. While in our future work we plan to use Pleurobot to
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demonstrate the principles of sprawling locomotion with biomimetic feet, we consider feet

here as simple point-contact elements. We discuss the effects of simplifying the foot structure

in the experimental validation of Pleurobot (section 3.5). In all walking trials salamanders

clearly showed foot ground contact at the metatarsals, i.e., at the distal region of the foot. For

that reason, Pleurobot’s ball-foot element was placed at the mean distance of the metatarsus

to the animal’s knee during locomotion.

Consequently, the robot’s limbs consist of a two-link system with the hip approximated by 3

consecutive DOFs and a 1-axis knee joint. Pleurobot’s forelimbs and hind limbs follow the

same design methodology while their corresponding element sizes were measured and scaled

up from the animal’s CT-scan. Excluding the feet and some possible structural elasticities in

the animal’s joints, it is reasonable to say that Pleurobot’s limbs are a closely scaled up replica

of the animal’s limbs.

3.3.3 Hardware implementation

For the actuation, we chose Dynamixel MX-64R servomotors from ROBOTIS, Inc. as they offer

a good trade-off featuring a fairly high torque-mass ratio (7.3 Nm of stall torque at 126 g), max

no-load speed of 78 rpm, and positional accuracy (0.088◦ resolution) at a reasonable price.

The locomotion controller for replicating the animal gaits is implemented on an Intel Atom

1.6 GHz-based computer provided by ROBOTIS (DW-EK01) placed inside the robot head. The

same hardware kit handles the low level communication with the servomotors through an

RS-485 bus at 1 Mbps. We were able to send position commands to the servomotors at a rate of

1 kHz. The entire mechanical structure of Pleurobot is 3D printed (Laser sintering) using three

variations of polyamide 12 (plastic): the skull (head) is made out of natural polyamide, the

spinal segments are made out of glass filled polyamide and the limb segments out of aluminum

filled polyamide. The two main meta-materials were used because of their increased strength

compared to natural polyamide, and also because of the higher density than water, which is

important in order for the robot to be able to be sufficiently submerged in water. The ball-

shaped feet are made out of silicone rubber molded around a 3D printed spherical structure

attached to steel rods which act as the lower leg of each limb. The robot dimensions and

specifications are summarized in Table 3.2 and Table S1.

In the swimming experiments, the robot, including the passive tail fin, was entirely covered by

means of two protective suits (Fig. 3.3D). The outer suit was made of a Lycra®Nylon fabric

laminated with a 1mm layer of polyurethane (PU) that ensures waterproofness. Seams were

sealed by taping the same fabric from the inside (PU-PU connection). A waterproof zipper

(TIZIP, MasterSeal 10, 500 mbar pressure proof) was used to open and close the suit. The

purpose of the inner suit (made of soft fabric) was to protect the sensitive PU layer from sharp

edges on the robot. In order to allow limb interaction with the environment also in water, the

feet had to be kept outside the suit. Therefore, the steel rods at the crus/antebrachium were

guided through a cylindrical silicone rubber piece that was glued inside the suit at each of the

95



Chapter 3. Bimodal Locomotion in Water and on Land

limbs. The press fit between silicone and the rod ensures waterproofness. To provide power

to the robot, we used IP67, Binder 693 series, 4-pole plug/socket connectors, as part of a 5 m

tether (There is also the option to have a tether-less setup with a battery pack).

The swimming suit notably increases the volume of the robot, which increases the buoyancy.

Therefore, the robot is not fully submerged in water. On the positive side this adds a stabilizing

property (no rolling), however we noticed that lateral movement of the body was increased

substantially, especially in the rostral part. Consequently, for the experiments we added a

weight of 1.5 kg at the head as well as 1 kg at the level of the hind girdle. Furthermore, the air

inside the suit was vacuumed to decrease the overall volume as much as possible.

3.3.4 Transformation to joint angles for Pleurobot

Finally, given the introduced design methodology, it is possible to impose kinematics recorded

from the animal on Pleurobot. We will show in section 3.5 how this together with a careful scal-

ing analysis (section 3.4) can be used to validate our design. To transfer the cineradiographic

movement recordings to Pleurobot we solve two optimization problems related to the spinal

and limb joints, respectively. Notice that in this optimization problem as opposed to the one

for the robot design, the segment lengths are given and we solve for the joint angles. Motion

sequences from the 3D reconstruction of the cineradiographic recordings contained between

12 and 190 time steps.

To compute the corresponding spinal joint angles for Pleurobot, the trunk and tail postures of

P. waltl were first approximated using piecewise linear segments, where the length of each

segment was given from the spinal segmentation on Pleurobot. Subsequently, at each time

instance within a particular movement cycle (with 40 fps for swimming and 80 fps for walking),

we solved an optimization problem as follows:

{xi+1, yi+1} = min
xi+1,yi+1

(∫xi+1

xi

∣∣∣∣yt (x)− (yi + yi+1 − yi

xi+1 −xi
(x −xi ))

∣∣∣∣d x

)
(3.1)

In this planar problem yt (x) describes the target posture in Cartesian coordinates. xi and

yi denote coordinate points corresponding to the i-th joint on Pleurobot. As shown in the

equation above, the optimization problems are solved sequentially, starting from the first

(head) until the last joint (tail). The problem was solved using the unconstrained nonlinear

optimization function fminsearch from Matlab, with default parameters. The solutions provide

us with a piecewise linear approximation of the posture yt (x). Finally, the joint angles can be

extracted by computing the relative angles between segments.

Related to the limb joint angles, the postures on P. waltl were identified by means of 5 tracking

points located at the hip, the femur-crus joint, the crus-tarsus joint, the metatarsus-phalanges

joint and the mid-phalanx tip (and corresponding points in the forelegs). The postures (again
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at each time instance) had to be approximated by the segmented robot limbs, where the first

segment represents femur/humerus and the second segment the connection from elbow/knee

to the metatarsus. In order to compute the corresponding yaw, pitch, roll and elbow/knee

angle we set up an inverse kinematics optimization problem for each posture:

ϕ= min
ϕ

(
|pd1 −p1(ϕ)|+ |pd2 −p2(ϕ)|

)
(3.2)

ϕ describes the joint angles, pd1 and pd2 indicate the 3D positions of shoulder/hip and

elbow/knee joints on P. waltl and the corresponding forward kinematics on Pleurobot are

described by p1(ϕ) and p2(ϕ).

97



Chapter 3. Bimodal Locomotion in Water and on Land

3.4 Dynamical Scaling

Ideally our robot should have a similar size as its biological counterpart. However, due to the

unavailability of powerful miniature actuators at this stage in technology and our particular

choice of servomotors, we are dealing with a robot that is geometrically scaled up by a factor

of 8.6 with respect to P. waltl. Similarly to other studies (Dickinson et al., 1999; Taylor et al.,

2003; Spence, 2009), it was therefore important to perform a dynamical scaling study so that

the robot could faithfully be used to investigate locomotion of the salamander, in aquatic and

terrestrial environments. This is necessary to ensure that the physical interactions with the

environment are dynamically equivalent, for instance in terms of hydrodynamics regimes.

In this context, an important question was, how the robot should apply movements at speeds

and while exerting forces that are comparable to the salamander. Based on the proposed

design methodology, relative lengths of different body elements (geometric scaling) as well as

the range of joint angles remained the same as for P. waltl (except for a 1.67 times increased

robot head size, due to the placement of the control board). As a consequence it is also ensured

that the robot operates in the same range of movements. To also incorporate the speeds and

forces we used the criterion for dynamic similarity as defined by Alexander (2003):

mv2

F l
= const . (3.3)

Where m denotes the total body mass, v the forward moving speed and l the characteristic

length of the robot. F describes the main forces that act on the system while moving. Dynamic

similarity has been used to compare different types of gaits across animals as well as to analyze

for instance the relation of mass and locomotion speed in animals of different sizes (Alexander,

1984; Gatesy and Biewener, 1991; Moretto et al., 1996). Let g , ρ, μ, f be the gravitational

acceleration, fluid density, dynamic viscosity and the frequency, respectively, then the Froude

(F r = v/
√

g l ), Reynolds (Re = ρl v/μ) and Strouhal (St = f l /v) numbers, are non-dimensional

quantities that can be obtained from the dynamic similarity criterion (equation 3.3). The

Froude number is typically used to compare walking gaits, where gravitational forces are

dominant (Holmes et al., 2006).

By definition the Reynolds number determines the type of interaction forces with mainly

viscous forces at low Re numbers and inertial forces at high Re numbers. The Re number was

measured between 1.45 ·104 to 7.81 ·104 in the experiments with P. waltl and between 1.97 ·105

and 4.48 ·105 in our swimming experiments for Pleurobot. These high numbers indicate that

both animal and robot are in a regime where inertial forces have a greater influence compared

to viscous forces. Furthermore, it is important to notice that in the particular case of P. waltl

(as well as Pleurobot) we are analyzing swimming at the water surface. Surface swimming

is defined as swimming at a depth that is smaller than one body length (Burcher and Rydill,

1998; Moonesun et al., 2013). It is considered a special case as “drag is increased substantially
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due to the formation of waves ” (Johansson and Lauder, 2004) and the wave resistance force is

a function of the Fr number (Hoerner, 1965). Therefore we can expect to have dynamically

similar behavior at similar Fr numbers which is also supported by common practice in naval

architecture (Gillmer, 2012), where the Fr number is used to create dynamically similar models

of ships. Finally, related to periodic movements, the Strouhal number can be used to analyze

movements at different frequencies. Intuitively, this measure covers observations in which

smaller animals generally tend to move at much higher frequencies than bigger animals

(Heglund et al., 1974).

Based on the Fr and St numbers, which should be the same for the robot and the animal,

we use the subsequent scaling law to determine the corresponding speeds and locomotion

frequencies on the robot in order to conserve dynamic similarity with P. waltl:

vr obot =
√

lr obot

lsal amander
vsal amander (3.4)

fr obot =
√

lsal amander

lr obot
fsal amander (3.5)

Accordingly, given that the ratio lr obot
lsal amander

is 8.6, we should be able to obtain dynamically

similar behavior by scaling the salamander speeds by 2.94 and frequencies by 0.34 for walking

and swimming.
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3.5 Experimental validation of Pleurobot

To verify the design of our robot and to quantify the locomotor abilities with respect to P. waltl

we carried out a series of experiments and compared kinematics as well as dynamics. For this,

we replicated walking, swimming, and aquatic stepping gaits by replaying the precise body

posture sequences that were obtained from cineradiographic recordings. Of course by design

Pleurobot is made to incorporate all the necessary DOFs in order to replay fairly closely the

joint kinematics for the three recorded gaits. But rather than focusing on the joint kinematics

themselves, we ask the question of how the robot locomotes using those (i.e. how it progresses

from one place to another and, more generally, how its orientation changes in 3D space).

The aims of the following experiments are: 1) to demonstrate that we can reproduce the two

basic behaviors of the salamander so well that it has the potential to reproduce more complex

locomotor behaviors if these are recorded from the animal, and 2) to validate whether replaying

kinematics recorded from the animal, provided the scaling factors, can yield behaviors (i.e.,

Cartesian kinematics and ground reaction forces) comparable to the salamander’s. Especially

the second point will help validating future experiments in which Pleurobot is driven by a

neuronal model instead of prerecorded animal kinematics.

3.5.1 Experimental setup for robot experiments

In order to capture the movements for the walking experiments of the robot we collected

motion capture data (MOCAP). A total of 14 MOCAP cameras (Optitrack s250e, Naturalpoint,

Inc. 2011) together with 13 infrared reflective markers (11mm) were used for this purpose. The

markers were positioned at the each of the spinal joints (10 markers), additionally a rigid body

marker (3 markers) was fixed on the head. Movements were recorded at 240 frames per second.

Marker trajectories were processed in Arena (Naturalpoint, Inc. 2011) and Matlab (Matlab

2014b, MathWorks, Inc.). We conducted 5 experiments for frequencies of 0.1, 0.2, 0.3,.0.4, 0.5

Hz, where each experiment included 6 trials which were all part of the overall gait analysis.

The Swimming experiments were carried out in a pool with dimensions 6 m x 1.5 m with a

water level of 18-22 cm. Movements were recorded with a camera (Canon PowerShot S120),

which was mounted at a height of 2 meters over the pool at a frame rate of 30 frames per second

and a resolution of 1920 x 1080. In addition we used a video tracking system as described

in Crespi and Ijspeert (2008) to track an LED mounted on the robot. During the swimming

experiments with the robot, the limbs were folded against the body. The forelimbs were folded

underneath the body by positioning the humerus pointing backwards and parallel to the trunk,

and fully flexing the elbow joint (as opposed to P. waltl, which extends the elbow joint). The

hind limbs were also folded underneath the body in a way that is qualitatively similar to P.

waltl, where the femur was positioned pointing backwards at about an angle of 45 degrees

with respect to the trunk. The crus was extended at about 135 degrees (45 degrees from full

extension). We chose for two reasons not to use the original limb trajectories during swimming

as in P. waltl. First, constraints from the suit did not allow us to exactly reproduce the limb
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kinematics in swimming, as the tension caused by the stretched material would have restricted

the undulatory movements along the trunk. Second, using a fixed limb posture made the

experiments more repeatable (same drag coefficient for same body shape) and allowed us to

investigate and compare the movements along the spinal joints under same conditions for

different swimming gaits. In any case, the limb movements of P. waltl during swimming are

minimal. For the swimming experiments we considered two different animal gaits, which

were tested at 4 different frequencies. To show the repeatability of the experiments, 3 trials

each were performed.

3.5.2 Characterization of locomotion

To compare the movements between Pleurobot and P. waltl we investigated their lateral

displacements and forward velocities. These quantities were measured with reference to the

line of locomotion which was computed with the following linear regression:

{mk , qk } = min
mk ,qk

( ∑
i∈Pk

∣∣yi −mk xi −qk
∣∣2

)
(3.6)

, where k denotes the k-th cycle and mk , qk are the resulting slope and offset of the regression.

Pk describes the set of all tracked spinal points with coordinates (xi , yi ) in the k-th cycle. The

robot lateral displacement for walking was computed based on the MOCAP recordings and

from video data for the swimming gaits. In the case of swimming, characteristic midline

points were computed in two steps. First, a curve was fitted (spline interpolation) through

21 manually selected points along the hypothetical midline of the body. Starting point of the

midline was defined as the tip of the head and the end point was defined as the end of the

tail. The midline was then resampled to 13 equidistant points. For P. waltl the corresponding

measure was computed based on the cineradiographic tracking data.

Forward velocity of the robot was computed in steady state, which was reached starting from

the second locomotion cycle for walking and starting from the third locomotion cycle for

swimming. The corresponding forward displacement over time was then averaged over two

cycles for walking and three cycles for swimming. The rigid body marker and the LED marker

were used as reference markers, respectively.

Besides the above mentioned kinematic measures, we furthermore recorded ground reaction

forces (GRFs) on the robot for part of the validation. In this context forces in three dimensions

were recorded using force plates (type 9260AA3, Kistler, 2011) at a sampling frequency of 1 kHz.

The GRFs were measured for both front and hind limbs the hind limbs. To select appropriate

experimental runs for the analysis, video recordings were obtained during the measurements.

Only experiments, in which the robot was walking straight and only a single foot was touching

a force plate were taken into account. Finally, seven experimental runs for the front limbs

and eight experimental runs for the hind limbs were selected for the analysis. The data was

processed using Matlab (Matlab 2014b). The stance phases within a cycle were extracted using
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the normal force profile for the front limbs (force indicating stance, no force indicating swing).

For the hind limbs, as a matter of fact in many experiments the foot was slightly touching

the ground when protracting. Therefore, the stance phase for the hind limbs was identified

using the anteroposterior as well as the normal force profile. As such, the beginning of stance

was identified as soon as propulsive force (retraction) was registered, while the end of stance

(lift off) was defined when the normal force dropped to zero. This is consistent with the force

measurements in (58), where propulsive stance also was analysed. Furthermore, forces were

smoothed using a moving average filter (N = 100, over/under smoothing was checked visually).

For the analysis the stance duration was normalized from 0 to 100% in order to compare the

different experiments. All the forces were expressed with respect to the percentage of body

weight, which facilitates the comparison to the salamander.

3.5.3 Walking

During ground locomotion, P. waltl typically uses two types of gaits, the walking trot and the

lateral sequence walk (Delvolvé et al., 1997; Karakasiliotis et al., 2012). Both gaits involve trunk

and tail movements that oscillate with an S-shaped standing wave. When well coordinated

with the limbs, this allows the animal to maximize its stride length. As part of the validation we

replicated an example lateral sequence walking gait on Pleurobot and discovered interesting

similarities (Fig. 3.4).

Based on the scaling laws introduced in section 3.4, it can be shown that the stride length,

which is defined as the forward speed normalized by the product of frequency and character-

istic length, is a necessary quantity to be matched in order for two motions to be dynamically

similar. The resulting stride lengths were measured in the range of 0.55 to 0.74 snout-vent

length (SVL) of several repeated experiments at different frequencies on the robot (Fig. 3.5)

and from 0.7 to 0.84 SVL for P. waltl. In this range we achieve the best matches at 0.2 Hz

(7.8% error) and 0.3 Hz (3% error) with respect to the animal gait, which corresponds to a

frequency of 0.19 Hz when dynamically scaled. The lower stride lengths can be expected

and are in accordance with the abstraction of the ball-shaped feet, as propulsive power from

the phalanges is not included. In addition to forward movement we also analyzed lateral

displacement patterns (Inset in Fig. 3.5) as a mean to quantify characteristics perpendicular

to the movement direction.

We found that the profile with the local minima at the two girdles could be reproduced

indicating that the trunk oscillations comply with P. waltl. The smaller lateral displacement in

the trunk is a result of the slightly different oscillation pattern along the line of locomotion,

where the rostral part of the robot tends to oscillate more than that of the salamander (Fig. 3.4,

lateral movement of the neck joint). Therefore the lateral oscillation span of the trunk along

the line of locomotion is reduced

To quantify further similarities between the Pleurobot and P. waltl we compared the footfall

patterns. For this purpose the absolute contact force at each individual foot was measured
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using force sensors (Optoforce, OMD-D30 3D Force Sensor). A threshold of 7 N ( 10% Body

weight) was used to discriminate between stance and swing. At the same time the limb

kinematics were recorded via the joint encoders of the servomotors, which provided joint

angle measurements at a sampling time of 12 ms with a resolution of 0.088◦. As shown in

Fig. 3.6 the forelimb footfalls can be accurately reproduced on the robot, showing very similar

stance and swing durations as well as timings. The hind limbs of the robot show shorter stance

durations than P. waltl (left hind: robot 53.38±0.99% (mean ± s.d .), P. waltl 78.64±5.08%,

p = 2.84 · 10−7, μr obot > μani mal
2 ; right hind: robot 64.30± 0.47%, P. waltl 80.06± 4.29%,

p = 9.40 ·10−8, μr obot > μani mal ), which is expected because of the following reasons: the

ball-shaped foot on Pleurobot represents the corresponding metatarsus in the animal and

the phalanges are therefore not modeled on the robot. This is especially noticeable in the

hind limbs, which have longer phalanges. As a result the hind limbs on the robot show

systematically shorter stance durations, despite similar touch-down timings.

2we carried out standard t-tests with α = 0.05 throughout this study, μi > μk indicates the null-hypothesis.
p < 0.05 indicates that the null-hypothesis should be rejected.
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0.75 SVL 0.68 SVL

A B C D

220 ms 625 ms

Figure 3.4 – Comparison of walking gaits from P. waltl and Pleurobot. The left side shows
side view (A) and top view (B) of a P. waltl walking gait cycle at 0.57 Hz, obtained from
cineradiographic recordings. The red filled circles indicate stance phase and the white filled
circles indicate swing. The right side shows top view (C) and side view (D) of Pleurobot
replaying the corresponding P. waltl gait at 0.2 Hz, respecting dynamic scaling. The fine
dashed lines in the top views indicate the line of locomotion, computed as linear regression of
all the midline points within the gait cycle. Stride lengths are indicated by means of snout-vent
length (SVL).
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Figure 3.5 – Similarities in stride length and lateral displacement for walking. Stride length
for walking was defined as forward speed divided by frequency normalized by snout-vent
length. Data from P. waltl in blue and from Pleurobot are indicated in red. The Pleurobot
data is represented as mean and standard deviation of 6 runs at frequencies 0.1, 0.2, 0.3, 0.4,
0.5 Hz. The frequencies of observed gaits from P. waltl are scaled based on the scaling laws
for dynamic similarity with a factor of 0.34. The blue triangle represents the particular gait
that was replayed on Pleurobot, blue disks represent other gaits from P. waltl. Inset: Lateral
displacement for terrestrial stepping computed by means of maximal displacement from the
line of locomotion. The blue shaded area shows mean (dashed line) and standard deviation
of 23 cycles obtained from P. waltl. The blue solid line represents the particular P. waltl gait
that was replayed. The red shaded area shows mean and standard deviation from 6 runs of the
particular gait replayed on Pleurobot at 0.2 Hz.
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Figure 3.6 – Similarities in limb kinematics and footfall patterns for walking. The upper two
panel rows represent Hildebrand diagrams showing stance (black) and swing (white) phases
within a normalized gait cycle. IHL = ipsilateral hind limb, IFL = ipsilateral forelimb, CFL
= contralateral forelimb, CHL = contralateral hind limb. The left side shows results for the
hind limbs and the right side for forelimbs. In the other panels blue shaded areas represent
mean and standard deviation of joint angle trajectories for P. waltl (23 cycles), blue solid
lines indicates a particular salamander gait. Red shaded areas indicate mean (solid line) and
standard deviation of the particular replayed gait on Pleurobot (5 gait cycles at 0.2 Hz, based
on a scaling factor of 0.34 respecting dynamic similarity).
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3.5.4 Swimming

Due to its amphibious nature, P. waltl can not only exploit gaits in terrestrial but also in aquatic

environments. Two major steady state gaits can be observed: swimming and aquatic stepping.

The latter is predominantly used when the animal is able to reach the aquatic ground with

its limbs. It resembles a trotting pattern in which short power strokes of the diagonal limb

pairs in coordination with spinal undulations lead to forward propulsion. Here we focus on

swimming and ask whether we can replay gaits in the same way as we do for walking.

P. waltl swims using an anguilliform swimming gait in which a traveling wave of body undula-

tion is propagated from head to tail (Ijspeert et al., 2007), (Fig. 3.7, left). The outcome in terms

of forward propulsion for replayed salmander swimming gaits on the robot is more difficult to

predict than for walking, as the dominant interaction forces (drag) are hard to estimate for

a body with such a complex geometry. Nevertheless, the animal swimming gaits could be

reproduced on the Pleurobot as shown in Fig. 3.7, demonstrating similar forward progression

and overall attitude between animal and robot along the line of locomotion. P. waltl showed a

great variety of stride lengths across different recorded gaits ranging from 0.17 BL (BL: Body

length) up to 0.5 BL. Similar to the Axolotl (Ambystoma mexicanum), also an anguilliform

swimmer, these stride lengths are achieved not only by changing the frequency but also by

changing the amplitude profile along the body (D’Août and Aerts, 1997). In our experiments

we observed for example significantly increased tail amplitudes in gaits with a higher resulting

stride length.

When replicating swimming gaits with large amplitudes and high frequencies we observed

large tracking errors (Appendix C, Fig. C.1). This is related to the torque and speed limits of

the motors, which result in a limited control bandwidth. Therefore, we focused our analysis

on gaits with smaller stride lengths. Subsequently, the reproduced gaits (Fig. 3.8) resulted in a

similar range of stride lengths as the corresponding from the salamander (robot: 0.21±0.05BL

(mean ± s.d .); salamander: 0.22±0.04BL; p = 0.55, μr obot =μsal am ).

Note that the decrease of stride length with frequency in the robot is likely due to an increase

of tracking errors that prevent the exact replication of the gaits at higher frequencies (Appendix

C, Fig. C.1). This explains why the stride lengths are smaller in the robot at frequencies of 1.18

Hz and 1.28 Hz (blue square and triangle in Fig. 3.8) that would be required for both animal

gaits based on the scaling analysis.

We were able to obtain a very similar lateral displacement profile (Inset in Fig. 3.8) showing in-

creasing values from head to tail. Indicating that on the robot, as on its biological counterpart,

the lateral movement of the rostral part is kept minimal.
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Figure 3.7 – Comparison of swimming gaits from P. waltl and Pleurobot. (A) shows a P. waltl
swimming gait cycle at 3.8 Hz from top to bottom divided in 9 snapshots. (B) shows the same
gait replayed on Pleurobot at 0.3 Hz. The bold dotted line indicates the midline of robot and
animal. The horizontal fine dotted lines indicate the line of locomotion, computed with a
linear regression of all the midline points within a gait cycle.
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Figure 3.8 – Similarities in stride length and lateral displacement for swimming. Stride
length for swimming was defined as forward speed divided by the frequency and normalized
the body length. Data from P. waltl is shown in blue and from Pleurobot in red. The Pleurobot
data is represented as mean and standard deviation of 3 runs each at frequencies 0.3, 0.6, 0.9,
1.2 Hz. The observed gait frequencies from P. waltl are scaled based on the scaling laws with a
factor of 0.34. The blue triangle and square represent the particular gaits that were replayed
on Pleurobot represented as red triangles and squares, respectively. The blue circles show two
additional trials from P. waltl. Inset: Lateral displacement for swimming computed by means
of maximal displacement from the line of locomotion. The blue shaded area shows mean
(dashed line) and standard deviation of 20 cycles obtained from P. waltl. The blue solid line
represents a particular P. waltl gait that was replayed. The red shaded area is showing mean
and standard deviation from 10 runs of the particular gait replayed on Pleurobot at 0.3 Hz.
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3.5.5 Ground reaction forces: comparison between salamanders and Pleurobot

We finally asked how the interaction forces between the robot and the environment along with

the kinematics relate to P. waltl and quantified them by measuring ground reaction forces

(GRFs) for a walking gait. Based on the scaling law for speed, equation (1) (dynamic similarity)

reduces to the ratio of body weight and the experienced external force. Therefore, we can

expect dynamic similarity between Pleurobot and P. waltl when the external forces (GRFs)

normalized by the body weight are similar.

GRF measurements obtained for Pleurobot were compared to data from Kawano and Blob

reported for Ambystoma tigrinum (Kawano and Blob, 2013), since measurements were not

available for P. waltl. Compared to P. waltl (mean stride length: 0.75 SVL) similar stride lengths

were observed for the Ambystoma tigrinum (mean stride length: 0.68 SVL for forelimbs, 0.73

SVL for hind limbs, SVL: 0.1m, BL: 0.187m, (Kawano and Blob, 2013)). The results of the

GRF analysis are presented in Fig. 3.9, where the salamander shows characteristic normal

peak forces at 60.2% stance for the front limbs and at 24.7% of the stance phase for the

hind limbs. It indicates that the front limbs are making a significant effort to push the body

weight off the ground in the second half of the stance whereas the hind limbs have to bear

most of the vertical load in the beginning of the stance phase. Experiments of walking with

the robot showed qualitatively similar normal force profiles, where normal forces peaked at

(61.2±1.3 % (mean±s.d .), p = 0.1, μr obot =μani mal ) for forelimbs and (27.3±1.5 %, p = 0.002,

μr obot = μani mal
3) for hind limbs. Furthermore, the Ambystoma tigrinum systematically

showed GRFs in medial direction (front: −0.047±0.011 %BW (mean ± s.d .), p = 1, μ< 0; hind:

−0.042±0.02 %BW, p = 1, μ < 0) (i.e. external forces with respect to the salamander point

medially for both forelimbs and hind limbs), suggesting that the salamander pushes its legs

laterally from the body during stance. These characteristics are partially reproduced by the

forelimbs of the robot, which in average also produce a positive lateral push (−0.035±0.043

%BW), but not for the hind limbs (−0.003± 0.025 %BW) where a mostly neutral trend is

observed.

Finally, the data from Kawano and Blob (2013) shows that most of the propulsion in the

salamander is generated by its hind limbs indicated by the anteroposterior forces, which are

close to zero (−0.011±0.015 %BW) for the front limbs and systematically positive (propulsive)

for the hind limbs (0.097±0.042 %BW, p = 1, μ> 0). We could find the same characteristics

for the corresponding robot gait (front: −0.007±0.040 %BW; hind: 0.077±0.058 %BW, p = 1,

μ> 0), although showing larger fluctuations in force magnitude in the front limbs.

3notice that the values differ statistically, however there is a qualitative similarity
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Figure 3.9 – Comparison of ground reaction forces (GRFs) in the Ambystoma tigrinum and
Pleurobot. Hind (left side) and front (right side) limb GRFs were measured and analysed with
respect to normal, sideways and forward contribution. Red shaded areas represent Pleurobot
experiments (7 cycles for forelimbs and 8 cycles for hind limbs) with mean and standard
deviation. The blue solid lines indicate mean data from the Ambystoma tigrinum (58). The
forces were normalized by means of body weight and only propulsive stance was considered
for the analysis. The dashed line indicates zero forces.
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3.6 Discussion

We presented a possible way of designing biorobots in a systematic way and outlined the

design procedure, which is based on high-speed cineradiographic recordings and numerical

optimization, along with kinematic and dynamic validation respecting physics scaling laws.

We used the approach to construct Pleurobot, a salamander-like robot with 27 DOFs that can

emulate the walking and swimming gaits of the salamander P. waltl.

It could be seen as trivial that Pleurobot’s locomotion matches that of the real salamander since

the robot replays the sequence of animal postures. Moving a robot with predefined joint angle

trajectories is indeed trivial in the sense that it will, given a good controller and strong actuators,

produce the expected robot postures. However, unlike automatons in amusement parks that

are solidly fixed to the ground, Pleurobot’s displacements in 3D space are the results of

(complex) physical interactions between the robot internal movements and the environment.

The robot must be properly designed such that the interaction forces match those of the animal

(Aguilar et al., 2015). For instance, during ground locomotion, inaccurate mass distribution

could lead to incorrect body orientations and incorrect contacts to the ground (e.g. a limb not

touching the ground when it should) and hence different locomotor patterns and locomotion

speeds. Similarly, the swimming of the robot could be very different from that of the animal if

geometrical and dynamical properties of the robot had not been properly adjusted with the

dynamic scaling. The indirect (stride lengths and lateral displacements) and direct (ground

reaction forces) comparisons between robot and animal presented here indicate that the

interaction dynamics closely correspond.

Our approach results in a physical tool that provides an interface between computational

models and the environment on which rich motor skills can be tested in the future. The

success of our approach is of course tested with behaviors with slow dynamics like the ones

typically seen in salamanders and in particular P. waltl. In principle it could be applied to

the design of other types of robots that match different animals and modes of locomotion

provided that the model is able to capture the dynamic conditions. Cineradiography allows

one to observe bone movements, from which detailed and accurate kinematic information

can be extracted. This allows one to identify locomotion-relevant joints (active or passive).

Compared to motion capture based on markers and cameras, it prevents possible problems

of movements of surface markers due to motion of soft tissues (Miranda et al., 2013), and of

occlusions. It has however the disadvantages that more work is required to extract the 3D

data frame by frame from the biplanar images (either manually, like in our case, or through

machine vision algorithms), and that the recording volume is limited.

In our case with P. waltl, optimization based on kinematic data was then sufficient to find a

good robot design. We were able to replay gaits on the robot without modulating gaits based

on feedback. For other animals and other modes of locomotion, similar steps could be taken

but additional mechanical design and control steps could be necessary. For instance, it might

be needed to use remote actuation with cables in order to obtain the right mass-distribution
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as for the cat-like robot Cheetah-Cub (Spröwitz et al., 2013). Different gaits on other robots

might also need explicit feedback control (e.g. for balance), whereas we are benefiting from

the intrinsically stable sprawling posture of the salamander. The choice of servomotors was

convenient in our design of a salamander-like robot. It highly decreases the time and cost

to build and transform. However, more generally, other actuators (e.g. with low gear ratio,

passive elements, etc.) could be used depending on the type of locomotion and the questions

that have to be addressed.

We furthermore applied the scaling laws that have to be respected in order to obtain dynamic

similarity between the robot and the animal. For the salamander it was shown that the Froude

number had to be used for walking and surface swimming. In other cases such as e.g. deeper

3D swimming (depth larger than a body length), the Reynolds number should be used.

The analysis of footfall patterns and the aquatic stepping experiments revealed limitations in

the current design of Pleurobot with respect to its biological counterpart P. waltl, indicating

that the role of the phalanges is important for stepping locomotion (in terrestrial and aquatic

environments). The abstraction of the feet to single contact points is an important simplifica-

tion which makes Pleurobot less of an anchor than the original aim. However, future versions

will focus on integrating as many aspects of the foot as possible given their complexity. Fur-

thermore, actuator limitations in size and power currently restrict the reproduction of some

dynamically similar swimming motion, especially at higher frequencies and stride lengths.

However, our approach shows promising results for the reproduction of walking patterns of

the salamander P. waltl that conserve respective characteristics such as stride length, footfall

patterns as well as similar ground reaction forces.

One aspect that we did not address is internal dynamics (Ding et al., 2013), i.e. how internal

forces and torques generate body deformations (i.e. postures). In the animal, body deforma-

tions are due to sets of muscles acting on the joints, while in the robot they are due to torques

produced by the PD controllers of the servomotors. There are some similarities between the

two types of actuation, since with the proportional P and derivative D gains elasticity and

damping can be adjusted to some extent. Nonetheless, there are also important differences:

(i) antagonist muscles allow the change of stiffness, and (ii) multi-articular muscles act on

more than one joint. Muscle properties can be simulated if the gearboxes are back-drivable

(or torque sensors with very fast control loops are available) and when the motors are used

to control direct torque output. Given motors with these properties, this will allow us in the

future to investigate the role of muscle properties in locomotion and to address questions re-

lated to locomotion efficiency (for instance how to obtain a given speed with minimal muscle

activation, i.e. minimal metabolic cost). There is also the possibility to add elastic elements

in series (Tsagarakis et al., 2013; Spröwitz et al., 2013; Pratt and Williamson, 1995) to provide

mechanical elasticity and energy restoration.

In the future, we envision Pleurobot as a useful tool for neuroscience. Locomotion is the result

of interaction of many components, and a physical model like Pleurobot can provide the
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interface between, on one hand, computational models of the nervous system and of muscles,

and, on the other hand, physical interactions with terrestrial and aquatic environments. As a

realistic physical model of the salamander capable of emulating basic and complex behaviors,

it can serve to test hypotheses about the interactions between the different components

underlying locomotion, in particular the interactions between descending modulation, central

pattern generation, sensory inputs and interaction forces from the environment. Compared

to our previous robots and previous studies, the robot will for instance allow us to investigate

(i) the organization of the limb CPGs with multiple neuronal oscillators (similarly to what has

been found in the salamander (Cheng et al., 1998)), (ii) the effect of adding more descending

pathways to our spinal cord models, and (iii) the generation of a larger variety of motor

behaviors such as turning, walking backwards, scratching, paddling, etc.

Obviously, it is by performing these future studies that we will really validate the design

methodology presented in this article and its usefulness for neuroscience. It is possible

that additional design iterations might be needed (for instance with the addition of more

degrees of freedom, the replacement of motors with stronger ones, the use of cables for remote

actuation, the addition of sensors, etc), but the current robot already opens the door to many

investigations.

Furthermore, other fields, including functional morphology, paleontology and field robotics,

might benefit from the robot or its design methodology. In terms of robotics, an amphibious

salamander-like robot capable of locomotion in different environments could find useful

applications for inspection or search-and-rescue operations.
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3.7 Conclusion

In summary, we proposed a design method to create physical robotic models which can be

used to investigate locomotion. We showed the importance of dynamical scaling for this

model and the corresponding movement patterns in a bimodal environment. Validation in

walking and swimming experiments showed that the imposed body movements resulted in

similar locomotion performances compared to the biological counterpart. Measurements of

the reaction forces during walking revealed similar corresponding characteristics.

Nevertheless, we encountered also limitations in locomotor performance (e.g. for higher fre-

quency swimming, or lateral ground reaction forces during walking), which is highly expected

as our approach to control the physical model was very simple by just imposing overall body

postures. No control link (sensors!) between the environment and the pattern generation

was implemented yet, which we showed in the previous chapter, can greatly help to improve

locomotion. Together with this, ideally, a physical model as presented here can be used to test

future mechanisms for movement generation (chapter 2), that explain how these movement

patterns can be generated and adapted with respect to the environment.
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4 Conclusion

We investigated and analyzed various types of locomotion in the course of this thesis. The

principal questions focused on the role and influence of the environment on how movements

emerge and movement patterns are generated.

In the first chapter of this thesis we had a closer look at insect walking and asked to what

extent the environment shapes fast gaits for six-legged locomotion. An in-silico model of

Drosophila was created and enabled to explore a variety of inter-leg coordination patterns.

Using a Particle Swarm Optimization we derived speed-optimal gait patterns in different

environmental conditions. Environmental constraints for fast climbing movements, which

are adhesion to the ground and walking against gravity, resulted in the tripod gait as optimal

solution. Relaxing those environmental constraints to fast walking on flat ground, where

adhesion is not required and gravity is acting normally to the moving direction, a different

optimal gait pattern was found, namely a bipod gait.

The second chapter investigated environmental influences on a different level. Rather than

focusing on the performance of a variety of gait patterns in different environmental condi-

tions, we asked which particular mechanisms (feedfoward vs feedback control) for pattern

generation are actually necessary to exploit a specific given environment. This was explored

for undulatory swimming, where we introduced pressure sensing as the means to obtain a

genuine link between movement generation and resulting reaction forces with the surround-

ing water. Using local sensory pressure feedback loops we proposed three distinct control

paradigms. They revealed how the sensor link to the environment could 1) adapt traveling

wave patterns towards faster and more energy-efficient locomotion, 2) could be used to estab-

lish coordinated traveling waves in a decentralized local control scheme and 3) could even be

used as a means to generate purely sensory-driven rhythms for undulatory locomotion. The

findings are intriguing from a biological point of view. It indicates that there are two redundant

mechanisms for generating coordinated wave patterns: central coupling and sensory feedback.

This implies a good robustness of the locomotor system, for instance, to handle lesions along

the spinal cord.
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Chapter 3 investigated the role of real-world models that in contrast to computational sim-

ulated models have a great potential to emulate realistic reaction forces between body and

environment. Physical models can be placed in the real environment and do not rely on

models of reaction forces. In the example of the salamander-like robot Pleurobot, we high-

lighted challenges, as the physical model has to respect dynamical scaling constraints in order

to be a valid tool for investigations of locomotion. Based on our design methodology and

experiments in terrestrial and aquatic environments we showed that the model can emulate

similar characteristics in terms of overall locomotion (stride lengths, footfall patterns) and

reaction forces on ground.

A central aspect of the presented work has been the use of mathematical models and robots

to investigate locomotion. As we showed, they proved to be very fruitful to understand and

discover new locomotion-relevant mechanisms. Traditional methods such as neurophysio-

logical or biomechanical experiments provide detailed measurements of the nervous system

(neural activity), muscle apparatus (EMGs) or about body movements (ground reaction forces,

kinematics). Although these measurements contribute to valuable insights into the functions

of those components, a key limitation lies in the ability to modify characteristic parameters

(e.g. neural coupling or muscle properties) in these subsystems. It is much easier, however,

to do so if models of the respective locomotor components are available. We could draw the

abstract analogy to a black box vs a parametrized model. It is of course possible to characterize

a black box system based on recordings of different inputs and outputs, however it is much

harder to link the corresponding data to internal properties and dynamics of the system.

Using a parametrized model, however gives us the freedom not only to look at responses to

different stimuli, but additionally to investigate the characteristics of the system with regard to

changing parameters. Of course we have to be aware that no perfect models exist, so there is

always a trade-off between the explanatory power and the constraints based on assumptions

under which a model is valid. Nevertheless, I believe that our results in this work encourage

the use of models for investigations of locomotion. Ideally, they should be combined with tra-

ditional methods, which can serve as an additional validation of corresponding model-derived

findings.

As part of the modeling, robots were used to validate the concepts derived in simulated

environments. This can help to validate them with respect to real-world reaction forces

as shown in the last study. Besides the validation aspect, we could also draw beneficial

conclusions for engineering applications. Locomotion is of great importance, as mobility is a

key ability to communicate and excel in our modern societies. In different marine, urban or

aerial environments, mobility and thus to some extent locomotion is required to transport

goods, to explore surroundings or to interact with people. Our studies did certainly not target

such explicit applications to serve for, however some general principles could still be valuable

in this context. Legged locomotion is especially beneficial in cluttered environments, where

wheeled vehicles have more difficulties. Stability in these environments becomes a great

challenge, which is why researchers have turned to legged robots with six legs, where the

tripod gait offers a statically stable gait with three contact points on the ground at any time.
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As an outcome of our first study, we proposed a faster bipod gait that can be used with six

legs. Although less stable (dynamic instead of static stability), this gait could serve as an

alternative in situations where higher speeds are desired. The results in the second chapter

also contributed to potentially more efficient swimming robots, which could highly benefit

from energy recovery mechanisms. Furthermore, ideas of decentralized distributed control

could reduce control complexity of undulatory swimming robots, increase modularity and

reconfigurability of such robots, as well as self-tuning of locomotion patterns for robots with

different properties (e.g. different joint friction or damping).

Looking back at the beginning of this manuscript, three important aspects for locomotion

were postulated: reaction forces between body and environment, inherent movement generation

in the body, and adaptation / synchronization of body and environment. In this thesis, we

used them as main components of our models and depending on the questions that were

investigated, these aspects were explored and exploited with the corresponding necessary

levels of abstraction. Throughout all the chapters we highlighted the importance of the

environment, which has a major influence in imposing and shaping corresponding gait

patterns of moving bodies, to the extreme, where body movements can be generated through

purely sensory driven loops. Using these models in combination with robots also led us to

interesting conclusions for engineering applications.

4.1 Future Work

This section of the manuscript is probably the most rewarding to write in my opinion. Al-

though, we almost reached the end, I see the work that has been presented here as a starting

point. Many interesting topics have been introduced and I believe that there is a lot more

worth exploring.

In the first study about insect walking, we explored environmental constraints that led to tripod

and bipod gaits as speed optimal solutions, as an outcome of our extensive gait exploration. In

a next step, it would be worth investigating how these gait patterns are created, and ask which

mechanisms for the generation of body movements could be responsible for the emergence

of the respective gaits. Integration of feedback loops could provide relevant mechanisms for

adaptations within specific environments prone to changing conditions. This could, on the

one hand, suggest robust ways how to tackle different environments with hexapod robots

and on the other hand, lead to valuable insights into the neural organization responsible for

walking in insects.

Obviously, the main aspect that was missing in the undulatory swimming study is a validation

of the results in a real-world environment. Our model relies on simulated hydrodynamics.

Although, validated for a selection of open loop patterns in the past (Porez et al., 2014), final

evidence that the local sensory feedback loops enable movement generation and adaptation in

water needs to be provided. Initial experiments with a swimming robot proved to be promising,

which encourages a detailed evaluation and hopefully validation of the key findings. Moreover,
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Chapter 4. Conclusion

based on the simulation results in terms of speed and energy consumption, along with a

potential recovery strategy based on restoration of negative work, there seems to be great

potential for a highly efficient swimming robot. Using the findings from decoupled oscillators

that coordinate via pressure feedback, the robot could furthermore be controlled with such a

strategy. The self-organizing property would enable a high modularity, where as a result, the

control of the robot becomes independent of the number of segments, as each segment would

be programmed identically. Going even a step further one could imagine having a very long

chain of segments that, if needed, could be split into several independent swimmers. Using

ideas from distributed intelligent systems, one could further coordinate them depending on

the given tasks.

From a more modeling point of view, it will be important to asses the robustness of the

different control schemes to external perturbations, such as variable flow streams, sensor

noise or obstacles. Also the scalability of the results to other Reynolds regimes (e.g. viscous

swimming) would be an interesting direction to investigate, however one could expect different

results as the dynamics and thus the types of reaction forces will change.

Our proposition for the development of a physical model that can be tested in a real world

environment with real physics and interaction forces led us to the salamander-like robot Pleu-

robot. So far we managed to show and validate its use for walking and swimming locomotion.

The salamander, however, has a very rich repertoire of locomotor skills which include among

others also aquatic stepping, where limbs are actively used in water. Initial data showed

that this gait is efficient in terms of transferring movements into forward propulsion (stride

length). This particular gait is also interesting from an evolutionary point of view, where it is

assumed that animals transitioned from water to land. One key aspect that could have made

this transition possible is the development of limbs. Even more it has been hypothesized that

limbs encouraged and facilitated the transition to terrestrial habitats as they already proved

to be advantageous in water (Clack, 2002a,b). A robotic platform similar to Pleurobot could

help to systematically test this hypothesis in controlled experiments. A second important

improvement involves the actuation of the developed salamander-like robot. So far the motors

that we used, operate in high gain position control. This makes it difficult to test and validate

neuromechanical control models, as these models rely on torque as output of the motors

(muscles produce forces). Future upgrades of motors and additional torque sensors could

resolve these issues.
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4.2. Final words

4.2 Final words

The ability to locomote, meaning to move its own body from one place to another, is crucial

for almost all living creatures, that need to survive in their immediate environment. Catching

prey, procreation or relocation depending on environmental constraints are a few basic

examples. Locomotion is a very diverse phenomenon and we can find plenty of varieties

thereof in nature. Each one of them is adapted with respect to animal body morphologies

and to the corresponding environments they live in. In this thesis, we developed specific

computational and physical models and investigated different types of locomotion based on

different aspects such as 1) reaction forces between body and environment, 2) generation

of body movements and 3) adaptation / synchronization between body and environment.

Our main findings explain the prevalence of tripod gaits in insects, the discovery of a new

bipod gait for hexapedal walkers, generation of spontaneous traveling waves in undulatory

swimmers based on decoupled oscillator networks influenced by local sensory feedback,

as well as based on purely sensory-driven control without neural oscillators. Moreover, we

presented a generic methodology to design physical models to explore locomotion based on

cineradiography and dynamical scaling laws on the example of a salamander-like robot. The

general work in this thesis dealt with highly abstracted models to capture the most important

features of particular locomotion patterns and enabled both insights into biological aspects as

well as interesting considerations for engineering systems.
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A Supplementary Figures: Insect walk-
ing
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Figure A.1 – Ground reaction forces for the insect model. Ground reaction forces (GRFs) for
ideal (a) tripod-A and (b) bipod-B gaits. Shown are GRFs for each leg along the anterioposterior
axis (left; positive values indicate GRFs pointing in the forward direction – propulsive forces),
mediolateral axis (middle; positive values indicate GRFs pointing medially), and normal axis
(right; positive values indicate GRFs pointing away from the surface). Gray boxes highlight
stance epochs for each leg during tripod-A and bipod-B locomotion. Gray arrowheads indicate
an instance of ground contact with minimal normal force.
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Appendix A. Supplementary Figures: Insect walking
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Figure A.2 – Convergence of fastest forward locomotor velocities during gait optimization.
Forward velocities of the fastest individuals for each iteration during gait optimization for
forward velocity while (a) climbing upward, (b) downward, (c) or sideways on a vertical
surface using leg adhesion, (d) walking on the ground with leg adhesion, or (e) walking on
the ground without leg adhesion. N = 15 experiments per condition. Each trace represents a
single experiment and is color-coded according to the gait class of the experiment’s fastest
individual.

124



L1
L2
L3
R1
R2
R3

Le
gs

a b c d e

Tripod-A

Swing
Stance

Tripod-A Tripod-B Bipod-C Bipod-B

Yes Yes NoAdhesion

Optimization
orientation

Ex
pe

rim
en

t #

1

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Unclear Tripod-A Bipod-B

2

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-A Tripod-C Bipod-B

3

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Tripod-B Bipod-A Tripod-A

4

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Unclear Bipod-C Bipod-C

5

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Tripod-B Tripod-B Bipod-C

6

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Tripod-B Bipod-C Bipod-C

7

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-A Bipod-C Bipod-C

8

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Tripod-A Tripod-A Bipod-C

9

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-A Tripod-B Bipod-C

10

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-A Unclear Tripod-A Bipod-C

11

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-B Bipod-B Bipod-A

12

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-A Tripod-B Bipod-C

13

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-A Bipod-C Bipod-B

14

L1
L2
L3
R1
R2
R3

Le
gs

Tripod-A Tripod-B Tripod-A Tripod-A Tripod-A

15

Yes Yes

Time TimeTime Time Time

Figure A.3 – Footfall diagrams for each optimized gait. Footfall diagrams showing stance
(black) and swing (white) periods for each experiment. Shown are results for gait optimization
of forward velocity while (a) climbing upward, (b) climbing downward, (c) or climbing side-
ways on a vertical surface using leg adhesion, (d) walking on the ground with leg adhesion, or
(e) walking on the ground without leg adhesion.
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Appendix A. Supplementary Figures: Insect walking
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Figure A.4 – Duty factors for each optimized gait. The duty factor or fraction of time each
leg is in contact with the substrate relative to the stride period for all optimized gaits. Shown
are duty factors of gaits optimized for (a) climbing upward, (b) climbing downward, (c) or
climbing sideways on a vertical surface using leg adhesion, (d) walking on the ground with leg
adhesion, or (e) walking on the ground without leg adhesion. A dashed black line indicates
50% time in contact with the substrate. Optimized gaits are color-coded by class. Data points
are randomly scattered along the x-axis for clarity. N = 15 for each condition.

126



20

16

12

8

4

C
os

t o
f t

ra
ns

po
rt

Adhesion

Optimization
orientation

Yes Yes NoYes Yes

24

Tripod-A

Gait 
resembles:

Tripod-B
Tripod-C

Bipod-C
Unclear

Bipod-B
Bipod-A

Figure A.5 – Cost of transport for optimized gaits. The cost of transport (dimensionless) of
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left), or climbing sideways (center) on a vertical surface using leg adhesion, walking on the
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for clarity. N = 15 for each condition.
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Appendix A. Supplementary Figures: Insect walking
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Figure A.6 – Transferring bipod and tripod gaits to a hexapod robot. (a) Image of the robot’s
leg. Degrees of freedom for each joint are labeled in black text. (b) Inverse kinematics approach
for mapping the position of the robot’s pretarsus (x1,y1) to the model’s pretarsus despite a
reduction from four to two flexion/extension joints. Joint angles are indicated in red. Leg
segment lengths are shown in black. (c) Visualization of a matched leg trajectory (orange) for
the right middle leg pretarsus of the robot (red) and the model (blue). A yellow arrow indicates
the direction of heading. (d) To track the robot’s legs automatically, red tape was affixed to
their tips. A black arrow indicates the direction of heading. (e) The forward displacement of
each of the robot’s legs during tripod (top), or bipod-B (bottom) locomotion. Scale bar is 6 cm.
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Figure A.7 – Optimized gaits for models of different sizes. Gaits were optimized for 25 mm,
or 250 mm long models for forward velocity while climbing upward (left and middle-left), or
walking on the ground without leg adhesion (middle-right and right). (a) Tripod coordination
strength (TCS) values indicating the degree of similarity to the classic tripod gait footfall
diagram (tripod-A). (b) The average number of legs in stance phase over five walking cycles. A
dashed black line indicates three legs in stance phase as expected for the classic tripod-A gait.
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Optimized gaits are color-coded by class. Data points are randomly scattered along the x-axis
for clarity. N = 15 for each condition.
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B Supplementary Figures: Undulatory
Swimming
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Figure B.1 – Comparison of models I, II, II and open loop - 20 joint model. Open loop
patterns (gray), Combined model I (red), Decoupled model II (orange) and Sensory-driven
model III (purple). Muscle parameters for Open loop, model I, II and III correspond to α= 1
Nm and γ= 2 Nm/rad, δ= 0.1 Nms/rad and w f b = 1. For Model III nominal phase lags as well
as feedback gains were varied. Based on a threshold minimum speed for different frequencies
(dashed line), only COT and average phase lags above this threshold are presented. (left) Mean
speed (middle) Cost of transport (right) Emerged average phase lag.
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Appendix B. Supplementary Figures: Undulatory Swimming
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Figure B.2 – Parameter exploration for the Combined model. Uniform variation of intrinsic
oscillator frequency ( f = [0.5,2.0] Hz), activation gain (α= [0.5,2.0] Nm), stiffness (γ= [1.0,2.0]
Nm/rad) and damping (δ= [0.05,0.2] Nms/rad). Nominal phase lag is set to 200% (2 body
waves). White areas indicate non-periodic solutions. Amplitude is represented by average
amplitude of the 4-th joint.
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Figure B.3 – Parameter exploration for the Open loop case. Uniform variation of frequency
( f = [0.5,2.0] Hz), activation gain (α = [0.5,2.0] Nm), stiffness (γ = [1.0,2.0] Nm/rad) and
damping (δ= [0.05,0.2] Nms/rad). Phase lags are given in terms of number of body waves.
Nominal phase lag is set to 100 % (1 body wave). White areas indicate non-periodic solutions.
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Appendix B. Supplementary Figures: Undulatory Swimming

0

0.25

0.5

f
(a) Cost of Transport

0

0.5

1

f
(b) Amplitude

Figure B.4 – Parameter exploration for the Open loop case. Uniform variation of frequency
( f = [0.5,2.0] Hz), activation gain (α = [0.5,2.0] Nm), stiffness (γ = [1.0,2.0] Nm/rad) and
damping (δ= [0.05,0.2] Nms/rad). Nominal phase lag is set to 100 % (1 body wave). White
areas indicate non-periodic solutions. Amplitude is represented by average amplitude of the
4-th joint.
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C Supplementary Figures and Tables:
Bimodal Locomotion
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shown.
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Appendix C. Supplementary Figures and Tables: Bimodal Locomotion
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Figure C.2 – Pleurodeles waltl stride lengths for swimming. All stride lengths for swimming
of the Pleurodeles waltl gait cycles are shown. Filled squares indicate gaits with lower stride
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Component Specifications

Control board SBC-TITPC2i Single Board Computer
Suit material Lycra® Nylon laminated with Polyurethane (PU)
Waterproof zipper TIZIP, MasterSeal 10, 500mbar pressure proof
3D printed head Material: Natural polyamide
3D printed spinal elements Material: Glass-filled polyamide
3D printed limb elements Material: Aluminum-filled polyamide
Silicone rubber feet Material: RTV-Silikon SCS-SN 2888
Head motor Dynamixel MX-28
Remaining motors Dynamixel MX-64R

Table C.1 – Pleurobot hardware components
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