
ORide: A Privacy-Preserving yet Accountable Ride-Hailing Service

Anh Pham
EPFL

Italo Dacosta
EPFL

Guillaume Endignoux
EPFL

Juan Ramon Troncoso-Pastoriza
EPFL

Kévin Huguenin
UNIL

Jean-Pierre Hubaux
EPFL

Abstract
In recent years, ride-hailing services (RHSs) have become
increasingly popular, serving millions of users per day. Such
systems, however, raise significant privacy concerns, because
service providers are able to track the precise mobility
patterns of all riders and drivers. In this paper, we propose
ORide (Oblivious Ride), a privacy-preserving RHS based
on somewhat-homomorphic encryption with optimizations
such as ciphertext packing and transformed processing.
With ORide, a service provider can match riders and drivers
without learning their identities or location information.
ORide offers riders with fairly large anonymity sets
(e.g., several thousands), even in sparsely-populated areas.
In addition, ORide supports key RHSs features such as easy
payment, reputation scores, accountability, and retrieval of
lost items. Using real data-sets consisting of millions of
rides, we show that the computational and network overhead
introduced by ORide is acceptable. For example, ORide
only adds several milliseconds to ride-hailing operations and
the extra driving distance for a driver is less than 0.5 km in
more than 75% of the cases evaluated. In short, we show that
a RHS can offer strong privacy guarantees to both riders and
drivers while maintaining the convenience of its services.

1 Introduction
Ride-hailing services (RHSs), such as Uber and Lyft, enable
millions of riders and drivers worldwide to set up rides
via their smartphones. Their popularity over traditional
taxi services is due to the convenience of their services,
e.g., ride requests at the touch of a button, fare estimation,
automatic payments, and reputation ratings. Moreover, the
accountability provided by RHSs is a key feature to riders
and drivers, as it make them feel safer [10,14]. For instance,
in case of a criminal investigation, the RHS provider can
offer law-enforcement agencies with the location trace of
a particular ride and the identities of the participants.

To offer such services, however, RHSs collect a vast
amount of sensitive information that puts at risk the privacy
of riders and drivers. First, for each ride, the location traces

and rider’s and driver’s identities are known to the service
provider (SP). As a result, the SP, or any entity with access
to this data, can infer sensitive information about riders’
activities (such as one-night stands [33]), monitor the loca-
tions of riders in real-time for entertainment [17], track the
whereabouts of their ex-lovers [39], look up trip information
of celebrities [23], and even mount revenge attacks against
journalists critical of such services [43]. In the case of
drivers, there are reports of SPs that track drivers to find if
the drivers attended protests [1]. Second, due to the release
of drivers’ Personal Identifiable Information (PII) early in the
ride set-up procedure, an outsider adversary can massively
collect drivers’ PII [36]. Third, there is evidence that RHS
drivers and riders are discriminated based on the racial and/or
gender information specified in their profiles [18]. Hence,
there is a strong need to provide privacy and anonymity for
both riders and drivers w.r.t. the SP and w.r.t. each other.

To the best of our knowledge, the only privacy-friendly
alternative to current RHSs isPrivateRide, recently proposed
by us [36]. This work, however, has some limitations, i.e., it
does not provide strong privacy guarantees for riders, and
offers less accountability and usability, compared to the
current RHSs (see Section 2). Therefore, a mechanism with
more robust privacy and accountability guarantees is needed.

We present ORide, a privacy-preserving RHS inspired by
PrivateRide; it reuses only one operation from PrivateRide,
i.e., the proximity check to prevent drivers’ PII from
being harvested (see Section 5.4). ORide enables the SP
to efficiently match riders and drivers without leaking
either their identities or their locations, while providing
accountability to deter misbehavior. ORide provides strong
privacy for both riders and drivers, i.e., all users in the
system are part of large anonymity sets, even if they are
in sparsely-populated areas. Even in the extreme case of
targeted attacks (i.e., a strong curious SP wants to know the
destination of a specific rider given the time and location
of her pick-up event [31]), the location privacy of the rider’s
destination is still guaranteed. For this purpose, ORide
relies on state-of-the-art somewhat-homomorphic encryption

1

system [15] (SHE), to which we apply optimizations for
ciphertext packing and transformed processing [35], hence
enabling a notable boost in performance and a reduction in
overhead w.r.t. naive cryptographic solutions.

Often considered as important as privacy in RHSs are
accountability and usability [10, 14]. This introduces
challenges in resolving the uneasy tension between privacy,
accountability and usability. To achieve accountable
privacy, ORide enables the SP to revoke the anonymity of
misbehaving riders or drivers when needed. However, the SP
does not have full control over this re-identification operation,
i.e., it is able to do it only with the support from the attacked
party. In addition, to preserve the convenience of the service,
ORide supports automatic payment through credit cards and
enables riders to contact drivers for lost items. ORide also
preserves the reputation-rating operations of current RHSs.

The evaluation of ORide by using real data-sets from
NYC taxi cabs [41] shows that, even with strong bit-security
of more than 112 bits, ORide introduces acceptable
computational and bandwidth costs for riders, drivers and
the SP. For example, for each ride request, a rider needs
to download only one ciphertext of size 186 KB with a
computational overhead of less than ten milliseconds. ORide
also provides large anonymity sets for riders at the cost of
acceptable bandwidth requirements for the drivers: e.g., for
rides in boroughs of Queens and Bronx, a ride would have
an anonymity set of about 26,000, and the drivers are only
required to have a data-connection speed of less than 2 Mbps.
Moreover, our results show that ORide is scalable, as we
considered a request load that is significantly higher than
the one in current RHSs, e.g., Uber accounts for only 15%
of the ride pick-up requests in NYC [40].

In summary, we make the following contributions:

• A novel, oblivious, and efficient matching mechanism.
ORide includes a novel protocol based on quantum-
resistant SHE to match riders and drivers, without revealing
their identities and locations to the SP. We optimize our
SHE-based protocol to considerably reduce the bandwidth
requirements and the processing overhead, compared to a
vanilla SHE-based protocol; and we propose an efficient
extension to deal with malicious drivers.

• The design and prototype of ORide. ORide supports the
matching of riders and drivers, different accountability
mechanisms, and it reduces the amount of sensitive in-
formation revealed to the SP. In particular, ORide supports
functionalities that are often considered as important as
privacy, such as credit-card payment, reputation rating, and
contacting drivers in case of lost items and traceability in
case of criminal activity during a ride.

• Thorough performance and usability evaluation. Using
real data-sets and robust security parameters (i.e., 112 bits
security), we show that ORide provides strong privacy guar-
antees for riders and drivers. In addition, the computational

and network overhead introduced by ORide is practical
for riders, drivers and SP. We also show that ORide has a
negligible impact on the accuracy of matching riders and
drivers compared with current RHSs.

2 Related Work
Researchers have proposed different privacy-enhancing
solutions for ride sharing (i.e., car pooling) ser-
vices [5, 13, 19, 20, 37] and public transportation ticketing
systems [7,24,29]. However, little work exists in the area of
privacy and security for RHSs, probably due to their relative
novelty. According to our literature review, the most relevant
work in this area is PrivateRide [36].

PrivateRide is the first system to enhance location privacy
for riders and protect drivers’ information from harvesting
attacks while maintaining the convenience of the service.
However, it has several limitations that are addressed in this
work. First, PrivateRide cannot guarantee the same level of
privacy to all the riders because the size of the anonymity set
in a particular cloaked area depends on the density of riders
in that area. For instance, the anonymity set is smaller for
ride requests in areas outside a city center. Also, the tradeoff
between the size of a cloaked area and the accuracy of the
ride-matching results prevents the use of larger cloaking
areas (i.e., to achieve larger anonymity sets). Second,
PrivateRide does not protect drivers’s privacy, which is
also important [1]. Third, PrivateRide provides limited
accountability features to deal with relatively common
scenarios such as drivers and riders physically attacking each
other (i.e., safety concerns) or items being lost during a ride;
for many users, such features can be as important as their pri-
vacy. Fourth, PrivateRide usability is reduced w.r.t. current
RHSs because the supported payment mechanism is less
convenient (i.e., PrivateRide requires payments with e-cash
bought in advance before a ride). Moreover, ride-matching
is suboptimal because the distance between rider and drivers
is estimated using the centers of the cloaked areas, instead of
exact locations, resulting in additional waiting time for riders.

3 System Model
Our goal is to design a RHS that provides stronger privacy
guarantees to both riders and drivers, as well as better
or equivalent usability and accountability compared with
PrivateRide [36] and current RHSs (e.g., Uber, Lyft, and
Easy Taxi). For this purpose, we assume a system consisting
of three parties: riders, drivers and the service provider (SP).
We now describe our adversarial and system assumptions.

3.1 Adversarial Assumptions
In our model, riders and drivers are active adversaries.
The SP is a passive adversary (i.e., honest-but-curious).
We assume that most riders and drivers do not collude
with the SP, as drivers are independent contractors rather
than SP’s employees. The case of covertly active SP is
discussed in Section 7.2. In such case, we assume that

2

the SP does not provide riders and drivers with malicious
apps. This is a reasonable assumption, because such attacks
can be detected by third-parties via reverse-engineering
or black-box analyses; the risk of public exposure and
reputation loss is a strong deterrent against such attacks.

Given that they were observed in current RHSs (i.e., higher
chance), we focus on the following attacks:

• (A1) The riders and drivers might attempt to assault each
other [45]; in extreme cases, a driver might attempt to
kidnap and/or kill the rider, or vice versa [34,46].

• (A2) The SP uses its knowledge about side information
about riders and drivers, including their home/work
addresses, together with protocol transcripts, to do
large-scale inference attacks to profile riders’ and drivers’
activities [33].

• (A3) The SP might attempt to carry out targeted attacks on
specific riders. That is, besides their home/work addresses,
the SP knows the precise pick-up location and time of a
specific rider and wants to know the drop-off location and
time of this ride, or vice versa [23,31,43].

3.2 Design Goals
The goal of ORide is to defend against the attacks listed in
Section 3.1, and to offer the same level of accountability and
usability as current RHSs, as follows.

• Riders and drivers are held accountable for their behaviors
during their rides, i.e., the SP is able to identify misbe-
having riders or drivers when needed, e.g., if one party
attacks the other. However, the SP is able to identify the
misbehaving party only with support from the affected
party (or her trusted contacts, see Section 6.

• The system preserves the convenience and usability
properties offered by current RHSs, such as payment
through credit cards and reputation rating. In addition,
once a rider is matched with a driver, she can track the
location of the driver approaching the pick-up location, and
they can contact each other for pick-up coordination. The
system also enables riders to contact drivers of their past
rides to find lost items.

3.3 System Assumptions
We assume that the metadata of the network and lower
communication layers cannot be used to identify riders
and drivers or to link their activities. Such an assumption
is reasonable because, in most cases, the smartphones of
drivers and riders do not have fixed public IP addresses;
they access the Internet via a NAT gateway offered by their
cellular provider. If needed, a VPN proxy or Tor could be
used to hide network identifiers.

In addition, we assume that, besides localization capabili-
ties, the rider’s and driver’s smartphones support peer-to-peer

Notation Description

ks Ephemeral private key
kkkp Ephemeral public key
certX Public-key certificate of X
locX Planar coordinates of X, locX =(xX ,yX)
n Number of available drivers
d Degree of the polynomial
dt Deposit token
rdt A random number to create a deposit token
z A geographical zone
sigX{m} Message m and signature of X on m
BsigSP(m) Blind signature of the SP on message m

Table 1: Table of notations

wireless communication, e.g., Bluetooth and WiFi Direct.
Also, for all location-based computations, the apps use
a coordinate system such that the Euclidean distances
correspond to the great-circle distances, e.g., by using
map-projection systems for local areas such as UTM [44] to
convert a pair of (latitude, longitude) to planar coordinates (x,
y). Moreover, drivers use a navigation app that does not leak
their locations to the SP. This can be done by using a third-
party navigation/traffic app (e.g., Google Maps, TomTom,
Garmin) or prefetching the map of their operating areas
(e.g., a city) and using the navigation app in off-line mode.

3.4 Notation
Throughout the rest of this work, we denote polynomials and
scalar values with lowercase letters, variables and rings with
uppercase letters, and vectors with boldface letters. b.e de-
notes rounding to the nearest integer. Polynomials of degree
(d−1) will be interchangeably denoted as a=∑

d−1
i=0 aiX i or

in their vector form aaa when there is no ambiguity. The used
symbols and terms are summarized in Table 1.

4 Oblivious Ride-Matching Protocol
One of the challenges in privacy-preserving RHSs is how to
efficiently match ride requests to ride offers without revealing
the riders’ and drivers’ locations to each other and to the SP.
For this,ORide relies on somewhat-homomorphic encryption
(see Section 4.1) where the riders and drivers send their en-
crypted locations to the SP, from which the SP can compute
the encrypted squared Euclidean distances between them. We
detail this in the following sections. For details about other
cryptographic primitives used in ORide, see Appendix A.3.

4.1 Somewhat-Homomorphic Encryption
Somewhat-Homomorphic Encryption (SHE) is a special
kind of malleable encryption that allows a certain number of
operations (additions and multiplications) over ciphertexts,
without the need to decrypt them first. All SHE cryptosys-
tems present semantic security, i.e., it is not (computationally)
possible to distinguish whether two different encryptions
conceal the same plaintext. Therefore, it is possible for
a party without the private key (in our case, the SP), to
operate on the ciphertexts produced by riders and drivers,

3

without obtaining any information about the plaintext values.
Additionally, we choose one of the most recent and efficient
SHE schemes based on ideal lattices, the FV scheme [15].
This scheme relies on the hardness of the Ring Learning with
Errors (RLWE) problem [27]. Note that whenever working
with cryptosystems based on finite rings, we must work with
integer numbers, thus, from here on, we will assume that all
inputs are adequately quantized as integers. Here, we briefly
describe the main functions of the FV scheme.

For plaintext elements in a polynomial quotient ring
m ∈ Rt = Zt[X]/(Xd + 1) and ciphertext elements in
Rq = Zq[X]/(Xd +1), where q and t are positive integers
q>t defining the upperbound of the ciphertext and plaintext
coefficients, respectively. Let ∆= bq/tc and χk,χn be two
short noise random distributions in Rq, the FV encryption
of a message m∈Rt with secret key ks = s∼χk and public
key kkkp =[p0,p1]= [(−a·s+e),a]∈R2

q, with e drawn from
χn and a randomly chosen in Rq, generated by FV.GenKeys,
results in a vector expressed as

ccc=FV.Enc(kkkp,m)=[p0 ·u+e1+∆·m,p1 ·u+e2], (1)

where u is drawn from χk, and e1, e2 are short random
polynomials from the error distribution χn. All operations
are mod q in Rq.

Decryption of a ciphertext ccc=[c0,c1] works as

m=FV.Dec(ks,ccc)=(bt ·[c0+c1 ·s mod q]/qe) mod t.

The scheme allows to seamlessly add (FV.Add), subtract
(FV.Sub) and multiply (FV.Mul) two encryptions, obtain the
encryption of the added, subtracted, and multiplied plaintexts
respectively; multiplications consider the encryptions as poly-
nomials in s: [c0,c1]→ co+c1 ·s, such that the product be-
tween ccc and ccc′ is evaluated as: [c0,c1]·[c′0,c′1]→c0 ·c′0+(c0 ·
c′1+c1 ·c′0)s+c1 ·c′1 ·s2→ [c′′0,c

′′
1,c
′′
2], which results in a cipher-

text in R3
q, with one extra polynomial; it is possible to recover

a fresh-like encryption with two polynomials by employing a
relinearization primitive, which requires the usage of a matrix
(relinearization key) composed of encrypted pieces of the
secret key (we refer the reader to [15] for further details).

4.2 Naive Approach
SHE can be applied to the ride-matching problem in RHSs
as follows. When a rider wants to make a ride request, she
generates an ephemeral FV public/private key-pair together
with a relinearization key. She uses the public key to encrypt
her planar coordinates and obtains their encrypted forms.
She then informs the SP the zone where her pick-up location
is, the public and relinearization keys and her encrypted
planar coordinates. When this information arrives at the
SP, the SP broadcasts the public key to all drivers available
in that zone. Each driver uses the public key to encrypt
their planar coordinates and sends them to the SP. The
SP computes, based on their encrypted coordinates, the
encrypted distances between the rider and the drivers, and

⋮	

	 	

	

	

	

	Naive		
(n	ciphertexts)	

O
ptim

ized		
	 	

	 	 	

	 	 	

		 		 	

	
	
		#$%&'() 			+ 				0			, + 			0				,) + ⋯+ 		0					,./0	
	
		
		#$%&'1) 			+ 				0			, + 			0				,) + ⋯+ 		0					,./0						
							

#$%&'231) 	+ 				0			, + 			0				,) + ⋯+ 		0					,./0	
	
	
	
		#$%&'() 			+ 		#$%&'1) 				, + ⋯+ 	#$%&'231) 	,4/0 + 			0				,4 + ⋯+ 		0					,./0	
	
		
	
	
	
	

Figure 1: Our optimized ride-matching approach enables the SP
to send to the rider a single ciphertext containing all the squared
distances (dist2

Di
) between the rider and available drivers as opposed

to one ciphertext per driver (naive approach).

it returns the encrypted distances to the rider, from which the
rider can decrypt and select the best match, e.g., the driver
who is the closest to her pick-up location.

However, a naive use of SHE would incur impractical
computational and bandwidth costs for the riders and the SP,
due to the high ciphertext expansion. Furthermore, for each
rider request the SP would need to separately compute the
ciphertext distances between the rider and each of the drivers:
For n drivers, this would mean n distance calculations
between encrypted polynomials of d coefficients each, and
n ciphertext distances returned to the rider. This would
impose an unfeasible overhead in terms of computations for
the SP, therefore delaying the ride-matching for the rider
and a considerable bandwidth overhead at the rider-SP link,
e.g., hundreds of MBs if the system has several thousand
drivers (see Section 9.3).

4.3 Optimized Approach
We propose three optimizations that take advantage of
the polynomial structure and enables us to operate on d
elements of Zt packed as a polynomial in Rt in a single
ciphertext, such that each encrypted operation affects all the
coefficients in parallel (see Fig. 1). When the rider decrypts
this ciphertext, she can recover these d values by looking
at all the coefficients. From here on, we assume that d≥n,
which will be usually the case due to the security bounds
on d (see Section 8); in other cases, dn/de encryptions can
be used to pack the whole set of distances analogously.

Packing itself reduces the bandwidth overhead, but it is not
enough for our goal. As we show in Section 5.4, we use all
the d packed values independently of each other to calculate
all the distances homomorphically in the same encrypted
operation, so we need coefficient-wise homomorphic
operations. While polynomial additions and subtractions are
naturally coefficient-wise, polynomial multiplication in Rt
(and its homomorphic counterpart in Rq) is a convolution
product of the coefficients. A well-known method for trans-
forming convolution products into coefficient-wise products
(and vice-versa) in polynomial rings is the number-theoretic
transform (NTT) [35], a Fourier transform specialized

4

for finite fields. This transform is commonly used in the
ciphertext space to speed up polynomial multiplications that
are then implemented as coefficient-wise products.

Particularly, in our case, we apply an inverse-NTT to
plaintexts before encryption and an NTT after decryption,
such that products in the encrypted domain are translated
into coefficient-wise products in the plaintext domain. The
NTT does not affect additions and subtractions because it
is linear. We note that the NTT exists only for certain values
of d and t, in particular when t is a prime and d divides t−1.
In our case, in order that operations in Zt simulate operations
in N on our values, we choose d = 2l as a power of two
and t as a sufficiently large Proth prime (of the form k2l+1,
see [35]) such that all squared-Euclidean distances are less
than t. As a result, we improve on both the bandwidth and
the computation overhead.

For a final optimization, and due to the low degree of the
evaluated operations (squared Euclidean distances), we avoid
the use of relinearizations at the SP, which (a) reduces the
need to generate and send the relinearization key from the
rider to the SP, (b) reduces the noise inside the encryptions,
and (c) enables more efficient operations at the SP, at the
cost of one extra polynomial to represent the encrypted
distance returned to the rider, as we will see in Section 9.

5 ORide

In this section, we present our ORide protocols. We start
with an overview description of the system, and then detail
ORide operations.

5.1 ORide Overview
ORide provides strong location privacy and anonymity for
riders and drivers while still guaranteeing service account-
ability, secure payment and reputation rating operations. For
this purpose, the riders and the drivers have to possess ride
prerequisites (Section 5.2), including anonymous credentials
(ACs), deposit tokens, and digital certificates issued by the
SP. To participate in the system, both riders and drivers create
anonymous sessions by logging in to the service (Section 5.3)
with their respective ACs. Drivers periodically report to the
SP the geographical zone where they are located. These
zones are defined by the SP to balance the network load in
the system and the size of the anonymity set of the zone (Sec-
tion 9.4). Note that, in contrast to PrivateRide, expanding the
size of a zone inORide does not affect the performance of the
ride-matching and fare-calculation operations (Section 5.4).

When a rider initiates a ride request, the SP, the rider and
drivers are involved in a ride set-up procedure (Section 5.4)
that matches the rider to a driver. In addition, as in current
RHSs, the rider and the driver agree on the fare based on the
estimated distance and duration of the ride [32,38]. Once the
rider and the driver are matched together, they terminate their
anonymous sessions. When the ride is completed, the driver
creates a new anonymous session and notifies the SP that she
is available again. Note that drop-off times and locations are

not reported to the SP. Moreover, some time after the ride fin-
ishes, i.e., at the end of the day, the rider and driver perform
ride-payment and reputation-rating operations (Section 5.5).

5.2 Ride Prerequisites

Digital certificates. We assume each rider and driver has a
digital certificate denoted as certR or certD, issued by the SP
at registration time. Each certificate contains a public key
and a randomly generated ID. The SP can use this random
ID to find the real identity of the certificate holder. Note
that the digital certificates are not used by the riders and
drivers to log in to the service, and they are not revealed to
the SP during a ride. They are used by the riders and drivers
to identify each other during the ride as part of ORide’s
accountability mechanism (Section 6).

Anonymous credentials. ORide relies on Anonymous Cre-
dentials Light (ACL) [8], a linkable anonymous credential
system, i.e., a user should use an AC only once to avoid her
transactions from being linkable. To use the service anony-
mously, each user (rider or driver) requests ACs in advance
from the SP, using their digital certificate. Hereafter, we
denote the anonymous credential for a user X as ACX, where
X is R for riders or D for drivers. Each ACX contains the
average reputation score repX, an expiration date expX, and
the secret key skX associated with the public key pubX in the
digital certificate of the AC holder. To differentiate between
riders and drivers in the system, an AC also contains a role at-
tribute roleX, i.e., roleX =1 if X=D, and roleX =0 if X=R.

Note that to prevent the SP from de-anonymizing users
by correlating the time an AC is issued with the time it is
used, or by relying on the AC’s expiration date, the user’s
app could automatically request ACs from the SP at a
certain time (e.g., at mid-night), and the expiration date
is coarse-grained, e.g., all ACs issued in a day expire at
the end of that day). The reputation scores are not used
to de-anonymize the users because they are never shown
to the SP during the rides. Furthermore, to prevent users
from abusing the system, the SP defines a threshold on the
number of ACs a rider or driver can acquire per day.

Deposit token. Each rider is required to possess a deposit
token and give it to the SP in the beginning of a ride. In case
of misbehavior, the token is not returned to the rider. A de-
posit token, denoted as dt, is worth a fixed amount of money
defined by the SP. It is a random number generated by the
rider, blindly signed by the SP (by using blind-signature
schemes e.g., [12]) such that the SP is not able to link a
token it issued and a token spent by a rider. A rider deposits
a token to the SP in the beginning of the ride, and she is
issued a new token (of the same monetary value) by the SP
after the ride payment is successfully completed. Note that
the driver is not required to make a deposit, because during
the ride set-up operation, the rider and driver exchange their
digital certificates with each other. Consequently, if the driver
misbehaves, the SP can identify the driver by collaborating

5

with the rider. We discuss this in more detail in Section 5.6.

5.3 Log in to the Service
To use the service, the rider and the driver need to create
anonymous sessions to the SP: to do so, they use their
anonymous credentials ACR and ACD respectively.

Rider. The rider sends to the SP the rider-role roleR and the
expiry date expR stated in her ACR. In addition, she proves
to the SP that the claimed values are correct, and that, in
a zero-knowledge fashion, she knows the secret key skR tied
to the ACR.

Driver. Similarly to the rider, the driver follows the same
aforementioned procedure by using her ACD to anonymously
log in to the service.

The SP assigns a one-time session ID to each anonymous
session, to keep track of that session for coordination. For
the sake of simple exposition, in the following, we exclude
this one-time session ID from messages exchanged between
the rider/driver and the SP.

5.4 Ride Set-up
When a rider requests a ride, the operations performed by
the rider, the drivers and the SP are as follows (see Fig. 2).

1. The rider generates an ephemeral FV public/private key
pair, denoted as (kkkp,ks). She first computes the polynomial
representations of the coordinates pxR = ∑

d−1
i=0 xRX i and

pyR = ∑
d−1
i=0 yRX i. She then applies the inverse-NTT on

the polynomials and uses kkkp to encrypt these values:
cccxR =FV.Enc(kkkp,NTT

−1(pxR)) and similarly for cccyR . She
then sends the zone of her pick-up location (denoted as
z), deposit token dt, kkkp, cccxR and cccyR to the SP. In order to
obtain a new deposit token (of the same monetary value)
at the end of the ride, the rider generates a random number
rdt , blinds it to r′dt , and sends r′dt in the request.

2. The SP checks the validity of the deposit token, i.e., it has
not been used before. If the token is valid, the SP adds
it to the list of used tokens. It then sends to each driver in
zone z a different randomly permuted index 0≤ i<n and
the public key kkkp.

3. The i-th driver encodes her coordinates in the i-th
coefficient: qi

xD
=xDiX

i and qi
yD
=yDiX

i. Similarly to the
rider, she applies the inverse-NTT, encrypts these values
and sends them to the SP: ccci

xD
=FV.Enc(kkkp,NTT

−1(qi
xD
))

and analogously for ccci
yD

.

4. The SP sums all drivers’ ciphertexts by using the homomor-
phic property of the cryptosystem to pack them together:
cccxD = ∑

n−1
i=0 ccci

xD
and similarly for cccyD . It then homomor-

phically computes the n packed squared values of the Eu-
clidean distances between the n drivers and the rider in par-
allel, due to the packing cccdist =(cccxR−cccxD)

2+(cccyR−cccyD)
2,

and it sends the result to the rider (see Fig. 1).

5. The rider decrypts the ciphertext and applies the
NTT to obtain a squared distance in each coefficient:
dddiiisssttt=NTT(FV.Dec(kkks,cccdist)). Then, she selects the driver
with the smallest squared distance.

6. The SP notifies the selected driver. If she declines the
offer, the SP asks the rider to select a different driver; it
repeats this operation, until one driver accepts. The SP
confirms with the rider and the driver that they have been
assigned to each other.

7a. The rider and the driver establish a secure channel via the
SP, e.g., using the unauthenticated Diffie-Hellman protocol,
to exchange data that should not be observed by the SP.1

From the information used to derive the secret key of the
secure channel, they compute a shared secret pairing PIN.
This pairing PIN will be used for the proximity-check
operation in Step 8.

With this secure channel, the rider and the driver reveal
their reputation scores to each other. The trustworthiness
of the revealed values is proved by showing that they
are indeed the values in the rider’s and driver’s ACs. If
the rider’s reputation is too low, the driver can abort the
protocol at this step. Likewise, the rider can select another
driver, by using the list of cleartext squared Euclidean
distances she obtained in step 5.

7b. Via the secure channel, the rider and the driver exchange
their precise locations (i.e., locR and locD, respectively).
In addition, they exchange their digital certificates (certR
and certD) with each other. This provides accountability
for the rider and driver (see Section 6).

The driver drives from her current location locD to the
pick-up location locR, using an off-line navigation app
or a third-party navigation app (such as Google Maps or
TomTom). She sends, in real time, her precise locations
to the rider, via the secure channel, thus the rider can track
the movements of the car. Also, at this point, the rider
and the driver can call or message each other through their
ride-hailing apps, if needed. They can also terminate their
anonymous sessions with the SP.

8. When the rider and the driver are in proximity, the driver per-
forms a proximity check to verify the physical presence of
the rider before releasing her identifying information. That
is, they use a short-range wireless technology (e.g., Blue-
tooth or WiFi Direct) to set up a proximity channel using
the pairing PIN. If the channel is successfully established,
the driver can verify that the rider is in her proximity. This is
similar to the approach proposed in [36] to prevent drivers’
PII from being harvested. If this step fails, the driver can de-
cide to abort the protocol. Also, via the proximity channel,
the rider and the driver can check that the secure channel
(established at step 7a) was not tampered with by the SP.

1Detection of man-in-the-middle attacks by the SP is done in step 8.

6

Rider: anonymous session sR SP Driver: anonymous session sD

Generate (kkkp,ks),rdt

pxR =∑
d−1
i=0 xRX i

pyR =∑
d−1
i=0 yRX i

r′dt =Blind(rdt)

cccxR =FV.Enc(kkkp,NTT
−1(pxR))

cccyR = FV.Enc(kkkp,NTT
−1(pyR))

qi
xD
=xDi X

i

qi
yD
=yDi X

i

ccci
xD
=FV.Enc(kkkp,NTT

−1(qi
xD
))

ccci
yD
=FV.Enc(kkkp,NTT

−1(qi
yD
))

cccxD =∑
n−1
i=0 ccci

xD

cccyD =∑
n−1
i=0 ccci

yD

cccdist =(cccxR−cccxD)
2+(cccyR−cccyD)

2

dddiiisssttt=NTT(FV.Dec(kkks,cccdist))
Select driver, denoted ibest

(1) z, dt, r′dt , cccxR , cccyR , kkkp (2) kkkp, i

(3) ccci
xD

, ccci
yD

(4) cccdist

(5) ibest (6) Notify the selected driver

(7a) Secure channel (via SP): exchange repR and repD

(7b) Secure channel (via SP): exchange certR, certD,precise locations

(8) Proximity check and validation of secure channel

(9) Drive’s identifying info: plate number, profile picture

(10) Fare report: sigR−D{fare,certR,certD}

Figure 2: ORide ride setup protocol. The dashed arrows represent the secure channel (via the SP), and the dotted arrows represent the
proximity channel.

9. The driver releases her identifying information, including
her vehicle’s license plate number and her profile picture,
to the rider. This information helps the rider to identify the
driver and her car and to prevent certain threats, e.g., fake
drivers [42]. Therefore, it is needed when the rider is about
to enter the car, i.e., the required communication distance
between the phones of the rider and the driver is small
(e.g., several meters).

10. The rider and the driver create a fare report. A fare report
is a token generated by the rider and driver, and at the
end of the day, the driver deposits it to the SP to get paid
(Section 5.5). A fare report is created as follows. The rider
sends her drop-off location to the driver via the secure
channel, they agree on the path, and based on the estimated
path, they compute the fare. The rider and driver then
sign a message consisting of the fare and their certificates,
i.e., fare report = sigR−D{fare,certR,certD}, using the
private key associated with their certR and certD. Note that
this upfront-fare method has been implemented in current
RHSs, such as in Uber [32] and in Lyft [38]. Once the

driver receives the fare report from the rider, the ride begins.
The rider’s and driver’s app do not report any information to
the SP at this stage and during the ride. Also, to prevent the
SP from inferring the starting time of the ride based on the
interactions between the rider and the driver over the secure
channel, the rider and driver can randomly send dummy
information to each other through the secure channel.

Intuitively, because the distances between the rider and
drivers are computed based on their (encrypted) precise
locations, expanding the size of the zone will not result in
negative effects on the performance of the ride-matching
and fare-calculation operations. In addition, with ciphertext
packing, we reduce by a factor of n the communication
between the SP and the rider. However, if the drivers are
malicious, they could corrupt the inputs from other drivers.
Furthermore, note that in step 1 of the protocol, any valid
rider can generate an ephemeral public/private key pair. Con-
sequently, if the SP was active, it could track the locations
of the drivers, thus indirectly track the locations of the riders.
We discuss solutions to these potential issues in Section 7.

7

5.5 Ride Payment and Reputation Rating
When the car arrives at the drop-off location, the driver
creates a new anonymous session to the SP. This enables her
to receive ride-request broadcasts from the SP. Note that the
driver does not report to the SP that the ride is completed.

The driver sends to the SP the fare report
sigR−D{fare,certR,certD} she received during the ride set-up
operation (step 10, Section 5.4). The SP checks the correct-
ness of the rider certificate certR in the fare report and the
correctness of the signature. If they are valid, the SP charges
the rider according to her payment method. It also issues a
new deposit token, denoted as dt′, to the rider, by blindly sign-
ing the blinded random number r′dt it received in the rider’s
ride request (i.e., dt′=sigSP{r′dt}, step 1 in Section 5.4), and
it sends this blind signature to the rider’s account. It then sub-
tracts the service fee, and deposits the remainder to the driver.

Once the payment is successfully completed, the rider
and driver can vote for the reputation of each other, similarly
to current RHSs. They can log in to the service with their
real credentials and provide the reputation score for the party
whom they rode with.

Note that ORide preserves the payment and reputation-
rating operations of the current RHSs. That is, unlike
PrivateRide, it does not require the rider to purchase e-cash
in advance, and it does not require the rider and the driver
to generate and keep extra cryptographic tokens for the
reputation-rating operation. In addition, ORide does not
require the rider and the driver to hide their identifying infor-
mation to the SP during the payment and reputation-rating
operations, because the rider and driver are both anonymous
during the ride. However, it is important to note that, in order
to prevent the SP from de-anonymizing the rider and the
driver by correlating the time a fare report is deposited with
the drop-off event of the ride, the payment operation should
not occur immediately after the ride, e.g., the drivers deposit
the fare reports to the SP at the end of the day.

5.6 Ride Cancellation
As in current RHSs, a rider or a driver can cancel a ride any
time before or during the ride. This, however, is discouraged
by the SP, because it can lead to malicious behaviors: For
example, once a rider and a driver are assigned to each other
by the SP, they meet at the pick-up location and start the
ride as normal; but, to avoid the service fee, the rider or the
driver can send a fake cancellation notification to the SP.
Therefore, similarly to current RHSs, if a rider or a driver
cancels a ride a certain amount of time after the ride request,
they should be punished by the SP, e.g., their reputation
scores are lowered or fees are charged [11].

In ORide, when a rider cancels a ride, the SP can offer
her two options: lose her deposit token (i.e., pay a penalty)
or reveal her certR and have her reputation score lowered.
If a driver cancels a ride, the SP can ask the rider to reveal
the certD, from which the SP can identify and punish the

driver according to its policy.

6 Accountability
In this section, we discuss the accountability goals (men-
tioned in Section 3.2) of ORide. This includes defense
mechanisms against the attack (A1) in Section 3.1 and
additional features such as retrieval of lost items, ensurance
of payment, and integrity of the reputation-rating operation.
Attacks (A2) and (A3) are discussed in Section 8.

(A1) Accountability. ORide enables the rider and the
driver to exchange, during the ride set-up procedure, their
digital certificates, i.e., certR and certD, respectively, and
the fare report. This provides accountability for riders and
drivers, i.e., an attacked party can report to the SP the digital
certificate of the attacker and the fare report, from which
the SP can identify the attack to charge her a fee, lower
her reputation and/or support legal action. However, the SP
is only able to identify the attacker with support from the
attacked party. Likewise, the attacked party cannot obtain
the real identity of the attacker without support from the SP.

To provide accountability in the extreme cases where the
rider’s phone is not available, e.g., kidnapping or the phone
is broken, promptly after a rider receives certD and fare
report from the driver, she can share them, via out-of-band
channels such as messaging apps, with her friends. This is
similar to the approach used in personal safety apps, such as
Google Trusted Contacts [21]. Similarly, during the ride, via
out-of-band channels, she can share her GPS trace with her
friends using (k,l) threshold secret sharing [16], i.e., each
GPS location point is is split into l parts so that any k out
of l parts reconstruct the original coordinate.

Another risk in RHSs is insurance of payment. A rider
cannot avoid paying the fare of a ride, because she is
identified with her digital certificate certR in the fare report.
As the rider and driver agree on the fare and sign it before the
ride, they cannot subsequently increase or decrease this fare.
However, they might collude to underpay the service fee to
the SP, by agreeing on a small fare and paying the difference
in cash. Yet in this case, ORide offers the same guarantees
as current RHSs, because riders can already request a small
ride through the application and then pay in cash for a longer
ride once they have met the driver. In future work, we will
explore mechanisms to protect against this attack.

Moreover, the bilateral rating system enables the SP to ban
abusive riders and drivers from the service. A rider or driver
cannot claim a better reputation for herself, because the proof
for attributes in her AC will not be correct w.r.t. her falsely
claimed reputation. They also cannot arbitrarily vote for the
reputation of each other, because a payment record is needed
(the deposit of a fare report). In addition, as discussed in
Section 5.6, similarly to current RHSs, ORide enables the SP
to hold riders and drivers accountable for ride cancellations.

SP incentives. From an economic perspective, ride-hailing
service SPs would have incentives to deploy ORide as

8

it provides privacy and security for the riders and still
preserves their business models (i.e., the SP can still charge
a commission for each ride). In order to monetize ride data,
the SPs can provide a discount for riders if they reveal (part
of) their GPS traces. In addition, privacy and security for
RHSs might be enforced by law and legislation, and ORide
shows that it is technically possible to achieve a strong level
of protection. As such, this work lays the foundation for the
design of a privacy-preserving and secure RHSs.
Additional features. Similarly to current RHSs, ORide
enables the riders to retrieve lost items (i.e., items forgotten
in the car), as drivers’ certificates certD and car information
are provided during the ride set-up procedure. As discussed
earlier, the riders can share certD with their friends, thus,
even if the riders lose their phones, they can still be able
to retrieve the certD from their friends and contact the SP.
In addition, due to the secure channel established between
the rider and the driver, the rider can still track the driver
trajectory while waiting at her pick-up location, or they can
contact each other (e.g., messaging or calling) when needed.

7 Protecting against Malicious Behaviors
In this section, we describe how the protocol presented
in Section 5 can be extended to defend against malicious
drivers and a covertly active SP.

7.1 Malicious Drivers: Masking
As mentioned in Section 5.4, if a driver behaves maliciously,
she could encrypt non-zero values in the slots other than her
allotted one, thus corrupting the inputs from other drivers.
Our protocol can cope with this malicious behavior by adding
one extra step in which the SP homomorphically multiplies
each driver ciphertext by a mask mi = NTT−1(X i) for the
driver’s index i (see notations from Section 5.4), which
preserves only the contents in the allocated slot. However,
the mask does not hold any sensitive information and it is
known by the SP, hence consequently, a naive homomorphic
multiplication with an encrypted mask would impose an
unjustified overhead. Therefore, we propose, instead, a more
efficient multiplication operation, denoted ?, as follows.

Given a ciphertext ccc = [c0,c1] ∈ R2
q corresponding to a

plaintext m∈Rt , and a mask mi ∈Rt , we want to obtain a
ciphertext ccc′=ccc?mi corresponding to the masked plaintext
FV.Dec(ks,ccc)·mi. mi can be thought of as its own noiseless
and unscaled encryption (Equation (1) on page 4, evaluated
for u,e1,e2 = 0, and no scale ∆), being a vector in R2

q with
only one non-zero component ([mi,0]∈R2

q). Therefore, the
product results

ccc?mi=[c0 ·mi,c1 ·mi].

The ? operation consists of two polynomial multipli-
cations, it avoids encryption of mi, halves the number
of products with respect to an encrypted homomorphic
multiplication, and keeps the cipher size from growing after

the product, hence considerably improving the performance
of this operation.

In any case, this precaution is only needed in case the
drivers are malicious, and random checks on their locations
can be implemented instead if the drivers are just covertly
active (i.e., they refrain from cheating if there is a negligible
chance of being caught in the act).

7.2 Covertly Active SP

As mentioned in Section 5.4, any valid rider can generate an
ephemeral key to make a ride request. Since the SP issues
credentials for riders and drivers, it can impersonate a rider
or a driver in its own system.

If the SP continuously impersonates a rider, it could
learn the drivers’ locations, from which it could learn the
coarse-grained pick-up locations of the riders. In other words,
if a rider chooses the driver who is the closest to her pick-up
location, the SP would know that she is in the Voronoi cell
of her selected driver. Below, we present a mechanism to
deter this attack. We note that the attack is not trivial, due to
the high dynamics of the system, i.e., drivers can arbitrarily
go on-line and off-line anytime. The SP would not have
strong incentives to perform this attack, because it would
add computational and bandwidth overhead to the service,
thus negatively affecting the productivity of the service itself.
To deter this attack, we introduce the notion of Proof-of-Ride
(PoR), defined and used as explained below. An illustration
of the protocol with PoR is shown in Appendix A.1.

A PoR is a random number rand generated by the
rider, signed by the driver using the secret key associated
with her certD, and then blindly signed by the SP by
using blind-signature schemes such as [12], i.e., PoR =
BsigSP{sigD{rand}}. It is used to prove to the drivers that
the rider is real, i.e., she did a ride in the past. When a rider
makes a ride request, she has to provide in her ride request a
PoR, the certD and the random number rand used in the PoR.
A PoR can be used only once. For the first ride, PoR=certR.

To prevent the SP from creating its own certR and certD
to create its own fake PoR, the SP has to provide certificate
transparency [25]: the SP maintains and publishes a publicly
auditable and append-only log of all rider and driver certifi-
cates it has issued and revoked. Whenever a driver receives
a PoR, she can check whether the rider’s certificate certR (in
the case of the first ride), or the driver’s certificate indicated
in the PoR, is in the list of certificates published by the SP.
This way, if the SP internally creates fake accounts, it can be
detected by auditing authorities, similarly to the cases of com-
panies opening fake user accounts [9]. Similarly, to prevent a
rider from double-spending a PoR, and the SP from reusing
a valid PoR to perform the aforementioned active attack, the
SP maintains and publishes an append-only logs of PoRs
that have been spent, or cancelled (due to ride cancellation).

Note that PoR could create a point of linkability, i.e., the
SP is able to know that the rider is in the set of identities
indicated in the fare reports deposited by a specific driver.

9

Identities Pick-up
loc.

Pick-up
time

Drop-
off loc.

Drop-off
time

Loc.
trace

Fare

Current
RHSs

Rider,
Driver

Precise Precise Precise Precise Full Yes

PrivateRide Driver Zone Obfuscated Zone Obfuscated Partial Yes
ORide N/A Zone Obfuscated N/A N/A N/A N/A

Table 2: Information observed by the SP during ride set-up
procedure w.r.t. different RHS designs. Note that the zone in
ORide is larger than the zone in PrivateRide without affecting
the ride-matching optimality (see Section 9.4). Also note that, the
payment operation in ORide reveals some information about the
riders, but it cannot be used to break the anonymity of the rides
(explained in Section 8).

This can be easily prevented by using anonymous-reputation
and anonymous-payment systems (e.g., e-cash), as used in
the PrivateRide system [36].

8 Privacy and Security Analysis
In this section, we present an analysis of ORide to show that
it effectively addresses against the privacy attacks described
in Section 3.1.

The SP cannot de-anonymize a rider or driver through
their anonymous logins by using their ACs. These are guaran-
teed due to the anonymity and unlinkability properties of the
ACL anonymous credential system [8]. Additionally, the SP
cannot obtain extra information from the riders’ and drivers’
encrypted locations and their encrypted distances; this is due
to the semantic security of the FV encryption scheme [15].
Table 2 compares the information observed by the SP during
ride set-up procedure w.r.t. different RHS designs.

Specifically, in ORide, the information observed by the
SP from ORide operations can be put in two databases, as
follows.

• Ride DB, in which each entry contains the role and
expiration date of the AC, the pick-up zone and obfuscated
pick-up time. The role and expiration date are coarse-
grained, i.e., all riders or drivers have the same role, and all
ACs issued on the same day expire at the end of that day.

• Payment DB, in which each entry contains a rider’s ID,
a fare, and the day the fare report is deposited to the SP.
Note that this database does not exist if payment is done
through e-cash, as used in the PrivateRide system.

(A2) Large-scale inference attacks by the SP. To profile
riders’ and drivers’ activities, the SP needs to learn the iden-
tities, the locations, and the times associated with their rides.

By using the Payment DB, the SP would know which
specific rider took a ride with a specific driver on which
day and what its fare was. Since drivers are often licensed
to operate in a city or state, knowing that a rider took a ride
with a specific driver, the SP might be able to know the city
where the rider took a ride, but it does not know the specific
location in the city. In addition, knowing the home/work
addresses and the fares of the rides, the SP might be able to

know if a rider went from home to work. Such rides are not
sensitive, however, compared to others, such as one-night
stands, going to abortion clinics or political-party meetings.
Otherwise, anonymous-payment methods, such as e-cash,
could be used to decouple the riders’ identities from the
fares, thus preventing the SP from knowing rides between
home and work of the riders.

By using the Ride DB, the SP might be able to guess the
identities of the riders, only if the pick-up zone has a limited
number of ride activities and riders, e.g., a zone where only
one rider lives. This case, however, will never happen in
ORide, because the zones are defined by the SP in such a
way that each zone has at least a large minimum number
of ride requests per day, while balancing the bandwidth
requirements for the drivers. We illustrate this in Section 9.
Note that the SP would be detected if it lied about the
activity densities in the zones, because these densities are
public knowledge [40], and the drivers would notice if they
received very few ride requests from a certain zone.

Assuming a stronger adversarial SP that, besides
home/work addresses of the riders, knows that a rider took a
ride from a given zone and it wants to know the time of that
ride. In this case, the anonymity set of a ride is the number of
rides that occurred on the same day in that zone. Similarly to
the aforementioned case, the anonymity set of a ride depends
on the ride density in its pick-up zone. However, note that, as
this requires more side information, the anonymity-set size
in this case is the lower-bound estimation of the anonymity
set for the aforementioned case. This lower bound is used
in the evaluation of the anonymity set achieved by ORide,
presented in Section 9.

(A3) Targeted attacks by the SP. In the case where the
SP knows the precise pick-up location and time of a ride,
it still cannot know the drop-off location and time of the
ride, because, in ORide, the drop-off event is not reported
to the SP. Knowing the fare from the Payment DB, the
SP might be able to check whether the target went home or
to work, but it could not know other destinations. However,
as mentioned earlier, such rides are not very sensitive.
Otherwise, anonymous-payment methods, such as e-cash
could be used to prevent these attacks.

PII- and location-harvesting attacks by outsiders. ORide
reuses the proximity-check mechanism proposed by
PrivateRide, hence it provides the same guarantees for
harvesting-attacks against drivers’ PII. However, a malicious
outsider might attempt to triangulate drivers, to obtain a
snapshot of the locations of all drivers in a zone: It could
make three ride requests at the same time to obtain the
distances, and cancels these requests immediately. ORide
mitigates this attack by applying two measures: (1) requiring
a deposit token from each rider per request, thus enabling the
SP to identify riders who make many requests and cancel (as
discussed in Section 5.6), and (2) permuting the list of drivers’
indices for each ride request (step 2 in Section 5.4). Also, the

10

SP can further prevent this problem by defining a threshold
on the number of ACs each rider account can obtain per day,
thus limiting the number of ride requests a rider can make.

9 Evaluation
In this section, we evaluate our protocols using a real
taxi-trace data-set. We first evaluate the performance of
the ride-matching operation in terms of computational and
bandwidth requirements for the riders and drivers. We then
evaluate the effect of Euclidean distances on the optimality
of ride-matching operations.

9.1 Data-Sets
Our data-set consists of over 1.1 billion taxi rides in New
York from January 2009 to June 2015 [41]. We extracted
data for the month of October in 2013, one of the busiest
months in the data-set, which resulted in a subset of over
15 million rides. In this subset, the average duration of
the rides is 13 minutes, respectively. The GPS traces of
the rides are not given; however, the precise pick-up and
drop-off locations and times, and pseudo-IDs of the taxi
drivers associated with the rides are provided. In addition,
the data-set provides mapping between latitude/longitude
coordinates to NYC census tracts (CTs), neighborhood
tabulation areas (NTAs) and boroughs in NYC.

We make the following assumptions. First, the drop-off
location of a driver is her waiting location. Second, a
ride-request event is a pick-up event (i.e., consisting of a
pick-up location and pick-up time) in our data-set. Third, for
each ride-request event, the set of drivers available for that
request consists of drivers who have at least one drop-off
event in the last 30 minutes since the ride-request timestamp.
The 30-minute interval is chosen, because the data-set shows
that 99th percentile of the time gap between the drop-off
event of a driver and her next pick-up event is approximately
30 minutes.

9.2 Implementation Details
Our ORide prototype features the main cryptographic
operations for the ride matching in the ride set-up procedure
(Section 5.4). Other cryptographic operations needed for
requesting a ride, i.e., AC operations and blind signatures,
and for setting up the proximity channel between the rider’s
app and the driver’s app, can be found in the evaluation of
the PrivateRide system [36].

To measure the cryptographic overhead of ride-matching
operations, we implemented a proof-of-concept ORide
in C++, by relying on the NFLlib library [28]. In our
experiments, the SP, the rider, and the driver are located
on the same computer, hence network delays are not
considered. However, the network delay would not impose
a considerable overhead, because a ride-matching operation
requires only one round-trip message between the rider and
the SP, and one round-trip message between the SP and
each driver. Also, the data exchanged between the rider and

Setting Rider Driver

Algorithm Upload
(KB)

Download
(KB)

Download
(KB)

Upload
(KB)

S1 372 761856 124 248
S2 372 186 124 248
S3 372 186 124 248

Table 3: Per-ride bandwidth requirements of ORide, with d=4096,
log2(q) = 124, and there are 4096 drivers available for a ride
request (n=4096).

the SP, and the SP and the drivers, is small, as discussed in
Section 9.4. Note that, similarly to the current RHSs, the SP
can implemnt a timeout for responses from the drivers such
that the latency is reasonable for the services. Due to the de-
pendency requirements of the NFLlib, it is not trivial to port
the implementation to mobile platforms. However, to make
our experiments close to the performance of smartphones, in
all of our implementations, we do not use SSE or AVX opti-
mizations for Intel processors. The ORide proof-of-concept
implementation on smartphones is work in progress.

9.3 Per-Ride Overhead
In this section, we describe our experimental setup, and
presents the bandwidth and computational overhead for a
rider and a driver per ride request.

We used ORide’s prototype to estimate the overhead
added for ride-matching operations in three settings: (S1)
when naive SHE approach (Section 4.2) without using re-
linearizations at the SP is used, (S2) when ciphertext-packing
optimizations are used and the drivers correctly write their
coordinates to their assigned allocated slots (Section 5.4),
and (S3) when ciphertext-packing optimizations are used
and the drivers write arbitrary values to slots of other drivers,
hence masking (Section 7.1) is needed.
Experimental Setup. To measure the performance of
our system, we used a computer (Intel i5-4200U CPU,
2.6 GHz, 6 GB RAM) with Debian Jessie (Linux kernel
3.16). The security parameters used in our experiments are
tuned to achieve an equivalent bit-security of more than
112 bits, therefore exceeding current NIST standards [4] for
2016-2030. With this security target, and a plaintext size of
20 bits the needed polynomial dimension is d=4096, with
coefficients of size 124 bits (each polynomial has a size of
62 KB). These parameters guarantee both 112-bits of security
and correct homomorphic operations for homomorphically
adding up to 4096 encrypted locations in the same ciphertext
and calculating the corresponding Euclidean distances.2 We
refer the reader to Section A.2 for more details about the
possible granularity a geographical area can have.

Assuming a rider makes a ride request to the SP, and
there are 4096 drivers available for the request (n= 4096),
with the aforementioned security parameters, the bandwidth

2We refer the reader to Section 6 in [15] for more details on the choice of
cryptographic parameters for FV. It is worth noting that we have considered
pessimistic bounds in order to cope with recently published attacks that
reevaluate the security of lattice-based cryptosystems [6].

11

Setting Rider Driver SP

Algorithm
Gen. keys

(ms)
Encrypt

(ms)
Decrypt

(ms)
Load key

(ms)
Encrypt

(ms)
Load key

(ms)
Compute Dist.

(ms)
S1 1.51±0.06 2.6±0.2 7823.4±573.4 0.53±0.01 2.6±0.2 0.53±0.01 113868.8±6553
S2 1.51±0.06 2.6±0.2 2.2±0.1 0.53±0.01 2.6±0.2 0.53±0.01 208.9±4
S3 1.51±0.06 2.6±0.2 2.2±0.1 0.53±0.01 2.6±0.2 0.53±0.01 745.5±24.5

Table 4: Per-ride computational overhead of ORide (without AVX/SSE optimizations), for d=4096, log2(q)=124, and there are 4096
drivers available for a request. Statistics (avg ± std.dev.) were computed from 1000 experiments.

requirements and computational overhead per ride request,
for a rider and a driver, are shown in Table 3 and Table 4,
and explained below.

• Bandwidth overhead for a rider: In all three settings, for
each ride request, a rider sends to the SP a public key and
two ciphertexts for her encrypted planar coordinates. This
totals 6 polynomials, a payload size of 372 KB.

Regarding the number of distance ciphertexts a rider
receives from the SP, in setting S1, it is equal to n, i.e., the
number of responding drivers. In settings S2 and S3, it is
significantly reduced to dn/de, due to ciphertext packing.
A ciphertext distance, when avoiding relinearizations (see
Section 5.4), consists of 3 polynomials, thus having a total
size of 186 KB. Assuming there are 4096 drivers respond-
ing a ride request, setting S1 would require the SP to send
4096 distance ciphertexts (744 MB) to the rider, while S2
would require only one distance ciphertext (186 KB).

• Bandwidth overhead for a driver: in all three settings, for
each request: On the downlink, the SP forwards to each
driver a public key, 2 polynomials of size 124 KB. On the
uplink, each driver sends back to the SP her encrypted
planar coordinates, totaling 4 polynomials of size 248 KB.

• Computational overhead: As shown in Table 4, in all
three settings, the computational overhead introduced
by key generation and encryption operations are small,
i.e., 1.5 ms and 2.6 ms, respectively for both riders and
drivers. Due to masking, setting S3 introduces a small
computational overhead for the SP in homomorphic
squared-Euclidean-distance computation, compared to
setting S2 (745 ms vs. 208.9 ms). However, noticeably,
due to ciphertext packing, settings S2 and S3 significantly
reduce the computational cost for the SP (208.9 and
745 ms compared to 113868.8 ms required by S1). It also
significantly reduces the decryption overhead for the rider,
from 7823 ms in setting S1 to 2.2 ms in settings S2 and S3.

Note that the results for the rider and driver are optimistic,
as we used a laptop instead of an smartphone (however, as
stated before, CPU optimizations were not used to reduce
the difference). While such comparisons are not straightfor-
ward, we can do a rough estimation of the expected perfor-
mance of ORide in smartphones. For instance, comparing
the performance scores of top multicore CPUs in smart-
phones [2] with top multicore CPUs in desktops [3], we can

see that the difference is less than an order of magnitude.
Assuming such difference, then we can see that the com-
putational overheads for key generation, encryption and de-
cryption are still acceptable in smartphones, around 15 ms,
26 ms, and 22 ms respectively. The overhead is still accept-
able even if we consider two orders of magnitude difference,
as the total time to hail a ride is in the order of minutes.

9.4 Riders’ Anonymity and Drivers’ Band-
width Requirements

In this section, we present the trade-off between the ride-
anonymity set vs. bandwidth requirements for the riders and
drivers, by using the real data-set presented in Section 9.1.

Due to the high demand of taxi rides in Manhattan
w.r.t. lower activity other boroughs in NYC (from our
data-set, Manhattan accounts for 90% of ride requests), we
define two zone settings as follows.

• Setting one (Z1): Manhattan is divided into census tracts
(CTs). Each CT is one zone. The boroughs of Queens
and Bronx are merged into one zone, and the boroughs of
Brooklyn and Staten Island are merged into one zone.

• Setting two (Z2): Manhattan is divided into neighborhood
tabulation areas (NTAs). Each NTA is one zone. Similarly
to setting one, the boroughs of Queens and Bronx are
merged into one zone, and the boroughs of Brooklyn and
Staten Island are merged into one zone.

Estimation of the anonymity set. As explained in
Section 8, the number of rides in a day from a zone is a
lower-bound estimation of the anonymity set for a ride.
Fig. 3a shows the experimental cumulative distribution
function (CDF) of the lower-bound anonymity-set size. It
can be observed that, for Manhattan with the zone granularity
of census tracts, 81.7% of the rides have an anonymity set
of size at least 50, and for a zone consisting of Queens and
Brooklyn, all of the rides have an anonymity-set size of at
least approximately 26,000.

Bandwidth requirements for riders. As mentioned
earlier, the bandwidth requirements for a rider, per ride
request, depends on the number of available drivers. Our
experiments show that for both zone settings, for all ride
requests, the number of available drivers is less than 3,500.
This means, with the security parameter chosen (as presented
in Section 9.3) and when proposed optimized packing

12

 0

 20

 40

 60

 80

 100

10
0

10
1

10
2

10
3

10
4

10
5

P
ro

p
o

rt
io

n
 o

f
ri

d
es

 [
%

]

(a) Anonymity-set size

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

P
ro

p
o

rt
io

n
 o

f
th

e
ti

m
e

[%
]

(b) Upload speed [Mbps]

Zones:
Manhattan CTs

Manhattan NTAs
Queens + Bronx

Brooklyn + Staten

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
ro

p
o

rt
io

n
 o

f
d

ri
v

er
s

[%
]

(c) Data plan [GB]

Zone settings:
Z1
Z2

Figure 3: System performance. (a) Anonymity-set size, (b) Upload speed requirement for the drivers, (c) Monthly-data plan requirement
for the drivers

approaches are used, a rider needs to download only one
ciphertext distance, i.e., 186 KB, which is negligible.

Bandwidth requirements for drivers. Fig. 3b shows the
CDF of the upload speed required for the drivers; the upload
speed is computed by multiplying the number of requests a
driver receives per second with the size of the ciphertexts she
has to upload per request. Note that the required downlink
speed is half of the uplink speed, because the downlink
payload is half the size of the uplink payload (Section 9.3). It
shows that for Manhattan with the zone granularity of census
tracts, the required upload speed is less than 0.5 Mbps,
and for other zones, the required upload speed is less than
2 Mbps, which is provided by 3G or 3.5G networks.

Monthly-data plan required for the drivers. Fig. 3c
shows the CDF of a data plan required for the drivers for two
aforementioned zone settings; this is calculated by multiply-
ing the total number of requests a driver would receive during
her waiting time with the uplink- and downlink-payloads
per request. The result shows that with the zone setting Z1, a
driver needs at most 10 GB of data per month, and with the
zone setting Z2, 60% of drivers need less than 25 GB of data
per month. This requirement is reasonable: For example, in
the U. S. , an unlimited data plan typically offers 20-26 GB
of high-speed data with less than $100 [30]. In addition, the
drivers can reduce his data-plan consumption by using free
WiFi networks, such as LinkNYC [26]. Also, note that the
results presented also show that ORide can scale, because
current RHSs (e.g., Uber) accounts for only 15% of the ride
pick-up requests in NYC [40].

The requirements on bandwidth for the drivers and the
anonymity-set sizes for riders enables the SP to define the
zones that balance the trade-off between the two aforemen-
tioned requirements. For example, for areas that have a high
density of ride activities such as Manhattan, the SP could
discretize the borough into zones of CTs or NTAs, or combi-
nations of CTs and NTAs. Note that, as shown earlier, at the
granularity level of CTs (Z1), the anonymity set provided by
ORide for the case of a very strong adversarial SP is already
large. In the corner cases of punctual events such as concerts
and sport events, the SP can split a crowded zone into
sub-zones, in order to find a balance for the aforementioned
trade-off. For areas that have less ride activities, such as

 40

 60

 80

 100

 0 0.5 1 1.5
P

ro
p
o
rt

io
n
 o

f
ri

d
es

 [
%

]

Extra distance [km]

 0 2 4 6

Extra waiting time [min]

Zone settings:
Z1
Z2

NYC

Figure 4: Effect of Euclidean distance on the extra distances for
the drivers (left) and on the waiting time for the riders (right)
w.r.t. different zone settings.

other boroughs in NYC or other cities, an entire borough or
city can be a zone. For example, a zone consisting of the bor-
oughs of Queens and Bronx would guarantee an anonymity
set of at least 26,000 for a ride, while requiring the drivers
to have an Internet connection of only at most 2 Mbps.

9.5 Effect on Ride Matching
To minimize the extra costs for both the drivers (gas and
driving time to pickup) and the riders (waiting times at pick-
up locations), ideally, the ride-matching algorithm should
take into account the road networks and real-time traffic
conditions. ORide uses a simpler matching metric, i.e., Eu-
clidean distances between the riders’ and drivers’ locations
due to the limited operations supported by SHE. In addition,
due to the bandwidth constraints, the ORide ride-matching
algorithm matches a rider to drivers in the same zone, hence
suboptimality, e.g., if a rider is close to the border of a zone,
the closest driver might be in one of the neighboring zones.

Fig. 4 shows the CDFs of the relative extra costs due to
the suboptimality of ORide, compared to the ideal solution,
w.r.t. thee different zone settings: Z1, Z2, and the entire
city of New York (NYC). The experiment was done on
a set of 1,000 randomly selected ride requests. For the
ideal matching, we use the Google Maps Distance Matrix
APIs [22] to compute the times and distances between a
pick-up request and the available drivers (see assumptions in
Section 9.1). To reduce the number of requests made to the
Google APIs3, from the set of available drivers, we selected

3The number of requests per day is limited.

13

100 drivers who are closest to the pick-up location as the
potential candidates for the ideal matching.

It can be observed that the median extra costs are small:
when Z1 is used, in more than 45% of the cases, the driver
selected by ORide and the ideal solution is the same, and,
in nearly 80% of the cases, the extra driving distance is
less than 0.5 km. In addition, the size of the zone only
has negligible effects on the optimality of the matching
algorithm: If the set of all the drivers available in NYC
was used for the ORide matching algorithm, compared to
the ideal solution, 78.7% of the cases would have an extra
distance of less than 0.5 km, compared to 76.2 % and 76.8 %
of the cases when Z1 and Z2 were used, respectively.

10 Conclusion
In this paper, we have proposed ORide, a practical solution
that efficiently matches riders and drivers in a privacy-
preserving way while still offering key RHSs features such
as easy payment, reputation scores, accountability, and
retrieval of lost items. ORide enables the SP to choose
a balanced trade-off between anonymity sets for riders
vs. bandwidth requirements for the drivers. For example, for
a lower-bound anonymity-set size of 26,000 for rides from
the boroughs of Queens and Bronx, drivers only need to
have an Internet connection of at most 2 Mbps. The trade-off
enables the SP to define the zones such that all users in
the system are guaranteed large anonymity sets, even if they
are in sparsely-populated residential areas with sparse ride
activities (by expanding the zones). We have also shown that,
even in the extreme case of targeted attacks, i.e., a curious
SP wants to know the destination of a rider given the time
and location of a rider’s pick-up event, the location privacy
of the rider’s destination is still guaranteed.

As part of our future work, we plan to implement a full
prototype of the system on mobile platforms, and to evaluate
the performance of the system on real RHS data-sets.

Acknowledgements
The authors are grateful to Chris Soghoian for his sugges-
tions about accountability and usability of RHSs in the
beginning of the work.

References
[1] http://www.theverge.com/2015/6/14/8778111/uber-

threatens-to-fire-drivers-attending-protests-in-

china. Last visited: Jan. 2017.

[2] http://browser.primatelabs.com/android-benchmarks.
Last visited: Jan. 2017.

[3] http://browser.primatelabs.com/processor-benchmarks.
Last visited: Jan. 2017.

[4] Recommendation for Key Management, Part 1: General, SP 800-57
Part 1 Rev. 4. Online: http://dx.doi.org/10.6028/NIST.SP.
800-57pt1r4, January 2016. Last visited: Feb. 2017.

[5] AÏVODJI, U. M., GAMBS, S., HUGUET, M.-J., AND KILLIJIAN,
M.-O. Meeting points in ridesharing: A privacy-preserving approach.
Transportation Research Part C: Emerging Technologies (2016).

[6] ALBRECHT, M. R. On dual lattice attacks against small-secret LWE
and parameter choices in HElib and SEAL. Cryptology ePrint Archive,
Report 2017/047, 2017. http://eprint.iacr.org/2017/047.

[7] ARFAOUI, G., LALANDE, J.-F., TRAORÉ, J., DESMOULINS, N.,
BERTHOMÉ, P., AND GHAROUT, S. A Practical Set-Membership
Proof for Privacy-Preserving NFC Mobile Ticketing. Proc. of the 15th
Privacy Enhancing Technologies Symposium (2015).

[8] BALDIMTSI, F., AND LYSYANSKAYA, A. Anonymous credentials
light. In Proc. of Conference on Computer & communications security
(2013), pp. 1087–1098.

[9] https://www.bloomberg.com/view/articles/2016-09-09/

wells-fargo-opened-a-couple-million-fake-accounts.
Last visited: Jan 2017.

[10] http://uk.businessinsider.com/despite-its-problems-

uber-is-still-the-safest-way-to-order-a-taxi-2014-

12?r=US&IR=T. Last visited: Feb. 2017.

[11] https://newsroom.uber.com/updated-cancellation-

policy/. Last visited: Jan. 2017.

[12] CHAUM, D. Blind signatures for untraceable payments. In Proc. of
CRYPTO (1983).

[13] DAI, C., YUAN, X., AND WANG, C. Privacy-preserving ridesharing
recommendation in geosocial networks. In Proc. of Conference on
Computational Social Networks (2016).

[14] http://www.dailydot.com/via/uber-lyft-safety-

background-checks/. Last visited: Feb. 2017.

[15] FAN, J., AND VERCAUTEREN, F. Somewhat Practical Fully Homo-
morphic Encryption. Cryptology ePrint Archive, Report 2012/144,
2012. http://eprint.iacr.org/2012/144.

[16] FELDMAN, P. A practical scheme for non-interactive verifiable secret
sharing. In Proc. of Symposium on Foundations of Computer Science
(1987).

[17] http://www.forbes.com/sites/kashmirhill/2014/10/03/

god-view-uber-allegedly-stalked-users-for-party-

goers-viewing-pleasure/. Last visited: Jan. 2017.

[18] GE, Y., KNITTEL, C. R., MACKENZIE, D., AND ZOEPF, S. Racial
and gender discrimination in transportation network companies. Tech.
rep., National Bureau of Economic Research, 2016. http://www.

nber.org/papers/w22776. Last visited: Jan. 2017.

[19] GOEL, P., KULIK, L., AND RAMAMOHANARAO, K. Optimal pick
up point selection for effective ride sharing. IEEE Transactions on
Big Data (2016).

[20] GOEL, P., KULIK, L., AND RAMAMOHANARAO, K. Privacy-aware
dynamic ride sharing. Trans. on Spatial Algorithms and Systems
(2016).

[21] https://support.google.com/trustedcontacts/?hl=en.
Last visited: Jan. 2017.

[22] https://developers.google.com/maps/documentation/

distance-matrix/. Last visited: Jan. 2017.

[23] http://www.ibtimes.co.uk/former-uber-employee-

reveals-drivers-used-tracking-technology-stalk-

celebrities-politicians-1596263. Last visited: Jan 2017.

[24] ISERN-DEYÀ, A. P., VIVES-GUASCH, A., MUT-PUIGSERVER, M.,
PAYERAS-CAPELLÀ, M., AND CASTELLÀ-ROCA, J. A secure
automatic fare collection system for time-based or distance-based
services with revocable anonymity for users. The Computer Journal
(2013).

[25] LAURIE, B., LANGLEY, A., AND KASPER, E. Certificate trans-
parency. https://tools.ietf.org/html/rfc6962, 2013.

[26] https://www.link.nyc. Last visited: Feb. 2017.

14

http://www.theverge.com/2015/6/14/8778111/uber-threatens-to-fire-drivers-attending-protests-in-china
http://www.theverge.com/2015/6/14/8778111/uber-threatens-to-fire-drivers-attending-protests-in-china
http://www.theverge.com/2015/6/14/8778111/uber-threatens-to-fire-drivers-attending-protests-in-china
http://browser.primatelabs.com/android-benchmarks
http://browser.primatelabs.com/processor-benchmarks
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://eprint.iacr.org/2017/047
https://www.bloomberg.com/view/articles/2016-09-09/wells-fargo-opened-a-couple-million-fake-accounts
https://www.bloomberg.com/view/articles/2016-09-09/wells-fargo-opened-a-couple-million-fake-accounts
http://uk.businessinsider.com/despite-its-problems-uber-is-still-the-safest-way-to-order-a-taxi-2014-12?r=US&IR=T
http://uk.businessinsider.com/despite-its-problems-uber-is-still-the-safest-way-to-order-a-taxi-2014-12?r=US&IR=T
http://uk.businessinsider.com/despite-its-problems-uber-is-still-the-safest-way-to-order-a-taxi-2014-12?r=US&IR=T
https://newsroom.uber.com/updated-cancellation-policy/
https://newsroom.uber.com/updated-cancellation-policy/
http://www.dailydot.com/via/uber-lyft-safety-background-checks/
http://www.dailydot.com/via/uber-lyft-safety-background-checks/
http://eprint.iacr.org/2012/144
http://www.forbes.com/sites/kashmirhill/2014/10/03/god-view-uber-allegedly-stalked-users-for-party-goers-viewing-pleasure/
http://www.forbes.com/sites/kashmirhill/2014/10/03/god-view-uber-allegedly-stalked-users-for-party-goers-viewing-pleasure/
http://www.forbes.com/sites/kashmirhill/2014/10/03/god-view-uber-allegedly-stalked-users-for-party-goers-viewing-pleasure/
http://www.nber.org/papers/w22776
http://www.nber.org/papers/w22776
https://support.google.com/trustedcontacts/?hl=en
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
http://www.ibtimes.co.uk/former-uber-employee-reveals-drivers-used-tracking-technology-stalk-celebrities-politicians-1596263
http://www.ibtimes.co.uk/former-uber-employee-reveals-drivers-used-tracking-technology-stalk-celebrities-politicians-1596263
http://www.ibtimes.co.uk/former-uber-employee-reveals-drivers-used-tracking-technology-stalk-celebrities-politicians-1596263
https://tools.ietf.org/html/rfc6962
https://www.link.nyc

[27] LYUBASHEVSKY, V., PEIKERT, C., AND REGEV, O. On Ideal Lat-
tices and Learning with Errors Over Rings. Cryptology ePrint Archive,
Report 2012/230, 2012. http://eprint.iacr.org/2012/230.

[28] MELCHOR, C. A., BARRIER, J., GUELTON, S., GUINET, A., KILLI-
JIAN, M., AND LEPOINT, T. NFLlib: NTT-Based Fast Lattice Library.
In Proc. of the RSA conference - The Cryptographers’ Track (2016).

[29] MILUTINOVIC, M., DECROIX, K., NAESSENS, V., AND
DE DECKER, B. Privacy-preserving public transport ticketing system.
In Proc. of Conference on Data and Applications Security and Privacy
(2015).

[30] https://www.nerdwallet.com/blog/utilities/best-

unlimited-data-plans/. Last visited: Feb. 2017.

[31] https://research.neustar.biz/2014/09/15/riding-

with-the-stars-passenger-privacy-in-the-nyc-

taxicab-dataset/. Last visited: Jan. 2017.

[32] https://newsroom.uber.com/philippines/new-upfront-

fares-on-uberx/. Last visited: Jan. 2017.

[33] http://www.oregonlive.com/today/index.ssf/2014/11/

sex_the_single_girl_and_ubers.html. Last visited: Jan.
2017.

[34] http://www.orlandosentinel.com/news/breaking-

news/os-lyft-driver-arrest-sex-battery-20160929-

story.html. Last visited: Jun. 2017.

[35] PEDROUZO-ULLOA, A., TRONCOSO-PASTORIZA, J. R., AND
PEREZ-GONZALEZ, F. Number theoretic transforms for secure signal
processing. Trans. on Information Forensics and Security (2017).

[36] PHAM, T. V. A., DACOSTA PETROCELLI, I. I., JACOT-
GUILLARMOD, B., HUGUENIN, K., HAJAR, T., TRAMÈR, F.,
GLIGOR, V., AND HUBAUX, J.-P. PrivateRide: A Privacy-Enhanced
Ride-Hailing Service. In Proc. of Privacy Enhancing Technologies
Symposium (2017).

[37] SÁNCHEZ, D., MARTÍNEZ, S., AND DOMINGO-FERRER, J. Co-
utile P2P ridesharing via decentralization and reputation management.
Transportation Research Part C: Emerging Technologies (2016).

[38] https://techcrunch.com/2016/11/29/just-like-uber-

lyft-launches-upfront-fares/. Last visited: Jan. 2017.

[39] http://thenextweb.com/insider/2016/12/13/uber-

tracks-customers-long-after-their-ride-is-over/.
Last visited: Jan. 2017.

[40] http://toddwschneider.com/posts/analyzing-1-1-

billion-nyc-taxi-and-uber-trips-with-a-vengeance/.
Last visited: Feb. 2017.

[41] https://github.com/toddwschneider/nyc-taxi-data. Last
visited: Jan. 2017.

[42] http://www.usatoday.com/story/tech/columnist/

stevenpetrow/2016/10/12/fake-uber-drivers-dont-

become-next-victim/91903508/. Last visited: Jan 2017.

[43] http://www.usatoday.com/story/tech/2014/11/19/uber-

privacy-tracking/19285481/. Last visited: Jan. 2017.

[44] https://www.uwgb.edu/dutchs/FieldMethods/UTMSystem.

htm. Last visited: Feb. 2017.

[45] http://www.wcnc.com/news/crime/uber-driver-

attacked-rider-over-politics-man-says/339458660.
Last visited: Jan 2017.

[46] http://wfla.com/2016/12/27/uber-and-lyft-drivers-

worry-about-passenger-attacks/. Last visited: Jun. 2017.

A Appendix
A.1 Covertly Active SP

Fig. 5 illustrates the changes introduced to the original ride
set-up procedure (Section 5.4) to handle a covertly active SP.

A.2 Plaintext Space
Assume a geographical area of size s× s and a plaintext
space of b bits to represent the squared-Euclidean distances
between points in the area. The area can be quantized into
a grid with cells of size s/2(b−1)/2 × s/2(b−1)/2, with the
explanation as follows. Assuming the area is discretized into
a grid of v×v cells, the largest possible squared-Euclidean
distance between any two points on the grid is 2×v2, and
this has to be at most 2b. Therefore, v≤2(b−1)/2. In other
words, each edge of size s can be discretized into v points,
and the distance between any pair of two consecutive points
is s/2(b−1)/2. Therefore, the area can be represented by a
grid with cells of size s/2(b−1)/2×s/2(b−1)/2.

For example, with 20-bit plaintext space, a geographical
area of size 60 km2, such as the borough of Manhattan
in NYC, would be quantized into a grid of resolution
approximately 10 m× 10 m.

A.3 Cryptographic Primitives
In this section, we briefly describe the cryptographic building
blocks used in ORide.

Blind signatures. A blind-signature scheme [12] is a
form of digital-signature schemes in which the signer does
not know the content of the message that she is signing. This
is achieved by enabling the signature requester to ‘blind’
(i.e., randomize) the message before sending it to the signer.
When the signature requester receives the signature on her
blinded message, she ‘unblinds’ it to obtain a valid signature
for the original message. The signer, when is asked to verify
the signature of an unblinded message, is not able to link
this message back to the blinded version she signed.

Anonymous credentials. An anonymous credential
(AC) is a cryptographic token with which the credential
owner can prove to another party that she satisfies certain
properties without revealing her real identity. In ORide,
a user is identified when she obtains ACs from the SP.
However, when she wants to start an anonymous session, she
reveals to the SP only the expiration date and the role speci-
fied in the AC (i.e., rider or driver), and she proves to the SP,
in a zero-knowledge fashion, that she knows the private key
associated with the AC. To prove her reputation to a driver, a
rider reveals to the driver the reputation score specified in her
AC together with the proof to show that the revealed value
is trustworthy. ORide relies on the Anonymous Credentials
Light (ACL). However, note that ACL is a linkable
anonymous credential scheme, i.e., a user can only use a
credential once to avoid her transactions from being linkable.

15

http://eprint.iacr.org/2012/230
https://www.nerdwallet.com/blog/utilities/best-unlimited-data-plans/
https://www.nerdwallet.com/blog/utilities/best-unlimited-data-plans/
https://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
https://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
https://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
https://newsroom.uber.com/philippines/new-upfront-fares-on-uberx/
https://newsroom.uber.com/philippines/new-upfront-fares-on-uberx/
http://www.oregonlive.com/today/index.ssf/2014/11/sex_the_single_girl_and_ubers.html
http://www.oregonlive.com/today/index.ssf/2014/11/sex_the_single_girl_and_ubers.html
http://www.orlandosentinel.com/news/breaking-news/os-lyft-driver-arrest-sex-battery-20160929-story.html
http://www.orlandosentinel.com/news/breaking-news/os-lyft-driver-arrest-sex-battery-20160929-story.html
http://www.orlandosentinel.com/news/breaking-news/os-lyft-driver-arrest-sex-battery-20160929-story.html
https://techcrunch.com/2016/11/29/just-like-uber-lyft-launches-upfront-fares/
https://techcrunch.com/2016/11/29/just-like-uber-lyft-launches-upfront-fares/
http://thenextweb.com/insider/2016/12/13/uber-tracks-customers-long-after-their-ride-is-over/
http://thenextweb.com/insider/2016/12/13/uber-tracks-customers-long-after-their-ride-is-over/
http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-vengeance/
http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-vengeance/
https://github.com/toddwschneider/nyc-taxi-data
 http://www.usatoday.com/story/tech/columnist/stevenpetrow/2016/10/12/fake-uber-drivers-dont-become-next-victim/91903508/
 http://www.usatoday.com/story/tech/columnist/stevenpetrow/2016/10/12/fake-uber-drivers-dont-become-next-victim/91903508/
 http://www.usatoday.com/story/tech/columnist/stevenpetrow/2016/10/12/fake-uber-drivers-dont-become-next-victim/91903508/
http://www.usatoday.com/story/tech/2014/11/19/uber-privacy-tracking/19285481/
http://www.usatoday.com/story/tech/2014/11/19/uber-privacy-tracking/19285481/
https://www.uwgb.edu/dutchs/FieldMethods/UTMSystem.htm
https://www.uwgb.edu/dutchs/FieldMethods/UTMSystem.htm
http://www.wcnc.com/news/crime/uber-driver-attacked-rider-over-politics-man-says/339458660
http://www.wcnc.com/news/crime/uber-driver-attacked-rider-over-politics-man-says/339458660
http://wfla.com/2016/12/27/uber-and-lyft-drivers-worry-about-passenger-attacks/
http://wfla.com/2016/12/27/uber-and-lyft-drivers-worry-about-passenger-attacks/

Rider: anonymous session sR SP Driver: anonymous session sD

[Steps (3) to (10) are the same as in Fig. 2]

(1) z, dt, r′dt , cccxR , cccyR , kkkp, PoR
(2) kkkp, PoR

(10) Fare report

(10a) rand

(10b) BsigSP{sigD{rand}}

(10c) PoR = sigSP{sigD{rand}}

Figure 5: Changes introduced to the original ride set-up protocols (Fig. 2) to handle covertly active SP.

16

	Introduction
	Related Work
	System Model
	Adversarial Assumptions
	Design Goals
	System Assumptions
	Notation

	Oblivious Ride-Matching Protocol
	Somewhat-Homomorphic Encryption
	Naive Approach
	Optimized Approach

	ORide
	ORide Overview
	Ride Prerequisites
	Log in to the Service
	Ride Set-up
	Ride Payment and Reputation Rating
	Ride Cancellation

	Accountability
	Protecting against Malicious Behaviors
	Malicious Drivers: Masking
	Covertly Active SP

	Privacy and Security Analysis
	Evaluation
	Data-Sets
	Implementation Details
	Per-Ride Overhead
	Riders' Anonymity and Drivers' Bandwidth Requirements
	Effect on Ride Matching

	Conclusion
	Appendix
	Covertly Active SP
	Plaintext Space
	Cryptographic Primitives

