000228227 001__ 228227
000228227 005__ 20190619023715.0
000228227 0247_ $$2doi$$a10.5075/epfl-thesis-7679
000228227 02470 $$2urn$$aurn:nbn:ch:bel-epfl-thesis7679-7
000228227 02471 $$2nebis$$a10898770
000228227 037__ $$aTHESIS
000228227 041__ $$aeng
000228227 088__ $$a7679
000228227 245__ $$aInvestigating Sensorimotor Control in Locomotion using Robots and Mathematical Models
000228227 260__ $$bEPFL$$c2017$$aLausanne
000228227 269__ $$a2017
000228227 300__ $$a172
000228227 336__ $$aTheses
000228227 502__ $$aProf. Dario Floreano (président) ; Prof. Auke Ijspeert (directeur de thèse) ; Prof. Selman Sakar, Prof. Eric Tytell, Prof. Malcolm MacIver (rapporteurs)
000228227 520__ $$aLocomotion is a very diverse phenomenon that results from the interactions of a body and its environment and enables a body to move from one position to another. Underlying control principles rely among others on the generation of intrinsic body movements, adaptation and synchronization of those movements with the environment, and the generation of respective reaction forces that induce locomotion. We use mathematical and physical models, namely robots, to investigate how movement patterns emerge in a specific environment, and to what extent central and peripheral mechanisms contribute to movement generation. We explore insect walking, undulatory swimming and bimodal terrestrial and aquatic locomotion. We present relevant findings that explain the prevalence of tripod gaits for fast climbing based on the outcome of an optimization procedure. We also developed new control paradigms based on local sensory pressure feedback for anguilliform swimming, which include oscillator-free and decoupled control schemes, and a new design methodology to create physical models for locomotion investigation based on a salamander-like robot. The presented work includes additional relevant contributions to robotics, specifically a new fast dynamically stable walking gait for hexapedal robots and a decentralized scheme for highly modular control of lamprey-like undulatory swimming robots.
000228227 6531_ $$ainsect walking
000228227 6531_ $$aswimming
000228227 6531_ $$alocal sensory feedback
000228227 6531_ $$adecentralized control
000228227 6531_ $$abimodal locomotion
000228227 6531_ $$arobotics
000228227 700__ $$0246809$$g227502$$aThandiackal, Robin
000228227 720_2 $$aIjspeert, Auke$$edir.$$g115955$$0241344
000228227 8564_ $$uhttps://infoscience.epfl.ch/record/228227/files/EPFL_TH7679.pdf$$zn/a$$s10571414$$yn/a
000228227 909C0 $$xU12165$$0252049$$pBIOROB
000228227 909CO $$pthesis-bn2018$$pthesis-public$$pDOI$$ooai:infoscience.tind.io:228227$$qGLOBAL_SET$$pSTI$$pthesis$$qDOI2
000228227 917Z8 $$x108898
000228227 917Z8 $$x108898
000228227 918__ $$dEDRS$$cIBI-STI$$aSTI
000228227 919__ $$aBIOROB
000228227 920__ $$b2017$$a2017-5-19
000228227 970__ $$a7679/THESES
000228227 973__ $$sPUBLISHED$$aEPFL
000228227 980__ $$aTHESIS