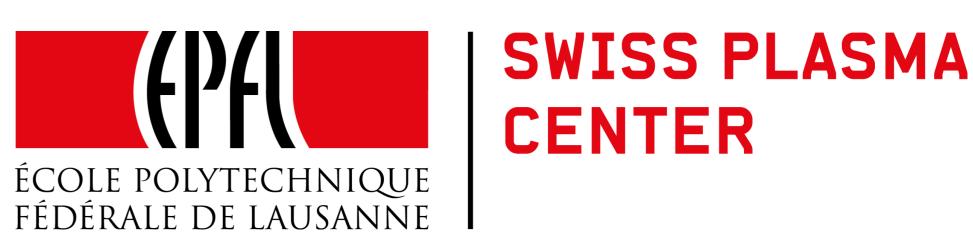
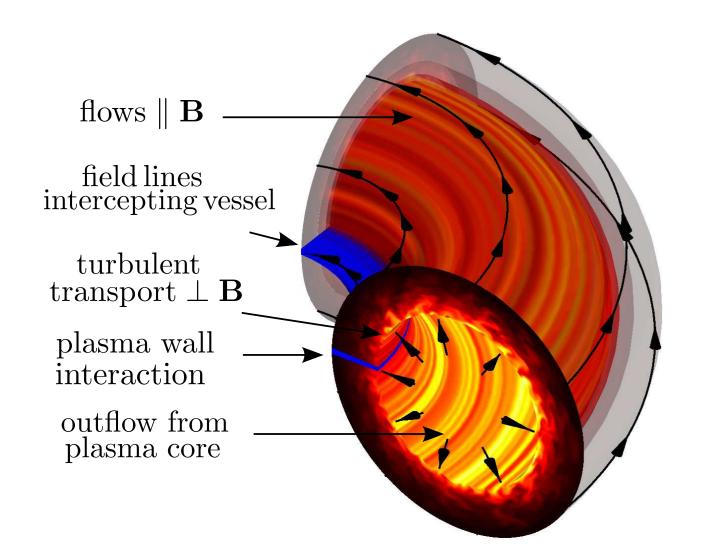
Progress in first-principles simulations of SOL plasma turbulence and neutral atom dynamics with the GBS code

P. Ricci¹, F. Halpern¹, J. Loizu², S. Jolliet¹, R. Jorge^{1,3}, J. Morales¹, A. Mosetto¹, P. Paruta¹, F. Riva¹ and C. Wersal¹

¹ École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center, CH-1015 Lausanne, Switzerland ² Max-Planck-Princeton Center for Plasma Physics, Wendelsteinstraße 1, D-17491 Greifswald, Germany ³ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal



Introduction

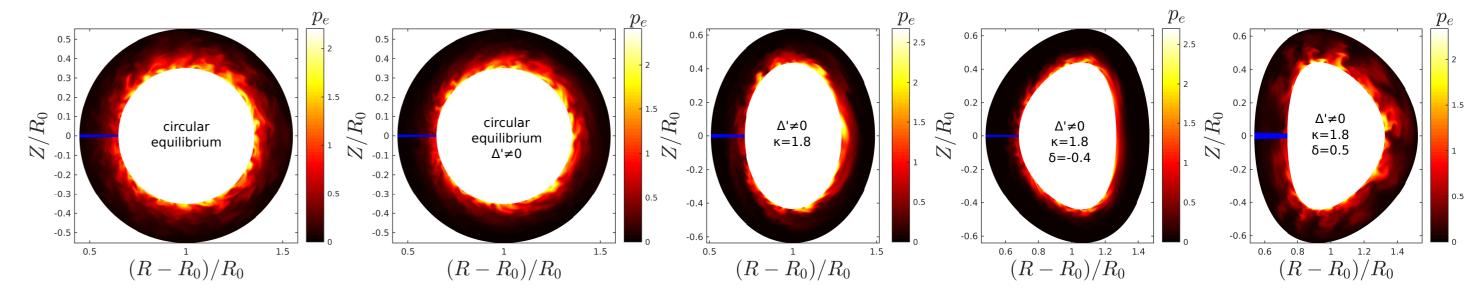


- ► In the tokamak SOL, magnetic field lines intersect the walls of the fusion device
- Heat and particles flow along magnetic field lines and are exhausted to the vessel
- Turbulence amplitude and size comparable to steady-state values
- Neutral particles interact with the plasma

The Global Braginskii Solver (GBS) code: a 3D, flux-driven, global turbulence code used to study plasma turbulence in the SOL [Ricci et al., PPCF 2012; Halpern et al., JCP 2016]

Plasma shaping effects on SOL turbulence

Fully-turbulent non-linear simulations with same physical parameters, in **different magnetic** geometries [Riva et al., PPCF, submitted]



• Mitigation of turbulence by Δ' , κ , and negative δ ; enhancement of turbulence by positive δ Good agreement between non-linear simulations and Gradient Removal theory

Gradient Removal Theory Non – linear sim. Gradient Removal Theory Non – linear sim. (κ, δ) $\epsilon \simeq 0.25, \, \Delta(0) \simeq 7$ $\epsilon \simeq 0.25, \, \Delta(0) \simeq 7$ $\epsilon = 0, \ \Delta(0) = 0$ $\epsilon = 0, \ \Delta(0) = 0$

► GBS solves 3D fluid equations for electrons and ions, Poisson's and Ampere's equations, and a kinetic equation for neutral atoms.

The Global Braginskii Solver (GBS) code

Two-fluid drift-reduced Braginskii equations, $k_{\perp}^2 \gg k_{\parallel}^2$, $d/dt \ll \omega_{ci}$

$$\begin{split} &\frac{\partial n}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, n] + \frac{2}{B} [\mathcal{C}(p_{e}) - n\mathcal{C}(\phi)] - \nabla \cdot (nv_{\parallel e}\mathbf{b}) + \mathcal{D}_{n}(n) + S_{n} + n_{n}\nu_{lz} - n\nu_{rec} \\ &\frac{\partial \Omega}{\partial t} = -\frac{\rho_*^{-1}}{B} \nabla_{\perp} \cdot [\phi, \omega] - \nabla_{\perp} \cdot [\nabla_{\parallel} (v_{\parallel i}\omega)] + B^{2}\nabla \cdot (j_{\parallel}\mathbf{b}) + 2B\mathcal{C}(\rho) + \frac{B}{3}\mathcal{C}(G_{i}) + \mathcal{D}_{\Omega}(\Omega) - \frac{n_{n}}{n}\nu_{cx}\Omega \\ &\frac{\partial U_{\parallel e}}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, v_{\parallel e}] - v_{\parallel e}\nabla_{\parallel}v_{\parallel e} + \frac{m_{i}}{m_{e}} \left[\frac{\nu j_{\parallel}}{n} + \nabla_{\parallel}\phi - \frac{\nabla_{\parallel}p_{e}}{n} - 0.71\nabla_{\parallel}T_{e} - \frac{2}{3n}\nabla_{\parallel}G_{e}\right] + \mathcal{D}_{v_{\parallel e}}(v_{\parallel e}) \\ &+ \frac{n_{n}}{n}(\nu_{en} + 2\nu_{lz})(v_{\parallel n} - v_{\parallel e}) \\ &\frac{\partial V_{\parallel i}}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, v_{\parallel i}] - v_{\parallel i}\nabla_{\parallel}v_{\parallel i} - \frac{\nabla_{\parallel}p}{n} - \frac{2}{3n}\nabla_{\parallel}G_{i} + \mathcal{D}_{v_{\parallel i}}(v_{\parallel i}) + \frac{n_{n}}{n}(\nu_{iz} + \nu_{cx})(v_{\parallel n} - v_{\parallel i}) \\ &\frac{\partial T_{e}}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, T_{e}] - v_{\parallel e}\nabla_{\parallel}T_{e} + \frac{4T_{e}}{3B} \left[\frac{\mathcal{C}(\rho_{e})}{n} + \frac{5}{2}\mathcal{C}(T_{e}) - \mathcal{C}(\phi)\right] + \frac{2T_{e}}{3n} \left[0.71\nabla \cdot (j_{\parallel}\mathbf{b}) - n\nabla \cdot (v_{\parallel e}\mathbf{b})\right] \\ &+ \mathcal{D}_{T_{e}}(T_{e}) + \mathcal{D}_{T_{e}}^{+}(T_{e}) + S_{T_{e}} + \frac{n_{n}}{n}\nu_{lz} \left[-\frac{2}{3}E_{iz} - T_{e} + \frac{m_{e}}{m_{i}}v_{\parallel e} \left(v_{\parallel e} - \frac{4}{3}v_{\parallel n}\right)\right] - \frac{n_{n}}{n}\nu_{en}\frac{m_{e}^{2}}{m_{i}^{3}}3v_{\parallel e}(v_{\parallel n} - v_{\parallel e}) \\ &\frac{\partial T_{i}}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, T_{i}] - v_{\parallel i}\nabla_{\parallel}T_{i} + \frac{4T_{i}}{3B} \left[\frac{\mathcal{C}(p_{e})}{n} - \frac{5}{2}\tau \mathcal{C}(T_{i}) - \mathcal{C}(\phi)\right] + \frac{2T_{i}}{3n} \left[\nabla \cdot (j_{\parallel}\mathbf{b}) - n\nabla \cdot (v_{\parallel i}\mathbf{b})\right] \\ &+ \mathcal{D}_{T_{i}}(T_{i}) + \mathcal{D}_{T_{i}}^{+}(T_{i}) + S_{T_{i}} + \frac{n_{n}}{n}(\nu_{lz} + \nu_{cx})\left[\tau^{-1}T_{n} - T_{i} + \frac{1}{3\tau}(v_{\parallel n} - v_{\parallel i})^{2}\right] \end{split}$$

 $\rho_{\star} = \rho_{s}/R, \quad \nabla_{\parallel} f = \mathbf{b}_{0} \cdot \nabla f + \frac{\beta_{e0}}{2} \frac{\rho_{\star}^{-1}}{R} [\psi, f], \quad p = n(T_{e} + \tau T_{i}), \quad U_{\parallel e} = \mathbf{v}_{\parallel e} + \frac{\beta_{e0}}{2} \frac{m_{i}}{m_{o}} \psi, \quad \Omega = \nabla \cdot \omega = \nabla \cdot (n \nabla_{\perp} \phi + \tau \nabla_{\perp} p_{i})$

- Equations implemented in GBS, a **flux-driven** plasma turbulence code with limited geometry to study SOL heat and particle transport
- System completed with first-principles boundary conditions applicable at the magnetic pre-sheath entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012] Parallelized using domain decomposition (MPI and OpenMP), excellent parallel scalability up to \sim 10000 cores ► Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa scheme, integration in time using **Runge Kutta method** ► Code fully verified using method of manufactured solutions [Riva et al., PoP 2014] ▶ Note: $L_{\perp} \rightarrow \rho_s$, $L_{\parallel} \rightarrow R_0$, $t \rightarrow R_0/c_s$, $\nu = ne^2 R_0/(m_i \sigma_{\parallel} c_s)$ normalization

(1.0, 0.0)	25 ± 1	27.4	37 ± 2	38.9
(1.8, 0.0)	20 ± 1	20.7	26 ± 3	30.3
(1.8, -0.3)	15 ± 1	18.1	20 ± 1	26.2
(1.8, 0.3)	23 ± 1	26.8	43 ± 3	36.8

• Linear scan over κ and δ allows to predict the SOL width for non-circular magnetic geometries It is possible to generalize the analytical first-principle Lp scaling to include shaping effects

(1)

(2)

(3)

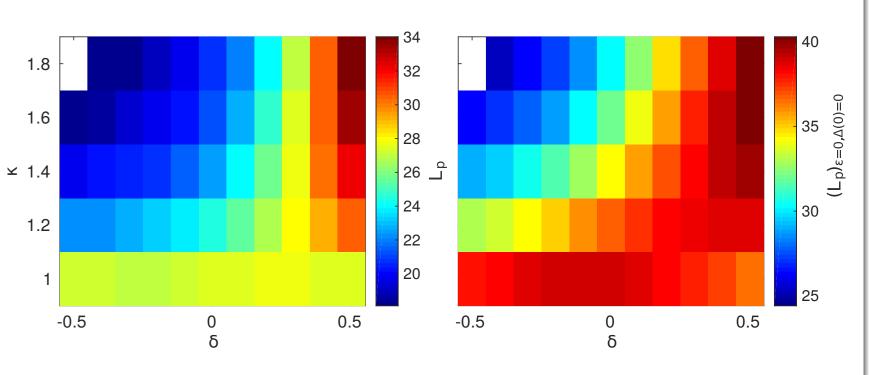
(4)

(5)

(6)

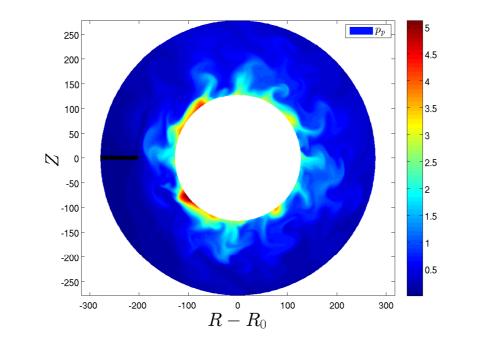
(7)

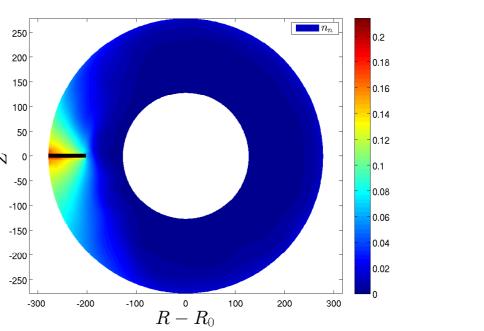
(8)

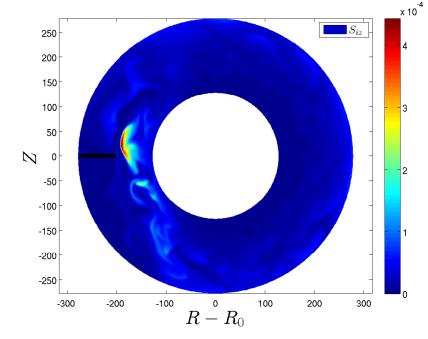


Simulation with neutral atoms and closed flux surface region

Self-consistent GBS simulations with neutral dynamics that include closed flux surface region Neutral density peaks around the limiter due to recycling and ionization follows plasma fluctuations







The Poisson and Ampere equations

- Generalized Poisson equation, $\nabla \cdot (n \nabla_{\perp} \phi) = \Omega \tau \nabla_{\perp}^2 \rho_i$
- Ampere's equation from Ohm's law, $\left(\nabla_{\perp}^2 \frac{\beta_{e0}}{2}\frac{m_i}{m_e}n\right)v_{\parallel e} = \nabla_{\perp}^2 U_{\parallel e} \frac{\beta_{e0}}{2}\frac{m_i}{m_e}nv_{\parallel i}$
- Stencil based parallel multigrid implemented in GBS
- ► The elliptic equations are separable in the parallel direction leading to **independent 2D solutions** for each perpendicular plane
- The kinetic equation for neutral atoms

 $\frac{\partial f_{\mathsf{n}}}{\partial t} + \vec{v} \cdot \frac{\partial f_{\mathsf{n}}}{\partial \vec{x}} = -\nu_{\mathsf{i}\mathsf{z}} f_{\mathsf{n}} - \nu_{\mathsf{C}\mathsf{x}} n_{\mathsf{n}} \left(\frac{f_{\mathsf{n}}}{n_{\mathsf{n}}} - \frac{f_{\mathsf{i}}}{n_{\mathsf{i}}}\right) + \nu_{\mathsf{rec}} f_{\mathsf{i}}$

- Method of characteristics to obtain the formal solution of f_n [Wersal et al., NF 2015]
- Two assumptions, $\tau_{\text{neutral losses}} < \tau_{\text{turbulence}}$ and $\lambda_{\text{mfp, neutrals}} \ll L_{\parallel,\text{plasma}}$, leading to a 2D steady state system for each perpendicular plane
- **Linear integral equation** for neutral density obtained by integrating f_n over \vec{v}
- Spatial discretization leading to a linear system of equations

$$\begin{bmatrix} n_{n} \\ \Gamma_{out} \end{bmatrix} = \begin{bmatrix} K_{p \to p} & K_{b \to p} \\ K_{p \to b} & K_{b \to b} \end{bmatrix} \cdot \begin{bmatrix} n_{n} \\ \Gamma_{out} \end{bmatrix} + \begin{bmatrix} n_{n,rec} \\ \Gamma_{out,rec} + \Gamma_{out,i} \end{bmatrix}$$

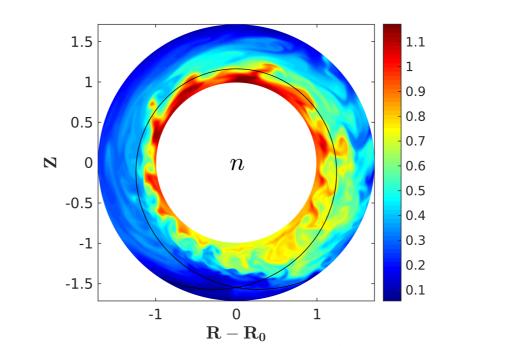
This system is solved for neutral density, n_n , and neutral particle flux at the boundaries, Γ_{out} , with the threaded LAPACK solver.

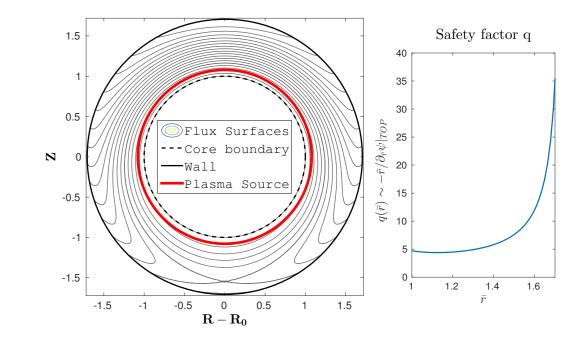
- SOL quasi-steady state balance in the electron temperature equation
- ► The perpendicular drifts (S) and the neutral interaction terms (N) are balanced by the parallel advection (A) and the parallel diffusion (D) [Wersal et al., NF 2015]

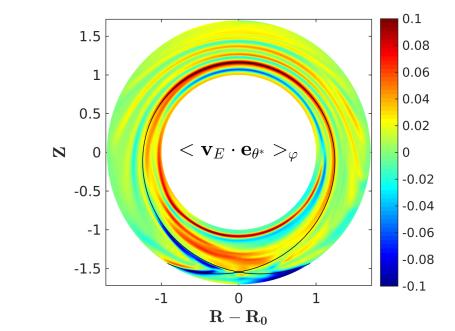
0.06 0.04 0.02 -0.02 -0.04 -0.06 200 400 600 800

First simulations with X-point

- Development of a numerical algorithm in more flexible coordinates: (r, θ, φ) (not field aligned)
- X-point equilibrium implemented in GBS
- Sheath boundary conditions applied at the wall
- Turbulence structures appear field aligned



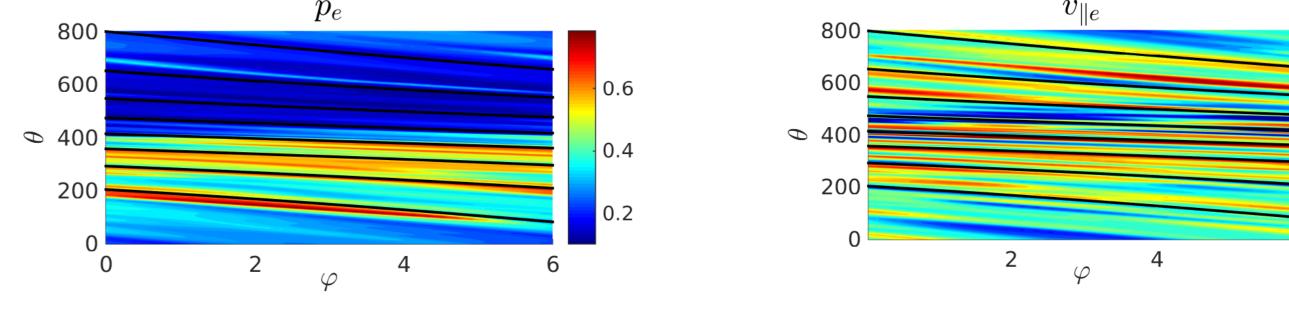




Some of past achievements of GBS

- Characterization of non-linear turbulent regimes in the SOL [Mosetto et al., PoP 2015]
- SOL width scaling as a function of dimensionless / engineering plasma parameters [Halpern *et al.*, PPCF 2016]
- Origin and nature of intrinsic toroidal plasma rotation in the SOL [Loizu *et al.*, PoP 2014]
- Mechanisms regulating SOL equilibrium electrostatic potential [Loizu et al., PPCF 2013]





Summary and Outlook

 $\mathbf{R} - \mathbf{R}_0$

GBS is a tool to carry out SOL turbulence simulations of medium size tokamaks

N

-0.5

- ▶ Recent developments concern the implementation of shaping effects, neutral atom dynamics, the open-closed field lines interface, and implementation of the X-point geometry
- Support from the Swiss National Science Foundation is gratefully acknowledged

paolo.ricci@epfl.ch

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.

The views and opinions expressed herein do not necessarily reflect those of the European Commission.

-0.5

26th IAEA Fusion Energy Conference (FEC 2016), Kyoto - 17-22 October 2016