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ABSTRACT   

A technique based on a multi-dimensional signal processing approach is here described for performance enhancement of 
distributed optical fibre sensors. In particular, the main features of linear and nonlinear image denoising techniques are 
described for signal-to-noise ratio enhancement in Brillouin optical time-domain analysers. Experimental results 
demonstrate the possibility to enhance the performance of distributed Brillouin sensors by more than 13 dB using a 
nonlinear image denoising approach, while more than 20 dB enhancement can be obtained with video denoising.   
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1. INTRODUCTION  

Distributed optical fibre sensing has experienced a significant evolution during the last decade, becoming a technology 
that provides unmatched features compared to classical electronic sensors. Exploiting scattering effects along optical fibres 
(e.g. Raman, Brillouin or Rayleigh scattering), distributed profiles of environmental quantities such as temperature or strain 
can be measured. Among the different technologies, Brillouin optical time domain analysis (BOTDA) is one of the most 
performing techniques, allowing for sensing ranges of several tens of kilometres with metric spatial resolution1. The most 
relevant parameter determining the performance of distributed Brillouin sensors (and indeed of all distributed fibre sensing 
techniques) is the signal-to-noise ratio (SNR)2. Unfortunately, the presence of fibre nonlinearities and fibre losses constrain 
the maximum attainable SNR of the time-domain traces2,3, especially at long distances, thus forcing a well-known trade-
off between sensing distance, spatial resolution, measurand uncertainty and acquisition time. Using today’s technology, 
BOTDA sensors can routinely measure over 50 km with 1 m spatial resolution and reach a temperature uncertainty below 
1 K in ~1 minute measurement time. To increase the performance of BOTDA sensors2, sophisticated interrogation 
techniques have been reported in the literature. Significant SNR improvements have been demonstrated using techniques 
such as distributed optical amplification4, pulse coding5 or advanced signal processing6. For instance, schemes over 
>200 km-long fibre-loops have been reported combining pulse coding and distributed Raman amplification7, and more 
recently using bipolar code sequences8,9. On the other hand, combining phase coding and a correlation-domain 
interrogation10, the SNR of a sub-metre resolution Brillouin sensor has been improved, enabling the first demonstration of 
more than two‐million points being resolved in a distributed optical fibre sensor11. Unfortunately, most of these 
achievements have been obtained at the cost of relatively complex and expensive implementations. 

This paper describes a technique based on image and video processing to enhance the performance of distributed Brillouin 
fibre sensors. The method, purely based on a multi-dimensional signal processing approach, can provide a very high SNR 
enhancement (reaching up to 20 dB) with a minor post-processing overhead time and no hardware modifications12-14. 
Although the technique is here described in the context of long-range BOTDA sensing, the same approach can also be 
applied to boost the SNR of sub-metre resolution systems as well as of other distributed optical fibre sensing technologies, 
such as distributed Raman or Rayleigh fibre sensors12,15. 

2. TWO-DIMENSIONAL IMAGE DENOISING IN BOTDA SENSING 

BOTDA sensors scan the Brillouin gain along a sensing fibre at different pump-probe frequency offsets ∆݂. Measured 
data points are stored in a 2D matrix ݃ሾݖ, ∆݂ሿ, which contains the local Brillouin gain spectrum at each fibre position ݖ. 
Image denoising techniques are exploited to reduce the noise present in this measured matrix by processing each position-
frequency pair ሾݖ௜, ∆ ௜݂ሿ in ݃ሾݖ, ∆݂ሿ as a noisy pixel of an image12-14. This section describes some of the features of linear 
and nonlinear image filters16, providing examples demonstrating the potential of this technique. 
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2.1 Linear image denoising 

Linear image filters make use of 2D neighbourhood (local) operators to reduce noise from noisy pixels in an image16. The 
process can be represented by a two-dimensional convolution: ݃௙ሾݖ, ∆݂ሿ ൌ ݄ሾݖ, ∆݂ሿ ∗ ݃ሾݖ, ∆݂ሿ, where ݄ሾݖ, ∆݂ሿ is the 
impulse response of the filter (spatial kernel in the ݖ and ∆݂ axes) and	݃ሾݖ, ∆݂ሿ is the original noisy BOTDA data in the 
ሾݖ, ∆݂ሿ space. Due to the linear and time-invariant properties of the filtering process, 2D linear image denoising can also 
be expressed in the Fourier domain as: ܩ௙ሾݑ, ሿݒ ൌ ,ݑሾܪ ,ݑሾܩሿݒ ,ݑሾܪ ሿ, whereݒ ,ݑሾܩ ሿ andݒ  ሿ are the 2D Fourier transformݒ
of ݄ሾݖ, ∆݂ሿ and ݃ሾݖ, ∆݂ሿ, respectively. This means that there are two equivalent approaches to perform 2D linear image 
filtering of the BOTDA data: i) in the spatial domain (i.e. directly in the ሾݖ, ∆݂ሿ space) by convolving the data matrix with 
the 2D filter spatial impulse response, and ii) in the frequency domain by simply multiplying the 2D Fourier transforms of 
the BOTDA data and filter, and then calculating the 2D inverse Fourier transform of the product. Both approaches are 
equivalent, existing only differences in the processing time depending on the type of filter. 

Some examples of the most common linear image filters are the 2D mean filter (also known as moving averaging filter) 
and the 2D Gaussian filter. Figure 1 shows the spatial and spectral features of these two filters. Whilst the kernel ݄ሾݖ, ∆݂ሿ 
of the mean filter (Fig. 1a) is given by a constant value within a well-defined 2D window (i.e. all values within this window 
are averaged with the same weight), the kernel of the Gaussian filter (Fig. 1c) contains values following a 2D Gaussian 
shape (i.e. a weighted average of the values ݃ሾݖ௜, ∆ ௜݂ሿ is performed within a 2D window centred in each processed data 
point ሾݖ଴, ∆ ଴݂ሿ). Interestingly, Fig. 1b points out that the 2D spectral response of the mean filter contains spectral sidelobes, 
implying that high-frequency noise cannot be fully eliminated from the BOTDA data. Instead, the 2D Gaussian filter can 
more efficiently attenuate high-frequency components beyond a given well-defined bandwidth, as shown in Fig. 1d. A 
good trade-off between noise removal and blurring effect can be achieved with the 2D Gaussian filter. 

 

Figure 1. Spatio-spectral response of two linear image filters for BOTDA data denoising. 2D mean filter: (a) Spatial kernel and        
(b) Fourier transform. 2D Gaussian filter: (c) Spatial kernel and (b) Fourier transform. 

It should be highlighted that linear image filters operate as simple 2D low-pass filters, and therefore removing a large 
amount of noise typically results in blurring and spatial over-smoothing16. This can lead to a loss of the high-frequency 
details contained in the BOTDA data, thus reducing the spatial resolving capability of the sensor. However, although 
having limited denoising capabilities, 2D linear filters provide a deterministic SNR improvement, which depends mainly 
on the sampling rate and the target signal bandwidth. For instance, using an isotropic 2D Gaussian kernel with standard 
deviation of about 2 sampled points, 1 MHz scanning step and sampling interval of 0.5 m/pt, an SNR improvement of 
about 7-8 dB has been demonstrated in a 50 km-long BOTDA sensor with 2 m spatial resolution13. 

2.2 Nonlinear image denoising 

Although linear image filters are easy to design and implement, they tend to blur the sharp edges contained in the data, 
destroying lines and other fine image details. In order to partially overcome the trade-off between spatial smoothing and 
noise removal, 2D nonlinear image filters can be used. Even though their design and implementation are typically more 
complex than linear filters, they offer significantly higher SNR enhancement possibilities, while keeping the details of the 
data. In general, there exist two possible alternatives to implement nonlinear image denoising16-18: i) in the spatial domain 
(i.e. in the ሾݖ, ∆݂ሿ space of the BOTDA data), by applying a nonlinear kernel function or nonlinear operator directly to the 
gain values, and ii) in a transformation domain, by using a nonlinear filtering function in a domain representing the 
frequency content of the data. After filtering, the denoised data is converted back to the ሾݖ, ∆݂ሿ space of the BOTDA data. 
Examples of the first category, also known as pixel-wise techniques, are the median filter, bilateral filter and non-local 
means (NLM); whilst transform-based techniques (second category) can be based, for example, on 2D discrete cosine 
transform or 2D discrete wavelet transform.  
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Among these methods, the nonlocal means17 takes advantage of the high level of redundancy and similarity contained in 
the ሾݖ, ∆݂ሿ space of the BOTDA data. This approach is ideal for the data measured by a BOTDA sensor, which consist of 
a spectral resonance peak that is repeatedly measured at each fibre position. The NLM algorithm searches for 2D data 
patterns with high level of similarity over the data. Denoising is then performed by weighing average, where the weighing 
factors are determined by the level of similarity between pixels. Figure 2a shows the impact of NLM denoising on the SNR 
of a 50 km-long BOTDA sensor using 2 time-averaged traces and 2 m spatial resolution. The figure points out that an SNR 
of 1.4 dB at the end of the sensing range can be improved up to 15.2 dB, representing a 13.8 dB SNR enhancement12.  

Another example of nonlinear image filtering is the 2D wavelet denoising, in which the image ݃ሾݖ, ∆݂ሿ is decomposed 
into sub-images containing different levels of detail16,18. Using a nonlinear thresholding function, wavelet shrinkage is 
applied to the wavelet coefficients obtained by 2D discrete wavelet transform. All wavelet coefficients below a given 
threshold are associated to noise, and hence set to zero (nonlinear noise elimination function), whilst high-amplitude 
wavelet coefficients are related to useful information measured by the sensor. By applying 2D inverse wavelet transform 
to the denoised data, the filtered Brillouin gain is converted back to the ሾݖ, ∆݂ሿ space. Figure 2b shows the impact of 2D 
wavelet denoising (using 5 levels of decomposition and hard thresholding) on the SNR of a 50 km-long BOTDA sensor. 
Results indicate a 14.2 SNR enhancement, improving the measurement SNR of 1.4 dB (at 50 km) up to 15.6 dB12.  

 

Figure 2. Impact of image denoising on the SNR of a 50 km-long BOTDA sensor. The blue curves represent the SNR vs distance of 
the raw data and red curves illustrate the SNR obtained after denoising with (a) 2D nonlocal means and (b) 2D wavelet denoising. 

It is important to mention that the spatial resolution of 2 m has been maintained in all the denoised data shown in Fig. 2, 
which has been verified measuring a 2 m-long hot-spot at the end of the sensing fibre12. It should also be noted that the 
design of nonlinear image filters highly depend on the spatio-spectral features of the data and the noise level, and therefore, 
the provided SNR enhancement could be different under different scenarios. Optimising a standard BOTDA scheme and 
the parameters of the NLM filter, sensing over a 200 km-long fibre loop has been recently reported14.  

3. THREE-DIMENSIONAL (VIDEO) DENOISING IN BOTDA SENSING 

In order to perform reliable distributed sensing measurements, the 
acquisition time required to obtain an entire BOTDA measurement 
(i.e. to perform averaging and full frequency scanning) must be shorter 
than the temporal evolution of the measurands. This requirement 
inherently implies that consecutive BOTDA measurements contain 
some level of correlated information. Processing each BOTDA 
measurement ݃ሾݖ, ∆݂,  ௞ theݐ ௞ሿ as a frame of a video sequence (beingݐ
time of the ݇-th acquisition) with a 3D signal processing algorithm 
can lead to a larger amount of removed noise, when compared to 2D 
image denoising techniques. This way, video denoising techniques 
can be used to exploit the redundancy of information found not only 
in the ሾݖ, ∆݂ሿ space of the measurements but also in the temporal 
dimension12.  As a result, larger amount of noise can be removed from 
the measurements when compared to the 2D image denoising 
approach. Figure 3 indicates that the SNR of a 50 km-long BOTDA 
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Figure 3. Impact of video denoising on the SNR of a 

50 km-long BOTDA sensor. Raw data SNR (blue 
curve) and SNR obtained with 3D NLM (red curve).  

Distance (km)

SN
R
 (
d
B
)

0

5

10

15

20

25

35

0 10 20 30 40 50

30

Proc. of SPIE Vol. 10323  103230K-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 
 

 

 

 

 

sensor (2 m spatial resolution, 1.4 dB original SNR and 42 s measurement time) can be improved by 20.7 dB when using 
a 3D NLM filtering approach (utilising 10 consecutive frames ݃ሾݖ, ∆݂, ,ݖ௞ሿ for denoising a given frame ݃ሾݐ ∆݂,  ଴ሿ) A keyݐ
feature of video denoising is that the processing inherently takes into account the non-stationary characteristics of the data 
in the temporal domain, and therefore can easily deal with the motion of pixels among different frames. This feature could 
have interesting applications in dynamic distributed sensing, while for quasi-static sensing it represents a key advantage to 
minimise delay and over-smoothing effects in the temporal evolution of the measurand12.  

4. CONCLUSIONS 
Image and video denoising has demonstrated to be an efficient and powerful tool to remove noise from measurements of 
distributed optical fibre sensors with a no hardware modifications. This feature makes this multi-dimensional signal 
processing approach very attractive for a cost-effective industrial development, since the technique can be readily applied 
to any existing instrument. Although the technique has been here described for long-range BOTDA sensing, the method 
can be extended (with a suitable adaptation) to other distributed fibre sensing techniques, such as Raman and Rayleigh 
based fibre sensors, including schemes for sub-metre spatial resolution, distributed dynamic sensing or distributed acoustic 
sensing, among other potential configurations. The technique can also be combined with other advanced techniques for 
performance enhancement, such as pulse coding or distributed optical amplification. 
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