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Abstract. We show that the finite time type II blow up solutions for the energy
critical nonlinear wave equation

�u “ ´u5

on R3`1 constructed in [28], [27] are stable along a co-dimension three manifold
of radial data perturbations in a suitable topology, provided the scaling parameter
λptq “ t´1´ν is sufficiently close to the self-similar rate, i. e. ν ą 0 is sufficiently
small. Our method is based on Fourier techniques adapted to time dependent
wave operators of the form

´B2
t ` B

2
r `

2
r
Br ` Vpλptqrq

for suitable monotone scaling parameters λptq and potentials Vprq with a reso-
nance at zero.

1. Introduction

The focussing energy critical nonlinear wave equation

�u “ p´B2
t ` 4qu “ ´u5, u “ upt, xq, pt, xq P R3`1, (1.1)

has recently attracted a lot of attention, as it has become clear that some of its dy-
namic features are characteristic of more geometric and physical models such as
critical Wave Maps or Yang-Mills, yet the simplicity of the model allows to avoid
many technical issues. In particular, it is believed that techniques developed for
characterising its so-called type II dynamics, such as in the seminal series of works
[8] - [11], ought to be adaptable to attack the characterisation of solutions for more
physical models.

The model (1.1) comes with a conserved energy

Epuq “
ż

R3

“1
2

ˇ

ˇ∇t,xu
ˇ

ˇ

2
´

1
6

u6‰ dx, (1.2)

of ambiguous sign. In particular, energy class Shatah-Struwe solutions (see [43])
are not necessarily a priori bounded in H1pR3q. This leads one to distinguish be-
tween type I and type II solutions, the latter being characterised by the property
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that
sup
tPI

›

›∇t,xupt, ¨q
›

›

L2
x
ă `8, (1.3)

where the open interval I is the maximal interval of existence for a Shatah-Struwe
solution u. On the other hand, type I solutions satisfy

sup
tPI

›

›∇t,xupt, ¨q
›

›

L2
x
“ `8, (1.4)

Restricting to radial solution upt, xq “ ũpt, rq, r “ |x|, the works [8] - [11]
provide an abstract classification of all singular type II solutions in terms of the
so-called ground state Wpxq, given by the explicit static solution

upt, xq “ Wpxq :“
`

1`
|x|2

3

˘´ 1
2 , (1.5)

also known as Aubin-Talenti solution from its geometric origins. Observe that the
scaling transformation associated with (1.1), given by

upt, xq ÝÑ λ
1
2 upλt, λxq, λ ą 0,

and carrying solutions into solutions, means that we obtain the one parameter fam-
ily of scaled ground state static solutions

Wλpxq “ λ
1
2
`

1`
λ2|x|2

3

˘´ 1
2

Then the Duyckaerts-Kenig-Merle classification of radial singular type II solutions
for (1.1) is given by

Theorem 1.1. (Duyckaerts-Kenig-Merle ’09) Let upt, xq, t P I, be a type II radial
Shatah-Struwe solution of (1.1) with maximal interval of existence I, and suppose
I “ pT0,T q with T0 ă T P R. Then there exists N P N as well as continuous
functions λ j : I Ñ R`, j “ 1, 2, . . . ,N, with

lim
tÑT
pT ´ tqλ jptq “ `8, lim

tÑT

ˇ

ˇ log
` λ jptq
λ j1ptq

˘ˇ

ˇ “ `8, j , j1,

and such that we can write

upt, xq “
N
ÿ

j“1

κ jWλ jptqpxq ` vpt, xq, κ j P t˘1u, (1.6)

and where vpt, xq P C0pI Y tTu; H1q, vt P C0pI Y tTu; L2q.

In particular, the limit limtÑT ∇t,xvpt, xq exists in the L2pR3q-topology and al-
lows one to prolong the solution upt, xq beyond the endpoint t “ T in the distribu-
tional sense, see [30].

The result by Duyckaerts-Kenig-Merle does not make any assertion about the
existence of solutions of the form (1.6), nor does it assert anything about their
stability. In fact, at this point in time, it appears that only finite or infinite time
blow up solutions with one bulk term Wλ jptq are known. Furthermore, assuming
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the error term vpt, xq to be of small critical norm, such solutions are known to be
unstable in a quite precise way [25], as follows:

Theorem 1.2. ([25]) Let

upt, xq “ Wλptqpxq ` vpt, xq (1.7)

be a type II blow up solution for (1.1), with limtÑT λptq “ `8, and such that

sup
tPI

›

›∇t,xvpt, ¨q
›

›

L2
x
ď δ ! 1

for some sufficiently small δ ą 0, where as usual I denotes the maximal life span
of the Shatah-Struwe solution u. Also, assume that t0 P I. Then there exists
a co-dimension one Lipschitz manifold Σ in a small neighbourhood of the data
`

upt0, ¨q, utpt0, ¨q
˘

P Σ in the energy topology 9H1pR3q ˆ L2pR3q and such that ini-
tial data

`

u0, u1
˘

P Σ result in a type II solution, while initial data
`

u0, u1
˘

P BδzΣ,

where Bδ Ă 9H1pR3qˆL2pR3q is a sufficiently small ball centred at
`

upt0, ¨q, utpt0, ¨q
˘

,
either lead to blow up in finite time, or solutions scattering to zero, depending on
the ’side of Σ’ these data are chosen from.

In fact, the work [25] gives much more, but the preceding result is all that is
relevant to the discussion of the present paper.

The preceding theorem reveals that understanding the optimal stability of type II
solutions of the form (1.7) reduces1 to understanding the stability of such solutions
under perturbations along the hyper surface Σ, and this irrespective of the precise
scaling law λptq. This is then precisely the kind of question we aim to address in
this paper, for a specific class of rather explicit blow up solutions constructed in
[28], [27]. Before explaining this, we remark that the co-dimension one condi-
tion for Σ simply reflects the fact that the linear operator L :“ ´4 ´ 5W4 has a
unique negative eigenvalue ξd ă 0 which generically causes exponential growth
for solutions of the corresponding linear wave equation

`

B2
t ´ 4´ 5W4˘vpt, xq “ 0.

For the nonlinear problem, this implies that perturbing initial data ur0s P Σ by a
positive multiple of the corresponding positive eigenfunction pφd, 0q leads to solu-
tions which escape from a suitable neighbourhood of the family t˘Wλuλą0, and
blow up in finite time(in fact, in a certain sense this blow up is of type I, see [30]),
while adding a negative multiple of pφd, 0q leads to a solution existing globally in
forward time and scattering toward zero.

From now on, we shall work exclusively in the context of radial solutions with-
out further mention.

1Note that it appears natural to conjecture that working in a suitable topology, the blow up solu-
tions ’above’ and sufficiently close to Σ are all of type I.
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Now pick ν ą 0, set λptq “ t´1´ν, and consider one of the blow up solutions
uνpt, xq “: Wλptqpxq ` vνpt, xq constructed in [28], [27] and existing on an interval
I “ p0, t0s for t0 ą 0 sufficiently small. Note that suptPI }∇t,xvpt, ¨q}L2

x
ď δ ! 1

may be assumed for these solutions, and so the result from [25] implies the exis-
tence of a co-dimension one Lipschitz manifold Σ passing through the data uνrt0s
such that data urt0s P Σ result (forward in time) in type II solutions.

The question we want to address here is whether the blow up for uν is preserved
generically under such perturbations along Σ. In fact, for small enough ν ą 0,
we can establish such a result under a suitable co-dimension two condition for
perturbations along Σ, which in turn corresponds to a co-dimension three condition
on these perturbations amongst all possible perturbations:

Theorem 1.3. There is ν0 ą 0 sufficiently small, such that the following holds: Let
uν, 0 ă ν ă ν0 be one of the solutions constructed in [28], [27], on a time slice
p0, t0s ˆ R3, with 0 ă t0 ! 1 sufficiently small. Then there exists a co-dimension
two Lipschitz hyper surface Σ0 in a Hilbert space S̃ ˆ R where S̃ is essentially
`

H
3
2`

rad pR
3q X tφdu

K
˘

ˆ
`

H
1
2`

rad pR
3q X tφdu

K
˘

, and a positive δ1 ! 1, such that for
any pu0, u1, γq P Σ0 X

`

Bδ1,S̃ p0q ˆ p´δ1, δ1q
˘

and suitable Lipschitz functions

γ1,2 : Σ0 X
`

Bδ1,S̃ p0q ˆ p´δ1, δ1q
˘

ÝÑ R,

the solution of (1.1) with data

urt0s : “ uνrt0s `
`

u0, u1
˘

`
`

γφd ` γ1pu0, u1, γqφd, γ2pu0, u1, γqφd
˘

P
`

H1`
radpR

3q ˆ H0`
radpR

3q
˘

X Σ

exists on I “ p0, t0s and can be written in the form

upt, xq “ Wλptq ` v1pt, xq, λptq “ t´1´ν

with pv1, v1,tq P H1` ν
2´ ˆ H

ν
2´ on each time slice t “ t1 P I, and furthermore

`

Elocpvq
˘

ptq :“
ż

|x|ďt

1
2

ˇ

ˇ∇t,xv1
ˇ

ˇ

2 dx ÝÑ 0

as t Ñ 0. Thus for small enough ν ą 0, the solutions constructed in [28], [27]
are stable under perturbations along a co-dimension three manifold in a suitable
topology.

Remark 1.1. We note that two of the co-dimension conditions producing Σ0 may
be thought of as being forced by the requirement of fixing the exponent ν in λptq “
Ct´1´ν, as well as the scaling factor C “ 1. We cannot ’modulate’ in ν or C to force
these orthogonality conditions, since the solutions uν from [28], [27] corresponding
to different ν, C are infinitely far apart with respect to

›

› ¨
›

›

S̃ for small ν ą 0.
This then suggests that in order to gain two co-dimensions (and hence produce an
optimal stability result in light of Theorem 1.2), one needs to work with a more
flexible blow up scaling law λptq, depending on two additional parameters.
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Remark 1.2. The space S̃ will be specified after a recall of the distorted Fourier
transform associated with L below.

The proof of the preceding theorem will proceed via Fourier techniques in suit-
able coordinate systems adapted to the blow up solutions uνpt, xq. In particular, no
use of virial type identities is being made. It is to be expected that such techniques
extend to significantly more general contexts, for example the stability of blow up
solutions for the critical Wave Maps equation.

1.1. Relation to other works. There is by now a very sizeable literature deal-
ing with the construction as well as stability analysis of type II and other blow up
solutions. In particular, in the context of type II dynamics, a remarkably robust
method has been developed in the pioneering works by Merle, Martel, Raphael
and co-authors in the last decade. In relation to the equation at hand, we mention
for example the important works [14], [41], [31]. At the most basic level, the strat-
egy in these works is to construct solutions in a two step process, first building an
approximate solution, and then completing it to an exact solution, by controlling
the remaining error via Morawetz and virial type identities and exploiting subtle
monotonicity properties. It is in regard to the second step, the control of the re-
maining error, where the present work is striving to achieve a different approach,
based on a constructive parametrix approach to the linear operator arising upon
linearisation around the bulk part of the blow up solution. Our approach may be
seen as somewhat in the spirit of the recent remarkable work by Donninger and
Donninger and Schorkhuber on the stability of self-similar blow up solutions, for
example in [4], [6], which also completely avoids Lyapounov/Morawetz type esti-
mates. It may be hoped that constructive methods like those employed in this paper
may shed further light on the precise features of the solutions obtained.
We also point out an exciting novel point of view espoused in works by J. Jen-
drej, [16], [17], where an analysis of type II blow up solutions of the natural five
dimensional analogue of (1.1) in terms of the leftover radiation at blow up time
is performed. This author has also succeeded in constructing the first examples of
two bubble solutions, [18] on semi-infinite time intervals. The issue of constructing
finite time radial two bubble blow ups appears still open at this time.

1.2. Overview of the paper. In section 2 we quickly recall the properties of the
approximate solutions upk,νqapprox which are used in [28], [27] to construct the blow up
solutions uνpt, xq. We also quickly gather the basic facts about the distorted Fourier
transform associated to the operator

´4´ 5W4

in this section, as well as the translation of the problem in ’physical space’ to a
problem in ’Fourier space’, given by (2.5). In section 3, we analyse the growth
of the forward flow associated with the transport operator on the left hand side of
(2.5), and in particular arrive at the two crucial vanishing conditions which guar-
antee that the growth is limited to linear in a certain sense. All of this is of course
restricted to the linear flow associated with the transport operator. In section 4,
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we provide a precise formulation of the stability theorem we are striving to prove
in terms of the Fourier variables, see Theorem 4.1. In section 5 we show that the
better growth estimates deduced under the key vanishing properties in section 3
suffice to control the nonlinear terms on the right hand side of (2.5). In section 6,
we show the strategy for constructing the blow up solutions by means of a suitable
iterative scheme, leaving the precise choice of the iterates 4xp jq to the following
sections.

Section 7 in a sense forms the heart of the paper. It is here where we analyse the
first iterate, and more precisely the contribution to the first iterate of the delicate
non-local linear source terms on the right hand side of (2.5). The contributions of
these terms to the first correction do not a priori gain smallness. We briefly explain
here the main idea which allows us to make the correct choice for their contribution
to the first iterate, by modifying the data slightly: thus consider an equation of the
form

pD2
τ ` βνpτqDτ ` ξqxpτ, ξq “ f pτ, ξq,

where the right hand side denotes (say) one of the non-local linear source terms on
the right hand side of (2.5). Here we cannot proceed in analogy to [28], [27] and
solve this by imposing vanishing of xpτ, ξq toward τ “ `8, since we would then
generate errors at time τ “ τ0 (which corresponds to the initial time t “ t0) which
would be of the same order of magnitude as the original perturbation px0, x1q. On
the other hand, using a Duhamel parametrix at time τ “ τ0 forward in time will
lead to functions xpτ, ξq which grow much too rapidly toward τ “ `8 in the
small frequency regime ξ ă 1, which is of course related to the issue forcing the
vanishing conditions in section 3 for the free transport equation. The way out of
this impasse is to add a small correction to the data, given by the pair2

p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q.

Then the free transport of the evolution of this pair will in some sense cancel the
growth of the inhomogeneous Duhamel term for small frequencies, while for large
frequencies its contribution will be small. Moreover, crucially, the correction is
smaller by a factor τ´1`

0 than the data, and ’essentially preserves the initial per-
turbation’. We then carefully check in section 7 that the contribution to the first
iterate by the linear non-local source terms thus defined itself admits in the low
frequency regime a decomposition into a free transport term (given in terms of
data p4x̃p1q0 ,4x̃p1q1 q satisfying the crucial vanishing conditions from section 3) plus
a term satisfying a better estimate (the term 4ąτxp1q), and we spell out the precise
bounds for the functions 4ąτxp1q,Dτ4ąτxp1q, with a view toward the later stages of
the iterative scheme. In particular, this involves a somewhat delicate refinement of
the bound obtained for Dτ4ąτxp1q in Proposition 7.1 to a square-sum over dyadic
time scales type bound in Proposition 7.4.

2In fact, the precise choice of the corrections p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q shows that this correction is the
analogue of ’modulating’ on the inherent scaling parameter as was for example done in [26].
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We then repeat the same kind of construction for the contribution to the first
iterate by the nonlinear source terms in (2.5) in section 8.
With these stages in place, it is not so hard anymore to formulate the iterative step
in section 9, where we show that the kind of decomposition obtained for the first
iterate can be perpetuated across an iterative scheme, resulting in a priori bounds,
which may however grow at each stage. In particular, at this point, it is by no
means clear that the iterative scheme thus arrived at will converge.

The ground work for convergence will be laid in sections 10, 11, where we show
that certain expressions arrived at in the iterative scheme do enjoy a gain of small-
ness under certain frequency restrictions, or else under a re-iteration of the iterative
step. This will then allow us in section 12 to reduce the convergence of the scheme
to Proposition 12.4, which derives smallness of a many times re-iterated wave type
propagator by a combinatorial type argument, reducing to integration over high
dimensional simplices. This is in fact very closely related to arguments used in
[29], [7], and indeed it appears that it is in the present context that this technique
comes to bear in the most natural and powerful way.

The proof of Theorem 4.1 will then finally be accomplished in section 13.

1.3. Further remarks. It appears that the techniques developed in this paper ought
to have much wider applicability. In fact, the method expounded in sections 3 - 12
appears to apply to much more general wave operators of the form

´B2
t ` B

2
r `

2
r
Br ` Vpλptqrq,

providing an approach to study their evolution based on a completely explicit iter-
ative parametrix construction, and avoiding any kind of Lyapounov/Morawetz type
estimates and implicit reasonings.

Acknowledgement

The author would like to thank Stefano Burzio for numerous corrections.

2. Recall of the properties of the solutions uνpt, xq

The solutions uν in [28], [27], are constructed via a two stage process, first gen-
erating an approximate solution via an ad hoc iterative procedure, and completion
thereof to an exact solution. While the first stage consists in the solution of suitable
elliptic problems, the second stage (i. e. completion to an exact solution) relies on
a parametrix construction for a wave equation with time dependent potential. It is
the techniques for the second step which play a prominent role in this paper, while
the first step is mostly used as a black box here.

To be more precise, the approximate solution in [28], [27] is obtained in the
form

upk,νqapproxpt, xq “ Wλptqpxq ` upk,νq2k´1pt, xq,
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where in turn upk,νq2k´1pt, xq “
ř2k´1

l“1 vlpt, xq is a sum of corrections. Using the vari-
ables R “ λptq ¨ r, τ “ ν´1t´ν, we have

ˇ

ˇupk,νq2k´1pt,Rq
ˇ

ˇ .
λ

1
2

pλtq2
R (2.1)

as well as
›

›∇
1` ν

2´

R u2k´1
›

›

L2
dRpR.τq

.
λ

1
2

τ
3
2`

ν
2´
.

Importantly, the error generated by the approximation upk,νqapproxpt, xq can be made
arbitrarily small in a suitable sense by picking k suitably large. More precisely, we
have

ˇ

ˇt2e2k´1pt, rq
ˇ

ˇ .
λ

1
2

pλtq2k´1

`

1´ a
˘´ 1

2`
ν
2´, a “

r
t

where
e2k´1 “ �upk,νqapprox `

`

upk,νqapprox
˘5
.

To pass from the approximate solution upk,νqapprox to the exact solution uνpt, xq, we set

uν “ upk,νqapprox ` ε, where ε is most easily controlled by passing to the new variable

ε̃pτ,Rq :“ Rεptpτq, rpτ,Rqq.

In fact, see (3.1) in [27], we obtain the equation

pBτ ` 9λλ´1RBRq
2ε̃´ βνpτqpBτ ` 9λλ´1RBRqε̃`Lε̃

“ λ´2pτqRrN2k´1pεq ` e2k´1s ` Bτp 9λλ´1qε̃; βνpτq “ 9λpτqλ´1pτq,
(2.2)

where the operator L is given by

L “ ´B2
R ´ 5W4pRq

and we have
RN2k´1pεq “ 5pu4

2k´1 ´ u4
0qε̃` RNpu2k´1, ε̃q,

RNpu2k´1, ε̃q “ Rpu2k´1 `
ε̃

R
q5 ´ Ru5

2k´1 ´ 5u4
2k´1ε̃

Introducing the operator, with βνpτq “
9λpτq

λpτq
,

D “ Bτ ` βνpτqpRBR ´ 1q,

we can also write the above equation as

D2ε̃` βνpτqDε̃`Lε̃ “ λ´2pτq
“

5pu4
2k´1´ u4

0qε̃`RNpu2k´1, ε̃q`Re2k´1
‰

(2.3)

To deal with this equation, we translate things in terms of the Fourier transform
associated to the operator L, just as in [28], [27]. In fact, we quote the following
paragraph directly from [27]:
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Recall from [28] that there exists a Fourier basis φpR, ξq and associated spec-
tral measure ρpξq satisfying the asymptotic expansions and growth conditions ex-
plained in [28, Section 4] such that

ε̃pτ,Rq “ xdpτqφdpRq `
ż 8

0
xpτ, ξqφpR, ξqρpξq dξ

For the asymptotic behavior of φpR, ξq in various regimes we shall rely on re-
sults from [28]. Here the functions xpτ, ξq are the (distorted) Fourier coefficients
associated with ε̃, and φdpRq is the unique ground state with associated negative
eigenvalue for the operator L. We also note the important asymptotic estimates

ρpξq » ξ´
1
2 , ξ ! 1, ρpξq » ξ

1
2 , ξ " 1. (2.4)

as well as the fact that near ξ “ 0 as well as ξ “ 8 the spectral measure behaves
like a symbol upon differentiation. We shall henceforth write

xpτ, ξq :“
ˆ

xdpτq
xpτ, ξq

˙

, ξ “

ˆ

ξd

ξ

˙

Then proceeding as in [5], in particular section 3.5 in loc. cit. which uses a varia-
tion on the procedure in [28], we derive the following transport equation for xpτ, ξq:

`

D2
τ ` βνpτqDτ ` ξ

˘

xpτ, ξq “ Rpτ, xq ` f pτ, ξq, (2.5)

where we have

Rpτ, xqpξq “
´

´4βνpτqKDτx´β2
νpτqpK

2`rA,Ks`K`β1νβ
´2
ν Kqx

¯

pξq (2.6)

with βνpτq “
9λpτq

λpτq
, and we set f “

ˆ

fd
f

˙

where

f pτ, ξq “ F
`

λ´2pτq
“

5pu4
2k´1 ´ u4

0qε̃` RNpu2k´1, ε̃q ` Re2k´1
‰˘`

ξ
˘

fdpτq “ xλ´2pτq
“

5pu4
2k´1 ´ u4

0qε̃` RNpu2k´1, ε̃q ` Re2k´1
‰

, φdpRqy.
(2.7)

Also the key operator

Dτ “ Bτ ` βνpτqA, A “

ˆ

0 0
0 Ac

˙

and we have

Ac “ ´2ξBξ ´
´5

2
`
ρ1pξqξ

ρpξq

¯

Finally, we observe that the “transference operator” K is given by the following
type of expression

K “

ˆ

Kdd Kdc
Kcd Kcc

˙

(2.8)

with the following description ([28]):
‚ The operators Kdd, Kcd are given by Kdd “ ´

1
2 ,
`

Kcdp1q
˘

pξq “ Kdpξq,
where Kd is smooth and rapidly decaying toward ξ “ `8.

‚ We have Kdcp f q “ ´
ş8

0 f pξqKdpξqρpξq dξ, with Kd as above.
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‚ We have
`

Kccp f q
˘

pξq “
ş8

0 K0pξ, ηq f pηq dη, where K0pξ, ηq “
ρpηq
ξ´ηFpξ, ηq,

and F is a C2-function with the further smoothness and decay properties
listed in Theorem 5.1 in [28], see also the remarks in [27], proof of Lemma
5.1.

The construction in [27] then relies crucially on the observation that the equation
`

D2
τ ` βνpτqDτ ` ξ

˘

xpτ, ξq “ f pτ, ξq “
ˆ

fdpτq
f pτ, ξq

˙

can be solved completely explicitly; in particular, imposing vanishing boundary
data at τ “ 8, we obtain the following expression for the continuous part xpτ, ξq:

xpτ, ξq “ ξ´
1
2

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sin
”

λpτqξ
1
2

ż σ

τ
λ´1puq du

ı

f
`

σ,
λ2pτq

λ2pσq
ξ
˘

dσ

(2.9)
On the other hand, one immediately obtains the elementary implicit relation

xdpτq “

ż 8

τ0

Hdpτ, σq f̃dpσq dσ, Hdpτ, σq “ ´
1
2
|ξd|

´ 1
2 e´|ξd|

1
2 |τ´σ|

f̃dpσq “ fdpσq ´ βνpσqBτxdpσq

(2.10)

See [27] for justification of these facts.

In the present work, we shall want to perturb the data at time t “ t0, which
means that we shall no longer enforce the condition of vanishing at infinity (in
terms of τ). For this, it shall be important to understand the properties of solutions
of the homogeneous linear problem

`

D2
τ ` βνpτqDτ ` ξ

˘

xpτ, ξq “ 0,
`

xpτ0, ¨q,Dτxpτ0, ¨q
˘

“
`

x0, x1

˘

. (2.11)

Here we use the convention that Dτ acts on the first component xdpτq in the stan-
dard way xdpτq ÝÑ Bτxdpτq. Then the following result follows from the arguments
in [27]:

Lemma 2.1. The equation (2.11) is solved for the continuous spectral part xpτ, ξq
via the following parametrix:

xpτ, ξq “
λ

5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

cos
”

λpτqξ
1
2

ż τ

τ0

λ´1puq du
ı

x0
` λ2pτq

λ2pτ0q
ξ
˘

`
λ

3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

sin
”

λpτqξ
1
2
şτ
τ0
λ´1puq du

ı

ξ
1
2

x1
` λ2pτq

λ2pτ0q
ξ
˘

(2.12)

Moreover, writing x0 “

ˆ

x0d
x0pξq

˙

, x1 “

ˆ

x1d
x1pξq

˙

and picking τ0 " 1 suffi-

ciently large, there is cd “ 1`Opτ´1
0 q as well as γd “ ´|ξd|

1
2 `Opτ´1

0 q such that
if we impose the co-dimension one condition

x1d “ γd x0d, (2.13)
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then the discrete spectral part of xpτ, ξq admits for any κ ą 0 the representation

xdpτq “
`

1` Oκpτ
´1eκpτ´τ0qq

˘

e´|ξd|
1
2 pτ´τ0qcd x0d

One also has for i ě 1

p´Bτq
ixdpτq “

`

1` Oκpτ
´1eκpτ´τ0qq

˘

|ξd|
i
2 e´|ξd|

1
2 pτ´τ0qcd x0d

The proof of this lemma is essentially contained in [27], except for the last part.
To see this, we use (2.10) with fd “ 0 but adding an exponentially decaying free
term to match the part of the data at time τ “ τ0, which gives the implicit relation

xdpτq “

ż 8

τ0

βνpσqrBσxdpσq ´ x̃d|ξd|
1
2 e´|ξd|

1
2 pσ´τ0qs ¨

1
2
|ξd|

´ 1
2 e´|ξd|

1
2 |τ´σ| dσ

` e´|ξd|
1
2 pτ´τ0q ¨ x̃d.

Carrying out an integration by parts, this gives

xdpτq “ px̃d ´ βνpτ0qxdpτ0qqe´|ξd|
1
2 pτ´τ0q

´

ż 8

τ0

Bσβνpσqxdpσq
1
2
|ξd|

´ 1
2 e´|ξd|

1
2 |τ´σ| dσ

´

ż 8

τ0

βνpσqxdpσq
1
2

signpτ´ σqe´|ξd|
1
2 |τ´σ| dσ

´

ż 8

τ0

x̃dβνpσqe´|ξd|
1
2 pσ´τ0q ¨

1
2

e´|ξd|
1
2 |τ´σ| dσ.

The conclusion of the lemma then follows from a simple fixed point argument.

3. Growth properties of the forward linear parametrix (2.12)

Recall that t “ pντq´ν
´1

, which implies3 λpτq „ τ1`ν´1
and hence rapidly poly-

nomially growing for ν ! 1. However, what decides whether an iteration scheme
for the full nonlinear problem starting at the linear approximation (2.12) will con-
verge are not the growth properties of the Fourier coefficients xpτ, ξq, but rather
those of the function ε̃pτ,Rq they represent, for it is the latter which gets inserted
in the nonlinear expressions, and it is here where fast growth toward τ “ `8 or
alternatively t Ñ 0 would doom any iteration.

It turns out that there is a natural co-dimension two condition which while not
altogether eliminating growth at infinity (for ε̃pτ,Rq!) reduces it to only linear
growth in a suitable sense, and it turns out that this suffices to still run an iteration
scheme, thanks to damping factors attached to the nonlinear terms. The following
proposition is the key for the sequel:

3We abuse notation and write λpτq instead of λptpτqq
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Proposition 3.1. Assume the data px0, x1q P xξy
´1´ξ0`L2

dξˆxξy
´ 1

2´ξ0`L2
dξ. Fur-

thermore, assume that we have the vanishing relations
ż 8

0

ρ
1
2 pξqx0pξq

ξ
1
4

cosrντ0ξ
1
2 s dξ “ 0,

ż 8

0

ρ
1
2 pξqx1pξq

ξ
3
4

sinrντ0ξ
1
2 s dξ “ 0. (3.1)

at time τ “ τ0. Assume that xpτ, ξq is given by (2.12). Then the function Pcε̃pτ,Rq
represented by the Fourier coefficients xpτ, ξq via

Pcε̃pτ,Rq “
ż 8

0
φpR, ξqxpτ, ξqρpξq dξ

satisfies
Pcε̃pτ,Rq “ ε̃1pτ,Rq ` ε̃2pτ,Rq,

where we have
›

›

ε̃1pτ,Rq
R

›

›

L8dR
.
›

›pxξy
1
2``ξ

1
2´x0, xξy

1
2``ξ0´x1q

›

›

L2
dξ

›

›ε̃2pτ,Rq
›

›

L8dR
. τ

›

›pxξy
1
2``ξ

1
2´x0, xξy

1
2``ξ0´x1q

›

›

L2
dξ

Here we use for a small constant δ0 ą 0 the notation 1
2 ` ` :“ 1

2 ` 2δ0,
1
2` “

1
2 ` δ0,

1
2´ :“ 1

2 ´ δ0, 0´ :“ ´δ0. For later reference, we shall also use the
notation 1` “ 1` δ0, 0` “ δ0.

We note that the integrals in (3.1) converge under the hypothesis on x0,1 in the
proposition. We also observe that the norm displayed on the right corresponds

roughly to H
3
2`

dR ˆ H
1
2`

dR on the physical side.
The preceding proposition motivates introduction of the following norms: we put

›

›px0, x1q
›

›

S̃ :“
›

›x0
›

›

S̃ 1
`
›

›x1
›

›

S 2

:“
›

›xξy
1
2``mintτ0ξ

1
2 , 1u´1ξ

1
2´x0

›

›

L2
dξ
`
›

›xξy
1
2``ξ0´x1

›

›

L2
dξ
.

(3.2)

Note that for very small frequencies ξ ! τ´2
0 , we have built in control over

›

›ξ0´x0
›

›

L2
dξ

, whence control over
›

› ¨
›

›

S̃ suffices to ensure the quantities in (3.1) are

well-defined. For later reference, we also introduce the following stronger norm:
›

›px0, x1q
›

›

S :“
›

›x0
›

›

S 1
`
›

›x1
›

›

S 2

:“
›

›xξy1``ξ0´x0
›

›

L2
dξ
`
›

›xξy
1
2``ξ0´x1

›

›

L2
dξ
, 1`` “ 1` 2δ0.

(3.3)

In the following proof, we shall heavily rely on the spectral theory developed in
[28].

Proof. We shall constantly refer to the formula (2.12). In particular, we shall call
the first term on the right the contribution of x0, while the second term is the con-
tribution of x1. Here we start with the contribution of x0, which we treat by dis-
tinguishing between different regimes for the frequency ξ. Throughout we take
advantage of the fact (see [28]) that φpR,ξq

R is uniformly bounded in R, ξ ą 0.
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(1). Large frequencies: ξ ą 1. In this regime we have

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

„
` λpτq

λpτ0q

˘
1
2 , ρpξq „ ξ

1
2 ,

Hence the corresponding contribution to Pcε̃pτ,Rq is bounded by

.

ż 8

1

λ3pτq

λ3pτ0q
|
φpR, ξq

R
|| cosrλpτqξ

1
2

ż τ

τ0

λ´1puq dus||x0|pξ
λ2pτq

λ2pτ0q
qξ

1
2 dξ

.
›

›xξy1`x0
›

›

L2
dξ
,

where we have used the Cauchy-Schwarz inequality as well as a simple change
of variables. Note that in fact we also get

›

›Pcε̃pτ,Rq
›

›

L8 .
›

›xξy1`x0
›

›

L2
dξ

for this

contributions (division by R for large R is unnecessary).

(2). Small frequencies ξ ă 1. Here we use a decomposition
ż 1

0
φpR, ξqypξq dξ

“

ż mintR´2,1u

0
φpR, ξqypξq dξ `

ż 1

mintR´2,1u
φpR, ξqypξq dξ

“

ż mintR´2,1u

0
rφpR, 0q ` OpR2ξqsypξq dξ `

ż 1

mintR´2,1u
φpR, ξqypξq dξ

“ φpR, 0q
ż mintR´2,1u

0
ypξq dξ `

ż mintR´2,1u

0
OpR2ξqypξq dξ

`

ż 1

mintR´2,1u
φpR, ξqypξq dξ.

(3.4)

Then we substitute

ypξq “ ρpξq
λ

5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq

We get

ˇ

ˇR´1
ż mintR´2,1u

0
OpR2ξqypξq dξ

ˇ

ˇ .

ż mintR´2,1u

0
ξ

1
2 |ypξq| dξ,

and we can further bound this by
ż mintR´2,1u

0
ξ

1
2 |ypξq| dξ

.

ż mintR´2,1u

0

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ξ
1
2
ˇ

ˇ cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇρpξq dξ,
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Further restricting to the range ξ λ2pτq

λ2pτ0q
ă 1, this is bounded by

ż mintR´2,1u

0
χ
ξ
λ2pτq
λ2pτ0q

ă1

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ξ
1
2
ˇ

ˇ

¨ cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇρpξq dξ

.

ż 8

0
χ
ξ
λ2pτq
λ2pτ0q

ă1

λ2pτq

λ2pτ0q

ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇ dξ .
›

›ξ
1
2´x0

›

›

L2
dξpξă1q,

where we have again used the Cauchy-Schwarz inequality in the last step.
Similarly, restricting to ξ λ2pτq

λ2pτ0q
ą 1, we have

ż mintR´2,1u

0
χ
ξ
λ2pτq
λ2pτ0q

ą1

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ξ
1
2
ˇ

ˇ

¨ cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇρpξq dξ

.

ż 1

0
χ
ξ
λ2pτq
λ2pτ0q

ą1

λ3pτq

λ3pτ0q
ξ

1
2
ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇ dξ .
›

›xξy1`x0
›

›

L2
dξpξą1q

after change of variables and application of Cauchy-Schwarz.

Similarly, in the range 1 ą ξ ą R´2, we get

ˇ

ˇR´1
ż 1

mintR´2,1u
φpR, ξqypξq dξ

ˇ

ˇ .

ż 1

mintR´2,1u
ξ

1
2 |φpR, ξq||ypξq| dξ,

and this expression is bounded just as before by splitting into the cases ξ λ2pτq

λ2pτ0q
≶ 1.

It then remains to deal with the most delicate case, which is the multiple of the
resonance

φpR, 0q
ż mintR´2,1u

0
ypξq dξ

“ φpR, 0q
ż mintR´2,1u

0

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

¨
ˇ

ˇ cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇρpξq dξ dξ

For small frequencies ξ ă 1, we have

ρpξq “
1

3π
ξ´

1
2 p1` Opξ

1
2 qq. (3.5)
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Here, the contribution of the error term 1
3πξ

´ 1
2 ¨ Opξ

1
2 q is bounded by

.

ż 1

0

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ˇ

ˇ cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx0p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇ dξ

.
›

›ξ
1
2´xξy

1
2``x0

›

›

L2
dξ
,

as one sees by splitting into the cases ξ λ2pτq

λ2pτ0q
≶ 1 and using a change of variables as

well as Cauchy-Schwarz. We can thus replace the factors ρ´
1
2 pξq, ρpξq by ξ

1
4 , ξ´

1
2 ,

respectively, which reduces things to the expression

φpR, 0q
ż mintR´2,1u

0

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

cosrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
4

x0p
λ2pτq

λ2pτ0q
ξq dξ

Note that on account of φpR,0q
R ξ´

1
2 . mint1, ξ´

1
2 u for ξ ě mintR´2, 1u, we get

ˇ

ˇ

φpR, 0q
R

ż 8

mintR´2,1u

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

cosrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
4

x0p
λ2pτq

λ2pτ0q
ξq dξ

ˇ

ˇ

.
ˇ

ˇ

ż 8

mintR´2,1u

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξqξ

1
4 cosrλpτqξ

1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq dξ

ˇ

ˇ,

and the preceding expression is again easily seen to be bounded by

.
›

›ξ
1
2´xξy

1
2``x0

›

›

L2
dξ
.

It follows that it suffices to bound

φpR, 0q
ż 8

0

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

cosrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
4

x0p
λ2pτq

λ2pτ0q
ξq dξ

Now introduce the new variable

ξ̃ :“
λ2pτq

λ2pτ0q
ξ,

in terms of which the integral becomes

ż 8

0

λpτq

λpτ0q
ρ

1
2 pξ̃q

cosrλpτ0qξ̃
1
2
şτ
τ0
λ´1puq dus

ξ̃
1
4

x0pξ̃q dξ

Then write

λpτ0q

ż τ

τ0

λ´1puq du “ ντ0 ´ ντ1`ν´1

0 τ´ν
´1
, (3.6)
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which gives
ż 8

0

λpτq

λpτ0q
ρ

1
2 pξ̃q

cosrλpτ0qξ̃
1
2
şτ
τ0
λ´1puq dus

ξ̃
1
4

x0pξ̃q dξ

“
λpτq

λpτ0q

ż 8

0

ρ
1
2 pξ̃qx0pξ̃q

ξ̃
1
4

cosrντ0ξ̃
1
2 s cosrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

`
λpτq

λpτ0q

ż 8

0

ρ
1
2 pξ̃qx0pξ̃q

ξ̃
1
4

sinrντ0ξ̃
1
2 s sinrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

Under the first of the assumed vanishing conditions (3.1), we can bound the sum
of these terms in absolute value by

λpτq

λpτ0q

ˇ

ˇ

ż 8

0

ρ
1
2 pξ̃qx0pξ̃q

ξ̃
1
4

cosrντ0ξ̃
1
2 s
`

cosrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s ´ 1

˘

dξ̃
ˇ

ˇ

`
λpτq

λpτ0q

ˇ

ˇ

ż 8

0

ρ
1
2 pξ̃qx0pξ̃q

ξ̃
1
4

sinrντ0ξ̃
1
2 s sinrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

ˇ

ˇ

. τ ¨
›

›ξ
1
2´xξy

1
2``x0

›

›

L2
dξ

This establishes the desired bound for the contribution of the first term in (2.12).

Next, we turn to the contribution from x1, i. e. the second term in (2.12), which
follows exactly the same scheme:

(3). Contribution of x1. Large frequencies: ξ ą 1. In fact, arguing as in (1), we
get

.

ż 8

1

λ2pτq

λ2pτ0q
|
φpR, ξq

R
||

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
2

||x1|pξ
λ2pτq

λ2pτ0q
qξ

1
2 dξ

.
›

›xξy
1
2`x1p¨q

›

›

L2
dξ
.

We can then reduce to the contribution of x1 in the low- or intermediate frequency
regime:

(4). Contribution of x1. Frequencies: ξ ă 1. Use (3.4), where we substitute

ypξq “ ρpξq
λ

3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
2

x1p
λ2pτq

λ2pτ0q
ξq

We get

ˇ

ˇR´1
ż mintR´2,1u

0
OpR2ξqypξq dξ

ˇ

ˇ .

ż mintR´2,1u

0
ξ

1
2 |ypξq| dξ,
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and we can further bound this by

ż mintR´2,1u

0
ξ

1
2 |ypξq| dξ

.

ż mintR´2,1u

0

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ˇ

ˇ sinrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx1p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇρpξq dξ,

and further splitting into the cases ξ λ2pτq

λ2pτ0q
≶ 1 as in (2), we can bound this term by

.
›

›xξy
1
2``ξ0´x1

›

›

L2
dξ
.

Similarly, in the range 1 ą ξ ą R´2, we get

ˇ

ˇR´1
ż 1

mintR´2,1u
φpR, ξqypξq dξ

ˇ

ˇ .

ż 1

mintR´2,1u
ξ

1
2 |φpR, ξq||ypξq| dξ,

and we recover the same bound as for the immediately preceding term.
It then remains to deal with the most delicate term, which is the multiple of the
zero mode, given above by

φpR, 0q
ż mintR´2,1u

0
ypξq dξ

“ φpR, 0q
ż mintR´2,1u

0

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ˇ

ˇ

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
2

ˇ

ˇ

¨
ˇ

ˇx1p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇρpξq dξ.

Recalling (3.5), the contribution of the error term 1
3πξ

´ 1
2 ¨ Opξ

1
2 q is bounded by

ż 1

0

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

ˇ

ˇ sinrλpτqξ
1
2

ż τ

τ0

λ´1puq dus
ˇ

ˇ

ˇ

ˇx1p
λ2pτq

λ2pτ0q
ξq
ˇ

ˇ

ˇ

ˇρpξq
ˇ

ˇ dξ

.
›

›xξy
1
2`x1

›

›

L2
dξ
,

similarly to case (2) for the contribution by x0. We can thus replace the factors
ρ´

1
2 pξq, ρpξq by ξ

1
4 , ξ´

1
2 , respectively, which reduces things to the expression

φpR, 0q
ż mintR´2,1u

0

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
3
4

x1p
λ2pτq

λ2pτ0q
ξq dξ



18 JOACHIM KRIEGER

Then again using φpR,0q
R ξ´

1
2 . mint1, ξ´

1
2 u for ξ ě mintR´2, 1u, we get

ˇ

ˇ

φpR, 0q
R

ż 8

mintR´2,1u

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
3
4

x1p
λ2pτq

λ2pτ0q
ξq dξ

ˇ

ˇ

.
ˇ

ˇ

ż 8

mintR´2,1u

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
1
4

x1p
λ2pτq

λ2pτ0q
ξq dξ

ˇ

ˇ,

which in turn is bounded by .
›

›xξy
1
2`ξ0´x1

›

›

L2
dξ

. It follows that it suffices to bound

φpR, 0q
ż 8

0

λ
3
2 pτq

λ
3
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
ξq

sinrλpτqξ
1
2
şτ
τ0
λ´1puq dus

ξ
3
4

x1p
λ2pτq

λ2pτ0q
ξq dξ

Now as before using the variable

ξ̃ :“
λ2pτq

λ2pτ0q
ξ,

the integral becomes
ż 8

0

λpτq

λpτ0q
ρ

1
2 pξ̃q

sinrλpτ0qξ̃
1
2
şτ
τ0
λ´1puq dus

ξ̃
3
4

x1pξ̃q dξ,

and using (3.6) we obtain
ż 8

0

λpτq

λpτ0q
ρ

1
2 pξ̃q

sinrλpτ0qξ̃
1
2
şτ
τ0
λ´1puq dus

ξ̃
3
4

x1pξ̃q dξ

“
λpτq

λpτ0q

ż 8

0

ρ
1
2 pξ̃qx1pξ̃q

ξ̃
3
4

sinrντ0ξ̃
1
2 s cosrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

´
λpτq

λpτ0q

ż 8

0

ρ
1
2 pξ̃qx1pξ̃q

ξ̃
3
4

cosrντ0ξ̃
1
2 s sinrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

Under the second of the assumed vanishing conditions (3.1), we can bound these
terms in absolute value by

λpτq

λpτ0q

ˇ

ˇ

ż 8

0

ρ
1
2 pξ̃qx1pξ̃q

ξ̃
3
4

sinrντ0ξ̃
1
2 s
`

cosrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s ´ 1

˘

dξ̃
ˇ

ˇ

`
λpτq

λpτ0q

ˇ

ˇ

ż 8

0

ρ
1
2 pξ̃qx1pξ̃q

ξ̃
3
4

cosrντ0ξ̃
1
2 s sinrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

ˇ

ˇ

. τ ¨
›

›xξy
1
2`x1

›

›

L2
dξ

This completes the proof of the proposition.
�
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The preceding L8-type bound needs to be complemented with an energy type
bound for the parametrix (2.12) in order to be able to recover the S -norm bounds
later on. We shall rely on the following simple

Proposition 3.2. For xpτ, ξq defined as before, we have
›

›ξ
3
4`xpτ, ξq

›

›

L2
dξ
.
›

›pξ
1
2´xξy

1
2``x0, xξy

1
2`x1q

›

›

L2
dξ

Proof. For the contribution of x0 in (2.12), using the terminology of the preceding
proof, we have in case (2) under the additional restriction λ2pτq

λ2pτ0q
ξ ă 1 the bound

›

›ξ
3
4`

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq
›

›

L2
dξpξă

λ2pτ0q

λ2pτq
q

.
›

›ξ
3
4`

λ2pτq

λ2pτ0q
cosrλpτqξ

1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq
›

›

L2
dξpξă

λ2pτ0q

λ2pτq
q

.
›

›ξ
1
2 x0

›

›

L2
dξ
.

Still in case (2) and assuming λ2pτq

λ2pτ0q
ξ ą 1, we find

›

›ξ
3
4`

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq
›

›

L2
dξp1ąξą

λ2pτ0q

λ2pτq
q

.
›

›ξ
5
4`

λ3pτq

λ3pτ0q
cosrλpτqξ

1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq
›

›

L2
dξp1ąξą

λ2pτ0q

λ2pτq
q

.
›

›xξyx0
›

›

L2
dξ

Finally, in case (1), we have

›

›ξ
3
4`

λ
5
2 pτq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq
›

›

L2
dξpξą1q

.
›

›ξ
3
4`

λ3pτq

λ3pτ0q
cosrλpτqξ

1
2

ż τ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
ξq
›

›

L2
dξpξą1q

.
›

›ξx0
›

›

L2
dξpξą1q

The contribution of x1 is handled analogously. �

4. Setting up the perturbative problem

Fix ν ą 0 which shall be held fixed throughout and will be assumed sufficiently
small later on. We shall now seek to construct solutions of (1.1) of the form

upt, xq “ uνpt, xq ` εpt, xq,
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where ε is supposed to match initial data at time t “ t0 ą 0 on a co-dimension three
hyper surface. Our point of departure shall be the following equation for ε̃ “ Rε in
terms of the renormalised coordinates pτ,Rq introduced in the preceding section:

pBτ ` 9λλ´1RBRq
2ε̃´ βνpτqpBτ ` 9λλ´1RBRqε̃`Lε̃

“ λ´2pτqRNνpε̃q ` Bτp 9λλ´1qε̃;
(4.1)

where we have
RNνpε̃q “ 5pu4

ν ´ u4
0qε̃` RNpuν, ε̃q,

and as before
RNpuν, ε̃q “ Rpuν `

ε̃

R
q5 ´ Ru5

ν ´ 5u4
ν ε̃

We shall solve (4.1) on a sufficiently small interval p0, t0s, which in terms of τ be-
comes rτ0,8q, say, with τ0 " 1. As hinted at previously we shall employ Fourier
methods to control the solution, and so we shall start with explaining how to pass
from the initial data pε, Btεq|t“t0 to the Fourier data px0, x1q|τ“τ0 which will be used
to build the zeroth iterate given in terms of the linear evolution (2.12).

To understand this mapping between data, assume that ε̃pτ,Rq is of the form

ε̃pτ,Rq “ xdpτqφdpRq `
ż 8

0
xpτ, ξqφpR, ξqρpξq dξ. (4.2)

with xpτ, ξq, xdpτq given as in the statement of Lemma 2.1. Then arguing as in [28],
[27], we find

´
R
λ
εt “

`

Bτ ` βνpτqpRBR ´ 1q
˘

ε̃, βνpτq “
λτ
λ
,

which in terms of the Fourier transform can be expressed as

´

ˆ

F
`R
λ εt

˘

xφd,
R
λ εty

˙

“ Dτxpτ, ¨q ` βνpτqK xpτ, ¨q

where F denotes the Fourier transform corresponding to the continuous spectrum,
and the operatorsD,K are specified as in [27], see the paragraph after (4.9). Eval-
uating the preceding relation at initial time τ “ τ0 (or equivalently t “ t0) and
using (2.12), we find the first half of transference principle for the initial data

´F
`R
λ
εt
˘
ˇ

ˇ

t“t0
“ x1 ` βνpτ0qKccx0 ` βνpτ0qKcd x0d (4.3)

´xφd,
R
λ
εty

ˇ

ˇ

t“t0
“ x1d ` βνpτ0qKdd x0d ` βνpτ0qKdcx0 (4.4)

These relations get complemented with the immediate relations

F
`

ε̃
˘ˇ

ˇ

t“t0
“ x0, xφd, ε̃y

ˇ

ˇ

t“t0
“ x0d. (4.5)

Conversely, if the relations (4.3) - (4.5) are satisfied, where it is assumed that the
co-dimension one condition (2.13) is satisfied so that we can construct the evolu-
tion of xpτ, ξq as in Lemma 2.1, and if we define ε̃ via (4.2),then ε “ ε̃

R will have
initial data pε, εtq

ˇ

ˇ

t“t0
in accordance with the left hand side of (4.3) - (4.5). As

these latter relations can be easily solved for the functions
`

x0,1, x0d,1d
˘

, we shall



ON STABILITY OF TYPE II BLOW UP FOR THE CRITICAL NLW ON R3`1 21

from now on identify a data set
`

εpt0, ¨q, εtpt0, ¨q
˘

with the set of Fourier coeffi-
cients

`

x0,1, x0d,1d
˘

. The co-dimension one condition (2.13) then implicitly gives a
co-dimension one condition for

`

εpt0, ¨q, εtpt0, ¨q
˘

. The space S̃ is then specified in
terms of the variables

`

x0,1, x0d,1d
˘

via the norm (3.2).

Having specified the transition between the physical data and the data on the
Fourier side at the linear level, we shall now set up the equation system we attempt
to solve in terms of the Fourier variables, in exact analogy to [27]. Specifically, we
get upon letting

ε̃pτ,Rq “ xdpτqφdpRq `
ż 8

0
xpτ, ξqφpR, ξqρpξq dξ (4.6)

and now xpτ, ξq is of course no longer defined in terms of the linear evolution (2.12)

pD2
τ ` βνpτqDτ ` ξqxpτ, ξq “ Rpτ, xq ` f pτ, ξq, (4.7)

where we have

f pτ, ξq “
ˆ

xφd, λ
´2pτqRNνpεqy

F
`

λ´2pτqRNνpεq
˘

pξq

˙

and the additional linear error term is defined by

Rpτ, xqpξq “
´

´4βνpτqKDτx´β2
νpτqpK

2`rA,Ks`K`β1νβ
´2
ν Kqx

¯

pξq (4.8)

with βνpτq “
9λpτq

λpτq
,

Dτ “ Bτ ` βνpτqA, A “

ˆ

0 0
0 Ac

˙

and we have

Ac “ ´2ξBξ ´
´5

2
`
ρ1pξqξ

ρpξq

¯

Finally, we observe that the “transference operator” K is given by the following
type of expression

K “

ˆ

Kdd Kdc
Kcd Kcc

˙

(4.9)

We shall from now on work in terms of the Fourier coefficients xpτ, ξq, and use the
relation (4.6) to define the nonlinear expressions involving ε.

The proof of Theorem 1.3 shall then follow from the following more technical
and precise version

Theorem 4.1. Let
`

x0, x1

˘

“
`

ˆ

x0d
x0

˙

,

ˆ

x1d
x1

˙

˘

with
`

x0, x1
˘

P S̃ , see (3.2),

and moreover
›

›

`

x0, x1
˘›

›

S̃ ` |x0d| ă δ2

sufficiently small. Also, assume the compatibility relation (2.13) and the basic van-
ishing conditions (3.1) hold. Then picking τ0 sufficiently large (or equivalently t0
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sufficiently small), there exist corrections
`

4x0,4x1

˘

“
`

ˆ

4x0d
4x0

˙

,

ˆ

4x1d
4x1

˙

˘

with
›

›

`

4x0,4x1
˘
›

›

S̃ ` |4x0d| ` |4x1d| !
›

›

`

x0, x1
˘
›

›

S̃ ` |x0d|

and such that
`

4x0,4x1

˘

depend in Lipschitz continuous fashion on
`

x0, x1

˘

with
respect to the S̃ -norm, with Lipschitz constant! 1, such that determining the initial
data

`

ε, εt
˘ˇ

ˇ

t“t0
via (4.3) - (4.5) with

`

x0, x1

˘

replaced by
`

x0`4x0, x1`4x1

˘

, the
solution upt, xq with initial data

uνrt0s `
`

ε, εt
˘ˇ

ˇ

t“t0

exists on p0, t0s and is a type II blow up solution satisfying the conclusion of Theo-
rem 1.3.

In the rest of the paper, we shall prove Theorem 4.1.

5. Nonlinear estimates

The proof of Theorem 4.1 proceeds via a somewhat involved iterative procedure,
constructing the corrections

`

4x0,4x1

˘

via an infinite sequence of iterative steps.
The main complication shall be caused by the linear source terms Rpτ, xq given by
(6.2), as it is not a priori clear how one should gain smallness for these. Moreover,
at each iterative step we will have to adjust the initial data a bit, basically in order
to keep satisfying analogues of the basic vanishing conditions (3.1). Controlling
the nonlinear source terms f pτ, ξq shall be relatively straightforward, by contrast,
and this is what we do in the current section.

In the sequel, it will become clear that the corrections we add in the iterative
steps will roughly have the structure of the sum of two terms, whose continuous
part of the Fourier transform are either of the form (2.12) or else given by xpτ, ξq
satisfying bounds of the form (here recall the definition (3.3); thus the norm

›

› ¨
›

›

S
is stronger than the norm

›

› ¨
›

›

S̃ )
›

›xpτ, ¨q
›

›

S 1
.
` τ

τ0

˘κ“›
›

`

x0, x1
˘
›

›

S̃ ` |x0d|
‰

(5.1)

where 0 ă κ . δ0, whence can be made arbitrarily small by picking δ0 small
enough. Moreover, the discrete part xdpτq shall be bounded by

›

›

`

x0, x1
˘›

›

S̃ ` |x0d|.
Accordingly we formulate

Proposition 5.1. Assume that function ε̃pτ,Rq is given by the Fourier representa-
tion

ε̃pτ,Rq “ xdpτqφdpRq `
ż 8

0
xpτ, ξqφpR, ξqρpξq dξ,

where |xdpτq| . α ! 1 and either (i) xpτ, ξq is given by (2.12) with data
`

x0, x1
˘

satisfying the vanishing condition (3.1), and with
›

›

`

x0, x1
˘
›

›

S̃ ď α,
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or else (ii) we have the bound
›

›xpτ, ¨q
›

›

S 1
.
` τ

τ0

˘κ
α

for 0 ă κ ! 1 sufficiently small. Then, if 0 ă ν ! 1 is sufficiently small, in
situation (ii) we have

›

›λ´2pτqRNνpε̃qpτ, ¨q
›

›

pH1`
dR XL1

dRqpR.τq
. α ¨ τ´p2´q

Here we use the convention introduced after (3.3) that 1` “ 1 ` δ0 with δ0 ą 0
sufficiently small fixed throughout, while 2´ “ 2 ´ Opκq. On the other hand, in
situation (i), there is a splitting

λ´2pτqRNνpε̃qpτ, ¨q “ E1pτ, ¨q ` E2pτ, ¨q,

such that
›

›E1pτ, ¨q
›

›

pH1`
dR XL1

dRqpR.τq
. α ¨ τ´p2´q,

while the term E2 has worse decay but a more precise structure:

E2pτ,Rq “ τ´2g̃pτq ¨ xRy´3gpR, aq

where the function g̃pR, aq is in the space IS 2pR,Qq defined precisely in [28], and
the function gpτq (which implicitly also depends on τ0, x0,1 and ν) satisfies

τ´1|g̃pτq| ` |Bτg̃pτq| . α.

Proof. We shall treat the situations (i) and (ii) separately. Also, we refer to (4.1)
and sequel for the precise structure of RNνpε̃q.

Proof in case (i). We need to bound the following terms

λ´2pτq5pu4
ν ´ u4

0qε̃, λ
´2pτqRu5´ j

ν

` ε̃

R

˘ j
, 2 ď j ď 5. (5.2)

Recall from (2.1) as well as the bounds established on the specific solution of (2.2)
vanishing at τ “ `8 in a suitable sense in [28], [27] we get

uν ´ u0 “
λ

1
2

pλtq2
gpR, aq ` Op

λ
1
2

pλtq4
R log Rq, gpR, aq P IS 2pR,Qq. (5.3)

Further, referring to the proof of Proposition 3.1 and in particular cases (2) and (4)
there, we can write

ε̃pτ,Rq “ ε̃1pτ,Rq ` ε̃2pτ,Rq,

where we have

ε̃1pτ,Rq “ φpR, 0q
ż 8

0

λpτq

λpτ0q
ρ

1
2 pξ̃q

sinrλpτ0qξ̃
1
2
şτ
τ0
λ´1puq dus

ξ̃
3
4

x1pξ̃q dξ

` φpR, 0q
ż 8

0

λpτq

λpτ0q
ρ

1
2 pξ̃q

cosrλpτ0qξ̃
1
2
şτ
τ0
λ´1puq dus

ξ̃
1
4

x0pξ̃q dξ

“: φpR, 0qg̃pτq.
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Then using the observations in (2), (4) of the proof of Proposition 3.1, we see that

τ´1|g̃pτq| ` |Bτg̃pτq| .
›

›x0
›

›

S̃ 1
`
›

›x1
›

›

S 2
ď α.

Defining ε̃2pτ,Rq “ ε̃pτ,Rq ´ ε̃1pτ,Rq, we see that the proof of Proposition 3.1
gives

›

›R´1ε̃2
›

›

L8 . α.

Then write

λ´2pτq5pu4
ν ´ u4

0qε̃ “ 20λ´2pτqpuν ´ u0qu3
0ε̃1 ` F1pτ,Rq,

where the second term on the right is defined via this relation. Then using (5.3) as
well as the preceding observations we get the schematic relation

20λ´2pτqpuν ´ u0qu3
0ε̃1 “ xRy´3gpR, aqτ´2g̃pτq ` F2pτ,Rq

where the first term on the right has the properties of the term E2 of the proposition,
while the second term satisfies

›

›F2pτ,Rq
›

›

pH1`
dR XL1qpR.τq . ατ

´3.

As for the term F1pτ,Rq further above, it is schematically of the form

F1pτ,Rq “ 20λ´2pτqpuν ´ u0qu3
0ε̃2 `

ÿ

2ď jď4

λ´2pτqpuν ´ u0q
ju4´ j

0 ε̃

Then using the fractional Leibniz rule as well as Proposition 3.2, we get
›

›20λ´2pτqpuν ´ u0qu3
0ε̃2

›

›

pH1`
dR XL1qpR.τq

.
›

›λ´
3
2 pτqpuν ´ u0qu2

0

›

›

pH1`
dR XL1qpR.τq

›

›R´1ε̃2pτ, ¨q
›

›

L8

`
›

›λ´
3
2 pτqpuν ´ u0qu2

0

›

›

L8pR.τq

›

›R´1ε̃2pτ, ¨q
›

›

p 9H1`
dR qpR.τq

. α log ττ´2 . ατ´p2´q.

Further, again taking advantage of (5.3) as well as the fractional Leibniz rule, we
get

›

›

ÿ

2ď jď4

λ´2pτqpuν ´ u0q
ju4´ j

0 ε̃
›

›

pH1`
dR XL1qpR.τq

.
ÿ

2ď jď4

›

›λ´2pτqpuν ´ u0q
ju4´ j

0

›

›

pH1`
dR XL1qpR.τq

›

›ε̃pτ, ¨q
›

›

L8

`
ÿ

2ď jď4

›

›λ´2pτqpuν ´ u0q
ju4´ j

0

›

›

L8
›

›ε̃pτ, ¨q
›

›

pH1`
dR XL1qpR.τq

. αplog τq2τ´2 . ατ´p2´q.

This completes bounding the term λ´2pτq5pu4
ν ´ u4

0qε̃ in case (i).
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Next, consider the remaining terms λ´2pτqRu5´ j
ν

`

ε̃
R

˘ j
, 2 ď j ď 5. We shall

treat the case j “ 5 here, the other cases being more of the same. Thus we get by
the fractional Leibniz rule

›

›λ´2pτq
` ε̃

R

˘4
ε̃
›

›

pH1`
dR XL1

dRqpR.τq
.λ´2pτq

›

›R0´` ε̃

R

˘5›
›

L2
dRpR.τq

` λ´2pτq
›

›

` ε̃

R

˘4›
›

L8XL2

›

›x∇y1`ε̃
›

›

L2
dRpR.τq

. λ´2pτqτ6 ¨ α . τ´2α

provided 2p1` ν´1q ´ 6 ě 2, or equivalently ν ď 1
3 .

Proof in case (ii).
The estimate in the case (ii) is quite similar, in that one simply uses

›

›xdpτqφdpRq `
ż 8

0
xpτ, ξqφpR, ξqρpξq dξ

›

›

L8dR
. |xdpτq| `

›

›xpτ, ¨q
›

›

S 1
,

as well as the energy type bound

›

›xdpτqφdpRq `
ż 8

0
xpτ, ξqφpR, ξqρpξq dξ

›

›

H1`
dR
. |xdpτq| `

›

›xpτ, ¨q
›

›

S 1
.

We omit the simple details. �

6. Outline of the iterative scheme

Our point of departure shall be a data quadruple
`

x0, x1

˘

as specified in the
statement of Theorem 4.1. In particular, we introduce the zeroth iterate

xp0qpτ, ξq “

˜

xp0qd pτq

xp0qpτ, ξq

¸

,

where the right hand components are defined as the linear evolution detailed in
Lemma 2.1. On the other hand, we define the first and higher iterates xp jqpτ, ξq, j ě
1, by using the iterative step

pD2
τ ` βνpτqDτ ` ξqxp jqpτ, ξq “ Rpτ, xp j´1qq ` f p j´1qpτ, ξq, j ě 1, (6.1)

where we set

f p j´1qpτ, ξq “

ˆ

xφd, λ
´2pτqRNνpε

p j´1qqy

F
`

λ´2pτqRNνpε
p j´1qq

˘

pξq

˙

and the additional linear error term is defined by

Rpτ, xp j´1qqpξq “
´

´4βνpτqKDτxp j´1q´β2
νpτqpK

2`rA,Ks`K`β1νβ
´2
ν Kqx

p j´1q
¯

pξq

(6.2)
Moreover, we write

εp j´1qpτ,Rq “ R´1ε̃p j´1qpτ,Rq “ R´1rφdpRqx
p j´1q
d pτq`

ż 8

0
φpR, ξqxp j´1qpτ, ξqρpξq dξs.
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Thinking of the iterates xp jqpτ, ξq as obtained by adding a sequence of ’increments’
we can alternatively set xp jq “ xp0q `

ř j
k“1 4xpkqpτ, ξq, where we put

pD2
τ ` βνpτqDτ ` ξq4xp1qpτ, ξq “ Rpτ, xp0qq ` f p0qpτ, ξq, (6.3)

as well as

pD2
τ ` βνpτqDτ ` ξq4xp jqpτ, ξq “ Rpτ,4xp j´1qq ` 4 f p j´1qpτ, ξq, j ě 2, (6.4)

where we evidently define

4 f p j´1qpτ, ξq :“
ˆ

xφd, λ
´2pτqRNνpε

p j´1qqy ´ λ´2pτqRNνpε
p j´2qqy

F
`

λ´2pτqRNνpε
p j´1qq

˘

pξq ´ λ´2pτqRNνpε
p j´2qq

˘

pξq

˙

Ideally, we would pick the 4xp jq with vanishing data at initial time τ “ τ0, which,
however, does not work for both the continuous as well as the discrete part. Instead,
we shall have to add small additional incremental corrections to the data of the form

`

˜

4xp jq
0d

4 ˜̃xp jq
0

¸

,

˜

4xp jq
1d

4 ˜̃xp jq
1

¸

at the j-th iterate, which is the reason for the nonlinear nature of the set Σ0 de-
scribed in Theorem 1.3.

In the next sections, we shall carefully develop this iteration scheme, starting
with a description of the first iterate xp1qpτ, ξq, and then followed by the higher iter-
ates. It is when treating the latter that we introduce a stable functional framework
which shall be preserved under all the increments. Finally, we shall have to prove
convergence of the series

ř8
j“1 4xp jq, which will be the culmination of our efforts,

and establish the Theorem 4.1.

7. Control of the first iterate; contribution of the linear terms Rpτ, xp0qq

Note that the solution xpτ, ξq of the inhomogeneous equation

pD2
τ ` βνpτqDτ ` ξqxpτ, ξq “ f pτ, ξq

upon imposition of trivial data
`

xpτ0, ¨q,Dτxpτ0, ¨q
˘

“
`

0, 0
˘

is solved in terms of
its continuous part xpτ, ξq by the formula

xpτ, ξq “
ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

f pσ,
λ2pτq

λ2pσq
ξq dσ

This expression of course grows in some sense rapidly as τ Ñ `8, and we are
interested in a suitable vanishing condition which ensures that it in fact does not
’grow too much’. The following proposition explains how this can be achieved by
adding on a suitable ’free wave’, provided we set4 f pτ, ξq “ Rpτ, xp0qqpξq: denote

4Here, the expression Rpτ, xp0qqpξq refers to the continuous spectral part of the vectorial quantity
Rpτ, xp0qq. We shall deal with the much simpler discrete spectral part later.
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by S pτqpx0, x1q the evolution of the continuous part by the free flow

pD2
τ ` βνpτqDτ ` ξqxpτ, ξq “ 0

with data px0, x1q at time τ “ τ0. Thus this evolution is given by the formula (2.12)
in Lemma 2.1. Throughout we assume the vanishing conditions (3.1) for the data
px0, x1q.

Proposition 7.1. Defining (see (3.2))
›

›¨, ¨
›

›

S̃ :“
›

›¨, ¨
›

›

xξy´p
1
2``qξ´p

1
2´qmintτ2

0ξ,1u
1
2 L2

dξˆxξy
´p 1

2``qξ0`L2
dξ

,

there is a choice of p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q P S̃ with
›

›p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q
›

›

S̃ . τ
´p1´q
0 r

›

›px0, x1q
›

›

S̃ ` |x0d|s (7.1)

such that setting

4xp1qpτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

` S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q

we have the high frequency bound (recall (3.3) for the definition of
›

›p¨, ¨q
›

›

S ,
›

›¨
›

›

S 1,2
)

›

›χξą1
`

4xp1qpτ, ξq,Dτ4xp1qpτ, ξq
˘
›

›

S .
›

›px0, x1q
›

›

S̃ ` |x0d| (7.2)

uniformly in τ ě τ0. Moreover, there is a splitting

4xp1qpτ, ξq “ 4xp1qąτpτ, ξq ` S pτq
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘

(7.3)

such that we have

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă14xp1qąτpτ, ξq
›

›

S 1
` sup

τěτ0

›

›χξă1Dτ4xp1qąτpτ, ξq
›

›

S 2

`
›

›

`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘›

›

S .
›

›px0, x1q
›

›

S̃ ` |x0d|,

(7.4)

and such that 4x̃p1q0,1pξq in turn satisfy the vanishing conditions (3.1). Here we shall
let κ “ 2p1` ν´1qδ0 throughout, with δ0 ą 0 as in the definition of S̃ , S , see (3.2),
(3.3).

Remark 7.1. We note that for the most part, the factor mintτ2
0ξ, 1u

´ 1
2 in the defini-

tion of
›

› ¨
›

›

S̃ could have been omitted, except that it ensures both the fact that the
first vanishing condition in (3.1) is defined, as well as the fact that the correction
4 ˜̃xp1q0 will be much smaller than the data.

Proof. Step 0: To begin with, we observe the following simple

Lemma 7.2. Let px0, x1q P S̃ . Then we have
›

›

`

χξą1S pτqpx0, x1q, χξą1DτS pτqpx0, x1q
›

›

S .
›

›px0, x1q
›

›

S̃

uniformly in τ ě τ0.
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Proof. This follows from direct inspection of (2.12) and the asymptotics of ρpξq.
�

This lemma takes care of the high frequency contribution of S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q,

provided we have picked suitable 4 ˜̃xp1q0,1 satisfying the bound alleged in the propo-
sition to be proved. This we shall do later on in the proof. Next, we shall deal with
the contribution of of Rpσ, xp0qq, which in turn is defined in terms of the operator
K . Recall from (4.9), that we have

Kpxp0qq “ Kccpxp0qq `Kcdpx
p0q
d q

We shall then write

Rpτ, xp0qqpξq “ R1pτ, xp0qqpξq ` R2pτ, x
p0q
d qpξq

and consider these contributions separately. Again the exponential decay of xp0qd
(see Lemma 2.1) ensures that the second term on the right will be much simpler
to treat than the first, which will be our main concern for the proof. Thus relegat-
ing the contribution of R2pτ, x

p0q
d qpξq to the end, we now focus on the main term

R1pτ, xp0qqpξq, which in light of the considerations in [28], [27] can be schemati-
cally written as the sum of three terms

R1pτ, xp0qqpξq “ β2
νpτqKccxp0q ` βνpτqKccDτxp0q ` β2

νpτqK
2
ccxp0q, (7.5)

where we keep in mind that xp0q represents the continuous part of the zeroth iterate
xp0q, see (6.2). In fact, the commutator term rA,Ks is seen to have a structure
similar to the one of K . Moreover, the operator Kcc is given by integration against
a kernel of the form

Kccpξ, ηq “
Fpξ, ηqρpηq
ξ ´ η

,

with F having the decay and vanishing properties specified in [28]. In the sequel,
we treat the contributions of the first two terms on the right in (7.5), dealing with
the last term in the appendix.

Step 1: Proof of the high frequency estimate (7.2) for the contribution from
R1pτ, xp0qq. We establish the bound for 4xp1q, the bound forDτ4xp1q being similar.
We shall have to take into account the precise form of Kccxp0q, which in light of
the definition of the zeroth iterate xp0q is in fact given by the expression

Kccxp0qpσ, ξq

“

ż 8

0

Fpξ, ηqρpηq
ξ ´ η

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx0p
λ2pσq

λ2pτ0q
ηq dη

`

ż 8

0

Fpξ, ηqρpηq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη,

(7.6)
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Both terms on the right are handled along the same lines, and so we shall restrict
below to the contribution of the second term, treating the contribution of the first
term in the appendix. Recalling the above schematic identity (7.5), we further di-
vide this step into two tasks:

Step 1 (i): Contribution of β2
νpτqKccxp0q. Substituting the second term on the

right in (7.6) for K xp0qpσ, ξq into the formula for 4xp1qpτ, ξq, we arrive at the fol-
lowing expression:

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqApξ, τ, τ0, σq dσ,

where we set

Apξ, τ, τ0, σq :

“

ż 8

0

λ
3
2 pσq

λ
3
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

sinrλpτqη̃
1
2
şσ
τ0
λ´1puq dus

p
λ2pτq

λ2pσq
η̃q

1
2

¨ x1p
λ2pτq

λ2pτ0q
η̃q dη̃.

To dispose of the contribution when η̃ ě 1, we simply observe that when in addi-
tion ξ ą 1 we have that

Bpτ, σ, ξ, η̃q :“
λ

3
2 pτq

λ
3
2 pσq

ξ
1
4`ρ

1
2 p

λ2pτq

λ2pσq
ξqFp λ

2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pσq
η̃q

p
λ2pτq

λ2pσq
η̃q

1
2

satisfies
ˇ

ˇBpτ, σ, ξ, η̃q
ˇ

ˇ .
` λpτq

λpσq

˘´ 1
2 ; indeed, this follows from the bounds estab-

lished in [28]. Furthermore, we have (for η̃ ě 1)
ˇ

ˇρ
1
2 p
λ2pτq

λ2pτ0q
η̃qx1p

λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ .
` λpτq

λpτ0q

˘´ 1
2
ˇ

ˇp¨q
1
2 x1

ˇ

ˇp
λ2pτq

λ2pτ0q
η̃q

Furthermore, the operator given by integration with respect to η̃ and kernel Bpτ,σ,ξ,η̃q
ξ´η̃

is seen to be bounded as an operator on L2
dξ by arguments as in [28] with norm

bound
` λpτq

λpσq

˘´ 1
2`. We then easily infer the desired bound

›

›χξą1xξy
1`

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqAη̃ě1pξ, τ, τ0, σq dσ

›

›

L2
dξ

.
›

›x1
›

›

S 2

ż τ

τ0

λ2´pσq

λp2´qpτq
β2
νpσq dσ . τ´1

0

›

›px0, x1q
›

›

S .

where the subscript in Aη̃ě1 indicates the restriction of the integrated variable we
additionally impose in the definition of Apξ, τ, τ0, σq.
Continuing with the contribution of the second term in (7.6), the case η̃ ă 1 is
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much more delicate, and we have to exploit the fine structure of Apξ, τ, τ0, σq, as
well as the vanishing condition of x1, to treat it. Write ([28])

Fp
λ2pτq

λ2pσq
ξ,
λ2pτq

λ2pσq
η̃q “ Fp

λ2pτq

λ2pσq
ξ, 0q ` Opr

λ2pτq

λ2pσq
ξs´N λ

2pτq

λ2pσq
η̃q

Since Opr λ
2pτq

λ2pσq
ξs´N λ2pτq

λ2pσq
η̃q “ Opr λ

2pτq

λ2pσq
ξs´pN´1qη̃q in light of ξ ą 1, we get

ˇ

ˇOpr
λ2pτq

λ2pσq
ξs´N λ

2pτq

λ2pσq
η̃qρ

1
2 p
λ2pτq

λ2pσq
η̃qρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

sinrλpτqη̃
1
2
şσ
τ0
λ´1puq dus

p
λ2pτq

λ2pσq
η̃q

1
2

ˇ

ˇ

.
“

χ λ2pτq
λ2pτ0q

η̃ě1
η̃

1
4 r
λ2pτq

λ2pτ0q
η̃s

1
4 ` χ λ2pτq

λ2pτ0q
η̃ă1

‰

r
λ2pτq

λ2pσq
ξs´pN´1q

where we keep the assumption σ ď τ, η̃ ă 1, ξ ą 1 in mind. It follows that
substituting Opr λ

2pτq

λ2pσq
ξs´N λ2pτq

λ2pσq
η̃q instead of Fp λ

2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃q in Aη̃ă1pξ, τ, τ0, σq

and calling the corresponding term Ãη̃ă1pξ, τ, τ0, σq, we get

›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqÃη̃ă1pξ, τ, τ0, σq dσ

›

›

xξy´1´L2
dξpξą1q

. τ´1
0

›

›x1
›

›

xξy´
1
2´L2

dξ

,

Similarly, using

ρ
1
2 p
λ2pτq

λ2pσq
η̃q “ χ λ2pτq

λ2pσq
η̃ą1

ρ
1
2 p
λ2pτq

λ2pσq
η̃q`cχ λ2pτq

λ2pσq
η̃ă1
r
λ2pτq

λ2pσq
η̃s´

1
4 p1`Opr

λ2pτq

λ2pσq
η̃qs

1
2 q

for a suitable constant c ą 0, and using that

›

›η̃´
1
4 ρ

1
2 p
λ2pτq

λ2pτ0q
η̃qx1p

λ2pτq

λ2pτ0q
η̃q
›

›

L1
dη̃
.
`λpτ0q

λpτq

˘
3
2
›

›x1
›

›

xξy´
1
2´ξ0`L2

dξ

,

we see that we may replace the factor ρ
1
2 p

λ2pτq

λ2pσq
η̃q by χ λ2pτq

λ2pσq
η̃ă1
r
λ2pτq

λ2pσq
η̃s´

1
4 . Further,

one may replace 1
ξ´η̃ by 1

ξ , contribution bounded by . τ´1
0

›

›x1
›

›

xξy´
1
2´L2

dξ

.

It now follows that we may replace Aη̃ă1pξ, τ, τ0, σq by a term of the form

λ
3
2 pσq

λ
3
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ, 0q

ξ

ż 8

0
χ λ2pτq
λ2pσq

η̃ă1

sinrλpτqη̃
1
2
şσ
τ0
λ´1puq dus

p
λ2pτq

λ2pσq
η̃q

3
4

¨ρ
1
2 p
λ2pτq

λ2pτ0q
η̃qx1p

λ2pτq

λ2pτ0q
η̃q dη̃
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Here one may easily get rid of the cutoff χ λ2pτq
λ2pσq

η̃ă1
, as the contribution of χ λ2pτq

λ2pσq
η̃ě1

is treated like before on account of

ˇ

ˇρ
1
2 p
λ2pτq

λ2pτ0q
η̃qx1p

λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ

.
ˇ

ˇχ λ2pτq
λ2pτ0q

η̃ą1

`λpτ0q

λpτq

˘
1
2 η̃´

1
4 ρp

λ2pτq

λ2pτ0q
η̃qx1p

λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ`
ˇ

ˇη̃´
1
4
λ

1
2 pτ0q

λ
1
2 pτq

x1p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ

For the remaining expression, if one enacts a change of variables, it is transformed
into

Fp λ
2pτq

λ2pσq
ξ, 0q

λ
3
2 pτq

λ
3
2 pσq

ξ

λpτq

λpτ0q

ż 8

0

sinrλpτ0qη̃
1
2
şσ
τ0
λ´1puq dus

η̃
3
4

¨ ρ
1
2 pη̃qx1pη̃q dη̃

But this is precisely the expression which came up at the end of the proof of Propo-
sition 3.1 and so, in light of the vanishing condition on x1, we can bound it by

ˇ

ˇ

Fp λ
2pτq

λ2pσq
ξ, 0q

λ
3
2 pτq

λ
3
2 pσq

ξ

λpτq

λpτ0q

ż 8

0

sinrλpτ0qη̃
1
2
şσ
τ0
λ´1puq dus

η̃
3
4

¨ ρ
1
2 pη̃qx1pη̃q dη̃

ˇ

ˇ

.
Fp λ

2pτq

λ2pσq
ξ, 0q

λ
1
2 pτq

λ
1
2 pσq

ξ

σ
›

›xξy
1
2`ξ0´x1

›

›

L2
dξ
.

Finally, substituting this for Aη̃ă1pξ, τ, τ0, σq we arrive at the bound

›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqAη̃ă1pξ, τ, τ0, σq dσ

›

›

xξy´1´L2
dξpξą1q

.
›

›x1
›

›

xξy´
1
2´ξ0`L2

dξ

,

which is also acceptable.

Remark 7.2. We note that in the last step we could have performed an integration
by parts with respect to σ, and gained an extra power τ´p1´q0 .

Step 1 (ii): Contribution of βνpτqKccDτxp0q. This follows the exact same pattern
as before, except that now we have only one power of decay σ´1 but in exchange
we replace Apξ, τ, τ0, σq (corresponding to the contribution by the second term in
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(7.6)) by

Apξ, τ, τ0, σq :

“

ż 8

0

λ
3
2 pσq

λ
3
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dus

¨ x1p
λ2pτq

λ2pτ0q
η̃q dη̃,

and here we no longer lose a factor σ as above (which necessitated the decay factor
β2
νpσq to close things). Note that one doesn’t lose logarithmically here for the time

integral (in σ), as one gains a factor of the form p λpτq
λpσq

q´α for α ą 0.

Step 2: Proof of the high frequency estimate (7.2) for the contribution from
R2pτ, x

p0q
d q. Here we exploit the fact that the operator Kcd is given by a kernel

Kcdpξq which is smooth and rapidly decaying, see [28]. In particular, we infer

›

›χξą1xξy
1` λ

3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Kcdp
λ2pτq

λ2pσq
ξq
›

›

L2
dξ
.N

`λ2pσq

λ2pτq

˘N
,

which entails the bound

›

›χξą1xξy
1`

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

R2pσ, x
p0q
d q dσ

›

›

L2
dξ
.
ˇ

ˇx0d
ˇ

ˇ,

in light of the estimate satisfied by xp0qd via Lemma 2.1.

Step 3: Towards the low frequency bound; choosing the corrections p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q.
We next restrict to ξ ă 1. Here the factor

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

becomes potentially dangerous, as we cannot absorb the ξ´
1
2 into the term

sinrλpτqξ
1
2

ż σ

τ
λ´1puq dus

without losing a very large factor λpτq

λpσq
σ. On the other hand, such a factor is es-

sentially harmless when σ ě τ, and so reformulate the expression accordingly.



ON STABILITY OF TYPE II BLOW UP FOR THE CRITICAL NLW ON R3`1 33

Specifically, we now write

4xp1qpτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

` S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q

“ ´

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

`

ż 8

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

` S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 qpξq “: A` B`C.

Observe that now both B, C solve the homogeneous equation (recall that here we
are analysing the continuous part of the correction 4xp1q)

pD2
τx` βνpτqDτx` ξxq “ 0.

Also, we shall re-denote

A “: 4xp1qąτpτ, ξq

Moreover, as both B,C are solutions of the free problem, we can write

pB`Cqpτ, ξq “ S pτq
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘

where we have

4x̃p1q0 pξq “

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xp1q0

“: r4x̃p1q0 pξq ` 4
˜̃xp1q0 pξq.

as well as

4x̃p1q1 pξq “

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dusRpσ, xp0qqp
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xp1q1 pξq

“: r4x̃p1q1 pξq ` 4
˜̃xp1q1 pξq.

This is now the point where we can choose 4 ˜̃xp1q0,1pξq. In fact, we claim



34 JOACHIM KRIEGER

Lemma 7.3. There exist p4 ˜̃xp1q0 pξq,4
˜̃xp1q1 pξqq satisfying (7.1) and such that we have

ż 8

0

pρ
1
24x̃p1q0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ “ 0,

ż 8

0

pρ
1
24x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ “ 0. (7.7)

A key point here is to satisfy the bound (7.1), since this is the first correction to
the data, which has to be of smaller size than the original chosen data to obtain an
initial data set Σ0 which is identifiable as a co-dimension one Lipschitz surface in
S . The fact that we can achieve such a gain comes from the fact that the terms in
R enjoy a special vanishing property on account of their symbols.

Proof. (lemma) The two bounds being quite similar, we prove the second one. We
proceed in two steps:

(1): Establishing the bound

ˇ

ˇ

ż 8

0

pρ
1
2 r4x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0

›

›px0, x1q
›

›

S̃ ` τ
´p1´q
0 |x0d|.

We immediately reduce this to the contribution of the continuous part xp0qpτ, ξq
to Rpσ, xp0qq, as it is straightforward to check that substituting R2pσ, x

p0q
d q for

Rpσ, xp0qq in the formula for r4x̃p1q1 results in the bound

ˇ

ˇ

ż 8

0

pρ
1
2 r4x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ
´p1´q
0 |x0d|.

We shall henceforth replace Rpσ, xp0qq by R1pσ, xp0qq and use the schematic rela-
tion (7.5) to further divide into two key contributions:

(1i): Contribution of β2
νpσqKccxp0qpσ, ξq, low frequency ξ ă 1. Throughout

we only consider the contribution of the second term in (7.6) to xp0q, leaving the
contribution of the first term to the appendix. Substituting this formula into the
expression for r4x̃p1q1 and then into the second expression in (7.7), we obtain the
following kind of integral expression

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

β2
νpσq

ż 8

0
χξă1

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq sinrντ0ξ

1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

¨ Bpτ0, σ, ξq dξdσ,

where we have set

Bpτ0, σ, ξq :

“

ż 8

0

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη
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Observe that under our frequency restriction ξ ă 1 we get

ˇ

ˇ

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ˇ

ˇ . p
λ2pτ0q

λ2pσq
q´

1
4 .

Note that we can afford to absorb one singular factor ξ´
1
2 into sinrντ0ξ

1
2 s at the

expense of a factor ντ0 which we can afford on account of the weight β2
νpσq and

σ ě τ0. Then we further divide into the following cases:

(1i.a): Imbalanced frequencies λ2pτ0q

λ2pσq
ξ ! η. Here we absorb one factor ξ´

1
2

at the expense of ντ0 and by switching the orders of integration we perform the
ξ-integral first, which leads to a factor

ντ0
λpτ0q

λpσq
β2
νpσqξ

1
2 | λ2pτ0q

λ2pσq
ξ“cη

„ τ0β
2
νpσqη

1
2

Including the extra factor η
1
2 here into the B-integral, we then reduce at fixed time

σ ě τ0 to bounding

τ0β
2
νpσq

ż 8

0
sup

λ2pτ0q

λ2pσq
ξ!η

ˇ

ˇη
1
2

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

ˇ

ˇ

λ
3
2 pσq

λ
3
2 pτ0q

ˇ

ˇ

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨ η´
1
2 sinrλpσqη

1
2

ż σ

τ0

λ´1puq dusx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ dη

. τ0β
2
νpσq

ż 8

0

λpσq

λpτ0q

`

η´
1
2χ λ2pσq

λ2pτ0q
ηă1

ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

` η´
1
2χ λ2pσq

λ2pτ0q
ηě1
r
λ2pσq

λ2pτ0q
ηs

1
2
ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

˘

dη

Using the Cauchy-Schwarz inequality, this last expression is then bounded by

τ0β
2
νpσq

ż 8

0

λpσq

λpτ0q

`

η´
1
2χ λ2pσq

λ2pτ0q
ηă1

ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

` η´
1
2χ λ2pσq

λ2pτ0q
ηě1
r
λ2pσq

λ2pτ0q
ηs

1
2
ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

˘

dη

. τ0β
2
νpσq

` λ2pσq

λ2pτ0q

˘0`›
›x1

›

›

S 2

Inserting this bound into the preceding, we finally arrive at the σ-integral

›

›x1
›

›

S 2

ż 8

τ0

τ0β
2
νpσq

` λ2pσq

λ2pτ0q

˘0` dσ .
›

›x1
›

›

S 2
.
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(1i.b): Balanced frequencies λ2pτ0q

λ2pσq
ξ „ η. Using the assumption ξ ă 1 underly-

ing case (1i) we get here

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

.
λ

1
2 pτ0q

λ
1
2 pσq

and further due to [28]

ˇ

ˇFp
λ2pτ0q

λ2pσq
ξ, ηqρpηqη´

1
2
ˇ

ˇ . 1

and the integral operator with kernel

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηqη´

1
2

λ2pτ0q

λ2pσq
ξ ´ η

is L2-bounded up to a factor λpσq

λpτ0q
. Furthermore, we bound

ˇ

ˇχξă1

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq sinrντ0ξ

1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

ˇ

ˇ . ντ0
λ

1
2 pσq

λ
1
2 pτ0q

ξ´
1
2

(7.8)
This is almost L2

dξ-integrable over ξ ă 1, except for including an extra factor

ξ0` „
` λ2pσq

λ2pτ0q
η
˘0` which we can absorb into x1p

λ2pσq

λ2pτ0q
ηq due to the definition of

S 2. Using the Cauchy-Schwarz inequality to handle the integral over ξ, we obtain
the same bound in situation (1i.b) as in situation (1i.a).

(1i.c): Imbalanced frequencies λ2pτ0q

λ2pσq
ξ " η. Here we can no longer absorb the

singular factor η´
1
2 into Fpλ

2pτ0q

λ2pσq
ξ, ηq, and so we have again to take advantage of the

cancellation condition satisfied by x1 in order to not lose a factor λpσq

λpτ0q
. Specifically,

we write

Fpλ
2pτ0q

λ2pσq
ξ, ηqρ

1
2 pηq

λ2pτ0q

λ2pσq
ξ ´ η

“

Fpλ
2pτ0q

λ2pσq
ξ, 0qρ

1
2 pηq

λ2pτ0q

λ2pσq
ξ

` O
` η
λ2pτ0q

λ2pσq
ξ

˘

ρ
1
2 pηq

“ c
Fpλ

2pτ0q

λ2pσq
ξ, 0qη´

1
4

λ2pτ0q

λ2pσq
ξ

` O
` η
λ2pτ0q

λ2pσq
ξ

˘

ρ
1
2 pηq ` Opη

1
4 q.

(7.9)

for a suitable constant c.
Substituting the first expression on the right into Bpτ0, σ, ξq leads to the expression

c
Fpλ

2pτ0q

λ2pσq
ξ, 0q

λ2pτ0q

λ2pσq
ξ

ż c λ
2pτ0q

λ2pσq
ξ

0

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
3
4

x1p
λ2pσq

λ2pτ0q
ηq dη
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and we split the integral into

ż c λ
2pτ0q

λ2pσq
ξ

0

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
3
4

x1p
λ2pσq

λ2pτ0q
ηq dη

“

ż 8

0

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
3
4

x1p
λ2pσq

λ2pτ0q
ηq dη (7.10)

´

ż 8

c λ
2pτ0q

λ2pσq
ξ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
3
4

x1p
λ2pσq

λ2pτ0q
ηq dη (7.11)

Then proceeding as at the end of the proof of Proposition 3.1, we have

ˇ

ˇ

ż 8

0

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
3
4

x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

. σ
›

›x1
›

›

S 2
.

For the second integral expression above, we obtain using the Cauchy-Schwarz
inequality

ˇ

ˇ

ż 8

c λ
2pτ0q

λ2pσq
ξ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
3
4

x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

. p
λpσq

λpτ0q
q1`ξ´p

1
2´q ¨

›

›x1
›

›

S 2
.

It follows that substituting either one of

c
Fpλ

2pτ0q

λ2pσq
ξ, 0q

λ2pτ0q

λ2pσq
ξ

¨ (7.10), c
Fpλ

2pτ0q

λ2pσq
ξ, 0q

λ2pτ0q

λ2pσq
ξ

¨ (7.11)

for Bpτ0, σ, ξq and using (7.8), we deduce the bound

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

β2
νpσq

ż 8

0
χξă1

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq sinrντ0ξ

1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

¨ Bpτ0, σ, ξq dξdσ

.
›

›x1
›

›

S 2

ż 8

τ0

rlog τ0
λpτ0q

λpσq
σ´1 ` ντ0σ

´2p
λpσq

λpτ0q
q0`s dσ . τ0`

0

›

›x1
›

›

S 2
.

Further, substituting the error terms

O
` η
λ2pτ0q

λ2pσq
ξ

˘

ρ
1
2 pηq ` Opη

1
4 q
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in (7.9) for the factor
Fp λ

2pτ0q

λ2pσq
ξ,ηqρ

1
2 pηq

λ2pτ0q

λ2pσq
ξ´η

inside Bpτ0, σ, ξq leads to terms which are

handled just like case (1i.a), and we omit the details. This concludes case (1i).

(1ii): Contribution of β2
νpσqKccxp0qpσ, ξq, high frequency ξ ě 1. Proceeding in

analogy to case (1i) and only considering the contribution of x1, i. e. the second
term in (7.6), we need to estimate the expression

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

β2
νpσq

ż 8

0
χξě1

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq sinrντ0ξ

1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

¨ Bpτ0, σ, ξq dξdσ,

where again

Bpτ0, σ, ξq :

“

ż 8

0

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

Here we split into the following cases:

(1ii.a): intermediate output frequencies λ2pτ0q

λ2pσq
ξ ă 1. In this situation, we have

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

„
1

p
λ2pτ0q

λ2pσq
ξqq

1
4 ξ

1
4

,

and so we reduce to estimating

ż 8

τ0

λpτ0q

λpσq
β2
νpσq

ż 8

0
χ λ2pσq
λ2pτ0q

ąξě1

sinrντ0ξ
1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ

¨ Bpτ0, σ, ξq dξdσ

To control the inner integral, we divide into cases (α) - (γ) concerning the integra-
tion variable η in the formula for Bpτ0, σ, ξq:

(1ii.a.α): λ2pτ0q

λ2pσq
ξ ! η. We pass to the new variable η “ λ2pτ0q

λ2pσq
η̃, so here we have

ξ ! η̃. Then we get

B λ2pτ0q

λ2pσq
ξ!η
pτ0, σ, ξq :

“

ż 8

cξ

Fpλ
2pτ0q

λ2pσq
ξ,

λ2pτ0q

λ2pσq
η̃qρ

1
2 p

λ2pτ0q

λ2pσq
η̃q

rξ ´ η̃sr
λ2pτ0q

λ2pσq
η̃s

1
2

λ
3
2 pσq

λ
3
2 pτ0q

sinrλpτ0qη̃
1
2

ż σ

τ0

λ´1puq dusρ
1
2 pη̃qx1pη̃q dη̃
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Then we get the bound
ˇ

ˇB λ2pτ0q

λ2pσq
ξ!η
pτ0, σ, ξq

ˇ

ˇ .

ż 8

cξ
χ λ2pτ0q

λ2pσq
η̃ă1

λpσq

λpτ0q
η̃´

3
4 |ρ

1
2 pη̃qx1pη̃q| dη̃

`

ż 8

cξ
χ λ2pτ0q

λ2pσq
η̃ě1

λ
3
2 pσq

λ
3
2 pτ0q

η̃´1|ρ
1
2 pη̃qx1pη̃q| dη̃

Note that for the first expression on the right we used that for 1 ď ξ ! η̃, σ ě τ0,

χ λ2pτ0q

λ2pσq
η̃ă1

ˇ

ˇ

Fpλ
2pτ0q

λ2pσq
ξ,

λ2pτ0q

λ2pσq
η̃qρ

1
2 p

λ2pτ0q

λ2pσq
η̃q

rξ ´ η̃sr
λ2pτ0q

λ2pσq
η̃s

1
2

ˇ

ˇ .
λ

1
2 pτ0q

λ
1
2 pσq

η̃´
3
4 .

It then follows that we have the bound
ˇ

ˇB λ2pτ0q

λ2pσq
ξ!η
pτ0, σ, ξq

ˇ

ˇ .
λpσq

λpτ0q
ξ´

1
2
›

›x1
›

›

S 2
.

Inserting this back into the full expression furnishes the bound

ˇ

ˇ

ż 8

τ0

λpτ0q

λpσq
β2
νpσq

ż 8

0
χ λ2pσq
λ2pτ0q

ąξě1

sinrντ0ξ
1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ

¨ B λ2pτ0q

λ2pσq
ξ!η
pτ0, σ, ξq dξdσ

ˇ

ˇ

. τ´1
0

›

›x1
›

›

S 2
.

(1ii.a.β): λ2pτ0q

λ2pσq
ξ „ η. Here we bound (note that here we have η . 1)

ˇ

ˇFp
λ2pτ0q

λ2pσq
ξ, ηqρ

1
2 pηqη´

1
2
ˇ

ˇ . η
1
4 ,

as well as
ˇ

ˇη
1
4 ρ

1
2 p
λ2pσq

λ2pτ0q
ηqx1p

λ2pσq

λ2pτ0q
ηq
ˇ

ˇ .
λ

1
2 pτ0q

λ
1
2 pσq

r
λ2pσq

λ2pτ0q
ηs

1
2
ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ.

It follows that
λpτ0q

λpσq

›

›B λ2pτ0q

λ2pσq
ξ„η
pτ0, σ, ξq

›

›

L2
ξ
.
›

›x1
›

›

S 2
,

and then using Cauchy-Schwarz we infer that

ˇ

ˇ

ż 8

τ0

λpτ0q

λpσq
β2
νpσq

ż 8

0
χ λ2pσq
λ2pτ0q

ąξě1

sinrντ0ξ
1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ

¨ B λ2pτ0q

λ2pσq
ξ„η
pτ0, σ, ξq dξdσ

ˇ

ˇ

. τ´1
0

›

›x1
›

›

S 2
.
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(1ii.a.γ): λ2pτ0q

λ2pσq
ξ " η. Here η ă 1 is again in the singular range, and one con-

cludes this case just as in (1i.c) earlier.

(1ii.b): large output frequencies λ2pτ0q

λ2pσq
ξ ě 1. In this situation, we have

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

„
λ

1
2 pτ0q

λ
1
2 pσq

and so we reduce to estimating
ż 8

τ0

λ2pτ0q

λ2pσq
β2
νpσq

ż 8

0
χ λ2pσq
λ2pτ0q

ďξ

sinrντ0ξ
1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ Bpτ0, σ, ξq dξdσ

Again one needs to split into the sub-cases (1ii.b.α) - (1ii.b.γ) in analogy to the
preceding case (1ii.a), and since these are completely analogous, we only treat the
case (1ii.b.α) here:

(1ii.b.α): 1 ď λ2pτ0q

λ2pσq
ξ ! η. Note that in this situation we automatically have

λ2pτ0q

λ2pσq
η̃ ě 1 (enacting the same change of variables as in the preceding case), and

then
ˇ

ˇB λ2pτ0q

λ2pσq
ξ!η
pτ0, σ, ξq

ˇ

ˇ .
λ

3
2 pσq

λ
3
2 pτ0q

ξ´
3
4
›

›x1
›

›

S 2
,

which implies that
ż 8

τ0

λ2pτ0q

λ2pσq
β2
νpσq

ż 8

0
χ λ2pσq
λ2pτ0q

ďξ

sinrντ0ξ
1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ Bpτ0, σ, ξq dξdσ

. τ´1
0

›

›x1
›

›

S 2
.

We have at this point finished controlling the cases (1i), (1ii), as far as the con-
tribution from x1 was concerned, i. e. the contribution to β2

νpσqKccxp0qpσ, ξq by
the second term in (7.6).

(1iii): Contribution of βνpσqKccDσxp0qpσ, ξq to

ˇ

ˇ

ż 8

0

pρ
1
2 r4x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ.

Here we trade in better regularity of the expression defining KccDσxp0q in terms
of η for the weaker weight function βνpσq which only decays like σ´1, thus barely
non-integrable as σ Ñ 8. However, it is straightforward to check that in the
analogues of situation (1ii), i. e. the high frequency case ξ ě 1, one always obtains
bounds involving rλpτ0q

λpσq
sκ0σ´1 for some κ0 ą 0, and these are integrable over σ.
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In fact, this is also the case in the analogue of case (1i.c), i. e. the case ξ ă 1,
λ2pτ0q

λ2pσq
ξ " η, where this time we obtain (up to better error terms) the expression

c
Fpλ

2pτ0q

λ2pσq
ξ, 0q

λ2pτ0q

λ2pσq
ξ

ż c λ
2pτ0q

λ2pσq
ξ

0

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

cosrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
4

x1p
λ2pσq

λ2pτ0q
ηq dη

Note that here we have

ˇ

ˇρ
1
2 p
λ2pσq

λ2pτ0q
ηqη´

1
4
ˇ

ˇ .
λ

1
2 pτ0q

λ
1
2 pσq

η´
1
2 ,

and therefore (recalling ξ ă 1 in case (1i))

ˇ

ˇ

ż c λ
2pτ0q

λ2pσq
ξ

0

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

cosrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
4

x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

. ξ0`
›

›x1
›

›

S 2
,

and the corresponding contribution to
ˇ

ˇ

ş8

0
pρ

1
2 r4x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ is seen to be

bounded by

.
›

›x1
›

›

S 2
¨

ż 8

τ0

λpτ0q

λpσq
βνpσq dσ .

›

›x1
›

›

S 2
.

It then remains to treat the analogues of situations (1i.a), (1i.b) from before, where
we do have to argue slightly differently, and in fact use an integration by parts trick
to reduce to expressions essentially as before. Thus re-defining for our purposes

Bpτ0, σ, ξq “

ż 8

0

Fpλ
2pτ0q

λ2pσq
ξ,

λ2pτ0q

λ2pσq
η̃qρp

λ2pτ0q

λ2pσq
η̃q

ξ ´ η̃
pDσxp0qqpσ,

λ2pτ0q

λ2pσq
η̃q dη̃

“

ż 8

0

Fpλ
2pτ0q

λ2pσq
ξ,

λ2pτ0q

λ2pσq
η̃qρp

λ2pτ0q

λ2pσq
η̃q

ξ ´ η̃
Bσ
`

xp0qpσ,
λ2pτ0q

λ2pσq
η̃q
˘

dη̃,

` error

which corresponds of course to
`

KccDσxp0q
˘

p
λ2pτ0q

λ2pσq
ξq, and where the error term

accounts for the discrepancy betweenDσ and Bσ ´ 2βνpσqξBξ and can be handled
like the previous terms, we can then bound the expression

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

βνpσq

ż 8

0
χξă1

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq sinrντ0ξ

1
2 s cosrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

¨ B λ2pτ0q

λ2pσq
ξ.η
pτ0, σ, ξq dξdσ,
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via integration by parts in σ. This in fact either produces an additional factor σ´1

or else (when Bσ hits cosrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus) an additional factor

λpτ0q

λpσq
ξ

1
2 .

In this latter case, we thus gain an additional term ξ
1
2 , whence we needn’t absorb

any factor into sinrντ0ξ
1
2 s as before, and the additional factor λpτ0q

λpσq
when com-

bined with the weight βνpσq is now integrable. This completes (1) of the proof of
Lemma 7.3.

(2) Choice of 4 ˜̃xp1q1 . Here we shall pick 4 ˜̃xp1q1 “ αF pχRďCτ0φpR, 0qq for suitable
α P R. We easily get

ż 8

0

pρ
1
24 ˜̃xp1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ „ ατ0,

while we also have
›

›p0,4 ˜̃xp1q1 q
›

›

S̃ . ατ
0`
0 .

In light of (1), there is a choice of α with |α| . τ´1`
0 , and such that the conclusion

of the lemma is satisfied. �

Step 4: Establishing the bound (7.4) for 4xp1qąτ. Here we prove the bound

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă14xp1qąτpτ, ξq
›

›

S 1
` sup

τěτ0

›

›χξă1Dτ4xp1qąτpτ, ξq
›

›

S 2
.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.

(7.12)
with 4xp1qąτ defined as in the preceding step. Thus

4xp1qąτ “ ´
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

Writing as beforeRpσ, xp0qq “ R1pσ, xp0qqpξq`R2pσ, x
p0q
d qpξq, it is then straight-

forward to check, exploiting the exponential decay of xp0qd (Lemma 2.1) as well as

the fact that R2pσ, x
p0q
d qpξq is smooth and rapidly decaying with respect to ξ ([28]),

that the contribution of R2pσ, x
p0q
d q to (7.12) is in effect bounded by . τ´p1´qx0d,

which is better than what we need. It thus suffices to consider the contribution of
R1pσ, xp0qqpξq, which we again split into two main contributions:

Step 4(i): Contribution of β2
νpσqKccxp0qpσ, ξq to 4xp1qąτpτ, ξq. In light of the defi-

nition of the norm } ¨ }S (see (3.3)), we have to estimate the following expression

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqKccxp0qpσ,

λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q
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We follow roughly the steps in the proof of the preceding lemma, dividing into
the cases (4(i).a) - (4(i).c). We use

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

„
λpτq

λpσq

for ξ ă 1, σ ě τ. Then expanding the term Kccxp0qpσ, ξq as before and only re-
taining the contribution of x1 to xp0q, i. e. the second term on the right of (2.12),
we quickly consider the different cases, referring to the algebra in the proof of the
preceding lemma:

(4(i).a): ξ ¨ λ
2pτq

λ2pσq
! η. Localise ξ ¨ λ

2pτq

λ2pσq
„ 2J , η „ 2K , so that 2J ! 2K . Then

we bound

AJ,K :“
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

β2
νpσqχ λ2pτq

λ2pσq
ξ„2J

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ Bη„2K pτ, τ0, σ, ξq dσ,

where we have

Bη„2K pτ, τ0, σ, ξq :

“

ż 8

0
χη„2K

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

Estimate (for σ ě τq, ξ ă 1)

ˇ

ˇ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

ˇ

ˇ . τ
λpτq

λpσq
.

Then fixing τ, σ for now, we get

›

›ξ´0` λ
3
2 pτq

λ
3
2 pσq

β2
νpσqχ λ2pτq

λ2pσq
ξ„2J

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ Bη„2K pτ, τ0, σ, ξq
›

›

L2
dξpξă1q

. τβ2
νpσq2

p 1
2´qpJ´Kq

ˇ

ˇ

ż 8

0
χη„2Kη´

1
2
λ

3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η0` x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

. τβ2
νpσq2

p 1
2´qpJ´Kqp

λpσq

λpτ0q
q2δ0

›

›χ
η„

λ2pσq
λ2pτ0q

2K
x1
›

›

S 2
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It follows using a simple orthogonality argument that

›

›

ÿ

J!K

ξ´0` λ
3
2 pτq

λ
3
2 pσq

β2
νpσqχ λ2pτq

λ2pσq
ξ„2J

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ Bη„2K pτ, τ0, σ, ξq
›

›

L2
dξpξă1q

. τβ2
νpσqp

λpσq

λpτ0q
q2δ0

›

›x1
›

›

S 2
,

We conclude that
›

›ξ´0`
ÿ

J!K

AJ,K
›

›

L2
dξpξă1q .

`

ż 8

τ
τβ2

νpσqp
λpσq

λpτ0q
q2δ0 dσ

˘›

›x1
›

›

S 2

. p
λpτq

λpτ0q
q2δ0

›

›x1
›

›

S 2
.

(4(i).b): diagonal case ξ ¨ λ
2pτq

λ2pσq
„ η. Here we bound

ˇ

ˇFp
λ2pτq

λ2pσq
ξ, ηqρpηqη´

1
2
ˇ

ˇ . 1,

and furthermore we have

ˇ

ˇ

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

x1p
λ2pσq

λ2pτ0q
ηq|

. χ λ2pσq
λ2pτ0q

ηă1

λ
1
2 pτ0q

λ
1
2 pσq

ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ` χ λ2pσq
λ2pτ0q

ηě1

λ
1
2 pσq

λ
1
2 pτ0q

η
1
2
ˇ

ˇx1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

and then we get

›

›ξ´0`
ż 8

0

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

›

›

L2
dξ

. r
λpτq

λpσq
s´1p

λpσq

λpτ0q
q2δ0

›

›x1
›

›

S 2
.

This in turn furnishes the bound

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

β2
νpσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ B
η„

λ2pτq
λ2pσq

ξ
pτ, τ0, σ, ξq dσ

›

›

L2
dξpξă1q

. p
λpτq

λpτ0q
q2δ0

›

›x1
›

›

S 2
.

(4(i).c): off-diagonal case ξ ¨ λ
2pτq

λ2pσq
" η. Here it is again the cancellation property

of x1 which plays in prominently. As this is the direct analogue of case (1i.c) in
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the proof of the preceding lemma, we shall be correspondingly brief: first, we may
replace the kernel function

Fp λ
2pτq

λ2pσq
ξ, ηqρ

1
2 pηq

λ2pτq

λ2pσq
ξ ´ η

by
Fp λ

2pτq
λ2pσq

ξ,0q

λ2pτq
λ2pσq

ξ
η´

1
4 up to better errors which can be handled as in the preceding two

cases. Then we reduce to bounding the expression

›

›ξ´0`
ż 8

τ

λpτq

λpσq
β2
νpσq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Fp λ
2pτq

λ2pσq
ξ, 0q

λ2pτq

λ2pσq
ξ

¨

ż 8

0

λpσq

λpτ0q

sinrλpτ0qη̃
şσ
τ0
λ´1puq dus

η̃
3
4

pρ
1
2 x1qpη̃q dη̃

›

›

L2
dξpξă1q

Then note that since

η̃ “
λ2pσq

λ2pτ0q
η !

λ2pσq

λ2pτ0q

λ2pτq

λ2pσq
ξ “

λ2pτq

λ2pτ0q
ξ,

we can absorb the extra weight ξ´0` into x1 at the cost of a factor p λpτq
λpτ0q

q2δ0 , and
then the argument used to prove Proposition 3.1 in conjunction with a simple or-
thogonality argument yields

›

›ξ´0`
ż 8

τ

λpτq

λpσq
β2
νpσq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Fp λ
2pτq

λ2pσq
ξ, 0q

λ2pτq

λ2pσq
ξ

¨

ż 8

0

λpσq

λpτ0q

sinrλpτ0qη̃
şσ
τ0
λ´1puq dus

η̃
3
4

pρ
1
2 x1qpη̃q dη̃

›

›

L2
dξpξă1q

. p
λpτq

λpτ0q
q2δ0

`

ż 8

τ

λpτq

λpσq
β2
ν ¨ σ dσ

˘›

›x1
›

›

S 2
. p

λpτq

λpτ0q
q2δ0

›

›x1
›

›

S 2
.

This concludes Step 4(i).

Step 4(ii): Contribution of βνpσqKccDσxp0qpσ, ξq to 4xp1qąτpτ, ξq. We again limit
the estimates here to the contribution to xp0q by x1. In light of the definition of the
norm } ¨ }S , we have to estimate the following expression

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

βνpσqKccDσxp0qpσ,
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q

We divide into cases (a) - (c) as in the preceding.
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(4(ii).a): ξ ¨ λ
2pτq

λ2pσq
! η. We have to perform an integration by parts in σ. Use

KccDσxp0qpσ,
λ2pτq

λ2pσq
ξq “

ż 8

0

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρp

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
pDσxp0qqpσ,

λ2pτq

λ2pσq
η̃q dη̃

“

ż 8

0

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρp

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
Bσ
`

xp0qpσ,
λ2pτq

λ2pσq
η̃q
˘

dη̃

` error,

with the term ’error’ again coming from the differenceDσ´pBσ´2βνpσqξBξq and
hence being treatable like the contribution by β2

νpσqKccxp0q. Then integration by
parts either produces an extra factor σ´1 which transforms the term into one of the
type considered in the preceding (in the situation (4(i).a)), or else one replaces

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

by

λpτq

λpσq
cosrλpτqξ

1
2

ż σ

τ
λ´1puq dus

But then if one proceeds as in case (4(i).a) above one obtains the bound

›

›ξ´0`
ż 8

τ

λ
5
2 pτq

λ
5
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusβνpσqKccxp0qpσ,

λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q

.
›

›x1
›

›

S 2

ż 8

τ

λpτq

λpσq
βνpσqp

λpσq

λpτ0q
q2δ0 dσ . p

λpτq

λpτ0q
q2δ0

›

›x1
›

›

S 2
.

(4(ii).b): ξ ¨ λ
2pτq

λ2pσq
„ η. Here we simply trade a factor η

1
2 for a factor λpτq

λpσq
ξ

1
2 and

then proceed as in (4(i).b).

(4(ii).c): ξ ¨ λ
2pτq

λ2pσq
" η. Here we still integrate by parts with respect to σ but we

need to combine the oscillatory factors correctly. Specifically, write

KDσxp0qpσ,
λ2pτq

λ2pσq
ξq

in the form

ż 8

0

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx1p
λ2pσq

λ2pτ0q
ηq dη,
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which then gets localised to (with a smooth cutoff χ
ξ¨

λ2pτq
λ2pσq

"η
, say)

ż 8

0
χ
ξ¨

λ2pτq
λ2pσq

"η

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨ cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx1p
λ2pσq

λ2pτ0q
ηq dη,

and re-write the integral in terms of the variable η̃ :“ λ2pσq

λ2pτ0q
η. Then combine the

oscillatory factor

cosrλpτ0qη̃
1
2

ż σ

τ0

λ´1puq dus

with the outer oscillatory factor sinrλpτqξ
1
2
şσ
τ λ

´1puq dus, resulting in an expres-
sion which is a linear combination of exponentials with phase

λpτqξ
1
2

ż σ

τ
λ´1puq du˘ λpτ0qη̃

1
2

ż σ

τ0

λ´1puq du,

and perform an integration by parts with respect to σ. We gain an additional σ´1

at the expense of an extra rξ ¨ λ
2pτq

λ2pσq
s´1, which however gets compensated for by

a gain from the η̃-integral. The details here are then just as in case (4(i).a). This
concludes case 4(ii) as far as the contribution to xp0q of the second term on the right
in (2.12) is concerned.

The preceding concludes the estimate for supτěτ0
p ττ0
q´0`

›

›χξă14x̃p1qąτpτ, ¨q
›

›

S 1
.

One argues similarly to get the desired bound for supτěτ0

›

›χξă1Dτ4x̃p1qąτpτ, ¨q
›

›

S 2
.

Note that the loss of p ττ0
q2δ0p1`ν´1q for the former expression comes from the sin-

gular weight ξ´0` in conjunction with the singular factor

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

which just barely fails to be in L2
dξ. Applying Dτ de-singularizes the preceding

term, whence no loss p ττ0
q2δ0p1`ν´1q results for

›

›χξă1Dτ4x̃p1qąτpτ, ¨q
›

›

S 2
.

Step 5: Control over the initial data
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘

. Here we prove the
estimate

›

›

`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘›

›

S .
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.

Observe that in light of the definition of
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘

preceding the state-
ment of Lemma 7.3 and the preceding Step 4, it suffices to prove the high frequency
bound

›

›χξą1
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘
›

›

S .
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.
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Also, we may immediately reduce to the contribution of the continuous spectral
part of the data px0, x1q, the discrete part again being straightforward on account if
its exponential decay. We consider here the term 4x̃p1q0 , and more specifically the
contribution of the source term x1 via (2.12) to it, the other cases being treated sim-
ilarly. As before, we split the term R1pσ, xp0qqp

λ2pτ0q

λ2pσq
ξq involved in the definition

of 4x̃p1q0 pξq into two parts, by invoking the schematic splitting (7.5):

Step 5(i): Contribution of β2
νpτqKccxp0q. Thus, to begin with, we need to bound

the expression

›

›xξy1`
ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

β2
νpσqBpσ, τ0, ξq dσ

›

›

L2
dξpξą1q,

where we put

Bpσ, τ0, ξq

“

ż 8

0

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq.

(5(i).a): λ2pτ0q

λ2pσq
ξ ! η ă 1. Here we get (in light of ξ ą 1)

ˇ

ˇxξy1`
ρ

1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

ˇ

ˇ . r
λ2pτ0q

λ2pσq
s´

1
4 ξ0`

Furthermore, we have in our current situation

ˇ

ˇ

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

ˇ

ˇ . r
λ2pσq

λ2pτ0q
s

1
4 η´

1
2 .

Then taking the factor λ
3
2 pτ0q

λ
3
2 pσq

into account, the L2
dξ integral leads to a gain of

λpτ0q

λpσq
ξ

1
2`| λ2pτ0q

λ2pσq
ξ“cη

whence to a gain of p λpσq
λpτ0q

q2δ0η
1
2`, and so we reduce to the η-integral

ż 1

r
λ2pσq
λ2pτ0q

s´1
η0` λ

2p1`δ0qpσq

λ2p1`δ0qpτ0q
x1p

λ2pσq

λ2pτ0q
ηq dη “

ż 1

r
λ2pσq
λ2pτ0q

s´1
η´

1
2`
λ2p1`δ0qpσq

λ2p1`δ0qpτ0q
η

1
2 x1p

λ2pσq

λ2pτ0q
ηq dη,

which via Cauchy-Schwarz can be bounded by

ˇ

ˇ

ż 1

r
λ2pσq
λ2pτ0q

s´1
η´

1
2`
λ2p1`δ0qpσq

λ2p1`δ0qpτ0q
η

1
2 x1p

λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ . p
λpσq

λpτ0q
q2δ0

›

›x1
›

›

S 2
.
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It follows that the full expression is bounded by

`

ż 8

τ0

p
λpσq

λpτ0q
q2δ0β2

νpσq dσ
˘›

›x1
›

›

S 2
. τ´1

0

›

›x1
›

›

S 2
.

(5(i).b): λ2pτ0q

λ2pσq
ξ ! η, η ą 1. Here, we use

ˇ

ˇxξy1`
ρ

1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

ˇ

ˇ . r
λ2pτ0q

λ2pσq
s´

1
4 ξ0`χ λ2pτ0q

λ2pσq
ξă1

` r
λ2pτ0q

λ2pσq
s

1
4 ξ

1
2`χ λ2pτ0q

λ2pσq
ξą1

and also (under our current assumptions)

ˇ

ˇ

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

ˇ

ˇ . x
λ2pτ0q

λ2pσq
ξy´2η´2r

λ2pσq

λ2pτ0q
s

1
4 .

Then we observe that (recalling 1` “ 1` δ0,
1
2` “

1
2 ` δ0)

λ
3
2 pτ0q

λ
3
2 pσq

›

›r
λ2pτ0q

λ2pσq
s´

1
4 ξ0`χ λ2pτ0q

λ2pσq
ξă1

›

›

L2
dξ
`
λ

3
2 pτ0q

λ
3
2 pσq

›

›x
λ2pτ0q

λ2pσq
ξy´2r

λ2pτ0q

λ2pσq
s

1
4 ξ

1
2`χ λ2pτ0q

λ2pσq
ξą1

›

›

L2
dξ

. r
λpσq

λpτ0q
s2δ0 ,

while also

ˇ

ˇ

ż 8

1
r
λ2pσq

λ2pτ0q
s

1
4 η´2 λ

3
2 pσq

λ
3
2 pτ0q

x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ . p
λpτ0q

λpσq
q2δ0

›

›x¨y
1
2`x1

›

›

L2

In total we bound the preceding case by the expression

.

ż 8

τ0

β2
νpσqr

λpσq

λpτ0q
s2δ0 ¨ p

λpτ0q

λpσq
q2δ0

›

›x¨y
1
2`x1

›

›

L2 dσ . τ´1
0

›

›x1
›

›

S 2
.

(5(i).c): λ2pτ0q

λ2pσq
ξ „ η. Here we reduce to bounding the L2

dξ-norm of the function

χ λ2pτ0q

λ2pσq
ξă1

λpτ0q

λpσq
ξ0`

ż

η„
λ2pτ0q

λ2pσq
ξ

Fpλ
2pτ0q

λ2pσq
ξ, ηqη´

1
2

λ2pτ0q

λ2pσq
ξ ´ η

λ2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dη

` χ λ2pτ0q

λ2pσq
ξą1

λ2pτ0q

λ2pσq
ξ

1
2`

ż

η„
λ2pτ0q

λ2pσq
ξ

Fpλ
2pτ0q

λ2pσq
ξ, ηq

λ2pτ0q

λ2pσq
ξ ´ η

λ2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dη,
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where we have omitted for now the σ integral, as well as the weight β2
νpσq. Then

for the first expression observe that under the localisations there have have

ˇ

ˇFp
λ2pτ0q

λ2pσq
ξ, ηqη´

1
2
ˇ

ˇ . η
1
2 ,

and so we find

›

›χ λ2pτ0q

λ2pσq
ξă1

λpτ0q

λpσq
ξ0`

ż

η„
λ2pτ0q

λ2pσq
ξ

Fpλ
2pτ0q

λ2pσq
ξ, ηqη´

1
2

λ2pτ0q

λ2pσq
ξ ´ η

λ2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dη

›

›

L2
dξ

. p
λpσq

λpτ0q
q2δ0

›

›x¨y
1
2 x1

›

›

L2
dη

For the second integral expression above, one gets under the localisations indicated
there

ˇ

ˇ

λ2pτ0q

λ2pσq
ξ

1
2`Fp

λ2pτ0q

λ2pσq
ξ, ηq

ˇ

ˇ . p
λpσq

λpτ0q
q2δ0

λpτ0q

λpσq

and since also η & 1 one gets the same bound as for the preceding term. Then
performing the σ-integral results in the upper bound

›

›x1
›

›

S 2

ż 8

τ0

p
λpσq

λpτ0q
q2δ0β2

νpσq dσ . τ´1
0

›

›x1
›

›

S 2
.

(5(i).d): λ2pτ0q

λ2pσq
ξ " η. Here we again take advantage of the vanishing property of

x1. Use the same decomposition as in preceding case splitting into the cases

λ2pτ0q

λ2pσq
ξ ă 1,

λ2pτ0q

λ2pσq
ξ ą 1.

Both are handled similarly, so we consider the contribution of the former case.
Write (under the current assumption on frequencies)

Fpλ
2pτ0q

λ2pσq
ξ, ηqρ

1
2 pηq

λ2pτ0q

λ2pσq
ξ ´ η

“ c
Fpλ

2pτ0q

λ2pσq
ξ, 0qη´

1
4

λ2pτ0q

λ2pσq
ξ

` Op
η

3
4

λ2pτ0q

λ2pσq
ξ
q ` Opη

1
4 q. (7.13)

Inserting the error term at the end into the first long expression in (5(i).c) and
evaluating the L2

dξ integral gives a factor p λpσq
λpτ0q

q2δ0 and reduces to bounding the
integral

ˇ

ˇ

ż 1

0

λ
3
2 pσq

λ
3
2 pτ0q

η´
1
4 ρ

1
2 p
λ2pσq

λ2pτ0q
ηqx1p

λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

. p
λpσq

λpτ0q
q2δ0

›

›x1
›

›

S 2

The integral over σ is then again bounded as in the preceding case.

This reduces things to the contribution of the principal part c
Fp λ

2pτ0q

λ2pσq
ξ,0qη´

1
4

λ2pτ0q

λ2pσq
ξ

(in lieu
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of the expression on the left in (7.13) ) , which is the expression

χ λ2pτ0q

λ2pσq
ξă1

λpτ0q

λpσq
ξ0`

ż

η!
λ2pτ0q

λ2pσq
ξ

Fpλ
2pτ0q

λ2pσq
ξ, 0qη´

1
4

λ2pτ0q

λ2pσq
ξ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

¨
sinrλpσqη

1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

But then extending the integral to the full range r0,8q up to errors treatable like in
(5(i).a) - (5(i).c), and then performing the change of variable η̃ “ λ2pσq

λ2pτ0q
η, we are

led to the expression

χ λ2pτ0q

λ2pσq
ξă1

λpτ0q

λpσq
ξ0`

ż 8

0

λpσq

λpτ0q

sinrλpτ0qη̃
1
2
şσ
τ0
λ´1puq dus

η̃
3
4

pρ
1
2 x1qpη̃qdη̃.

However, the bound

ˇ

ˇ

ż 8

0

λpσq

λpτ0q

sinrλpτ0qη̃
1
2
şσ
τ0
λ´1puq dus

η̃
3
4

pρ
1
2 x1qpη̃qdη̃

ˇ

ˇ . σ
›

›x1
›

›

S 2

is not quite good enough to handle its contribution leading to a divergent integral
in σ. Here note that if we restrict further to

λ2pτ0q

λ2pσq
ξ ă σ´δ

for some δ ą 0 (but large in comparison to δ0), then we still get convergence as we
gain σ´

δ
2 from the L2

dξ-norm of the output. It follows that one may reduce to the
contribution of

χ
σ´δă

λ2pτ0q

λ2pσq
ξă1

λpτ0q

λpσq
ξ0`

ż

η!
λ2pτ0q

λ2pσq
ξ

Fpλ
2pτ0q

λ2pσq
ξ, 0qη´

1
4

λ2pτ0q

λ2pσq
ξ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

¨
sinrλpσqη

1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

To avoid a divergence in the eventual σ-integral here, we have to keep track of all
oscillating factors, and in particular the outer one which we suppressed until now:

sinrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dus.

Combining the two oscillatory phases, passing to the variable η̃ “ λ2pσq

λ2pτ0q
η and

performing an integration by parts with respect to σ then results in a gain of

σ´1r
λ2pτ0q

λ2pσq
ξs´1 . σδ´1,

and so we again win provided δ ă 1 and 1´ δ " δ0.
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This then concludes controlling the contribution of the source term β2
νpσqK xp0q

to the estimate
›

›χξą1p4x̃p1q0 ,4x̃p1q1 q
›

›

S .
›

›px0, x1q
›

›

S̃ .

Step 5(ii): Contribution of βνpτqKccDτxp0q. This case is potentially delicate
since we only gain one power of σ here, but expect to lose small powers of the
form p

λpσq

λpτ0q
q2δ0 . However, we then do not lose a power of σ as in case (5(i).c)

before due to the less singular nature of Dσxp0q (one gains a factor η
1
2 ). In fact,

using an integration by parts argument with respect to σ as in case (5(i).c) before,
one easily disposes of the cases

λ2pτ0q

λ2pσq
ξ ! η,

λ2pτ0q

λ2pσq
ξ " η.

This then reduces the contribution of the term βνpσqKDσxp0q to the diagonal case
λ2pτ0q

λ2pσq
ξ „ η. Then, due to the vanishing and decay properties of the kernel Fp¨, ¨q,

we may essentially (up to terms which are treated similarly) reduce to the case
λ2pτ0q

λ2pσq
ξ „ 1 „ η. Thus consider now the expression

›

›xξy
1
2`

ż 8

τ0

χ λ2pτ0q

λ2pσq
ξ„1

λ2pτ0q

λ2pσq
βνpσq

¨

ż

η„1

λ
3
2 pσq

λ
3
2 pτ0q

Fpλ
2pτ0q

λ2pσq
ξ, ηq

λ2pτ0q

λ2pσq
ξ ´ η

ρ
1
2 p
λ2pσq

λ2pτ0q
ηqx1p

λ2pσq

λ2pτ0q
ηq dηdσ

›

›

L2
dξ

In fact, bounding this will then imply the needed bound for 4x̃p1q0 . By orthogonality,
we can equate this expression’s square with

ÿ

jě0

›

›xξy
1
2`

ż 8

τ0

χ λ2pτ0q

λ2pσq
ξ„1

λ2pτ0q

λ2pσq
βνpσq

¨

ż

η„1

Fpλ
2pτ0q

λ2pσq
ξ, ηq

λ2pτ0q

λ2pσq
ξ ´ η

λ2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dηdσ

›

›

2
L2

dξpξ„2 jq

“
ÿ

jě0

›

›xξy
1
2`

ż

σ„2
ν j

2p1`νq τ0

χ λ2pτ0q

λ2pσq
ξ„1

λ2pτ0q

λ2pσq
βνpσq

¨

ż

η„1

Fpλ
2pτ0q

λ2pσq
ξ, ηq

λ2pτ0q

λ2pσq
ξ ´ η

λ2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dηdσ

›

›

2
L2

dξpξ„2 jq
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Then observe that in the above expression we have xξy
1
2`

λpτ0q

λpσq
. p

λpσq

λpτ0q
q2δ0 , and

furthermore, for fixed j, we have

λ2pσq

λ2pτ0q
η „ 2 j,

λpσq

λpτ0q

›

›p
λpσq

λpτ0q
q2δ0

`

η
λ2pσq

λ2pτ0q

˘
1
2 x1p

λ2pσq

λ2pτ0q
ηq
›

›

L2
dηpη„1q .

›

›x1
›

›

S 2
.

Thus, for fixed j, we get

›

›xξy
1
2`

ż

σ„2
ν j

1`ν τ0

χ λ2pτ0q

λ2pσq
ξ„1

λ2pτ0q

λ2pσq
βνpσq

¨

ż

η„1

Fpλ
2pτ0q

λ2pσq
ξ, ηq

λ2pτ0q

λ2pσq
ξ ´ η

λ2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dηdσ

›

›

L2
dξpξ„2 jq

.
›

›χη„2 j x1
›

›

S 2
,

and the desired final bound follows after square summation over j. This finally
concludes our arguments for the bound

›

›χξą1p4xp1q0 ,4xp1q1 q
›

›

S .
›

›px0, x1q
›

›

S̃ ,

and thereby the proof of Proposition 7.1.
�

In the following proposition, we shall strengthen the bounds of the preceding
proposition a bit. In fact, this will be necessary to finally arrive at a framework
of estimates which we can perpetuate across the iteration. The norms involving
square-sums over dyadic time intervals shall be the key technical device allowing
us to formulate the correct inductive steps for the iteration.

Proposition 7.4. Using the same terminology as in the statement of the preceding
proposition, and also recalling (3.3), we have the low frequency bound

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτq

λpτ0q
q4δ0

›

›ξ´0`Dτ4xp1qąτpτ, ¨q
›

›

2
L2

dξpξă1q

˘
1
2

.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.

(7.14)

Moreover, recalling

4xp1qpτ, ξq ´ S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ,
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we also have the high frequency bound

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτq

λpτ0q
q4δ0

›

›ξ
1
2`Dτ

“

4xp1qpτ, ξq ´ S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q
‰

pτ, ¨q
›

›

2
L2

dξpξą1q

˘
1
2

.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.
(7.15)

Proof. We treat the low frequency estimate and the high frequency estimate sepa-
rately:

Step 1: Proof of (7.14). Recall the representation formula

4xp1qąτpτ, ξq

“ ´

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

Rpσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

and furthermore the splitting

Rpτ, xp0qqpξq “ R1pτ, xp0qqpξq ` R2pτ, x
p0q
d qpξq

as well as the schematic decomposition

R1pτ, xp0qqpξq “ β2
νpτqKccxp0q ` βνpτqKccDτxp0q ` β2

νpτqK
2
ccxp0q.

The contribution of the exponentially decaying modeR2pτ, x
p0q
d qpξq is again straight-

forward to handle, and so we focus on the contribution of R1pτ, xp0qqpξq. Here we
shall consider the contribution of βνpτqKccDτxp0q, that of β2

νpτqKccxp0q, β2
νpτqK

2
ccxp0q

being similar. Also, we shall only consider the contribution to xp0q by the second
term on the right in (2.12), as the first term is handled just the same.
Then write

βνpσq
`

KccDσxp0q
˘

pσ,
λ2pτq

λ2pσq
ξq

“ βνpσq

ż 8

0

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨ cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx1p
λ2pσq

λ2pτ0q
ηq dη

(7.16)
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Also, use that

Dτ4xp1qąτpτ, ξq

“ ´

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusRpσ, xp0qqp

λ2pτq

λ2pσq
ξq dσ

and we replace Rpσ, xp0qqp λ
2pτq

λ2pσq
ξq by βνpσq

`

KccDσxp0q
˘

pσ,
λ2pτq

λ2pσq
ξq.

(1i): λ2pτq

λ2pσq
ξ ! η, λ2pσq

λ2pτ0q
η ă 1. Here we get

ˇ

ˇ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

ˇ

ˇ „
λpσq

λpτ0q
,
λ

3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

„
λpτq

λpσq
.

The L2
dξ-integral furnishes a gain of p λ

2pτq

λ2pσq
ξq

1
2` which offsets the loss from ρpηq

up to η´0`, and the η-integral, handled via Cauchy-Schwarz, furnishes a gain of
η

1
2` ă p

λ2pσq

λ2pτ0q
q
´ 1

2` . In total, we gain

r
λpτ0q

λpτq
s1´ ¨ p

λpτq

λpσq
q1´

η
1

2`

p
λ2pσq

λ2pτ0q
q
´ 1

2`

Here the weight rλpτ0q

λpτq
s1´ is much better than the required rλpτ0q

λpτq
s2δ0 , which then

also ensures square-summability over dyadic time intervals.

(1ii): λ2pτq

λ2pσq
ξ ! η, λ2pσq

λ2pτ0q
η ě 1, η ă 1. Here we have

ˇ

ˇ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

ˇ

ˇ „
λ2pσq

λ2pτ0q
η

1
2 ,
λ

3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

„
λpτq

λpσq
.

The L2
dξ-norm of the output again gains r λ

2pτq

λ2pσq
ξs

1
2` , and so the expression (7.14) in

the present situation gets bounded by

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτq

λpτ0q
q4δ0

“

ż 8

τ
βνpσq

ż 1

0
η´0` λ

2pσq

λ2pτ0q
η

1
2 x1p

λ2pσq

λ2pτ0q
ηq dηdσ

‰2˘ 1
2

(7.17)
Using the Cauchy-Schwarz inequality and the definition of the norm } ¨ }S 2 , we
have

ż 1

0
η´0` λ

2pσq

λ2pτ0q
η

1
2 x1p

λ2pσq

λ2pτ0q
ηq dη .

`λpτ0q

λpσq

˘2δ0
ÿ

jă0

2
j

2`
›

›χ
¨„2 j λ

2pσq
λ2pτ0q

x1
›

›

S 2

.
`λpτ0q

λpσq

˘2δ0
`

ÿ

jă0

2
j

2`
›

›χ
¨„2 j λ

2pσq
λ2pτ0q

x1
›

›

2
S 2

˘
1
2
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It follows that (reiterating Cauchy-Schwarz)

“

ż 8

τ
βνpσq

ż 1

0
η´0` λ

2pσq

λ2pτ0q
η

1
2 x1p

λ2pσq

λ2pτ0q
ηq dηdσ

‰2

.
`λpτ0q

λpτq

˘4δ0
ÿ

M&τ
M dyadic

sup
σ„M

p
λpτq

λpσq
q2δ0

`

ÿ

jă0

2
j

2`
›

›χ
¨„2 j λ

2pσq
λ2pτ0q

x1
›

›

2
S 2

˘

,

and so we can bound the square of (7.17) by
ÿ

N&τ0
N dyadic

ÿ

M&N
M dyadic

sup
τ„N

sup
σ„M

p
λpτq

λpσq
q2δ0

`

ÿ

jă0

2
j

2`
›

›χ
¨„2 j λ

2pσq
λ2pτ0q

x1
›

›

2
S 2

˘

This last expression is bounded by .
›

›x1
›

›

2
S 2

by a simple orthogonality argument.

(1iii): λ2pτq

λ2pσq
ξ ! η, η ě 1. Here (7.14) is easily seen to be bounded by

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτq

λpτ0q
q4δ0

“

ż 8

τ
βνpσq

ż 8

1
η´2 λ

2pσq

λ2pτ0q
x1p

λ2pσq

λ2pτ0q
ηq dηdσ

‰2˘ 1
2

This is handled by analogy to the preceding case, by localising η to dyadic size 2 j,
j ą 0.

(1iv): λ2pτq

λ2pσq
ξ „ η, λ2pσq

λ2pτ0q
η ă 1. Use that

ˇ

ˇξ´0`Fp
λ2pτq

λ2pσq
ξ, ηqρpηq

ˇ

ˇ . η
1
2´ . r

λpτ0q

λpσq
s

1
2´r

λpτ0q

λpτq
s2δ0

in this case(provided we choose δ0 small enough). In turn this implies that

›

›ξ´0`βνpσq

ż 8

0

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨ cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusχ λ2pσq
λ2pτ0q

ηă1
x1p

λ2pσq

λ2pτ0q
ηq dη

›

›

L2
dξ

. βνpσqr
λpτq

λpσq
s´1r

λpτ0q

λpσq
s

1
2´r

λpτ0q

λpτq
s2δ0

›

›x1
›

›

S 2
,

and hence the corresponding contribution to (7.14) is bounded by

.
›

›x1
›

›

S 2

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτ0q

λpτq
q1´

˘
1
2 .

›

›x1
›

›

S 2
.

(1v): λ2pτq

λ2pσq
ξ „ η, λ2pσq

λ2pτ0q
η ě 1. This is similar to case (1ii). One can absorb an

extra p λ
2pσq

λ2pτ0q
ηq0` into x1, which results in a gain of rλpτ0q

λpσq
s2δ0 when combining with
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the bound
ˇ

ˇFp
λ2pτq

λ2pσq
ξ, ηqρpηq

ˇ

ˇ . η
1
2 .

(1vi): λ2pτq

λ2pσq
ξ " η. Switching variables in (7.16) we have

ż 8

0

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx1p
λ2pσq

λ2pτ0q
ηq dη

“

ż 8

0

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρp

λ2pτq

λ2pσq
η̃q

ξ ´ η̃

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
η̃q

ρ
1
2 p

λ2pτq

λ2pσq
η̃q

cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dusx1p
λ2pτq

λ2pτ0q
η̃q dη̃

Then, returning to the full expression also involving the σ-integral, we intend to
perform an integration by parts with respect to σ, provided λ2pτq

λ2pσq
ξ ą σ´2δ. In fact,

under the latter assumption, we write

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dus

“
ÿ

˘

1
λpτq

λpσq
ξ

1
2 ˘

λpτq

λpσq
η̃

1
2

Bσ
“

cosrλpτqξ
1
2

ż σ

τ
λ´1puq du˘ λpτqη̃

1
2

ż σ

τ0

λ´1puq dus
‰

and so integration by parts with respect to σ will result in a gain of σδ´1. To con-
clude this case then, one again distinguishes between the situations λ2pσq

λ2pτ0q
η ąă 1.

To bound the η-integral by Cauchy-Schwarz, one needs to pay a small power of
λ2pσq

λ2pτ0q
, which is counteracted by the gain in σ.

This reduces things to the case λ2pτq

λ2pσq
ξ ă σ´2δ. Here an additional gain in σ

comes from the ξ-integral, which indeed produces a gain

rξ
1
2
λpτq

λpσq
s

1
2` ă σ´δ,

This suffices to absorb the factor p λpτq
λpτ0q

q4δ0 in (7.14) and also to be able to square-
sum over dyadic time intervals. This completes the proof of (7.14).

Step 2: Proof of (7.15). Again we omit the simple contribution by the exponen-
tially decaying term due to x0d. Here we have λ2pτq

λ2pσq
ξ ą 1 on account of τ ě σ and

ξ ą 1 (recall the definition of 4xp1q from the previous proposition). We shall again
treat the contribution of x1 and the source term βνpσqKccDσxp0q in detail, the other
cases being similar. Throughout in this case, we have

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

„
λ2pτq

λ2pσq
.
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(2i): λ2pτq

λ2pσq
ξ ! η. Square integration over ξ gives an extra factor ξ

1
2 , and we have

(for ξ ą 1, λ2pτq

λ2pσq
ξ ! η, τ ą σ)

ˇ

ˇξ
1
2 xξy

1
2`

λ2pτq

λ2pσq
Fp

λ2pτq

λ2pσq
ξ, ηqρpηq

ˇ

ˇ . η´1`λ
2pσq

λ2pτq

˘2

due to the strong decay properties for Fp¨, ¨q for large variables, see [28]. Further-
more, write (for η ą 1)

ˇ

ˇ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

x1p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ .
`λpτ0q

λpσq

˘2δ0 λpσq

λpτ0q

ˇ

ˇ

` λ2pσq

λ2pτ0q
η
˘

1
2`x1p

λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

Then it follows that

›

›xξy
1
2`

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusβνpσq

¨
“

K λ2pτq
λ2pσq

ξ!η
Dσ

`

S pσqp0, x1q
˘‰

p
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξą1q

.
`λpτ0q

λpτq

˘2δ0
ÿ

ją1

2´ j`
ÿ

σ„N.τ
N dyadic

λ2pNq
λ2pτq

sup
σ„N

›

›x1
›

›

2

S 2p¨„2 j λ
2pσq

λ2pτ0q
q

˘
1
2

where S pτq is the propagator given explicitly by (2.12). In the last step we have
used Cauchy-Schwarz for the time integral. Then the desired bound (7.15) for
this contribution follows by square-summing over dyadic τ-intervals (after taking
suprema over such) and a simple orthogonality argument.

(2ii): λ2pτq

λ2pσq
ξ „ η, ξ ą 1, τ ě σ. Here the estimate is a bit more delicate, since

we only get
ˇ

ˇxξy
1
2`Fp

λ2pτq

λ2pσq
ξ, ηqρpηq

ˇ

ˇ .
λpσq

λpτq
ξ0`

on account of the bounds established in [28]. Then using another orthogonality
argument as in the preceding case, we obtain the similar bound

›

›xξy
1
2`

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusβνpσq

¨
“

K λ2pτq
λ2pσq

ξ„η
Dσ

`

S pσqp0, x1q
˘‰

p
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξą1q

.
`λpτ0q

λpτq

˘2δ0
ÿ

ją0

2´
j
2
›

›x1
›

›

S 2p¨„2 j λ2pτq
λ2pτ0q

q

Then the desired square-sum bound (7.15) again follows from an orthogonality ar-
gument.
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(2iii): λ2pτq

λ2pσq
ξ " η, ξ ą 1, τ ě σ. Here as we are in the non-singular regime for

the Hilbert transform type operator givingKcc, we can take advantage of the better
decay properties of the kernel F, see [28], namely

ˇ

ˇxξy
1
2
λ2pτq

λ2pσq
Fp

λ2pτq

λ2pσq
ξ, ηq

ˇ

ˇ .
` λ2pτq

λ2pσq

˘´N
ξ´N .

On the other hand, the η-integral furnishes a gain of ηδ0r
λpτ0q

λpσq
s2δ0 for η ă 1. One

then easily infers the bound

›

›xξy
1
2`

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusβνpσq

¨
“

K λ2pτq
λ2pσq

ξ"η
Dσ

`

S pσqp0, x1q
˘‰

p
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξą1q

.
`λpτ0q

λpτq

˘2δ0
ÿ

jPZ

mint2δ0 j, 2´M ju
`

ÿ

σ„N.τ
N dyadic

r
λpNq
λpτq

sM sup
σ„N

›

›x1
›

›

2

S 2p¨„2 j λ
2pσq

λ2pτ0q
q

˘
1
2

where M in effect may be chosen arbitrarily, but M “ 1 suffices. Then the required
bound (7.15) follows easily from an orthogonality argument.

�

We have now almost concluded the treatment of the contribution to the first
iterate from the linear term Rpτ, xp0qq, except for the contribution to the discrete
spectral part of xp1q. Calling this contribution 4xp1qd pτq, we recall from (2.10) and
a straightforward bootstrap argument that it suffices to bound

ˇ

ˇ

ż 8

τ0

Hdpτ, σq fdpσq dσ
ˇ

ˇ, Hdpτ, σq “ ´
1
2
|ξd|

´ 1
2 e´|ξd|

1
2 |τ´σ|,

where

fdpσq :“ βνpσqKdcDσxp0q ` β2
νpσqKdcxp0q ` β2

νpσqKdcKcxp0q `Kdd xp0qd ,

and xp0q here refers to the continuous spectral part of xp0q, while xp0qd refers to its
discrete part. Assuming the operator Kdc is given by kernel function Kdpηq and
again restricting to the contribution by x1 to xp0q and the expression β2

νpσqKdcxp0q,
say, we need to bound the absolute value of the expression

ż 8

τ0

Hdpτ, σqβ
2
νpσq

ż 8

0
Kdpηq

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨
sinrλpσqη

1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη
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Using

ˇ

ˇ

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

ˇ

ˇ . χ λ2pσq
λ2pτ0q

ηă1

λpσq

λpτ0q
` χ λ2pτ0q

λ2pσq
ăηă1

λ2pσq

λ2pτ0q
η

1
2

` χηą1
λ2pσq

λ2pτ0q

and the boundedness and decay properties of Kdpηq established in [28], and arguing
as in the proof of Proposition 7.1, we get

ˇ

ˇ

ż 8

0
Kdpηq

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨ β2
νpσq

sinrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

. p
λpσq

λpτ0q
q0`σ ¨ β2

νpσq
›

›x1
›

›

S 2
.

It then follows that

ˇ

ˇ

ż 8

τ0

Hdpτ, σqβ
2
νpσq

ż 8

0
Kdpηq

λ
3
2 pσq

λ
3
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨
sinrλpσqη

1
2
şσ
τ0
λ´1puq dus

η
1
2

x1p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

.
›

›x1
›

›

S 2

ż 8

τ0

Hdpτ, σqσβ
2
νpσq ¨ p

λpσq

λpτ0q
q0` dσ

. τ´1`
›

›x1
›

›

S 2
.

Similarly, one obtains the bound τ´1`
›

›x1
›

›

S 2
for the corresponding contribution of

βνpσqKdcDσxp0q. Finally, the contribution of the discrete part xp0qd is again elemen-
tary due to its exponential decay.

Let us summarise the preceding observations in the following

Proposition 7.5. Define the function 4xp1qd pτq implicitly by the equation

4xp1qd pτq “

ż 8

τ0

Hdpτ, σq ¨ rRdpσ, xp0qq ´ βνpσqBσ4xp1qd pσqs dσ

where we set Rdpσ, xp0qq “ xRpσ, xp0qq, φdy, and impose the vanishing condition
limτÑ8 4xp1qd pτq “ 0. Then we have

τ1´“
ˇ

ˇ4xp1qd pτq
ˇ

ˇ`
ˇ

ˇBτ4xp1qd pτq
ˇ

ˇ

‰

.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.
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8. Control of the first iterate; contribution of the nonlinear terms

Here we show the following result which controls the contribution to the first
iterate of the source term Nνpε

p0qq, where we put

ε̃p0q “ Rεp0q “ xp0qd pτqφdpRq `
ż 8

0
φpR, ξqxp0qpτ, ξqρpξq dξ,

and xp0q as before stands for the zeroth iterate given by Lemma 2.1:

Proposition 8.1. There is a choice of p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q P S̃ with
›

›p4 ˜̃xp1q0 ,4 ˜̃xp1q1 q
›

›

S̃ . τ
´p1´q
0 r

›

›px0, x1q
›

›

S̃ ` |x0d|s (8.1)

such that setting f pτ, ξq :“ F
`

λ´2pτqRNνpε̃
p0qq

˘

pξq as well as

4xp1qpτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

f pσ, p
λ2pτq

λ2pσq
ξq dσ

` S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q

we have the high frequency bound
›

›χξą1
`

4xp1qpτ, ξq,Dτ4xp1qpτ, ξq
˘
›

›

S . τ
´p1´q
0

“
›

›x0, x1
›

›

S̃ ` |x0d|
‰

(8.2)

uniformly in τ ě τ0, as well as the improved bound
`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτq

λpτ0q
q4δ0

›

›ξ
1
2`Dτ

“

4xp1qpτ, ξq ´ S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q
‰

pτ, ¨q
›

›

2
L2

dξpξą1q

˘
1
2

. τ
´p1´q
0

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.
(8.3)

Moreover, there is a splitting

4xp1qpτ, ξq “ 4xp1qąτpτ, ξq ` S pτq
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘

(8.4)

such that we have

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă14xp1qąτpτ, ξq
›

›

S 1
` sup

τěτ0

` τ

τ0

˘κ›
›χξă1Dτ4xp1qąτpτ, ξq

›

›

S 2

`
›

›

`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘›

›

S .
›

›px0, x1q
›

›

S̃ ` |x0d|.

(8.5)

The functions 4x̃p1q0,1 satisfy the vanishing relations (3.1). Here we set as in Propo-
sition 7.1 κ “ 2p1` ν´1qδ0. Furthermore, there is the following improvement:

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
λpτq

λpτ0q
q4δ0

›

›ξ´0`Dτ4xp1qąτpτ, ¨q
›

›

2
L2

dξpξă1q

˘
1
2

. τ´γ0

“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.

(8.6)

for some γ ą 0.
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Remark 8.1. Observe that in (8.5) we do not gain a smallness factor here, in spite of
the multilinear nature of the source term. This is due to the contribution of the term
E2 in the statement of Proposition 5.1, which in turn arises due to the interaction
of the corrections uν ´ u0 with the part of ε̃ which grows linearly in time τ, i. e. a
suitable multiple of the resonance φpR, 0q. More precisely, the lack of a smallness
gain arises for this source term in the low frequency regime, and only for the un-
differentiated output (i. e. without the Dτ). This will later ensure that re-iteration
of our modified Duhamel type parametrix to this bad term will produce better terms
with a gain.

Proof. (Proposition 8.1) This roughly follows the steps of the proof of Proposi-
tion 7.1, with Proposition 5.1 playing an important role. The choice of the correc-
tion term 4 ˜̃xp1q1 will be made when controlling the low frequency part of 4xp1q, so
we shall assume for now that such a choice has been made satisfying (8.1).

Step 1: Proof of the high frequency bounds (8.2), (8.3). In light of Lemma 7.2,
the proof of (8.2) will follows once we establish it for4xp1qpτ, ¨q´S pτqp4 ˜̃xp1q0 ,4 ˜̃xp1q1 q.
Here we shall in fact establish the somewhat stronger bound (8.3) for the time de-
rivative of 4xp1q, the remaining bounds being in effect similar but simpler. Then we
may invoke Proposition 5.1 where we find ourselves in situation (i) of that propo-
sition. Then it remains to distinguish between two situations:

(1a): Situation (i) in the statement of Proposition 5.1 with a source term of type
E1. Here we need to bound (with respect to the square-sum norm as in (8.3)) the
expression

X1pτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

`

xE1pσ, ¨q, φp¨, ¨qy
˘

p
λ2pτq

λ2pσq
ξq dσ

Observe that (using τ ě σ)

›

›xξy
1
2`X1pτ, ξq

›

›

L2
dξpξą1q .

ż τ

τ0

›

›

λ2pτq

λ2pσq
xξy

1
2`
`

xE1pσ, ¨q, φp¨, ¨qy
˘

p
λ2pτq

λ2pσq
ξq
›

›

L2
dξpξą1q dσ

.

ż τ

τ0

`λpσq

λpτq

˘2δ0
`λpσq

λpτq

˘
1
2
›

›ξ
1
2 xE1pσ, ¨q, φp¨, ξqy

›

›

L2
dρpξą1q dσ

.

ż τ

τ0

`λpσq

λpτq

˘
1
2`2δ0

›

›E1pσ, ¨q
›

›

H1 dσ.
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We conclude that

`

ÿ

τ„N&τ0
N dyadic

` λpτq

λpτ0q

˘4δ0 sup
τ„N

›

›xξy
1
2`X1pτ, ξq

›

›

2
L2

dξpξą1q

˘
1
2

.
`

ÿ

τ„N&τ0
N dyadic

` λpτq

λpτ0q

˘4δ0 sup
τ„N

“

ż τ

τ0

`λpσq

λpτq

˘
1
2`2δ0

›

›E1pσ, ¨q
›

›

H1 dσ
‰2˘ 1

2

.
“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰`

ÿ

τ„N&τ0
N dyadic

` λpτq

λpτ0q

˘4δ0 sup
τ„N

“

ż τ

τ0

`λpσq

λpτq

˘
1
2`2δ0σ´2` dσ

‰2˘ 1
2

. τ
´p1´q
0

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.

provided δ0 ! 1 is sufficiently small.

(1b): Situation (i) in the statement of Proposition 5.1 with a source term of type
E2. Here we get a much worse point wise decay for the H1-norm of the source
term, and in particular we cannot integrate the time integral in the absolute sense.
Instead, we shall have to exploit some oscillation in it. To carry this out, we observe
that (we use the notation used in the statement of Proposition 5.1)

›

›Bσ
“`

xE2pσ, ¨q, φp¨, ¨qy
˘

p
λ2pτq

λ2pσq
ξq
‰›

›

L2
dρpξą1q

.
λpσq

λpτq
rσ´3|gpσq| ` σ´2Bσgs

›

›xRy´3gpR, aq
›

›

H1
dR
,

and further,

X2pτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

`

xE2pσ, ¨q, φp¨, ¨qy
˘

p
λ2pτq

λ2pσq
ξq dσ

“

ż τ

τ0

sinrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨ Bσ
“

ξ´
1
2
λpσq

λpτq

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

`

xE2pσ, ¨q, φp¨, ¨qy
˘

p
λ2pτq

λ2pσq
ξq
‰

dσ

` boundary terms.

But then, using

ˇ

ˇσ´3|gpσq| ` σ´2Bσg
ˇ

ˇ . σ´2“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

,
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we easily infer the bound
`

ÿ

τ„N&τ0
N dyadic

` λpτq

λpτ0q

˘4δ0 sup
τ„N

›

›xξy
1
2`X2pτ, ξq

›

›

2
L2

dξpξą1q

˘
1
2

. τ´1
0

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.

This then concludes Step 1, i. e. the proof of the high frequency bounds.

Step 2: Proof of the low frequency bounds (8.5), (8.6). This involves in particu-
lar defining the correction terms 4 ˜̃xp1q0 ,4 ˜̃xp1q1 and thereby the data p4x̃p1q0 pξq,4x̃p1q1 q.
We do this in close analogy to the proof of Proposition 7.1, and hence shall be cor-
respondingly more brief here. To begin with, we set

4x̃p1q0 pξq “

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

f pσ,
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xp1q0

“: r4x̃p1q0 pξq ` 4
˜̃xp1q0 pξq,

as well as

4x̃p1q1 pξq “

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dus f pσ, xp0qqp
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xp1q1 pξq

“: r4x̃p1q1 pξq ` 4
˜̃xp1q1 pξq.

with f pσ, ξq :“ F
`

λ´2pσqRNνpε
p0qq

˘

pξq. Then we have

Lemma 8.2. There exists 4 ˜̃xp1q0 pξq,4
˜̃xp1q1 pξq satisfying (8.1) and such that we have

ż 8

0

pρ
1
24x̃p1q0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ “ 0,

ż 8

0

pρ
1
24x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ “ 0. (8.7)

Proof. (lemma) We show this for 4 ˜̃xp1q1 pξq, the argument for 4 ˜̃xp1q0 pξq being similar.
It suffices to show (see the proof of Lemma 7.3) that

ˇ

ˇ

ż 8

0

pρ
1
2 4̃x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

To see this, use for ξ ă 1 that from Proposition 5.1
ˇ

ˇ f pσ, xp0qqp
λ2pτ0q

λ2pσq
ξq
ˇ

ˇ . σ´1“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

,

and so (for ξ ă 1)
ˇ

ˇ

r4x̃p1q1 pξq
ˇ

ˇ .

ż 8

τ0

σ´1λpτ0q

λpσq
dσ ¨

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰
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Then we get

ˇ

ˇ

ż 1

0

pρ
1
2 4̃x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0

ż 8

τ0

σ´1λpτ0q

λpσq
dσ

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

. τ0`
0 ¨

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.

On the other hand, when ξ ą 1, use that

ˇ

ˇ

r4x̃p1q1 pξq
ˇ

ˇ .
“

χ λ2pτ0q

λ2pσq
ξă1

λpτ0q

λpσq
ξ´

1
2 ` χ λ2pτ0q

λ2pσq
ξą1

λ2pτ0q

λ2pσq

‰

¨
ˇ

ˇ f pσ, xp0qqp
λ2pτ0q

λ2pσq
ξq
ˇ

ˇ

Then in the regime λ2pτ0q

λ2pσq
ξ ă 1 we use the bound

ˇ

ˇ f pσ, xp0qqp
λ2pτ0q

λ2pσq
ξq
ˇ

ˇ . σ´1“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

,

while in the regime λ2pτ0q

λ2pσq
ξ ą 1, we use the H0`

dξ -bound for f pσ, ξq following from
Proposition 5.1. This gives the bound

ˇ

ˇ

ż 8

1

pρ
1
2 4̃x̃p1q1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0

ż 8

τ0

σ´1r
λpτ0q

λpσq
s1´ dσ

“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

. τ0`
0 ¨

“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.

This completes the proof of the lemma. �

Following the same sequence of steps as in the proof of Proposition 7.1, we next
establish the bound (8.5) for the first two terms on the left:

The estimate supτěτ0
p ττ0
q´κ

›

›χξă14xp1qąτpτ, ξq
›

›

S 1
.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ. We need
to bound

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

f pσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q

This we can do by exploiting the point wise bound on f pσ, xp0qqp¨q used before,
with a small twist. Observe the simple bound (for σ ě τ)

›

›ξ´0` λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

›

›

L2
dξpξă1q

. τ2δ0 ¨
λpτq

λpσq
,

Note that we lose a factor τ2δ0 here, and we need to compensate for it. In fact, we
claim that we get the point wise bound

ˇ

ˇ f pσ, xp0qqp
λ2pτq

λ2pσq
ξq
ˇ

ˇ . p
σ

τ0
qκσ´1´δ0 ¨ r

›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇs.
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To get this, we revisit the bad cases (2), (4) in the proof of Proposition 3.1, which
are responsible for the linear growth of ε̃. Considering for example case (4), and
dividing into the cases ξ̃

1
2 τ1`ν´1

0 τ´ν
´1
& 1 or ξ̃

1
2 τ1`ν´1

0 τ´ν
´1
. 1, we easily infer

the bound (recalling κ “ 2δ0p1` ν´1q)

λpτq

λpτ0q

ˇ

ˇ

ż 8

0

ρ
1
2 pξ̃qx1pξ̃q

ξ̃
3
4

sinrντ0ξ̃
1
2 s
`

cosrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s ´ 1

˘

dξ̃
ˇ

ˇ

`
λpτq

λpτ0q

ˇ

ˇ

ż 8

0

ρ
1
2 pξ̃qx1pξ̃q

ξ̃
3
4

cosrντ0ξ̃
1
2 s sinrντ1`ν´1

0 τ´ν
´1
ξ̃

1
2 s dξ̃

ˇ

ˇ

. p
τ

τ0
qκ ¨ τ1´2δ0

›

›x1
›

›

S 2
,

which then easily implies the claimed bound on f pσ, xp0qqp λ
2pτq

λ2pσq
ξq, see the proof

of Proposition 5.1. One argues similarly for the contribution of x0, i. e. in case (2).
Armed with the preceding estimates, we get

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

f pσ, xp0qqp
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q

. τ2δ0

ż 8

τ

λpτq

λpσq
p
σ

τ0
qκσ´p1`2δ0q dσ ¨

“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

.
` τ

τ0

˘κ
¨
“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

,

as desired

The estimate supτěτ0
p ττ0
qκ
›

›χξă1Dτ4xp1qąτpτ, ξq
›

›

S 1
.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ. In fact,
we immediately pass to the stronger bound (8.6), which implies the former bound.
Here, we need to bound the following norm

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus f pσ, xp0qqp

λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q

and more precisely we need to then evaluate the square-sum over dyadic time in-
tervals as in (8.6). For this estimate we need to distinguish between the two parts
E1, E2 contributing to f pσ, ¨q according to Proposition 5.1. Assume that

f pσ, ¨q “ xφpR, ¨q, E1pσ,Rqy
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Then according to Proposition 5.1 we get

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus f pσ, xp0qqp

λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q

.

ż 8

τ

λpτq

λpσq

›

› f pσ, ¨q
›

›

L8dξ
dσ

.
“›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

¨

ż 8

τ

λpτq

λpσq
σ´p2´q dσ

But we have

`

ÿ

τ„N&τ0
N dyadic

` λpτq

λpτ0q

˘4δ0 sup
τ„N

“

ż 8

τ

λpτq

λpσq
σ´p2´q dσ

‰2˘ 1
2 . τ

´p1´q
0 ,

and so the desired bound (8.6) follows for this contribution.

Next, consider the case when

f pσ, ¨q “ xφpR, ¨q, E2pσ,Rqy.

Here we obtain an extra gain in τ by performing an integration by parts with re-
spect to σ. More precisely, we do this in case ξ

1
2
λpτq

λpσq
ě σ´δ, while in the case

ξ
1
2
λpτq

λpσq
ă σ´δ, the gain follows from the L2

dξ-integral.

At this stage, the proof of the proposition will be complete provided we also
show the following:

The estimate
›

›

`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘›

›

S .
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ. This estimate fol-

lows in the low frequency regime ξ ă 1 from the preceding estimates for 4xp1qąτ. It
therefore suffices to prove the bound

›

›χξě1
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘›

›

S .
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.

Again we distinguish between the two parts E1, E2 contributing to f pσ, ¨q accord-
ing to Proposition 5.1. Assuming

f pσ, ¨q “ xφpR, ¨q, λ´2pσqE1pσ,Rqy,
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we get (considering the estimate for 4x̃p1q1 pξq, the one for 4x̃p1q0 pξq being similar)

›

›ξ
1
2`

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dus f pσ, xp0qqp
λ2pτ0q

λ2pσq
ξq dσ

›

›

L2
dξpξě1q

.

ż 8

τ0

` λpσq

λpτ0q

˘0`›
›xξy

1
2` f pσ, xp0qq

›

›

L2
dξ

dσ

.
“
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ

‰

¨

ż 8

τ0

`λpτ0q

λpσq

˘´0`
σ´p2´q dσ

.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.

The case when
f pσ, ¨q “ xφpR, ¨q, λ´2pσqE2pσ,Rqy,

is more complicated, since we only get σ´1-decay. Here we need to exploit the
better smoothness properties of E2pσ,Rqwith respect to σ, and perform integration
by parts with respect to σ. Specifically, we use that

›

›

λpτ0q

λpσq
¨
B

Bσ

`

xφpR,
λ2pτ0q

λ2pσq
ξq, λ´2pσqE2pσ,Rqy

˘
›

›

H0`
dξ

.
`λpτ0q

λpσq

˘´0´
σ´2 ¨ r

›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇs.

Then we obtain the desired bound via integration by parts with respect to σ in the
regime λ2pτ0q

λ2pσq
ξ ą σ´δ for some small enough δ ą 0 (independent of δ2), while in

the regime
λ2pτ0q

λ2pσq
ξ ă σ´δ

we obtain a gain in σ´1 directly from the L2
dξ-integral, as well as exploiting L8dξ

control over f pσ, ¨q. Observe that the preceding reasoning in fact gives a better
bound

›

›χξě1
`

4x̃p1q0 pξq,4x̃p1q1 pξq
˘›

›

S . τ
´δ
0 r

›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇs.

This concludes the proof of Proposition 8.1 . �

In analogy to Proposition 7.5, we also get a straightforward bound for the dis-
crete part of the first iterate: write

fdpσ, xp0qq “ xφdpRq, λ´2pσqNνpε
p0qqy

Proposition 8.3. Define the function 4xp1qd pτq implicitly by the equation

4xp1qd pτq “

ż 8

τ0

Hdpτ, σq ¨ r fdpσ, xp0qq ´ βνpσqBσ4xp1qd pσqs dσ,

and impose the vanishing condition limτÑ8 4xp1qd pτq “ 0. Then we have

τ1´“
ˇ

ˇ4xp1qd pτq
ˇ

ˇ`
ˇ

ˇBτ4xp1qd pτq
ˇ

ˇ

‰

.
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ.
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9. Iterative step; a priori control of higher iterates

Here, we take the conclusions about the structure of the first iterate from the
preceding sections as a priori given and recover them for the next higher iterate.
More precisely, at first, we show this for our approximate Duhamel parameterix
applied to the linear source terms Rpσ, ¨q. As this step will be used infinitely often,
we replace the notation 4xp1q from before by 4xpinputq, and the next iterate will
be denoted by 4xpoutputq. The role of the correction terms to the data 4 ˜̃xp1q0 ,4 ˜̃xp1q1

will be played by functions 4 ˜̃xpinputq
0,1 pξq. The following proposition only takes the

continuous spectral part of the full operator Rpσ,4xpinputqq into account:

Proposition 9.1. Assume that there are functions 4 ˜̃xpinputq
0 pξq,4 ˜̃xpinputq

1 pξq with
›

›p4 ˜̃xpinputq
0 pξq,4 ˜̃xpinputq

1 pξqq
›

›

S̃ ď A, (9.1)

and such that the function 4xpinputqpτ, ξq satisfies the bound (as before κ “ 2p1 `
ν´1qδ0)

sup
τěτ0

“`τ0

τ

˘κ›
›χξą14xpinputqpτ, ξq

›

›

S 1

`
`

ÿ

N&τ0
N dyadic

rsup
τ„N

` τ

τ0

˘2κ›
›χξą1Dτr4xpinputqpτ, ξq ´ S pτqp4 ˜̃xpinputq

0 ,4 ˜̃xpinputq
1 qs

›

›

S 2
s2
˘

1
2

ď A,

and furthermore that there exist p4x̃pinputq
0 pξq,4x̃pinputq

1 pξqq with

›

›p4x̃pinputq
0 ,4x̃pinputq

1 q
›

›

S ď A,
ż 8

0

pρ
1
24x̃pinputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ “ 0,

ż 8

0

pρ
1
24x̃pinputq

0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ “ 0,

such that upon writing

4xpinputqpτ, ξq “ 4ąτxpinputqpτ, ξq ` S pτq
`

4x̃pinputq
0 ,4x̃pinputq

1

˘

, (9.2)

we have

sup
τěτ0

“`τ0

τ

˘κ›
›χξă14ąτxpinputqpτ, ξq

›

›

S 1

`
`

ÿ

N&τ0
N dyadic

sup
τ„N

`

p
τ

τ0
qκ
›

›χξă1Dτ4ąτxpinputqpτ, ξq
›

›

S 2

˘2˘ 1
2 ď A

Then there exist 4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1 satisfying
›

›p4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1 q
›

›

S̃ . τ
´p1´q
0 A, (9.3)
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and such that if we introduce

4xpoutputqpτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

R1pσ,4xpinputqpσ, ξqqp
λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1

˘

,

then we have the high-frequency bound

sup
τěτ0

p
τ0

τ
qκ
›

›χξą14xpoutputqpτ, ξq
›

›

S 1

`
`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξą1Dτr4xpoutputqpτ, ξq ´ S pτq
`

4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1

˘

s
›

›

2
S 2

˘
1
2 . A.

(9.4)

Moreover, there is a splitting

4xpoutputqpτ, ξq “ 4xpoutputq
ąτ pτ, ξq ` S pτq

`

4x̃poutputq
0 pξq,4x̃poutputq

1 pξq
˘

(9.5)

such that we have

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă14xpoutputq
ąτ pτ, ξq

›

›

S 1
`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξă1Dτ4ąτxpoutputqpτ, ξq
›

›

S 2
s2
˘

1
2

`
›

›

`

4x̃poutputq
0 pξq,4x̃poutputq

1 pξq
˘›

›

S . A,
(9.6)

and furthermore we have the orthogonality conditions
ż 8

0

pρ
1
24x̃poutputq

0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ “ 0,

ż 8

0

pρ
1
24x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ “ 0.

Remark 9.1. One can obtain the same conclusion by imposing the weaker condition

` ξ
1
2´

xξy
1
2´
4x̃pinputq

0 pξq,4x̃pinputq
1 pξq

˘›

›

S . A.

Proof. We follow the pattern of proof of Proposition 8.1, Proposition 7.1.

Step 1: High frequency estimates. Here we prove the bound (9.4). We use the
analogue of (7.5), which for us becomes

R1pτ,4xpinputqqpξq “ β2
νpτqKcc4xpinputq`βνpτqKccDτ4xpinputq`β2

νpτqK
2
cc4xpinputq

We shall in detail treat the contribution of the first two terms on the right, the last
one being more of the same and similar to the first term. We further split this into
the following tasks:
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(1a): The contribution of β2
νpτqKcc4xpinputq to the term p τ0

τ q
κ
›

›χξą14xpoutputqpτ, ξq
›

›

S 1
.

We need to bound

›

›χξą1

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσq

`

Kcc4xpinputq˘pσ,
λ2pτq

λ2pσq
ξq dσ

›

›

xξy´1´L2
dξ

We distinguish between the following cases for the integral defining Kcc:

(1a.i): λ2pτq

λ2pσq
ξ ! η. In particular, η ą 1. Here we can use the high-frequency

bound for 4xpinputq, as well as the fast decay of the kernel Fp¨, ¨q in Kcc, which
indeed amounts to (see [28])

`

r
λ2pτq

λ2pσq
ξs2η

˘´N
.

This factor more than compensates for the growing term

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

„
λ2pτq

λ2pσq

Then using

ˇ

ˇ

`

K λ2pτq
λ2pσq

ξ!η
4xpinputq˘pσ,

λ2pτq

λ2pσq
ξq
ˇ

ˇ . r
λ2pτq

λ2pσq
ξs´2

›

›χηą1xηy
1`4xpinputqpσ, ¨q

›

›

L2
dη
,

we get

›

›χξą1

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ β2
νpσq

`

K λ2pτq
λ2pσq

ξ!η
4xpinputq˘pσ,

λ2pτq

λ2pσq
ξq dσ

›

›

xξy´1´L2
dξ

. A
ż τ

τ0

σ´2` σ

τ0

˘κ dσ . A,

which indeed improves the bound needed, provided δ0 is chosen sufficiently small.

(1a.ii): λ2pτq

λ2pσq
ξ „ η. In particular, η & 1. Here one needs to be more careful

since the decay of the kernel Fp¨, ¨q is weaker in the singular region, see [28]. Still,
we can easily close, by using

λpτq

λpσq
¨
›

›p
λ2pτq

λ2pσq
ξq

1
2`K λ2pτq

λ2pσq
ξ„η
4xpinputqpσ, ¨q

›

›

L2
dξ
.
›

›xηy0`4xpinputqpσ, ¨q
›

›

L2
dη
,

which is a consequence of the bound
ˇ

ˇξ
1
2`Fpξ, ηqρpηq

ˇ

ˇ . ξ0`.
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It follows that

›

›χξą1

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ β2
νpσq

`

K λ2pτq
λ2pσq

ξ„η
4xpinputq˘pσ,

λ2pτq

λ2pσq
ξq dσ

›

›

xξy´1´L2
dξ

. A
ż τ

τ0

σ´2` σ

τ0

˘κ dσ . A,

(1a.iii): λ2pτq

λ2pσq
ξ " η. Here one distinguishes between the regimes η ą 1, η ă 1

for defining K λ2pτq
λ2pσq

ξ"η
4xpinputqpσ, ¨q. In the former case, one argues exactly as in

situation (1a.i). In the latter case we need to exploit the structure of 4xpinputq given
by (9.2). The contribution of S pτq

`

4x̃pinputq
0 ,4x̃pinputq

1

˘

is handled as in case (1(i))

in the proof of Proposition 7.1, with S pτq
`

4x̃pinputq
0 ,4x̃pinputq

1

˘

replacing xp0q. Thus
we then reduce to bounding the expression

›

›χξą1

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ β2
νpσq

`

Kηă14ąσxpinputq˘pσ,
λ2pτq

λ2pσq
ξq dσ

›

›

xξy´1´L2
dξ
.

This is straightforward since

ˇ

ˇ

`

Kηă14ąσxpinputq˘pσ,
λ2pτq

λ2pσq
ξq
ˇ

ˇ .
` λ2pτq

λ2pσq
ξ
˘´N›

›η´0´4ąσxpinputq
›

›

L2
dη
,

which then gives

›

›χξą1

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ β2
νpσq

`

Kηă14ąσxpinputq˘pσ,
λ2pτq

λ2pσq
ξq dσ

›

›

xξy´1´L2
dξ

. A
ż τ

τ0

σ´2` σ

τ0

˘κ dσ . A.

(1b): The contribution of β2
νpτqKcc4xpinputq to the term

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξą1Dτr4xpoutputqpτ, ξq ´ S pτq
`

4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1

˘

s
›

›

2
S 2

˘
1
2 .

Note that
4xpoutputqpτ, ξq ´ S pτq

`

4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1

˘
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is simply the pure Duhamel term

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

R1pσ,4xpinputqpσ, ξqqp
λ2pτq

λ2pσq
ξq dσ.

We then briefly go through the cases (1b.i) - (1b.iii) which correspond to (1a.i) -
(1a.iii):

(1b.i) and (1b.iii). One gains
` λpτq

λpσq

˘´N , and the preceding analysis gives a gain
of σ´2. This allows to include a weight p ττ0

qκ (in fact much more) and square-sum
over dyadic τ ě τ0.

(1b.ii). Here the gain is smaller but still more than enough to close. One uses
that

λpτq

λpσq
¨
›

›p
λ2pτq

λ2pσq
ξq

1
2`K λ2pτq

λ2pσq
ξ„η
4xpinputqpσ, ¨q

›

›

L2
dξ

.
λpσq

λpτq

›

›xηy
1
2`4xpinputqpσ, ¨q

›

›

L2
dη

and continues as in (1a.ii).

(1c): The contribution of βνpτqKccDτ4xpinputq to the term p τ0
τ q

κ
›

›χξą14xpoutputqpτ, ξq
›

›

S 1
.

Here we need to bound the expression

›

›χξą1

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

βνpσq
`

KccDσ4xpinputq˘pσ,
λ2pτq

λ2pσq
ξq dσ

›

›

xξy´1´L2
dξ
,

which we do in close analogy to case (1a). In fact, while we only have weight
βνpσq instead of β2

νpσq, we get better decay by assumption forDσ4xpinputq.

(1d): The contribution of βνpτqKccDτ4xpinputq to the term

`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξą1Dτr4xpoutputqpτ, ξq ´ S pτq
`

4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1

˘

s
›

›

2
S 2

˘
1
2 .

This case is a bit more delicate than the preceding (1a) - (1c), in that the estimate
is sharp here. First, using the already established Proposition 7.4, we may replace
4xpinputq in the high-frequency regime ξ ą 1 by

Č4xpinputq :“ 4xpinputq ´ S pτq
`

4 ˜̃xpinputq
0 ,4 ˜̃xpinputq

1

˘

and in the low frequency regime ξ ă 1 by 4ąτxpinputq.
Then, following the steps in (1a) and using the improvement in (1b.ii) above as

well as the Cauchy-Schwarz inequality to reduce over a square-sum over dyadic σ,
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we get the bound
`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξą1Dτr4xpoutputqpτ, ξq ´ S pτq
`

4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1

˘

s
›

›

2
S 2

˘
1
2

.
`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

ÿ

τ0.M.N
M dyadic

p
M
τ0
q´2κ`λpMq

λpNq

˘2 sup
σ„M

p
σ

τ0
q2κ

›

›Dσ
Č4xpinputq

›

›

2
S 2pξą1q

˘
1
2

`
`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

ÿ

τ0.M.N
M dyadic

p
M
τ0
q´2κ`λpMq

λpNq

˘2 sup
σ„M

p
σ

τ0
q2κ

›

›Dσ4ąσxpinputq
›

›

2
S 2pξă1q

˘
1
2

.
`

ÿ

τ0.M
M dyadic

sup
σ„M

p
σ

τ0
q2κ

›

›Dσ
Č4xpinputq

›

›

2
S 2pξą1q

˘
1
2 `

`

ÿ

τ0.M
M dyadic

sup
σ„M

p
σ

τ0
q2κ

›

›Dσ4ąσxpinputq
›

›

2
S 2pξă1q

˘
1
2

The last expression is . A according to the assumptions of the proposition. This
concludes Step 1.

Step 2: The choice of 4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1 . Introduce

4ąτxpoutputqpτ, ξq :“

´

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

R1pσ,4xpinputqpσ, ξqqp
λ2pτq

λ2pσq
ξq dσ

and further write

4x̃poutputq
0 pξq :“

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

R1pσ,4xpinputqpσ, ξqqp
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xpoutputq
0 ,

4x̃poutputq
1 pξq :“

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dusR1pσ,4xpinputqpσ, ξqqp
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xpoutputq
1 .

Here the choice of the correction terms 4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1 will be made according
to the following

Lemma 9.2. There exist 4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1 satisfying (9.3) and such that we have
ż 8

0

pρ
1
24x̃poutputq

0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ “ 0,

ż 8

0

pρ
1
24x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ “ 0,
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where 4x̃poutputq
0,1 pξq are defined through the formula preceding the lemma.

Proof. (lemma) We provide it for 4 ˜̃xpoutputq
1 , the argument for 4 ˜̃xpoutputq

0 being iden-
tical. Following closely the proof of Lemma 7.3, it suffices to prove the estimate

ˇ

ˇ

ż 8

0

pρ
1
2 4̃x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0 ¨ A, (9.7)

where we set

4̃x̃poutputq
1 :“

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dusR1pσ,4xpinputqpσ, ξqqp
λ2pτ0q

λ2pσq
ξq dσ

Also, observe that in light of Lemma 7.3 and its proof, we may replace the input
χξą14xpinputq by χξą1

Č4xpinputq, while we can replace χξă14xpinputq by χξă14ąτxpinputq.
We shall do so below without further mention.

As usual, write schematically

R1pσ,4xpinputqpτ, ξqq “ β2
νpσqKcc4xpinputqpσ, ξq ` βνpσqKccDσ4xpinputqpσ, ξq,

where we omit the contribution of the error term β2
νpσqK

2
cc4xpinputqpσ, ξq whose

contribution is handled like the one of the first term on the right.

(2.i) Contribution of χξą1
Č4xpinputqpτ, ξq. Here we divide further into different

regimes for the output frequency variable ξ:

(2.i.1): Output frequency ξ ă 1. Here we have a non-resonant interaction inside
Kcc . . . since we then also have λ2pτ0q

λ2pσq
ξ ă 1, and so we use the point wise bound

(recall the decay of the kernel of Kcc)

ˇ

ˇβ2
νpσqKccpχηą1

Č4xpinputqqpσ,
λ2pτ0q

λ2pσq
ξq
ˇ

ˇ . β2
νpσq

›

›χηą1
Č4xpinputq

›

›

L2
dη

. β2
νpσqp

σ

τ0
qκ ¨ A.

Further, bound

ˇ

ˇ

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ˇ

ˇ .
λpτ0q

λpσq
.

Finally, we easily get for the contribution of

β2
νpσqKcc

`

χξą1
Č4xpinputq

˘
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to the left hand side of (9.7) the bound the bound

ˇ

ˇ

ż 1

0

pρ
1
2 4̃x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0

ż 8

τ0

β2
νpσq

λpτ0q

λpσq
p
σ

τ0
qκ dσ ¨ A

. τ0`
0 ¨ A.

The contribution of βνpσqKccpχηą1Dσ
Č4xpinputqq is handled similarly.

(2.i.2): Output frequency ξ ą 1. Observe that if λ2pτ0q

λ2pσq
ξ ă 1, then

ˇ

ˇ

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ˇ

ˇ . ξ´
1
2 ¨

λpτ0q

λpσq

Combined with a factor ρ
1
2 ξ´

3
4 „ ξ´

1
2 , the ξ-integral converges absolutely up to

a factor
ˇ

ˇ logpλpτ0q

λpσq
q
ˇ

ˇ. Thus the corresponding contribution to the left hand side of
(9.7) is bounded by

. A ¨
ż 8

τ0

ˇ

ˇ logp
λpτ0q

λpσq
q
ˇ

ˇ

“

β2
νpσq

λpτ0q

λpσq
p
σ

τ0
qκ ` βνpσq

λpτ0q

λpσq

‰

dσ,

which in turn is . A. On the other hand, when λ2pτ0q

λ2pσq
ξ ě 1, we get

ˇ

ˇ

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ˇ

ˇ .
λ2pτ0q

λ2pσq
,

and unless we are in the resonant case η „ λ2pτ0q

λ2pσq
ξ for the convolution type operator

Kcc, we can easily bound the ξ-integral absolutely, using the kernel decay from
[28], while keeping a factor λpτ0q

λpσq
which suffices to ensure convergence of the σ-

integral using crude bounds.
We are thus reduced here to the contribution of the resonant case η „ λ2pτ0q

λ2pσq
ξ, for

which we use

K λ2pτ0q

λ2pσq
ξ„η
pχηą1

Č4xpinputqqpσ,
λ2pτ0q

λ2pσq
ξq
›

›

L2
dξ
.
λpσq

λpτ0q

›

›χηą1
Č4xpinputqpσ, ¨q

›

›

L2
dη

In fact, one may include a further factor
`λ2pτ0q

λ2pσq
ξ
˘

1
2 into K λ2pτ0q

λ2pσq
ξ„η
p. . .q due to the

decay of its kernel, and so using the Cauchy-Schwarz inequality we may bound the
corresponding contribution to the left hand side of (9.7) by

. A ¨
ż 8

τ0

rβ2
νpσqp

σ

τ0
qκ ` βνpσqp

σ

τ0
q´κs dσ . A.

This concludes step (2.i), i. e. the contribution of the high-frequency term

χξą1
Č4xpinputqpτ, ξq.
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(2.ii) Contribution of χξă14ąτxpinputqpτ, ξq. We split into the usual interaction
types between η and ξ inside

β2
νpσqKccpχηă14ąσxpinputqq, βνpσqKccpχηă1Dσ4ąσxpinputqq

Throughout η ă 1, by assumption.

(2.ii.1): η " λ2pτ0q

λ2pσq
ξ. First, assume that ξ ă 1, i. e. consider

ż 1

0

pρ
1
2 4̃x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ,

where we now set

4̃x̃poutputq
1 pξq :“

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dusR1pσ, χηă14ąσxpinputqqp
λ2pτ0q

λ2pσq
ξq dσ

Then we use the point wise bound

ˇ

ˇR1pσ, χηă14ąσxpinputqqp
λ2pτ0q

λ2pσq
ξq
ˇ

ˇ

. β2
νpσq

›

›η´0`4ąσxpinputq
›

›

L2
dηpηă1q ` βνpσq

›

›η´0`Dσ4ąσxpinputq
›

›

L2
dηpηă1q,

and so for ξ ă 1 we obtain

ˇ

ˇ4̃x̃poutputq
1 qpξq

ˇ

ˇ . β2
νpσqp

σ

τ0
qκ ¨

λpτ0q

λpσq
A` βνpσqp

σ

τ0
q´κ ¨

λpτ0q

λpσq
A

It follows after integration over σ ě τ0 that

ˇ

ˇ

ż 1

0

pρ
1
2 4̃x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . A log τ0.

Next, consider the case ξ ą 1. Taking advantage of the decay properties of the
kernel of K , we have for ξ ą 1 the crude bound

ˇ

ˇ4x̃poutputq
1 qpξq

ˇ

ˇ . x
λpτ0q

λpσq
ξy´1“β2

νpσqp
σ

τ0
qκ ¨

λpτ0q

λpσq
A` βνpσqp

σ

τ0
q´κ ¨

λpτ0q

λpσq
A
‰

.

From here it easily follows that for this contribution we get

ˇ

ˇ

ż 8

1

pρ
1
2 4̃x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . A.
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(2.ii.2): η „ λ2pτ0q

λ2pσq
ξ. Here we use that

›

›x
λpτ0q

λpσq
ξ

1
2 y
xξy

1
2

ξ
1
2

R1pσ, χηă14ąσxpinputqqp
λ2pτ0q

λ2pσq
ξq
›

›

L2
dξ

. p
λpτ0q

λpσq
q´1“β2

νpσq
›

›η´0`4ąσxpinputq
›

›

L2
dη
` βνpσq

›

›η´0`Dσ4ąσxpinputq
›

›

L2
dη

‰

,

where we use the fact that we can absorb the singular weight ξ´
1
2 into the kernel

defining K
η„

λ2pτ0q

λ2pσq
ξ
. This in turn yields

›

›

xξy
1
2`

ξ
1
2

4̃x̃poutputq
1 qpσ, ξq

›

›

L2
dξ
. β2

νpσq
›

›η´0`4ąσ x̃p1q
›

›

L2
dη
` βνpσq

›

›η´0`Dσ4ąσ x̃p1q
›

›

L2
dη
.

From here one finally infers that for this contribution we also get

ˇ

ˇ

ż 8

0

pρ
1
2 4̃x̃poutputq

1 qpξq

ξ
3
4

sinrντ0ξ
1
2 s dξ

ˇ

ˇ . A.

(2.ii.3): η " λ2pτ0q

λ2pσq
ξ. This is similar to case (2.ii.1) and omitted.

The proof of Lemma 9.2 is now completed as in (2) of the proof of Lemma 7.3.
�

Step 3: Proof of required S -bounds for the initial data p4x̃poutputq
0 ,4x̃poutputq

1 q.
Recall that these are defined at the beginning of Step 2. In light of Proposition 7.1
and its proof, it suffices to replace the high-frequency input χξą14xpinputqpτ, ξq by

χξą1
Č4xpinputqpτ, ξq with the latter defined in (1d) of Step 1 further above, while the

low-frequency input χξă14xpinputqpτ, ξq may be replaced by χξă14ąτxpinputqpτ, ξq.
We now encapsulate the required S -bound in the following

Lemma 9.3. Under the hypotheses of Proposition 9.1, we have
›

›p4x̃poutputq
0 ,4x̃poutputq

1 q
›

›

S . A.

Proof. (lemma) We shall consider in detail the slightly more difficult term4x̃poutputq
0 ,

on account of its more singular behaviour near ξ “ 0. The second term 4x̃poutputq
1

is handled similarly.
(3i): High output frequencies ξ ą 1. Here we need to bound

›

›ξ1`χξą14x̃poutputq
0

›

›

L2
dξ
.

Distinguish between different interactions in Kcc:

(3i.1): λ2pτ0q

λ2pσq
ξ ! η, η ă 1. Observe that in this case

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

„
λpτ0q

λpσq
ξ´

1
2 ,
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and so we have the bound

ˇ

ˇξ1`χξą1
λ

3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

ˇ

ˇ . p
λ2pτ0q

λ2pσq
ξq0`r

λpτ0q

λpσq
s1´

Then recalling that the basic constituents of R1pσ,4xpinputqq are β2
νpσqKcc4xpinputq

as well as βνpσqKccDσ4xpinputq, as well as the fact that for low frequencies, η ă 1,
we may replace 4xpinputq by 4ąσxpinputq, we can bound the contribution of

β2
νpσqK λ2pτ0q

λ2pσq
ξ!η
pχ¨ă14ąτxpinputqq

as follows5 :

›

›ξ1`χξą1
λ

3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ β2
νpσqK λ2pτ0q

λ2pσq
ξ!η
pχηă14ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq
›

›

L2
dξ

“
›

›ξ1`χξą1
λ

3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ β2
νpσqK λ2pτ0q

λ2pσq
ξ!η
pχηă14ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq
›

›

L2
dξp

λ2pτ0q

λ2pσq
ξă1q

. p
λpσq

λpτ0q
q2δ0β2

νpσq
›

›K λ2pτ0q

λ2pσq
ξ!η
pχηă14ąσxpinputqqpσ, ¨q

›

›

L8dξ
.

Recalling the definition of Kcc, this in turn can be bounded by

p
λpσq

λpτ0q
q2δ0β2

νpσq
›

›K λ2pτ0q

λ2pσq
ξ!η
pχηă14ąσxpinputqqpσ, ¨q

›

›

L8dξ

. p
λpσq

λpτ0q
q2δ0β2

νpσq
›

›η´0`χηă14ąσxpinputqqpσ, ¨q
›

›

L2
dη

. p
λpσq

λpτ0q
q4δ0β2

νpσq ¨ A.

Integrating over σ ě τ0 yields the desired bound for this contribution, provided
δ0 ! 1. Note that we take crucial advantage here of the decay β2

νpσq, and so the ar-
gument for the second type of contribution, βνpσqKccpχ¨ă1Dσ4ąσxpinputqq, which
is just borderline integrable (in light of our assumptions on Dσ4ąσxpinputq), will
be more delicate.

5Throughout recall the notation explained after (3.3)
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Specifically, we observe that for fixed dyadic frequency 2 j ă 1, we have

›

›ξ1`χξą1
λ

3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ!η
pχηă1Dσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq
›

›

L2
dξp

λ2pτ0q

λ2pσq
ξ„2 jq

. p
λpσq

λpτ0q
q2δ02

p1´q
2 jβνpσq

›

›η´0`χηă1Dσ4ąσxpinputqqpσ, ¨q
›

›

L2
dη
.

Then using orthogonality it follows that

›

›ξ1`χξą1

ż 8

τ0

χ λ2pτ0q

λ2pσq
ξă1

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ!η
pχηă1Dσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq dσ

›

›

L2
dξ

.
ÿ

jă0

`

ÿ

kPZ

›

›ξ1`χξą1

ż 8

τ0

χ λ2pτ0q

λ2pσq
ξ„2 j

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ!η
pχηă1Dσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq dσ

›

›

2
L2

dξpξ„2kq

˘
1
2

This last expression can be bounded in turn by (using the previous estimates)

ÿ

jă0

`

ÿ

kPZ

›

›ξ1`χξą1

ż 8

τ0

χ λ2pτ0q

λ2pσq
ξ„2 j

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ!η
pχηă1Dσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq dσ

›

›

2
L2

dξpξ„2kq

˘
1
2

.
ÿ

jă0

2
p1´q

2 j`
ÿ

kPZ

sup
λ2pσq„λ2pτ0q2k´ j

p
λpσq

λpτ0q
q4δ0

›

›η´0`χηă1χσěτ0Dσ4ąσxpinputqpσ, ¨q
›

›

2
L2

dη

˘
1
2

. A.

(3i.2): λ2pτ0q

λ2pσq
ξ ! η, η ą 1. Here one replaces the norms

›

›η´0`χηă1χσěτ04ąσxpinputqpσ, ¨q
›

›

L2
dη

by
›

›χηą1χσěτ0
Č4xpinputqpσ, ¨q

›

›

L2
dη
.
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Also, since now we can also have λ2pτ0q

λ2pσq
ξ ą 1, but we can always absorb a large

weight λ2pτ0q

λ2pσq
ξ into the kernel of K λ2pτ0q

λ2pσq
ξ!η

and even gain pλ
2pτ0q

λ2pσq
ξq´1, upon local-

ising λ2pτ0q

λ2pσq
ξ „ 2 j, we can replace the gain 2

p1´q j
2 in the last part of (3i.1) by the

gain

mint2
p1´q

2 j, 2´ ju.

Otherwise, one proceeds just as in (3i.1).

(3i.3): λ2pτ0q

λ2pσq
ξ „ η, η ă 1. Here we follow a similar pattern, exploiting an or-

thogonality argument to control the contribution of βνpσqKccDσ4ąσxpinputq. We
spell this case out in detail, omitting the simpler contribution of β2

νpσqKcc4ąσxpinputq.
Thus we use that for 2 j ă 1 we have

›

›βνpσqpK λ2pτ0q

λ2pσq
ξ„η

χη„2 jDσ4ąσxpinputqqpσ,
λ2pτ0q

λ2pσq
ξq
›

›

L2
dξ

. p
λpτ0q

λpσq
q´1βνpσq2

j
2
›

›η´0`χηă1Dσ4ąσxpinputqpσ, ¨q
›

›

L2
dη

Here the gain of 2
j
2 is a consequence of the decay properties of the kernel defining

Kcc. We combine this with

ˇ

ˇξ1`χξą1
λ

3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

ˇ

ˇ . ξ0`λpτ0q

λpσq

provided λ2pτ0q

λ2pσq
ξ ă 1 and use an orthogonality argument to obtain

›

›ξ1`χξą1

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ„η
pχηă1Dσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq dσ

›

›

L2
dξ

.
ÿ

jă0

`

ÿ

kPZ

›

›ξ1`χξą1

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ„η
pχη„2 jDσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq dσ

›

›

2
L2

dξpξ„2kq

˘
1
2 ,
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and further

ÿ

jă0

`

ÿ

kPZ

›

›ξ1`χξą1

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ βνpσqK λ2pτ0q

λ2pσq
ξ„η
pχη„2 jDσ4ąσxpinputqqpσ,

λ2pτ0q

λ2pσq
ξq dσ

›

›

2
L2

dξpξ„2kq

˘
1
2

.
ÿ

jă0

2
j
2
`

ÿ

k

sup
λ2pσq„2k´ jλ2pτ0q

p
λ2pσq

λ2pτ0q
q2δ0

›

›η´0`χηă1Dσ4ąσxpinputqqpσ, ¨q
›

›

2
L2

dη

˘
1
2

. A.

(3i.4): λ2pτ0q

λ2pσq
ξ „ η, η ą 1. This case is handled just like the preceding one

except that now one uses decay in η´1 for the kernel of Kcc.

(3i.5): λ2pτ0q

λ2pσq
ξ " η. This is analogous to cases (3i.1), (3i.2) and omitted.

(3ii): Low output frequencies ξ ă 1. Here we need to bound
›

›ξ´0`χξă14xpoutputq
0

›

›

L2
dξ
.

We follow the scheme of the high-frequency case (3i), and only consider the more
delicate contribution of βνpσqKccDσ4xpinputq:

(3ii.1): λ2pτ0q

λ2pσq
ξ ! η, η ă 1. We perform integration by parts with respect to σ

here in order not to lose a potentially large factor τ0`
0 . Thus write

K λ2pτ0q

λ2pσq
ξ!η
pDσ4ąσxpinputqq

“

ż 8

0
χ λ2pτ0q

λ2pσq
ξ!η

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

pDσ4ąσxpinputqqpσ, ηq dη

“

ż 8

0
χξ!η̃

Fpλ
2pτ0q

λ2pσq
ξ,

λ2pτ0q

λ2pσq
η̃qρp

λ2pτ0q

λ2pσq
η̃q

ξ ´ η̃
Bσ
`

p4ąσxpinputqqpσ,
λ2pτ0q

λ2pσq
η̃q
˘

dη

` error,

where the term error gains an extra weight σ´1 and is hence handled like the con-
tribution of β2

νpσqKcc . . ..
Inserting this expression into the formula for 4xpoutputq

0 and performing an inte-

gration by parts with respect to σ either gains σ´1 or else a factor λpτ0q

λpσq
ξ

1
2 , but at

the expense of replacing Dσ4xpinputq by 4xpinputq. In either case, estimating the
ξ-integral for the output brute force, we bound this contribution to

›

›ξ´0`χξă14xpoutputq
0

›

›

L2
dξ
.
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by the expression

.

ż 8

τ0

p
σ

τ0
qκrτ0`

0 σ´2 ` σ´1λpτ0q

λpσq
sp
σ

τ0
q´κ

›

›η´0`χηă14ąσxpinputqqpσ, ¨q
›

›

L2
dη

dσ

. A,

provided δ0 ! 1. Observe that the factor τ0`
0 here comes from absorbing the

singular weight ξ´0` into

sinrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dus.

(3ii.2): λ2pτ0q

λ2pσq
ξ ! η, η ą 1. This is analogous to the preceding case, one re-

places 4ąσxpinputq by Č4xpinputq (defined as in (1d) above).

(3ii.3): λ2pτ0q

λ2pσq
ξ „ η, in particular η ă 1. Here we observe that the singular

weight ξ´0` is better than η´0`, and the weight ξ´
1
2 may be absorbed into the ker-

nel of K λ2pτ0q

λ2pσq
ξ„η

. Then the corresponding contribution to
›

›ξ´0`χξă14xpoutputq
0

›

›

L2
dξ

is bounded by

.

ż 8

τ0

βνpσq
›

›η´0`Dσ4ąσxpinputqpσ, ¨q
›

›

L2
dηpηă1q dσ

.

ż 8

τ0

βνpσqp
σ

τ0
q´κ ¨ p

σ

τ0
qκ
›

›η´0`Dσ4ąσxpinputqpσ, ¨q
›

›

L2
dηpηă1q dσ

. A ¨
ż 8

τ0

βνpσqp
σ

τ0
q´κ dσ . A.

(3ii.4): λ2pτ0q

λ2pσq
ξ " η, in particular η ă 1. Here we can trade the singular weight

ξ´0` for a better singular weight η´0` and then estimate the term like in case
(3ii.3).

This completes case (3ii), and the proof of the lemma is complete. �

Step 4: Proof of the remaining low frequency bound

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă14xpoutputq
ąτ pτ, ξq

›

›

S 1

`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξă1Dτ4ąτxpoutputqpτ, ξq
›

›

S 2
s2
˘

1
2 . A.

The bound on the first expression

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă14xpoutputq
ąτ pτ, ξq

›

›

S
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follows precisely as in the proof of the preceding lemma, provided one replaces τ0
by τ in the Duhamel integral. Thus consider now the more complicated second ex-
pression involving the square-sum. We shall again only consider the more difficult
contribution of βνpσqKccpDσ4xpinputqq. Restricting this further to

βνpσqKccpχ¨ă1Dσ4ąσxpinputqq,

we arrive at the expression

χξă1

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨ βνpσqKccpχηă1Dσ4ąσxpinputqqpσ,
λ2pτq

λ2pσq
ξq dσ

Observe that for dyadic N & τ0 and τ „ N we have (here M also denotes dyadic
numbers)

p
N
τ0
qκ
›

›ξ´0`χξă1

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨ βνpσqKpχηă1Dσ4ąσxpinputqqpσ,
λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξ

. p
N
τ0
qκ

ÿ

M&N
M dyadic

` λpN
λpMq

q sup
σ„M

›

›η´0`χηă1Dσ4ąσxpinputqqpσ, ¨q
›

›

L2
dη

and from here we easily infer
`

ÿ

N&τ0
N dyadic

p
N
τ0
qκ
›

›ξ´0` . . .
›

›

2
L2

dξ

˘
1
2

.
`

ÿ

M&τ0
M dyadic

p
M
τ0
q2κ sup

σ„M

›

›η´0`χηă1Dσ4ąσxpinputqqpσ, ¨q
›

›

2
L2

dη

˘
1
2

. A,

as required. The contribution of the high frequency input

βνpσqKccpχ¨ą1Dσ
Č4xpinputqq

is handled similarly.

This concludes Step 4 and thereby the proof of Proposition 9.1.
�

The proof of the remark following this proposition is immediate in light of
Proposition 7.1.
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The preceding proposition only dealt with the transition from the continuous
spectral part 4xpinputqpτ, ξq to the continuous spectral part 4xpoutputq, but we also
need to study the transition for the discrete spectral part. Here the natural hy-
pothesis for the inductive step is furnished by the conclusion of Proposition 7.5,
Proposition 8.3:

Proposition 9.4. LetKcd be defined as in [28], [27]. Then if supτěτ0
τp1´q|4xpinputq

d pτq|`

supτěτ0
τp1´q|Bτ4xpinputq

d pτq| ď A, and we denote schematically

`

Rcdp4xpinputq
d q

˘

pτ, ξq :“ β2
νpτqKcdpξq4xpinputq

d pτq ` βνpτqKcdpξqBτ4xpinputq
d pτq

Then there are 4 ˜̃xpoutputq
0 pξq,4 ˜̃xpoutputq

1 pξq satisfying

›

›p4 ˜̃xpoutputq
0 ,4 ˜̃xpouptutq

1 q
›

›

xξy´
1
2´ξ0`L2

dξ

. τ
´p2´q
0 A

and such that if we put

4xpoutputqpτ, ξq :

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

`

Rcdp4xpinputq
d q

˘

pσ, ¨q
˘

p
λ2pτq

λ2pσq
ξq dσ

` S pτqp4 ˜̃xpoutputq
0 ,4 ˜̃xpoutputq

1 q,

then the exact same conclusions obtain as in Proposition 9.1 but with A replaced
by the better τ´p1´q0 A.

The proof of this proposition is similar in outline but in effect much simpler than
the one of Proposition 9.1, and hence omitted.

To finish the inductive step for the linear source terms of the schematic form
Rpτ,4xq, we also have to study their projection onto the unstable spectral part,
i. e. the operators Rdpτ,4xq. Borrowing notation from [28], [27], introduce the
schematic operator

Rdpσ,4xq “ β2
νpσq

“

Kdcp4xpσ, ¨qq `Kdd4xdpσq
‰

` βνpσq
“

KdcpDσ4xpσ, ¨qq `KddBσ4xdpσq
‰

Then we have the following

Proposition 9.5. Assume that 4xpinputqpτ, ξq is as in the statement of Proposi-
tion 9.1, and that moreover we have

|4xpinputq
d pτq| ` |Bτ4xpinputq

d pτq| ď τ´p1´qA, @τ ě τ0.
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Then writing 4xpinputq “

˜

4xpinputq
d

4xpinputq

¸

and setting

4xpoutputq
d pτq :“

ż 8

τ
Hdpτ, σqrRdpσ,4xpinputqq ´ βνpσq4d xpinputqs dσ,

we have
sup
τěτ0

`

τ|4x̃p2qd pτq| ` τ|Bτ4x̃p2qd pτq|
˘

. A.

The three propositions Proposition 9.5, Proposition 9.4, Proposition 9.1, com-
bined with Proposition 7.1 completely describe the contribution of the linear source
term

Rpτ,4xp j´1qq

to the next iterate 4xp jq in the iterative step (6.4). To complete control over the
iterative step, we then also need to control the contribution of the source term

4 f p j´1q,

which we recall is given by the expression

4 f p j´1qpτ, ξq :“
ˆ

xφd, λ
´2pτqRNνpε

p j´1qqy ´ λ´2pτqRNνpε
p j´2qqy

F
`

λ´2pτqRNνpε
p j´1qq

˘

pξq ´ λ´2pτqRNνpε
p j´2qq

˘

pξq

˙

.

Thus we now formulate the corresponding iterative step for this contribution. Here
we carefully single out the part where we do not gain a smallness factor, and the
part for which we do gain smallness. Observe that the contribution of the discrete
spectral part always leads to smallness gains and is hence in some sense negligible
in the iteration scheme later on:

Proposition 9.6. Assume that

ε̃pkqpτ,Rq “ xpkqd pτqφdpRq `
ż 8

0
xpkqpτ, ξqφpR, ξqρpξq dξ, 1 ď k ď j´ 1,

with

xpkqpτ, ξq “

˜

xpkqd pτq

xpkqpτ, ξq

¸

“ xp0q `
ÿ

1ďlďk

4xplqpτ, ξq, 1 ď l ď k,

and xp0q “
ˆ

xdpτq
xpτ, ξq

˙

as in the statement of Lemma 2.1. Assume that we have

sup
1ďkď j´1

“
ˇ

ˇxpkqd pτq
ˇ

ˇ`
ˇ

ˇBτxpkqd pτq
ˇ

ˇ

‰

ď Bτ´p1´q,

and furthermore each of the xpkqpτ, ξq, 1 ď k ď j ´ 1, admits a structure and
bounds like the function 4xpinputq in Proposition 9.1 with a constant B ! 1 (instead
of A there). Further, assume that

ˇ

ˇ4xp j´1q
d pτq

ˇ

ˇ`
ˇ

ˇBτ4xp j´1q
d pτq

ˇ

ˇ

‰

ď Adτ
´p1´q,

and that the difference 4xp j´1qpτ, ξq admits the same structure and estimates as
4xpinputq in Proposition 9.1 with constant A. Then we can conclude the following:
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‚ For the discrete contribution to the next iterate 4xp jq
d pτq, we get

ˇ

ˇ4xp jq
d pτq

ˇ

ˇ`
ˇ

ˇBτ4xp jq
d pτq

ˇ

ˇ .
ˇ

ˇ

ż 8

τ
Hdpτ, σq4 f p j´1qpσq dσ

ˇ

ˇ

. τ´p1´q
“

Adτ
´1
0 ` A

‰

‚ For the continuous spectral part, there is a splitting

4 f p j´1qpτ, ξq “ 4 f p j´1q
bad pτ, ξq ` 4 f p j´1q

good pτ, ξq,

such that we have the following conclusion: there exist 4 ˜̃xp jq
good,κ,4

˜̃xp jq
bad,κ,

κ “ 0, 1, satisfying the bounds
›

›p4 ˜̃xp jq
good,0,4

˜̃xp jq
good,1q

›

›

S 2
. τ

´p1´q
0 rAB`Adτ

´1
0 s,

›

›p4 ˜̃xp jq
bad,0,4

˜̃xp jq
bad,1q

›

›

S 2
. τ

´p1´q
0 rA`Adτ

´1
0 s,

and such that if we put

4xp jq
goodpτ, ξq :“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

4 f p j´1q
good pσ,

λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xp jq
good,0,4

˜̃xp jq
good,1

˘

,

and analogously

4xp jq
badpτ, ξq :“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

4 f p j´1q
bad pσ,

λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xp jq
bad,0,4

˜̃xp jq
bad,1

˘

,

then 4xp jq
good,4xp jq

bad admit the same structure and estimates as the function

4xpoutputq in Proposition 9.1, with 4 ˜̃xp jq
good,κ,4

˜̃xp jq
bad,κ replacing 4 ˜̃xpoutputq

κ ,
respectively, and with the constant A in Proposition 9.1 replaced by

AB` Adτ
´1
0 , A` Adτ

´p1´q
0 ,

respectively.

Remark 9.2. As we saw for the proof of Proposition 8.1, the reason for the lack of
a smallness gain in the constant for the contribution of the bad term 4 f p j´1q

bad is the
fact that this term is in effect the Fourier transform of the linear interaction term
5λ´2pτqpu4

ν ´ u4
0q4ε̃

p j´1q, with the latter given by

4ε̃p j´1qpτ,Rq “ 4xp j´1q
d pτqφdpRq `

ż 8

0
4xp j´1qpτ, ξqφpR, ξqρpξq dξ,

and the lack of smallness gain comes precisely from the low-frequency regime
ξ ă 1 and the linear in τ growth of 4ε̃p j´1q. Observe that this linear growth occurs
only for the continuous spectral part of 4ε̃p j´1q, while the discrete spectral part is
actually such that it decays to zero asymptotically, by assumption on 4xp j´1q

d pτq.
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The proof of Proposition 9.6 is very close to the one of Proposition 8.1, and
hence we omit it here. This completes establishing the necessary a priori bounds
in a first approximation, although we will have to refine these considerations a bit
to obtain the desired convergence of the iterates.

10. Preparations for the proof of convergence; refined estimates

Observe that in the key inductive Propositions 9.1 - Proposition 9.6 we have not
improved the constant A controlling the inputs and outputs. This is entirely due
to the source terms which are linear in the perturbation 4xp j´1q (or alternatively
4ε̃p j´1q), and we shall have to rely on delicate re-iteration arguments to obtain
convergence of the series

ř

4xp jq. However, before being able to set up such
an argument, which eventually reduces the convergence issue to integrations over
high-dimensional simplices, we have to provide certain tools which shall allow us
to reduce to a very specific situation at the end, namely essentially unit frequencies
throughout. For this, we shall have to re-visit the proofs of some of the earlier
propositions and refine them a bit.

To begin with, we observe that for the time differentiated Duhamel parametrix,
we can gain a smallness factor when restricting to very low frequencies:

Lemma 10.1. Let 4xpoutputq,4ąτxpoutputq be defined as in Proposition 9.1. Then
for 0 ă κ˚ ! 1, we have

`

ÿ

Něτ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξăκ˚Dτ4ąτxpoutputq
›

›

2
S 2

˘
1
2 . κγ˚A.

for a suitable absolute constant γ ą 0. Moreover, if 4xpkq, 1 ď k ď j, are as in
Proposition 9.6, then we have

`

ÿ

Něτ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξăκ˚Dτ4ąτxp jq
›

›

2
S 2

˘
1
2 . κγ˚rA` Adτ

´p1´q
0 s.

In both inequalities one may replace the operatorDτ by a weight ξ
1
2´

xξy
1
2´

.

Proof. (lemma) (1) Proof of the first inequality. Recall that the input 4xpinputq

admits for both low as well as high frequencies a decomposition into a ’free part’
of the form S pτqp. . .q plus a term with less structure but better bounds. Thus to
prove the first inequality, we distinguish between the case where 4xpinputq is in
effect of the form S pτqp. . .q, as well as the remaining situation. In the former
situation, the proof of Proposition 7.4 is relevant, and we shall freely borrow from
it. Thus replace for now 4xpinputq by xp0q with data of norm . A. As in the proof
of Proposition 7.4 we only consider the contribution of the delicate source term
βνpτqKccDτxp0q. Then we need to eke out an extra gain κγ˚ from this proof provided
we restrict the output frequency to ξ ă κ˚. Referring to the steps of that proof,
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consider case (1i). There we use the gain of p λ
2pτq

λ2pσq
ξq

1
2` to cancel the singular

factor ρpηq, but we can keep track of this gain and obtain the more precise gain

p
λ2pτq

λ2pσq
ξq

1
2` ¨ η´

1
2` ¨ η

1
2`

where the factor η
1

2` comes from application of Cauchy-Schwarz to the η-integral.
We can also write this as

p
λ2pτq

λ2pσq
ξq

1
4` ¨ p

λ2pτq

λ2pσq
ξq

1
4 ¨ η´

1
4 ¨ η

1
4

Then using the assumption λ2pσq

λ2pτ0q
η ă 1 in that case, we use the factor η

1
4 to gain

λ
1
2 pτ0q

λ
1
2 pτq

(weaker than what we had previously in case (1i), but still enough), while

we also gain

p
λ2pτq

λ2pσq
ξq

1
4` .

λ
1
4 pτq

λ
1
4 pσq

¨ κ
1
4
˚

which gives the required gain with γ “ 1
4 .

Case (1ii) is similar in that one trades a power of 2 j, such as 2
j
4 , for a power of κ˚,

such as κ
1
4
˚ , while in case (1iii) one gets an extra power of κ˚ without any losses. In

case (1iv) one uses the modified bound (assuming ξ ă κ˚)

ˇ

ˇξ´0`Fp
λ2pτq

λ2pσq
ξ, ηqρpηq

ˇ

ˇ . η
1
2´ . κ

1
4
˚ r
λpτ0q

λpσq
s

1
4´r

λpτ0q

λpτq
s2δ0

and again the desired conclusion is reached with γ “ 1
4 . The remaining cases (1v),

(1vi) are more of the same.
This deals with the case when 4xpinputq is replaced by the ’free part’ S pτqp. . .q. In
case that 4xpinputq is of the form 4ąτxpinputq or else Č4xpinputq, one needs to revisit
Step 4 of the proof of Proposition 9.1, where the required gain is easily seen to
come from directly from the ξ-integral via Holder upon using an L8dξ-bound for the
expression, or else exploring the vanishing property of the kernel of Kcc, depend-
ing on the situation.

(2) Proof of the second inequality. This follows by revisiting the proofs of Propo-
sition 8.1, Proposition 9.6 in for low frequency outputs ξ ă 1. The idea is that for
an expression such as

›

›ξ´0`
ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus f pσ, xp0qqp

λ2pτq

λ2pσq
ξq dσ

›

›

L2
dξpξă1q
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which occurs in the proof of Proposition 8.1, one gains smallness in κ˚ (upon
restricting to ξ ă κ˚) by estimating the expression in L8dξ and invoking Holder. This

is possible forDτ4xp jq but of course not for 4xp jq. We omit the simple details. �

While the preceding lemma dealt with small output frequencies, we also need
a lemma gaining smallness for small input frequencies, but in a more restrictive
context:

Lemma 10.2. Assume that 4xpinputqpτ, ξq is as in Proposition 9.1. Then for 0 ă
κ˚ ! 1, we have

›

›

ż 8

τ0

ξ
1
2

xξy
1
2

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

R1pσ, χηăκ˚4xpinputqq dσ
›

›

S 1

. rκγ˚ ` τ
´γ
0 sA

›

›

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dusR1pσ, χηăκ˚4xpinputqq dσ
›

›

S 2

. rκγ˚ ` τ
´γ
0 sA

for a suitable γ ą 0.

Proof. (lemma) Observe that in the first expression we have included a crucial ad-

ditional factor ξ
1
2

xξy
1
2

which gives a gain for low frequencies ξ ă 1. Then, depending

on whether we replace 4xpinputqpτ, ξq by its ’free part’ S pτqp. . .q or by a less struc-
tured but smaller error part (as in the assumptions in Proposition 9.1), the relevant
gain is obtained by revisiting Step 4, 5 in the proof of Proposition 7.1, respectively
the proof of Lemma 9.3. Assuming first that 4xpinputq is ’free’ and consulting Step
4 in the proof of Proposition 7.1, one sees that in the situations ξ ¨ λ2pτq

λ2pσq
! η,

ξ ¨
λ2pτq

λ2pσq
„ η, the extra factor ξ

1
2

xξy
1
2

translates into a gain of

η
1
2
λpσq

λpτq
. κ

1
2
˚

λpσq

λpτq
,

keeping in mind our additional restriction η ă κ˚. We may replace the preceding
also by a factor involving a weaker gain in κ˚,

rκ
1
2
˚

λpσq

λpτq
s2γ,

which leads to a good bound following (4(i).a), (4(ii).b) in Step 4 in the proof of
Proposition 7.1, provided

ż 8

τ
r
λpσq

λpτq
s2γβ2

νpσqp
λpσq

λpτ0q
q2δ0 dσ
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converges, which is the case provided 0 ă γ ă γ0pνq. On the other hand, in case
(4(ii).c) one performs integration by parts with respect to σ to translate the gain
in ξ (for ξ ă 1) into a gain in η, whence in κ˚. This deals with the case when
4xpinputqpτ, ξq is ’free’ and we restrict to small output frequencies ξ ă 1. On the
other hand, in the case of large output frequencies ξ ą 1, following Step 5 in the
proof of Proposition 7.1, one directly infers either a gain τ

´γ
0 or else a gain κ

γ
˚,

which the concludes the case when 4xpinputqpτ, ξq is ’free’.
On the other hand, if 4xpinputq is of the form 4ąτxpinputq (for low frequencies) or
Č4xpinputq (for high frequencies), then the required gain follows directly from the

proof of Lemma 9.3. �

The preceding two lemmas have dealt with improvements to estimates tied to
the linear source term R1pσ,4xpinputqq. The next lemma deals with an improve-
ment for the terms arising from the nonlinear source terms 4 f . Observe that we
jut break even in the conclusion of Proposition 8.1, as well as Proposition 9.6,
without smallness gain. This is entirely due to the case of low frequencies of the
output, and hence inclusion of an additional weight there improves the estimate
correspondingly:

Lemma 10.3. Using the same notation and making the same assumptions as in the
statement of Proposition 9.6, put

4xp jq :“ 4xp jq
good ` 4xp jq

bad, 4
˜̃xp jq
ρ :“ 4 ˜̃xp jq

good,ρ ` 4
˜̃xp jq
bad,ρ, ρ “ 0, 1.

Then setting

Ć4xp jqpτ, ¨q :“ 4xp jqpτ, ¨q ´ S pτq
`

4 ˜̃xp jq
0 ,4 ˜̃xp jq

1

˘

, 4ąτxp jq :“ 4ąτxp jq
good ` 4ąτxp jq

bad,

as well as
4x̃p jq

ρ pξq :“ 4x̃p jq
good,ρpξq ` 4x̃p jq

bad,ρpξq, ρ “ 0, 1,

we have the improved estimates

sup
τěτ0

p
τ0

τ
qκ
›

›χξą14xp jqpτ, ξq
›

›

S 1
`
`

ÿ

N&τ0
N dyadic

sup
τ„N
p
τ

τ0
q2κ

›

›χξą1Dτ
Ć4xp jq

›

›

2
S 2

˘
1
2 . rA` Ads ¨ τ

´γ
0 .

(10.1)

as well as

sup
τěτ0

p
τ

τ0
q´κ

›

›χξă1
ξ

1
2

xξy
1
2

4xp jq
ąτpτ, ξq

›

›

S 1

`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξă1Dτ4ąτxp jqpτ, ξq
›

›

S 2
s2
˘

1
2

`
›

›

` ξ
1
2´

xξy
1
2´
4x̃p jq

0 pξq,4x̃p jq
1 pξq

˘›

›

S . rA` Ads ¨ τ
´γ
0 ,

(10.2)

for suitable γ ą 0.
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The proof of this lemma follows again in close analogy to the one of Propo-

sition 8.1, the point being that inclusion of the extra weight ξ
1
2´

xξy
1
2´

in the un-

differentiated terms 4xp jq
ąτ, 4x̃p jq

0 pξq allows one to perform integration by parts with
respect to σ in the Duhamel parametrix applied to the ’bad’ source terms E2, re-
calling Proposition 5.1.

In the next section, we shall complement the preceding three lemmas with fur-
ther improvements of ’re-iteration type’, i. e. exploiting cancellations when apply-
ing the iterative step twice, as opposed to only once(like for the preceding three
lemmas).

11. Improvements upon re-iteration

Recall the key iterative step (6.4). Each of the two terms on the right contributes
to the next iterate 4xp jq, in a way specified by Proposition 9.1, Proposition 9.6, and
we can correspondingly write the continuous spectral part of 4xp jq in the following
manner(changing the notation for 4 ˜̃xp jq

0,1, which now incorporate the contributions
from both source terms)

4xp jqpτ, ξq

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨
“

4 f p j´1qpσ, ¨q ` Rpσ,4xp j´1qq
‰

p
λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xp jq
0 ,4 ˜̃xp jq

1

˘

,

(11.1)

The goal of this section is to show that upon re-iteration of (11.1), the contribution
of the nonlinear source term 4 f p j´1q becomes essentially negligible, and we can
reduce to the contribution of the principal linear source term βνpσqKccDσ4xp j´1q.
To make things precise, we commence by introducing a quantity 4A j P R` which
measures the size of the correction 4xp jq as well as all the related functions, in
accordance with Proposition 9.1, Proposition 9.6. Thus we make



ON STABILITY OF TYPE II BLOW UP FOR THE CRITICAL NLW ON R3`1 93

Definition 11.1. We define the quantity 4A j, which controls the size of the correc-
tion at stage j, by

4A j :“

sup
τěτ0

p
τ0

τ
qκ
›

›χξą14xp jqpτ, ξq
›

›

S 1
`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξą1Dτ
Ć4xp jqpτ, ξq

›

›

S 2
s2
˘

1
2

` sup
τěτ0

p
τ0

τ
qκ
›

›χξă14ąτ4xp jqpτ, ξq
›

›

S 1
`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξă1Dτ4ąτ4xp jqpτ, ξq
›

›

S 2
s2
˘

1
2

`
›

›p4x̃p jq
0 ,4x̃p jq

1 q
›

›

S̃ `
›

›p4 ˜̃xp jq
0 ,4 ˜̃xp jq

1 q
›

›

S̃ ` sup
τěτ0

τp1´q|4xp jq
d pτq| ` sup

τěτ0

τp1´q|Bτ4xp jq
d pτq|

Now pick a very small frequency cutoff 0 ă κ˚ ! 1, to be specified later. We
already point out that κ˚ will be chosen independently of τ0, and the latter will
then be picked at the very end large enough to kill any constants depending on κ˚.
Recalling that

Ć4xp jqpτ, ξq “ 4xp jqpτ, ξq ´ S pτq
`

4 ˜̃xp jq
0 ,4 ˜̃xp jq

1

˘

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨
“

4 f p j´1qpσ, ¨q ` Rpσ,4xp j´1qq
‰

p
λ2pτq

λ2pσq
ξq dσ,

we can now state the following important re-iteration lemma:

Lemma 11.1. Introduce the operator

Φp f qpτ, ξq :“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 qξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusβνpσqpKcc f qp

λ2pτq

λ2pσq
ξq dσ.

Borrowing the notation from Proposition 9.6, assume that
j´1
ÿ

k“1

4Ak . 1.

Then
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξąκ˚Dτ
Ć4xp jq

›

›

S 2
s2
˘

1
2

.
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξąκ˚Φχξąκ˚ΦpDτ4xp j´2qq
›

›

S 2
s2
˘

1
2 `Cκ˚τ

´γ
0 r4A j´1 ` 4A j´2s

(11.2)
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for suitable γ ą 0 (absolute constant).

Proof. We use the relation (11.1) at both j and j ´ 1, which then gives 4xp jq in
terms of 4xp j´2q as well as 4xpkq, k ď j´ 2. Then recall

4xp j´2q “

˜

4xp j´2q
d

4xp j´2q

¸

, 4xp j´1q “

˜

4xp j´1q
d

4xp j´1q

¸

,

and invoke (11.1) at j. Then Proposition 9.4 allows us to write6

Dτ
Ć4xp jqpτ, ξq

“

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨
“

4 f p j´1qpσ, ¨q ` R1pσ,4xp j´1qq
‰

p
λ2pτq

λ2pσq
ξq dσ

` τ´1
0 Oκ˚p4A j´1q.

Furthermore, recalling (7.5), as well as the proof of Proposition 7.1, Proposi-
tion 9.1, one easily infers

χξąκ˚Dτ
Ć4xp jqpτ, ξq

“ χξąκ˚

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨
“

4 f p j´1qpσ, ¨q ` βνpσqKccpDσ4xp j´1qq
‰

p
λ2pτq

λ2pσq
ξq dσ

` τ´1
0 Oκ˚p4A j´1q.

(11.3)

In fact, Remark 7.2 shows that the contribution of β2
νpσqKccp4xp j´1qq gains a

power of τ´1
0 upon restricting the output to frequencies & 1.

Then use (11.1) at j ´ 1, resulting via the Duhamel type parametrix in a con-
tribution from 4 f p j´2qpσ, ¨q as well as one from R1pσ,4xp j´2qq. To begin with,
consider the contribution when we replace 4xp j´1q on the right hand side in (11.3)
by

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

4 f p j´2qpσ,
λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘

,

6The notation is somewhat loose here, the error being in the sense of the norm used on the left in
(11.2)
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Here we are somewhat loose with the notation and assume that the correction term
4 ˜̃xp j´1q

1 is the one coming from Proposition 9.6 at j ´ 1 instead of j. Then using
Lemma 10.3 as well as Remark 9.1, and inspecting the proof of Proposition 9.6,
Proposition 8.1, we see that the corresponding contribution to the left hand side of
(11.2) is of size τ´γ0 Oκ˚p4A j´2q.
Similarly, replacing 4xp j´1q in 4 f p j´1qpσ, ¨q on the right hand side in (11.3) by

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

R1pσ,4xp j´2qqqp
λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘

,

where now the corrections 4 ˜̃xp j´1q
0,1 are in accordance with Proposition 9.1, and

invoking Lemma 10.3, we arrive at the contribution of size τ´γ0 Oκ˚p4A j´2q.
At this stage we have shown that

χξąκ˚Dτ
Ć4xp jqpτ, ξq

“ χξąκ˚

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨ βνpσqKccpDσ4xp j´1q
R

qp
λ2pτq

λ2pσq
ξq dσ

` τ
´γ
0 Oκ˚p4A j´1 ` 4A j´2q,

(11.4)

where

4xp j´1q
R

pτ, ξq : “
ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ R1pσ,4xp j´2qqp
λ2pτq

λ2pσq
ξq dσ

` S pτq
`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘

and here, by abuse of notation, the correction terms 4 ˜̃xp j´1q
0,1 are in accordance with

Proposition 9.1.

At this stage we have almost achieved the conclusion of the lemma, except that
we still need to reduceDσ4xp j´1q

R
to

χξąκ˚rDσ4xp j´1q
R

´DσS pσq
`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘

s,

and further reduce R1 in the definition of the latter to the principal part

βνpσqKccpDσ4xp j´2qq.
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The crucial part here is the inclusion of the cutoff χξąκ˚ in front ofDσ4xp j´1q
R

, and
this will be achieved by combining the various oscillatory phases in the integral.

(1): Reduction ofDσ4xp j´1q
R

to χ¨ąκ˚Dσ4xp j´1q
R

. Consider the function

Φ̃pτ, ξq :“ χξąκ˚

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus

¨ βνpσqKccpχ¨ăκ˚Dσ4xp j´1q
R

qp
λ2pτq

λ2pσq
ξq dσ

and recall that

χξąκ˚Kccpχ¨ăκ˚Dσ4xp j´1q
R

qp
λ2pτq

λ2pσq
ξq

“ χξąκ˚

ż 8

0

Fp λ
2pτq

λ2pσq
ξ, ηqρpηq

λ2pτq

λ2pσq
ξ ´ η

χηăκ˚Dσ4xp j´1q
R

dη.
(11.5)

Then the idea is that since τ ě σ, we also have λ2pτq

λ2pσq
ξ ą η, and hence combining

the oscillatory phases (one of which is inherent in the definition of 4xp j´1q
R

) we can
gain by performing an integration by parts with respect to σ. Specifically, write

χηăκ˚Dσ4xp j´1q
R

“ χηăκ˚Dσ

“

4ąσxp j´1q
R

` S pσq
`

4̃xp j´1q
R,0 , 4̃xp j´1q

R,1

˘‰

,

where we recall that

4ąσxp j´1q
R

pσ, ηq

“

ż 8

σ

λ
3
2 pσq

λ
3
2 pσ1q

ρ
1
2 p

λ2pσq

λ2pσ1q
ηq

ρ
1
2 pηq

sinrλpσqη
1
2
şσ1
σ λ´1puq dus

η
1
2

¨ R1pσ1,4xp j´2qqp
λ2pσq

λ2pσ1q
ηq dσ1

Inserting this in (11.5) for 4xp j´1q
R

and performing a change of variable η “ λ2pτq

λ2pσq
η̃,

and inserting this in turn into the expression for Φ̃pτ, ξq above, leads to the σ-
oscillatory factor

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dus ¨ sinrλpτqη̃

1
2

ż σ1

σ
λ´1puq dus

and since ξ ą η we have a fortiori ξ ą η̃ on account of σ ď τ. Then by performing
integration by parts with respect to σ (this works if σ ă τ ´ τ

1
2 , say, to force a

lower bound on ξ ´ η̃, while if σ P rτ ´ τ
1
2 , τs, one gains directly in τ) and re-

peating the arguments in Proposition 9.1, one infers that this contribution to Φ̃ is
of size τ´γ0 Oκ˚p4A j´2q. Replacing 4xp j´1q

R
by S pσq

`

4̃xp j´1q
R,0 , 4̃xp j´1q

R,1

˘

is handled
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similarly, using the algebra in Step 1 of the proof of Proposition 7.1.

(2): Reduction of χ¨ąκ˚Dσ4xp j´1q
R

to χξąκ˚ΦpDτ4xp j´2qq. Here one first dis-
poses of the contribution of

DσS pσq
`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘

,

using that
›

›

`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘
›

›

S . τ
´p1´q
0 4A j´2 as well as the fact that all fre-

quencies are now essentially large(which means we no longer need the free term
S pσq

`

4 ˜̃xp j´1q
0 ,4 ˜̃xp j´1q

1

˘

to cancel out part of the Duhamel term), and then one

easily disposes of the term β2
νpσqKccp4xp j´2qq inside R1pσ,4xp j´2qqp

λ2pτq

λ2pσq
ξq, ex-

ploiting again the fact that all frequencies are now & 1, see (1a) in the proof of
Proposition 9.1, where a gain τ´1

0 is implicit.

This completes the proof of Lemma 11.1. �

12. Convergence of the iterative scheme

In this section, we finally show that the sequence of iterates defined by (6.3),
(6.4) and with the modifications of the initial data due to the 4 ˜̃xp jq

0,1 converges, which
will then imply the proof of Theorem 4.1. The crux of the matter will be played on
the one hand by Lemma 11.1, which in some sense achieves a diagonalization of
the high-frequency part of the once repeated iteration step, together with a crucial
proposition of somewhat combinatorial type below which shows that re-iterating
the operator χξąκΦ many times gains smallness. This last fact has close analogues
in [29] as well as [7]. Recalling the quantities 4A j from Definition 11.1, the main
result of this section is the following

Proposition 12.1. Given κ˚ ą 0 and ε ą 0 sufficiently small, we have for any
k ě 1 sufficiently large and j ě 2k ` 2 the bound

4A j ď κ
γ
˚r4A j´1 ` 4A j´2s ` κ´Cδ0

˚ εγ1keε
´2
¨ 4A j´2k `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k´1

4Als

provided
ř j

l“1 4Al ă δ1, where δ1 “ δ1pτ0q ą 0 is sufficiently small. Here γ ą 0
is an absolute constant.

As a consequence of the proposition, we get convergence in the following sense:

Corollary 12.2. We have

8
ÿ

j“1

4A j .
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ,

provided that
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ is sufficiently small.
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Proof. To begin with, we note that the preceding proposition implies that given
δ ą 0, there are j˚pδq and τ0 large enough such that we have for any j ě j˚pδq` 2

4A j ď δr4A j´1 ` 4A j´2 ` 4A j´ j˚pδqs `
δ

j˚pδq

j
ÿ

l“ j´ j˚pδq´1

4Al

In fact, first one picks κ˚ small enough such that κγ˚ ă δ, and then letting ε ă 1
small enough such that the conclusion of the preceding proposition holds we pick
k large enough such that

κ´Cδ0
˚ εγ1keε

´2
ă δ

Then set j˚pδq “ 2k and finally pick τ0 large enough such that Cκ˚,kτ
´γ
0 ă δ

j˚pδq
.

But then summing over j ě j˚pδq we get

8
ÿ

l“1

4Al ď

j˚pδq
ÿ

l“1

4Al ` 4δ
8
ÿ

l“1

4Al,

which then gives

8
ÿ

l“1

4Al ď
1

1´ 4δ

j˚pδq
ÿ

l“1

4Al .δ
›

›px0, x1q
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇ,

and the latter can be made ! δ1pτ0q by picking the data small enough, hence
establishing the convergence and necessary smallness condition behind the propo-
sition. �

We can in fact easily sharpen the preceding corollary, in that we get exponential
decay of the 4A j with respect to j, and we can also strengthen the bounds concern-
ing the corrections 4 ˜̃xp jq

κ , κ “ 0, 1, in light of the iterative step. We record this in
the following

Corollary 12.3. For any δ ą 0, and τ0 “ τ0pδq large enough, we have

4A j .δ δ
jp
›

›px0, x1
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇq.

Similarly, we have
›

›p4 ˜̃xp jq
0 ,4 ˜̃xp jq

1 q
›

›

S̃ .δ τ
´p1´q
0 δ jp

›

›px0, x1
›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇq.

It remains to prove Proposition 12.1. As already mentioned, a key role will be
played by the fact that re-iterating the operator χ¨ąκ˚Φ many times leads to an
improved estimate. The following is a precise version of what we need. Its proof
will be relegated to the end of this section.

Proposition 12.4. For any ε ą 0 sufficiently small, and a suitable γ1 ą 0, there is
for any k ě 1 a splitting

pχξąκ˚Φqkp f q “ Φ
pkq
1 p f q ` Φ

pkq
2 p f q,



ON STABILITY OF TYPE II BLOW UP FOR THE CRITICAL NLW ON R3`1 99

such that we have the bounds

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›Φ
pkq
1 p f q

›

›

S 3
s2
˘

1
2 ď εγ1keε

´2` ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q}S 2s
2˘

1
2

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›Φ
pkq
2 p f q

›

›

S 2
s2
˘

1
2 .k,κ˚ τ

´γ1
0

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q}S 2s
2˘

1
2

Here we have introduced the norm
›

› f
›

›

S 3
:“ }mintξ0`, 1uxξy

1
2` f pξq}L2

dξ
.

Back to proving Proposition 12.1, we shall do so by obtaining a smallness gain
for the various constituents of 4A j, according to Definition 11.1. We shall first
consider the time differentiated expressionDτ4xp jq, and show a smallness gain for
it after many iterations:

Lemma 12.5. We have

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
“›

›χξą1Dτ
Ć4xp jq}S 2 ` }χξă1Dτ4ąτxp jq}S 2s

2˘
1
2

ď κ
γ
˚r4A j´1 ` 4A j´2s ` κ´Cδ0

˚ εγ1keε
´2
¨ 4A j´2k `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k´1

4Als

provided
ř j

l“1 4Al ă δ1, where δ1 “ δ1pτ0q ą 0 is sufficiently small.

Proof. (Lemma 12.5)

Step 1: Using Lemma 10.1 and choosing κ˚ “ κ˚pδq small enough, we get

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ}χξăκ˚Dτ4ąτxp jq}S 2s

2˘
1
2 ! κ

γ
˚4A j´1.

Step 2: From Lemma 11.1 and its proof, we infer for any k ě 1

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξąκ˚Dτ
Ć4xp jq

›

›

S 2
s2
˘

1
2

.
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›pχξąκ˚Φq2kpDτ4xp j´2kqq
›

›

S 2
s2
˘

1
2 `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k

4Als
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Invoking Proposition 12.4, we can estimate this in turn by

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›pχξąκ˚Φq2kpDτ4xp j´2kqq
›

›

S 2
s2
˘

1
2 `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k

4Als

. κ´Cδ0
˚ εγ1keε

´2
¨ 4A j´2k `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k´1

4Als

provided 0 ă ε ď ε˚. Then we have almost completed the proof of the lemma,
exempt that we don’t control χκ˚ăξă1Dτ4ąτxp jq yet. For this we have to pass from

χκ˚ăξă1Dτ
Ć4xp jq to χκ˚ăξă1Dτ4ąτxp jq.

Step 3: Write

Dτ4ąτxp jq “ Dτ
Ć4xp jq `DτS pτqp4 ˜̃xp jq

0 ,4 ˜̃xp jq
1 q ´DτS pτqp4x̃p jq

0 ,4x̃p jq
1 q

Then it follows that
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
“›

›χκ˚ăξă1Dτ4ąτxp jq}S 2s
2˘

1
2

ď
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
“
›

›χκ˚ăξă1Dτ
Ć4xp jq}S 2s

2˘
1
2

`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
“›

›χκ˚ăξă1DτS pτqp4 ˜̃xp jq
0 ,4 ˜̃xp jq

1 q}S 2s
2˘

1
2

`
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
“›

›χκ˚ăξă1DτS pτqp4x̃p jq
0 ,4x̃p jq

1 q}S 2s
2˘

1
2

Here the first term on the right is bounded using Step 2, and the second term on the
right is bounded by

ˇ

ˇ log κ˚
ˇ

ˇτ
´p1´q
0 4A j´1 due to Proposition 9.1, Proposition 9.6.

Note that free evolutions DτS pτqp. . .q with data in S cannot be placed into the
square-sum type space in general, but restricting output frequencies to a finite
dyadic range enables such an estimate, which explains the factor

ˇ

ˇ log κ˚
ˇ

ˇ. Thus
to complete the proof of Lemma 12.5, it remains to bound the last term on the
right, which will follow from

›

›

`

4x̃p jq
0 ,4x̃p jq

1

˘›

›

S pξąκ˚q

. κγ˚r4A j´1 ` 4A j´2s ` κ´Cδ0
˚ εγ1keε

´2
¨ 4A j´2k `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k´1

4Als

(12.1)

This will be accomplished in the next lemma �
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Lemma 12.6. The bound (12.1) holds.

Proof. (Lemma 12.6) We commence by deducing the bound for
›

›4x̃p jq
1

›

›

S 2
. Recall

from the proofs of Proposition 9.1, Proposition 9.6 that we have

4x̃p jq
1 “

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτ0qξ
1
2

ż σ

τ0

λ´1puq dus

¨
“

Rpσ,4xp j´1qq ` 4 f p j´1qpσ, ¨q
‰

p
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xp jq
1 .

Moreover, we immediately have
›

›4 ˜̃xp jq
1

›

›

S 2
. τ

´p1´q
0 4A j´1. As for the integral

expression on the right, relying on Proposition 9.4, Proposition 9.6, we see that
the contribution of the discrete spectral part of 4xp j´1q to the left hand side is of
size . τ´p1´q0 4A j´1, and in particular we may and shall replace Rpσ,4xp j´1qq by
R1pσ,4xp j´1qq. Then further decompose

R1pσ,4xp j´1qq “ R1pσ, χηąκ˚4xp j´1qq ` R1pσ, χηăκ˚4xp j´1qq

For the first term on the right, we use the bound established in the preceding
lemma(without any information on p4x̃p jq

0 ,4x̃p jq
1 q) and using the argument in Propo-

sition 9.1 we deduce the desired bound for this contribution to 4x̃p jq
1 . On the other

hand, for the contribution of R1pσ, χηăκ˚4xp j´1qq we see that Lemma 10.2 fur-
nishes the required bound. Furthermore, for the contribution of 4 f p j´1qpσ, ¨q to
4x̃p jq

1 , we obtain the improved estimate using Lemma 10.3. This completes the

bound for
›

›4x̃p jq
1

›

›

S 2
.

Next, we proceed by analogy for the term

4x̃p jq
0 “

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨
“

Rpσ,4xp j´1qq ` 4 f p j´1qpσ, ¨q
‰

p
λ2pτ0q

λ2pσq
ξq dσ

` 4 ˜̃xp jq
0

Again we can dispose immediately of the contribution of the discrete spectral part
of 4xp j´1q, as well as of the term 4 ˜̃xp jq

0 . Moreover, using the preceding lemma we
can replace Rpσ,4xp j´1qq by

R1pσ, χηăκ˚4xp j´1qq.
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Consider then the integral expression

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

R1pσ, χηăκ˚4xp j´1qqp
λ2pτ0q

λ2pσq
ξq dσ

Here since χηăκ˚4xp j´1q is in the low frequency regime (since κ˚ ! 1), we can
write

χηăκ˚4xp j´1q “ χηăκ˚4ąσxp j´1q ` χηăκ˚S pσq
`

4x̃p j´1q
0 ,4x̃p j´1q

1

˘

“ χηăκ˚4ąσxp j´1q ` χηăκ˚S pσq
`

4x̃p j´1q
0 , 0

˘

` χηăκ˚S pσq
`

0,4x̃p j´1q
1

˘

.

The contribution of the last term on the right to the preceding integral expression
is of the desired type due to our improved bound for 4x̃p j´1q

1 from the first part of
the proof.
Next, expanding out

R1pσ, χηăκ˚4ąσxp j´1qq

“ β2
νpσqKccpχηăκ˚4ąσxp j´1qq ` βνpσqKccpχηăκ˚Dσ4ąσxp j´1qq,

we get the desired bound for the contribution of the last term on the right due to
Step 1 in the proof of Lemma 12.5. On the other hand, arguing as in the proof of
Lemma 9.3, the contribution of

β2
νpσqKccpχηăκ˚4ąσxp j´1qq

to the preceding integral expression is bounded by . τ´1
0 4A j´1. Finally, consider

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

¨ R1pσ, χηăκ˚S pσq
`

4x̃p j´1q
0 , 0

˘

qp
λ2pτ0q

λ2pσq
ξq dσ

By distinguishing between ξ
1
2
λpτ0q

λpσq
≷ σ´δ and either exploiting a smallness gain

coming from the L2
dξ-norm of the output, or else performing an integration by parts,

while always keeping in mind that ξ ą κ˚ for the output, the preceding term leads
to a contribution bounded by . τ´γ0 4A j´1.

This completes discussion of the contribution of R1pσ, χηăκ˚4xp j´1qq to 4x̃p jq
0 .
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We have now reduced the proof of the improved bound for 4x̃p jq
0 to controlling

the expression

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτ0qξ
1
2
şσ
τ0
λ´1puq dus

ξ
1
2

4 f p j´1qpσ,
λ2pτ0q

λ2pσq
ξq dσ.

Here the desired gain comes from Lemma 10.3 in light of the fact that we restrict
to ξ ą κ˚, and we are done. �

In light of the preceding two lemmas, conclusion of the proof of Proposition 12.1
will require improving bounds for

›

›pχξăκ˚4x̃p jq
0 , χξăκ˚4x̃p jq

1 q
›

›

S̃ ,

the undifferentiated quantities

χξą1
Ć4xp jq, χξă14ąτxp jq,

as well as the discrete part xdpτq, Bτxdpτq. The improved bound for
›

›pχξăκ˚4x̃p jq
0 , χξăκ˚4x̃p jq

1 q
›

›

S̃ ,

follows directly from Lemma 10.1 , Lemma 10.3. For the remaining quantities, we
accomplish this in the following two lemmas:

Lemma 12.7. We have the bound

sup
τěτ0

p
τ

τ0
q´κ

›

›χξą1
Ć4xp jqpτ, ¨q

›

›

S 1
` sup

τěτ0

p
τ

τ0
q´κ

›

›χξă14ąτxp jqpτ, ¨q
›

›

S 1

. κγ˚r4A j´1 ` 4A j´2s ` κ´Cδ0
˚ εγ1keε

´2
¨ 4A j´2k `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k´1

4Als

Proof. This is now straightforward given our preceding work: write

4ąτ4xp jqpτ, ξq

“

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨
“

Rpσ,4xp j´1qq ` 4 f p j´1qpσ, ¨q
‰

p
λ2pτq

λ2pσq
ξq dσ.

Then as in the proof of the preceding lemma, one may immediately reduce

Rpσ,4xp j´1qq

to the contribution of the continuous spectral part

R1pσ,4xp j´1qq “ β2
νpσqKccp4xp j´1qq ` βνpσqKccpDσ4xp j´1qq
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Then inspection of the proof of Proposition 9.1 reveals that for the contribution of
the first term on the right we gain a power of τ´1

0 except for the contribution of the
low-frequency free part of 4xp j´1q of the specific form

χηă1S pσq
`

4x̃p j´1q
0 ,4x̃p j´1q

1

˘

.

However, here the preceding lemma (with j replaced by j ´ 1) together with the
above the remark on

›

›pχξăκ˚4x̃p jq
0 , χξăκ˚4x̃p jq

1 q
›

›

S̃
in conjunction with the proof of Proposition 7.1 implies the desired improved
bound. As for the contribution of

βνpσqKccpDσ4xp j´1qq,

the improved bound follows from the last lemma but one in conjunction with the
proof of Proposition 9.1.
The contribution of the source term 4 f p j´1qpσ, ¨q to 4ąτ4xp jqpτ, ξq is handled anal-
ogously: one splits the input

4xp j´1q

in the low frequency regime ξ ă 1 into 4ąτxp j´1q as well as the ’free part’
S pτqp4x̃p j´1q

0 ,4x̃p j´1q
1 q. The latter leads to an improvement, as we have seen (use

Proposition 9.6). Also, we infer that the contribution of 4ąτxp j´1q leads to a gain
in τ´1

0 , in light of Proposition 5.1.

Obtaining the improved bound for χξą1
Ć4xp jq is similar. �

To complete the proof of Proposition 12.1, we finally have

Lemma 12.8. We have the bound

sup
τěτ0

τp1´qr
ˇ

ˇ4xp jq
d

ˇ

ˇ`
ˇ

ˇBτ4xp jq
d

ˇ

ˇs

. κγ˚r4A j´1 ` 4A j´2s ` κ´Cδ0
˚ εγ1keε

´2
¨ 4A j´2k `Cκ˚,kτ

´γ
0 r

j
ÿ

l“ j´2k´1

4Als.

In fact, one easily checks that the contribution of 4xp j´1q
d to the norm on the left

is bounded by . τ´1
0 4A j´1, and the contribution of the continuous part of 4xp j´1q

is controlled in term of the preceding lemmas.

Since we also have
›

›4 ˜̃xp jq
1

›

›

S 2
. τ

´p1´q
0 4A j´1 on account of Proposition 9.1,

Proposition 9.6, we have now completed the proof of Proposition 12.1 contingent
upon Proposition 12.4. The proof of this latter will fill the remainder of this section.

Proof. (Proof of Proposition 12.4) To simplify notation, we shall set here Kcc “:
K . Also, we shall use the notation

`

DτUh
˘

pτ, ξq “

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dushpσ,

λ2pτq

λ2pσq
ξq dσ.
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We use a decomposition of the kernel K into a diagonal and an off-diagonal
term. Specifically, for some n ě 1 later to be chosen large, we split

Kpξ, ηq “ χ
|
ξ
η´1|ă 1

n
Kpξ, ηq ` χ

|
ξ
η´1|ě 1

n
Kpξ, ηq

“ Kdpξ, ηq `Kndpξ, ηq.

Then we first show that for the two fold composition of Φ, the contribution of Knd

is small:

Lemma 12.9. There is γ ą 0 such that
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›χξąκ˚DτU
`

βνpτqK
ndχξąκ˚DτUp f q

˘›

›

S 2
s2
˘

1
2

. τ´γ0

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ} f pτ, ¨q

›

›

S 2
s2
˘

1
2 .

Proof. (lemma) Here we combine the vanishing properties of the kernelK with an
integration by parts. We need to show

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

¨ χξąκ˚ cos
“

λpτqξ
1
2

ż σ

τ
λ´1puq du

‰

hpσ,
λ2pτq

λ2pσq
ξq dσ

›

›

S 2
s2
˘

1
2

. τ´γ0

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ} f pτ, ¨q

›

›

S 2
s2
˘

1
2 ,

where we have
hpσ, ¨q “ βνpσqK

ndpχ¨ąκ˚DσU f q.

Thus we can write more explicitly

hpσ,
λ2pτq

λ2pσq
ξq “ βνpσq

ż 8

0
Kndp

λ2pτq

λ2pσq
ξ, ηqχηąκ˚

ż σ

τ0

λ
3
2 pσq

λ
3
2 psq

ρ
1
2 p

λ2pσq

λ2psq ηq

ρ
1
2 pηq

cosrλpσqη
1
2

ż s

σ
λ´1puq dus f ps,

λ2pσq

λ2psq
ηq dsdη

Using the change of variables η̃ “ λ2pσq

λ2psq η, this becomes

βνpσq

ż 8

0

ż σ

τ0

Kndp
λ2pτq

λ2pσq
ξ,
λ2psq
λ2pσq

η̃qχ λ2psq
λ2pσq

η̃ąκ˚

λ
1
2 psq

λ
1
2 pσq

ρ
1
2 pη̃q

ρ
1
2 p

λ2psq
λ2pσq

η̃q

cosrλpsqη̃
1
2

ż s

σ
λ´1puq dus f ps, η̃q dsdη̃
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By definition, we have

1
n
ă

ˇ

ˇ

λ2pτq

λ2pσq
ξ

λ2psq
λ2pσq

η̃
´ 1

ˇ

ˇ

on the support of the integrand, which also implies that

1
n
.
ˇ

ˇ

λ2psq
λ2pσq

η̃

λ2pτq

λ2pσq
ξ
´ 1

ˇ

ˇ

We can then bound

1
ˇ

ˇ

λpτq

λpσq
ξ

1
2 ¯

λpsq
λpσq

η̃
1
2
ˇ

ˇ

. n mint

λpτq

λpσq
ξ

1
2 `

λpsq
λpσq

η̃
1
2

λ2psq
λ2pσq

η̃
,

λpτq

λpσq
ξ

1
2 `

λpsq
λpσq

η̃
1
2

λ2pτq

λ2pσq
ξ

u

Combining the two phases inherent in the expression

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cos
“

λpτqξ
1
2

ż σ

τ
λ´1puq du

‰

hpσ,
λ2pτq

λ2pσq
ξq dσ

as revealed in the preceding results in a combined phase of the form

cos
“

λpτqξ
1
2

ż σ

τ
λ´1puq du¯ λpsqη̃

1
2

ż s

σ
λ´1puq du

‰

“
1

λpτq

λpσq
ξ

1
2 ¯

λpsq
λpσq

η̃
1
2

B

Bσ

`

sin
“

λpτqξ
1
2

ż σ

τ
λ´1puq du¯ λpsqη̃

1
2

ż s

σ
λ´1puq du

‰˘

Performing an integration by parts with respect to σ in the first integral then pro-
duces an extra gain of σ´1, while we replace the kernel Kndpξ, ηq with one of the
schematic form

mint
1

ξ
1
2

,
1

η
1
2

uKndpξ, ηq.

Note that the vanishing properties of the kernel Knd imply that we can absorb the
weight mint 1

ξ
1
2
, 1

η
1
2
u into the kernel. The desired bound of the lemma then follows

as for the a priori bounds established earlier. �

If we now absorb into Φk
2 all those expressions where at least one kernel Knd

appears, then we get the desired bound for Φk
2 as a consequence of the preceding

lemma. It then remains to establish the bound for Φk
1 where we now set

Φ1p f q :“ χξąκ˚

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

cosrλpτqξ
1
2

ż σ

τ
λ´1puq dusβνpσqpKd f qp

λ2pτq

λ2pσq
ξq dσ.

Below we shall omit the cutoff χξąκ˚ as it becomes irrelevant. As we still haven’t
fixed n in the definition of Φ1,2, we shall henceforth put n “ k.
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To get the desired bound for Φk
1, we shall further decompose the kernel (which

now lives near the diagonal ξ “ η) into a small frequency and a large frequency
case, as well as a remaining intermediate frequency case. This is where the param-
eter ε comes in:

Kd “ K
d,ε
1 `K

d,ε
2 `K

d,ε
3 .

Here the operators on the right are given in terms of their respective kernels as
follows:

Kd,ε
1 “ χξăεKd, Kd,ε

3 “ χξąε´1 Kd, Kd,ε
2 “ Kd ´ Kd,ε

1 ´ Kd,ε
3 .

Then the ’outer’ kernels Kd,ε
1,3 have an important smallness property evidenced by

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›DτUβνpσqK
d,ε
1,3 f

›

›

S 3
s2
˘

1
2 . εγ1

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ} f pτ, ¨q}S 3s

2˘
1
2

for suitable γ1 ą 0. Indeed, this follows from Lemma 10.2 for the small frequency
cutoff and is proved similarly for the large frequency cutoff, exploiting the decay
properties of the kernel K at large frequencies as in [28].
Moreover, in light of the definition of DτU, we have the following key vanishing
relations:

K
d,ε
3 DτUK

d,p1` 1
n qε

2 “ 0 (12.2)

K
d,p1` 1

n qε

2 DτUK
d,ε
1 “ 0 (12.3)

This implies that operators of type Kd,ε
2,3 can only be followed by a more restrictive

class of operators, and in particular, we can ’lock in’ a certain amount of gain in the
presence of ’off diagonal’ operators. However, iterating a large number of diagonal
operators will result in smallness thanks to the fact that one essentially integrates
over a simplex in high dimension. Specifically, we expand

`

βνpτqK
dDτU

˘n

“
`

βνpτqK
d,ε
2 DτU

˘n

`

n´1
ÿ

k“1

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
1 DτU

˘`

βνpτqK
dDτU

˘n´k´1

`

n´1
ÿ

k“1

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
3 DτU

˘`

βνpτqK
dDτU

˘n´k´1

`
`

βνpτqK
d,ε
1 DτU

˘`

βνpτqK
dDτU

˘n´1

`
`

βνpτqK
d,ε
3 DτU

˘`

βνpτqK
dDτU

˘n´1

“: A` B`C ` D` E.

For the term C, observe that we have
`

βνpτqK
d,ε
3 DτU

˘`

βνpτqK
dDτU

˘n´k´1

“
`

βνpτqK
d,ε
3 DτU

˘`

βνpτqK
d,4ε
3 DτU

˘n´k´1
,
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and so all terms here are trapped in a high-frequency regime. Thus we get

C “
n´1
ÿ

k“1

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
3 DτU

˘`

βνpτqK
dDτU

˘n´k´1

“

n´1
ÿ

k“1

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
3 DτU

˘`

βνpτqK
d,4ε
3 DτU

˘n´k´1

(12.4)

Moreover, for the term B, we have

B “
n´1
ÿ

k“1

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
1 DτU

˘`

βνpτqK
dDτU

˘n´k´1

“

n´1
ÿ

k“1

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
1 DτU

˘`

βνpτqK
d, ε4
2 DτU

˘n´k´1

`
ÿ

1ďkďn´1
jďn´k´2

`

βνpτqK
d,ε
2 DτU

˘k`
βνpτqK

d,ε
1 DτU

˘`

βνpτqK
d, ε4
2 DτU

˘ j

¨
`

βνpτqK
d, ε4
3 DτU

˘`

βνpτqK
d,ε
3 DτU

˘n´ j´k´2

(12.5)

Here we use that the operators
`

βνpτqK
d,ε
2 DτU

˘

on the left force large frequencies

at the end of the expression, and if only one operator
`

βνpτqK
d, ε4
3 occurs it will

force very large frequencies after it.
For term E we proceed just as for term C. Thus write

`

βνpτqK
d,ε
3 DτU

˘`

βνpτqK
dDτU

˘n´1
“

`

βνpτqK
d,ε
3 DτU

˘`

βνpτqK
d,4ε
3 DτU

˘n´1

The conclusion is that for terms A, B,C and E we can write them in terms of a few
consecutive strings of operators of type

`

βνpτqK
d,ε
2 DτU

˘

,
`

βνpτqK
d,ε
3 DτU

˘

, and
for the latter we already have observed a smallness gain. Finally, for the remaining
term D, we also write it in terms of a small number of consecutive strings, by
writing

D “
`

βνpτqK
d,ε
1 DτU

˘`

βνpτqK
dDτU

˘n´1

“

n
ÿ

j“1

`

βνpτqK
d,ε
1 DτU

˘ j
rApn´ jq ` Bpn´ jq `Cpn´ jq ` Epn´ jqs

where the superscript indicates that these terms are defined just as in A, B, C and
E but with n replaced by n´ j.

At this point, we have essentially reduced the problem of bounding
`

βνpτqK
dDτU

˘n

to the problem of bounding
`

βνpτqK
d,ε
2 DτU

˘n, and so this is what we now turn to:
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Lemma 12.10. Using the preceding notation and assuming j ď n (the latter as in
the definition of Kd,nd), we have the bound

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›DτU
`

βνpτqK
d,ε
2 DτU

˘ j f
›

›

S 3
s2
˘

1
2

.
ε´ j

j!

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2 .

Proof. Write

`

βνpτqK
d,ε
2 DτU

˘ j
pβνpτqK

d,ε
2 f q

“ βνpτqK
d,ε
2

ż τ

τ0

ż 8

0
dσ1dη1

λ
3
2 pτq

λ
3
2 pσ1q

ρ
1
2 p

λ2pτq

λ2pσ1q
ξq

ρ
1
2 pξq

βνpσ1q cospλpτqξ
1
2

ż σ1

τ
λ´1puq duq

¨ Kd,ε
2 p

λ2pτq

λ2pσ1q
ξ, η1q

ż σ1

τ0

ż 8

0
dσ2dη2

λ
3
2 pσ1q

λ
3
2 pσ2q

ρ
1
2 p

λ2pσ1q

λ2pσ2q
η1q

ρ
1
2 pη1q

βνpσ2q cospλpσ1qη
1
2
1

ż σ2

σ1

λ´1puq duq

. . .

¨ Kd,ε
2 p

λ2pσ j´2q

λ2pσ j´1q
η j´2, η j´1q

ż σ j´1

τ0

dσ j
λ

3
2 pσ j´1q

λ
3
2 pσ jq

ρ
1
2 p

λ2pσ j´1q

λ2pσ jq
η j´1q

ρ
1
2 pη j´1q

βνpσ jq

¨ cospλpσ j´1qη
1
2
j´1

ż σ j

σ j´1

λ´1puq duqppβνp¨qK
d,ε
2 f qpσ j,

λ2pσ j´1q

λ2pσ jq
η j´1q

Then we carefully recall that by choice of Kd we have

ˇ

ˇ

λ2pσkqηk

λ2pσk`1qηk`1
´ 1

ˇ

ˇ ă
1
n
, 1 ď k ď j´ 1 ă n.

and so

λ2pσkqηk ě p1´
1
n
qkλ2pτqξ, 1 ď k ď j´ 1.

Since we further have the restrictions ξ & ε, ηk ă ε´1 on the support of the full
expression, we get

σk ą τ ¨ ε, 1 ď k ď j.

for ν and the ε small enough, uniformly in n. In particular, we get

βνpσkq . ε
´1τ´1, 1 ď k ď j.
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Finally, we infer that for fixed τ ě τ0

›

›

`

βνpτqK
d,ε
2 DτU

˘ j
pβνpτqK

d,ε
2 f q

›

›

S 3

. βνpτq

ż τ

ετ
βνpσ1q

ż σ1

ετ
βνpσ2q . . .

ż σ j´1

ετ
βνpσ jq

›

› f pσ j, ¨q
›

›

S 3
dσ j . . . dσ1

. βνpτq
ε´ j

j!
sup
σ„τ

›

› f pσ, ¨q
›

›

S 3

We finally get the desired conclusion of the lemma

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›DτU
`

βνpτqK
d,ε
2 DτU

˘ j
pβνpτqK

d,ε
2 f q

›

›

S 3

.
ε´ j

j!

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ} f pτ, ¨q

›

›

S 3
s2
˘

1
2

�

We can now conclude the bound for Φk
1 which will then complete the proof of

Proposition 12.4, by bounding the terms A - E from before:

Bound for A. From preceding lemma, we have

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›A f
›

›

S 3
s2
˘

1
2 .

ε´n

n!

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2

! εγ1neε
´2` ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2

provided n is sufficiently large in relation to a fixed chosen ε.
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Bound for B. In light of identity (12.5), we find
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›B f
›

›

S 3
s2
˘

1
2

.
“

n´1
ÿ

k“1

ε´k

k!
εγ1

ε´pn´k´1q

pn´ k ´ 1q!

`

n´1
ÿ

k“1

ÿ

0ď jďn´k´2

ε´k

k!
ε´ j

j!
εγ1pn´k´ jq‰`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2

! εγ1neε
´2` ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2

provided ε is sufficiently small and n large enough.

Bound for C,D, E.The term C is similar in light of relation (12.4), as is term E.
Finally, for the term D, we can bound it by

`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

›D f
›

›

S 3
s2
˘

1
2

. r
n
ÿ

j“1

εγ1 jεγ1pn´ jqεε
´2
s
`

ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2

ď εγ2neε
´2` ÿ

N&τ0
N dyadic

rsup
τ„N
p
τ

τ0
qκ
›

› f pτ, ¨q
›

›

S 3
s2
˘

1
2

for any γ2 ă γ1, provided ε ă 1 and n is sufficiently large. �

13. Proof of Theorem 4.1

By Corollary 12.2, the function xpτ, ξq :“ xp0qpτ, ξq `
ř8

j“1 4xp jqpτ, ξq con-
verges in the sense of Corollary 12.2. In light of the definition of 4A j, it is then
easily seen that

ε̃pτ,Rq :“
“

8
ÿ

j“1

4d xp jqpτq
‰

φdpRq `
ż 8

0
φpR, ξq

“

xp0qpτ, ξq `
8
ÿ

j“1

4xp jqpτ, ξq
‰

ρpξq dξ

is in fact a function in H
3
2`

dR , which by construction of x constitutes a solution of
(2.3). In view of the regularity properties of uk,ν

approx ([28], [27]), we then obtain
that

uk,ν
approx ` ε
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is a solution of (1.1) of regularity H
1` ν

2´

R3 . Furthermore, writing (see Theorem 1.3)

uk,ν
approx ` ε “ Wλptqpxq ` v1pt, xq

and recalling (2.1), the proof of the last assertion of Theorem 1.3 concerning Eloc
reduces to verifying that

lim
tÑ0

ż

|x|ďt
|∇t,xεpt, xq|2 dx “ 0

However, using that ε “ ε̃
R and the structure estimates of ε̃ coming from Proposi-

tion 3.1 as well as Proposition 3.2 as well as straightforward bounds for the contri-
butions to ε̃ coming from the ’non-free’ Fourier components 4ąτx, Ă4x, one infers
that

ż

|x|ďt
|∇t,xεpt, xq|2 dx .

τ2

τ1`ν´1

which converges to zero for ν ă 1, and, we in fact had (see the proof of Proposi-
tion 5.1) the restriction ν ď 1

3 .

Back to the level of the Fourier transform, the data of x at time τ “ τ0 no longer
coincide with

`

ˆ

x0d
x0

˙

,

ˆ

x1d
x1

˙

˘

,

but can be written as

`

ˆ

x0d
x0

˙

,

ˆ

x1d
x1

˙

˘

`

8
ÿ

j“1

`

˜

4xp jq
d pτ0q

4 ˜̃xp jq
0

¸

,

˜

Bτ4xp jq
d pτ0q

4 ˜̃xp jq
1

¸

˘

Then the arguments from before imply that

›

›

`

8
ÿ

j“1

4 ˜̃xp jq
0 ,

8
ÿ

j“1

4 ˜̃xp jq
1

˘›

›

S̃ . τ
´p1´q
0 r

›

›

`

x0, x1
˘›

›

S̃ `
ˇ

ˇx0d
ˇ

ˇs.

and further
ÿ

j

ˇ

ˇ4xp jq
d pτ0q

ˇ

ˇ . τ
´p1´q
0

ˇ

ˇx0d
ˇ

ˇ`
›

›

`

x0, x1
˘›

›

S̃

Moreover, passing to differences of solutions gives the Lipschitz-continuity of the
data map with small Lipschitz norm. This completes the proof.

14. Appendix

14.1. The contribution of the first term in (2.12) in the proof of Proposition 7.1.
Here we follow the same steps as in the proof alluded to, but only retain the contri-
bution of the source term x0:

Step 1: Proof of the high frequency estimate (7.2) for the contribution from
R1pτ, xp0qq.
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Step 1(i): Contribution of β2
νpτqKccxp0q. Substituting the first term in (7.6) for

Kccxp0q, we arrive at the expression

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqApξ, τ, τ0, σq dσ,

where this time

Apξ, τ, τ0, σq :

“

ż 8

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dus

¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃.

To deal with the case η̃ ě 1, use that if we put

Bpτ, σ, ξ, η̃q :“
λ

3
2 pτq

λ
3
2 pσq

ξ
1
4`ρ

1
2 p
λ2pτq

λ2pσq
ξqFp

λ2pτq

λ2pσq
ξ,
λ2pτq

λ2pσq
η̃qρ

1
2 p
λ2pτq

λ2pσq
η̃q

and further restrict to ξ ą 1 (as we do throughout Step 1), we get
ˇ

ˇBpτ, σ, ξ, η̃q
ˇ

ˇ . maxtξ, η̃u´
1
4`p

λpτq

λpσq
q

1
2

Furthermore, we have

›

›

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃qη̃´

1
4`x0p

λ2pτq

λ2pτ0q
η̃q
›

›

L2
dη̃pη̃ą1q

.
λ

5
2 pσqλ

1
2 pτq

λ3pτ0q
¨
λ2pτ0q

λ2pτq
¨
λpτ0q

λpτq

›

›x0
›

›

xη̃y´p1`qL2
dη̃
,

and the operator with kernel

η̃
1
4´Bpτ, σ, ξ, η̃q

ξ ´ η̃

is L2-bounded up to a factor p λpτq
λpσq

q
1
2 . In all, we then conclude that

›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqAη̃ě1pξ, τ, τ0, σq dσ

›

›

xξy´1´L2
dξpξą1q

.
›

›x0
›

›

S̃ 1

ż τ

τ0

λ2pσq

λ2pτq
β2
νpσq dσ . τ´1

0

›

›x0
›

›

S̃ 1
.

Next, turn to the case η̃ ă 1. Then replicating the reductions in Step 1(i) of the
proof of Proposition 7.1, one first replaces ρ

1
2 p

λ2pτq

λ2pσq
η̃q by

cχ λ2pτq
λ2pσq

η̃ă1
r
λ2pτq

λ2pσq
η̃s´

1
4 .
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To achieve this reduction, recalling the algebra in Step 1(i) earlier, one has to bound
the expression

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqÃη̃ă1pξ, τ, τ0, σq dσ,

where we set

Ãη̃ă1pξ, τ, τ0, σq :

“

ż 1

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ą1

ρ
1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

¨ cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dus ¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃

`

ż 1

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ă1
r
λ2pτq

λ2pσq
η̃qs

1
4

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

¨ cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dus ¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃

For the first expression on the right use that (ξ " 1, η̃ ă 1, τ0 ď σ ď τ)

ˇ

ˇ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ą1

ρ
1
2 p

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pτ0q
η̃q

ξ ´ η̃

ˇ

ˇ . p
λpτq

λpσq
q´Nxξy´N λ

1
2 pτq

λ
1
2 pτ0q

,

and so

ˇ

ˇ

ż 1

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ą1

ρ
1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

¨ cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dus ¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃

. p
λpτq

λpσq
q´Nxξy´N ¨

λ
5
2 pσqλ

1
2 pτq

λ3pτ0q
¨
λpτ0q

λpτq

ż 1

0
r
λ2pτq

λ2pτ0q
η̃s

1
2
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃,

and we further get
ż 1

0
r
λ2pτq

λ2pτ0q
η̃s

1
2
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃ .
λ2pτ0q

λ2pτq

›

›x0
›

›

ξ´
1
2 L1

dξ

.
λ2pτ0q

λ2pτq

›

›x0
›

›

S̃ 1
,
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via a simple application of the Cauchy-Schwarz inequality. We conclude that

ˇ

ˇ

ż 1

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ą1

ρ
1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

¨ cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dus ¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃

. p
λpτq

λpσq
q´Nxξy´N ¨

›

›x0
›

›

S̃ 1
.

(14.1)

Similarly, for the term restricted to the low frequency regime λ2pτq

λ2pσq
η̃ ă 1, use that

ˇ

ˇ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ă1
r
λ2pτq

λ2pσq
η̃qs

1
4

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ

. p
λpτq

λpσq
q´Nxξy´N“χ λ2pτq

λ2pτ0q
η̃ą1

λ
1
2 pτq

λ
1
2 pτ0q

η̃
1
2 ` χ λ2pτq

λ2pτ0q
η̃ă1

λ
1
2 pτ0q

λ
1
2 pτq

‰

Then using that
ż 1

0
χ λ2pτq
λ2pτ0q

η̃ă1

ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃ . r
λpτ0q

λpτq
s´2

›

›x0
›

›

S̃ 1
,

we also infer

ˇ

ˇ

ż 1

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qχ λ2pτq

λ2pσq
η̃ă1
r
λ2pτq

λ2pσq
η̃qs

1
4

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q

¨ cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dus ¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃

ˇ

ˇ

. p
λpτq

λpσq
q´Nxξy´N ¨

›

›x0
›

›

S̃ 1
.

(14.2)

However, assuming the bounds (14.1), (14.2) for Ãη̃ă1pξ, τ, τ0, σq, one easily
infers the bound

›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

¨ β2
νpσqÃη̃ă1pξ, τ, τ0, σq dσ

›

›

xξy´1´L2
dξpξą1q

. τ´1
0

›

›x0
›

›

S̃ 1
.

The preceding considerations then allow replacing ρ
1
2 p

λ2pτq

λ2pσq
η̃q by

cχ λ2pτq
λ2pσq

η̃ă1
r
λ2pτq

λ2pσq
η̃s´

1
4 ,
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Similarly, one reduces
Fp λ

2pτq
λ2pσq

ξ,
λ2pτq
λ2pσq

η̃q

ξ´η̃ by
Fp λ

2pτq
λ2pσq

ξ,0q

ξ up to a negligible error(bounded
as before), and so we finally conclude that we may replace Aη̃ă1pξ, τ, τ0, σq by a
term of the form

Fp λ
2pτq

λ2pσq
ξ, 0q

ξ

ż 8

0

λ
5
2 pσq

λ
5
2 pτ0q

χ λ2pτq
λ2pσq

η̃ă1

cosrλpτqη̃
1
2
şσ
τ0
λ´1puq dus

p
λ2pτq

λ2pσq
η̃q

1
4

¨ρ
1
2 p
λ2pτq

λ2pτ0q
η̃qx0p

λ2pτq

λ2pτ0q
η̃q dη̃.

Throughout keep in mind our assumptions ξ " 1, τ ě σ. Here we can easily
get rid of the localiser χ λ2pτq

λ2pσq
η̃ă1

up to a contribution which is bounded as in the

preceding, and so we have finally reduced Aη̃ă1pξ, τ, τ0, σq to the expression

Fp λ
2pτq

λ2pσq
ξ, 0q

ξ

ż 8

0

λ
5
2 pσq

λ
5
2 pτ0q

cosrλpτqη̃
1
2
şσ
τ0
λ´1puq dus

p
λ2pτq

λ2pσq
η̃q

1
4

¨ ρ
1
2 p
λ2pτq

λ2pτ0q
η̃qx0p

λ2pτq

λ2pτ0q
η̃q dη̃

“

Fp λ
2pτq

λ2pσq
ξ, 0q

λ2pτq

λ2pσq
ξ

ż 8

0

λpσq

λpτ0q

cosrλpτ0qη̃
1
2
şσ
τ0
λ´1puq dus

η̃
1
4

¨ ρ
1
2 pη̃qx0pη̃q dη̃

However, this term being just like the one displayed after (3.6), substituting it for
Aη̃ă1pξ, τ, τ0, σq leads to the bound

›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσqAη̃ă1pξ, τ, τ0, σq dσ

›

›

xξy´1´L2
dξpξą1q

.
›

›x0
›

›

S̃ 1

ż τ

τ0

p
λpσq

λpτq
qNσβ2

νpσq dσ .
›

›x0
›

›

S̃ 1
.

This concludes Step 1(i) of the proof of Proposition 7.1 for the contribution of the
first term in (7.6).

Remark 14.1. We note that in the last step we could have performed an integration
by parts with respect to σ, and gained an extra power τ´p1´q0 .

Step 1(ii): Contribution of βνpτqKccDτxp0q. Here we arrive at the expression

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

βνpσqApξ, τ, τ0, σq dσ,
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where this time

Apξ, τ, τ0, σq :

“

ż 8

0

λ
5
2 pσq

λ
5
2 pτ0q

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pσq
η̃q

ξ ´ η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃qη̃

1
2 sinrλpτqη̃

1
2

ż σ

τ0

λ´1puq dus

¨ x0p
λ2pτq

λ2pτ0q
η̃q dη̃.

Restricting to η̃ ě 1, ξ ą 1, and setting

Bpτ, σ, ξ, η̃q :“ η̃
1
2
λ

3
2 pτq

λ
3
2 pσq

ξ
1
4`ρ

1
2 p
λ2pτq

λ2pσq
ξqFp

λ2pτq

λ2pσq
ξ,
λ2pτq

λ2pσq
η̃qρ

1
2 p
λ2pτq

λ2pσq
η̃q,

we have the bound
ˇ

ˇBpτ, σ, ξ, η̃q
ˇ

ˇ . η̃
1
4`p

λpτq

λpσq
q

1
2 .

Furthermore, the operator with kernel

η̃´
1
4´Bpτ, σ, ξ, η̃q
ξ ´ η̃

has L2-bound . p λpτq
λpσq

q
1
2 , and we have

›

›

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃qη̃

1
4`x0p

λ2pτq

λ2pτ0q
η̃q
›

›

L2
dη̃pη̃ą1q

.
λ

5
2 pσqλ

1
2 pτq

λ3pτ0q
¨
λ2pτ0q

λ2pτq
¨
λpτ0q

λpτq

›

›x0
›

›

xη̃y´p1`qL2
dη̃
,

Then we infer that

›

›

ż τ

τ0

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

βνpσqAη̃ě1pξ, τ, τ0, σq dσ
›

›

L2
dξpξą1q

.
›

›x0
›

›

S̃ 1
¨

ż τ

τ0

p
λpτq

λpσq
q

1
2 ¨

λ
5
2 pσqλ

1
2 pτq

λ3pτ0q
¨
λ2pτ0q

λ2pτq
¨
λpτ0q

λpτq
¨ βνpσq dσ

.
›

›x0
›

›

S̃ 1
.

The remaining situation η̃ ă 1 in this case is handled in analogy to the preceding
case Step 1(i); note that on account of the extra factor η̃

1
2 we are never in danger of

losing a factor σ.

Step 3: Here we deal with the low frequency case ξ ă 1, and in particular, we
explain the choice of 4 ˜̃xp1q0,1 for the contribution of xp0q coming from x0. Here the
precise definition of the norm

›

› ¨
›

›

S̃ 1
will play a role. The control of the part of

4xp1qąτ as well as that part of the components 4x̃p1q0 ,4x̃p1q1 contributed by x0 being
similar and routine, we shall omit them. To begin with, we need to complete the
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proof of Lemma 7.3, which we recall happened in two stages (1) and (2). Here we
show how to choose 4 ˜̃xp1q0 , by first establishing

Completion of proof of Lemma 7.3, (1): proof of the bound

ˇ

ˇ

ż 8

0

pρ
1
2 4̃x̃p1q0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ

ˇ

ˇ . τ0`
0

›

›px0, x1q
›

›

S̃ ` τ
´p1´q
0 |x0d|.

This is again straightforward for the contribution of the exponentially decaying
term xp0qd , and so we reduce to the contribution of xp0q. We follow the same sub-
cases as the part of the proof of Lemma 7.3 given earlier, but this time only con-
sidering the contribution from x0. Recall the formula for 4̃x̃p1q0 which is given
immediately before the statement of Lemma 7.3.

(1i): Contribution of β2
νpσqKccxp0qpσ, ξq, low frequency ξ ă 1. Throughout we

only consider the contribution of the first term in (7.6) to xp0q. Substituting this
formula into the expression for r4x̃p1q0 and then into the first expression in (7.7), we
obtain the following kind of integral expression

ż 8

τ0

λ
3
2 pτ0q

λ
3
2 pσq

β2
νpσq

ż 8

0
χξă1

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq cosrντ0ξ

1
2 s sinrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

¨ Bpτ0, σ, ξq dξdσ,
(14.3)

where we have set

Bpτ0, σ, ξq :

“

ż 8

0

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx0p
λ2pσq

λ2pτ0q
ηq dη

Here we quickly mimic the cases (1i.a) - (1i.c) from the earlier proof of Lemma 7.3.
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(1i.a): Imbalanced frequencies λ2pτ0q

λ2pσq
ξ ! η. Following the same steps as in the

earlier proof, we reduce at fixed time σ ě τ0 to bounding

τ0β
2
νpσq

ż 8

0
sup

λ2pτ0q

λ2pσq
ξ!η

ˇ

ˇη
1
2

Fpλ
2pτ0q

λ2pσq
ξ, ηqρpηq

λ2pτ0q

λ2pσq
ξ ´ η

ˇ

ˇ

λ
5
2 pσq

λ
5
2 pτ0q

ˇ

ˇ

ρ
1
2 p

λ2pσq

λ2pτ0q
ηq

ρ
1
2 pηq

¨ cosrλpσqη
1
2

ż σ

τ0

λ´1puq dusx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ dη

. τ0β
2
νpσq

ż 8

0

λ2pσq

λ2pτ0q

`

χ λ2pσq
λ2pτ0q

ηă1

ˇ

ˇx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

` χ λ2pσq
λ2pτ0q

ηě1
r
λ2pσq

λ2pτ0q
ηs

1
2
ˇ

ˇx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ

˘

dη

. τ0β
2
νpσq

›

›x0
›

›

S̃ 1
.

This in turn can be integrated over σ ě τ0 to give the desired bound.

(1i.b): Balanced frequencies λ2pτ0q

λ2pσq
ξ „ η. Arguing as in the earlier proof, we

simply need to exploit here that

›

›

λ2pσq

λ2pτ0q
η

1
2 x0p

λ2pσq

λ2pτ0q
ηq
›

›

L2
dη
. r

λpσq

λpτ0q
s0`

›

›x0
›

›

S̃ 1
.

The desired bound easily follows from the earlier argument.

(1i.c): Imbalanced frequencies λ2pτ0q

λ2pσq
ξ " η. Here instead of (7.10), (7.11), one

arrives at the quantities

ż 8

0

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

cosrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
4

x0p
λ2pσq

λ2pτ0q
ηq dη

ż 8

c λ
2pτ0q

λ2pσq
ξ

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

cosrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
4

x0p
λ2pσq

λ2pτ0q
ηq dη,

Then one controls the contribution of the first expression by means of the first
vanishing condition of (3.1), just as in (1i.c) in the earlier proof of Lemma 7.3,
while the second contribution is bounded by

ˇ

ˇ

ż 8

c λ
2pτ0q

λ2pσq
ξ

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pσq

λ2pτ0q
ηq

cosrλpσqη
1
2
şσ
τ0
λ´1puq dus

η
1
4

x0p
λ2pσq

λ2pτ0q
ηq dη

ˇ

ˇ

.

ż

λ2pτ0q

λ2pσq

c λ
2pτ0q

λ2pσq
ξ

λ2pσq

λ2pτ0q
η´

1
2
ˇ

ˇx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ dη`
ż 8

λ2pτ0q

λ2pσq

λ3pσq

λ3pτ0q

ˇ

ˇx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ dη.
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Then we get

ż

λ2pτ0q

λ2pσq

c λ
2pτ0q

λ2pσq
ξ

λ2pσq

λ2pτ0q
η´

1
2
ˇ

ˇx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ dη . ξ´
1
2`r

λpσq

λpτ0q
s1`

ż 1

ξ
η̃0´

ˇ

ˇx0pη̃q
ˇ

ˇ dη̃

. ξ´
1
2` log ξr

λpσq

λpτ0q
s1`

›

›x0
›

›

S̃ 1
,

and further

ˇ

ˇ

ż 8

λ2pτ0q

λ2pσq

λ3pσq

λ3pτ0q

ˇ

ˇx0p
λ2pσq

λ2pτ0q
ηq
ˇ

ˇ dη
ˇ

ˇ .
λpσq

λpτ0q

ż 8

1

ˇ

ˇx0pη̃q
ˇ

ˇ dη̃

.
λpσq

λpτ0q

›

›x0
›

›

S̃ 1
.

If we combine the preceding two bounds with the estimate (for ξ ă 1, σ ě τ0)

ˇ

ˇ

λ
3
2 pτ0q

λ
3
2 pσq

β2
νpσq

ρ
1
2 p

λ2pτ0q

λ2pσq
ξq

ρ
1
2 pξq

ρ
1
2 pξq cosrντ0ξ

1
2 s sinrλpτ0qξ

1
2
şσ
τ0
λ´1puq dus

ξ
3
4

ˇ

ˇ

. ντ0β
2
νpσq ¨

λpτ0q

λpσq
ξ´

1
2 ,

we see that inserting the second expression at the beginning of (1i.c) for Bpτ0, σ, ξq
in (14.3), the resulting expression can be bounded by

.
›

›x0
›

›

S̃ 1

ż 8

τ0

ντ0β
2
νpσqr

λpσq

λpτ0q
s0` dσ .

›

›x0
›

›

S̃ 1
,

as desired.
As the remaining cases (1ii), (1iii), in analogy to the earlier proof of Lemma 7.3,
are routine variations on the preceding kinds of estimates, we omit them here. This
concludes (1) of the completion of proof of Lemma 7.3.

Completion of proof of Lemma 7.3, (2): Choice of 4 ˜̃xp1q0 . Again we shall set

4 ˜̃xp1q0 “ βF pχRďCτ0φpR, 0qq

for suitable β P R. We easily get

ż 8

0

pρ
1
24 ˜̃xp1q0 qpξq

ξ
1
4

cosrντ0ξ
1
2 s dξ „ β,

while we also have
›

›p4 ˜̃xp1q0 , 0q
›

›

S̃ . βτ
´1
0 .
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14.2. The contribution of the source term β2
νpτqK

2
ccxp0q in the proof of Propo-

sition 7.1. Here we briefly consider the contribution of the last term in (7.5) in the
proof of Proposition 7.1. More specifically, we shall reduce xp0q to the contribution
of the first term in (2.12), the second term there being treated similarly, and we
shall consider the bound for the low frequency term χξă14ąτxp1q with respect to
the norm

›

› ¨
›

›

S 1
. Following Step 4 in the proof of Proposition 7.1, consider the

expression

´

ż 8

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσq

`

K2
ccxp0q

˘

pσ,
λ2pτq

λ2pσq
ξq dσ,

(14.4)
where throughout we shall restrict to ξ ă 1. Write explicitly

K2
ccp

λ2pτq

λ2pσq
ξqxp0q

“

ż 8

0

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ

ż 8

0

Fp λ
2pτq

λ2pσq
ζ,

λ2pτq

λ2pσq
η̃qρp

λ2pτq

λ2pσq
η̃q

ζ ´ η̃
xp0qp

λ2pτq

λ2pσq
η̃q dη̃dζ,

where we now have (under our current simplified version of xp0q)

xp0qp
λ2pτq

λ2pσq
η̃q “

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p

λ2pτq

λ2pτ0q
η̃q

ρ
1
2 p

λ2pτq

λ2pσq
η̃q

cosrλpτqη̃
1
2

ż σ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
η̃q.

It remains to estimate
›

›(14.4)
›

›

S 1
“

›

›ξ´p0`q(14.4)
›

›

L2
dξ

. We prove this again by dis-

tinguishing between a number of cases:

(1): Imbalanced frequencies ξ ! η̃. Introduce the auxiliary function (keeping
the temporal variables fixed for now)

f pζq :“
ż 8

0

Fp λ
2pτq

λ2pσq
ζ,

λ2pτq

λ2pσq
η̃qρ

1
2 p

λ2pτq

λ2pσq
η̃q

ζ ´ η̃

λ
5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃q

¨ cosrλpτqη̃
ż σ

τ0

λ´1u dusx0p
λ2pτq

λ2pτ0q
η̃q dη̃

Then using subscripts to indicate further restrictions of the integration range, we
get

ˇ

ˇ fζ!η̃pζq
ˇ

ˇ .
λ

5
2 pσq

λ
5
2 pτ0q

ż 8

C maxtζ,ξu
χ λ2pτq
λ2pσq

η̃ă1

p
λ2pτq

λ2pσq
η̃q

3
4

η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃

`
λ

5
2 pσq

λ
5
2 pτ0q

ż 8

C maxtζ,ξu
χ λ2pτq
λ2pσq

η̃ě1
η̃´1p

λ2pτq

λ2pτ0q
η̃q

1
4
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃.
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The first integral expression on the right is then bounded by

λ
5
2 pσq

λ
5
2 pτ0q

ż 8

C maxtζ,ξu
χ λ2pτq
λ2pσq

η̃ă1

p
λ2pτq

λ2pσq
η̃q

3
4

η̃
ρ

1
2 p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃

.
λpσqλpτq

λ2pτ0q

ż 8

C maxtζ,ξu
χ λ2pτq
λ2pτ0q

η̃ă1
η̃´

1
2
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃

`
λpσqλ

3
2 pτq

λ
5
2 pτ0q

ż 8

C maxtζ,ξu
χ λ2pτq
λ2pτ0q

η̃ě1
η̃´

1
4 r
λ2pτq

λ2pτ0q
η̃s

1
4
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃

. ξ´p
1
2´q

λpσqλpτq

λ2pτ0q
r
λpτ0q

λpτq
s2´

›

›x0
›

›

S̃ 1

On the other hand, the second integral in the bound for
ˇ

ˇ fζ!η̃pζq
ˇ

ˇ is dominated by

ˇ

ˇ

λ
5
2 pσq

λ
5
2 pτ0q

ż 8

C maxtζ,ξu
χ λ2pτq
λ2pσq

η̃ě1
η̃´1p

λ2pτq

λ2pτ0q
η̃q

1
4
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃
ˇ

ˇ

.
λ

5
2 pσq

λ
5
2 pτ0q

¨
λ

5
2 pτq

λ
5
2 pσq

¨
λ

5
2 pτ0q

λ
5
2 pτq

›

›x0
›

›

S̃ 1
“

›

›x0
›

›

S̃ 1
,

where we have exploited that we have η̃ ě λ2pσq

λ2pτq
in the integration range, as well as

the fact that the definition of
›

› ¨
›

›

S̃ 1
allows us to include an extra weight p λ

2pτq

λ2pτ0q
η̃q

3
4 .

The preceding bounds then immediately imply

›

›ξ´p0`q
ż 8

0
χξ„ζ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ
fζ!η̃ dζ

›

›

L2
dξpξă1q

.
›

›ζ
1
2´ fζ!η̃

›

›

L2
dζpζă1q .

λpσq

λpτ0q
r
λpτ0q

λpτq
s1´

›

›x0
›

›

S̃ 1
,

where we have exploited the vanishing property of Fp¨, ¨q to absorb ξ´
1
2 . It is then

easily seen that the contribution of the term fξ„ζ!η̃ to (14.4) leads to the desired
bound, using that for ξ ă 1 we have

ˇ

ˇ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσq

ˇ

ˇ .
λpτq

λpσq
¨ τ ¨ β2

νpσq.

Similarly, we obtain

ˇ

ˇ

ż 8

0
χξ!ζ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ
fζ!η̃ dζ

ˇ

ˇ

. logp
η̃

ξ
qξ´p

1
2´q

λpσq

λpτ0q
r
λpτ0q

λpτq
s1´

›

›x0
›

›

S̃ 1

Calculating the norm
›

› ¨
›

›

ξ0`L2
dξ

here leads to a logarithmic divergence, which how-

ever is easily avoided by means of a simple orthogonality type argument, exploiting
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gains in ξ
η̃ which we neglected before. Finally, the expression arising upon substi-

tuting the cutoff χζ!ξ is bounded similarly, exploiting the crude bound

χζ!ξ
ˇ

ˇ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ

ˇ

ˇ . ζ´
1
2 , ξ ă 1.

This concludes the contribution of | fζ!η̃|.
Next, we consider what happens when we replace f pζq by fζ„η̃. Proceeding as for
fζ!η̃, one infers that

›

› fζ„η̃
›

›

L2
dζ
.
λpσqλpτq

λ2pτ0q
r
λpτ0q

λpτq
s2´

›

›x0
›

›

S̃ 1
,

Since ζ „ η̃ implies ζ " ξ under the hypothesis of case (1), and further (provided
ξ ! ζ)

ˇ

ˇFp
λ2pτq

λ2pσq
ξ,
λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq
ˇ

ˇ . 1,

we have

ˇ

ˇ

ż 8

0
χξ!ζ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ
fζ„η̃ dζ

ˇ

ˇ .
λpσqλpτq

λ2pτ0q
r
λpτ0q

λpτq
s2´

›

›x0
›

›

S̃ 1
.

Then setting

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p

λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sinrλpτqξ
1
2
şσ
τ λ

´1puq dus

ξ
1
2

β2
νpσq “ Φpτ, σ, ξq,

we get

›

›ξ´p0`q
ż 8

τ
Φpτ, σ, ξq

ż 8

0
χξ!ζ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ
fζ„η̃ dζ

›

›

L2
dξpξă1q

.
›

›x0
›

›

S̃ 1

ż 8

τ

λpτq

λpσq
τβ2

νpσq ¨
λpσqλpτq

λ2pτ0q
r
λpτ0q

λpτq
s2´ dσ . p

τ

τ0
qκ
›

›x0
›

›

S̃ 1
,

which takes care of the contribution of fζ„η̃. It remains to deal with the contribu-
tion of fζ"η̃, which is treated similarly to that of fζ!η̃, trading a factor ξ

1
2´ for a

η̃
1
2´. This concludes case (1), i. e. the imbalanced case ξ ! η̃.
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(2): Imbalanced frequencies ξ " η̃. We borrow the notation from the preceding
case (1). First consider the contribution of fζ!η̃, which is bounded by

ζ
1
2
ˇ

ˇ fζ!η̃
ˇ

ˇ

.
λ

5
2 pσq

λ
5
2 pτ0q

ż cξ

Cζ
η̃
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ˇ

ˇFp λ
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λ2pσq
ζ,
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λ2pσq
η̃q
ˇ

ˇ

η̃
ρ

1
2 p
λ2pτq
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η̃qρ

1
2 p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇx0p
λ2pτq

λ2pτ0q
η̃q
ˇ

ˇ dη̃

.
λ

5
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λ
5
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u

0
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p
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1
2 p
λpτ0q
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1
2
ˇ

ˇx0p
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η̃q
ˇ

ˇ dη̃

`
λ

5
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λ
5
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u
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p
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q

1
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1
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1
2
ˇ
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ˇ

ˇ dη̃

.
λpσq

λpτq
p
τ

τ0
qκ
›

›x0
›

›

S̃ 1
.

The preceding estimate, combined with a simple orthogonality argument, then
yields (keeping in mind that we restrict to ξ " η̃)

ˇ

ˇ

ż 8

0
χξ"ζ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq
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ζq
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ˇ

ˇ

.
λpσq

λpτq
p
τ
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qκ
›

›x0
›

›

S̃ 1
.

It follows that the corresponding contribution to (14.4) is bounded by. p ττ0
qκ
›

›x0
›

›

S̃ 1
.

Next, consider the contribution of fζ„η̃, whence now ζ ! ξ. Here we have
›

›ζ´p0`q fζ„η̃
›

›

L2
dζ

“
›

›ζ´p0`q
ż 8

0
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›

›
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Both of the last expressions are directly seen to be bounded by . p ττ0
qκ
λpσq

λpτq

›

›x0
›

›

S̃ 1
.

Then we can infer that

ˇ

ˇ

ż 8
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ζq
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fζ„η̃ dζ
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.
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,



ON STABILITY OF TYPE II BLOW UP FOR THE CRITICAL NLW ON R3`1 125

which again suffices to bound the corresponding contribution to (14.4).
Finally, we consider the contribution of fζ"η̃. Here we can replace fζ"η̃ by

λ2pτq
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ż cξ
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Here in the first integral expression on the right, trading a power ξ
1
2´, which will

come from the L2
dξ-norm of the output, for a power η̃

1
2´, one easily finds (recall

ξ ă 1)
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2 p
λ2pτq

λ2pσq
η̃q
λ

5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
η̃q dη̃

ˇ

ˇ

.
λpσq

λpτq
p
τ

τ0
qκ
›

›x0
›

›

S̃ 1
,

and from here one easily infers the desired bound for the corresponding contribu-
tion to (14.4). One may thus replace the expression fζ"η̃ by

λ2pτq

λ2pσq

ż 8

0
ρ

1
2 p
λ2pτq

λ2pσq
η̃q
λ

5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
η̃q dη̃.

This expression we then reduce to the

λ2pτq

λ2pσq

ż 8

0
χ λ2pτq
λ2pσq

η̃ă1
ρ

1
2 p
λ2pτq

λ2pσq
η̃q
λ

5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
η̃q dη̃

up to a term which in terms of L8dζ is bounded by . p ττ0
qκ
›

›x0
›

›

S̃ 1
, which then fur-

nishes an acceptable contribution to (14.4) as is easily verified. In turn, one reduces
the preceding expression to

λ2pτq

λ2pσq

ż 8

0
χ λ2pτq
λ2pσq

η̃ă1
r
λ2pτq

λ2pσq
η̃s´

1
4
λ

5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
η̃q dη̃

up to a negligible error, and finally, one reduces to

λ2pτq

λ2pσq

ż 8

0
r
λ2pτq

λ2pσq
η̃s´

1
4
λ

5
2 pσq

λ
5
2 pτ0q

ρ
1
2 p
λ2pτq

λ2pτ0q
η̃q cosrλpτqη̃

1
2

ż σ

τ0

λ´1puq dusx0p
λ2pτq

λ2pτ0q
η̃q dη̃
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But then arguing as in (2) of the proof of Proposition 3.1, the preceding equals

λpσq

λpτ0q

ż 8

0
η´

1
4 cosrλpτ0qη

1
2

ż σ

τ0

λ´1puq dusρ
1
2 pηqx0pηq dη (14.5)

which is bounded by σ
›

›x0
›

›

S̃ 1
thanks to the vanishing condition satisfied by x0.

Inserting the preceding expression instead of fζ"η̃ into the formula forK2
ccxp0q then

results almost in a good bound for the corresponding contribution for (14.4), except
that the singular weight ξ´p0`q used in the norm for the output just barely causes
a divergence which we have to avoid by using an orthogonality type argument. In
fact, note that we can simply bound (with the preceding expression representing
fζ"η̃)

ˇ

ˇ

ż 8

Cξ

Fp λ
2pτq

λ2pσq
ξ,

λ2pτq

λ2pσq
ζqρp

λ2pτq

λ2pσq
ζq

ξ ´ ζ
fζ"η̃ dζ

ˇ

ˇ .
›

› fζ"η̃
›

›

L8dζ

. σ
›

›x0
›

›

S̃ 1
,

and we ’almost have’ (recall the notation introduced earlier above)
›

›χξă1ξ
´p0`qΦpτ, σ, ξq

›

›

L2
dξ
.
λpτq

λpσq
β2
νpσq,

whence we just miss the estimate
›

›x0
›

›

S̃ 1

ż 8

τ

λpτq

λpσq
β2
νpσq ¨ σ dσ „

›

›x0
›

›

S̃ 1
.

for this contribution to (14.4).
To deal with the divergence, we note that with η the integration variable in (14.5),
if λ2pτqξ & λ2pτ0qη, we can absorb a factor ξ´p0`q into the integral (14.5) while
gaining a factor

r
λ2pτ0qη

λ2pτqξ
s0`r

τ

τ0
sκ

and then a simple orthogonality argument, using localisations to dyadic values of
ξ, η, furnishes the desired sharp bound (with a loss p ττ0

qκ, which is admissible in
light of the shape estimate (7.4) we are striving to prove). On the other hand, if
λ2pτqξ ! λ2pτ0qη, we are performing an integration by parts in the σ-integral
(14.4), which in the worst case trades a factor λpτq

λpσq
ξ

1
2 for a factor λpτ0q

λpσq
η

1
2 (coming

from (14.5)). Then performing the L2
dξ-integral on (14.4) with the weight ξ´p0`q,

one obtains (after dyadic localisation, say) a factor

λpτqξ
1
2´

λpτ0qη
1
2

“ r
λpτqξ

1
2

λpτ0qη
1
2

s1´p
τ

τ0
qκη´p0`q,

and the weight η´p0`q can again be absorbed into (14.5) in light of the definition
of

›

› ¨
›

›

S̃ 1
. Then another orthogonality argument furnishes the desired sharp bound

(7.4) for this contribution to (14.4) as well. This finally concludes the contribution
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of fζ"η̃ to (14.4) in case (2), and thereby case (2).

(3): Balanced frequencies ξ „ η̃. This is again similar to case (1) and we omit
it (one trades a factor ξ

1
2 for a factor η̃

1
2 to five boundedness of the η̃-integral.
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