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Abstract

In this technical report we apply the Continuation Multi Level Monte Carlo (C-MLMC) algorithm presented
in [1] to efficiently propagate operating and geometric uncertainties in internal and external aerodynamic
simulations modeled by RANS. In particular, we discuss the construction of suitable mesh hierarchies and
test the C-MLMC algorithm on the 2D RAFE-2822 transonic airfoil and the 3D NASA Rotor 37 affected by
operating uncertainties.
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1. Introduction

Uncertainty Quantification (UQ) has become nowadays an essential ingredient in aerodynamic robust
design and optimization. Despite the advances in computational fluid dynamics (CFD) and the wide
availability of modern parallel computer architectures, the efficient propagation of uncertainties in model
parameters (such as operating conditions and geometrical parameters) to quantities of interest (Qol) for the
problem under investigation is still a significant challenge, especially when many sources of uncertainties
are present and when each deterministic realization requires the solution of high-fidelity models with many
degrees of freedom.

The geometrical and operational parameters that characterize aerodynamic systems in mathematical
and computational models are naturally affected by aleatory uncertainties due to the intrinsic variability
of manufacturing processes and the surrounding environment. These uncertainties have to be taken into
account to achieve and guarantee the highest safety standards and to design aerodynamic systems whose
performance are unchanged when exposed to variabilities.

In this technical report, we revisit the C-MLMC algorithm presented in [T}, 2] and particularize it to the
specific setting of viscous compressible aerodynamics simulations modeled by RANS affected by operational
and geometrical uncertainties. We briefly recall here the C-MLMC algorithm, referring to [I] for a detailed
description, and focus in this work on its application of the algorithm to specific external and internal
aerodynamics benchmark test cases defined during the European Union’s FP7 project UMRIDA (Uncertainty
Management for Robust Industrial Design in Aeronautics (UMRIDA), namely the transonic RAE 2822
airfoil and the NASA Rotor 37. In particular, we detail how we have constructed the grid hierarchy for the
two problems that provides appropriate grid convergence rates for the C-MLMC to be effective. For the
RAE-2822 problem we provide also a comparison with a standard Monte Carlo method which shows a huge
speedup in terms of computational complexity.

This report is organized as follows. Section 3 recalls the MLMC method for scalar and scalar fields Qol. In
Section 3 we explain how to calibrate the C-MLMC to compute expectations of such Qol. Section 4 presents
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the model problems and the results of the stochastic analysis performed on the NASA Rotor-37 and the
RAE-2822 airfoil.

2. Multi Level Monte Carlo

We consider a compressible viscous aerodynamic problem modeled by the RANS equations, where some
parameters (e.g. angle of attack, Mach number, profile of an airfoil) are partially unknown and described
as random variables with a given probability law. We denote by u = u(w) its solution, where w denotes a
random elementary event. Our goal is to compute the expected value E[Q] of a quantity of interest (Qol)
Q = f(u). Examples of Qol are the lift coefficient C, of an airfoil or the isentropic efficiency of a rotor. The
key idea of classical Multi Level Monte Carlo (MLMC) is to simultaneously draw MC samples on several
approximations @y, of a quantity of interest (Qol) @ built on a hierarchy of computational grids (with
discretization parameters My < M7 < --- < M = M). For the sake of explanation, we recall the MLMC
estimator for E[Q]:
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The accuracy in estimating E[Q] by E"™™°[Q,/] can be quantified by considering the mean square error
(MSE) of the estimator:
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To tune the MLMC algorithm one needs to estimate how the error and cost depend on the number of
degrees of freedom (DoF) M; on each level, for a given hierarchy of meshes. Namely one needs to estimate
the following constants and rates P = {cq, @, 3, 3, ¢, v} such that:

al. The cost to compute one sample Qs at level [ is:
Cost(Qu, (W) < e M, (3)
a2. E[Qyy,] converges to E[Q] with rate a w.r.t. M, i.e.
IE[Qnrr, — Q)| < caM® (4)

for some c,,a >0

a3. VarlV)] decays with rate 8 w.r.t. M i.e.:
Var[Vy] < egM; ", (5)
for some cg, 8 > 0 and o > min(S, 7).

We introduce a splitting parameter 6 € (0,1) (usually taken as 6§ = %) and require in our simulations
that:

Bias: B:=E[Q] —E[Qum]| < (1 —0)e, (6a)
-y MLMC - Var[Y] 2
Statistical Error: SE :=Var[E™"[Qum]] = Z N <6(2-0)e (6b)
1=0 !



so that the MSE:

e(E™C[Qy]) = B? 4+ SE <¢? (7)

From , the bias constraint (6al) is satisfied by choosing:
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On the other hand, following the optimization argument in [3], the statistical error constraint is satisfied
by choosing;:

L
M) = (9(2_19)52) Vagmkzo cteri .

In practical aerodynamic applications we are usually required to compute quantities of interest Q(x,w)
that are scalar fields defined on a certain domain D (e.g. pressure coefficient around an airfoil). In this case
we enforce the MSE to be smaller than 2, where in the definition of the MSE, we measure for convenience
the spatial error in the L? norm (mean-square sense) [4].

e(E™C[Qy])? =E[|E™[Qxs] — E[Q][I32(p)]
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where V; = O, — Qnr,_, -
Following the same arguments presented above we enforce:

Bias: B :=|E[Qm — Q]llz2p) < (1 —0)e, (11a)

[VarVillz: o)

, < 0(2 - 0)e? (11b)

<
L
Statistical Error : SE := Var[E™°[Q,/]] = Z

From , the bias constraint ((11al) is satisfied by choosing L as in and the statistical error constraint
(11Db)) is satisfied by choosing:

N — 1 Hvar[yl]”Ll(D) XL: \/C [Var[V)]|| 1 (12)
1= 02— 0)2 c, 2 k ULy (D)
Given a hierarchy of discretizations with My < M; < ..., from the practical point of view the standard

MLMC algorithm is generally composed of four steps:

1.
2.
3.

4.

Theoretical or computational estimation of the problem dependent rates and constants (P = {ca, @, ¢g, 5, ¢y, 7})
Estimation of Var[Y] (or [|Var[)]||:1(py in case of scalar field) .

Estimation of the optimal number of levels L from and sample sizes N; from @D (or in case of
scalar field).

Run the hierarchy {0,..., L} with an optimal {Nl}lL:()

Theoretical estimates for the rates a and [ exist for certain classes of PDEs with random parameters
[5] 6l [7, 8] and depend on the smoothness of the data of the problem as well as the smoothing proprieties of
the differential operator. On the other hand the parameter « depends on the number of spatial dimensions
of the deterministic problem and the efficiency of the deterministic solver.
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The total cost of MLMC strongly depends also on the problem dependent constants c,, cg, cy as they

enter in the choice of the optimal parameters L, {Nl}lL:O, and these have to be estimated numerically as
accurately as possible. The common practice is to compute the rates and the constants by performing an
initial screening over the first few levels {0,..., L} with a predefined sample size N and fit the rates and
constants via a least squares procedure.

The main drawback of this procedure is that for computationally expensive problems, this screening
phase, whose cost is usually not accounted for in the literature, can be quite time consuming. In particular,
if L and N are chosen too large the screening phase might turn out to be more expensive than the overall
MLMC simulation on the optimal hierarchy {0,...,L}. On the other hand, if L and N are chosen too small,
the extrapolation of the convergence rates « and S on finer levels might be quite unreliable.

3. Continuation Multi Level Monte Carlo

To overcome the above mentioned limitations of the standard MLMC algorithm concerning the screening
phase we consider here the Continuation Multi Level Monte Carlo (CMLMC) algorithm presented in [I]
for compressible inviscid aerodynamics problems inspired from [2]. The key idea of CMLMC is to solve for
the Qol with a sequence of decreasing tolerances and progressively improve the estimation of the problem
dependent parameters P that, as presented before, directly control the number of levels and sample sizes.

To achieve a certain RMSE of ¢, we set a slightly smaller tolerance % with r9 > 1 and define a sequence

of decreasing tolerances eg >¢e1 > -+ >¢&; >+ > ¢ = % with e; = r1€;41 where, for a given g9 > ¢, the

T
number k of iterations is given by:

(13)

L | tosE) +togten) |
log(r1)
Eventually, we might still run the algorithm for few more iterations with tolerances e4; = % until the
actual estimated RMSE is below e.
The essential feature of the CMLMC with respect to standard MLMC algorithm is that the parameter set
‘P is computed on-the-fly and updated at each iteration of the algorithm. The estimation of the parameters
that describe the cost (cy,y) and the bias (cq, «) is relatively straightforward since these quantities can be
estimated also with just few realizations per level. The estimation of the variances Var[Y;], on the other
hand, can be quite inaccurate with a small sample size. In a standard MLMC such variances are usually
computed using a sample variance estimator:

Ny

Varly] ~ VMC[Yl] _ Nll_ - Z (Yl(w(n,l)) _ EMC[Y[])2 (14)

n=1

At the deepest levels usually we do not have enough realizations to accurately compute V*[Y]] (asymp-
totically accurate only as N; — co ) and estimate the sample sizes NN} for the next iteration, as well as the
parameters (cg, 3) needed to extrapolate Var[Y;] hence N; on new levels that are added at the next iteration.
Using the bias model E[Y]] ~ [i; := ¢, M; “ and variance model Var[Y;] =~ Xfl = CBMfﬁ with ¢q, o, cs, 3
estimated from the previous iteration of the CMLMC algorithm. The idea is to describe Y; as a Gaussian
random variable A (yy, )\l_l) and perform a Bayesian update of y; and /\l_1 based on the collected values
Yl(w(”’l)) and a Normal-Gamma prior distribution with maximum at f; and Xl. The posterior is also a
Normal-Gamma, with maximum at

MAP NE[V]] + kofiy and  AMAP El;l —3 (15)
ko + N oy

with:



= 1 ~ N

S=3 + kA + R (16a)
N —1 ko, (EXC[Y7] — 14;)2

52,1 :kl_’_lTVMC[}/Z]_’_ 0 l( [ l] :ul) (16b)

2(ko + I\y)

The parameters ko and k; represent our ’certainty’ on fi; and :\\l_l The resulting update formula for
Var[Y;] = A\, ! is then:

=201

=2 120 (17)

Var E™C[Qn]] = Z Var[y] S Z vy (18)

4. Model Problems

_ We consider turbulent compressible flows modeled by the Favre-averaged (density-weighted average
f = pf/p) Navier-Stokes equations [9, [10]:

ap 0
el Bi;) =0, 19
ot T on ) (19a)
o o op oy O
0 [_=~ a0 [(_. -~ o 1. _ —
a (pE) + (97.’)3‘] (p’LLjH) :%j {uiaij + O'ijU;':| (19C)
9 o ~ 1W
+ - 87% —q; + cppuT" — ;i + o PUi Uity (19d)
where we denote with 7;; = —pu} u;’ the Reynolds stress term and 7;; the viscous stress tensor. The former
is approximated by solving the Spalart-Allmaras turbulence model with quadratic constitutive relation [11].
We approximate the turbulent heat flux cppu;’ T" ~ —%% following a Reynolds analogy and we use a

constant turbulent Prandtl number Pr; = 0.9. The Sutherland’s Law is employed to compute the dynamic
viscosity from the temperature of the ideal gas (Pr = 0.72).

The above mentioned equations are discretized on structured grids (finite volume method) and advanced
in time using a fully implicit time stepping scheme. Local time-stepping and algebraic multigrid (AMG) are
used for convergence acceleration to the steady-state solution.

4.1. Model Problems: NASA ROTOR-37

The first problem we consider is the well established turbomachinery test case NASA ROTOR-37
(UMRIDA BC-01), a transonic axial flow compressor. The rotor has 36 blades and an aspect ratio of 1.19,
rotates at 17188.7 [rpm] (1800 [rad/s]), leading to a tip-speed of 454 [m/s]. A detailed description of the
geometry, the original experimental set-up and a series of simulations can be found in [12] [13].

The design parameters of the rotor are summarized in the following Table



’ Quantity \ Symbol \ Design Value

Rotor Total Pressure Ratio P,/ P 2.106
Rotor Total Temperature Ratio T/Ty 1.270
Rotor Adiabatic Efficiency Nad 0.877
Mass Flow [kg/s] m 20.188

Table 1: Design values for the NASA ROTOR-37 problem.

Shroud

Hub
(a)

Figure 1: (a) NASA Rotor 37 and (b) computational model

4.1.1. Determinsitic results

The computational model (Fig[I{b)) consists of one blade with periodic boundary conditions. The rotation
is imposed to the hub and the blade, while the shroud is kept fixed. Total pressure and total temperature
profiles derived from experiments [12] are imposed at the inlet boundary and the static pressure is varied at
the outlet to change the mass flow.

The proprieties of the multi-block structured 4-levels grid hierarchy used in the C-MLMC, generated
using NUMERCA Autogrid, are presented in the following Table [2| along with the average computational
time required to compute one deterministic simulation using CFD++ software environment.

LEVEL | Blade nodes | Spanwise nodes | Cells y+ | CTimels| (n.cpu)
L0 113 33 156769 | 1 —2 110 (80)
L1 169 53 536669 | 1—2 225 (128)
L2 209 73 1244133 | 1 -2 435 (192)
L3 249 93 2241801 | 1 -2 837 (224)
L4 305 113 4253889 | 1 —2 1588 (256)

Table 2: MLMC 4-levels grid hierarchy for the ROTOR-37 problem. CT'imels| is the real time in seconds required to compute
one deterministic simulation on the prescribed number of cpus.

We ensure an appropriate refinement near the small tip clearance (0.356 [mm]) and ensure that near
the boundaries the y+ is between 1 and 2, for all the grid levels, to accommodate the requirements of
Spalart-Allmaras turbulence model employed in the CFD simulations. In Table [2] we report the number
of nodes set on the blade section and spanwise on each level. The number of nodes in the perpendicular
direction to the blade surface is set proportional to the number of spanwise nodes, and their distribution has
a fixed grow rate. In the Fig. [2] we observe a good agreement between the computational results obtained
with the finest grid level (L4) and experimental measurements of Reid and Moore [13]. The significant
differences between numerical results and measurements are in the rotor stall region. For this reason we will
only consider operating points before stall conditions (1 > 20.5 [kg/s]).
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(a) Rotor adiabatic efficiency (b) Rotor total pressure ratio

Figure 2: Experimental and computational compressor maps of the ROTOR-37. The green circles indicate the design parameters
presented in the previous table.

Fig. 3| presents the flow features on the suction and pressure side of the blade and at 50% of the span for
the maximum adiabatic efficiency conditions (1,q = 0.876). We distinguish the bow shock at the leading
edge of the blade and a classical A—shock region (Fig. g)) on the suction side where the shock impacts the
boundary layer. Downstream of the shock-boundary layer interaction we identify a flow separation region.
Such separation can be inferred also by looking at the skin friction (Fig. [Bfc)), the boundary layer transition
and at the turbulence index (Fig. [3[(e)) at the wall. Additionally the boundary layer transition induces a
sudden increase of eddy viscosity (Fig. [B[h)).
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(c) Skin friction - blade suction side (d) Skin friction - blade pressure side
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Figure 3: Deterministic results for the ROTOR-37. Left: suction side; right: pressure side.



4.1.2. Stochastic Results using C-MLMC

After assessing the validity of the CFD model we now propagate uncertainties to study their effects on
the performances of the rotor using the C-MLMC approach presented in section 2. We consider operating
uncertainties in the inlet total pressure and total temperature profile and the outlet static pressure. The
uncertainties on the parameters are modeled as truncated Gaussian random variables where we use the
notation y ~ TN (i, 0%, a,b) to denote a r.v. with density function

0 y<a
. 11 _ (y=w)? b 1 —mw?
p(y) = Z Tas € 202 a<y<b and z= fa 2mo © 27 dy (20)
0 y > b.

The following Table |3| summarizes the reference operating parameters and the uncertainties considered
for the following simulations.

\ | Quantity | Reference (r) | Uncertainty TN (u,0, X0, Xup) |
INLET Py 18 pt. profile (see Fig. |4 TN (r, 1%, —2%, +2%)
Tyor 18 pt. profile (see Fig. [ TN (r, 1%, —2%, +2%)
OUTLET o CT = 92500.0 [Pd] TN (r, 1%, —2%, +2%)
C2 = 99215.0 [Pa] TN (r, 1%, —2%, +2%)
€3 = 110000.0 [Pa] TN (r, 1%, —2%, +2%)

Table 3: Operating uncertainties for the ROTOR-37 stochastic analysis.

Fig. [ depicts the inlet uncertain total pressure and total temperature profiles. The same random
perturbation from the reference profile of the total pressure and temperature is applied to every point on the
inlet (fully correlated perturbation).

0.26 0.26
0.25 0.25
0.24 0.24
0.23 0.23
E 022t | " M E 0.22
& 0.21 Bl o &~ 0.21
0.20 0.20
0.19 0.19
0.18 0.18

047 064 086 068 100 102 104 01385 285 290 295 300

P [bar] T K]

Figure 4: Uncertain total pressure and total temperature inlet profiles. The blue line represents the mean profile (u), the
shaded gray area is one standard deviation (+o) and the red lines are the upper and lower boundaries of the uncertain range

(Xrow, Xup)-

In Fig. [5] we present the stochastic results for the adiabatic efficiency, rotor total pressure ratio, stage total
pressure ratio and mass flow for the ROTOR-37 affected by operating uncertainties (3 uncertain parameters).
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For the three analyzed cases (C1, C2, C3 in the mean outlet pressure py) we plot the compressor map
with mean + standard deviation for the four quantities of interest. We notice that the mean values of r,
Nad, P2/P; and P3/P; in the stochastic case are comparable with the deterministic ones, as observed by
[T4, [15]). Additionally we also observe that the mass flow 71 is the most sensitive quantity to variations in the
operating parameters as quantified in Table 4| The variability of 1, 1.4, P2/P1 and P3/P; seems to increase
as we approach the stall conditions.

’ CASE - p, | Deterministic | Stochastic (% o) | C-MLMC rates |
7 = 20.8564 [kg/s] | m = 20.8621 + 0.2371 [kg/s] (1.13%)
C1 = 92500.0 [P Nad = 0.8756 Nad = 0.8755 = 0.0009 (0.10%) a=17
Py/P; = 1.9540 Py/P; = 1.9534 £ 0.0093 (0.47%) B =26
P3/P; =1.9255 P3;/P; = 1.9252 4+ 0.0105 (0.54%)
T = 20.8564 [kg/s] | = 20.8440 £ 0.2424 [kg/s] (1.16%)
C2 =99215.0 [Pa] Nad = 0.8760 Nad = 0.8758 £ 0.0008 (0.09%) a=16
Py/P = 1.9813 P/ Py = 1.9812 + 0.0113 (0.57%) B =22
P3/P; = 1.9559 P3/P; = 1.9558 + 0.0106 (0.54%)
T = 20.6653 [kg/s] | = 20.6706 £ 0.2777 [kg/s] (1.34%)
€3 = 110000.0 [Pd] Nad = 0.8726 Nad = 0.8724 % 0.0010 (0.11%) a=18
P,/ P, = 2.0464 P,/P; = 2.0451 +0.0137 (0.67%) g=21
P/ Py = 2.0204 Ps/Py = 2.0190 + 0.0135 (0.67%)

Table 4: Deterministic and stochastic results for the ROTOR-37.

In all simulation we have imposed a relative tolerance of 0.5% on the mean value of the mass flow rate
(and terminate the simulations when we achieve at least an error or the variance of the mass flow rate lower
than 3%). In Table |4 we report in the last column also the estimated rates computed during the C-MLMC
simulation. As it is possible to observe the statistical error decay () degrades as we move closer to the stall
region while the lowest deterministic error decay («) is measured for the simulation with highest adiabatic
efficiency (C2).
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Figure 5: Experimental, deterministic and stochastic results for the compressor map of the ROTOR-37. Each red interval
correspond to mean + standard deviation.

11



4.2. Model Problem: RAE2822

The second problem we consider is the 2D RAE2822 (UMRIDA BC-02) a supercritical airfoil which
has become a standard test-case for transonic flows. A detailed description of the airfoil geometry, the
original experimental set-up and a series of simulations can be found in [I6, [I7]. For this specific problem we
consider as scalar field Qol the pressure coefficient C), of the RAE 2822 affected by operating and geometric
uncertainties due to fluctuations in the surrounding flow and manufacturing tolerances. The nominal geometry
of the RAE2822 airfoil is defined with a set of PARSEC parameters [I8]. The following table summarizes
these parameters and the operating conditions considered hereafter (corrected flow conditions for case 6 in
7).

’ H Symbol \ Reference Value ‘

Qoo 2.31
Operating My 0.729
Re. 6.5- 106
Poo [Pal) 101325
Too [K] 288.5
’ H Symbol \ Design Value ‘
R, 0.00839
Geometric R, 0.00853
T 0.431
Zp 0.346
Ys 0.063
Yp —0.058
Cs —0.432
Cp 0.699
0 —11.607
Op —2.227

Table 5: Geometric and Operating reference parameters for the RAE2822 problem.

Fig. [f] illustrates the nominal geometry of the RAE 2822 and the meaning of the parameters in Table

Figure 6: Geometry of the RAE 2822 transonic airfoil and PARSEC parameters that define the geometry of the airfoil.

4.2.1. Determinsitic results

The proprieties of the 4-levels structured C-grid hierarchy used in the C-MLMC simulations are presented
in the following Table [6] and Figure [7] along with the average computational time required to compute one
deterministic simulation using CEFD++ software environment. A closeup view of the structured grid in the
proximity of the leading edge for level 0 and level 1 is presented in Fig. [§
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As for the ROTOR-37 previous problem, we ensure that near the boundaries the y+ is between 1 and 2
for all the grid levels to fulfill the requirements of the Spalart-Allmaras turbulence model. In particular, we
increase the number of nodes in vertical direction with respect to the airfoil (V nodes) but we require the
first grid node to be always placed at the same distance (y+) and distribute the remaining points following a
geometric grow rate. We keep the same resolution in the boundary layer but increase the density of the grid
points just outside of it (Figure .

In Fig. |§| we compare the computational results obtained with the finest grid level (L4) and experimental
measurements [I7] and we observe a good agreement.

LEVEL | Airfoil nodes | V nodes | H nodes | Cells v+ | CTimels] (n.cpu)
L0 160 40 20 7722 1-2 13.9 (16)
L1 320 80 40 31442 1-2 49.7 (24)
L2 640 160 80 126882 | 1 -2 336.9 (32)
L3 1280 320 160 509762 | 1 -2 2145.5 (40)
L4 2560 640 320 2043522 | 1 -2 6854.3 (48)

Table 6: MLMC 4-levels grid hierarchy for the RAE2822 problem. CTime[s] is the real time in seconds required to compute
one deterministic simulation on the prescribed number of cpus.

Figure 7: Details for the structured RAE-2822 grid setting.

4.2.2. Stochastic Results using C-MLMC
We now propagate geometric and operating uncertainties in the model to study their effects on the C,
profile of the airfoil using the C-MLMC approach. We consider operating uncertainties in the far-field Mach
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Figure 9: Deterministic results for the RAE2822 airfoil.

number and angle of attach and geometric uncertainties in the PARSEC coefficients that define the shapes
of the airfoil. In case of geometric uncertainties that affect the shape of the airfoil, for each random geometry
(set of PARSEC coefficients) we deform the existing grid levels by solving a linear elasticity problem on the
volume grid to accommodate the new boundary definition (Fig. .

The following Table [7] and Fig. summarize the operating and geometric parameters and their
uncertainties modeled as truncated Gaussian random variables (see (20)).

In Fig. we present the stochastic results for the pressure coefficient profile C, around the airfoil under
operating uncertainties (2 uncertain parameters hereafter denoted as OPER(2)), geometric uncertainties
(8 uncertainties denoted as GEOM(8)) and operating and geometric uncertainties at the same time (10
uncertainties denoted as OPER(2)+GEOM(8)) presented in Table
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Figure 10: Grid deformation to accommodate the geometric uncertainty.

| Quantity | Reference (r) | Uncertainty TN (1,0, X0, Xup) |

0o 2.31 TN (r, 2%, —2%, +2%)
Operating M. 0.729 TN (r,5%, —5%, +5%)
Re, 6.5 - 106 .
oo [Pa] 101325 -
T [K] 288.5 -
R, 0.00839 TN 0.25%, —1%, +1%)
Geometric R, 0.00853 TN (r,0.25%, —1%, +1%)
2, 0.431 TN (r,0.5%, —1%, +1%)
Zp 0.346 TN (r,0.5%, —1%, +1%)
Us 0.063 TN (r,0.5%, —3%, +3%)
Yp —0.058 TN (r,0.5%, —3%, +3%)
C. —0.432 TN (r,0.5%, —1%, +1%)
c, 0.699 TN (r,0.5%, —1%, +1%)
0 —11.607 —
0, —2.227 -

Table 7: Operating and geometric uncertainties for the RAE2822 stochastic analysis.

The decay rates of deterministic and statistical error computed during the C-MLMC analysis are
a=0.7, p =1.06 for the case with only operating uncertainties (OPER(2)) and a = 0.6, § = 1.05 for that
with operating and geometric uncertainties (OPER(2)+GEOM(8)).

Lastly we present in Fig. the level sample sizes at each iteration of the C-MLMC algorithm to
achieve a relative error &, = 0.6% on the L2 norm of the pressure coefficient for the OPER(2) and
OPER(2)+GEOM(8) cases. Additionally we compare the aggregate cost (total CPU time) required by
our implementation of C-MLMC with the MC method to achieve a RMSE of €. Notice how the performace of
the C-MLMC is only mildly affected by the number of uncertain parameters. Moreover for the target relative
tolerance €, = 0.6% the gain in computational cost of C-MLMC over MC is about 2 orders of magnitude
and is expected to increase even further if smaller tolerances are prescribed. The results match nicely the
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Figure 11: Probability density functions of the operating (red) and geometric (blue suction side and green pressure side)
parameters for the RAE2822 stochastic analysis.

theoretical estimates.
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Figure 12: UQ analysis results for the RAE2822 presenting the mean pressure coefficient profile around the airfoil and its
standard deviation. Experimental data from [I7].
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Figure 13: C-MLMC hierarchies for two different sets of uncertain parameters (left) and aggregate computational cost compared
with MC (right). The solid lines in the cost plot are an extrapolated model based on the rates and constants («. ca, 53,cg,7,cy)
fitted in C-MLMC. The red and blue squares are the actual computed cost and error in the C-MLMC simulations.

18



Acknowledgments

This research has received funding from the European Union’s Seventh Framework Programme for
research, technological development and demonstration under grant agreement no ACP3-GA-2013-605036
(Uncertainty Management for Robust Industrial Design in Aeronautics (UMRIDA) project). The first two
authors acknowledge also support from the Center for ADvanced MOdeling Science (CADMOS).

Bibliography

[1] Pisaroni, M., Nobile, F., Leyland, P.: A continuation multi level monte carlo (c-mlmc) method for uncertainty quantifcation
in compressible aerodynamics. Technical report (2016)
[2] Collier, N., Haji-Ali, A.L., Nobile, F., von Schwerin, E., Tempone, R.: A continuation Multilevel Monte Carlo algorithm.
BIT Numerical Mathematics (2014) 1-34
[3] Giles, M.B.: Multilevel Monte Carlo path simulation. Operations Research 56(3) (2008) 607617
[4] Pisaroni, M., Leyland, P., Nobile, F.: A Multi Level Monte Carlo algorithm for the treatment of geometrical and operational
uncertainties in internal and external aerodynamics. In: 46th ATAA Fluid Dynamics Conference. (2016) 4398
[5] Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic
coefficients. Numerische Mathematik 119(1) (2011) 123-161
[6] Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs
with random coefficients. Computing and Visualization in Science 14(1) (2011) 3-15
[7] Barth, A., Lang, A., Schwab, C.: Multilevel Monte Carlo method for parabolic stochastic Partial Differential Equations.
BIT Numerical Mathematics 53(1) (2013) 3-27
[8] Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its
application to Multi level Monte Carlo methods. STAM Journal on Numerical Analysis 51(1) (2013) 322-352
[9] Gatski, T.B., Bonnet, J.P.: Compressibility, turbulence and high speed flow. Academic Press (2013)

[10] Hirsch, C.: Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics.
Butterworth-Heinemann (2007)

[11] Mani, M., Babcock, D., Winkler, C., Spalart, P.: Predictions of a supersonic turbulent flow in a square duct. AIAA Paper
860 (2013)

[12] Dunham, J.: CFD validation for propulsion system components (la validation cfd des organes des propulseurs). Technical
report, DTIC Document (1998)

[13] Reid, L., Moore, R.D.: Design and overall performance of four highly loaded, high speed inlet stages for an advanced
high-pressure-ratio core compressor. NASA Technical Report (1978)

[14] Loeven, G., Bijl, H.: The application of the probabilistic collocation method to a transonic axial flow compressor. American
Institute of Aeronautics and Astronautics (AIAA) (2010)

[15] Gopinathrao, N.P., Bagshaw, D., Mabilat, C., Alizadeh, S.: Non-deterministic cfd simulation of a transonic compressor
rotor. In: ASME Turbo Expo 2009: Power for Land, Sea, and Air, American Society of Mechanical Engineers (2009)
1125-1134

[16] Haase, W., Brandsma, F., Elsholz, E., Leschziner, M., Schwamborn, D.: EUROVAL An European Initiative on Validation
of CFD Codes: Results of the EC/BRITE-EURAM Project EUROVAL, 1990-1992. Volume 42. Springer-Verlag (2013)

[17] V.A.: EXPERIMENTAL DATA BASE FOR COMPUTER PROGRAM ASSESSMENT - Report of the Fluid Dynamics
Panel Working Group. AGARD-AR-138 (1979)

[18] Sobieczky, H.: Parametric Airfoils and Wings. Notes on Numerical Fluid Mechanics, edited by K. Fujii and G.S. Dulikravich
68 (1998) 71-88

19



	Introduction
	Multi Level Monte Carlo
	Continuation Multi Level Monte Carlo
	Model Problems
	Model Problems: NASA ROTOR-37
	Determinsitic results
	Stochastic Results using C-MLMC

	Model Problem: RAE2822
	Determinsitic results
	Stochastic Results using C-MLMC



