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Long-range ion induced water-water correlations were recently observed in femtosecond elastic second harmonic
scattering experiments of electrolyte solutions. To further the qualitative understanding of these correlations,
we derive an analytical expression that quantifies ion induced dipole-dipole correlations in a non-interacting
gas of dipoles. This model is a logical extension of Debye-Hückel theory that can be used to qualitatively
understand how the combined electric field of the ions induces correlations in the orientational distributions
of the water molecules in an aqueous solution. The model agrees with results from molecular dynamics
simulations and provides an important starting point for further theoretical work.

The electric field of a solvated ion in water induces ori-
entational ordering in the surrounding solvent molecules.
However, the length scale over which this ordering persists
has been a topic of significant debate, at least in part
because the range at which correlations can be detected de-
pends on the experimental probe.1 The results of neutron
diffraction,2,3 X-ray scattering,4,5 dielectric relaxation,6

and femtosecond pump-probe experiments,7 as well as
atomistic simulations of the reorientation timescales of
water molecules8 and of the vibrational spectrum of
solutions,9,10 have suggested that the ordering of the sur-
rounding water molecules by ions extends no further than
about 3 solvation shells (around 0.8 nm) for sub-molar
concentrations. On the other hand, infrared photodissoci-
ation experiments,11,12 and a study combining terahertz
and femtosecond infrared spectroscopies,13 have found ev-
idence for ordering extended to longer ranges. Molecular
dynamics simulations looking directly at the orientational
correlations between water molecules showed that the
presence of ionic solutes have an effect on these correla-
tions at distances of more than 1 nm.14

Femtosecond elastic second harmonic scattering (fs-
ESHS)15,16 measurements have recently been used to
probe the orientational order of water molecules in
H2O and D2O electrolyte solutions,17 revealing inten-
sity changes that are already detectable at micromolar
concentrations, and which are identical for more than 20
different electrolytes. The non-specificity of the fs-ESHS
response, its magnitude, and its onset at low concentra-
tion point to its long-range origin. The isotope exchange
experiment, together with the recorded polarization com-
binations (in conjunction with the selection rules for non-
linear light scattering experiments16,18) show that the
recorded changes in the fs-ESHS response in the concen-
tration range from 1 µM - 100 mM arise from water-water
correlations that are induced by the ions (and not from
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the ions themselves). This effect shows intriguing cor-
relations with changes in the surface tension of dilute
electrolyte solutions, suggesting that the microscopic phe-
nomenon underlying the second-harmonic signal can have
an impact on macroscopic observables.

In this Communication we derive an analytical expres-
sion for the correlations induced in a non-interacting gas
of dipoles by the electric field of ions. This expression is a
natural extension to a simple Debye-Hückel model, which
has been shown to qualitatively capture the concentration-
dependence of the second-harmonic response,17,19 and
can be used to elucidate the nature, the range and the
energetics of the weak ion-induced ordering probed by
fs-ESHS.20 The expression provides a benchmark for a
fundamental understanding of the interplay of ion-dipole
and ion-ion interactions. By comparison with classical
molecular dynamics simulations of dilute NaCl solutions,
we demonstrate that both of these factors are needed to
characterize the ion-induced solvent correlations.

We begin by considering the water molecules in an ionic
solution to be point dipoles that interact only with the so-
lute, and have no explicit dipole-dipole interactions. The
orientational ordering of these dipoles is thus caused only
by the electric field due to the ions. A similar philosophy
has been applied in mean-field theories that have existed
for many decades, in which water molecules are treated as
point dipoles in a dielectric continuum.21 These theories
have been used to understand several physical properties,
including the local field factor that describes the reaction
field on a molecule due to its polarization of the surround-
ing medium,22 the dielectric constant of a liquid,22–24 and
dynamical properties such as dielectric relaxation times.25

Although this might appear to be a harsh assumption –
and it certainly implies that these models cannot report
on short-ranged hydrogen-bonding and dipole-dipole in-
teractions – the dipolar screening is implicitly included.
We will also show later that dipole-dipole interactions can
be included in a refined version of our model, and have
no impact on the long-range behavior.

Figs. 1(a) and (b) show how our model is built up:
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firstly, the ions are taken to be point charges in a dielec-
tric continuum, with an appropriate spatial distribution,
after which the system is filled with a uniform gas of inde-
pendent dipoles,19 which will align with the local electric
field. We then define the dipole correlation function for
two solvent molecules separated by a distance r (that is,
the average inner product of two dipoles as a function of
their separation),

〈cosφ〉 (r) =
1

V

∫
V

〈µ̂(R) · µ̂(R+ r)〉o+i d3R, (1)

(a)                   (b)                    (c)
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FIG. 1. Illustration of the mean-field model considered in
this communication: (a) ions are embedded in a dielectric
continuum, and then (b) a uniform gas of independent point
dipoles is added to the system. (c) Dipole correlation function
〈cosφ〉 (r): r is the distance between two dipoles, µ1 and µ2

are their dipole moment vectors and cosφ = µ̂1 · µ̂2.

where µ̂(R) is the unit vector in the direction of the dipole
moment of a molecule at R, V is the volume of the system
and “o+i” denotes an average over molecular orientations
and ionic positions. Fig. 1(c) illustrates how the angle φ
is defined for two representative water molecules.

In the Supplementary Information (SI), we show that by
taking a Taylor expansion in the reciprocal temperature
β = 1/kBT , we can make the approximation,

〈cosφ〉 (r) ' 1

V

(
βµ

3

)2 ∫
V

〈E(R) ·E(R+ r)〉i d3R,

(2)
where E(R) is the total electric field at position R due
to all of the ions in the solution, and µ is the permanent
dipole moment of a water molecule. The subscript “i”
indicates that the average is taken over the positions of
ions. For simplicity of notation, any angular brackets
in the following work without a subscript are taken over
ion positions only. Eqn. (2) shows that in our model
the correlation between dipoles is proportional to the
correlation between electric fields, which are taken to be
the only source of ordering for the molecules.

The electric field E(R) at a given position is the sum
of electric fields due to all of the ions. This allows us to
write,

E(R) =
∑

m∈ions

eZmf0
4πε0εr

E(R− rm), (3)

with Zm the charge of the mth ion in units of the elec-
tron charge e and rm the position of this ion, f0 the

Onsager local field factor,22 ε0 the vacuum permittivity,
εr the solvent dielectric constant, and E(r) the electric
field associated with individual ions (most commonly the
Coulomb field, r/r3). This gives

〈cosφ〉 (r) '
A

V

∑
m,n

ZmZn

∫
V

〈E(R− rm) · E(R+ r − rn)〉 d3R,

(4)

in which we have defined A =
(
βµf0e
12πε0εr

)2
.

In the thermodynamic (V →∞) limit the integral in
Eqn. (4) is taken over all space and can be most conve-
niently expressed in reciprocal space,

〈cosφ〉 (r) '

A

V

∫
E(K)·E(−K)

〈∑
m,n

ZmZne
iK·(rm−rn)

〉
eiK·r

d3K

(2π)
3 ,

(5)

where E(K) is the Fourier transform of the field function
E(r). The term in angular brackets is proportional to the
charge-charge structure factor S(K) of the ions.26 This
gives the dipole correlation function in terms of the ion
number density ρ as,

〈cosφ〉 (r) '

ρ

(2π)
3

(
βµef0

12πε0εr

)2 ∫
|E(K)|2 S(K)eiK·r d3K. (6)

The most appropriate mean-field model can be obtained
by taking the field function E(r) to be the Coulomb field
r/r3 (corresponding to E(K) = −4πiK/K2), and using

the Debye-Hückel (DH) structure factor26 S(K) = 2K2

K2+κ2 ,

where κ =
(

2ρβZ2e2

ε0εr

)1/2
is the inverse Debye length. This

gives

〈cosφ〉
DH

(r) =
ρ

2π

(
βµef0
3ε0εr

)2
e−κr

r
. (7)

The variation of 〈cosφ〉
DH

(r) with ion concentration is
instructive. As seen in Figure 2, for small ρ, an increase
in concentration leads to an increase in correlation be-
tween solvent dipoles, while for large ρ the e−κr factor
dominates. Increasing the concentration results in ions
being more screened and with a lesser propensity to orient
solvent dipoles. It should be also noted that, at all of the
concentrations shown in Fig. 2, the dipolar correlations at
distances above 5 nm are very small. However, because
the number of water molecules further than 5 nm away is
very large, these correlations can be measured by fs-ESHS
experiments, a testimony to the exquisite sensitivity of
the probe.

Eqn. (6) allows us to investigate the interplay between
the ion-ion spatial correlations (encoded in S(K)) and
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FIG. 2. Solvent dipole-dipole correlation functions predicted
by Eqn. (7) at different concentrations.

the ion-dipole orientational correlations (due to the elec-
tric field E(r)). By changing the form of S(K), one can
estimate the response to an arbitrary distribution of ions:
for instance, one could extend this model to investigate
the correlations induced by charges on an interface. A
particularly instructive example involves a completely
uncorrelated arrangement of ions. This random-ion (RI)
model is equivalent to setting S(K) = 2, which leads
to dipole-dipole correlations corresponding to Eqn. (7)
with κ = 0, while the concentration ρ is kept constant.
At all concentrations, this RI model leads to increased
dipole-dipole correlations, because of the lack of screening
of the Coulombic ion-dipole interaction by the correlated
cloud of counterions. It is worth stressing that, although it
might be appealing to qualitatively discuss the dampening
of correlations in terms of the exponentially-screened DH
field of an ion, this is not an appropriate model. Such a
screened-field/random ions (SF-RI) model amounts to set-

ting E(r) = −∇ e−κr

r = r
(
e−κr

r3 + κe−κr

r2

)
and S(K) = 2.

The resulting functional form of the induced dipole-dipole
correlations resembles that of the full DH model at short
distances, but then leads to unphysical anticorrelations
at large distance (see the SI).

Fig. 3 compares the predicted 〈cosφ〉 (r) using the full
DH theory, the RI and the SF-RI models, and the cor-
relations computed from a MD simulation using a ∼ 20
nm cubic box with about 264,000 TIP4P/2005 water
molecules.17 All curves correspond to a salt concentration
of 8 mM and a temperature of 300 K. The other physical
constants used are described in the SI. Comparison with
MD results in Fig. 3 shows that only the full DH model
captures the correct long-range behavior of the dipole-
dipole correlations – although the short range structure
is clearly absent. Neglecting ion-ion spatial correlations
artificially increases the orientational correlations, since
randomly distributed ions cannot efficiently screen the

FIG. 3. Comparison of the solvent dipole correlation function
for the full Debye-Hückel theory (black line), the random-ion
approximation (red line) and the screened-field plus random-
ion approximation (blue line), with a salt concentration of
8 mM at T = 300 K. We also show the correlation function
calculated from MD at this concentration (green line). In
all cases we have subtracted the correlation function for pure
water at the same temperature. Note that this correlation is
zero for the mean-field model, and so 〈∆ cosφ〉 (r) = 〈cosφ〉 (r)
for all curves but MD. Inset: the absolute correlation function
〈cosφ〉 (r) calculated from MD, showing considerable structure
at short range.

fields of other ions. A picture in which one interprets
dipole-dipole correlations in terms of the screened elec-
trostatic field of the ions, while providing a qualitative
picture of the physics, is inconsistent with the linearized-
Boltzmann structure of the mean-field model, and fails
to quantitatively reproduce the MD results. This com-
parison demonstrates that the long-ranged dipole-dipole
correlations are most naturally interpreted as being due to
the bare electric field of the ions, inducing (weak) ordering
in a spherical domain surrounding each ion. The correla-
tions are modulated by short range interactions (which
are not included in this model), and by the presence of
ion-ion spatial correlations, which result in a partial can-
cellation of the field and therefore to exponential damping
of 〈cosφ〉 (r). The decrease of the dipole-dipole correla-
tions explains the saturation of the fs-ESHS signal at high
electrolyte concentrations.17

We note that the mean-field model can be further im-
proved to include more physical effects. 〈cosφ〉

DH
(r) di-

verges in the r → 0 limit because of the singularity in
the electric field at the ion positions. It is possible to
remove this short-distance divergence by restricting the
volume of space in which water molecules can be found;
however, the fact that two water molecules have a dis-
tance of minimum approach, below which 〈cosφ〉 (r) is
not meaningful, makes the divergence irrelevant. We
can also estimate the impact of neglecting dipole-dipole
interactions, by re-introducing them in a perturbative
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fashion. This can be done by following the procedure
used to derive the approximation in Eqn. (2), including
also the dipole-dipole interaction. In doing so, we find
(as described in the SI) that up to order β3, the correla-
tion function can be decoupled into two terms, describing
the correlations present in bulk water and the changes
induced by the electric field of the ions. The lowest-order
term in 〈cosφ〉 (r) that includes a coupling between the
dipole-dipole and the ion-dipole interactions is propor-
tional to β4e−κr/r7. This term decays much more rapidly
than does the model of Eqn. (7), and makes essentially
no contribution at long enough distances: above 0.33 nm,
the magnitude of this correction is less than 1 % of the
magnitude of 〈cosφ〉

DH
(r), and less than 10−3 % above 1

nm.
In order to elucidate the free energy scale associated

with ion-induced long-range dipole-dipole correlations, we
evaluate the total energetic contribution associated with
the oriented dipoles at distances larger than a chosen
cut-off length rc, which reads (see the SI),27

U = 4πρSµ

∫ ∞
rc

r2E(r)L (βµE(r)) dr, (8)

where L(x) = coth(x) − 1/x is the Langevin function
and ρS is the solvent density. The mean electric field
E(r) around an ion is given by Debye-Hückel theory. The
integral can be computed by expanding the integrand as
a Taylor series in β.

Fig. 4 shows the total energetic contribution of the
dipoles oriented by an ion as a function of the electrolyte
concentration and for different cut-off distances. At mM
concentrations, dipolar order beyond the Bjerrum length
(∼ 0.7 nm in water at 300 K) is associated with an en-
ergy scale of about 3 kBT , and even the tails beyond 4
nm correspond to a significant fraction of kBT . Thus,
even though each ion-dipole interaction is very small, the
collective effect can be significant when considering the
energetics of the ion that induces the orientation of the
dipoles. Indeed, field-theoretical calculations on ionic
solutions have shown that their surface tension can be
written as a sum of two terms, one of which describes
the interactions of ions with their image charges,28 and
another which describes the energy stored in the dielectric
medium surrounding these ions,29 which is analogous to
the energy of dipole orientation described in Eqn. (8).
These arguments support the hypothesis that ion-induced
dipole-dipole correlations underlie the concentration de-
pendence of both SHS and surface tension measurements
for dilute electrolyte solutions.17

In conclusion, we have shown that long-range, non-
specific electrolyte-induced correlations in water as re-
cently observed in fs-ESHS experiments can be captured
by a simple mean-field model that treats water molecules
as non-interacting dipoles oriented by the electrostatic
field of ions, which are themselves correlated following
Debye-Hückel theory. Although one can intuitively un-
derstand the orientational correlations as arising from
the exponentially-screened field of correlated ions, a more

FIG. 4. Energy of the dipoles oriented by a single ion as a
function of ion concentration, for varying short-range cutoff
distances rc.

accurate picture, leading to quantitative predictions of
MD simulations, regards them as arising from unscreened
ion-dipole correlations that combine destructively when
the physically relevant ion-ion correlations are included.
This model is very useful to pinpoint what we think is the
main physical origin of the electrolyte-induced change in
the fs-ESHS intensity and to estimate the length and en-
ergy scale of the effect. It does not, however, explain the
dramatic isotope effects that are seen in experiments,17

or the temperature dependence of the fs-ESHS signal. As
such it is clearly only a first step in a complete description
of the experimental data, which should also include a re-
evaluation of the molecular hyperpolarizability tensor,30

particularly when probed by femtosecond laser pulses.31

SUPPLEMENTARY INFORMATION

See supplementary information for more detailed deriva-
tions of the formulas used in the main text, as well as a
list of the numerical values of physical constants used.
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