Progress in first-principles simulations of SOL plasma
turbulence and neutral atom dynamics with the GBS code
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Introduction

» In the tokamak SOL, magnetic field lines
intersect the walls of the fusion device

Plasma shaping effects on SOL turbulence

» Fully-turbulent non-linear simulations with same physical parameters, in different magnetic
geometries [Riva et al., PPCF, submitted]
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The Global Braginskii Solver (GBS) code:
a 3D, flux-driven, global turbulence code
used to study plasma turbulence in the SOL
[Ricci et al., PPCF 2012; Halpern et al., JCP 2016]

» Mitigation of turbulence by A’, k, and negative §; enhancement of turbulence by positive &
» Good agreement between non-linear simulations and Gradient Removal theory

outflow from
plasma core

Non — linear sim.  Gradient Removal Theory Non — linear sim. Gradient Removal Theory

_ _ _ _ | | _ (#,9) e ~0.25 A(0)~7 e ~0.25 A(0)~7 e=0,A(0)=0 e=0, A(0)=0
» GBS solves 3D fluid equations for electrons and ions, Poisson’s and Ampere’s equations, and a (1.0,0.0) o5 L 1 57 4 37 L2 389
kinetic equation for neutral atoms. (1.8.0.0) 50 L 1 0.7 26 -+ 3 30.3
1 . 15+ 1 18.1 20 + 1 26.2
( 23 + 1 26.8 43 £+ 3 36.8

The Global Braginskii Solver (GBS) code

Two-fluid drift-reduced Braginskii equations, k2 > k ,d/dt < wg
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» Linear scan over x and ¢ allows to
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» Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study
SOL heat and particle transport

» System completed with first-principles boundary conditions applicable at the magnetic pre-sheath
entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

» Parallelized using domain decomposition (MPI and OpenMP), excellent parallel scalability up to
~ 10000 cores

» Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa scheme,
integration in time using Runge Kutta method

» Code fully verified using method of manufactured solutions [Riva et al., PoP 2014]
~Note: L} — ps, L — R, t = Ry/Cs, v = nezRO/(m,-chS) normalization

The Poisson and Ampere equations

» Generalized Poisson equation, V - (nV | ¢) =

0.06

0.04

» SOL quasi-steady state balance in the electron temperature
equation

» The perpendicular drifts (S) and the neutral interaction terms
(N) are balanced by the parallel advection (A) and the
parallel diffusion (D) [Wersal et al., NF 2015]
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» Stencil based parallel multigrid implemented in GBS

» The elliptic equations are separable in the parallel direction leading to independent 2D solutions for
each perpendicular plane

The kinetic equation for neutral atoms

» Development of a numerical algorithm in more flexible
coordinates: (r, 0, ¢) (not field aligned)
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» X-point equilibrium implemented in GBS
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» Sheath boundary conditions applied at the wall

» Turbulence structures appear field aligned

» Method of characteristics to obtain the formal solution of f, [Wersal et al., NF 2013]
> Two assumptions, Thgtral losses < Tturbulence @Nd Amip, neutrals < LH7p|asma, leading to a 2D steady state
system for each perpendicular plane
» Linear integral equation for neutral density obtained by integrating f, over v
» Spatial discretization leading to a linear system of equations
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» This system is solved for neutral density, n,, and neutral particle flux at the boundaries, I'oy¢, With the
threaded LAPACK solver.
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» Mechanisms regulating SOL equilibrium + KSTAR » GBS is a tool to carry out SOL turbulence simulations of medium size tokamaks
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electrostatic potential [Loizu et al., PPCF 0; oo we ae am » Recent developments concern the implementation of shaping effects, neutral atom dynamics, the
2013] L, o (predicted) open-closed field lines interface, and implementation of the X-point geometry
» Support from the Swiss National Science Foundation is gratefully acknowledged
/ \ This work has been carried out within the framework of the EUROfusion Consortium and has received funding
) from the Euratom research and training programme 2014-2018 under grant agreement No 633053.
d _,/) usion

The views and opinions expressed herein do not necessarily reflect those of the European Commission.

paolo.riccilepfl.ch 26th IAEA Fusion Energy Conference (FEC 2016), Kyoto — 17-22 October 2016



