
Compressive Embedding and Visualization
using Graphs

Johan Paratte, Nathanaël Perraudin, Pierre Vandergheynst ∗

February 20, 2017

Abstract

Visualizing high-dimensional data has been a focus in data analysis
communities for decades, which has led to the design of many algorithms,
some of which are now considered references (such as t-SNE for example).
In our era of overwhelming data volumes, the scalability of such methods
have become more and more important. In this work, we present a method
which allows to apply any visualization or embedding algorithm on very
large datasets by considering only a fraction of the data as input and
then extending the information to all data points using a graph encoding
its global similarity. We show that in most cases, using only O(log(N))
samples is sufficient to diffuse the information to all N data points. In
addition, we propose quantitative methods to measure the quality of em-
beddings and demonstrate the validity of our technique on both synthetic
and real-world datasets.

Index terms— Graph signal processing, sampling, transductive learning, em-
bedding, visualization

1 Introduction

DATA visualization is usually equivalent to mapping high-dimensional features
in low dimension using distance preserving dimensionality reduction. This pro-
cess, finding a low-dimensional embedding of high-dimensional data, has drawn
a lot of attention from researchers in different fields.

Some methods are very fundamental such as Principle Componant Analysis
(PCA) or Linear Discriminant Analysis (LDA). Other well known methods use
the hypothesis that the data can be well approximated by a low-dimensional
∗EPFL, Ecole Polytechnique Fédérale de Lausanne, LTS2 Laboratoire de traitement du

signal, CH-1015 Lausanne, Switzerland

1

manifold, such as Laplacian Eigenmaps [?], Isomap [?] or Local Linear Em-
bedding (LLE) [?]. Another approach is to use a probabilistic model of both
the high-dimensional and low-dimensional data distribution and optimize the
distance preservation using the joint model. Examples of this approach are
Stochastic Neighbor Embedding (SNE) [?] and its popular extention t-SNE [9]
or LargeVis [10]. We refer the interested reader to this work [1], offering a
comparative of numerous dimensionality reduction techniques.

From all those methods, two main pitfalls are the most prevalent. The first
one is the lack of robustness to noisy real-world data and the second is bad
scalability leading to unmanageable computing time for large datasets.

The first problem often arises when applying a global scheme which will work
well on toy examples and fail on complex data, as the expected global model is
only partially valid. A simple example would be the different results of Lapla-
cian Eigenmaps which will yield the recovery of a perfect embedding for the
Swissroll point cloud and poor results on large-scale complex and noisy data.
This problem is traditionally mitigated by considering hypotheses on data to
hold only locally, leading to techniques such as LLE, SNE and others.

The second, more important, issue of scalability is essential in todays world of
ubiquitous and overwhelming data. It is even more crucial now that the increase
in data creation cannot be well compensated by the physical limits unsettling
Moore’s law. Essentially, this fundamental issue of scalibility is related to the
notion of similarity. Indeed, the essential question one must be able to answer
to represent data in low dimension is one of similarity : which data points
are close to each other. This issue can be said to be fundamental because it
naturally implies that the minimal complexity can only be super-linear, since
one pass over each datapoint cannot be sufficient to infer a similarity matrix
with a quadratic number of entries. Some of the popular methods mentioned
above do have an intrinsic quadratic regime and parallelized or approximated
variants that scale better, but at a cost. An illustrative example is t-SNE which
isO(N2) in its original implementation and is mostly used with an approximated
and accelerated version (Barnes-Hut t-SNE [?]) in O(N log(N)).

As we saw, the two issues mentioned above are related to the concepts of local-
ity and similarity. Expressing both notions naturally leads to the concept of a
similarity graph whose edges link the closest points, weighted by the distance
between them. This general idea is actually one of the most used tool when
computing embeddings, either explicitly in methods such as Laplacian Eigen-
maps or LargeVis, or implicitly, using probability distributions as random walk
matrices (e.g. SNE). Of course, constructing a similarity graph has the same
complexity issue as the one mentioned above. This is why approximated sparse
nearest-neighborgs graphs are often used in practice, as they can be computed
very efficiently using Approximated Nearest Neighbors (ANN) techniques (e.g.
FLANN [?]).

In this work, we propose a general framework for accelerating any embedding
algorithm using a graph encoding the data similarity. Our technique is sup-
ported by modern tools of Graph Signal Processing allowing to use the graph at

2

both local and global scales. The main idea is to use only a subset of the data
on which to apply an embedding algorithm and then diffuse the information
using the graph. Our main contribution which we call Compressive Embedding
(CE) is made possible by two complementary mechanisms : a graph sampling
scheme to create the sketch and diffusion routines to extend the information on
the sketch to all data points.

Contributions Below we summarize the main contributions of this work :

• graph sampling schemes and theorems stating the minimum number of
samples necessary to capture energy everywhere

• transductive learning algorithms to extend the embedding information
computed on the samples to all datapoints using localized low pass graph
filters

• new quantitative measures of the quality of the visualizations based on
graph cuts and localized filters

• experiments on synthetic and real data sets showing the superior scalabil-
ity of this method compared to the state-of-the-art

Organization The paper is organized as follows. In Section 2, we recall the
fundamentals of graph signal processing and define the notations. Section 3
develops the results on our sampling method based on the energy of localized
kernels. Section 4 uses localized filters to define generalized metrics used in
the following sections. Section 5 describes the different methods to extend
the information from the sampled nodes to all data points. Section 7 describes
our proposed methods to compute a quantitative measure of the quality of
embeddings. In Section 8, we show the validity and benefits of our method
and compare with the state-of-the-art through several experiments. Finally,
Section 9 proposes interesting open problems in the domain as well as potential
future work to address.

2 Background

Graph nomenclature Let us define G = (V, E ,W) as an undirected weighted
graph where V is the set of vertices and E the set of edges representing connec-
tions between nodes in V. The vertices v ∈ V of the graph are ordered from 1 to
N = |V|. The matrixW , which is symmetric and positive, is called the weighted
adjacency matrix of the graph G. The weight W ij represents the weight of the
edge between vertices vi and vj and a value of 0 means that the two vertices
are not connected. The degree d(i) of a node vi is defined as the sum of the
weights of all its edges d(i) =

∑N
j=1W ij . Finally, a graph signal is defined as

a vector of scalar values over the set of vertices V where the i-th component of
the vector is the value of the signal at vertex vi.

3

Spectral theory The combinatorial Laplacian operator L can be defined
from the weighted adjacency matrix as L = D −W with D being the degree
matrix defined as a diagonal matrix with Dii = d(i). One alternative and of-
ten used Laplacian definition is the normalized Laplacian Ln = D−

1
2LD−

1
2 =

I−D−
1
2WD

1
2 . Since the weight matrixW is symmetric positive semi-definite,

so is L by construction. By application of the spectral theorem, we know
that L can be decomposed into an orthonormal basis of eigenvectors noted
{u`}`=0,1,...,N−1. The ordering of the eigenvectors is given by the eigenvalues
noted {λ`}`=0,1,...,N−1 sorted in ascending order 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤
λN−1 = λmax. In a matrix form we can write this decomposition as L = UΛU∗

with U = (u1|u2| . . . |uN−1) the matrix of eigenvectors and Λ the diagonal ma-
trix containing the eigenvalues in ascending order. Given a graph signal x, its
graph Fourier transform is thus defined as x̂ = F(x) = U∗x, and the inverse
transform x = F−1(x̂) = Ux̂. It is called a Fourier transform by analogy to the
continuous Laplacian whose spectral components are Fourier modes, and the
matrix U is sometimes referred to as the graph Fourier matrix (see e.g., [2]).
By the same analogy, the set {

√
λ`}`=0,1,...,N−1 is often seen as the set of graph

frequencies [3].

Graph filtering In traditional signal processing, filtering can be carried out
by a pointwise multiplication in Fourier. Thus, since the graph Fourier transform
is defined, it is natural to consider a filtering operation on the graph using a
multiplication in the graph Fourier domain. To this end, we define a graph filter
as a continuous fonction g : R+ → R directly in the graph Fourier domain. If
we consider the filtering of a signal x, whose graph Fourier transform is written
x̂, by a filter g the operation in the spectral domain is a simple multiplication
x̂′[`] = g(λ`) · x̂[`], with x′ and x̂′ the filtered signal and its graph Fourier
transform respectively. Using the graph Fourier matrix to recover the vertex-
based signals we get the explicit matrix formulation for graph filtering:

x′ = Ug(Λ)U∗x,

where g(Λ) = diag(g(λ0), g(λ1), . . . , g(λN−1)). The graph filtering operator
g(L) := Ug(Λ)U∗ is often used to reformulate the graph filtering equation as a
simple vector-matrix operation x′ = g(L)x.

Since the filtering equation defined above involves the full set of eigenvectors U ,
it implies the diagonalization of the Laplacian L which is costly for large graphs.
To circumvent this problem, one can represent the filter g as a polynomial
approximation, since polynomial filtering only involves the multiplication of
the signal by a power of L of the same order as the polynomial. Filtering
using good polynomial approximations can be done using Chebyshev or Lanczos
polynomials [4, 5].

Localization operator The concept of translation, which is well defined in
traditional signal processing cannot be directly applied to graphs, as they can
be irregular. However, inspired by the notion of translation, we can define the
localization of a function g defined on the graph spectrum as a convolution

4

with a Kronecker delta T̂ig[`] = g(λ`) · δ̂i = g(λ`) · u`[i], where T is called the
localization operator, and Ti means localization at vertex i. Going back to the
vertex domain, we get :

Tig[n] = F−1
(
g · δ̂i

)
[n] =

N−1∑
`=0

g(λ`)u
∗
` [i]u`[n] = (g(L))in .

The reason for calling Ti a localization operator comes from the fact that for
smooth functions g, Tig is localized around the vertex i. The proof of this result
and more information on the localization operator can be found in [6]. The
localization of filters is quite naturally called atoms as a filtering operation of a
signal x using a filter g can be expressed as x′[i] = 〈x, Tig〉.

Additional notation We use ‖A‖op = supx6=0
‖Ax‖2
‖x‖2

for the induced norm

of the matrix A and ‖A‖F =
√∑

i

∑
jAij for the Froebenius norm. The

maximum eigenvalue of a matrix is written σmax(A).

We reserve the number notation for vectors. For example, we write the `2
Euclidean norm as ‖x‖2 =

√∑
i xi and the `∞ uniform (sup) norm ‖x‖∞ =

maxi |xi|. We abusively use the `0 to count the number of non-zero elements in
a vector. Furthermore, when an univariate function g is applied to a vector λ,
we mean [g(λ)]i = g(λi). As a result, ‖g(λ)‖0 = k is the number of eigenvalues
where g(λ`) 6= 0.

Given a kernel g, we define Uk as a N × k matrix made of the k columns of U
where g(λ`) 6= 0. Similarly, we denote Λk the k× k diagonal matrix containing
the associated eigenvalues. Note that we have

g(L) = Ug(Λ)U∗ = Ukg(Λk)U∗k = UkU
∗
kg(L).

3 Random sampling on graphs

In this section, we first define a graph sampling schemes and then prove related
theoretical limits. In particular, it is of particular interest to understand the
number of samples needed in order to diffuse energy on every node by localizing
filters on the samples. We will prove that the number of samples needed is
direclty linked with the rank of the filter.

3.1 Adaptive sampling scheme

Let us define the probability distribution P represented by a vector p ∈ RN .
We use two different sampling schemes. Uniform sampling is given by the prob-

5

ability vector

pi =
1

N
,

and adapted sampling is given by

pi =
‖Tig‖22
‖g(λ)‖22

.

Remember that we have
∑
i ‖Tig‖22 = ‖g‖22 , implying that

∑
i pi = 1. Let us

associate the matrix
P := diag(p) ∈ RN×N

to p.

Then, we draw independently (with replacement) M indices Ω := {ω1, . . . , ωM}
from the set {1, . . . , N} according to the probability distribution p. We have

P [ωj = i] = pi, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . ,M}.

For any signal x ∈ RN , defined on the vertices of the graph, its sampled version
y ∈ RM satisfies

yj := xωj ∀j ∈ {1, . . . ,M}.

Finally, the downsampling matrix M ∈ RM×N is defined as

M ij =

{
1 if i = ωj

0 otherwise,

for all i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. Note that y = Mx.

3.2 Embedding Theorems

The first theorem shows that given enough samples, the random projection
MP−

1
2 g(L)x conserves the energy contained in g(L)x. In this sense, given

enough samples, it is an embedding of g(L)x.

Theorem 1. Given a graph G and a kernel g with a given rank ‖g(λ)‖0 = k,
given δ > 0 and using the sampling scheme of Section 3.1, if

M ≥ 2
1

δ2
‖g(λ)‖22
‖g(λ)‖2∞

(
1 +

δ

3

)
log

(
2k

ε

)
we have with a probability of 1− ε for all x:∣∣∣∣∣∣∣

1
M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
− ‖g(L)x‖22

‖g(λ)‖2∞

∣∣∣∣∣∣∣ ≤ δ‖U∗kx‖22 ≤ δ‖x‖22. (1)

6

Note that the above expression is normalized by ‖g(λ)‖2∞ in order to remove
the scaling factor of the kernel g.

Let us now analyze the most important term of the bound:

‖g(λ)‖22
‖g(λ)‖2∞

=

∑
` g

2(λ`)

max` g2(λ`)
. (2)

It is a measure of concentration of the kernel on its support. It is maximized
with the value ‖g(λ)‖

2
2

‖g(λ)‖2∞
= k when g is a rectangle. In general, it will be small

for concentrated kernels. For example, a rapidly decreasing kernel such as the
heat kernel (g(x) = e−xτ) will lead to a very small ratio.

Note that contrarily to almost all bound available in the literature this bound
does not require the kernel to be low rank but only concentrated. For a com-
parison [7, Corollary 2.3] requires

M ≥ 3

δ2
k log

(
2k

ε

)
.

Optimality of the sampling scheme. Although we have no formal proof of
optimality, the sampling scheme presented in Section 3.1 is a good candidate.
Indeed, when reading the proof of Theorem 1, the reader may notice that it
minimizes the number of samples M .

Building on top of Theorem 1, we establish a lower bound on the number of
samples required by Algorithm 1 to capture enough information from each node
with a given confidence level. It will ensure that the information diffused from
the samples can reach all nodes.

Theorem 2. Using the sampling scheme described in Section 3.1, for δ > 0, a
graph G and a kernel g such that ‖g(λ)‖0 = k, each node i is guaranteed with a
probability 1− ε to have

1
M

∥∥∥MP−
1
2 Tig

∥∥∥2
2

‖Tig‖22
≥ 1− δ,

given that the number of samples satisfies

M ≥ 2a

δ2

(
1 +

δ

3

)
log

(
k

ε

)
,

where a =
‖g(λ)‖22‖g(λ)‖

2
∞‖U

∗
kδi‖

4
2

‖Tig‖42
.

Theorem 2 warrants that given enough samples M , Algorithm 1 captures with
some probability 1− ε (close to 1), at least a good percentage of the energy at
node i. The factor a is always greater than 1 and varies depending on the shape
of the kernel g and of the graph eigenvectors. However it is O(k) and exactly

7

equal to k if g is a rectangular kernel. Indeed, a simple transformation shows
that

a =
‖g(λ)‖22 ‖g(λ)‖2∞ ‖U

∗
kδi‖

4
2

‖Tig‖42
=

∑
` g

2(λ`)

max` |g2(λ`)|

(
max`

∣∣g2(λ`)
∣∣∑

`∈K u
2
` [i]∑

` g
2(λ`)u2

` [i]

)2

.

The first term is smaller than k but is usually close to k for a kernel close to
a rectangle. The second term is greater than 1 but close to 1 given that the
kernel is close to a rectangle.

Problematically, this bound becomes loose if the kernel g has a large rank be-
cause of the term

∑
`∈K u

2
` [i]. To cope with this problem we can use another

kernel g′ that is a low-rank approximation of g.

Theorem 3. Given a graph G, let g′ (with ‖g′(λ)‖0 = k) to be the rank k
approximation of the kernel g, i.e.,

g(λ`) =

{
g′(λ`) for the the k greatest values of |g(λ`)|
0 otherwise.

Using the sampling scheme described in Section 3.1 with the kernel g, for δ > 0,
each node i is assured with a probability 1− ε to have

1
M

∥∥∥MP
1
2 Tig

∥∥∥2
2

‖Tig‖22
≥ 1− δ −

‖Ti (|g′| − |g|)‖22
‖Tig‖22

providing the number of samples satisfies1

M ≥ 2
1

δ2
‖g′(λ)‖22 ‖g′(λ)‖2∞ ‖U

∗
kδi‖

4
2

‖Tig‖42

(
1 +

δ

3

)
log

(
k

ε

)
.

Using Theorem 3, the number of samples M required can be highly reduced.
Indeed, when the kernel g is well concentrated but not low rank, we trade

some approximation error encoded by ‖
Ti(|g′|−|g|)‖2

2

‖Tig‖22
(which will be low if g is

concentrated) but we will need a smaller number of samples due to the fact that
g′ is low rank. This theorem can be interesting for a heat kernel for example.

4 Metrics based on localized filters

Before moving on to the information diffusion from the samples, we need to take
a closer look to localized filters and in particular see how they can be used to
measure distances or correlations between nodes.

1Note that ‖Tig‖22 ≥ ‖Tig′‖
2
2.

8

4.1 Localized Kernel Distance

Since localized filters are proven to be concentrated in the vertex domain (see
[3, Theorem 1]), it seems natural to use them to get geodesic measures or corre-
lations between nodes. To this end, we introduce the Localized Kernel Distance
(LKD), which is defined as :

LKD(i, j) = 1− Tig2[j]

‖Tig‖‖Tjg‖
. (3)

Let us now examine its properties by stating the following theorem:

Theorem 4. The space (V,LKD) with V the vertex set of a graph and LKD as
defined in 3 is a pseudosemimetric space, that is, for every x, y ∈ V:

1. LKD(x, y) ≥ 0

2. LKD(x, x) = 0

3. LKD(x, y) = LKD(y, x)

Proof. First, let us derive an alternative form of (3) :

LKD(x, y) = 1− 〈Txg, Tyg〉
‖Txg‖‖Tyg‖

(4)

This can be derived as follows :

LKD(x, y) = 1− Txg2[y]

‖Txg‖‖Tyg‖

= 1−
∑
` g(λ`)

2u∗` [x]u`[y]

‖Txg‖‖Tyg‖

= 1−
∑
`(g(λ`)u

∗
` [x])(g(λ`)u`[y])

‖Txg‖‖Tyg‖

= 1−
∑
`(g(λ`)u

∗
` [x])(g(λ`)u

∗
` [y])

∑
n u`[n]2

‖Txg‖‖Tyg‖

= 1−
∑
n

∑
`(g(λ`)u

∗
` [x]u`[n])(g(λ`)u

∗
` [y]u`[n])

‖Txg‖‖Tyg‖

= 1− 〈Txg, Tyg〉
‖Txg‖‖Tyg‖

Now let us verify the properties one by one :

9

1. We have using (4) :

LKD(x, y) = 1− 〈Txg, Tyg〉
‖Txg‖‖Tyg‖

≥ 0

where the last inequality stands because 〈Txg, Tyg〉 ≤ ‖Txg‖‖Tyg‖ (Cauchy-
Schwartz inequality).

2. Let us verify that x = y ⇒ LKD(x, y) = 0 :

LKD(x, y) = LKD(x, x)

= 1− Txg2[x]

‖Txg‖‖Txg‖

= 1−
∑
` g(λ`)

2u∗` [x]u`[x]

‖Txg‖2

= 1−
∑
`(g(λ`)u`[x])2

∑
n u`[n]2

‖Txg‖2

= 1−
∑
n

∑
`(g(λ`)u`[x]u`[n])2

‖Txg‖2

= 1− ‖Txg‖
2

‖Txg‖2
= 0

3. Finally, we have

LKD(x, y) = 1− Txg2[y]

‖Txg‖‖Tyg‖

= 1−
∑
` g(λ`)

2u∗` [x]u`[y]

‖Txg‖‖Tyg‖

= 1−
∑
` g(λ`)

2u∗` [y]u`[x]

‖Txg‖‖Tyg‖

= 1− Tyg2[x]

‖Txg‖‖Tyg‖
= LKD(y, x)

Theorem 5. The space (V,LKD) with V the vertex set of a graph and LKD as
defined in 3, with g constant, is a semimetric space, that is, for every x, y ∈ V:

1. LKD(x, y) ≥ 0

2. LKD(x, y) = 0⇔ x = y

3. LKD(x, y) = LKD(y, x)

10

Proof. Properties 1 and 3, as well as the backward implication are still valid as
stated in Theorem 4.

Now let us check that LKD(x, y) = 0⇒ x = y.

We want to do it by contradiction and thus search any x, y, x 6= y for which
LKD(x, y) = 0, implying :

〈Txg, Tyg〉 = ‖Txg‖‖Tyg‖ (5)

We can rewrite this equality as :

∑
`

g(λ`)
2u∗` [x]u`[y] =

√∑
`

g(λ`)2u2
` [x]

√∑
`

g(λ`)2u2
` [y] (6)

For g(x) = c, with c > 0 a constant, the left hand side is :∑
`

g(λ`)
2u∗` [x]u`[y] = c2

∑
`

u∗` [x]u`[y] = 0 (7)

The last equality comes from the fact that two lines of an orthonormal matrix
are orthogonal, and x 6= y.

Now the right-hand side is :

√∑
`

g(λ`)2u2
` [x]

√∑
`

g(λ`)2u2
` [y] = c2

∑
`

u2
` [x]

∑
`

u2
` [y] = c2 (8)

with the last equality coming from the fact that U is an orthonormal basis.

Now, since 0 6= c2 we have a contradiction, and thus the proof is completed.

4.2 Kernelized Diffusion Distance

Another approach to use localized atoms to define distances is to measure the
norm of the difference between a filter localized at two different nodes. We call
it the Kernelized Diffusion Distance and define it as:

KDD(i, j) = ‖Tig − Tjg‖, (9)

where g is a kernel defined in the graph spectral domain. Before going further,
and as it will be useful later, let us derive a corollary definition of 9 :

11

KDD(i, j) =

√∑
`

g(λ`)2(u∗` [i]− u∗` [j])2. (10)

This alternative definition can be quickly derived as follows :

KDD(i, j)2 = ‖Tig − Tjg‖

=
∑
n

(∑
`

g(λ`)u
∗
` [i]u`[n]−

∑
`

g(λ`)u
∗
` [j])u`[n]

)2

=
∑
n

(∑
`

g(λ`)(u
∗
` [i]− u∗` [j])u`[n]

)2

=
∑
n

∑
`

g(λ`)
2(u∗` [i]− u∗` [j])2u2

` [n]

=
∑
`

g(λ`)
2(u∗` [i]− u∗` [j])2

∑
n

u2
` [n]

=
∑
`

g(λ`)
2(u∗` [i]− u∗` [j])2

which implies 10 by taking the square root on both sides.

Let us now examine the properties of the KDD by stating the following theorem:

Theorem 6. The space (V,KDD) with V the vertex set of a graph and KDD
as defined in 9 is a pseudometric space, that is, for every x, y, z ∈ V:

1. KDD(x, y) ≥ 0

2. KDD(x, y) = KDD(y, x)

3. KDD(x, z) ≤ KDD(x, y) + KDD(y, z)

Proof. Let us verify the properties in order :

1. This property holds trivially due to the positivity of the norm ‖.‖.

2. We have

KDD(x, y) = ‖Txg − Tyg‖

=

√∑
`

g(λ`)2(u∗` [x]− u∗` [y])2

=

√∑
`

g(λ`)2(u∗` [y]− u∗` [x])2

= ‖Tyg − Txg‖
= KDD(y, x)

12

3. We have

KDD(x, z) = ‖Txg − Tzg‖
= ‖Txg − Tyg + Tyg − Tzg‖
≤ ‖Txg − Tyg‖+ ‖Tyg − Tzg‖
= KDD(x, y) + KDD(y, z)

which holds using the triangle inequality for vectors.

Now that we proved that the KDD is a pseudo-metric, we only need to have
the identity of the indiscernibles, i.e. KDD(i, j) = 0 ⇔ i = j to prove it is a
metric. However, we can only do it using an additional hypothesis on g. This
is formulated in the following theorem :

Theorem 7. The space (V,KDD) with V the vertex set of a graph and KDD
as defined in 9, with g being full rank, is a metric space, that is, for every
x, y, z ∈ V:

1. KDD(x, y) ≥ 0

2. KDD(x, y) = KDD(y, x)

3. KDD(x, z) ≤ KDD(x, y) + KDD(y, z)

4. KDD(x, y) = 0⇔ x = y

Proof. Properties 1-3 are still valid as stated in Theorem 6.

Now let us check Property 4.

• We first prove x = y ⇒ KDD(x, y) = 0 :

dg(x, y) = dg(x, x)

= ‖Txg − Txg‖

=

√∑
`

g(λ`)2(u∗` [x]− u∗` [x])2

= 0

• Now let us check that KDD(x, y) = 0⇒ x = y. We do it by contradiction
and thus want to find any pair x, y, x 6= y for which KDD(x, y) = 0.

In particular we need that :

KDD(x, y) =

√∑
`

g(λ`)2(u∗` [x]− u∗` [y])2 = 0 (11)

13

with x 6= y. Since g is full rank then g(λ`) > 0, ∀` and thus the only way
for (11) to hold is if u∗` [x] = u∗` [y], ∀`. In other words it would imply that
the lines x and y of U are identical. Since U is a basis, it implies that
all its lines are orthonormal, which means there exist no pair x, y such as
(11) hold, and thus the contradiction is established, which concludes the
proof.

Diffusion distance As was hinted in the name, the distance defined in (9)
happens to be a generalized diffusion distance. Indeed, taking its spectral for-
mulation we have :

dg(i, j) =

√∑
`

g(λ`)2(u∗` [i]− u∗` [j])2 = Dt(i, j), (12)

where Dt(i, j) is the diffusion distance associated to specific kernels depending
on t (i.e. the diffusion parameter). If we take two common definitions of the
diffusion distance, the original works of [16] and [17] use a kernel of the form
g(x) = xt and the Graph Diffusion Distance defined in [18] uses the heat kernel
g(x) = e−tx.

5 Graph transductive learning

In this section we want to cast the problem of diffusing the information obtained
on a few samples of the data (e.g. using sampling schemes such as defined
in Section 3.1) in a transductive inference framework. In this setting, we are
observing a label field or signal x only at a subset of vertices S ⊂ V , i.e yi = x[i],
∀i ∈ S, with y being the observed signal also called the label function. The goal
of transductive learning is to predict the missing signal/labels using both the
observed signal and the remaining data points.

5.1 Global graph diffusion

Solutions of transductive inference using graphs can be solved in a number of
ways, for example using Tikhonov regression :

arg min
x

‖y −Mx‖22 + µxtLx, (13)

where M is the sampling operator and L the graph Laplacian. An alternative
to the use of the Dirichlet smoothness constraint is to use graph Total Variation
(TV). The regression would thus become :

14

arg min
x

‖y −Mx‖22 + µ‖∇Gx‖1 (14)

with ∇Gx =
(√
W i,j(x[i]− x[j])

)
, ∀(vi, vj) ∈ E .

For large scale learning, solving the optimization problems as described above
can be too expensive and one typically uses accelerated descent methods.

5.2 RKHS transductive learning on graphs

5.2.1 Motivation

Our first contribution is to replace the smoothness term arising in 13 by con-
straining the solution to belong to the finite dimensional Reproducing Kernel
Hilbert Space (RKHS) HG corresponding to the graph kernel G = g(L), for
some filter g. In this case, we instead solve the following problem :

arg min
x∈HG

‖y −Mx‖22

and show that the solution is given by a simple low-pass filtering step applied
to the labelled examples.

5.2.2 Transductive learning and graph filters

In this section, we formulate transductive learning as a finite dimensional re-
gression problem. This problem is solved by constructing a reproducing kernel
Hilbert space from a graph filter, which controls the smoothness of the solution
and provides a fast algorithm to compute it.

An empirical reproducing kernel Hilbert space Let g be a smooth,
strictly positive function defining a graph filter as defined in Section 2. The
graph filter defines the following matrix :

G[i, j] = g(L)[i, j] = Tig[j],

where Ti is the localisation operator at vertex i. Since the filter is strictly positive
definite, G is positive definite and can be written as the Gram matrix of a set
of linearly independent vectors. To see this, we use the spectral representation :

G = Ug(Λ)U∗

= Ug(Λ)1/2
(
Ug(Λ)1/2

)∗
.

15

Let ri be the i-th row of Ug(Λ)1/2, we immediately see that rTi rj = G[i, j].
More explicitly, these vectors are written in terms of the graph filter :

ri[j] =
∑
`

√
g(λ`)u`[i]u`[j].

These expressions suggest to define the Hilbert space HG as the closure of
all linear combinations of localized graph filters Tig. This space is therefore
composed of functions of the form :

x =
∑
k∈V

αkTkg. (15)

Note that any x ∈ HG has a well-defined graph Fourier transform :

x̂(`) = g(λ`)
∑
k∈V

αku`[k].

This allows to equip HG with following scalar product :

〈x,y〉HG
=
∑
`

1

g(λ`)
x̂(`)∗ŷ(`)

and the vectors ri form an orthonormal basis of HG:

〈ri, rj〉HG
=

∑
`

1

g(λ`)

√
g(λ`)u`[i]

∗
√
g(λ`)u`[j]

=
∑
`

u`[i]
∗u`[j]

= δi,j .

Let us now see that HG is a reproducing kernel Hilbert space (rkhs). We show
that the scalar product with Tig in HG is the evaluation functional at vertex i.
We first compute :

〈Tig, Tjg〉HG
=

∑
`

1

g(λ`)
g(λ`)

2u`[i]
∗u`[j]

= Tig[j].

By linearity of the scalar product and the definition of HG (15) we have :

〈Tig,x〉HG
=

∑
k∈V

αk〈Tig, Tkg〉HG

=
∑
k∈V

αkTkg[i]

= x[i].

16

Finally, for any x ∈ HG, x =
∑
k∈V βkTkg, we have the following explicit form

of their norm :

‖x‖2HG
= 〈x,x〉HG

=
∑
`

1

g(λ`)
g(λ`)

2
∑
i,j∈V

βiβ
∗
ju`[i]u`[j]

∗

=
∑
i,j∈V

βiβ
∗
j

(∑
`

g(λ`)u`[i]u`[j]
∗)

=
∑
i,j∈V

βiG[i, j]β∗j

= βTGβ.

Transductive learning Now that we have established HG as a valid RKHS,
we will seek to recover the full signal by solving the following problem :

x̃ = arg min
x∈HG

∑
k∈S

L(yk,x[k]) + µ‖x‖HG
. (16)

Let us first decompose HG = HS ⊕H⊥S , where

HS =

{
x ∈ HG s.t. x =

∑
k∈S

αkTkg

}
.

Let us note that, for any x ∈ HS ,

‖x‖2HG
=

∑
`

g(λ`)
∑
i,j∈S

αiα
∗
ju`[i]u`[j]

∗

=
∑
i,j∈S

αiα
∗
j

∑
`

g(λ`)u`[i]u`[j]
∗

= αTKα

where K[i, j] = G[i, j], i, j ∈ S, is positive definite since it is a principal sub-
matrix of a positive definite matrix.

Let x ∈ HG be decomposed as x = xS + xS⊥ , where xS (resp. xS⊥) is the
orthogonal projection of x on HS (resp. H⊥S). Now it is immediate to check
that :

〈Tkg,xS⊥〉HG
= xS⊥ [k]

= 0, ∀k ∈ S.

Inserting this relationship back into (16), we see that :∑
k∈S

L(yk,xS [k] + xS⊥ [k]) + λ‖xS + xS⊥‖2HG
≥
∑
k∈S

L(yk,xS [k]) + λ‖xS‖2HG
,

17

since xS⊥ [k] = 0 ∀k ∈ S and adding xS⊥ can only increase the norm of xS in
HG. This shows that the minimizer of (16) is in HS and therefore of the form

x̃ =
∑
k∈S

βkTkg

for some coefficients βk. Moreover since ‖x̃‖HG
= βTKβ, we can rewrite (16)

as a minimization only on those coefficients with x̃ = Kβ̃ and

β̃ = argmin
β

∑
k

L(yk, (Kβ)[k]) + µβTKβ. (17)

Finally, we observe that the recovered signal can be computed by filtering a
stream of Kronecker deltas located at the observed values and weighted by the
optimal coefficients computed in (17) :

x̃ = g(L)

{∑
k∈S

β̃kδk

}
. (18)

To summarize, in the case of the squared loss function L(a, b) = (a − b)2, the
transductive solution is given by the following two steps algorithm :

1. Compute the optimal coefficients β̃ = (K + λI)−1y

2. Compute the regression x̃ = g(L)
{∑

k∈S β̃kδk

}
.

Note that in traditional ridge regression, the last step is usually given in terms
of an explicit kernel that is easy to evaluate. In our case, this expression is also
available from (18):

x̃[i] =
∑
k∈S

β̃kG[i, k]

=
∑
k∈S

β̃kG[k, i]

=
∑
k∈S

β̃kTkg[i]

and, while the kernel does not have a simple analytical form, the sum can be
efficiently computed via a graph filtering algorithm. In particular, it is sufficient
to perform |S| filterings to get Tkg,∀k ∈ S.

5.3 Convex hull diffusion

If we want to cast the general problem of transductive learning in a simpler
framework, we can restrict ourselves to linear solutions of the form x̃ = Ay.
This means finding the coefficients such as :

x̃[i] =
∑
k∈S

αi,kyk, (19)

18

with αi,k = A[i, k].

In the previous section, we just saw how a RKHS built on a graph filter g allowed
to weight the contributions of localized filters centered on a subset S of vertices.
Writing the answer as a linear solution such as defined in (19) would give the
following coefficients :

αi,k =
β̃kTkg[i]

yk
. (20)

Of course, this is kind of a degenerate solution since the coefficients are normal-
ized by yk and the optimal coefficients already contain the information from
y.

5.3.1 Convex Hull Diffusion

In this section we propose to use a notion of distances to the samples y to
set the coefficients, more formally αi,k ' d(xi, yk) for some distance function
d. Here, quite naturally, we propose to make use of the LKD as defined in
Section 4. Since the coefficients αi,k need to encode similarity between i and k,
a reasonable choice is to set :

αi,k = 1− LKD(i, k) =
Tig2[j]

‖Tig‖‖Tjg‖
. (21)

Using this definition, we know that the coefficients αi,k have good properties
derived from Theorem 4. First, since the LKD has values in [0, 1], the coefficients
will also have values in this range. Second, αi,k = αk,i which means that
A is symmetric, square and non-negative. Finally, for any kernel g we have
αi,i = 1 and, if we restrict ourselves to kernels as defined in Theorem 5, we have
αi,j = 0 ⇔ i = j. In general, we have the good property that the coefficients
αi,k will be small if the vertices i and k are far apart on the graph and big if
they are close.

Now, knowing that a classical problem related to embedding data in low dimen-
sion, and more specifically to data visualization is a concentration around zero,
we wish to devise a method to prevent it. It is reasonable to suppose that the
problem of concentration is often related to a lack of information about some
points or an absence of normalization. For example, if we take the linear com-
bination as defined in (19), this could happen if for some i, all the coefficients
αi,k are small.

In order to avoid this problem, we propose to use a normalized version Ã of
A that maps the points x in the convex hull of y. This is done simply by
normalizing each line of A, that is :

α̃i,k =
αi,k∑
k∈S αi,k

(22)

19

with α̃i,k = Ã[i, k].

6 Compressive Embedding

Building on what has been presented in the previous sections, we now propose
our main contribution, a compressive embedding algorithm.

Algorithm 1 is the main algorithm of our proposed scheme. In the following, D
denotes the original N×K data matrix, S the high-dimensional sketch, which is
anM×K subset of D, Ae is any embedding algorithm, ES the low-dimensional
sketch and ED an embedding of the full data D being of dimension M × d and
N ×d respectively. DG is the diffusion operator on the graph. We haveM < N ,
d < K and typically d = 2 or d = 3 when targeting visualization tasks.

Algorithm 1 Compressive Embedding
1: Compute a knn graph G from the data D
2: Sample M nodes of G cf. Section 3.1
3: Create a sketch S from D using the sampled nodes
4: Apply Ae to S to obtain an embedding ES = Ae(S)
5: Solve the transductive learning problem to get DG c.f. Section 5
6: Apply the diffusion operator to obtain the final embedding ED = DG(ES)

Let us detail Algorithm 1 step by step.

1. The graph construction can be carried out very efficiently by performing
ANN searches in the data. Various methods and optimized libraries are
available for this task such as FLANN [?]2 or ANNOY3. From our exper-
iments, the graph construction process in not the main computationally
intensive task.

2. Guided by the theoretical analysis of Section 3.1 we use low-pass concen-
trated kernels. Two choices are interesting, either a low-rank approxima-
tion (such as defined in Theorem 3) of a heat kernel g(x) = e−τx or an
exponential window such as g(x) = s

(
1−x
bmax

)
with :

s(x) =

0 if x < −1

e−
a
x

e−
a
x +e

− a
1−x

if x ∈ [−1, 1]

1 if x > 1

where bmax is the desired cut-off frequency.

In Section 3.1 we defined theoretically the number of samples needed to
be able to sense and diffuse information from the sampled nodes to every
other node. In practice, we were able to verify that M = O(log(N)), is

2http://www.cs.ubc.ca/research/flann/
3https://github.com/spotify/annoy

20

http://www.cs.ubc.ca/research/flann/
https://github.com/spotify/annoy

sufficient for the diffusion process. When the number of classes |C| is avail-
able,M = O(|C| log(N)) is a good choice. OtherwiseM = O(d(G) log(N))
is a valid alternative, with d(G) the diameter of the graph. All those
choices for M are above the bounds defined in Section 3.1 for any choice
of concentration of the kernels since k < N .

3. Since there is a trivial mapping between node indices and data points,
creating the high-dimensional sketch S is simply taking the subset of D
corresponding to the samples indices.

4. The compressive embedding framework does not impose any constraint
on the type of algorithm used. Indeed, any embedding algorithm Ae that
can be applied on D, can be applied on S ⊂ D. We note the application
of the embedding algorithm ES = Ae(S).

5. The proposed transductive learning methods used for the diffusion need
only graph filtering operations which are all carried out using Chebyshev
polynomial approximations. The two operators that need to be computed
are the localized filters Tig and ‖Tig‖. The former can be computed by
filtering Kronecker delta centered on i, which means that exactly one
filtering is needed to compute one Tig. The 2-norm ‖Tig‖ being needed
for all i, one cannot compute it trivially by computing N atoms since it
would require N filterings. So instead of computing the exact solution, we
can approximate it using random filtering, i.e. ‖Tig‖2 is well estimated by
E
[
‖g(L)Rδi‖2

]
with R an N × P random matrix. This estimator can be

computed by performing only P filterings.

6. The final diffusion is a simple matrix-vector multiplication for both RKHS
and CHD methods.

7 Embedding quality measures

In the context of embedding algorithms for visualization two approaches are
often used to assess their quality. The first one is a purely qualitative assessment
by visual examination, which generally implies to have access to labeled data
(see e.g. [9] [10]). When labels are not available, a common practice is to
generate the labels using a clustering of the points in high dimension. Visual
examination is especially used for relative quality assessment, i.e. one method
versus others.

A second method, which is not directly related to visualization, is to measure
the quality of the embedding, i.e. if close high dimensional points stay close
after embedding. Different numerical measures of local consistency have been
proposed such as generalization error of 1-nearest neighbor classifiers [1][11],
trustworthiness and continuity [12]. These quantitative assessments do not take
into account possible labels for the data.

In order to have quantitative quality measures that take labels into account, we
propose three methods that evaluate different characteristics of the embeddings.

21

Note that, despite the face that we consider the problem settings for which the
data points are associated to some categorical information, data points with no
label or multiple labels can be easily accommodated. We will write the set of
categorical labels (also called classes) as C = {c1, c2, . . . , ck}. For each class ci
we note Vci the subset of vertices of Ge having the label ci.

The common point between all our proposed methods is that they are based
on a similarity graph constructed between the points in the embedded domain,
that we will call Ge to distinguish from G. For simplicity, a simple kNN graph
using the Euclidean distance on the embedded points is sufficient. The first
method is inspired by Cheeger constants and measures the clusterability of Ge.
The second method uses diffusion distances to measure class homogenity and
the third uses Tig to estimate the amount of positional outliers.

7.1 Average Clusterability Index

Graph cuts In order to use graph cuts, we start with a few definitions. A
cut partitions a graph G in two complementary sets of vertices S and Sc with
V = S ∪ Sc and S ∩ Sc = ∅. The graph cut operator is then defined as

Cut(S, Sc) =
∑
i∈S

∑
j∈Sc

W ij (23)

which represents the total weight of the edges between S and Sc, or the weight
of the edges trimmed by the cut.

In order to define the balanced cuts we also need to use the volume operator
which is defined as

V ol(S) =
∑
i∈S

di (24)

where di is the degree of the vertex vi.

Balanced cuts The first interest of cuts in the context of clustering is that
the minimization of 23 happens to be a solution to the clustering problem [13].
The minimal cut is however rarely used in practice as it tends to favor small
sets of isolated vertices. This led to a shift in focus to balanced cuts, which are
cuts normalized by the volume that balances the size of the clusters. Two of the
most popular balanced cuts are the Cheeger cut [14] and the Normalized cut
[15].

The Cheeger cut is related to the Cheeger constant which is defined as :

h(G) = minS*V
Cut(S, Sc)

min(V ol(S), V ol(Sc))
(25)

22

for a graph G. This number is a measure of the clusterability of G, i.e. it is
small if there is a strong bottleneck and large otherwise.

Class clusterability The Cheeger cut and cheeger constant imply a mini-
mization in order to find the best clusters, but in our case, we already have the
clusters as they are derived from the labels. We can thus reformulate Eq. 25 to
define a Cheeger score for a class ci as :

h(G, ci) =
Cut(Vci ,Vcci)

min(V ol(Vci), V ol(Vcci))
(26)

where Vci ⊂ V is the subset of vertices whose label is ci and Vcci ⊂ V the
complementary set containing all the other vertices. We note the number of
vertices of a label ci as Nci = |Vci |. Computing the above quantity for a given
class give a measure of its clusterability from which we can define the Average
Clusterability Index (ACI) as an average weighted by the classes cardinality :

ACI =
1

N

∑
ci∈C

Ncih(G, ci) =
1

N

∑
ci∈C

Nci
Cut(Vci ,Vcci)

min(V ol(Vci), V ol(Vcci))
. (27)

This score, as it is inspired by the Cheeger constant, has similar properties :
small values mean that the classes are well separated in the graph and large
values mean that the classes are much more mixed.

7.2 Average Cluster Concentration

The ACI introduced in the previous section serves to evaluate how clustrable are
the different classes. However, this metric will not help discriminate between
good clusterability with or without splitted classes. Take for example a dataset
with ten classes (such as images of digits). Applying an embedding algorithm
could result in having ten classes (the perfect case) or more, meaning that at
least one class is splitted in more than one cluster. The ACI between the two
cases should be almost indistinguishable, as both embedding scenarii will result
in higly clusterable classes.

In order to measure this effect, we need to measure the overall concentration of
all points in a class, i.e. that all points in a class are reasonably close to each
other. To this end, we introduce a new measure called Average Cluster Con-
centration which leverages the Kernelized Diffusion Distance introduced above.
The principle is that the average distance of all pairs of points of a given class
should be small if a class is well concentrated and larger if a class is splitted
around different cluster centers.

More formally, using the KDD as defined in 9 and written KDD, we define the
ACC for one class ci ∈ C as :

23

ACC(ci) =
1

N2
ci

∑
vi∈Vci

∑
vj∈Vci

KDD(vi, vj). (28)

As was done above for the ACI, it is natural to give a final score by a weighted
average over the classes :

ACC =
1

N

∑
ci∈C

Nci ACC(ci) =
1

N

∑
ci∈C

1

Nci

∑
vi∈Vci

∑
vj∈Vci

KDD(vi, vj). (29)

This direct computation of the ACC is straightforward but requires O(N2
ci)

distance evaluations per class. Using the original definition of the KDD, it
means making at least O(Nci) filterings, raising the complexity to O(Ncim|E|)
per class assuming order m polynomial approximations for the filtering. Since
this is too costly for large graphs, we propose to use a randomized version.

An approach to accelerate the computation of the ACC is to estimate it by
randomly picking pairs of points in the class. In order to be robust to different
class sizes, we should take a number of samples proportional to Nci . If we
assume that to evaluate nci pairs, a reasonable choice is to take nci = O(Nci)
which requires a linear number of distance evaluations instead of a quadratic
number for the exact ACC computation.

8 Experiments

In this section, we provide experiments whose objective is to show how our
proposed methods behave in practice. The first experiments examine how the
quantitative measures proposed in Section 7 perform on specially designed syn-
thetic datasets. The second section of experiments allows to visualize the re-
sults of the compressive embedding routine using different diffusion operators
and compared to state-of-the-art methods.

The experiments were performed with the GSPBox [19], an open-source soft-
ware. As we stand for reproducible research principles, our implementations
and the code to reproduce all our results is open and freely available4. Since
our methods use random signals, it is expected that the results shall be slightly
different in the details, but overall consistent.

8.1 Embedding quality measures

In order to assess the validity of the quantitative measures proposed in Sec-
tion 7 we use controlled synthetic datasets which exhibit the patterns we would

4Will be available online shortly. For now, please contact the corresponding author.

24

-8 -6 -4 -2 0

0

0.5

1

-8 -6 -4 -2 0

0

0.5

1

-8 -6 -4 -2 0

0

0.5

1

-8 -6 -4 -2 0

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

0 2 4

0

1

2

3

4

0 2 4

0

1

2

3

4

0 2 4

0

1

2

3

4

0 2 4

0

1

2

3

4

Figure 1: Synthetic datasets with four classes, displayed at dynamics λ =
0, 0.3, 0.6, 1 (one value per column). On the top row, clusters form bands and
move horizontally, on the medium row clusters form disc parts and rotate to
form a half-disc and finally on the bottom row clusters are small squares in a
larger one, move horizontally until λ = 0.5 and then vertically.

like to measure. Since we want to evaluate embeddings the datasets are two-
dimensional point clouds with labels. All are dynamic and can be deformed
continuously between two conformations by varying a parameter λ ∈ [0, 1]. Fig-
ure 1 displays all datasets for different values of λ.

As can be seen, a unique design principle was used with different topological
arrangements. The idea is that for λ = 0 the different classes are well separated
in clusters, with a greater number of clusters than the number of classes. For
λ = 1 the classes are well separated with each class corresponding exactly to
one cluster. For intermediate values, the classes are mostly mixed as the points
move between the λ = 0 and λ = 1 conformations. The checkerboard pattern
has an intermediate non-mixed conformation at λ = 0.5.

Due to the randomness of the data generation process and the evaluation method
of the ACC, all results are averages over multiple realisations.

8.1.1 ACI

In this section, we expect to verify that the ACI detects when classes are well
clusterized. The results of the ACI scores computed for the three synthetic
datasets, using the full dynamic λ ∈ [0, 1] and for different number of classes, is

25

0 0.5 1

0

0.5

1

1.5

2

2.5

0 0.5 1

0

0.5

1

1.5

2

2.5

0 0.5 1

0

0.2

0.4

0.6

0.8

Figure 2: ACI results on synthetic data for the bands (left), circle (middle)
and checkerboard (right). The colors indicate the number of classes, blue = 2,
orange = 3, yellow = 4 and purple = 5 for left and middle sub-figures, and blue
= 4 and orange = 16 on the right.

shown in Figure 2.

As expected, both extreme dynamics (λ = 0 and λ = 1 for bands and circle,
and additionally λ = 0.5 for checkerboard) display low ACI scores and the
intermediate values correspond to the amount of mixing between the classes. In
addition, more classes mean a steeper increase of ACI the the classes mix. As a
last remark, we can confirm that the ACI is not sufficient to distinguish between
splitted clusters and unified clusters (λ = 0 and λ = 1 respectively) which was
the main reason for proposing the ACC.

8.1.2 ACC

In this experiment, we want to see if the ACC is able to capture the notion of
splitted clusters. Here, the ACC was computed using the randomized method
presented in Section 7.2. The results for all datasets can be seen in Figure 2.

The first thing to note is that the curves are not perfectly smooth, due to the
randomization process. The general behaviour is however quite clear, for every
number of classes. Overall, the results are similar for all datasets and show that
the ACC allows to discriminate between λ = 0 for which we have higher values
than for λ = 1. The result is particularly clear for the bands and checkerboard
datasets, and less so for the circle.

8.2 Real-world datasets visualization

In this section, we will present two experiments on real-world datasets for visu-
alization tasks. We restrict ourselves to a relatively small dataset N < 105 as
some of the methods we evaluate cannot scale. We use the classical MNIST5

dataset of handwritten digits. It contains 70’000 images of size 28 × 28. Note
that for this size of dataset the sketch size was 550, which means 0.008% of the
data.

5http://yann.lecun.com/exdb/mnist/

26

http://yann.lecun.com/exdb/mnist/

0 0.5 1

0.014

0.016

0.018

0.02

0.022

0.024

0 0.5 1

0.014

0.016

0.018

0.02

0.022

0.024

0 0.5 1

2.5

3

3.5

4

4.5
10

-3

Figure 3: ACC results on synthetic data for the bands (left), circle (middle)
and checkerboard (right). The colors indicate the number of classes, blue = 2,
orange = 3, yellow = 4 and purple = 5 for left and middle sub-figures, and blue
= 4 and orange = 16 on the right.

Sketch Tikhonov RKHS CHD Tik+CHD RKHS+CHD
ACI 2.1035 3.2809 2.3214 1.1054 1.9223 1.6352
ACC 0.0125 0.0312 0.0691 0.0490 0.0491 0.0393

Table 1: ACI and ACC scores for different diffusion operators

8.2.1 Visual comparison of diffusion operators

In this first experiment, we show the resulting embedding of our proposed
method using the different graph diffusion operators introduced in Section 5.
As a baseline, we also included classical Tikhonov diffusion. Also, in addition
to the CHD and RKHS methods, we show the result of bootstraping Tikhonov
and RKHS diffusion with the result of the CHD. The visualizations provided by
the 2D embeddings are shown in Figure 4.

Let us begin by inspecting the sketch. The different classes appears to be
equally sampled and t-SNE provides a good embedding, while leaving a few
overlapping clusters, one splitted class and a few outliers. The Tikhonov and
RKHS diffusions achieve a radial separation of the classes but greatly suffer from
concentration around zero. The CHD diffusion provides a good embedding
similar to the sketch, but tends to produce too much overlaps. The use of
bootstraping as displayed in the last two embeddings seem to improve the results
of both Tikhonov an RKHS. By visual inspection, CHD appears to be the best
diffusion operator, and in general the convex hull constraint seem to be working
as expected.

The quantitative scores for all methods are reported in Table 1. The two worst
ACI score are Tikhonov and RKHS, the best one is CHD and the bootstraped
diffusion give medium values. This analysis corresponds well to visual inspec-
tion. The ACC scores are very similar and cannot discriminate well between
the different methods. This is not surprising since there are no big class splits.

The average timing for the entire process was 161s in total, from which 139s is
spent in average on diffusion (step 5 and 6 of Algorithm 1).

27

Figure 4: MNIST visualisation using the Compressive Embedding method (with
t-SNE as the inner embedding algorithm). The different colors corresponds to
the ten different classes.

8.2.2 Original algorithms compared to Compressive Embedding

In this last experiment, we want to see the behaviour of state-of-the-art and tra-
ditional visualization algorithm compared to Compressive Embedding versions.
We report the visualizations produced, the computing time and the quanti-
tative scores for four different algorithms : t-SNE[9], LargeVis[10], Laplacian
Eigenmaps[?] and Sammon mapping[?].

The 2D embeddings produced are shown in Figure 5. If we first look at the
original algorithms we can see that both t-SNE and LargeVis produce good
embeddings as classes are well separated and clusters are strongly defined. A
class split occurs for t-SNE and the repartition is not well balanced for LargeVis
but the result is overall very good. Laplacian Eigenmaps gives a fair result but
suffers from overlaps and concentration around zero. Sammon Mapping is not
shown because the original implementation does not scale enough to complete
on a dataset of this size.

Now looking at the sketches we see that both t-SNE and LargeVis produce rea-
sonably good embeddings while leaving a few overlaps, class splits and outliers.
Laplacian Eigenmaps suffers from a bit of concentration around zero and tends
to mix a few classes together. Sammon Mapping gives a result in which classes
are fairly mixed and does not produce well defined clusters.

Finally, the results of the CHD diffusion from the sketches is very consistant
accross the different algorithms. Overall CE on t-SNE and LargeVis is quite

28

ACI t-SNE Laplacian Eigenmaps Sammon Mapping LargeVis
Original 0.30 2.88 -1 0.45

CE 1.98 2.95 3.36 2.19

Table 2: ACI scores comparison between original implementations and Com-
pressive Embedding acceleration.
1 exceeded the maximum memory available (128 GB)

ACC t-SNE Laplacian Eigenmaps Sammon Mapping LargeVis
Original 0.04 0.04 -1 0.03

CE 0.05 0.05 0.04 0.04

Table 3: ACC scores comparison between original implementations and Com-
pressive Embedding acceleration.
1 exceeded the maximum memory available (128 GB)

satisfactory, giving well defined clusters. The downside being too much overlap
and a lot of sparse outliers. While being satisfactory, the resulting embeddings
are visually less good than their original counterparts. For Laplacian Eigenmaps
the CE is very similar to the sketch and difficult to distinguish from its original
counterpart. The CE of the Sammon Mapping is surprisingly good given the
low quality of the sketch. Visually the result is better after diffusion, as the
clusters are reasonably well defined. The problem of overlapping classes and
sparse noise is still present.

The ACI and ACC scores for all methods are reported in Table 2 and Table 3.
The lowest ACI are for original t-SNE and LargeVis, the second two best results
are for CE t-SNE and CE LargeVis. Next, Laplacian Eigenmaps in its original
implementation and with CE give similar ACI scores. Finally, Sammon Mapping
gives the worst score. All values are very consistent with the visual inspection
and tend to validate the use of the ACI as a quantitative measure for embedding
quality evaluation. The values reported for the ACC are very similar and do
not allow for a very good discrimination since no case of good clustering with
class-split was present.

Finally, the computing time is reported in Table 4. For both t-SNE and Lapla-
cian Eigenmaps, CE is one order of magnitude faster than the original imple-
mentations. In the case of LargeVis, the CE implementation is still faster but of
a smaller factor. However, we need to evaluate this with caution as the original
implementation of LargeVis is multi-threaded while all others implementations
(including CE) is mono-thread. Taking into account the mono-thread comput-
ing time of LargeVis we go back to an order of magnitude acceleration.

29

Figure 5: MNIST visualization using different embedding algorithms both in
their original implementations (right column) and using Compressive Embed-
ding as an accelerator (middle column). The left column shows the result of the
embedding algorithm on the sketch only.

30

Time [s] t-SNE Laplacian Eigenmaps Sammon Mapping LargeVis
Original 1815 1666 -1 6602

CE 157 155 166 329

Table 4: Computing time comparison between original implementations and
Compressive Embedding acceleration.
1 exceeded the maximum memory available (128 GB)
2 the default implementation uses parallelism, the single thread time usage is
4090s.

9 Conclusion

In this contribution, we have presented a general framework for the acceleration
of embedding and visualization algorithms. Our method is made possible by
the use of similarity graphs, efficient sampling and graph diffusion. We showed
how the method worked on real-world examples and that it gives satisfactory
results while being one order of magnitude faster than original implementations.
In future works we would like to evaluate active techniques both for sampling
and for diffusion.

A Proofs

Important lemmas. Let us first recall two important lemmas necessary for
the proofs. The first one is a generalization of the Bernstein inequality for
matrices.

Lemma 1 (Matrix Bernstein: Bounded Case). [20, Theorem 6.1] Consider a fi-
nite sequence Xm of independent, random, self-adjoint matrices with dimension
d. Assume that

E [Xm] = 0 and σmax(Xm) ≤ R almost surely.

Compute the norm of the total variance,

A2 :=

∥∥∥∥∥∑
m

E
[
X2
m

]∥∥∥∥∥
op

Then the following chain of inequalities holds for all δ ≥ 0.

P

[
λmax

(∑
m

Xm

)
≥ δ

]
≤ d · exp

(
−A

2

R2
· h
(
Rδ

A2

))
≤ d · exp

(
−δ2/2

A2 +Rδ/3

)
≤

{
d · exp(−3δ2/8A2) for δ ≤ A2/R;
d · exp(−3δ/8R) for δ ≥ A2/R.

where the function h is defined as h(u) := (1 + u) log(1 + u)− u for u ≥ 0.

31

The second lemma is a generalization of the triangular inequality for the norm
of the localization operator.

Lemma 2. Given any continuous kernel g and g′, the norm of the localization
operator satisfies:

‖Tig′‖
2
2−‖Ti (|g′| − |g|)‖22 ≤ ‖Tig‖22 ≤ ‖Tig′‖

2
2+‖Ti (|g′| − |g|)‖22 (30)

Proof. From the definition of the localization operator, we have:

‖Tig‖22 =

N−1∑
`=0

g2(λ`)u
2
` [i]

=

N−1∑
`=0

(
g2(λ`)− g′2(λ`)

)
u2
` [i] +

N−1∑
`=0

g′2(λ`)u
2
` [i]

≥
N−1∑
`=0

(g(λ`)− g′(λ`))
2
u2
` [i] +

N−1∑
`=0

g′2(λ`)u
2
` [i] (31)

= ‖Tig′‖2 + ‖Ti (|g′| − |g|)‖2 .

A simple change of variable concludes the proof. The inequality 31 follows from
the following assertion. For all λ` such that |g(λ`)| ≤ |g′(λ`)|, we have

g2(λ`) = g2(λ`)− g′2(λ`) + g′2(λ`)

= (|g(λ`)| − |g′(λ`)|) (|g(λ`)|+ |g′(λ`)|) + g′2(λ`)

≥ − (|g′(λ`)| − |g(λ`)|) (|g′(λ`)| − |g(λ`)|) + g′2(λ`)

= g′2(λ`)− (|g(λ`)| − |g′(λ`)|)
2
.

For the λ` such that |g′(λ`)| ≤ |g(λ`)|, the inequality g2(λ`) ≥ g′2(λ`) −
(|g(λ`)| − |g′(λ`)|)2 is trivially satisfied.

Proof of Theorem 1 The proof of Theorem 1 is inspired by [21, Theorem 2]
but contains some subtleties.

Proof. Les us define α = U∗kx. We first we notice that

g(L)x = UkU
∗
kx = Ukg(Λk)α

The quantity of interest is then rewritten as

1

M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
− ‖g(L)x‖22

=
1

M

∥∥∥MP−
1
2Ukg(Λk)α

∥∥∥2
2
− ‖Ukg(Λk)α‖22

= α∗
(

1

M
g(Λk)U∗kP

− 1
2M∗MP−

1
2Ukg(Λk)− g(Λk)g(Λk)

)
α

= α∗Y α

32

where Y = 1
M g(Λk)U∗kP

− 1
2M∗MP−

1
2Ukg(Λk)−g(Λk)g(Λk) . The remaining

of the proof focus in characterizing the maximum and the minimum eigenvalue
of Y . To do so, we decompose Y into a sum of M independent, random, self-
adjoint matricesXi in order to apply Lemma 1. Let us define

Xi :=
1

M

(
g(Λk)U∗k

(
δωi
δ∗ωi

pωi

− I
)
Ukg(Λk)

)
.

It can be verified that

Y =
∑M
i=1Xi =

M∑
i=1

(
1

M
g(Λk)U∗k

(
δωiδ

∗
ωi

pωi

− I
)
Ukg(Λk)

)
.

By construction, the matrices Xi inherit independence from the random vari-
ables δωi . Furthermore, we have

E [Xi] =

N∑
n=1

pn
1

M

(
g(Λk)U∗k

(
δnδ

∗
n

pn
− I

)
Ukg(Λk)

)

=
1

M

(
g(Λk)U∗k

(
N∑
n=1

δnδ
∗
n − I

)
Ukg(Λk)

)
= 0 = E [−Xi]

To apply Lemma 1 we need the maximum eigenvalue of Xi and −Xi.

σmax(Xi) = σmax

(
1

M
g(Λk)U∗k

(
δωi
δ∗ωi

pωi

− I
)
Ukg(Λk)

)
≤ 1

M
σmax

(
1

pωi

g(Λk)U∗kδωi
δ∗ωi
Ukg(Λk)

)
=

1

M
σmax

(
1

pωi

δ∗ωi
Ukg(Λk)g(Λk)U∗kδωi

)
=

1

M
max
i

1

pi
δ∗iUkg(Λk)g(Λk)U∗kδi

=
1

M
max
i

‖Tig‖22
p

i

σmax(−Xi) = σmax

(
1

M
g(Λk)U∗k

(
I −

δωi
δ∗ωi

pωi

)
Ukg(Λk)

)
≤ 1

M
σmax

(
g2(Λ)

)
=

1

M
‖g(λ)‖2∞

33

Finally, before we can apply Lemma 1, we need to compute

A2 = σmax

(
E

[
M∑
i=1

X2
i

])

= σmax

(
E

[
1

M2

M∑
i=1

g(Λk)U∗k

(
I −

δωiδ
∗
ωi

pωi

)
Ukg(Λk)g(Λk)U∗k

(
I −

δωiδ
∗
ωi

pωi

)
Ukg(Λk)

])

=
1

M
σmax

(
g(Λk)U∗kE

[(
I −

δωi
δ∗ωi

pωi

)
Ukg(Λk)g(Λk)U∗k

(
I −

δωi
δ∗ωi

pωi

)]
Ukg(Λk)

)

=
1

M
σmax

(
g(Λk)U∗k

(
N∑
i=1

‖Tig‖22
p

i

δiδ
∗
i

)
Ukg(Λk)

)

≤ 1

M
‖g(λ)‖2∞max

i

‖Tig‖22
p

i

,

since

E
[(
I −

δωiδ
∗
ωi

pωi

)
Ukg(Λk)g(Λk)U∗k

(
I −

δωiδ
∗
ωi

pωi

)]

=

N∑
i=1

pi

(
I −

δ
i
δ∗

i

p
i

)
Ukg

2(Λk)U∗k

(
I −

δ
i
δ∗

i

p
i

)

=

N∑
i=1

piδiδ
∗
i
g2(L)δiδ

∗
i
− g2(L)

=

N∑
i=1

‖Tig‖22
p

i

δiδ
∗
i
− g2(L)

�
N∑
i=1

‖Tig‖22
p

i

δiδ
T
i

Let us denote maxi
‖Tig‖22
p
i

= α. We now apply Lemma 1 to the Y =
∑M
i=1Xi

and we find

P
[

1

M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
− ‖g(L)x‖22 ≥ δ ‖α‖

2
2

]
≤ k exp

− M δ2

2

α
(
‖g(λ)‖2∞ + δ

3

)
 .

Similarly for −Y =
∑M
i=1−Xi, we find

P
[
‖g(L)x‖22 −

1

M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
≥ δ ‖α‖22

]
≤ k exp

(
−

M δ2

2

‖g(λ)‖2∞
(
α+ δ

3

)) .
In order to optimize the bound, we need to minimize α. Thus we choose pi =
‖Tig‖22
‖g(λ)‖22

and we get α = ‖g(λ)‖22 . The two previous inequalities become

P
[

1

M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
− ‖g(L)x‖22 ≥ δ ‖U

∗
kx‖

2
2

]
≤ k exp

− Mδ2

2 ‖g(λ)‖22
(
‖g(λ)‖2∞ + δ

3

)

34

P
[
‖g(L)x‖22 −

1

M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
≥ δ ‖U∗kx‖

2
2

]
≤ k exp

− Mδ2

2 ‖g(λ)‖2∞
(
‖g(λ)‖22 + δ

3

)

We make the change of variables δ′ ‖g(λ)‖2∞ = δ

P

 1
M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2
− ‖g(L)x‖22

‖g(λ)‖2∞
≥ δ′ ‖U∗kx‖

2
2

 ≤ k exp

(
−1

2

‖g(λ)‖2∞
‖g(λ)‖22

Mδ′2(
1 + δ′

3

))

P

‖g(L)x‖22 −
1
M

∥∥∥MP−
1
2 g(L)x

∥∥∥2
2

‖g(λ)‖2∞
≥ δ ‖U∗kx‖

2
2

 ≤ k exp

−1

2

Mδ′2(
‖g(λ)‖22
‖g(λ)‖2∞

+ δ′

3

)

≤ k exp

(
−1

2

‖g(λ)‖2∞
‖g(λ)‖22

Mδ′2(
1 + δ′

3

))
(32)

Finally, we substitute δ for δ′. We set the success probability of the event∣∣∣∣∣∣∣
1
m

∥∥∥MP−
1
2Ug(Λ)x

∥∥∥2
2
− ‖Ug(Λ)x‖22

‖g(λ)‖2∞

∣∣∣∣∣∣∣ ≥ δ‖x‖22.
to 1− ε. As both sides of the bound have to be taken into account, we need

ε

2
≥ k exp

(
−1

2

‖g(λ)‖2∞
‖g(λ)‖22

Mt2(
1 + δ

3

)) ,
which is equivalent to impose on M

M ≥ 2
1

δ2
‖g(λ)‖22
‖g(λ)‖2∞

(
1 +

δ

3

)
log

(
2k

ε

)

Proof of Theorem 2

Proof. Given M ≥ 2 1
δ2
‖g(λ)‖22
‖g(λ)‖2∞

(
1 + δ

3

)
log
(
k
ε

)
, we use (32) and set x = δi.

Then with a probability ε, we have

‖Tig‖22
‖g(λ)‖2∞

−
1
M

∥∥∥MP−
1
2 Tig

∥∥∥2
2

‖g(λ)‖2∞
≥ δ ‖U∗kδi‖

2
2 .

As a result, with a probability 1− ε, we have

1
M

∥∥∥MP−
1
2 Tig

∥∥∥2
2

‖Tig‖22
≥ 1− δ

‖g(λ)‖2∞ ‖U
∗
kδi‖

2
2

‖Tig‖22
.

The change of variable δ′ = δ
‖g(λ)‖2∞‖U

∗
kδi‖

2
2

‖Tig‖22
concludes the proof. For the factor

δ
3 , we use the fact that ‖g(λ)‖

2
∞‖U

∗
kδi‖

2
2

‖Tig‖22
≥1.

35

Proof of Theorem 3

Proof. We first use the fact that ‖ATig′‖2 ≥ ‖ATig‖2 for any linear operator
A. This comes from the fact that Tig for a fixed i can be written as T ig(λ)
where T i is a linear operator. We successively apply Theorem 2 and in similar
way to Theorem 2, Equation 32 to obtain

1

M

∥∥∥MP
1
2 Tig

∥∥∥2
2
≥ 1

M

∥∥∥MP
1
2 Tig′

∥∥∥2
2

≥ ‖Tig′‖
2
2 − δ ‖g

′(λ)‖2∞ ‖U
∗
kδi‖

2
2

≥ ‖Tig‖22 − ‖Ti (|g′| − |g|)‖22 − δ ‖g
′(λ)‖2∞ ‖U

∗
kδi‖

2
2 ,

for a number of samples

M ≥ 2
1

δ2
‖g′(λ)‖22 ‖g′(λ)‖2∞ ‖U

∗
kδi‖

4
2

‖Tig′‖42

(
1 +

δ

3

)
log

(
k

ε

)
.

The change of variable δ′ = δ
‖g′(λ)‖2∞‖U∗kδi‖22

‖Tig‖22
and the division by ‖Tig‖22 con-

clude the proof. For the factor δ
3 , we use the fact that ‖

g′(λ)‖2∞‖U∗kδi‖22
‖Tig‖22

≥1.

Acknowledgment

We would like to thank Lionel Martin for valuable discussions.

References

[1] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, pp. 66–71, 2009.

[2] F. R. Chung, Spectral graph theory, vol. 92. AMS Bookstore, 1997.

[3] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis
on graphs,” arXiv preprint arXiv:1307.5708, 2013.

[4] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory,” Applied and Computational Harmonic Analysis,
vol. 30, no. 2, pp. 129–150, 2011.

[5] A. Susnjara, N. Perraudin, D. Kressner, and P. Vandergheynst, “Ac-
celerated filtering on graphs using lanczos method,” arXiv preprint
arXiv:1509.04537, 2015.

[6] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis
on graphs,” Applied and Computational Harmonic Analysis, vol. 40, no. 2,
pp. 260–291, 2016.

36

[7] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sam-
pling of bandlimited signals on graphs,” Applied and Computational Har-
monic Analysis, 2016.

[8] M. Belkin and P. Niyogi, “Using manifold stucture for partially labeled
classification,” Advances in neural information processing systems, pp. 953–
960, 2003.

[9] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[10] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and high-
dimensional data,” in Proceedings of the 25th International Conference on
World Wide Web, pp. 287–297, International World Wide Web Conferences
Steering Committee, 2016.

[11] G. Sanguinetti, “Dimensionality reduction of clustered data sets,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3,
pp. 535–540, 2008.

[12] J. Venna and S. Kaski, “Visualizing gene interaction graphs with local mul-
tidimensional scaling.,” in ESANN, vol. 6, pp. 557–562, 2006.

[13] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data cluster-
ing: Theory and its application to image segmentation,” IEEE transactions
on pattern analysis and machine intelligence, vol. 15, no. 11, pp. 1101–1113,
1993.

[14] J. Cheeger, “A lower bound for the smallest eigenvalue of the laplacian,”
1969.

[15] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[16] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, “Diffusion maps,
spectral clustering and eigenfunctions of fokker-planck operators,” arXiv
preprint math/0506090, 2005.

[17] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and computational
harmonic analysis, vol. 21, no. 1, pp. 5–30, 2006.

[18] D. K. Hammond, Y. Gur, and C. R. Johnson, “Graph diffusion distance: A
difference measure for weighted graphs based on the graph laplacian expo-
nential kernel,” in Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, pp. 419–422, IEEE, 2013.

[19] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal pro-
cessing on graphs,” ArXiv e-prints, Aug. 2014.

[20] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foun-
dations of computational mathematics, vol. 12, no. 4, pp. 389–434, 2012.

[21] A. E. Alaoui and M. W. Mahoney, “Fast randomized kernel ridge regression
with statistical guarantees,” pp. 775–783, 2015.

37

	Introduction
	Background
	Random sampling on graphs
	Adaptive sampling scheme
	Embedding Theorems

	Metrics based on localized filters
	Localized Kernel Distance
	Kernelized Diffusion Distance

	Graph transductive learning
	Global graph diffusion
	RKHS transductive learning on graphs
	Motivation
	Transductive learning and graph filters

	Convex hull diffusion
	Convex Hull Diffusion

	Compressive Embedding
	Embedding quality measures
	Average Clusterability Index
	Average Cluster Concentration

	Experiments
	Embedding quality measures
	ACI
	ACC

	Real-world datasets visualization
	Visual comparison of diffusion operators
	Original algorithms compared to Compressive Embedding

	Conclusion
	Proofs

