

Fundamental aspects of edge physics – a brief overview of our ER achievements

Paolo Ricci

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Disentangling fundamental edge phenomena (2)

In simple configurations, we can simulate this complexity using first-principles codes

... and disentangle it, e.g.

$$L_p \simeq 7.22 \times 10^{-8} q^{8/7} R^{5/7} B_{\phi}^{-4/7} T_{e,\text{LCFS}}^{-2/7} n_{e,\text{LCFS}}^{2/7} \left(1 + \frac{T_{i,\text{LCFS}}}{T_{e,\text{LCFS}}}\right)^{1/7}$$

in good agreement with experimental results

A collective theoretical effort...

A collective theoretical effort... BOUT++ (flexibility,...) - Different assets: **BOUT++** HESEL (manageability, ...) TOKAM3X (advanced geometry, ...) HESEL GBS (accurate model, ...) Ideal for validation exercises, by implementing different models TOKAM3X **GBS**

...together with a collective experimental effort

Summarizing our activities...

- Our simulation approach
- Verification and Validation
- Our main achievements
- What's next?

Our plasma models to evolve edge turbulence

We implemented energy conserving collisions, finite T_i , and advanced boundary conditions [Madsen, PoP 2016; Olsen, PPCF 2016; Dudson, PPCF submitted]

Our models to evolve neutrals self-consistently

+ kinetic neutrals

$$\frac{\partial f_n}{\partial t} + \mathbf{v} \cdot \frac{\partial f_n}{\partial \mathbf{x}} = -\nu_{\mathrm{ion}} f_n - \nu_{\mathrm{CX}} (f_n - n_n f_i / n_i) + \nu_{\mathrm{rec}} f_i$$
 STREAMING IONIZATION CHARGE RECOMBINATION
$$\nu_{\mathrm{ion}} = n \left\langle v_e \sigma_{\mathrm{ion}} \right\rangle \quad \text{EXCHANGE} \qquad \nu_{\mathrm{rec}} = n \left\langle v_e \sigma_{\mathrm{rec}} \right\rangle$$

$$\nu_{\mathrm{CX}} = n \left\langle v_{\mathrm{rel}} \sigma_{\mathrm{CX}} (v_{\mathrm{rel}}) \right\rangle$$

Wersal & Ricci, NF 2015

or fluid, or diffusive neutral, or coupling with EIRENE

Thrysøe, PPCF 2016; J. Leddy, JNM (in press)

Solved in 2D or 3D geometry, taking into account plasma outflow from the core, turbulent transport, ionization and charge exchange processes, and losses at the vessel

Code verification, the techniques

- 1) Simple tests
- 2) Code-to-code comparisons (benchmarking)

NOT RIGOROUS

- 3) Convergence tests
- 4) Order-of-accuracy tests

RIGOROUS, requires analytical solution

Only verification ensuring convergence and correct numerical implementation

Order-of-accuracy tests

Our model: A(f) = 0, f unknown

We solve $A_n(f_n)=0$, but $\epsilon_n=f_n-f=$

Method of manufactured solution:

1) we choose g, then S = A(g)

2) we solve: $A_n(g_n) - S = 0$

For GBS:

Order-of-accuracy tests, MMS

Order-of-accuracy tests, MMS

A stepladder approach

A stepladder approach

TORPEX key elements

Unique diagnostic capabilities

Blob dynamics in TORPEX

Used 5 models to simulate TORPEX blobs

Showed importance of sheath currents and equilibrium flows

[Riva et al., PPCF (2016)]

A stepladder approach

Understanding of

- Turbulence driving mechanisms
- Blob properties
- Turbulent regimes

Exp/sim discrepancy

Fluctuation amplitude

A stepladder approach

Full-turbulence simulation, a large validation effort

Simulations carried out with 4 codes

[Jorge, PoP 2016]

RFX, Padua

TORE-SUPRA, CEA

What is the heat flux to the wall? i.e., the SOL width and temperature drop?

Recent measurements: 2 scale lengths

Infrared Measurement in TCV and COMPASS

[Nespoli et al., JNM 2015 Nespoli et al., NME (in press)]

ITER inner wall was redesigned

Shear flow sets physics at the near SOL

Halpern, NF 2016

The role for the shear flow was also pointed out for the formation of an H-mode like transport barrier [Madsen PPCF 2015; Nielsen PLA 2015; Rasmussen PPCF 2016]

Far SOL transport dominated by blobs

Identified
effective
collisionality
setting attached
and detached
conditions

A shoulder forms with increasing collisionality and connection length [Nielsen PPCF 2017]

Scaling for the SOL width

$$L_p \simeq 7.22 \times 10^{-8} q^{8/7} R^{5/7} B_{\phi}^{-4/7} T_{e,\text{LCFS}}^{-2/7} n_{e,\text{LCFS}}^{2/7} \left(1 + \frac{T_{i,\text{LCFS}}}{T_{e,\text{LCFS}}}\right)^{1/7}$$

Halpern et al, PPCF 2016

Upstream/limiter temperature drop

Upstream/limiter temperature drop

A stepladder approach

A stepladder approach

Large development of numerical algorithms

Non-orthogonal field aligned coordinate system to match arbitrary geometry [Leddy, CPC 2016]

Development of a non-field aligned coordinate system [Hill, CPC (in press)]

Extension to 3-D geometry [Shanahan, JP-CS 2016]

Study of blob dynamics in X point configuration

Blob in X point TORPEX configuration

[Avino, PRL 2016]

Simulations allowed understanding mechanisms determining blob velocity

[Shanahan, PPCF 2016]

Blobs in MAST double-null configuration

Walkden, NME (submitted)

Blobs in MAST double-null configuration

Simulations carried out with 4 codes

Blobs in MAST double-null configuration

Simulations carried out with 4 codes

Full-turbulence simulations in diverted geometry

Turbulence similar to limited case, except at X point; good agreement for parallel velocity

[D. Galassi, NF (in press)]

What's next?

 Detailed analysis of diverted and advanced exhaust configurations

- Approach **H-mode** scenarios
 - Going beyond the **drift approximation**, using high order methods on unstructured meshes
 [Minjaud, JCP 2016]
 - Going beyond the Braginskii model, including kinetic effects

Concluding remarks

 By using first-principles approach, we can now disentangle the complex dynamics at the tokamak edge

- Significant advances in physics models and simulation capabilities, rigorously verified
- By using a stepladder approach, progress in physics understanding, starting from relatively simple configurations
- Leveraging this expertise, we are increasing the complexity of simulations, continually approaching target reactor conditions