
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. S. Micera, président du jury
Prof. A. Billard, directrice de thèse

Prof. K. Tahara, rapporteur
Dr L. Natale, rapporteur

Prof. H. Bleuler, rapporteur

Multi-contact tactile exploration and interaction with
unknown objects

THÈSE NO 7686 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 MAI 2017

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'ALGORITHMES ET SYSTÈMES D'APPRENTISSAGE

PROGRAMME DOCTORAL EN ROBOTIQUE, CONTRÔLE ET SYSTÈMES INTELLIGENTS

Suisse
2017

PAR

Nicolas SOMMER

Abstract

H
umans rely on the sense of touch in almost every aspect of daily life,

whether to tie shoelaces, place fingertips on a computer keyboard or find

keys inside a bag. With robots moving into human-centered environment, tac-

tile exploration becomes more and more important as vision may be occluded

easily by obstacles or fail because of different illumination conditions. Tradi-

tional approaches mostly rely on position control for manipulating objects and

are adapted to single grippers and known objects. New sensors make it possible

to extend the control to tackle problems unsolved before: handling unknown

objects and discovering local features on their surface. This thesis tackles the

problem of controlling a robot which makes multiple contacts with an unknown

environment. Generating and keeping multiple contacts points on different parts

of the robot fingers during exploration is an essential feature that distinguishes

our work from other haptic exploration work in the literature, where contacts

are usually limited to one or more fingertips.

In the first part of this thesis, we address the problem of exploring partially

known surfaces and objects for modeling and identification. In multiple scenar-

ios, control and exploration strategies are developed to compliantly follow the

surface or contour of a surface with robotic fingers.

Whereas the methods developed in the first part of this thesis perform well

on objects with limited size and variation in shape, the second part of the the-

sis is devoted to the development of a controller that maximizes contact with

unknown surfaces of any shape and size. Maximizing contact allows to gather

information more rapidly and also to create stable grasps. To this end, we de-

velop an algorithm based on the task-space formulation to quickly handle the

control in torque of an actively compliant robot while keeping constraints, par-

ticularly on contact forces. We also develop a strategy to maximize the surface

in contact, given only the current state of contact, i.e. without prior information

on the object or surface.

In the third part of the thesis, we develop a new way to teach robots how to

react to sensing information while performing a task, by modulating Dynamical

Systems (DS) using external signals. We extend existing approaches to locally

modulate DS to enable sensing-based modulation, so as to change the dynamics

of motion depending on an external signal. The problem of autonomous grasping

i

using only tactile data is tackled using this algorithm. We apply our approach by

using the data collected from the tactile sensors with a particle filter for object

state estimation, which is used to modulate the dynamics of the robot motion

accordingly, changing from exploratory to grasping motions depending on task

progress. This allows to generate fast and autonomous object localization and

grasping in one flexible framework. We also apply this algorithm to teach a robot

how to react to collisions in order to navigate between obstacles while reaching.

Keywords: Tactile Exploration, Active Compliance, Multi-contact Control,

Dynamical Systems.

ii

Résumé

L
es humains sont dépendants de leur sens du toucher dans tous les aspects

de la vie quotidienne, que ce soit pour faire ses lacets, ajuster la position

de ses doigts sur un clavier d’ordinateur ou pour trouver des clés dans un sac.

Avec le déploiement de robots dans des environnements faits pour l’homme,

l’exploration tactile devient de plus en plus importante puisque que l’utilisation

de la vue peut facilement être bloquée par des obstacles ou ne pas fonctionner

à cause de différentes conditions d’éclairage. Les approches traditionnelles re-

posent principalement sur le contrôle en position pour manipuler des objets, et

elles sont adaptées pour de simples pinces robotiques et des objets connus. De

nouveaux capteurs rendent possible l’amélioration du contrôle des robots pour

s’attaquer à des problèmes non résolus jusqu’à maintenant: manier des objets

inconnus et découvrir de manière autonome des caractéristiques géométriques

sur leur surface. Cette thèse aborde le problème qui consiste à contrôler un

robot qui entre en contact en plusieurs points avec un environnement inconnu.

Générer et garder de multiples contacts sur plusieurs parties des doigts des robot

pendant l’exploration est une particularité essentielle qui différencie notre tra-

vail d’autre travaux d’exploration haptique dans la littérature, pour lesquels les

contacts sont la plupart du temps limités à un ou deux points sur le bout des

doigts.

Dans la première partie de cette thèse, nous nous préoccupons du problème

de l’exploration de surfaces et d’objets partiellement connus, pour les modéliser

et les identifier. Dans divers scenarios, des stratégies de contrôle et d’exploration

sont développées pour suivre la surface ou le contour d’une surface de manière

compliante avec des doigts robotiques.

Alors que les méthodes développées dans la première partie de cette thèse

fonctionnent bien pour des objets de taille et de variation de forme limitées,

la seconde partie est dédiée au développement d’un algorithme qui maximise

le contact avec des surfaces inconnues, de toute taille ou forme. Maximiser les

contacts permet de récolter l’information plus rapidement et aussi d’attraper des

objets de manière plus stable. Dans ce but, nous développons un algorithme basé

sur la formulation de l’espace des taches pour rapidement permettre le contrôle

en couple de robots activement compliants, tout en conservant des contraintes,

en particulier sur les forces de contact. Nous développons aussi une stratégie

iii

pour maximiser la surface en contact, à partir seulement de l’état actuel des

contacts, c’est-à-dire sans information additionnelle concernant l’objet ou la

surface.

Dans la troisième et dernière partie de cette thèse, nous développons une

nouvelle méthode pour apprendre aux robots comment réagir à des informa-

tions sensorielles pendant l’exécution d’une tâche, en modulant des systèmes

dynamiques par l’utilisation des signaux externes. Nous étendons une approche

existante pour moduler localement des systèmes dynamiques, en basant la mod-

ulation sur des signaux externes. Nous abordons le problème qui consiste à

attraper des objets en utilisant uniquement l’information tactile et de manière

autonome, avec cet algorithme. Notre approche utilise l’information collectée

avec des capteurs tactiles et un filtre à particules pour estimer la position de

l’objet. Ceci est utilisé pour moduler la dynamique du mouvement du robot, en

variant d’un mouvement de recherche à un mouvement pour attraper un objet,

en fonction du progrès de la localisation. Cela permet d’accomplir rapidement

et de manière autonome une tâche de localisation et de préhension d’objet, le

tout dans une seule structure algorithmique flexible.

Mots Clés: Exploration tactile, Compliance active, contrôle avec multi-contacts,

Systèmes dynamiques.

iv

To Tesla

v

Acknowledgments

First of all, I would like to thank my advisor Aude Billard for giving me the

opportunity to do my PhD here, and for the many hours spent reading my

draft reports, papers and thesis, as well as for her invaluable feedback. I had the

chance to work with many different types of robots, and collaborate/take coffee

breaks with people coming from all over the world.

I am grateful to all my thesis examiners for taking the time and effort to

read, correct my thesis and come to Lausanne for my defense: Lorenzo Natale

(IIT), Kenji Tahara (Kyushu University) and Hannes Bleuler (EPFL). Many

thanks also to Silvestro Micera who served as president of my thesis committee.

Also, I’m grateful to Corinne Lebet, our doctoral school’s secretary, it has been

every time a pleasure to talk to you for all the administrative aspects of the

thesis.

I have spent the last five years in Lausanne, working towards my PhD, and I

had the chance to meet and spend time with great friends and coworkers. When

I first joined the lab, I was welcomed — as many students before and for some

time after — by Basilio, whose energy and enthusiasm drove many of the coffee

break discussions and gave a particular liveliness to lab life. At the same time,

I discovered all the members of the lab, who I would get to know much better

with time, and among whom many became my friends.

In particular, I would like to thank all members of the ”Portugal Gang”,

which all contributed to transform a conference trip into a great adventure.

Mohi, my first officemate, and Persian coach, I’m always looking forward to

seeing you and Soha, either in the US or somewhere here in Europe. Klas, you’ve

also been in the lab almost during all my time here, and it was a pleasure to

collaborate with you, have technical discussions, and most of all share a bottle

of wine or two, especially with your family, Elin and Nora. You are both perfect

examples that one can be at the top-level professionally and have a kind and

healthy lifestyle. I’m very glad to have met Sahar, you always carry a huge

amount of positive energy around you (it usually also shows through the bright

color of your coat), and I think that everyone in the lab is grateful to have

benefited from it. I also want to particularly thank Merve, you have been a

very important support these years. I’m extremely lucky to have shared many

experiences with you and now to have you as my close friend.

vii

I’d like to thank my other first officemate, Lucia - as well as her husband

Vlad and baby Ioan - who’s been patient enough to stand the ”young” me for

several years in the same office. I have always been admirative of your focus

and rigor in your work. My stay in the lab would not have been the same

without Sina. You helped bring good mood everyday and you’ve also been a

support in every occasion. I’ve been lucky to recently share my office with my

cousin Mahdi. Thank you for the philosophical discussions, introducing me (and

everyone around you) to Žižek, and the occasional Chez Xu. Good luck for the

rest of your PhD!

Thanks to Laura for the occasional french politics discussions and games of

Dixit. I also enjoyed learning some Greek thanks to Iasson, occasionally practice

(Mexican) Spanish with Nadia, and learn some useful Russian from Sergei. Leo,

I enjoyed a lot the Montreux Jazz Cafe and Sushi breaks. I hope that you find

a path where you can enjoy both your research and your life outside work. I

would like also to thank and wish good luck to Murali, Denys, Andrew, Michael

and Sebastien, who I’ve still been working next to recently.

I would also like to thank many other people who have spent some time in the

lab during my stay here. Thanks Jean-Baptiste, who assisted me several times

to repair the iCub humanoid robot, in particular all the tiny cables that are

almost humanly impossible to fix. Thanks to Sylvain, although I never had the

chance to work with you, I did enjoy seeing you around and it was particularly a

pleasure to spend time with your at various conferences. Thanks for the Starcraft

live tutorials and video games discussions to Guillaume P. Thanks Gaetan, in

particular for sharing the quest to find the best bars and wine tasting events in

Lausanne. I’m grateful to have worked with Ravin, whose singing skills, although

not always welcome during debugging sessions, bring a light touch of gentleness.

I would like to thank Ashley, whose brief but intense stay in the lab made all of

us benefit not only from her video making, communication, and writing skills,

but mostly of her contagious enthusiasm. Thanks to Aj for many enjoyable

moments. Guillaume de Chambrier, you did a good job as a TA (you did show

up), it was fun to have you around in the lab. Thanks Ashwini for all the help

you gave me in debugging, especially at the beginning. Wissam, it was always

interesting to have a discussion with you and to talk about our shared interests

in cheap quadcopters and middle-eastern coffee. Thanks to Seungsu (김 승 수)

for the Starcraft lessons, it was always very nice to have you in the lab. Thanks

to Miao (李淼) for sharing your precious duck, after it travelled from China

to Switzerland. Joao, even though you did take my place as the youngest lab

member, I enjoyed having you around, especially for the Summer BBQs.

Ajung, I’m grateful for the cheerfulness you brought in the lab, it was really

appreciated. I would like to give warm thanks to Felix, you did spread the good

word (Github) to the lab. Even though you also tried to implement the revolting

concept of queueing for coffee, the lab lost a significant amount of knowledge and

wisdom when you left. Thanks Jose for sharing your violin skills with us, and for

viii

your precious advice for my slides. Nili, thank you for the various discussions,

religious, philosophical, or related to the matter of boxes. It’s always a great

enjoyment to see you. My thanks also go to Suphi, Hang, Bidan, Neda, Yue,

Edouard, Kevin (김 건 엽), Joel and Silvia.

My stay in Lausanne, especially in the last year, would not have been the

same without my friends from Volleyball. Thanks Francesca for always bringing

the good mood in and outside the field. Thanks Helena for reminding me what

summer is like in the middle of winter. By the way, you made the best choice

of neighborhood in Lausanne. Thanks Kostas for making me discover the Tuba

Libre, the best drink across all of Greece. Thanks Senan for bringing so much

energy every time. Also thanks to all the Iranians, who I started playing with

not so long ago, especially Salman, Amin, Vahid and Ashkan.

As for friends around EPFL, I’m grateful to Onur for all the conversations,

coffee breaks and dinners we had. You have a gift for creating a non-judgmental

place where everyone likes to spend some time. Thanks to Baptiste, my fellow

Strasbourgeois and neighbor of some time. It was great to have you at EPFL

when you were here, organizing joint BBQs by the lake and taking la pauu-

use. My thanks also go to Martel, Monica and Gianluca, Davide, Bartocz, and

Emmanuel.

And finally Laura, my favorite beach-volley partner, thank you for support-

ing me, even in my poached eggs adventures. I also wish to thank my parents,

who gave me curiosity for many things, among them science, and my family for

their unconditional support.

ix

Table of Contents

Acknowledgments . vii

1 Introduction . 1

1.1 Motivation . 1

1.2 Main Contributions . 5

1.3 Thesis outline . 8

1.4 Publications . 9

2 Background . 11

2.1 Related work . 11

2.1.1 Tactile sensing hardware 11

2.1.2 Tactile sensing for object and surface classification 12

2.1.3 Tactile sensing and control 15

2.1.4 Grasping under uncertainty with multiple DOFs hands
and tactile sensors . 16

2.1.5 Operational space framework and null-space 18

2.1.6 Dynamical systems for manipulation 20

2.2 Our approach . 21

3 Tactile compliance and surface recognition 23

3.1 Introduction . 23

3.2 Face classification using touch with a humanoid robot 24

3.2.1 The probing mechanism 24

3.2.2 Face identification . 27

3.2.3 Results and discussion . 30

3.2.4 Conclusion . 35

3.3 Experiments with stretchable tactile sensors 36

3.3.1 Robot integration . 36

3.3.2 Results . 38

3.3.3 Conclusion . 41

3.4 Bimanual compliant tactile exploration 43

3.4.1 Exploration strategy . 43

3.4.2 Object Identification . 49

3.4.3 Experiment . 50

3.4.4 Results . 53

3.4.5 Conclusion . 55

3.5 Conclusion . 59

xi

4 Multiple tactile contacts control for exploration and grasping 61
4.1 Introduction . 61
4.2 Controller structure . 62
4.3 Increasing contact area . 67
4.4 Experiments . 68

4.4.1 Exploration . 69
4.4.2 Compliance experiments 78

4.5 Discussion and conclusion . 89

5 Learning Externally Modulated Dynamical Systems 93
5.1 Introduction . 93
5.2 Approach . 95

5.2.1 Locally Modulated Dynamical Systems 95
5.2.2 Externally Modulated Dynamical Systems 96
5.2.3 Design of the modulation function 96
5.2.4 Illustrative examples . 99
5.2.5 Learning EMDS . 102

5.3 Autonomous Localization and Grasping 102
5.3.1 Belief model . 103
5.3.2 EMDS . 104
5.3.3 DS coupling and hand DS 106
5.3.4 Active compliance algorithm 107

5.4 Experiment 1: Autonomous Localization and Grasping in simu-
lation . 108
5.4.1 Experimental setup . 108
5.4.2 Results . 109

5.5 Experiment 2: Reaching while avoiding obstacles 112
5.5.1 Experiment 2a: Avoiding obstacles 112
5.5.2 Experiment 2b: Navigating between obstacles 120

5.6 Discussion . 126

6 Conclusions . 129
6.1 Main Contributions . 129
6.2 Limitations and Future Work . 130
6.3 Final Words . 133

Appendices . 135

A Appendices for Chapter 4 . 137
A.1 Exp 1: Details of the control . 137

B Appendices for Chapter 5 . 141
B.1 Likelihood computation for the particle filter’s measurement step 141
B.2 Proofs of stability for EMDS . 142

References . 145

Curriculum Vitae . 157

xii

Chapter 1

Introduction

”For robots, the final frontier is not space, it is your living room.”

Cynthia Breazeal

(Personal Robots Group at the Media Lab, MIT)

1.1 Motivation

Humans rely on the sense of touch in almost every aspect of life. Without even

being conscious of tactile sensations, we carry out complex tasks that could

not be achieved without it, as illustrated in Figure 1.1. We sometimes get to

experience how much we rely on touch when our fingers are numb from cold. Or-

dinarily trivial tasks such as manipulating objects or balancing a phone between

the fingers consequently become arduous. Thanks to our tactile sensations, we

are able to tie shoelaces without looking at them. This requires to finely localize

the shoelace’s position on the finger, slightly twist it in different ways, while

holding another shoelace with other fingers or another part of the same finger.

We can also find keys inside a bag full of different objects. Skin pressure

guides the arm to control forces exerted on possibly fragile items, and we are

able to detect the change of temperature due to touching the metallic surface

of the keys compared to a similar object in shape but not in material. This is

all possible because humans are equipped with highly sensitive and multimodal

tactile afferents, which each specialize to respond to different interactions (see

Figure 1.2), such as high-frequency skin deformation, static pressure, or skin

stretch.

With robots moving into human-inhabited environments, touch becomes of

Figure 1.1: Examples of daily use of touch. From left to right, carving a pumpkin
for Halloween (c©Basilio Norris), a robot touching the face of a person to
identify her (c©Louis Philippe Demers), someone tying shoelaces while
wearing gloves (c©http://farofflands.wordpress.com).

1

Afferent type
(and response properties)

Receptive field
(and probe)

Density
(afferents per cm 2)

FA-I (fast-adapting type I)
Meissner endings

Insensitive to static force

Sensitive to dynamic skin
deformation of relatively
high frequency (~5–50 Hz)

SA-I (slowly-adapting type I)
Merkel endings

Transmit enhanced
representations of local
spatial discontinuities
(e.g., edge contours and
Braille-like stimuli)

Sensitive to static force

Sensitive to low-frequency
dynamic skin deformations
(<~5 Hz)

Transmit enhanced
representations of local
spatial discontinuities

FA-II (fast-adapting type II)
Pacini ending

Insensitive to static force
Respond to distant events
acting on hand-held objects

SA-II (slowly-adapting type II)
Ruffini-like endings

Low dynamic sensitivity

Sensitive to static force

Extremely sensitive to
mechanical transients and
high-frequency vibrations
(~40–400 Hz) propagating
through tissues

Sense tension in dermal and
subcutaneous collagenous
fibre strands
Can fire in the absence
of externally applied
stimulation and respond to
remotely applied stretching
of the skin

Weak pointed touch

Light tapping

Weak pointed touch

Touch or skin stretch

140

70

0

Figure 1.2: Tactile sensory innervation of the hand (Johansson and Flanagan, 2009).

2

primary importance to be able to interact with everyday objects. Tradition-

ally, robots have been confined to industrial settings where the environment

can be precisely controlled. In uncontrolled environments, information is incom-

plete and should be gathered, e.g. by touch or vision. In an effort to handle

unknown and dynamic environments, much effort has been put in providing ob-

stacle avoidance skills to robots (Khatib, 1986), especially for safety purposes,

for instance to navigate between humans (Trautman et al., 2015). However, in

some cases, contact should not be avoided. On the contrary, contact is some-

times either necessary because we need to manipulate objects by touching them,

or simply because it is the only way to obtain information. Other means of gath-

ering information such as computer vision are limited by occlusion, illumination

conditions and only provide partial information about texture and other surface

properties. It also requires heavy and complicated software processing to handle

the image data.

Fortunately, recent advances in tactile sensing offer a range of research di-

rections in robotics for allowing robots to be in contact at multiple points on

their body. Moreover, thanks to advances in the design of dexterous humanoid

hands designed to be able to manipulate complex shapes, we can now consider

manipulation that exploits the entire shape of the fingers. Such manipulation

requires precise control of multiple contact points along the fingers.

However, up to now, the use of tactile sensing has been mostly limited to

a few contact points on the end effectors of robots, often without maintaining

contact during relative motion between the robot and the contacted area. The

problem of exploring completely unknown surfaces by touch has also not been

addressed until now.

Grasping, another crucial and widely studied area in robotics, has not yet

benefited fully from advances in tactile sensing. While tactile sensing is essential

in order to finely guide fingers on objects, especially under uncertainty, its use

in robotic grasping is mostly limited to fingertip sensors. One reason for this

may be the scarcity of reliable multi degree of freedom (DOF) robotic hands

fully equipped with tactile sensors, besides the fingertips.

For most of this thesis, we consider robotic systems composed of an arm and

hand with multiple dexterous fingers and equipped with artificial tactile skin

to sense contact position and intensity. First, we investigate how to adapt the

arm’s position during the exploration. This is important in order to keep fingers

in contact, as well as to avoid other collisions during the exploratory motion.

For instance, how should the robot’s arm move while exploring a fixed unknown

surface, or both arms when exploring an object held by a bimanual humanoid

robot. We also consider the problem of the motion of each link of the fingers in

order to make contact and comply with unknown surfaces. In particular when

robotic hands have many degrees of freedom, creating contacts on many parts

of even a single finger can create improvements by speeding up the exploration

process, as well as provide more tactile information simultaneously. This can be

3

useful for the control of a robot or for the stability of a grasp. Indeed, in order

to perform stable and strong grasps, tactile sensors should be available on the

whole surface of the fingers to detect all the contacts and adapt them.

We also consider how to control the arm and fingers during contact in order

to keep contact forces low and to avoid loosing contacts. This is crucial both for

safety of the interaction and speeding up the exploration. The global exploratory

motion of the arm should be compatible with the local finger motion on the

surface of the explored shape.

Finally, we also study the use of tactile and force sensing to provide Dynam-

ical Systems (DS) with the capacity to react to contacts. DS offer an efficient

way to encode manipulation tasks such as reaching or grasping, with the ad-

vantage of a very fast computation time and the possibility to react instantly

to perturbations. They can also benefit from the Learning from Demonstration

(LfD) paradigm (Billard et al., 2016; Argall et al., 2009), which eliminates the

need to code for the motion explicitly. Instead, the skills are acquired based on

demonstrations of the task. In this thesis, tactile sensing is used to modulate DS

while preserving important stability properties. This is important as it offers a

way to include external sensing in the teaching process, so that the robot takes

into account tactile information during task execution.

This thesis’s approach is illustrated on Figure 1.3.

CHAPTER 3
Task-specific planned motions

WHAT?
Object / Surface

GOAL?
Exploration

Identification
Grasping

CHAPTER 4
Key-points following, Hand-

guided, Using tactile information

CHAPTER 5:
DS-driven,

depends on external sensing

CHAPTER 3
Joint-level controller

CHAPTER 4
Operational-space control

Figure 1.3: This thesis’s approach. The tasks to achieve (left) require both motion
generation and low-level control algorithms (right). This figure details in
which chapters these problematics are addressed.

4

1.2 Main Contributions

In this thesis we bring to light three main contributions:

Control and exploration strategies for compliant exploration

Haptic object exploration and modeling is traditionally performed through suc-

cessive grasps (Schneider et al., 2009) or by following the surface with a probe-

like robotic end-effector (Okamura and Cutkosky, 1999). We develop approaches

to provide a more natural way to gather tactile data, namely with multiple con-

tacts at the same time and in a continuous manner. This contrasts with alterna-

tive approaches using only one contact point (Jamali et al., 2016) (e.g. a finger-

tip), and“poking” strategies (Meier et al., 2011). In this thesis, two scenarios are

studied in which we gather and process data about objects in two different ways.

(a) Face exploration

(b) Bimanual exploration

Figure 1.4: The iCub humanoid
robot in some of our experiments.
See Chapter 3 for more details.

In the first scenario, partial finger trajec-

tories across human-like faces are used for

classification. Because proprioceptive infor-

mation is directly used to model the faces,

this process does not require to probe itera-

tively different locations or to build a precise

3D model of the face, in contrast with most

of the previous existing works.

In the second, geometrical contact infor-

mation is gathered with robot kinematics dur-

ing bimanual exploration of unknown objects,

which has not been done before. An explo-

ration strategy is developed to guide the mo-

tion of the two arms and fingers along the

objects. The motion is generated on the go

without planning for both arms to maximize

the surface on the object that can be explored,

while keeping compliant contact with multiple

phalanxes of the fingers to gather tactile data.

Because our method is not based on planning,

it can run very fast at runtime and allows a

fast exploration. In both these scenarios, we

propose a low-level controller of the fingers

which provides active compliance using tac-

tile signals, This controller is also applied to

the experimental trial of a stretchable tactile

sensor prototype mounted for the first time

on the dorsal side of a robotic hand.

5

A controller to maximize contact

We propose a framework to control a robot making multiple contacts with an

unknown surface of arbitrary size and shape. It consists of an algorithm to

compute torques given a task priority, using the original operational-space for-

mulation, and hierarchical task priorities. We extend the closed-form null-space

computation of torques with inequality constraints. This allows to control at a

high frequency a robot in the interaction force null-space with desired contact

points (equality constraint, keeping the normal interaction force constant), and

undesired contact points (inequality constraint, setting a maximum allowed in-

teraction force). This framework also consists in a strategy to bring the robot

links in contact with the unknown surface. This algorithm can be applied to

grasping, where the active adaptation of the fingers to the shape of the ob-

ject ensures that the hand encloses objects with multiple contact points. We

show that this improves the robustness of the grasp compared to simple enclos-

ing strategies. We test these algorithms both in simulation and on a 16-DOF

robotic hand customly equipped with tactile sensors on the whole inside surface

of the fingers.

Externally Modulated Dynamical Systems

In order to modulate existing Dynamical Systems (DS) based on external sen-

sory information, we present an extension of the existing Locally Modulated

Dynamical System (LMDS), named Externally Modulated DS (EMDS). The

EMDS accepts external input to automatically modulate between two DS while

conserving important stability properties, according to an activation function.

We also provide methods to learn this activation function from demonstrations.

In a first application, we reuse the previously developed hand controller to

solve the problem of autonomous exploration and grasping from solely tactile

data. We propose a framework integrating 1) the active exploration controller

for the finger compliance, 2) a tactile-based particle filter for object localization

and 3) the EMDS. The state of the probability distribution given by the state

estimation of the particle filter provides an estimate of the progress of the lo-

calization task. This is used as the input of the EMDS to modulate between

searching and grasping motions. A coupling between the arm and hand Dynam-

ical Systems allows to conjugate the exploratory and grasping behaviors. This

framework allows to generate natural and autonomous object localization and

grasping in one flexible framework, hence without explicit segmentation. We

also apply this algorithm to teach a robot how to react to collisions in order to

navigate between obstacles while reaching.

6

Necessity of contact

Tactile-based
exploration and

grasping

Tactile exploration

Prioritized task-space
control

Dynamical Systems for
manipulation

Low level compliance
for finger control

Adaptation strategy

Motion generation for
exploration

Force and nullspace
control

Increase contact area

Motion generation

Autonomous tactile
localization and

grasping

Obstacle navigation

Contributions

Future work

Final thoughts

Figure 1.5: Roadmap of the Thesis with key points.

7

1.3 Thesis outline

The thesis is structured according to three main contributions outlined in the

previous section, each comprising a chapter. The following paragraphs give a

detailed outline of the structure of this thesis, see Figure 1.5.

Chapter 2 - Background and related work

This chapter presents a review of related work. The novelty of our ap-

proach is discussed in detail in relation to the state of the art in the

area.

Chapter 3 - Tactile compliance and surface recognition

In this chapter, we present an approach for exploring partially known

objects or surfaces with tactile sensors, with the objective of modeling

or identification. When only partial information about the surface to

make contact with is available, close-form methods to compute robot

trajectories in contact cannot be used because of the uncertainty. We

present different scenarios for which control and exploration strategies

are developed to compliantly gather tactile information from contact

between the robot’s fingers and an unknown object.

Human-like faces are explored with the hand of a humanoid robot and

the finger trajectories are modeled with statistical series analysis for

classification. Bi-manual exploration is also studied as a mean to increase

the relative workspace of a robot holding an object for reconstructing

its shape with tactile sensors mounted on the robot’s fingers. The same

compliance mechanism is also successfully applied to test an integrated

stretchable tactile sensor skin mounted for the first time on the dorsal

side of a robotic hand, in collision detection and surface recognition

experiments.

Chapter 4 - Multiple tactile contacts control for exploration and

grasping

In this chapter, we tackle the problem of exploring completely unknown

objects, for which a robot must be controlled to a) make contact with

the surface of the object and b) handle contact forces during the inter-

action. The framework developed in this chapter is particularly useful

for robotic hands with many degrees of freedom (DOFs). It allows for

rapid exploration of surfaces and is applied to grasping by generating

highly stable enveloping grasps. This is achieved by keeping lower pri-

ority tasks in the null-space of the contact tasks and allows to keep

interaction forces constant. The robot thus keeps multiple simultaneous

contacts while moving to create additional contacts.

8

Chapter 5 - Learning Externally Modulated Dynamical Systems

This chapter presents the Externally Modulated Dynamical Systems

(EMDS) algorithm and multiple applications in grasping and obstacle

navigation. In the first application, we tackle the problem of autonomous

grasping using only tactile data. First, our framework consists of a con-

tact particle filter for object state estimation. Then, the EMDS algo-

rithm, used to generate the arm motion according to external input, is

detailed. The EMDS is coupled with a second DS that provides com-

plementary information to the active compliant exploration algorithm

described in Chapter 4. In a second series of experiments, we use more

complex external signals to navigate between obstacles, depending on

collision information from a force-torque sensor.

Chapter 6 - Conclusion

In the final chapter, we conclude by providing a summary of the work

achieved, outlining the key contributions and limitations. We also dis-

cuss avenues for future work.

1.4 Publications

Large portions of this thesis have been published in peer-reviewed conferences

and journals. The human-like face exploration experiments presented in Chapter

3 were published in Sommer and Billard (2012). Bimanual object exploration

and identification has been published in Sommer et al. (2014). The results of

Chapter 3 have also lead to a publication in collaboration with postdoctoral

fellow Aaron Gerratt and Prof. Stephanie Lacour (Gerratt et al., 2014), part

of the Laboratory for Soft Bioelectronic Interfaces at EPFL. The contents of

Chapter 4 have been published in Sommer and Billard (2016). The contents of

Chapter 5 are under submission.

9

Chapter 2

Background

The use of tactile information is crucial to the development of robotics and is

an increasingly active area of research. It involves a wide spectrum of fields:

tactile sensors development, object and surface recognition, robot control under

contact, motion generation and grasping. In this chapter, we will present the

most relevant work to this thesis in each of these domains.

This chapter unfolds as follows: in Section 2.1.1, we begin by briefly present-

ing the current state of tactile sensor technology. In Section 2.1.2, we present

the use of tactile sensing to classify objects or surfaces. In Section 2.1.3, we

describe the existing work tackling robot control using tactile information. In

Section 2.1.4, we present the grasping applications of tactile sensing. Finally, we

present the operational space framework useful to control robots in contact in

Section 2.1.5 and introduce Dynamical Systems in Section 2.1.6.

2.1 Related work

2.1.1 Tactile sensing hardware

Tactile sensors encompass artificial devices that provide measurements of dif-

ferent modalities by contact1. Artificial skin has sparked interest in robotics

for several decades (Harmon, 1982) and this section very briefly presents a few

of the recent progresses. For an in-depth review of tactile sensing, please refer

to Kappassov et al. (2015).

The sensing modalities provided by tactile sensors can consist of contact force

– normal and tangential –, torque, temperature, vibrations or surface properties:

texture, friction coefficient. Comparably to humans (refer back to Figure 1.2

from Johansson and Flanagan (2009)), different sensors are designed to measure

different signals, and are based on different sensing types. Typically, the limits of

current technology restricts the design of sensors by choosing a trade-off between

spatial resolution, sensitivity, frequency response, multimodality and complexity

of construction.

1The word tactile, derivated from touch, toccare (latin), comes from the Onomatopoeia
“toc” (“knock” in English), evoking the sound of two objects colliding.

11

(a) SynTouch BioTac (b) Tekscan Grip system (c) Fabric-based glove
sensor

(d) iCub tactile fingertip design

Figure 2.1: A few recent tactile sensors used in robotics. a) The Syntouch Biotac,
b) the Tekscan Grip system, c) (Büscher et al., 2015), d) Jamali et al.
(2015)

Tactile sensors are based on the measurement of a physical change of some

material, deformed or influenced by contact. The sensing systems can measure

a change of capacitance, resistance, optical distribution, pressure and electrical

charge.

A few examples of tactile sensors can be found in Figure 2.1: the BioTac

multimodal sensor provides temperature, high sensitivity and high frequency

coarsely localized contact data, and low sensitivity and low frequency localized

contact data. The Tekscan sensor is designed to fit an anthropomorphic hand

and provides a wide range of pressure sensitivity with 2mm spatial resolution.

The fabric-based sensor from Uni Bielfeld (Büscher et al., 2015) is based on

the piezo-resistive effect. It is both flexible and stretchable to comply with the

finger motion. The iCub tactile fingertip (Jamali et al., 2015) integrates sensing

technology in the design of the fingertip. The sensor is composed of 12 sensing

elements distributed on the fingertip, protected by a thin layer of fabric.

In this thesis, we mostly use the Tekscan tactile sensors which we fit to

several robotic hands. We also use the integrated tactile sensors in iCub’s hand,

and a prototype of stretchable tactile sensor.

2.1.2 Tactile sensing for object and surface

classification

Touch brings important information when entering in contact with an object or

surface, primarily the contact area and intensity. This is already enough to dis-

criminate between different sorts of objects. Existing work in tactile exploration

can be classified into two main categories: local and global exploration.

12

Local feature exploration

Local exploration strategies focus on gathering local information about an ob-

ject’s surface and extrapolating for identification. For instance, a robotic finger

equipped with a tactile sensor is moved on the surface of an object to detect

fine surface features (Okamura and Cutkosky, 1999). Another approach is to

model the curvature of a surface at one point by using data from three differ-

ently oriented curves (Ibrayev and Jia, 2006). These curves are gathered from

three trajectories concurrent at one interest point. The curvature profile is then

matched to a database of objects for identification: the normal direction and

the two main curvatures. Another type of local exploration consists in identify-

ing surface properties, such as roughness, fineness and traction, and using these

properties to classify materials (Fishel and Loeb, 2012). In Rosales et al. (2014),

both shape and friction coefficients are modeled under a probabilistic frame-

work during the exploration of an object’s surface with both a tactile probe

and an RGB-D camera. Using tactile array sensors, creating a tactile image

of the contact between a grasped object and the gripper is popular: it is then

for instance possible to differentiate between rough, flat, edge, cylindrical and

spherical contact shapes using a neural network (Jiménez et al., 1997). Tactile

images (2d-arrays) are also often processed with Self-Organizing Maps (SOM)

in order to classify grasped objects: for instance, data from a few grasps with

a 12-degrees of freedom robotic hand are used to classify 10 different objects

in Johnsson and Balkenius (2007).

Global features

However, comparing a local feature is often not enough to distinguish between

two complex objects. In Schneider et al. (2009), a bag-of-features approach is

applied to generate object histograms describing their local features along their

length, with tactile information retrieved from several grasps at different po-

sitions along the object’s axis. This allows to keep a sense of continuity and

to represent the object globally from local features without the need for pre-

cise localization during the exploration. A systematic approach is also used for

reconstructing 3-D point cloud models of objects with a 3-fingered hand and

tactile sensors (Meier et al., 2011). Tactile sensing is combined with proprio-

ceptive information to obtain absolute contact locations. The precise 3D point

clouds of the scanned objects are then compared with stored 3D models for

recognition. However, this is a slow method because of the systematic prob-

ing (the fingers are opened and closed a hundred times for an object smaller

than 9cm), and is restricted to small objects that can fit between the robot’s

fingertips. Self-organizing maps (SOM) can also take into account kinesthetic

data in addition to tactile data: in Navarro et al. (2012), finger joint angles and

touch information form a multi-sensory input to SOMs and are used to cluster

grasped objects. Joint angles give information about the object’s size whereas

13

tactile data gives more precise shape information.

Continuous exploration

Finally, we are particularly interested in continuous exploration with several

fingers, as it is better suited to reconstruct the shape of an object thanks to the

flexibility of the multiple degrees of freedom available. Humans do not release

and grasp several times an object in order to recognize it by touch, they rather

follow the surface with their fingers. Indeed, iterative touches take more time

and the object’s position may be lost when the contact is broken. The first works

focused on the reconstruction of parametric models of objects: already in 1990,

Allen, inspired by exploratory procedures from Lederman and Klatzky (1987),

explored objects modeled by superquadrics with a contour following method

that used the model’s parameters to compute a trajectory (Allen and Michel-

man, 1990; Stansfield, 1991). In Heidemann and Schopfer (2004), a tactile sensor

array is moved around the surface of a convex-shaped object while passively ro-

tating to follow the slope. The time-series of 2D pressure profiles are fed to

several neural networks for classification after local PCA for feature extraction

and dimensionality reduction. Vision can also be coupled to tactile information

in order to reduce the data to lower dimensionality using a multimodal dimen-

sionality reduction technique (Kroemer et al., 2011) and help the classification of

textures. Time series of tactile data are very high-dimensional and decreasing the

dimensionality is done by using synchronized visual features with a multi-modal

mapping method. This is achieved by finding lower dimensional representations

where the classification performance is improved. In another application, contin-

uous probing is used to identify surfaces by mobile robots (Giguere and Dudek,

2011). A probe uses an accelerometer attached near its tip in contact with the

ground to collect data describing the surface on which the robot is moving.

Classification is done by analyzing selected features of the data from fixed time

windows. In Maekawa et al. (1995) and especially Okamura et al. (1997), tactile

sensor arrays on fingertips and palm are used to gather data while rolling and

sliding fingers on an object during haptic exploration. During the exploration,

some fingers are responsible for grasping while the others explore the surface by

rolling or sliding on it. Since the object’s position and orientation are tracked by

assuming pure rolling during the phase when the object is being moved, features

detected by the tactile sensors can be added to a model of the object.

This paragraph tackled the use of tactile sensing for gathering information

about surfaces and objects while touching them. Some methods involve poking,

getting the image of the contact surface on a tactile array, some involve pinching

or grasping with the purpose of getting an approximation of the size of the ob-

ject and more tactile information. Some methods involve sliding on the surface,

allowing at the same time to increase the area on which information is obtained

and to collect dynamic data relative to the texture. In these approaches how-

ever, the sense of touch is only used passively: tactile information is gathered

14

during predefined motions of the robot.

2.1.3 Tactile sensing and control

In the previous section, we presented applications where tactile sensors are

used to collect data, especially for classification, without actually being included

in the control loop of the robot. However, humans use touch to drive the control

of their fingers, not only to gather data, but also for instance to control slip when

lifting object (Johansson and Westling, 1984). In robotics, many control-related

tasks rely on tactile information. We present here a few of them, including slip-

page detection, adaptation of grasp posture, control of manipulator stiffness, or

update of the end-effector orientation. By detecting small vibrations associated

with slip while grasping an object, the grasping force can be adjusted to avoid

slippage of the held object (Tremblay and Cutkosky, 1993; Schürmann et al.,

2012; Su et al., 2015; Narendiran and George, 2015). This is achieved thanks to a

tactile sensor equipped with an accelerometer. In addition, the normal and tan-

gential force measurements at the time slip is detected can provide an accurate

measurement of the coefficient of friction of the material. Touch information is

in this case used both for control and for gathering information on the contact

surface properties. Tactile signals can guide the motion of exploration, for in-

stance to follow edges (Berger and Khosla, 1991; Chen et al., 1995). Stiffness

control of an object aims at holding an object so that it acts as if suspended by a

set of springs and dampers; tactile sensing can enhance this control by providing

precise object-finger location information, which is required to achieve the de-

sired impedance of a grasped object through torque commands (Son and Nowe,

1996). In that case, tactile sensors help determine the object’s initial pose after

grasping and track it as it rolls and slides against the fingers during manipula-

tion, thus improving the control’s accuracy. In Yamakawa et al. (2007), reaction

forces on the fingers are measured through tactile feedback during a task of knot

tying. This information is used to adapt the finger pinching force in order to

follow a force profile optimized for a phase-based model of the task. In Jamisola

et al. (2014), the authors tackle the task of exploring a discontinuous surface

with a rolling end-effector and force-torque information with a compliant con-

troller. This involves adjusting the controller to the orientation of the surface

normal to maintain a desired normal force. While exploration with a single end-

effector simplifies the control, it has limitations: when the probe is small, the

exploration process is very slow, especially if the surface to be covered is large.

However, if the probe is large, it cannot comply with arbitrary shapes (especially

for convex objects) or cannot reach some areas. Another area of research focuses

on using robotic hands and fingers or grippers, and tactile or force sensors to

model the object’s shape. Bierbaum et al. (2008) introduces the use of potential

fields to drive the exploration of a five-fingered hand in simulation. While this

15

allows autonomous reconstruction of several simple objects, the hand is con-

trolled in velocity and thus the interaction forces are not taken into account.

Besides, the exploration only uses the fingertips. There is no contact with the

other finger links, as only fingertips are subject to the potential field. One of the

most advanced works tackling tactile interaction is probably the one from Jain

et al. (2013) in which multiple contacts occur on the arm of a robot, not for

exploration explicitly but to help the robot reach trough cluttered space. They

use model predictive control with a model of the contacts that assumes linear

stiffness and optimizes for reaching a desired position with the end-effector, with

constraints on contact forces. However, the objective of the controller is to reach

a point with the end effector. It also ignores the posture of the rest of the arm:

there is no focus on the tactile exploration itself. This exploratory approach is

also limited as it requires to command the robot in position and thus is not

ideally suited to the control of contact forces. Despite all these progresses, there

is still no available control framework to create, manage and remove contacts

with a robot and an unknown environment. In the following section, we present

the grasping applications of tactile sensing, which share many similarities and

problematics with the exploratory applications, especially under uncertainty.

2.1.4 Grasping under uncertainty with multiple DOFs

hands and tactile sensors

Complying with the shape of an unknown object during grasping shares

similarities with the exploration of unknown objects and can also benefit from

tactile information. Indeed, both for exploration and grasping, external sensory

information is necessary to actively comply if there are uncertainties in the

position or the shape of the object, or in the robotic system itself.

Most of the work in grasping consist in planning grasps for known or par-

tially known objects (Bicchi and Kumar, 2000; Goldfeder and Allen, 2011; Roa

and Suárez, 2014). However, reliably controlling robotic fingers to realize gen-

erated grasps on a real platform with position and shape uncertainties remains

a problem. Indeed, it is difficult to realize the planned grasps with a real robot

hand, and this makes the quality evaluation less relevant in practice, as the real-

ized grasps are less optimal than the planned ones (Kim et al., 2013). While soft

systems approach this problem using passive mechanical compliance to adapt

to position or shape uncertainties, active compliance is the only way to control

rigid robotic hands with multiple degrees of freedom. Using additional sensory

information, one can improve grasping success rates by detecting position er-

rors. For instance in Hsiao et al. (2010) and Chen et al. (2015), torque or tactile

sensors in the fingers are used to detect the first contact and compliantly pause

the finger in contact before it tips over the object to be grasped. In Li et al.

(2016), the authors exploit tactile sensors on the fingertips to control the finger

16

contact force under shape uncertainty. From the perspective of using tactile data

to drive compliant motions, Sauser et al. (2012) uses information from fingertip

tactile sensors on a robotic hand to compliantly adapt the grasp of a selection

of objects, by learning the non-linear correlation between finger position and

tactile signature. After teaching correct grasping postures and fingertip forces

by a human demonstrator guiding the robot, a model is learned to predict the

expected finger joint configuration and tactile pressure given the contact normal

at each fingertip. This model is then used to adjust the control of the fingers

while holding an object. A feedback controller tries to satisfy both position and

force (tactile pressure) constraints. The controller gives priority to the position

control, so that force is taken into account as the position controller brings

the finger into contact. Platt’s null-space grasping control (Platt et al., 2010)

uses local object geometry measurements to guide grasps and converge to unit

frictional equilibrium. This involves following the negative gradient of two func-

tions: force and moment residuals which are zero at this equilibrium. Because

the force residual controller displacements are tangential to the surface, and the

moment residual controller displacements are projected on the null space of the

gradient of the unit frictionless force residual, the resulting motion corresponds

to the fingertips sliding on the surface of the object. However, the ensured im-

provement of the chosen grasp metric is based on several assumptions: convex

objects, 2nd order continuity of the surface and only two contact points. Fi-

nally, in these works, only the fingertips are taken into account and no attempt

is made at controlling grasps with contacts on all links of the hand. When the

whole hand, not only the fingertips, is used to grasp an object, realizing planned

grasps becomes even more difficult as multiple contacts should be made between

the fingers and the grasped object. Grasping synergies is an efficient concept to

simplify control of high-dofs hands inspired by human grasping. Whether the

synergy is integrated in the mechanical design of sub-actuated hands (Catalano

et al., 2012; Grioli et al., 2012) or simulated in software (Ciocarlie et al., 2007;

Bicchi et al., 2011), it decreases the dimensionality of the control problem. How-

ever, synergy-based grasping strategies can also lead to unsuccessful grasps and

they do not seek to maximize the contact surface. Besides, the underactuation

of synergy-based hands can be problematic when active control of all fingers

and phalanxes is required, especially when the grasp controller can benefit from

tactile feedback, for instance to place fingers in specific postures (eg. aligning the

index along the handle of a knife, while the rest of the hand englobes the knife

handle). For this reason, using tactile information can be useful and provide

active compliance at all the desired contacts points on the fingers.

While grasping and local control of contact points require tactile information

and can be seen as controlling contacts points separately, it is necessary to

approach haptic exploration with constraints on the whole robot. In the next

section, we present the operational space framework which allows to do so, and

especially to take into account existing contacts in the problem.

17

2.1.5 Operational space framework and null-space

Haptic exploration fits well within the prioritized controller scheme, as some

tasks – managing contact forces, avoiding joint limits – can be interpreted as

constraints and be given a very high priority, while other tasks such as arm pos-

ture are less important. This framework is commonly used for humanoid control,

including constraints on contact forces, but not for haptic exploration. Khatib’s

operational space framework (Khatib, 1987) allows to express the dynamics of

the robot in task coordinates, and the prioritized simultaneous control of sev-

eral tasks through cascaded null space projections (Khatib et al., 2004). More

recently, this framework was used to control several contacts on different links of

a robot arm (Park and Khatib, 2008), but there have not been results showing

cases where the robot makes additional unpredicted contacts or looses some of

its contacts. In Flacco et al. (2012), commands are automatically scaled down

if they violate hard bounds at the joint level (position, velocity or acceleration

constraints). This allows to have explicit hard constraints, which was usually not

possible in that framework. Another approach towards prioritizing tasks is to

formulate the inversion of the Jacobian as a quadratic problem. For instance, the

Stack of Tasks approach (SoT) (Mansard et al., 2009) provides an interface to

add and remove tasks automatically with a pre-specified hierarchy. Recently, hi-

erarchical control schemes based on a sequence of quadratic programs (QP) can

also handle inequality constraints for kinematic control (Kanoun et al., 2011)

and dynamic control (Saab et al., 2013). Efforts have also been made to solve

these problems fast enough for real-time control of humanoid robots with many

degrees of freedom (Escande et al., 2014).

In this thesis, we follow the null space approach to prioritizing tasks and

introduce a controller based on a modified null space projection matrix that

allows to take into account inequality constraints. While this is not as efficient as

the latest QP-based methods, it is an alternative approach simpler to implement

and closer to the original idea since it only relies on matrix inversion and does

not require an otherwise complex solver.

Operational space control

The dynamics of a manipulator in contact describe how the robot moves in

response to torques applied at the robot joints and the contacts forces on the

links. In this section, these dynamics are detailed in order to describe operational

space control, task space and null space control of a robot.

Operational space control of a robot in contact

The equations describing the dynamics of a robot in contact are of the form:

Mq(q)q̈ + b(q, q̇) + g(q) + JT
c (q)f = τ (2.1.1)

18

where q,Mq(q), b(q, q̇), g(q), f and τ are respectively the vector of joint angles,

the joint-space inertia matrix, the Coriolis and centrifugal torques, the torques

due to gravity, the contact forces and the vector of joint torques. Jc(q) is the

contact Jacobian, e.g. considering an operational point x on the robot where a

contact occurs, the relationship between the virtual joint velocities q̇ and the

virtual velocity of the operational point, ẋ, is given by the Jacobian matrix at

the contact point in this configuration:

ẋ = Jc(q)q̇ (2.1.2)

The manipulator dynamics in the operational space are given by pre-multiplying

Equation (2.1.1) with J(q)Mq(q)
−1. For better readability, we do not specify the

dependency on the joint angles vector q and its derivatives from now on:

ẍ− J̇ q̇ + JM−1
q (b+ g) = JM−1

q (τ − JT
c f) (2.1.3)

Task space and null space for redundant manipulators

The operational space framework for task-level control of redundant manipula-

tors decomposes the overall motion behaviour into two components. The first is

defined by the task behaviour, specified in terms of forces and moments in the

operational space, Ftask. This force is translated into a joint torque based on

Equation (2.1.2): τ = JTFtask. This vector is however not completely specified

in the case of redundant manipulators. The operational space framework allows

to select from a set of task-consistent torque vectors to perform a secondary

task. This secondary task is specified by an arbitrary torque vector τsec.

In order to ensure that this secondary torque vector does not affect the task

behavior Ftask, the additional torque is projected into the null space N of the

task Jacobian J . The torque NT τtask resulting from the projection on the null-

space does not affect the behaviour of the operational point. However, since

the rank of Nrobot is N − k (k being the rank of J and Nrobot the number of

degrees of freedom of the manipulator), the behaviour of the secondary task is

not guaranteed.

The operational space and secondary task are combined to obtain the general

expression for the torque-level controller:

τ = JTFtask +NT τsec (2.1.4)

Practically, the null-space projection matrix N can by obtained with:

N = I − J̄J (2.1.5)

19

with J̄ the dynamically consistent generalized inverse of J, given by:

J̄ = M−1
q JT (JM−1

q JT)−1 (2.1.6)

The use of this specific inverse ensures that the acceleration ẍ at the end

effector is not affected by the projected torques.

Multiple task behavior

The concept of decomposing the control torques in separate tasks with different

priorities can be extended to more than 2 tasks and priorities.

Assume a set of n tasks Ti, where Ti has higher priority than Ti+1. Every

task is associated with a torque vector τi, Jacobian Ji and corresponding null

space projection matrix Ni. These tasks can be performed simultaneously while

ensuring strict hierarchy depending on the task’s priority. The control torques

are then given by:

τ = τ1 +NT
1 (τ2 +NT

2 (τ3 + · · ·)) (2.1.7)

or

τ = τ1 +NT
prec(2)τ2 +NT

prec(3)τ3 + · · ·+NT
prec(n)τn (2.1.8)

with Nprec(i) = N(i−1)N(i−2) · · ·N1

This ensures that each task is executed as well as possible in the null space of

all the tasks of higher priority. Note that τ1 is not projected on the null space of

any other task, therefore it is not altered by this projection process. The lower

the task priority i, the lower the rank of the corresponding null space Nprec(i),

hence the task has less chances to be executed properly. Important tasks such

as avoiding joint limits or keeping equilibrium in the case of a humanoid robot

should thus have priority 1.

2.1.6 Dynamical systems for manipulation

In robotics, Dynamical Systems (DS) have proven to be an interesting approach

to motion generation, as an alternative to classical methods relying on separate

planning and execution. They offer a simple way to integrate both steps into

one formulation (Billard and Hayes, 1999; Selverston, 1980).

Dynamical Movement Primitives (DMPs) have recently gained popularity

(Schaal et al., 2003; Ijspeert et al., 2013). They are a set of differential equations

that can compactly represent a large variety of robotics tasks. Their mechanism

also make it easy to incorporate in Reinforcement Learning, and learning with-

out risking unstable behavior. They however rely on a phase variable acting as

an implicit clock, forcing the system to converge to a linear system with ensured

stability properties.

20

Time-invariant DS formulations (Gribovskaya et al., 2011a) allow to repre-

sent motions in a time-independent manner, in contrast with time-varying repre-

sentations. Because stability is a major concern when dealing with DS, this has

been addressed in Khansari-Zadeh and Billard (2011) for a specific parametric

form of DS, Gaussian Mixture Regression (GMR). In Kronander et al. (2015),

a formulation and an incremental learning method were introduced to repre-

sent motion from demonstrations, while ensuring bounded trajectories and no

introduction of spurious attractors. This formulation does not base the stability

analysis on a known Lyapunov function, therefore incremental demonstrations

do not need to comply with an energy function. While asymptotic stability can-

not be guaranteed, this has little influence on the resulting behavior and can be

used to our advantage to create cyclic motion. In this thesis, we build upon this

formulation to create DS with equivalent stability properties while depending

on external signals.

Recently, Pastor et al. (2011) introduced a framework to react to sensory

input while performing reaching-type motions with DMPs. In this work, the

DMP’s trajectory is adapted in order to match previously learned sensory sig-

nal, i.e. force information. This is done through a pre-defined mapping between

sensing and end-effector accelerations, using the task Jacobian of the sensor.

This approach is directly applicable to situations in which such mappings be-

tween sensory signals and control signal can be defined. This includes sensors

with low-dimensional inputs such as force-torque sensors, but cannot be ex-

tended well to a tactile skin on multiple fingers for instance. For tactile data,

it is generally not possible to define generic mappings from sensor signature to

control response. In this thesis, we suggest to learn the mapping from external

signal to modulation of the dynamics, which are provided by a time-invariant

DS. More recently, the authors generalized their work in the Associative Skill

Memory framework (Pastor et al., 2013), which switches between learned motor

primitives based on sensory signature (using hard switches). This is based on

the assumption that task representations should be stereotypical with as little

variation as possible in order for the associated sensory recordings to have little

variance. A wide range of tasks do not follow this description, including grasp-

ing objects with multi-fingered hands, for which contacts can occurs on many

different parts of the fingers and in different order.

2.2 Our approach

In this chapter, we presented multiple uses of tactile sensing in robotics. In

this thesis, we focus on exploration strategies to compliantly explore surfaces

of objects, in order to identify them. In order to gather tactile information, the

arm motion is generated depending on the scenario to avoid collisions and to

provide configurations in which fingers can comply to the explored shape. For

instance, we use tactile information to determine the optimal wrist orientation.

21

We also provide a framework to control a robot with multiple contact points,

while moving to explore and to create additional contact points. For this pur-

pose, we rely on the operational space formulation and combine multiple task

behaviors, including contact tasks and creating contacts. We propose a mod-

ified null space computation algorithm that allows to keep contact forces low

during the exploration, differentiating between desired contact points and un-

desired contact points. Finally, we also use and extend an existing Dynamical

System formulation in order to generate reaching and grasping motions while

performing localization, in a single framework.

22

Chapter 3

Tactile compliance and

surface recognition

3.1 Introduction

In this chapter, we tackle the control of robot’s arms and fingers when using

tactile sensors to explore partially known objects or surfaces. We propose dif-

ferent strategies to explore while compliantly gathering tactile information from

contact between the fingers and objects. In different scenarios, we generate a

motion for the exploration. First, simple linear trajectories to ”scan”human-like

faces for face identification by touch, or simple features on a flat surface. For

more complex objects that should be touched from different angles, we develop

a more complex bimanual exploration algorithm for reconstructing the object’s

shape using two arm and hands.

Concurrently, algorithms for object identification are provided to recognize

the explored objects or surfaces: Hidden Markov Models to identify noisy data

from face exploration, and point-cloud matching from 3D points generated with

the robot’s forward kinematics and a model of the tactile sensors.

All these experiments are carried out on the same humanoid robot platform,

iCub (Metta et al., 2008), using several tactile sensors. In the different experi-

ments, we use the capacitive tactile sensors integrated in the robot’s fingertips,

another set of sensors, Tekscan, customly fitted to the fingers of the robots, and

a set of prototype stretchable tactile sensors mounted on the back of the robot’s

fingers.

This work lead to the following publications:

• N. Sommer and A. Billard. Face classification using touch with a hu-

manoid robot hand. In 2012 12th IEEE-RAS International Conference

on Humanoid Robots (Humanoids), pages 120–125, 2012. doi: 10.1109/

HUMANOIDS.2012.6651508

• Nicolas Sommer, Miao Li, and Aude Billard. Bimanual compliant tactile

exploration for grasping unknown objects. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 6400–6407. IEEE,

2014

• A. P. Gerratt, N. Sommer, S. P. Lacour, and A. Billard. Stretchable capac-

itive tactile skin on humanoid robot fingers; First experiments and results.

23

In 2014 IEEE-RAS International Conference on Humanoid Robots, pages

238–245, November 2014. doi: 10.1109/HUMANOIDS.2014.7041366

3.2 Face classification using touch with a

humanoid robot

This section presents an experiment in which the iCub humanoid robot learns to

recognize faces through proprioceptive information. We take inspiration in the

way blind people recognize people’s faces, i.e. through tactile exploration of the

person’s face. The iCub robot’s tactile sensors are used to provide compliance in

the hand motion so as to smoothly scan the facial features. The displacement of

the fingers, as the robot explores the face, is used to build a model of the face us-

ing Hidden Markov Models. We show that the robot can successfully distinguish

across the faces of a standard doll and the faces of three humanoid robots, the

HOAP-3 robot, a Robota doll robot and MyDreamBaby, a commercial robotic

doll.

This work combines the notion of continuous exploration of a surface and the

idea of compliant control. Precisely, we use a) the tactile fingertips to introduce

a compliant mechanism for the displacement of the fingers along the face and

b) proprioceptive information, i.e. the position of the fingers during a motion,

to classify the faces. In contrast with most of the previous works, this process

does not require to probe iteratively different locations, or to build a precise 3D

model of the face. Our approach rather relies on the essential characteristics of

one continuous human-like motion across the face.

3.2.1 The probing mechanism

The goal of the experiment is to identify a face by touch. In order to do so,

our humanoid robot - the iCub robot - moves its hand in a vertical plane, while

its fingers actively follow the curve of the face to track its shape. There are four

faces to classify in this experiment (see Figure 3.1).

The faces have been chosen because they all share similar basic features (eyes,

mouth, roundness of the head), hence making the task to distinguish across

their features more challenging: the traditional doll (Doll1) and the robotic doll

(Doll2) have faces that are extremely similar from a tactile viewpoint, as the

overall surface of the face and the distance across facial features are almost

identical. Major differences lie in the shape of the mouth and nose of the two

dolls. The face of the robot Robota is a scaled version of the Doll1 robot and

again differs from the previous faces mainly through its overall size, as well as

the relative proportion of the face covered by the eyes and nose. The face of

HOAP-3 robot is the most distinctive of all four faces, because of its protruding

forehead and its lack of a nose.

24

(a) Doll1
(10x12cm)

(b) Doll2 (My-
DreamBaby,
9x12cm)

(c) Robota (plaster
cast, 15x13cm)

(d) HOAP
(12x13cm)

Figure 3.1: Faces to be sorted in the experiments(width x heigth)

iCub

The iCub robot is a 53-DOFs humanoid robot whose arms are composed

of 7 joints, plus 9-DOFs hands (see Figure 3.2). The 7 arm joints are used to

achieve the vertical motion of the hand while the proximal finger joint is used

to follow the face (sole index and middle finger are used in this experiment).

(a) (b)

Figure 3.2: Experimental set-up: a) The iCub robot moves slowly a finger over the
face of Doll1 and captures an image of the face of the robot through
proprioceptive measurement. b) The iCub’s hand is endowed with tactile
sensors at the finger tips.

Hand trajectory

The hand is controlled so as to follow a predefined vertical line from the top

to the bottom of the face, keeping a fixed orientation, palm facing the scanned

head, pointing upwards, see Figure 3.4. The motion starts with the fingers at

the level of the forehead and is stopped manually when the fingers reach the

bottom of the face. For each face, this motion is repeated ten times: at each run,

the hand is shifted horizontally so as to span homogeneously the whole width

of the face (see Figure 3.3). These ten trajectories are used during the learning

phase to create a model of the face (see Section 3.2.2).

During the motion, the index and middle fingers stay in contact with the

25

Figure 3.3: Front view scheme of hand trajectories and starting points – red dots –
on the HOAP robot. Each dot represents the center of the middle and
index fingertips on the head, at the beginning of the motion.

face by means of a pressure loop (detailed in the next section). Since the ring

and little fingers are coupled and cannot be controlled independently, they are

not used in the experiment: they cannot follow two different profiles simulta-

neously. The spacing between the fingers (adduction/abduction) is fixed during

all the experiments. The angular values of the finger joints are recorded during

the experiment. Each motion lasts approximately between 7 and 10 seconds,

depending on the size of the face. The ten recordings of these angular values

form the dataset used in the learning phase. Data are gathered at a rate of 50Hz,

resulting in 400 datapoints on average.

Pressure control with tactile sensing

The goal of the experiment is to record the motion of the fingers while they

stay in contact with the face. This is achieved through tactile pressure control.

Our iCub robot is endowed with capacitive tactile sensors on its fingertips (Ja-

mali et al., 2015). Each of these sensors is composed of 12 taxels tpf (i.e. tactile

pixels), tpf ∈ [0, 255], with finger f = 1, 2 and taxel p = 1..12. The average

pressure per finger sf is used here as the controlled variable for the pressure

loop:

sf =
1

12

12∑
p=1

tpf (3.2.1)

Note that the faces used in the experiments have been covered with alu-

minum foil because this enhances the response of the capacitive sensors and

hence ensures better tactile pressure control (refer to Figure 3.4). Please also

note that in the more recent version of the sensors (Jamali et al., 2015), the

capacitive sensors would not have that sensitivity to aluminum because the

fingertips are covered with conductive fabric.

A PD controller is implemented to follow a constant target pressure ŝf . This

target pressure is manually adjusted so as to keep a contact with the face without

damaging the fingers. Each finger f is thus controlled in current uf following:

uf (sf , ŝf) = κp(ŝf − sf)− κdṡf (3.2.2)

26

Figure 3.4: The fingers follow the curve of the face. On the left, a wide angle describes
the depression of the eyes and on the right, the nose bump yields a smaller
angle.

where ṡf is the derivative of the total pressure at each finger, and κp ∈ R and

κd ∈ R are the proportional and derivative coefficients1.

3.2.2 Face identification

Data pre-processing

The raw data from the experiments are the angles θt,nf , with f = 1..F fingers

(F = 2, index and middle fingers), n = 1..N demonstrations and t = 1..T

timesteps, measured from the magnetic encoders mounted on the individual

phanlanxes. These values depend heavily on the distance between the hand and

the face: the same face profile yields different results if the face to identify is

slightly moved away from iCub’s hand. A few pre-processing steps enable to get

rid of this issue. First, we take the sinus of the angles in order to have a value

linearly correlated with the distance between the hand and the face:

xt,n
f = sin(θt,nf) (3.2.3)

This gives us the data set
{
xt,n
f

}T

t=0
(see Figure 3.5). The remaining constant

shift following from the hand being further away during another motion can

be removed by simply taking the derivative of x with respect to z, the vertical

coordinate.

This linearized value is time dependent and the vertical velocity profile of

the hand motion is not flat (the velocity is not exactly constant during the

motion), we therefore re-sample the values according to the Cartesian vertical

coordinate z. The new dataset
{
x̃g,n
f

}G

g=0
, indexed by g, spans regularly the

vertical axis z. The data points x̃ are interpolated from x, with G the chosen

number of sampled datapoints2. The linearized profile is then differentiated with

1In our implementation, the gains κp and κd are hand-tuned.
2G was set to 140 points in the current implementation.

27

Figure 3.5: Scheme of the finger probing system for one finger. The hand moves along
the z axis.

respect to z to obtain a set of data independent from the velocity of the hand

during the motion:

Dr =

{
dx̃g,n

f

dz
=

x̃g,n
f − x̃g−1,n

f

Δz

}F,N,G

f=1,n=1,g=1

(3.2.4)

with r ∈ {Doll1, Doll2, Robota,HOAP}.

The data is then de-noised using a lowess filter (Cleveland, 1981) – local

regression using weighted linear least squares, here with a 1st degree polynomial

model. These pre-processing steps yield data containing velocity profiles which

describe the slope of the faces along two vertical lines described by the fingers.

This information is sufficient to recreate the original face profiles – sectional

views as in Figure 3.5 – by integrating the slope.

The advantage of pre-processing the data is visible on Figure 3.6: while the

raw trajectories are not aligned and vary in amplitude, the final data is much

easier to compare. Note that the pre-processed curves are not perfectly aligned.

This is expected, since the profiles differ depending on which part of the face is

spanned by the finger (to recall, each of the trajectory is initialized at a different

location along the width of the face).

Learning algorithm

Due to the absence of reliable position measurement on our robot’s end-

effector, recognizing the essential characteristics of the motion of the finger when

moving across the face (as opposed to recognizing the exact 3D trajectory) is

preferable. To account for this inherent variability in the way we acquire data,

we choose to encode the distribution of our datapoints through a density-based

representation. Such probabilistic encoding offers a flexibility that conventional

data-driven techniques do not have. For instance, computing the norm of the

distance between two trajectories would be offset by a temporal shift if they are

28

0 20 40 60 80 100 120 140
−0.2

−0.1

0

0.1

0.2
Pre−processsed data: first 6 middlefinger trajectories on Doll 2

z (Relative vertical coordinate index)

d
x

2

d
z

0 1 2 3 4 5 6
5

10

15

20
Raw data: first 6 middlefinger trajectories on Doll 2

Timestep (s)

2
(d

eg
)

θ

Figure 3.6: Comparison between raw and pre-processed data on the first 4 middle
finger motions recorded on Doll2.

not properly aligned. A Hidden Markov Model (Rabiner, 1989, HMM) offers a

probabilistic encoding of a sequence of values, and is hence well suited to encode

the dynamics of motion of the fingers. To distinguish across faces, we compare

the likelihood of each face’s model in a winner-take-all approach. One advantage

of HMM is the fact that it allows to recognize motions even when solely part of

the motion is presented. This may prove very useful for face recognition, as it

would allow to recognize faces even when the motion of the finger is initialized

in a different location (e.g. in the middle of the face, as opposed to the top of

the face) or when the fingers loose temporarily contact with the face as they

swipe through the face.

Model description and learning

For each face r, a set of pre-processed data Dr is used to train a fully con-

nected continuous Hidden Markov Model with 2-dimensional observations dx̃1

dz

and dx̃2

dz . The model takes as parameters the set M = {π,A, μ,Σ}, representing,
respectively, the initial states distribution, the states transition probabilities,

the means of the output variables and the output covariance matrices. For each

state, the output variables are described by K multivariate Gaussians:

p(x) ∼
K∑

k=1

N (μk,Σk) (3.2.5)

The transition probabilities p(q(t) = j|q(t − 1) = i) and the observation dis-

tributions p(x(t)|q(t) = i) are estimated by the Baum-Welch algorithm, an

29

Expectation-Maximization algorithm that maximizes the likelihood that the

training dataset can be generated by the corresponding model.

The HMM hyperparameters – number of states and number of Gaussians per

state – are optimized through grid search with respect to the average classifi-

cation performance on leave-one-out cross-validation (detailed in Section 3.2.3).

The HMM states are initialized through K-means and full covariance matri-

ces are considered for the Gaussian distributions. The optimization resulted

in 7-state models with 2 Gaussians per output (to ensure that the compar-

ison of likelihood across the four face models is balanced, we fixed that all

four HMMs had the same number of states). One HMM is thus defined by

nSnG
dimG(dimG+1)

2 = 7 · 2 · 3 = 42 parameters, with nS number of states,

nG number of Gaussians and dimG the dimension of the Gaussians. Classifica-

tion performance during testing is computed through a leave-one-out process:

namely, each of the 10 trajectories for a given face model is tested against its

corresponding HMM model (the latter being trained with the remainder 9 tra-

jectories) and all the other 3 face models. This is repeated for each of the four

face models. The cross-validation algorithm is detailed in Algorithm 1.

3.2.3 Results and discussion

We built 1 HMM for each of the four faces. Each model was trained using 10

examples of trajectories. We run the Forward-backward algorithm to determine

the likelihood that any of the four models has generated the testing trajectory.

A trajectory is said to be well classified if the likelihood of its associated model

is larger than the likelihood of all other models. The testing is performed by

leave-one-out cross-validation on the initial set of trajectories (10 for each of the

4 faces): each trajectory is a) compared to the fully trained models of the other

faces and b) compared to a model of the same face built with the remaining 9

trajectories (the actual tested trajectory excluded from the model).

Since the construction of each HMM is not deterministic, training and clas-

sification are carried out ten times (also called here ten runs). In total, we built

for each run 4 fully trained HMMs plus 4 · 10 partially trained HMMs for the

testing phase detailed previously.

All trajectories describe a different section of the face since they are spread

along the width of the face. We thus assume that the variation of the face’s

profile along its width is smooth enough so that new trajectories generated on

other points of the face will follow a profile similar to those of the training

trajectories and hence will be correctly classified by the HMM.

Performance in testing revealed very accurate results with an overall 91%

recognition rate. 100% recognition rate is achieved for the HOAP face and 99%

for the Robota face, while 77% and 88% recognition rate are obtained for the

Doll1 and Doll2 faces. Figure 3.7 shows the median and quartiles of classification

performance for each model across the ten runs. On average, the number of

30

Algorithm 1: Leave-one-out cross-validation

1: for run = 0 to 10 do
2: for face ∈ {Doll1, Doll2, Robota,HOAP} do
3: Build HMM(face) using all face trajectories.
4: for traj = 0 to N do
5: for faceToTest ∈ {Doll1, Doll2, Robota,HOAP} do
6: if faceToTest �= face then
7: Compute likelihood of HMM(face) for traj.
8: else
9: Build model HMM(face){\traj} with trajectories n ∈ {1..N \ traj}

and compute likelihood of this model for traj.
10: end if
11: end for
12: Trajectory traj is correctly classified if the likelihood of the true face is

the highest.
13: end for
14: end for
15: end for

60

80

100

Doll 1 Doll 2 Robota Hoap
Face

Classification performance on the testing set by face − 10 runs

P
er

fo
rm

an
ce

 (
%

)

Figure 3.7: Boxplot representation of classification performance by face. (Median:
red line, quartiles: blue lines, outliers: red crosses).

misclassified trajectories is 3.6± 2.7 out of 40 trajectories (9%± 7% error rate).

The best performance across the 10 runs is 2 misclassified faces (5% error rate).

These results are somewhat expected. The HOAP’s face is not very human-

like and hence differs more dramatically from the three other heads. Doll1 and

Doll2, while differing in some of their facial features are very similar in size,

making it more difficult to discriminate across the two, especially when the

fingers span the outer edges of the faces. As mentioned previously, the face of

the Robota robot differs from the other dolls’ faces mostly by its being wider

and longer. Therefore, ˙̃x (the profile slope) varies at a different rate when the

fingers slide over Doll1 ’s face than when it does so over Robota’s face. Here we

see how our data encoding manages to encapsulate this relative difference in

the temporal sequencing of finger motion, while remaining robust to absolute

variation in the time it takes to span the face.

Looking more closely at the results, we find that one of the 40 trajectories

31

1 2 3 4 5 6 7 8 910
−20

0

20

40
Doll 1

Trajectories

LL
 m

a
rg

in

1 2 3 4 5 6 7 8 910
−10

0

10

20
Doll 2

Trajectories

1 2 3 4 5 6 7 8 910
0

10

20

30

LL
 m

a
rg

in

Trajectories

Robota

1 2 3 4 5 6 7 8 910
0

500

1000

1500
Hoap

Trajectories

Figure 3.8: Margin of log-likelihood3 for the first run: positive values correspond to
correct classification.

is always misclassified (1st Doll2 trajectory, classified as Robota) and another

one is misclassified in 8 out of 10 runs (6th Doll1 trajectory, also classified as

Robota). The first one is a trajectory describing the side of Doll2 ’s face, there-

fore it is more likely to display few identifiable features, whereas the second one

describes the nose of Doll1 ’s face, which is narrow and might not have been

described in the training set. This can be seen on Figure 3.8. In general, there

may be several explanations to mis-classifications: a) the data of the correspond-

ing trajectory is not reliable. This may happen, for instance if there is a failure

in the tactile pressure feedback that leads to a finger leaving the face during

the motion; b) a section of the robot’s face is similar to a section from another

face: each trajectory covers only a fraction of the face even if two fingers are

used simultaneously to increase the specificity of one face’s signature; c) these

trajectories correspond to sections of the face that are very different from the

rest of the face yet the model is not trained with this part of the face.

Aside from the binary classification result, it is important to estimate the

confidence of the classification. Figure 3.8 and Table 3.1 give an indication on

the margin of log-likelihood3 between the true face and the face with the other

highest log-likelihood for each trajectory: while Doll1, Doll2 and Robota tra-

jectories have a margin around 10, HOAP ’s trajectories have a log-likelihood

margin average of 564. As discussed previously, the HOAP ’s face is very differ-

ent from the other three and hence can be identified with high confidence. This

3The margin of log-likelihood of a trajectory is here defined as the difference between the
log-likelihood of its associated model and the other best log-likelihood (i.e. the best if the
classification is failed or the second best otherwise). The margin is positive if the classification
is correct.

32

Face Margin of log-likelihood

Doll1 8.77± 1.59

Doll2 6.23± 0.82

Robota 14.25± 1.19

HOAP 564.16± 40.16

Table 3.1: Average margin of log-likelihood per face over ten runs and ten trajecto-
ries.

0 50 100 150
−0.2

−0.1

0

0.1

0.2
Doll 1

d
x
1

d
z

z (relative vertical coordinate index)
0 50 100 150

−0.2

−0.1

0

0.1

0.2
Doll 2

z (relative vertical coordinate index)

0 50 100 150
−0.2

−0.15

−0.1

−0.05

0
Robota

d
x
1

d
z

z (relative vertical coordinate index)
0 50 100 150

−0.5

0

0.5

1
Hoap

z (relative vertical coordinate index)

Figure 3.9: Comparison of the slopes from the first 5 trajectories on each face, index
finger only.

information could be used for instance to command the robot to perform a new

measure of a face if the margin of log-likelihood, a measure of confidence in the

model’s prediction, is below a threshold.

Figure 3.9 shows the slopes measured by the index on the 4 faces; only

the measures from the first 5 motions are displayed for clarity. As expected,

the curves are not perfectly aligned. This results from both the noise in the

experiments and the changes of profile along the width of one face.

Additionally, we tested our face exploration algorithm on real human faces,

see Figure 3.10.

33

Figure 3.10: Face exploration of two real human faces. The string visible on the
pictures pulls the hand backwards to discard the effects of joint slack in
the wrist, which is causing wrong kinematic readings and perturbates
the identification process.

34

3.2.4 Conclusion

In this section, we presented an experiment in which faces are classified through

proprioceptive information. Although the classification is not perfect, the algo-

rithm gives good performance at discriminating across 4 very similar faces. The

algorithm was shown to work flawlessly for the two faces that were most distin-

guishable. However, we can think of several ways to improve the classification

performance.

As discussed in the result section, training 10 times a HMM may result in

10 different solutions (e.g. across ten runs performance varied from 95% recog-

nition rate to 85%). This is due to the fact that the initialization of the HMM

parameters is stochastic and the optimization leads only to local optimal solu-

tions. To be less sensitive to the choice of initial conditions, one could perform

crossvalidation on the choice of HMM during training (by training 10 HMM for

each class and picking the one that yields best results). We did not do this in

these experiments as the results overall were very satisfactory, but this may be

required as one increases the number of faces to classify (as would be necessary

if pursuing these experiments). Besides, HMM is not the only algorithm avail-

able to classify time-series, echo-state networks (Jaeger, 2001) usually give very

good results in a large range of applications and could be used here to compare

their performance with HMMs’.

In the approach presented in this section, we cannot recognize which part

of the face is touched. One could train one HMM per section of the faces and

compare new data to each model, thus classifying the face and the part of the face

being touched. A further drawback is the necessity to scan the face vertically

from top to bottom, however, we can imagine that our method is robust to

minor changes in the head orientation. In order to obtain true robustness to the

changes in orientation of the motion or the face, one would require a different

approach based on modeling the face and fitting new data with this model. This

approach would also enable a more complex exploration strategy, i.e. choosing

the direction of exploration or detecting the face’s edges.

In Section 3.4, we tackle the problem of extending this approach to classify

across objects. We take inspiration in the work by Meier et al. (2011): the idea

is to fully model the object to identify with a 3-D point cloud. Because one of

the drawbacks of exploration with one hand is the limited workspace relatively

to the explored shape (in this case, it would be hard to even reach the side of

the explored faces with iCub’s hand), we use both hands of the robot to both

hold the object and to explore it.

In the next section, we describe additional experiments using a prototype of

stretchable tactile sensors, which can be placed between links of the robot, such

as at the finger’s knuckles.

35

3.3 Experiments with stretchable tactile

sensors

The increasing demand for tactile sensing in robotics has led to robots almost

entirely covered with artificial skin (Anghinolfi et al., 2013; Maiolino et al.,

2013). However, tactile sensing technology is usually based on rigid materials,

which do not allow to place them in areas of intricate motion, such as joints.

In collaboration with another laboratory developing stretchable tactile sensors,

we tested a prototype of these sensors mounted on the dorsal side of a robotic

finger, in tactile exploration scenarios. We used the same tactile-based control

as presented in the previous section.

The details of the manufacture and characterization of the sensors are not

presented here. Two experiments, obstacle detection and contour following, are

described in the next section.

3.3.1 Robot integration

In order to demonstrate the sensor’s efficacy in a more generalized envi-

ronment, compared to the laboratory characterization’s setting, sensors are

mounted on a stretchable textile glove and fitted onto the hand of the iCub

humanoid robot. The sensors are manufactured in sets of six 9 mm x 5 mm

nodes distributed along the length of the finger. The sensor acquisition rate

during these tests was approximately 20 Hz, though this can be increased in

future work by improving the serial communication. The iCub is used for two

different applications of the sensors described above. In both experiments, we

are using the tactile skin to detect contact on the back of the fingers and to

provide compliance in the finger motion. In the first experiment, the sensors

are used to detect contact with an obstacle during the arm’s motion. In the

second experiment, the fingers make use of the sensor pressure information to

compliantly explore haptic features.

Setup

The 7 arm joints of the iCub Humanoid robot are used to achieve the motion

of the hand while one joint per finger is used to follow the surface in the second

experiment (index, middle and thumb fingers can be used for this experiment).

The tactile sensors are mounted on the back of the fingers: each finger is equipped

with 6 tactile patches uniformly distributed from the first phalanx until the

fingertip (see Figure 3.11).

Each finger has 3 degrees of freedom, controlled by two actuators: the second

and third phalanx are controlled by one actuator and coupled together. However,

only the actuator controlling the first joint can apply a force in the direction of

the opening of the finger, the other actuator can only bend the finger, not bring

36

(a) (b)

Figure 3.11: a) The hand of the iCub humanoid robot with tactile sensors mounted
on the back of its fingers. The position of each node is marked by a
black dot. b) The sensors stretch and bend with the fingers.

it back. Similarly, springs bring back the joints to a straight position when the

tendon for bending is released. This constrains us to use only the first actuator of

each finger to apply a pressure on the outside of the finger. For this experiment,

we also tie the second phalanx to the first one in order to rigidify the finger.

Procedure for experiment a

The goal of this experiment is to demonstrate the use of tactile sensors on

the dorsal part of a robot for obstacle detection. The procedure is simple: the

robot hand moves towards a flat surface (the obstacle) in a constant velocity

Cartesian motion with the back of the fingers facing the obstacle. When contact

is detected (the sensor value is above a threshold) with either finger (index or

middle finger in that case), the motion stops to prevent collision and the hand

is pulled back. We performed the obstacle detection experiment 20 times (see

Figure 3.12), with the contact occurring either on the proximal or the distal

knuckle: between the 1st and 2nd, or 2nd and 3rd joints. The knuckles can be

seen on the index in the bottom of Figure 3.11(b). The capacitance (proportional

to pressure) of the sensor during the experiment is displayed in Figure 3.14.

37

Direction of motion

Sensor skin

Obstacle

1s 2s

3s 4s
Contact detected

Figure 3.12: Exp a: Snapshots from the obstacle detection task (distal knuckle).
The hand moves towards the obstacle until contact is detected by the
tactile sensors on the back of the fingers (here, second knuckle), then it
withdraws.

Procedure for experiment b

The experiment proceeds as follows: the robot positions its hand with its

back towards a flat surface and while the hand is moving parallel to the plane,

the fingers follow the contour of the surface, controlled in a pressure loop with

the tactile sensors. The hand motion is a fixed linear Cartesian motion with

constant velocity, while the fingers are controlled in current in order to maintain

a desired tactile response.

A PD controller is implemented to follow a constant target pressure ŝf . This

pressure is manually tuned so as to keep the fingers in contact without applying

too much force on the object and finger tendons. Each finger f is controlled in

current using the same controller as in Equation (3.2.2).

The two features can be seen on Figures 3.13 and 3.15(a): the arm and hand

move parallel to the plane and the index follows the contours of the surface,

including the features.

3.3.2 Results

A video of the experiments can be found here: https://www.youtube.com/

watch?v=z512r3fDgX8.

38

Direction of motion

Sensor skin

« Features »

Figure 3.13: Exp b: the index follows the contour of the features on the surface.
Two ”features” are present: a small and a bigger bump.

Experiment a

The experiment is successful if the robot detects the contact and stops; it

fails if the hand tries to force into the obstacle and must be stopped manually.

The experiment succeeded 20 out of 20 times for the second knuckle, only 17

out of 20 for the proximal knuckle (see Table 3.2). The reason for the 3 failures

is the lack of precision on the orientation of the hand: contact occurs on a part

of the hand that is not covered with tactile skin and thus cannot be detected.

This stresses the need for a tactile skin that covers all of the robot’s surface.

A noticeable delay of the robot reaction in the included video is a result of the

robot control, as opposed to an insensitivity of the sensor.

Location of contact # trials # success

Proximal knuckle 20 17

Distal knuckle 20 20

Table 3.2: Exp a: Results of the obstacle detection.

Experiment b

Snapshots of the experiment can be seen on Figure 3.16. The two features are

clearly extracted by the movement of the fingers thanks to the tactile sensors, as

can be seen on Figure 3.15. The lack of a perfect straight line between the two

features can be attributed to the imprecision in the proprioceptive measurements

39

0 2 4 6 8 10 12
0

20

40

60

80

Time (s)

C
ap

ac
ita

nc
e

(f
F

)

Figure 3.14: Exp a: The evolution of the capacitance value from the sensor that
enters in contact during the obstacle detection experiment. The exper-
iment is run 4 times in a row.

(a) Picture of the features

0 50 100 150 200
−10

0

10

20

x (mm)

y
(m

m
)

(b) Reconstructed features

0 50 100 150 200
0

50

100

x (mm)

C
ap

ac
ita

nc
e

(f
F

)

(c) Response of the sensor in contact during the feature following task

Figure 3.15: Exp b: a) A top-down picture of the two features. b) The reconstruction
of the surface and features from 578 tactile data points collected with
the artificial skin. c) The sensor’s response during the scanning: the
response increases when the finger enters in contact with the feature,
and decreases when the finger releases the applied force.

40

of the robot that are used in the forward kinematics to compute the position of

contact. Also, the precision of the reconstructed feature is limited by the length

of the sensor (1cm), which is the reason for the larger reconstructed feature

around 200mm on Figure 3.15(b) compared to the true feature. The evolution

of the sensed pressure can be seen on Figure 3.15(c).

3.3.3 Conclusion

In this section, we presented additional experiments using a prototype of an

artificial skin mounted on the dorsal side of iCub’s fingers. We showed another

example where tactile sensors can be used to control robot fingers for surface

following and shape reconstruction, even when the sensors are placed on areas of

the robot that are usually not suited to hosting sensors, such as on the knuckles

at the back of the fingers.

41

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 3.16: Exp b: scan of the features with the back of the hand. Pictures from
top to bottom, left to right.

42

3.4 Bimanual compliant tactile exploration

Humans have an incredible capacity to learn properties of objects by pure

tactile exploration with their hands. Tactile exploration is crucial during ma-

nipulation, especially when handling objects with two hands. In this case, the

objects are often obstructed from view by either or both arms and fingers and

one can rely only on tactile information to direct the manipulation. In this sec-

tion, we present a method whereby the two arms move in coordination so as

to maximize the surface on the object that can be explored. This is used in

conjunction with an algorithm for object recognition. An exploration strategy

is proposed to guide the motion of the two arms and fingers along the object.

Experiments on an iCub humanoid robot validate our approach.

In this section, we present a strategy for bimanual compliant tactile explo-

ration of unknown objects. The object is held by one hand while the other hand

is exploring it, see Figure 3.17. The bimanual coordination strategy consists in

moving the hand holding the object so as to bring the interesting region on the

object into the reachable space of the other hand so as to make it easier for the

other hand to either explore or grab the object.

The rest of the section is organized as follows: in the next subsection, we in-

troduce our bimanual control framework and the local finger exploration strat-

egy. In Section 3.4.2, the method for object identification is presented. In Sec-

tion 3.4.3, we present the experimental setup with our humanoid robot iCub.

Further, we present our experimental results and discussion in Section 3.4.4.

3.4.1 Exploration strategy

Our objective involves the identification of objects through tactile exploration.

However, the workspace of humanoid robots is usually limited. Most daily ob-

jects are too large and cannot be explored by a single arm and hand. In order

for the robot to gather enough information on the object’s shape to allow unam-

biguous identification, the hand needs to explore a large portion of the object. To

this end, we must extend the reachability of the exploring hand relatively to the

object. In order to achieve this, we use one hand of the robot to hold an object,

while the other hand explores it. This allows to approach and touch the object

from different angles and with higher dexterity relatively to the workspace of

both arms.

Bimanual coordination

Let T 0
R and T 0

L be the homogeneous transformations from the robot root

frame to the frames R and L attached respectively to the right and left arm’s

”interest points”. In the rest of the section, we will refer to the ”interest points”

to denote a) the center of the palm on the exploring hand and b) the point to

be reached on the object held by the other hand.

43

(a)

Human Teaching Results

Object
Model

Graspable
Space

(b)

Figure 3.17: Left: The iCub humanoid robot is exploring an object with its two
hands. Right: The robot is taught the shape of the object by a human
teacher passively guiding the robot’s hand along the object, emphasizing
the object’s part that can be grasped, e.g. the handle on the jar. The
object model is stored as a point cloud and the graspable part is modeled
using GMM (Gaussian Mixture Model).

The goal is to have both frames coincide:

T 0
R = T 0

L ⇔ T L
R = I

in which I is the identity matrix (see Figure 3.18).

Motion generation

We generate a kinematic constraint from the above static constraint in order

for the system to converge to this state. We give the following translational and

rotational velocities in Cartesian space until both frames coincide:

vR =
tRL

‖ tRL ‖ · f(‖ tRL ‖) (3.4.1)

and vL = −vR. With vx being the translation velocity vector of the frame x,

expressed in the robot root frame, tRL the translation vector from R to L, and

f a function from R
+ to R

+ designed to give a smooth and converging motion.

For the rotation, a similar constraint is expressed in the axis-angle notation

which defines a rotation with an axis u and a rotation angle θ around this

axis. Given the axis-angle rotation < uR
L , θRL > equivalent to the usual rotation

matrix notation RR
L , the rotational velocity is defined in axis-angle notation:

wR =< uR
L , ω > and wL =< uR

L ,−ω > with ω = f(‖ θRL ‖). We chose to

use the function f(x) = a · exp(−w
x), with parameters a and w determining

44

Figure 3.18: Schematic of the bimanual constraint. The frames T L
0 and T R

0 of the
interest points should coincide to satisfy the bimanual constraint. The
frame T L

0 changes depending on where the object should be scanned
and the estimation of the object’s diameter.

respectively the velocity of the motion far from the target point and a measure

of the closeness to the target.

Working at the limit of the workspace

Because the workspace of the robot’s arms are often limited during bimanual

manipulation (e.g. the hands of the iCub robot can barely reach each other), it is

important to take into account the non-feasibility of a given inverse kinematics

problem. Our IK solver uses a pseudo-inverse of the Jacobian with optimization,

this way we can weight some constraints so as to satisfy them in priority. In our

application, the position constraints are more important than the orientation

constraints, and the orientation of the normal of the palm (the right hand’s

interest point) is more important than the orientation of the other axes of the

interest point’s frame. Therefore, we express the orientation Jacobian in the

interest point’s frame and the desired axes are weighted as indicated previously.

These weights are only taken into account when the IK problem has no solution

and a compromise between the constraints has to be found, therefore their choice

is not very sensitive and they are set empirically.

Collision avoidance

During the scanning of objects, the goal is to keep one hand and fingers in

contact with the scanned object at all times. However, when both arms are

changing configuration to start a new “scan” from a different angle, there is

a need for collision avoidance in order for the scanning hand not to hit the

object while moving around it. Because we do not know the exact shape of the

45

object held by one of the hands, we assume a cylinder with a sufficiently large

diameter, and require the end-effector to move outside this cylinder during the

motion, until the hand is aligned in front of the target reaching point, where it

is allowed to enter the “collision area” (see Figure 3.19). The corrected velocities

for collision avoidance are given in Table 3.3.

Target
scanning point sca

Current hand position

x

z
Virtual avoidance enveloppe

x
zr

l

Figure 3.19: Scheme of an object and its collision avoidance virtual envelope. A lat-
eral safety zone is delimited by the parameter l, in which the exploring
hand can enter. The diameter of the virtual envelope is defined by r.

|Δx| ≤ l |Δx| > l

|Δz| > r
vR
L

′
= vR

L

vRL
′
z = vRL z · exp(−wout

|Δz−r|)

|Δz| ≤ r vRL
′
z = −vav · exp(−win

|Δz−r|)

Table 3.3: Velocity correction for collision avoidance, with vav a predefined avoidance
speed, wout and win parameters that regulate the transition from collision
avoidance to the normal behaviour of reaching the starting scanning point,
vR
L

′
the modified relative velocity between the right and left frames to

avoid collision, and vRLz the z component of the velocity, expressed in
a coordinate system rotating around the object. Z is constrained to be
normal to the principal axis of the object (i.e. the scanning direction x,
see Figure 3.19) and oriented around the x axis to point from the center
of the object towards the other hand.

Finger exploration strategy

Compliant tactile control

During the exploration of the object, the tactile sensors provide contact informa-

tion. In order to obtain this information, the fingers must apply enough pressure

on the object. The tactile response is thus used in a pressure loop designed to

apply sufficient force and obtain contact data, while not pressing too hard so

46

as not to damage the object being touched (see Figure 3.21(a)). For ns tactile

sensor patches and na actuators, the motors are commanded in current with

u ∈ R
na following:

u = κ · Φ(S, S∗) (3.4.2)

with S, S∗ ∈ R
ns respectively the current and desired tactile response, κ ∈ R

na

a vector of proportional gains for each actuator, Φ : Rns → R
na a mapping

between the tactile sensor patches and corresponding motors. The mapping Φ

depends on the architecture of the robot hand – the number of actuated joints,

the number and disposition of the sensors – and the desired behaviour

In our implementation, each finger is controlled the same way, ns = 3

for each finger as we take directly the average value for each tactile patch as

inputs (one per phalanx, each composed of 12 or 16 taxels), and na = 2: the

first actuator of the finger controls the first phalanx and the second actuator

controls the second and third phalanx coupled together, see Figure 3.20. For

each finger, Φ is defined as follows:

Φ(s) = {e0,min(e1, e2)} (3.4.3)

With s the average tactile response for each of the three phalanx (s0, s1 and

s2 are the average pressures on respectively the first, second and last phalanx

and ei = s∗i − si, with s∗i the corresponding desired pressures). This mapping

allows to make contact on the three phalanxes, using only the two actuators, by

using the passive compliance emerging from the coupling between the last two

phalanxes. The idea is to keep closing the phalanx until contact is made on the

two coupled links.

Figure 3.20: Scheme of the sensors and actuators on one finger.

Thumb motion

On anthropomorphic robotic hands, the thumb is usually equipped with an

47

additional degree of freedom which enables it to control its opposition to the

other fingers. During the scanning of objects, we use this DoF to increase the

amount of the object’s surface explored by the thumb, especially for reaching

areas otherwise difficult to access (see Figure 3.21(b)). A periodic swiping motion

is implemented and efficient enough to gather data more efficiently.

(a) Finger’s compliance during scanning

(b) Thumb opposition

Figure 3.21: Top: The fingers adapt to the size of the object in order to follow com-
pliantly the surface. Bottom: Illustration of the advantage of changing
the thumb’s opposition while scanning a glass: the thumb follows the
high curvature of the surface.

Detect loss of contact with the object

While scanning, the fingers might slide off the object (for instance when reaching

an extremity). In that case, they might touch each other and record the contact

as if they were touching the object. When this happens, the distance between

the contacts points on the two fingers is close to 0 and this allows us to detect

these events and to discard these contact points. This is also used to detect that

the exploration has reached the end of the object and decide that the object

can be scanned from another orientation.

Approaching the object

When the exploring hand comes in contact with the object, we need to detect

precisely when the hand touches the object. Tactile sensors seem a good way

to detect this contact. However, they should be extremely sensitive and detect

48

very light pressure. Otherwise, when the exploring hand comes into contact

with the object for the first time, it may apply too much force on the object

– a small force on the object creates a high torque on the hand holding the

object. While exploring, we overcome this problem by “pinching” the object so

as to apply forces on both sides of the object. Since our tactile sensors are not

sensitive enough, we use force-torque sensors embedded in the robot’s arm to

detect when the hand touches the object. We use a first order band-pass filter

to remove both the low-frequency component of the signal due to the errors

of estimation of the robot’s limb’s own weight and smooth the high-frequency

component since the signal is very noisy.

3.4.2 Object Identification

In order to identify an object, the data collected from tactile exploration is first

filtered and smoothed using a GP-based filter. The data can then be aligned

with previously known object models and the average distance after alignment

is used as criterion for identification. After the identification, a grasp is computed

from previously learned grasps. As the data acquired from tactile exploration

is noisy and un-uniformly distributed, which is not ideally suitable for object

identification, a GP-based filter was implemented by my colleague Miao Li to

smooth the data. The data used for further identification is thus the filtered

data.

For each of the objects to explore, we assume that there is already a point

cloud model for it, which can be obtained either from a vision scanner or from

human demonstrations. In Section 3.4.3, we give details on how we collect this

point cloud model from human demonstrations. Herein, for the i-th object, the

point cloud model is denoted as Oi = {pi,j}j=1..np . The object’s identification

algorithm tries to align the datapoints collected so far with the available object

point clouds Oi and the one with the smallest alignment error is identified as

the corresponding object. To this end, after each scanning, the points gathered

so far X = xj , j = 1...nx are transformed into the most similar pose using the

iterative closest point (ICP) algorithm.

As described in Besl and McKay (1992), ICP can compute the optimal trans-

formation (R,qt) between two corresponding datasets that minimizes the fol-

lowing distance error:

Dist(X ,Oi) =
1

nx

nx∑
j=1

‖pi,j − (Rxj + qt)‖2 (3.4.4)

In our work, the correspondence between the measured points and the object

point cloud models are chosen with the nearest neighbor match without replace-

ment: the same point in the object point cloud model cannot be the correspon-

dence point for two different measured points. In general, this method suffers

from local minima. To counter this effect, we run 10 different comparisons with

49

10 different initializations of the initial points. These initial points are uniformly

obtained from different rotations R around the object’s principal axis and its

normalized translation components are randomly sampled in [−0.5, 0.5].

For each available object model, we compute the minimal distance after

alignment, i.e. Dist(X ,Oi) and the object is identified as the object with the

minimal distance.

3.4.3 Experiment

As in the previous experiments (see Section 3.2), the iCub humanoid robot

(Figure 3.23(a)) is used to explore different everyday objects using both arms.

We chose five objects: 2 bottles, 1 jar, 1 phone receiver and 1 glass, shown

in Figure 3.22. The two bottles are very similar and can test the accuracy

of the identification method. The phone’s profile encompass sharp changes in

curvature, a challenge for the compliant control of the fingers. Scanning the glass

is even more challenging as it requires to control precisely for the thumb’s motion

in order to follow the edges. The jar has a much larger diameter and involves two

particular features: the handle and the spout. During the exploration, one arm

holds the object, while the other arm explores it with its fingers. The collected

data are compared with data previously collected manually in order to identify

the object. During the exploration, the robot attempts to identify the objects

as well as their positions and orientations. Then, from the previously learned

grasps, one grasp is selected and adopted by the free hand, on the object (see

Algorithm 2).

(a) bottle 1 (b) bottle 2 (c) jar (d) phone (e) glass

Figure 3.22: Five different everyday objects are used in our experiment. Handles are
mounted on the bottom of the objects in order to adapt to the size of
iCub hand.

50

(a) iCub and optical tracking markers (b) iCub’s hand equipped with Tekscan tactile
sensors

Figure 3.23: An iCub humanoid robot (a) is used in our experiment. The thumb,
index and middle finger of the right hand are equipped with Tekscan
sensors (b). During the experiment, the objects are firmly held by the
left hand (no relative motion), while the right hand explores the object
from different orientations.

Setup

We use both arms of iCub, each of which has 7 degrees of freedom (DoFs).

Each hand has 9 DoFs, 3 for the thumb, 2 for the index finger, 2 for the middle

finger, 1 for the coupled ring and little finger and 1 for the adduction/abduction.

Only the thumb, index and middle finger are equipped with Tekscan4 tactile

sensors (see Figure 3.23(b)). The Tekscan sensors have a spatial resolution of

4mm (6.2 sensors/cm2), the fingers are equipped with 3 ∗ 4 taxels – tactile

pixels – per phalanx, and 4 ∗ 4 taxels on their fingertip, which makes a total

of 120 taxels on the hand. A motion capture system – OptiTrack5 – is used to

track the position and orientation of both hands to overcome the inaccuracy of

iCub’s kinematics and obtain precise measurements. The contact positions are

obtained through forward kinematics starting from the motion tracker reference

frames on the wrists, and given the geometry of the tactile sensors.

Manual data collection

Prior to the exploration, we manually collect data from the objects using the

same setup with the difference that the object is held by a human demonstrator

in place of the robot itself. An optical tracker is attached to the object while

the fingers of iCub are pressed against the object to collect point cloud data all

over the surface (see the top left image on Figure 3.17(b)). The acquired object

point clouds are shown in Figure 3.24.

4http://www.tekscan.com/
5http://www.naturalpoint.com/optitrack/

51

0.2
0.25

0.3
0.35

0.4

−0.04
−0.02

0
0.02

0.06

0.08

0.1

Y(m)
X(m)

bottle 1

Z(
m

)

(a) bottle 1

0.2

0.25

0.3

0.35

0.4

−0.04

−0.02

0

0.02

0.06

0.08

0.1

Y(m)
X(m)

Z
(m

)

(b) bottle 2

0.2

0.25

0.3

−0.06

−0.04

−0.02

0

0.02

0.04

0.05

0.1

Y(m)
X(m)

Z
(m

)

(c) jar

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

−0.04

−0.02

0

0.02

0.04

0.06

0.05

0.1

X(m)
Y(m)

Z
(m

)

(d) phone

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

−0.04

−0.02

0

0.02

0.05

0.1

Y(m)
X(m)

Z
(m

)

(e) glass

Figure 3.24: The object point clouds obtained from human teaching.

52

Exploratory procedure

For the exploration process, we only assume that the principal axis of the

object is available, for instance through basic image processing. However, we

know the precise position of the hand holding the object through our motion

capture system – instead of using forward kinematics, imprecise because of slack

in the joints. This system is also used to track the position of the right hand.

The right hand scans the object from one end to another along this principal

axis, and changes the angle of approach iteratively around this principal axis

at every scan. The procedure is described in Algorithm 2. During the whole

exploration, both arms move simultaneously to achieve the desired relative po-

sition and orientation between the interest points (the palm and a point on the

object’s surface), therefore the indications in Algorithm 2 are given in relative

terms between these two interest points.

Algorithm 2: Exploratory procedure

1 θ ← θmin; \\ Angle of approach around the principal axis
2 while θ < θmax do
3 Go above initial scanning point;
4 while !contact do
5 Move hand and object towards each other;

6 Close fingers and activate finger compliant control;
7 while fingers in contact with object do
8 Slide the hand along the object’s principal axis;

9 Open fingers;
10 Try to identify object;
11 if object identified then
12 Compute and reach a grasping posture;
13 Grasp the object;
14 return 1;

15 θ ← θ + increment;

16 return 0;

3.4.4 Results

Each object is scanned using Algorithm 2. The complete exploration of an ob-

ject, as illustrated in Figure 3.25 for bottle 1, takes a little less than 3 minutes

to explore the object from 8 different angles (i.e. 22.5s per scan).

The acquired point clouds are quite noisy and non-uniformly distributed. As

mentioned above, the raw point clouds are not ideal for object identification,

due to the difficulty in finding the correct corresponding points for the ICP

algorithm. With the GP filter, the filtered point clouds become smoother, sparser

and less noisy, as shown in Figure 3.28.

For each explored object, we chose 10 different initial configurations for the

ICP algorithm, where the rotation R in Equation (3.4.4) is uniformly sampled

53

Figure 3.25: Exploration of bottle 1. Pictures from top to bottom, left to right. Total
duration is 3 minutes. The robot explores the object from one end to
the other, alternatively changing the relative orientation between the
object and the hand that explores it.

54

bottle 1 bottle 2 jar phone glass
0

5

10

15

20

D
is

t [
m

m
]

 bottle 1
bottle 2
jar
phone
glass

Figure 3.26: Comparison of the aligned distance from Equation (3.4.4) for all the
objects. The object with the smallest distance is chosen as the identi-
fication result. For each object, we ran the identification algorithm 10
times.

around the principle axis of the object. The object is identified as the object with

the smallest distance among the 10 different trials. The distance for each trial is

shown in Figure 3.27 and the points after alignment are shown in Figure 3.28.

We repeated the identification algorithm 10 times for each object and the success

rate of identification is always above 90%. The failure happens when bottle 1 is

misidentified as bottle 2 and the jar is misidentified as bottle 1. The statistics

for the distances are shown in Figure 3.26.

After the object is identified, a grasp is chosen (this is work done by Miao

Li) and the right hand moves to the selected grasp, as shown in Figure 3.29.

3.4.5 Conclusion

In this section, we presented a general approach for bimanual compliant tac-

tile exploration, with applications to object identification, manipulation and

grasping. The kinematic limitations of the system, i.e., workspace limitation

and collisions, are considered in this exploration strategy, which is critical in

tactile exploration as suggested in Bierbaum et al. (2008). Because our method

is closed-loop, i.e. not based on planning, it can run very fast at runtime, and

allow a fast exploration. Indeed, because there is no need for planning, which

takes time, the exploration procedure is continuous and the robot does not stop.

However, this approach is limited to objects of relatively small size that can

be held by a robot, and the objects should have one principal axis along which

to perform the exploration. Although the focus of this section, describing the

work presented in Sommer et al. (2014), was on the exploration process, the

identification method could be improved with methods such as presented more

recently in Vezzani et al. (2016a). In the next chapter, we tackle the exploration

of completely unknown objects, trying to remove any possible constraint on the

55

1 2 3 4 5 6 7 8 9 10
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Trials

R
M

S
E

bottle 1

bottle 2

jar

phone

glass

(a) bottle 1

1 2 3 4 5 6 7 8 9 10
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Trials

R
M

S
E

bottle 1

bottle 2

jar

phone

glass

(b) bottle 2

1 2 3 4 5 6 7 8 9 10
0.01

0.015

0.02

0.025

Trials

R
M

S
E

bottle 1

bottle 2

jar

phone

glass

(c) jar

1 2 3 4 5 6 7 8 9 10
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Trials

R
M

S
E

bottle 1

bottle 2

jar

phone

glass

(d) phone

1 2 3 4 5 6 7 8 9 10
0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Trials

R
M

S
E

bottle 1

bottle 2

jar

phone

glass

(e) glass

Figure 3.27: Object identification with sparse point cloud starting from 10 different
initial configurations.

56

0.2

0.25

0.3

0.35

0.4

−0.04
−0.02
0

0.02

0.06

0.08

0.1

0.12

X(m)Y(m)

Z
(m

)

testing object points

original object points

(a) bottle 1

0.2

0.25

0.3

0.35

0.4

−0.04
−0.02
0

0.02

0.06

0.08

0.1

X(m)
Y(m)

Z
(m

)

testing object points

original object points

(b) bottle 2

0.2

0.25

0.3

0.35

−0.06
−0.04

−0.02
0

0.02
0.04

0.02

0.04

0.06

0.08

0.1

0.12

X(m)Y(m)

Z
(m

)

testing object points

original object points

(c) jar

0.2

0.25

0.3

0.35

0.4

−0.04
−0.02
0

0.02
0.04

0.06

0.08

0.1

X(m)Y(m)

Z
(m

)

testing object points

original object points

(d) phone

0.2

0.25

0.3

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X(m)Y(m)

Z
(m

)

testing object points

original object points

(e) glass

Figure 3.28: The filtered object point clouds aligned with the trained object points
cloud. Only 400 datapoints from the trained object point clouds are
displayed.

57

(a) bottle 1

(b) bottle 2

(c) jar

(d) phone

(e) glass

Figure 3.29: The selected grasp (hand position and orientation) for each explored
object after identification.

58

shape or size.

3.5 Conclusion

In this chapter, we presented multiple exploration strategies for different sce-

narios in which objects are scanned using touch, including for the first time

bimanual tactile exploration on a robot. Given that those objects are partially

or completely unknown, tactile-servoing methods are introduced to keep con-

tact with the object while maintaining a constant pressure. We showed that we

were able to differentiate between similar human-like faces from tactile-based

trajectories, encoded as HMMs, as well as between similar objects using tactile

point-clouds, both collected using tactile sensing as a primary control variable.

We also tested these methods using different tactile sensing technologies,

including a prototype of stretchable tactile sensor that can be placed on an

actuated part of the robot, in our case the back of the knuckles on the fingers.

In the next chapter, we tackle several additional problems, including the

exploration of completely unknown objects, e.g. without any prior about them,

and improving the compliance between hand-fingers and the explored objects,

using tactile sensing and redundant kinematic chains.

59

Chapter 4

Multiple tactile contacts

control for exploration

and grasping

4.1 Introduction

In robotics, collisions are ordinarily avoided and in the cases when contact

is allowed, it is usually limited to a single contact point at the end-effector.

However, recent progresses in tactile sensing offer a range of research directions

in robotics for allowing robots to be in contact at multiple points on the body.

Most research on haptic exploration has focused on a single contact (Oka-

mura and Cutkosky, 1999; Heidemann and Schopfer, 2004) on the end-effector

or sequences of multi contact grasps (Meier et al., 2011). Much less work has

been done on continuous multi contact exploration. In order to map a surface

or search for an object on it, it is more efficient to keep all fingers in contact

while moving than to touch sequentially several points. Increasing the number

of contact points also improves the overall time for the search or the reconstruc-

tion. Keeping contact during exploration becomes particularly crucial when the

mapping must be precise and when the object being scanned is moving. This

allows to keep a precise estimation of the relative position between the robot

and the object.

In this chapter, we develop an algorithm to maximize the number of points in

contact when the hand is scanning or grasping an object (see Figure 4.1). To this

end, we project the forces/torques required for the exploration in the null-space

of the contact forces. Additionally, we control the forces at each contact point to

prevent an uneven distribution of contact force. Given existing contact points,

other desired contact areas of the robot are moved towards the estimated surface

of the unknown object. This enables the robot to perform a rapid exploration of

complex, non convex shapes while maintaining low contact forces. This controller

requires only to know the parts of the robot on which it is desirable to make

contact and does not need a model of the environment besides the robot itself.

We show that this improves the robot’s ability to make contact with unknown

surfaces by using tactile sensors. This is crucial for tactile exploration and is very

useful for grasping under uncertainty as tactile signals can guide the fingers to

actively comply with the sensed shape.

61

(a) Surface exploration in sim-
ulation.

(b) Compliant grasping and attractors.

Figure 4.1: Two of our experiments: a robotic arm and hand system explores a shape
in simulation and compliantly grasps an object on a real platform.

This work lead to the following publication:

• Nicolas Sommer and Aude Billard. Multi-contact haptic exploration and

grasping with tactile sensors. Robotics and Autonomous Systems, 2016.

ISSN 0921-8890. doi: 10.1016/j.robot.2016.08.007. URL http://www.

sciencedirect.com/science/article/pii/S0921889016301610

4.2 Controller structure

In order to explore its environment or grasp an object, the robot needs to

create contacts. However, some contact points can be desired while others might

just occur during the exploration and not be desirable. Here, we explain how

we differentiate between these two types of contact and how both of them are

taken into account by our controller. First, we introduce the operational space

coordinates using the contact points.

Operational space coordinates using contact normals

At each timestep, for each contact point i ∈ {1, .., Nc} detected by tactile sen-

sors, we define its position pic ∈ R
3, normal direction ni

c ∈ R
3, parent joint

lic ∈ {1, . . . , N}, and Jacobian J i
c ∈ R

1×N . The set C contains the joints at-

tached directly above a link that currently hosts a contact point and the set nc

the normals of contact:

C = {lic}Nc
i=1, nc = {ni

c}Nc
i=1 (4.2.1)

with Nc the number of contact points and N the total number of DOFs of the

robot. The operational space contact Jacobian J i
c is computed as J i

c = ni
c
T
J i,

where J i is the contact Jacobian expressed in the robot base frame.

62

The Jacobian for the operational space coordinates is given by the concate-

nation of all these contact Jacobians:

Jc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1
c

J2
c

...

JNc
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2.2)

Set of areas that can be in contact

During the task execution, the more contact points between the robot and its

environment, the more information is retrieved at the same time. For instance, it

would be inefficient to try to localize an object on a table using only one fingertip.

However, increasing the number of contacts also decreases the manipulability

of the robot as each contact introduces a dynamic constraint, as detailed in

Section 4.2. A mechanism for deciding whether a contact is desired or not is

thus required.

In addition to the contacts points defined in the previous section, we define

the desired contacts points i ∈ {1, .., Nd} with position pid ∈ R
3, parent joint

lid ∈ {1, . . . , N}, and Jacobian J i
d ∈ R

1×N . The set D contains the joints which

directly control a link that hosts a desired contact point.

D = {lid}Nd
i=1 (4.2.3)

with Nd the number of desired contact points.

The mechanism of choosing the desired contact points depends on many

criteria, including the robot platform, the task and possible prior on the shape

to explore or grasp1. The combinations of the sets C and D and what they

represent are detailed at the beginning of Table 4.1.

Control of the robot in contact

The dynamics of the robot are of the form:

Mq(q)q̈ + b(q, q̇) + g(q) + JT
c (q)f = τ (4.2.4)

where q,Mq(q), b(q, q̇), g(q), f and τ are respectively the vector of joint angles,

the joint-space inertia matrix, the Coriolis and centrifugal torques, the gravity

torques, the contact forces and the vector of joint torques2. The torques τ applied

1In this work, we assigned a desired contact point on each link of the robot’s hand, hence
3 per finger.

2We do not model joint friction, this is an approximation, especially for the joints in the
hand. See the discussions about neglecting friction in the results section of the experiments.

63

Table 4.1: Notation table

Variable Description

C Current contact points

D Desired contact points (not time dependent)

C \D Current undesired contacts

D ∩ C Current desired contacts

D \ C Desired contacts not yet in contact

pic (pid) Position of (desired) contact point i

ni
c (ni

d) Normal direction of (desired)contact point i

lic (lid) Parent link of (desired) contact point i

J i
c (J i

d) Jacobian of (desired) contact point i

Nc (Nd) Number of (desired) contact points

Jc Operational space Jacobian

N Total robot DOFs

q Vector of joint angles

Mq Joint-space inertia matrix

b Coriolis and centrifugal torques

g Gravity torques

f Contact forces

τ Commanded robot torques

ẍ Operational space acceleration of contact points

τ0 Lower priority torques

Nτ0 Null-space projection matrix, dependent on τ0

JC∩D Jacobian of desired contact points

JC\D Jacobian of undesired contact points

Jτ0 Modified operational space Jacobian

Kd Stiffness matrix of impedance controller

Dd Damping matrix of impedance controller

pjr Reference position of desired contact point j

pj Current position of desired contact point j

vj Desired velocity of desired contact point j

64

to the robot are chosen in the form of a prioritized controller:

τ = τ1 +Nτ0(q)τ0 (4.2.5)

where τ1 are the torques for the highest-priority task, e.g. the contact force

control, Nτ0 a modified null space projection matrix that depends on τ0, the

vector of lower priority torques.

The null space projection matrix N(q) is usually chosen so that any torques

projected on it do not affect the operational space acceleration ẍ. The manip-

ulator dynamics in the operational space are given by pre-multiplying Equa-

tion (4.2.4) with J(q)Mq(q)
−1. For better readability, we do not specify the

dependency on the joint angles vector q and its derivatives from now on:

ẍ− J̇ q̇ + JM−1
q (b+ g) = JM−1

q (τ − JT
c f) (4.2.6)

The terms J̇ q̇ and JM−1
q (b + g) can be compensated for, therefore ẍ is not

affected by projected lower-priority torques whenever:

JM−1
q N = 0 (4.2.7)

We want to avoid creating accelerations or forces for existing desired con-

tacts. This is in order to avoid disturbing the control of the contact force. How-

ever, the robot might also host contacts on links which do not accept contacts,

i.e. i ∈ C \ D. In that case, strictly positive operational space accelerations –

towards the surface – should be avoided, but negative accelerations can be ac-

cepted as they will break the undesired contact. The strategy adopted here is to

take into account the null-space torques τ0 in the computation of a modified null-

space projection matrix. We separate the Jacobian space operational matrix Jc

in two sub-matrices JC∩D ∈ R
N×|C∩D| and JC\D ∈ R

N×(Nc−|C∩D|) containing
the concatenated desired contact Jacobians and undesired contact Jacobians,

with NC∩D the number of existing desired contacts. The new conditions are

expressed with a modified null space projection matrix Nτ0 that respects the

following constraints:

JC∩DM−1
q Nτ0 = 0 (4.2.8)

and ∀τ0 ∈ R
N , JC\DM−1

q Nτ0τ0 ≤ 0 (4.2.9)

This can be ensured by constructing a modified operational space Jacobian

matrix Jτ0 that contains only the Jacobians of the desired contacts, plus the

Jacobians of the undesired contacts which would create undesired contact forces

because of the torques τ0.

Finally, we compute the modified null space projection matrix Nτ0 from the

65

Algorithm 3: Modified Jacobian for null space computation

Data: The Jacobians JC∩D and JC\D
Result: The modified Jacobian Jτ0

1 Jτ0 =
[
JC∩D

]
;

2 for i ← 1 to (Nc −NC∩D) do
3 if J i

C\DM−1
q τ0 > 0 then

4 Jτ0 =

⎡
⎣ Jτ0

J i
C\D

⎤
⎦ // Concatenate Jacobians

5 return Jτ0 ;

modified Jacobian Jτ0 , obtained with Algorithm 3:

Nτ0 = I − JT
τ0 J̄

T
τ0 (4.2.10)

with J̄τ0 = M−1
q JT

τ0(Jτ0M
−1
q JT

τ0)
−1 (4.2.11)

The Equation (4.2.5) for controlling the robot is finally detailed as:

τ = τc +Nτ0(τd + τr + τe) (4.2.12)

The torques τc, τd, τr, and τe are described in the following sections, they re-

spectively represent torques for the contact forces, for increasing the number of

contacts, for tracking a rest position (for some of the joints) with a PD controller,

and for driving the exploration of the robot in the corresponding experiment.

This is easily extended to multiple levels of task priorities. The procedure is

described in Algorithm 4. This is important for instance to add joint limits and

joint centering tasks.

Algorithm 4: Multi-priority algorithm

Data: For each task task, its priority level i, torques τtask and
Jacobian Jtask. For the contact tasks, this Jacobian is
computed according to Algorithm 3

Result: Torques τ
1 τprev = 0
2 for priority i ← 1 to pmax do
3 Ji = [], τi = 0
4 for task ∈ tasksi do

5 Ji =

⎡
⎣ Ji

Jtask

⎤
⎦

6 τi += τtask

7 Ni = I − JT
i J̄T

i

8 τ = τi +Niτprev

9 return τ ;

66

4.3 Increasing contact area

In order to gather information about its environment by means of touch, or to

grasp an object, the robot must at first make contact. Then, once in contact,

increase as much as possible the area in contact. To this end, we proceed to

switching across two modes of control: one mode controls links not yet in contact,

and the other mode controls the contact force at the joints already in contact.

We start by explaining how we determine which mode of control to use.

All joints in the fingers that affect control of the force at the contact points

and the desired contact points are controlled in torque according to Equa-

tions (4.3.2) and (4.3.3). The other joints in the fingers are controlled by a

PD controller.

At each time step, the control mode for each joint depends on its position

relative to the contact points and desired contact points. The set of joints with

existing desired contact points is given by C ∩ D – both part of the current

existing contacts and desired contacts –, the set of joints with desired contact

points is given by D \ C – desired contact but not a contact yet –. The set K

contains all joints that are not on the same kinematic chain as either a contact

point or a desired contact point, and all joints when the robot is not in contact:

K = {i | ∀j ∈ Si, j �∈ C ∪D ‖ C = ∅}Ni=1 (4.3.1)

with N ∈ R the total number of DOFs, and Si the set of joints belonging

to the kinematic chain starting from the base of the robot, passing through the

joint j until one of the fingertips.

The set K hence contains all joints not used for control of force at contact or

desired contact point. These joints track a predefined rest position with a PD

controller, described in the term τr from Equation (4.2.12). In the case that

the robot is not in contact, a higher-level controller is in charge of bringing the

robot into contact, as explained in the experiments section.

Control of existing contact points

For each existing contact point that is located on a link i which accepts contact

points, e.g. for i ∈ C∩D, we apply a small normal force to maintain the contact:

τc =
∑

i∈C∩D

J i
c

T
fn (4.3.2)

where fn ∈ R is the desired normal force applied at the contact point3.

3In our experiments, we chose fn = 0.5N . This value must be above the sensitivity of the
tactile sensors to be able to sense contacts. If there is friction in the joints, a higher value
is useful because friction can lead to a non-zero acceleration at a contact point despite the
null-space projection, and potentially loose contact.

67

Control of desired contact points

The desired contact points are used to increase the number of contact areas. For

each desired contact point that is not on a link where there is already a contact

point, a corresponding Cartesian reference position is computed and tracked

with a Cartesian impedance controller. The position of each desired contact

point is predefined for each link of the robot4.

The desired contact points are controlled by impedance control, thus the

total torque for the desired contacts:

τd =
∑

j∈D\C
Jj
d

T
(Kdx

j
e +Ddẋ

j
e), (4.3.3)

with xj
e = pjr − pj (4.3.4)

with isotropic stiffness and damping matrices Kd = kd · I3×3 and Dd =

dd·I3×3
5, pjr, p

j ∈ R
3 the reference and current Cartesian positions of the desired

contact point j. The reference Cartesian position is computed by integrating the

desired velocity vj :

pjr = pjinit +

∫ t

tjinit

vj dt (4.3.5)

The desired velocity vj should be chosen according to the task and can take

into account prior about the explored surface. The details are given for each of

our applications in the experiments section. The initial Cartesian position pjinit
and initial time tjinit are reset to the current values pj and t when the desired

contact j is created. This happens either when an existing contact is lost and

turns into a desired contact or when the set of desired contact changes.

4.4 Experiments

The algorithm we propose here is meant to be used with robots that have

the ability to sense contacts at multiple joints. Unfortunately, to date, there is

no commercially available technology to cover a robot entirely with a sensitive

skin. In our experiments, we hence first conduct simulations, emulating a perfect

sense of touch on all sides of the fingers. We then perform smaller scale - proof

of concept - implementations using a real robotic hand covered with patches of

tactile sensors. The first setup is a simulation of a robotic arm with a robotic

hand attached at the end: there are 7 DOFs for the arm and 4*4 DOFs for 4

fingers. Second, a similar configuration with a real robot equipped with tactile

sensors. The simulation allows to control the whole robot and hand in contact

with an unknown environment, without the risk of contacts not being detected

4In this work, the position is defined as the geometrical center of the links.
5We choose kd = 5N.m−1, dd = 1N.s.m−1

68

(e.g. if they occur on an unsensorized part of the robot) and cause damage6. The

experiments were conducted in order to prove the effectiveness of the control

strategy and the ability to interact with unknown objects and surfaces.

The experiments consisted of an exploration part, conducted in simulation,

and an active compliance for grasping part, both in simulation and on a robot.

4.4.1 Exploration

The first applications consist of the exploration of unknown surfaces, using our

algorithm to actively comply with the unknown shape of the surfaces. The first

experiment consists in the full autonomous exploration of a random shape, and

the second experiment in the exploration of the inside surface of cups, using all

edges of the fingers. A third experiment tests our algorithm with two different

hand models on two new objects. All three of these experiments are carried out

in simulation. We aim to demonstrate that maximizing the number of contacts

during exploration helps at reconstructing the surfaces and thus gaining infor-

mation about it, while keeping all contact forces low.

For the exploration, the desired velocity vj introduced in Equation (4.3.5)

of the desired contact point pjr is defined by the average of the closest point’s

normal and the direction towards the closest point (see Figure 4.2). The idea is

that the direction towards the closest point of contact always brings the finger

towards the object, while the information coming from the normal of the closest

point of contact brings information about the orientation of the surface without

moving exactly where a contact already occurs.

vj = λ · ni∗ + (pi
∗
c − pj)

‖ni∗ + (pi
∗
c − pj)‖ , i∗ = argmin

i∈{1,...,Nc}
{pj − pic} (4.4.1)

where ni∗ is the normal of the closest contact point pi
∗
c , and λ a predefined

scalar velocity.

We use a simulated 7 degrees of freedom (DOF) Kuka Light Weight Robot

arm with a 16 DOF AllegroHand robotic hand. We aim at showing that the

robot can autonomously reconstruct a random shape. Because these experiments

are carried out in simulation, there is no error in the reconstruction as each

datapoint lies perfectly on the explored surface. The coverage of the surface

reconstruction however depends on the chosen exploration strategy, which is in

our case very simple. It also directly depends on the number of contacts during

the exploration, hence the goal to maximize it. The simulation is run at 1000 Hz

in Gazebo with ODE and the simulated robot is directly controlled in torque.

The computation of the modified null-space projection matrix also runs at about

6We do not currently have tactile sensors covering the robot’s arm. However, we are de-
signing a method to reconstruct the point of contact from the torque sensing at joint level.

69

Component towards other contact
Normal of closest contact

Resulting desired velocity

Joint
Desired Contact
Contact

Shape to
explore

Ground

Robot

Figure 4.2: Exploration: illustration of the computation of the velocity vector vj for
the desired contact points.

Figure 4.3: Exp 1 Exploration of the table (35 seconds). On each image, the thin
white frame indicates the currently tracked reference frame.

500-1000Hz (depending on the number of contacts) in a different thread on a

PC with a Core i7 processor at 3.6Ghz.

Since one of the desired constraints is to avoid high contact forces, we record

the average and the maximum interaction forces during the experiment (at each

timestep, among all contact points). We also record the number of contact points

during the exploration.

Exp 1: Exploration of a surface

In this experiment, the first surface to explore is a flat square and a small

bump located on top of it (see Figure 4.7). The goal of the experiment is to

find the bump by mapping the surface, in order to show the usefulness of this

algorithm for a searching task. The reference frames are located on the borders

of the surface to explore, they are indicated as white 3D-crosses on Figure 4.3.

Another complex shape composed of several spheres of different diameters is

also explored. The composition of spheres with variable radiuses creates a non-

convex shape, hence the orientation of the hand is critical since the shape needs

to be approached from different angles. The reference positions are distributed

sequentially around the shape (see Figure 4.5).

The goal of the experiment is to autonomously explore and reconstruct the

70

Figure 4.4: Exp 1 3-D reconstruction of the flat surface during the exploration.

Figure 4.5: Exp 1 Exploration of the shape (50 seconds). On each image, the thin
white frame indicates the currently tracked reference frame.

surface of an unknown arbitrary shape, with only a few given key reference

positions around the shape to drive the direction of exploration. In order to

follow the surface to be explored, the reference position and orientation of the

controller need to be defined. They are determined using information from the

tactile contacts. A controller is implemented to direct the hand towards the

desired exploration locations. This controller is detailed in the appendix Ap-

pendix A.1, where we specify how the torque τe is computed. The exploration

is performed 10 times.

Results

The shapes are properly reconstructed from the tactile sensing information,

progressively as can be seen in Figures 4.3 to 4.6 after on average 35 seconds of

exploration for the table and 45 seconds for the spherical shape7. The bump on

the table can clearly be seen on the reconstructed shape in Figure 4.8 and the

reconstructed shape on Figure 4.9.

The hand successfully changes orientation autonomously to explore the dif-

ferent faces of the explored shape. In a few runs of the experiment with the

shape, one of the fingers bends and the contact occurs on the back of the finger,

see Figure 4.11. While this does not lead to an increase in the contact force, it

creates a hand configuration that is less optimal for exploration as less contacts

7Video of the experiments:
http://lasa.epfl.ch/videos/downloads/sommer_he.mp4

71

Figure 4.6: Exp 1: 3-D reconstruction of the shape during the exploration.

Figure 4.7: Exp 1 A flat surface to explore. The bump to be localized is circled in
red.

can be made. This issue is further discussed in the discussion section.

During the exploration of the flat surface, the maximum contact force is in

average of 0.80 ± 0.22N with a maximum of 1.32N . During the exploration

of the second shape, the maximum simultaneous contact force is on average of

1.00 ± 0.57N , with a maximum of 4.59N , while the average contact force is of

0.56 ± 0.12N . The distribution of these forces and the number of contact points

can be seen as a boxplot representation in Figure 4.10. These forces should be

compared with the desired force at each contact point, controlled in open-loop

through the Jacobian transpose method, and set to be 0.5N. Indeed, the null-

space projection prevents the commanded torques from influencing the contact

forces by construction. However, the forces due to the dynamics of the robot are

not compensated and can therefore influence the contact torques. Because the

robot moves slowly in this experiment, as a robot should while it is in contact,

the forces due to the dynamics of the robot are low and the contact forces do

not vary far from the reference contact force of 0.5N.

The number of contacts points during the experiment oscillate between 1

and 11, including when the hand starts making contact with the object at the

beginning. The thumb is not used in the experiment because its kinematic con-

figuration does not allow it to comply properly with the shape. The average

of 6 simultaneous contacts means that each finger has on average two links in

contact.

72

Figure 4.8: Exp 1 Reconstructed flat surface in Rviz (side view). The bump is clearly
visible on top of the table.

Figure 4.9: Exp 1 Reconstruction of the second shape in Rviz.

Figure 4.10: Exp 1: Number of contact points, maximum and average contact force
during the exploration. The green dotted line represents the desired
contact force of 0.5N.

73

Figure 4.11: Exp 1: In some runs of the experiment, one of the fingers makes contact
with its back side. While this is not a problem in terms of contact forces,
it leads to a hand configuration that is less optimal for the exploration
of certain surfaces.

74

Exp 2: Exploration of the inside of a cup

This experiment consists in exploring the inside of a cup with a robotic hand.

This requires to establish contacts on all sides of the fingers and comply with

very curvy and non-convex shapes.

The arm controls the position and orientation of the hand. The hand is

introduced vertically inside the cup at its center until all fingers are in contact,

then it is slowly rotated around the axis of symmetry of the cup for a given angle.

The hand is then moved up out of the cup. Before any contact occurs, the fingers

are kept in a resting position with all joints slightly bent. The objective is to be

able to gather information about the explored object without creating too high

contact forces. We hence record at each timestep the number of simultaneous

contacts and the current average and highest contact force (of all the current

contacts). While the arm is controlled in position, we compared our algorithm,

which tries to maximize the contacts, on the hand, against a simple compliant

controller with two different sets of gains for the finger joints (see Table 4.2).

The reference position of the joints can be seen in the first image of Fig-

ure 4.13, which also displays the progression of the experiment. It is also the

rest position used by the active exploration algorithm. We explored 4 different

models of cups presented in Figure 4.12.

Results

Table 4.3 sums up the results for each control method, with the average and

standard deviation of the two previous values. Figure 4.14 gives the distribution

of the number of contacts and the maximum contact force by cup and by control

method.

Our method provides more contact points during the exploration of the cups

than the other two methods (5.4±1.5 vs 2.6±1.3 and 2.4±1.1). Since the contact

forces are set to be at 0.5N with our algorithm, the average measured force is

of 0.53 ± 0.09N . It also keeps a lower maximum contact force, 0.77 ± 0.26N ,

slightly higher than the 0.5N reference (go back to Section 4.4.1 for a discussion

about the maximum contact forces). As expected, the controller with a higher

compliance has lower contact forces (0.61± 0.0.67N) than the one with a lower

compliance (1.15± 1.32N), but both are higher than with our method. Besides,

the number of contacts is similar for both of the compliance controllers, which

makes the one with high compliance more interesting. However, this might not

hold on a real robot as friction in the joints might prevent the use of low gains.

Exp 3: Exploration with other hand configurations

In addition to the exploration of the shape based on spheres in Exp 1 and

cups in Exp 2, we also tested our algorithm with two different hand models. The

first configuration, called here Hand 1, is the same hand as used in the previous

experiments, with released joint limits in order to allow the phalanxes to bend

75

Table 4.2: Exp 2: Parameters of the tested controllers

Active adaptation Low compliance High compliance

P gain - 0.05 0.005

D gain - 0.01 0.01

(e) Cup1 (f) Cup2 (g) Cup3 (h) Cup4

Figure 4.12: Exp 2: Models of the explored cups above, and reconstructed versions
in Rviz after exploration below.

Contact point

Desired contact point and direction of motion

Figure 4.13: Exp 2: Progression of the exploration of cup 4 with the active compli-
ance algorithm in gazebo (top), with reconstruction of the shape with a
tactile point cloud in Rviz (bottom). Green dots are the actual contact
points, red dots are desired contact points and the blue arrows their
desired direction of motion vj .

both forward and backward. This allows the fingers to take new configurations

during the exploration. This can be especially interesting to explore non-convex

objects. The second configuration, Hand 2, is also based on the same hand, with

an additional finger. This gives a total of 4 fingers and thumb, similar to a human

hand. For this experiment, we tested our algorithm and other hand models on

two new objects, an IRobot Create robot and a mailbox, see Figure 4.15. The

vacuuming robot contains a concave shape created by the empty dust holder,

76

(a) Number of simultaneous contacts during the cup exploration

(b) Maximum contact force (N) during the cup exploration

Figure 4.14: Exp 2: Number of contacts and maximum contact force for each control
method and cup.

Table 4.3: Exp 2: Results

Active adap-
tation

Low compli-
ance

High com-
pliance

Nb. contacts 5.39± 1.46 2.62± 1.25 2.41± 1.14

Max force (N) 0.77± 0.26 1.67± 1.71 0.86± 0.84

Average force (N) 0.53± 0.09 1.15± 1.32 0.61± 0.67

while the mailbox is made of many sharp edges, which makes it more difficult

to keep all contacts.

Results

Predictably, there are in average a few more contacts made with Hand 2 than

with Hand 1, since it has one additional finger (Figure 4.18). The difference

between Hand 1 and Hand 2 in terms of number of contacts is smaller on

the first object as the released joint limits of Hand 1 give it an advantage for

complying to the complex shape of the vacuuming robot. The maximum and

average contact forces are in the same range and match the results obtained

with the original AllegroHand model in the previous experiments. Snapshots of

the experiments can be seen on Figure 4.16. The point cloud representation of

the objects after exploration can be found in Figure 4.17.

77

Figure 4.15: Exp 3: Objects explored: the IRobot Create and a mailbox.

Figure 4.16: Exp 3: Snapshots of the exploration of the vacuuming robot with Hand
1. The released joint limits allow the fingers to comply to the concave
shape in the middle of the robot.

4.4.2 Compliance experiments

Another application of our active compliance algorithm is to grasp objects by

enclosure, maximizing the contacts between the object and the hand and fingers.

We perform two experiments in which we study in detail the performance of the

compliance.

Exp 4: Shape compliance

In this first experiment, one finger of a robot hand complies with several

objects, and we compare the resulting configuration with the best possible con-

figuration.

Setup

We use the 16-DOFs AllegroHand controlled at 300 Hz using open-loop torques,

and partially covered with Tekscan tactile sensors on the inside surface of the

phalanxes, see Figure 4.19. Because the Tekscan sensors are designed for a hu-

man hand, which is smaller than the AllegroHand, we use two sets of sensors

(i.e. normally for two human hands) and adapt them to the fingers of one Alle-

groHand.

The AllegroHand has 4 fingers with 4 DOFs each. The sensors come in

patches of 4 by 3-15 taxels which are designed to fit the human hand, but we

78

Figure 4.17: Exp 3: Reconstructed point cloud of the objects in Rviz. For readability
of the 3D representation, the color of the points corresponds to their
coordinate on the axis indicated by the blue arrow.

Figure 4.18: Exp 3: Number of contact points, maximum and average contact force
during the exploration of the IRobot Create and Mailbox models. The
green dotted line represents the desired contact force of 0.5N.

adapted their configuration for this particular hand. The density of taxels allows

to determine the position of contact in addition to an estimate of the pressure.

Knowing the geometry of the fingers, we are also able to determine the normal of

the contact. For each link, when the summed response is above a noise threshold,

we define one contact point as the weighted average of all taxels readings on that

link.

For each one of a set of 4 objects: a foam ball (soft and round), a robotic

statuette (sharp edges), a tablet (flat, all contacts are aligned on a plane and

the pressure is evenly distributed on the sensors, so they need to be sensitive)

and a phone handle (non-convex curves), see Figure 4.20, a finger complies

with their shape, given three different predefined positions/orientations (labeled

a,b,c in Figure 4.21) of each object relative to the hand. We chose three different

orientations for the phone, tablet and the statuette, and three different positions

for the ball since it is symmetric. For each object-pose combination, we measure

how many contacts are made with the object, out of the optimal possibility:

maximum 3, one per phalanx, determined by manually back-driving the fingers

and looking for the optimal configuration. This is done 10 times per object for

each configuration.

79

Figure 4.19: The AllegroHand with fingers covered with Tekscan tactile sensors. Each
patch is a matrix of 4*3 or 4*4 taxels (4*15 for the base of the index fin-
ger). The Tekscan sensors are designed for human hands, so the mapping
from tactile patch to fingers is customly adapted to the AllegroHand.

Results

The results are given in Table 4.4: the hand complies with the objects in an

optimal way in most configurations. One failure to converge to an optimal so-

lution occurs with the phone handle in configuration (a), because the sensor on

the second phalanx can hardly make contact with the surface at that point on

the object which forms a depression (see Figure 4.21, the first configuration of

the phone). Another possible cause of failure is when contact is made with an

unsensorized area, as in Figure 4.22: the top of the fingertip is not covered with

tactile sensors and thus the finger gets stuck.

There is not yet a technology that allows to entirely cover a robot with

artificial skin, especially the fingers and other parts that stretch and bend. Even

when an area is sensorized, the sensors might not be sensitive enough to detect

80

(a) Foam ball (b) Robot statuette (c) Tablet (d) Phone handle

Figure 4.20: Exp 4: Objects used in the experiment.

Object Configuration Number of contacts: reached/optimal

Foam ball

a 2/2±0.0

b 2/2±0.0

c 3/3±0.0

Robot statuette

a 2/2±0.0

b 3/3±0.0

c 2/2±0.0

Tablet

a 3/3±0.0

b 2/2±0.0

c 3/3±0.0

Phone handle

a 2.3/3±0.5

b 3/3±0.0

c 3/3±0.0

Table 4.4: Exp 4: Results of the compliance experiment (10 trials per object and
configuration).

light touch. This is problematic as we need to know whether any part of the

robot is in contact. Otherwise, there are still important safety issues, for the

environment and for fragile parts of the robot such as the fingers. For this

reason, the follow-up experimentations were carried out in simulation.

81

Figure 4.21: Exp 4: The 3 poses/orientations for each object (in order a,b,c), with
the corresponding ”optimal” contact posture obtained by active compli-
ance with the object. The initial finger configuration is palm flat open
upwards, see Figure 4.19.

82

Figure 4.22: Exp 4: Failure with the statuette: the part in contact (the tip of the
fingertip) is not sensorized.

Exp 5: Compliant grasping

We compared our method, called here active adaptation, with two simple

grasping heuristics for enclosing, which can correspond to very simple synergy-

based grasps.

The first method (Enclose1) consists in closing the joints of the fingers one

by one from the base to the tip, until a contact is reached. The second method

(Enclose2) is similar, but all joints close simultaneously until there is a contact

above the joint on the same finger. It is thus faster, but there is a risk that less

contacts are made if a link at the end of the finger touches first.

The chosen grasp preshape is inspired by the grasp opposition of the thumb

vs. the other fingers from de Souza et al. (2015), which defines a grasp intention

by a sum of patches (finger links) oppositions, with for each opposition set, a

dominant patch per side. The chosen grasp intention is that of a power grasp

for a cylinder of about 3cm of diameter, which is a description that roughly

matches all of our tested objects. This provides us with a grasp preshape. It also

provides our algorithm with a list of desired contact points (all the patches) and

an opposition direction to help define our desired contact points velocities vj . We

only use one opposition direction, therefore we have two dominant patches (one

per side of the opposition) and use the virtual line between them to define the

direction of the desired velocity8 for each desired contact point (see Figure 4.23).

We tested the three methods systematically both on a simulated and a real

robot. The first part of the experiment (Exp 5a) consists in enclosing objects at

a predefined grasp position. The object is then sequentially released and grasped

again in four other configurations shifted by 2cm in two different directions, and

shifted by 17◦ in two different orientations. These shifts correspond to potential

position and orientation uncertainties that the robot might have to deal with in

8The norm of the desired velocity is set to 5cm/s.

83

Grasp directionality Dominant patches

vj Other patches

Figure 4.23: Exp 5, Grasping: illustration of the grasp preshape position and the
computation of the velocity vector vj (aligned with the grasp direction-
ality) for the desired contact points using grasp opposition.

a real application.

In the second part of the experiment (Exp 5b), the robot first grasps the

objects at the initial position, and we apply sequentially the position and ori-

entation perturbations while the object is grasped. This is important to test

how the algorithm adapts to external perturbations. This creates five possible

enclosure configurations for Exp 5a, and 4 possible perturbations for Exp 5b.

Similarly to the previous experiments, we record the number of contacts made

between the object and the hand (when the grasp is finished), and the contact

force. However on the real robot, our tactile sensors do not provide values con-

vertible into contact forces since their output depends on the type of material

and the area in contact. They do not depend directly on the contact force. We

however provide the average and maximum values for the signal given by the

tactile sensors. This signal corresponds to the sum of all taxels readings for each

patch.

In addition to the number of contacts made with the object, we also compute

two grasping metrics based on the Grasp Wrench Space (GWS) (Pollard, 1996):

the largest-minimum resisted wrench (or largest ball, or ε quality metric), and

the volume of the GWS. These metrics describe what external wrenches can

be applied to the object without loosing stability. Thus, the higher, the better.

While the ε metric considers only the weakest direction, the volume of the GWS

provides information about the global robustness of the grasp. Since we expect

our method to make more contacts around the grasped object, we also expect

a better performance on the grasp metrics.

84

(a) Cylinder (b) Object 1 (c) Drill

Figure 4.24: Exp 5: Models of the grasped objects in simulation

Simulation

Setup

The perturbations on the objects are applied in the simulation by changing their

position in the simulation environment. To avoid discontinuities, the position of

the object is defined by attaching a virtual spring and damper to it (i.e. Carte-

sian impedance with high stiffness). Its position and orientation are changed by

moving the reference pose.

The selected objects are presented in Figure 4.24: we start with a simple

cylinder, then an artificial more complex shape – very non-convex – composed

by cylinders and spheres, and a drill. The grasping of Object 1 can be seen in

Figure 4.25.

Results

Figure 4.26 details the number of contact points for each control method and

object. These results are summed up in Table 4.5 with additional data about the

contact forces and grasp metrics. Our algorithm allows to create a high number

of contacts with the object compared to the other two controllers. On average,

about 9 contacts are made (i.e. a little more than 2 per finger out of 3 possible

contacts for the 3 separate links), while only 5 to 6 for the other methods (a

little more than 1 contact on each finger).

If we go more into details in the transition from Exp 5a to Exp 5b, our

algorithm keeps about the same number of contacts (8.73 vs. 8.67), whereas

Enclose1 (6.00 vs. 5.75) and especially Enclose2 (5.67 vs. 4.92) loose a lot of

contact points. This is expected as Exp 5b is about adapting to perturbations

after the grasp, which the other algorithms cannot do properly. The results are

similar for the volume of GWS: our algorithm outperforms the other approaches,

by providing a larger volume in both sets of experiments, and the difference

increases in Exp 5b. The ε metric also follows the same trend.

The contact forces are pretty similar for each algorithm in Exp 5a (< 1N),

whereas for Exp 5b, the other methods based on position control do not adapt

to the perturbations and hence create high contact forces.

85

Contact point

Desired contact point and direction of motion

Figure 4.25: Exp 5a: Progression of the enclosure of Object 1 with the active com-
pliance algorithm in gazebo (top) and Rviz (bottom).

0 1 2 3 4
Configuration

0

2

4

6

8

10

N
um

b
er

of
co
nt
ac
ts

Cylinder

0 1 2 3 4
Configuration

0

2

4

6

8

10

Object 1

0 1 2 3 4
Configuration

0

2

4

6

8

10

Drill

10 10Active adaptation Enclose1 Enclose2

(a) Exp 5a - Enclosing, Simulation

1 2 3 4
Configuration

0

2

4

6

8

10

N
um

b
er

of
co
nt
ac
ts

Cylinder

1 2 3 4
Configuration

0

2

4

6

8

10

Object 1

1 2 3 4
Configuration

0

2

4

6

8

10

Drill

10 10Active adaptation Enclose1 Enclose2

(b) Exp 5b - Perturbation, Simulation

Figure 4.26: Exp 5a-b, Simulation: number of contacts for each posi-
tion/orientation configuration

86

Table 4.5: Exp 5 simulation: Results

Exp 5a: Enclose Active adaptation Enclose1 Enclose2

Nb. contacts 8.73± 1.12 6.00± 1.21 5.67± 0.87

Max force (N) 0.92± 0.32 0.93± 0.58 0.72± 0.31

Average force (N) 0.55± 0.06 0.62± 0.56 0.52± 0.27

GWS volume 1.35± 0.45 0.95± 0.40 0.82± 0.52

GWS ε metric 0.13± 0.02 0.12± 0.03 0.13± 0.05

Exp 5b: Perturb. Active adaptation Enclose1 Enclose2

Nb. contacts 8.67± 1.03 5.75± 0.83 4.92± 0.86

Max force (N) 0.93± 0.31 2.13± 1.30 1.65± 0.86

Average force (N) 0.54± 0.07 1.16± 0.67 1.21± 0.58

GWS volume 1.31± 0.35 0.64± 0.40 0.51± 0.33

GWS ε metric 0.13± 0.03 0.10± 0.04 0.10± 0.02

87

On the robot

Setup

We equipped the 7 DOFs Kuka LWR Robot with the 16-DOFs AllegroHand

presented in the previous experiment.

On the real robot, the perturbations are applied by giving the inverse per-

turbation command to the robot (the arm moves instead of the object). The

chosen objects are presented in Figure 4.27(abc): we start with a cylindrical

bottle, we also grasp a soft shoe, which is easily deformable, and a plastic bottle

with a square section.

Results

The number of contact points is detailed in Figure 4.28 and summed up in

Table 4.6 with the other measures and quality metrics. The number of contacts

is again higher with our algorithms. On average, about 7 to 8 contacts are made,

while only 4 to 6 for the other methods (a little more than 1 contact on each

finger). The results for Enclose2 are still slightly worse than for Enclose1, as

predicted.

On the real robot, our algorithm performs this time better during the pertur-

bations (Exp 5b, 7.8 contacts) than the simple grasping (Exp 5a, 7.4 contacts).

This can be explained by the effect of the perturbations helping the fingers slide

on the surface of the object and thus creating more contacts. In simulation,

this behavior relying on friction may not have been properly simulated. For

Enclose2, the number of contacts actually increases with the perturbations (5.1

vs. 4.3 contacts). This is due to the fact that deformable objects can naturally

comply with a non compliant controller and create more contacts, at the ex-

pense of high contact forces. Indeed, the set of objects is here more compliant

than in simulation, especially the shoe. These results are also reflected in the

grasp metrics, with the active adaption creating more robust grasps than the

other methods. The tactile signal values are similar in range for all algorithms,

with higher values during the perturbations – going from about 12 during en-

closing to 20 (no unit). Similarly as in the simulation, it is expected that the

values increase during the perturbations, and it seems that the tactile readings

increase for the active adaptation algorithm too, probably due to friction in

the joints and with the object. However, these values from the tactile sensors

cannot be precisely translated into contact forces: it is not possible to decouple

the intensity of the signal, the area in contact and the material in contact.

88

(a) Bottle (b) Shoe (c) Square bot-
tle

Figure 4.27: Exp 5: Models of the grasped objects by the real robot.

Table 4.6: Exp 5 real robot: Results

Exp 5a: Enclose Active adaptation Enclose1 Enclose2

Nb. contacts 7.40± 0.88 5.47± 0.96 4.27± 0.93

Maximum signal 12.8± 6.6 13.0± 6.3 11.4± 7.4

Average signal 6.2± 3.6 7.2± 3.1 7.0± 3.3

GWS volume 1.4± 0.6 0.6± 0.5 0.4± 0.5

GWS ε metric 0.13± 0.05 0.10± 0.05 0.05± 0.05

Exp 5b: Perturb. Active adaptation Enclose1 Enclose2

Nb. contacts 7.83± 1.07 5.25± 1.01 5.09± 1.11

Maximum signal 19.9± 7.7 20.8± 14.7 18.3± 12.0

Average signal 9.3± 3.8 9.6± 5.9 9.0± 5.6

GWS volume 1.2± 0.5 0.7± 0.4 0.7± 0.6

GWS ε metric 0.14± 0.05 0.09± 0.05 0.08± 0.06

4.5 Discussion and conclusion

In this chapter, we presented a method to actively comply with unknown

surfaces with a multi-fingered robot equipped with tactile sensors. This method

has applications both in haptic exploration and in grasping. To our knowledge,

this is the first demonstration of active compliance between a complex system

such as a robotic arm and hand, and unknown surfaces, by keeping and creating

desired new contacts using tactile information. Our method allows to create

and maintain contacts at desired positions on the robot while having unilateral

constraints on undesired contacts, in the prioritized tasks framework. While the

high priority tasks take care of the interaction forces and contact constraints,

the lower priority tasks allow to increase the contact area and to drive the

89

0 1 2 3 4
Configuration

0

2

4

6

8

10

N
um

b
er

of
co
nt
ac
ts

Cylinder

0 1 2 3 4
Configuration

0

2

4

6

8

10

Shoe

0 1 2 3 4
Configuration

0

2

4

6

8

10

Squarebottle

10 10Active adaptation Enclose1 Enclose2

(a) Exp 5a, real robot

1 2 3 4
Configuration

0

2

4

6

8

10

N
um

b
er

of
co
nt
ac
ts

Cylinder

1 2 3 4
Configuration

0

2

4

6

8

10

Shoe

1 2 3 4
Configuration

0

2

4

6

8

10

Squarebottle

10 10Active adaptation Enclose1 Enclose2

(b) Exp 5b, real robot

Figure 4.28: Exp 5a-b, real robot: number of contacts for each posi-
tion/orientation configuration (Exp 5a: enclosing and Exp 5b: pertur-
bation)

exploration motion. Contacts occurring on parts of the robot that are not desired

do not disturb the exploration nor create undesired forces thanks to the modified

null-space control. We demonstrated the possibility to actively explore around

arbitrary shapes with a simulated robot arm and hand. This is useful in the

context of search, particularly for occluded areas, by only providing approximate

positions for the robot to explore. The robot can then manage to move around

the surface creating and loosing contacts while keeping low contact forces.

In the current implementation of the exploration strategy, there are situa-

tions when the robot can get stuck in local minimum. We did not tackle here the

high-level planning as it is not purpose of this work. Simple approaches based

on information gain, coupled with detection of local minimum would probably

be enough to further automatize the exploration process.

It is then the task of a high-level planner to change the direction of explo-

ration. We did not tackle here the high-level planning as it is not purpose of

this work, but simple approaches based on information gain, coupled with detec-

tion of local minima would probably be enough to automatize the exploration

90

completely 9.

The algorithm does not currently handle several desired contact points on

one link. This could be useful for large areas on one link (for instance the palm

of the hand) that could host several contact points simultaneously. Currently,

if there is already an existing desired contact point on a link, it is not possible

to deliberately increase the number of contacts points on that link. This would

involve classifying whether each existing contact corresponds to a particular

desired contact point.

One particularity of the high-DOFs platforms such as robotic hands is that

they can take many different configurations during the exploration, some of

which are not optimal to maximize the area in contact. For instance, simulta-

neous contact on the back of one finger and the front of another finger while

exploring a flat area. However, this is an advantage for the exploration of certain

shapes, for instance the inside of a cup in which some fingers make contact with

one side while other stick to the other side. It also allows to hold two objects at

the same time between the fingers10, see Figure 4.29.

We also demonstrated the ability of this algorithm to comply to arbitrary

shapes with an application to grasping. While a lot of the grasp planning re-

search does not consider in detail the actual control strategy, uncertainties make

precise grasp planning less relevant on the execution side. Our controller resulted

in more contact points and provided more stable grasps than other uninformed

enclosing algorithms. It could be a possible solution to implement planned grasps

on actual robotic platforms.

9We have experimented with planning exploration trajectories using tactile data gathered
on the go, encoding tactile data as Octomaps (Hornung et al., 2013) for fast collision checking,
and using MoveIt (?) to generate trajectories. The desired arm joint positions coming from the
planned trajectories were then fed to our null-space controller as desired joint configurations.
The result was not satisfactory as planning takes a lot of time (easily above 1 second, whereas
the robot is constantly updating our 3D tactile map with new points). Besides, each new
plan may be contradictory with the previous one, hence the robot would start moving in one
direction, then switch to another direction when receiving a new plan.

10For holding two objects, the closest point of contact used to compute the velocity of a
desired point is valid only if its normal is opposite to the direction from the desired point to
this point: ni · (pic − pj) < 0 as a condition to Equation (4.4.1).
Video of the experiments: http://lasa.epfl.ch/videos/downloads/sommer_he.mp4

91

Figure 4.29: Additional illustration of use of the algorithm. The fingers hold two
objects between them.

92

Chapter 5

Learning Externally

Modulated Dynamical

Systems

5.1 Introduction

In order to generate robot motion, the traditional methods based on planning

and execution are not well suited to uncertain and changing environments. For

instance, grasping traditionally relies on several separate steps: computing a

grasp configuration, planning a collision-free robot trajectory and executing that

grasp (Bicchi and Kumar, 2000; Roa and Suárez, 2014; Ciocarlie et al., 2014).

If the object moves, or the pose is uncertain, the whole process may have to be

started over. Also, because planning methods can yield very different results with

small configuration differences, the new planned trajectory might be completely

different.

Dynamical Systems (DS) offer an efficient way to encode reaching (Moham-

mad Khansari-Zadeh and Billard, 2014) and grasping motions (Shukla and Bil-

lard, 2012), which do not require to re-plan when the configuration changes.

This allows to continuously and instantaneously update the trajectory. Fur-

thermore, DS can be learned from demonstrations, instead of programming the

robot explicitly. Instead of defining robot tasks as timed trajectories, or as dy-

namical systems that are indirectly driven forward by time, it is possible to

define tasks as time-invariant dynamical systems. The latter have been shown

to have numerous advantages for tasks that involve temporal and spatial per-

turbations (Gribovskaya et al., 2011a).

In order to successfully model the robot motion, the possibility to incremen-

tally perform the demonstrations allows the teacher to refine her demonstrations

depending on the robot’s current performance. In previous work from colleagues

in the lab (Kronander et al., 2015), a way to locally reshape an existing, sta-

ble nonlinear autonomous DS, while preserving important stability properties

of the original system, was offered. This approach also included a method to en-

able incremental learning based on Gaussian Processes, for learning to reshape

dynamical systems using this representation.

When executing a motion in a real environment, there is also a need to re-

act to external sensory events, besides simply re-planning after a perturbation.

For instance, when reaching for something and detecting contact with the robot

arm, the trajectory of the robot may need to be adapted online, by modulating

the arm dynamics depending on the sensed contact. One way to introduce a

93

dependency from an external signal is through coupling across DS. However, we

target here dependency on an external signal whose dynamics may not be known

and hence cannot be done through coupling with another DS. Approaches to

DS control with external sensing is used primarily for free-space motion and

to update the state of the robot and the state of the attractor. Only a few at-

tempts used an external sensing – force – as an input to the system (Gribovskaya

et al., 2011b; Ureche et al., 2015). However, this was used to generate the de-

sired trajectory and was then combined into a traditional impedance controller.

Moreover, the sensing modulation was global. Here, we generalize this approach

to enabling modulation from different types of sensing – not just force – and to

allow the modulation to act locally, so as to provide modulation only in relevant

parts of the task. Another approach consists in directly including external sens-

ing to the inputs of the regression when learning a DS from demonstrations. By

learning a mapping between end-effector position, tactile sensing, and velocity

from demonstrations (Sommer, 2012), we were able to generate behaviors based

on tactile sensing, including grasping. However, because the resulting system is

not autonomous and there are no constraints on the DS formulation, it is hard

to ensure stability. We address this by proposing a novel DS representation,

called Externally Modulated Dynamical Systems (EMDS). We extend previous

work (LMDS) to integrate external input in the DS and use it to reshape its dy-

namics. Using this external input, we can adapt the DS’s behavior, for instance

depending on sensory input. We also propose a method to learn how the dy-

namics are modulated depending on the external signal. Although introducing

a dependency on an external signal, we can still guarantee preservation of the

stability properties of the (original) dynamics.

With robots moving into human-centered environments, the use of sensory

information becomes more and more important to interact with everyday ob-

jects. In particular, providing robots with the skill of autonomous grasping,

especially under uncertainty, is one of the prerequisites for robots to be use-

ful (Kemp et al., 2007). When the object to grasp must be localized, computer

vision based methods do not always work, especially when vision is occluded

or illumination conditions are bad (Galleguillos and Belongie, 2010). However,

recent progresses in tactile sensing provide a range of possibilities to gather

information by touch (Kappassov et al., 2015). In this chapter, we use touch

to localize objects in a task of autonomous localization and grasping. We also

illustrate our algorithm by using force-torque sensors to modulate the robot’s

trajectory when navigating between obstacles. An EMDS is used to drive the

arm motion depending on the current variance of the estimate of the object’s

position. The hand configuration is given by a coupling between the EMDS and

a DS for the hand. This configuration is used as a input to a controller based on

work from chapter 4 to maximize contacts between the fingers and the object

while actively complying to the surface. In summary, the main contributions of

94

this chapter are:

1. Introduction of the EMDS framework, allowing the modulation of dynam-

ical systems based on external signals while conserving important stability

properties.

2. An interactive learning method for capturing how the dynamical system

should be modulated by the external signal.

3. The application of EMDS to several challenging tasks, including blind

reach-and-grasp, using only tactile input for object state estimation, and

navigating through obstacles using contact information only.

The remainder of this chapter is organized as follows: In Section 5.2, we in-

troduce the EMDS formalism and a possible design of the modulation function.

We also illustrate the possibilities offered by this formulation in several 2D ex-

amples. In Section 5.3, we detail a complete framework used to autonomously

localize and grasp objects, in which the EMDS plays a key role. The correspond-

ing experiments and results are presented in Section 5.4. Finally, Section 5.5 is

dedicated to experimental validation on a different but equally important ma-

nipulation skill – navigation through unknown obstacles.

5.2 Approach

5.2.1 Locally Modulated Dynamical Systems

In the previous work from our laboratory (Kronander et al., 2015), the Locally

Modulated Dynamical Systems (LMDS) formulation was introduced. Since this

chapter extends this work, we first provide a brief overview of the LMDS formu-

lation in this section. LMDS allows to apply arbitrary local learning algorithms

to reshape motion dynamics without loss of stability.

Let x ∈ R
N represent a N-dimensional kinematic variable, e.g. a Cartesian

position or a joint angle vector. Let a continuous function f : RN → R
N represent

the original dynamics:

ẋ = f(x) (5.2.1)

We define the Locally Modulated Dynamical Systems by multiplying (5.2.1)

by a matrix-valued continuous function M(x) ∈ R
N×N , yielding:

ẋ = g(x) = M(x)f(x) (5.2.2)

Using modulation functions that depend only on the state variable x ∈ R
N

allows us to prove a number of interesting properties of the reshaped dynamics,

including boundedness preservation of stability properties (Kronander et al.,

2015).

95

Importantly, with an appropriate parameterization of the modulation func-

tion M , LMDS can be used with non-parametric learning algorithms without

constraints.

5.2.2 Externally Modulated Dynamical Systems

In the LMDS formulation, the input to the system is the state of the robot,

x. In many tasks, it is necessary to be able to react to sensory input in a

task-specific manner. The goal of the Externally Modulated Dynamical Systems

(EMDS) is to provide a DS formulation that allows to learn reactions to sen-

sory events such as contact detected with tactile sensing arrays or force-torque

sensors.

Let s ∈ R
M be a M-dimensional external signal, independent of the state of

the dynamical system. In EMDS, the dynamics are reshaped by a modulation

field M(x, s). The form of the dynamics follows the same reshaping structure as

LMDS:

ẋ = g(x, s) = M(x, s)f(x) (5.2.3)

where M(x, s) ∈ R
N×N is a continuous matrix valued function that mod-

ulates the original dynamics f(x). The difference to LMDS in formulation is

hence that we allow the modulation to be a function not only on the DS state

but also on our external signal.

As the resulting DS is not autonomous, we cannot expect the same stability

properties as in the case of the autonomous LMDS formulation. However, by

constructing the modulation matrix appropriately, we can achieve guaranteed

boundedness and convergence of the dynamics by ensuring that M is full rank

and locally active1. Stability properties and definitions (including locally active

modulation) are given in Table 5.1.

5.2.3 Design of the modulation function

The modulation field M(x, s), as introduced in the previous section, has few

design constraints. In this section, we introduce one possible way to design and

parametrize this function. We also discuss whether this design conserves the

stability properties of the original DS.

Modulating rotating and speed-scaling dynamics

In Kronander et al. (2015), the modulation function was proposed to be de-

fined as a composition of a speed scaling and a rotation matrix. Rotations always

have full rank, hence satisfy the condition for Proposition 1 in Table 5.1. Besides,

any vector can be expressed as a rotation and scaling of another non-null vec-

tor, which justifies this choice of representation for the modulation matrix. It is

1This will be discussed in the next section tackling the design of M .

96

Table 5.1: Definitions and stability propositions

These definitions differ from Kronander et al. (2015) since the DS in Equa-
tion (5.2.3) is non-autonomous.
Definition 1 (Locally active). A matrix-valued function M(x): RN → R

N×N

is said to be acting locally or to be locally active if there exists a compact subset
χ ⊂ R

N such that M(x) = IN×N for all x ∈ R
N \ χ.

Definition 1b (Locally active, extended to multivariate matrix). A
matrix-valued function M(x, s): RN×M → R

N×N is said to be acting locally or
to be locally active on x if there exists a compact subset χ ⊂ R

N such that
M(x, s) = IN×N for all x ∈ R

N \ χ and for all s ∈ R
M .

Let a DS be defined by ẋ = f(x, s), where f : RN×M → R
N is a continuous

real-valued function. The following are a set of standard definitions related to the
properties of this DS.
Definition 2 (Boundedness). A DS is bounded if for each δ > 0, there exists
ε > 0 such that:

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t > t0, ∀st, t > t0

Definition 3 (Equilibrium point). An equilibrium point for a DS is a point x ∈ R
N

such that f(x, s) = 0, ∀s ∈ R
M .

Definition 4 (Stability). An equilibrium point x∗ is said to be stable if for each
ε > 0, there exists δ(ε) > 0 such that:

‖x(t0)− x∗‖ < δ(ε) ⇒ ‖x(t)− x∗‖ < ε, ∀t > t0, ∀st, t > t0

Definition 5 (Local Asymptotic Stability) An equilibrium point x∗ is called
locally asymptotically stable if it is stable and, if in addition there exists R > 0
such that:

‖x(t0)− x∗‖ < R ⇒ ‖x(t)− x∗‖ → 0, t → ∞, ∀st, t > t0

If R can be chosen arbitrarily large, the equilibrium point is globally asymptotically
stable.

Proposition 1 (Equilibrium points). If M(x, s) has full rank for all x and s, the
reshaped dynamics has the same equilibrium point(s) as the original dynamics.
Proposition 2 (Boundedness). Assume that the original dynamics is bounded
(See. Def 2). Assume further that M(x, s) is locally active on x in a compact
subset χ ⊂ R

N (See Def. 1b). Then, the reshaped dynamics is bounded.
Proposition 3 (Lyapunov stability). Consider a system ẋ = f(x) that has a
single equilibrium point. Without loss of generalization; let this equilibrium point
be placed at the origin. Assume further that the equilibrium point is stable. Assume
that the criteria for Propositions 1 and 2 are satisfied. If in addition, χ does not
include the origin, the reshaped system is stable at the origin.
Proposition 4 (Local asymptotic stability). Consider a system ẋ = f(x) that
has a single equilibrium point. Assume that the conditions of Propositions 1, 2
and 3 are satisfied. then, the reshaped system is locally asymptotically stable at
the origin.
The proofs of the corresponding propositions without external modulations are
trivially extended to EMDS with these modified definitions. They can be found
in Appendix B.2.

97

always possible to represent this modulation function compactly as a parameter

vector θ ∈ R
L, where L ≥ D will depend on the chosen parameterization and

the dimension of the state x ∈ R
D. Complex reshaping of the original dynamics

can then be learned by using non-linear regression to learn a function mapping

from the state to this parameter vector.

The rotation angle φ can always be recovered from θ, e.g. as the norm of

a sub-vector of θ (angle axis representation), or as an independent element of

θ. Hence, given a learned function from the state to the reshaping parameter

vector, we can find the rotation angle as a function of the state, φ(x). In EMDS,

we let the external signal s modulate the rotation angle and the speed scaling

before reconstructing M and applying the modulation to the original dynamics:

θ(x, s) = hs(s)[φ(x), κ(x)] (5.2.4)

The modulation function M(x, s) is defined as:

M(x, s) = (1 + κ(x, s))R(x, s) (5.2.5)

with R(x, s) the rotation matrix associated with the rotation vector hs(s)φ(x).

The mappings φ(x) : RN → [−π, π] and κ(x) : RN → (−1,+∞) are continuous

functions from a robot position to respectively a rotation angle and a speed-

scaling.

As in standard LMDS, the state dependent maps φ(x) and κ(x) should be

locally active. The parameters are also influenced by the continuous external

activation function hs : R
M → [0, 1], which depends on the external signal s.

By construction, because R(x, s) is a rotation matrix, it has full rank. So

does M(x, s) and therefore all the stability properties are guaranteed for any x

and s.

98

5.2.4 Illustrative examples

Here, we give a few 2d illustrative examples of how the external input in

EMDS can influence the dynamics of the original DS, using the modulation

matrix design presented in the previous section. Consider the following linear

original dynamics:

ẋ = −Ax = −

⎡
⎢⎣10 0

0 10

⎤
⎥⎦x (5.2.6)

Let the following continuous function hx : R
2 → R describe the influence of

the modulation and impose the locally active property:

hx(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ‖x‖ < 0.08

50 · ‖x‖ − 4 if 0.08 ≤ ‖x‖ < 0.1

1 if 0.1 < ‖x‖ < 0.7

−20 · ‖x‖+ 15 if 0.7 ≤ ‖x‖ < 0.85

0 otherwise.

(5.2.7)

The value of hx(x) is visible as a Grey-scale for the following examples in

Figures 5.2 and 5.3.

The external signal s influences the local modulation according to the fol-

lowing activation function2hs : R → [0, 1]:

hs(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if s < 0.0

1− 10s3 + 15s4 − 6s5 if 0.0 ≤ s ≤ 1.0

0 otherwise.

(5.2.8)

This function is illustrated in Figure 5.1.

0 1s

0

1

h
s
(s
)

Figure 5.1: External activation function hs(s).

2The corresponding equation is a fifth order polynomial interpolating from 1 to 0 as s goes
from 0 to 1.

99

(a) (b) (c)

Figure 5.2: Top: Examples of the DS modulated by an external signal. The DS is the
same in (a)-(c) but the external signal’s profile is different in each plot.
The color of the arrows indicates the value of the external modulation
signal. The background color represents the value of hx(x). Bottom:
Corresponding profiles of the external signal s and the function hs(s)
which inhibits the rotational modulation.

Modulating Rotating Dynamics

The modulation function in two dimensions is defined as the following rota-

tion matrix without speed-scaling:

M(x, s) =

⎡
⎢⎣ cos(Φ(x, s)) sin(Φ(x, s))

−sin(Φ(x, s)) cos(Φ(x, s))

⎤
⎥⎦ (5.2.9)

Introducing the local activation function φ(x) = hx(x)φc, with φc ∈ [−π, π]

a constant angle, the rotation angle Φ(x, s) is given by:

Φ(x, s) = hs(s)hx(x)φc (5.2.10)

This results in a spiraling behavior where and when the DS is modulated.

It is modulated where the norm of x is above 0.08, below 0.85 (see Equa-

tion 5.2.7) and when there is no external signal inhibiting the modulation

through hs(s) (see Equation 5.2.8). When the external signal is active, the ro-

tation is inhibited and thus the system converges much faster with the original

dynamics – a straight line.

The resulting dynamics are given in Figures 5.2(a) to 5.2(c) using φc =

81◦and different arbitrary profiles of external signal s. The evolution in time

of the external signal s and consequently of the activation function hs(s) is

drawn on the plots below the evolution of the DS in 2d, and the value of s

is also represented on the top figures by the color of the arrows. When the

100

(a) Limit cycle example (b) Different original dynam-
ics

Figure 5.3: (a) Example of a modulation of the DS, using φc = 90◦. The system does
not converge while s is 0 (i.e. the external activation function hs(s) is
1). If that is the case, the system stays in a limit cycle. (b) An example
with different original dynamics and a modulation that also applies a
speed-scaling.

signal s becomes high, the activation function hs(s) goes to 0 and the system

switches from spiraling to the original linear dynamics, converging rapidly. The

resulting behavior can be used for instance to switch between searching and

reaching motions on a robot. In Figure 5.2(a), s is activated late, hence the

system follows the modulated dynamics – spiraling – until it reaches the origin.

In Figure 5.2(b), s increases earlier and at a slower rate, therefore the system

switches gradually from spiraling to reaching directly with the original dynamics.

Finally, in Figure 5.2(c), s changes abruptly and so does the dynamics of the

system.

We also provide an example where the system is not globally asymptotically

stable in Figure 5.3(a), by setting the maximum modulation angle φc to 90◦.
When the external signal is 0, the DS goes into a limit cycle. Boundedness is

however enforced thanks to the locally active property.

In Figure 5.3(b), we illustrate another example behavior of our modu-

lated system using different original dynamics (with A =
[

0.05 0.2−0.2 0.05

]
in Equa-

tion (5.2.6)), a maximum modulation angle φc = 160◦ and a signal s varying

between 0 and 1.

The modulation also applies a speed-scaling of factor 3, visible on the top

figure from the length of the arrows changing with s. Depending on s, the

direction of the rotation is changed. The resulting behavior is already more

complex, while it is still based on linear original dynamics. By introducing non-

linear dynamics, even more complex behavior can be obtained. By construction,

the system is still bounded for any s and no spurious attractor can be introduced.

101

Comments on local modulation

In these examples, the modulation function M(x, s) acts locally according to

hx(x), as is represented in Figures 5.2 and 5.3 by the Gray background color.

The local property ensures boundedness and local asymptotic stability for any

chosen modulation matrix. It may thus be useful to keep locality even when not

required by the desired dynamics, but only for the provided stability purposes.

In a searching task such as illustrated in the above examples, it also makes

sense to only activate the searching behavior in a subregion of the state-space

corresponding to the searching region, hence the local activation in a donut-

shape around the attractor at 0, according to Equation (5.2.7).

5.2.5 Learning EMDS

Using the design of the modulation function presented above, it is possible to

retrieve a normal LMDS by removing the dependency on the external signal, i.e.

by replacing hs(s) with 1 (i.e. never inhibiting the local modulation). Conversely,

an EMDS can be created by associating an existing LMDS with the function

hs(s).

Therefore, an EMDS can be based on an LMDS learned the same way as

in the original LMDS formulation, using GP-MDS based on Gaussian Processes

Regression (GPR), or any arbitrary local learning algorithm. The external signal

activation function hs(s) can then be provided or learned separately to form the

EMDS. To sum up, one way to to learn a complete EMDS from scratch with

training data can be the following procedure:

1. Learn a DS –the original dynamics– from demonstration data, e.g. with

SEDS (Khansari-Zadeh and Billard, 2011).

2. Learn new dynamics from other demonstration data to represent different

dynamics, expressed as a modulation of the original dynamics, using a local

learning algorithm or GP-MDS as presented in Kronander et al. (2015).

3. Learn the function hs(s).

See the following Sections 5.3.2 and 5.5.1 for examples of learning hs(s) in our

searching and grasping task as a non-linear regression problem using Gaussian

Process and human demonstrations to train the model on.

5.3 Autonomous Localization and Grasping

As an application of EMDS, we consider a highly challenging autonomous search-

and-grasp task. We rely entirely on tactile sensing to localize the object to be

grasped. In such a task, there are two subtasks involved: 1) to estimate the pose

of the object and 2), when certain enough of the object’s pose, to attempt to

grasp the object. The searching and grasping behaviors are first modeled by

102

World +
robot

Particle
filter

EMDS Passive DS
controller

DS
coupling Hand DS Active compliance

algorithm

Tactile
contacts

Desired arm
velocity

Desired finger
attractor

Desired finger
position

Arm torques
Finger torques

Object pose estimate
(DS attractor)

Variance of distribution
(external signal s)

Figure 5.4: The framework for autonomous localization and grasping with EMDS.

LMDS (search as the original dynamics, and grasp as the reshaped dynamics,

see Figure 5.7). Then, to incorporate our confidence in the object pose’s estimate

in the dynamics, we learn an activation function hs(s) from demonstrations and

use the EMDS as described in Section 5.2.

During the exploration motion of the arm, generated by our EMDS (more

about this in Section 5.3.2), tactile data from contacts with the robot is fed to a

particle filter responsible for localizing the object. The state of the estimation is

fed back to the EMDS: the variance of the object pose’s distribution is used to

modulate between searching and grasping behaviors, see Figure 5.4. Besides, the

current estimate of the object’s pose defines the position of the attractor of the

EMDS. When the object’s pose is known with certainty, the system’s dynamics

autonomously change to the grasping behavior. The hand and finger’s behav-

ior is controlled by a coupling mechanism (Shukla and Billard, 2012) between

the EMDS generating the arm motion and a coupled DS generating the finger

motion. The whole framework is illustrated on Figure 5.4.

5.3.1 Belief model

In order to model the belief over the object’s position, we chose to represent

the probability distribution with a particle filter. A particle filter is a Bayesian

probabilistic method which recursively estimates the posterior from a prior prob-

ability distribution by integrating dynamics and sensing. A particle filter is com-

posed of two main elements, the first integrates the dynamics of the system using

a motion model p(ξt|ξt−1, ξ̇t), ξt ∈ R
6 representing the object’s state at timestep

t (position and orientation). The second integrates the sensing using a measure-

ment model p(yt|ξt), yt representing a measurement, to update the probability

distribution. The two steps are depicted below:

p(ξt|y0:t−1, ξ̇0:t) =

∫
p(ξt|ξt−1, ξ̇t)p(ξt−1y0:t−1, ξ̇0:t−1)dξt−1 (5.3.1)

p(ξt|y0:t, ξ̇0:t) =
p(yt|ξt)p(ξt|y0:t−1, ξ̇0:t)

p(yt|y0:t−1)
(5.3.2)

The probability distribution over the state p(ξt|y0:t, ξ̇0:t) is represented by a

103

set of weighted particles which correspond to possible poses of the object.

The sensing model gives us the likelihood p(yt|ξt) of a particular set of tac-

tile contacts yt ∈ R
7×Nc(position, normal direction and intensity of contact for

each of the Nc contacts) given an object’s pose ξt. This likelihood function is

based on generating a virtual sensation ŷt = G(ξt) from a possible object pose

ξt corresponding to one of the particles and comparing it to the sensed mea-

surement. We detail the likelihood and comparison function p(yt|ξt) = C(yt, ŷt)

in the appendix, see Section B.1. In particular, yt and ŷt can have different

dimensionality depending on the number of contacts and how this is tackled is

explained there.

5.3.2 EMDS

An externally modulated DS as formulated in Section 5.2 generates the arm

motion. We use the design presented in Section 5.2.3, based on modulating

rotation dynamics, to generate the arm motion.The attractor of the EMDS

is translated to the latest expected value of the robot’s pose, represented by

ξ̂t = E[p(ξt|y0:t, ξ̇0:t]), i.e. the weighted average over each particle. The external

signal is the norm of the covariance matrix of the object’s position estimate:

st = ‖Var[p(ξt|y0:t, ξ̇0:t)]‖.
Both the original dynamics and the modulation of the LMDS are provided

as modeled reaching and grasping behaviors3. A searching behavior is implicitly

provided by the evolution of the particle filter’s best estimate. When the hand

goes to a location and there is no sensed contact, the particles become depleted

in that area. The robot then goes to the new best estimate at a different location

and this process results in a searching behavior. An illustration of this behavior4

can be seen in Figure 5.5.

In the modulated trajectory corresponding to the grasping behavior, the

hand approaches the current attractor from above in order to implicitly avoid

collisions with the fingers and to properly enclose the object. Typical trajectories

of the original and the modulated dynamics can be seen on Figure 5.7, and more

detailed explanations are given in Section 5.4. The output of the EMDS is the

desired velocity of the end-effector, connected to the passive DS controller (Kro-

nander and Billard, 2016), designed to perform closed-loop control of DS while

ensuring passivity, and ideally suited for uncertain manipulation tasks such as

this.

3In our case, the OD – reaching – is a simple linear DS. The grasping behavior is coded
as a modulation of the OD to generate a grasping behavior, approaching the object from
above. While the motion for search and grasping can be learned using existing methods (as
described in Section 5.2.5), the biggest challenge of a blind search-and-grasp task is how to
switch between these two behaviors. This is related to the exploration/exploitation trade-off
in reinforcement learning. Here, we use a human to support the acquisition of this skill.

4In this example, the grasping dynamics is not emphasized since the end-effector is already
close to the attractor when it is updated. The grasping dynamics is illustrated more clearly
on Figure 5.10.

104

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Exp 1: Illustration of the search behavior. On frame (c), the par-
ticles located around the hand’s position start being discarded as no
contact occurs: they have very low probability. The best estimate is then
updated towards the real object’s position, and the attractor of the DS
is set to that position. With additional contact information, the estimate
is updated more precisely on frame (g). The references frames made out
of three RGB segments represent the real object’s position and the esti-
mated one.

Learning the external activation function

The function hs(s) mapping the external signal to the activation of the

modulation can either be programmed or learned, with the constraint that its

values lie between 0 and 1. We chose to learn this function since the values

of the covariance matrix are not necessarily easy to link to the task. On the

contrary, our graphical visualization (see Figures 5.5 and 5.10 for instance) of

the object’s pose estimated distribution is easy to interpret. It provides a way

for the user to perceive the current particle’s filter uncertainty value s through

the visualization of the particles. The user also has access to the value s through

a live plot showing the evolution of the value.

In order to learn the function hs(s), we go through a short learning phase

during which a teacher manually selects the desired behavior while the task is

being executed. During this phase, the teacher chooses how much to inhibit or

not the local modulation of the original LMDS system using a graphical user

interface (GUI) with a slider control. The teacher chooses continuous values

between 0 (reaching approach) and 1 (grasping approach). We record pairs of

values (st, hs(st))t=1..tmax
during these experiments in order to model the func-

tion hs.

The recorded data are used to train a Gaussian Process Regression (GPR)

105

model, using the squared exponential covariance function5. The kernel’s hyper-

parameters are determined manually by using prior knowledge from the training

data. Such a learned function hs(s) and the training data can be seen on Fig-

ure 5.6.

Figure 5.6: Learning hs(s) from demonstration data in Exp 1. The blue envelope
around the mean represents the variance of the GP function.

The value of hs starts to increase from 0 to 1 when s is below 0.2. Its

shape is quite similar to the function manually defined in the 2d-examples,

see Equation (5.2.8), however no parameters have to be hand-chosen. During

runtime, we use the stored GP model to predict the value of hs given an input

s. We additionally enforce the output of the GP to be between 0 and 1 in order

to follow the formulation from Section 5.2.3, since the output of the GP may lie

outside demonstrated points.

5.3.3 DS coupling and hand DS

The idea behind the coupling of the arm and the hand DS is to couple the

closing of the fingers with the approach of the hand towards the object.

Coupled dynamical systems provide an efficient way to model a motion in

which two dynamical systems are dependent on each other (Shukla and Billard,

2012). The coupling of the two dynamical systems is given by fc : R → R
Ns :

x̃s = fc(φcoupling(xm)) (5.3.3)

And the equation describing the dynamics of the slave system with fs : R
Ns →

R
Ns :

ẋs = fs(xs − x̃s) (5.3.4)

5For such a 1D regression problem, GP may not be required when simpler methods could
work as well. However, compared to very simple alternatives such as thresholding, GPR has
the advantage of being continuous, which provides a smoother behaviour of the robot when the
external signal changes. However, because of its flexibility, we use GPR for all the regression
problems presented in this section.

106

with xm ∈ R
Nm the master’s state, xs, x̃s ∈ R

Ns the slave’s state and attractor,

φcoupling : RNm → R the coupling function, and Nm, Ns the dimensions of the

master and slave systems.

Here the master system is the EMDS controlling the arm motion and the

slave system is the hand DS controlling the fingers desired position. The function

φcoupling is designed to keep the hand open while far from the object, and closed

when approaching the object. The slave DS then allows to generate smooth

finger trajectories. This hand configuration is fed to the compliant controller for

the fingers described in the following section.

5.3.4 Active compliance algorithm

The active compliance algorithm’s goal is to maximize contacts between the

robot’s fingers and the surface to explore or grasp. This is useful both to speed

up the exploration by providing better measurements to the particle filter, and

to achieve a stable grasp by enclosing the object. The algorithm takes the cur-

rent desired hand configuration from the hand DS as an input. This allows

the fingers to move in space or along the object’s surface to reach the desired

hand configuration. We use a variation of the method presented in Chapter 4

by solving the following quadratic optimization problem6:

min
τ

w1Δτ1
2 + w2Δτ2

2 (5.3.5)

subject to (5.3.6)

τmin < τ < τmax, (5.3.7)

fcj < fcmax , ∀j = 1..Nc, (5.3.8)

JcjM
−1(JT

cifci − τ) = 0, ∀i = 1..Nc, ∀j = 1..Nc (5.3.9)

τ =
∑
j

JT
cjfcj + τ1 + τ2 (5.3.10)

with Δτi = τi − τiref ∀i = 1, 2.

We try to minimize the desired torques τ1ref and τ2ref for tasks 1 and 2 with

associated weights w1 and w2 (Equation (5.3.5)).

And τmin, τmax ∈ R
Ns the torques limits, fci ∈ R the ith contact point’s

force with corresponding Jci ∈ R
1×Ns Jacobian matrix, Nc the number of con-

tacts points on the robot. Equation (5.3.7) enforces joint torque limits, Equa-

tion (5.3.8) sets a maximum limit on the contact forces, Equation (5.3.9) repre-

sents the dynamics of the robot and Equation (5.3.10) links together the sub-

variables of the optimization problem.

Task 1 torques are for keeping the desired joint configuration of the fingers

xs provided by the hand DS. They are computed using a PD controller. Task 2

torques are for creating new contacts, given by an impedance controller for

6Since only the hand is taken into account – not the arm –, we can solve this problem fast
enough without the formulation from Section 4.2.

107

each of the desired contacts points. Finally, the torques τf resulting from the

optimization problem are used to control the robot’s fingers.

5.4 Experiment 1: Autonomous Localization

and Grasping in simulation

In this section, we present simulations to evaluate the proposed approach. We

apply the framework presented in Section 5.3 to a task which consists in local-

izing and grasping an object in simulation. A reaching behavior is encoded with

the original dynamics, consisting of a linear dynamical system. A grasping be-

havior is encoded by a local modulation of this dynamical system. Two example

trajectories can be seen on Figure 5.7: the reaching dynamics lead to a direct

trajectory to the object’s estimated position. The grasping behavior always ap-

proaches the object from the top: the hand first moves up to a certain altitude,

then moves above the object and finally moves down on the object when it is

over it. We compare this approach with using LMDS only, i.e. without taking

into account the external signal. This leads to the dynamics always following

the modulated system, i.e. the grasping approach.

(a) Original dynamics (b) Modulated dynamics

Figure 5.7: Exp 1: In green, reaching trajectories for the original and modulated
dynamics. The modulated dynamics force the trajectory to approach the
object from above in order to avoid collisions with the fingers.

5.4.1 Experimental setup

The simulation environment is Gazebo (Koenig and Howard, 2004), with a Kuka

LWR robotic arm with 7 degrees of freedom (DOF) and 16-DOFs AllegroHand,

see Figure 5.7. All 23 DOFs of the system are torque-controlled.

The particle filter for estimating the object’s pose requires the evaluation of

the likelihood of a measurement for a potential object pose. This is achieved by

generating a virtual measurement for the virtual object pose of each particle.

This virtual measurement is generated by a second instance of gazebo, running a

copy of the simulated world and keeping the robot’s configuration synchronized.

For each particle and corresponding object position, the object is moved in the

second world and the state of the contacts is updated to compare it with the

108

(a) Cylinder (b) Cross (c) Drill

Figure 5.8: The three objects used in Exp 1.

real simulated world.

We were able to run these measurements at a rate of about 1000 particles

per second on one thread with a Core i7 cpu. This step being the bottleneck for

the particle filter update rate, our 300-particles filter could run roughly at 3Hz.

The objects used in this experiments are presented on Figure 5.8, we begin

the experiment with a simple cylinder, then a more complex artificial object,

non convex, in the shape of a cross composed of cylinders and spheres, and a

drill.

For each trial, the object’s pose ξ is randomly generated in the simulation

environment from a uniform distribution in a plane:

ξ ∈ [−xl, xl]× [−yl, yl]× [−θl, θl]
7. (5.4.1)

5.4.2 Results

For each tested condition – EMDS or LMDS – and object – cylinder, drill or

cross – the trials are carried out 50 times in simulation. Each trial lasts 30

seconds. This represents 150 minutes of simulated experiments. The results are

reported on Figure 5.9 with boxplots8.

We measure both the time to estimate the object’s position and to reach

to that position, with a threshold of 1.5cm. For each of the explored objects,

the EMDS strategy estimates and reaches the real object’s position significantly

faster than with LMDS. The estimation takes 14.7±6.2s with LMDS, while only

9.6±5.6s with EMDS. It takes a little more to reach the object, with 15.7s±5.0

for LMDS and 11.0s± 4.9 for EMDS. Because with LMDS, the robot tends to

perform a grasping approach even though the object’s pose is not known with

certainty, it is not surprising that this method takes more time.

One example of a trajectory for localizing and grasping the cylinder can be

seen on Figure 5.10 and a video of multiple trials can be found here: https:

//youtu.be/_DdUCsiTn0E. The particles are represented as red or black dots9,

7xl = 0.1m, yl = 0.1m, θl =
π
2
rad

8Boxplots show the median, the interquartile range (IQR: 25th to 75th percentile), as well
as 2.5IQR range.

9The orientation of the particles cannot be seen here.

109

Figure 5.9: Exp 1: Results of the experiments: time to estimate and time to reach
the object’s position using LMDS only or EMDS, for the three objects.

the color representing their current respective weight. The current object’s real

and estimated positions are represented by RGB frames. The estimated trajec-

tory given the current external signal can also be seen as a thick black line.

The corresponding evolution of the external signal s, activation function hs(s)

and the altitude of the hand during the exploration are given in Figure 5.11.

On frames (a)-(c), the hand approaches the current estimated pose of the ob-

ject directly, until it touches the object, the number of contacts increases, and

the object’s current estimated position is updated. On frame (d), the parti-

cles have all gathered at the real object’s position, hence the variance of the

object’s estimated position distribution decreases and hs increases. Therefore,

the dynamical system automatically adapts to a grasping motion, the altitude

increases and the the hand approaches the object from above until grasping it

on frames (g)-(h).

In this experiment, we showed that by training an EMDS, we could teach

the desired behavior of the robot depending on an external signal, here the

confidence over the object’s pose from a PF, using only tactile data.

110

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10: Exp 1: Images of the exploration and grasping procedure with the
cylinder. On frame (d), the hand automatically switches to a grasping
motion, and moves up to approach the object from above, until grasping
on frame (h). The references frames made out of three RGB segments
represent the real object’s position and the estimated one. The esti-
mated object’s pose can be seen moving towards the real one as the PF
converges using tactile information.

Figure 5.11: Exp 1: Evolution of the external signal s, activation function hs(s) and
the altitude of the hand during one exploration trial. The labels (a)-(h)
correspond to the steps of exploration in Figure 5.10.

111

5.5 Experiment 2: Reaching while avoiding

obstacles

In this section, we present another application of our algorithm in which a task

of reaching while avoiding obstacles is encoded. The task consists in going from

point A to point B for the robot end-effector with the desired dynamics, while

there are obstacles with unknown position on the path.

We present two experiments: in the first experiment, the avoidance behavior

is achieved by going over the obstacles. This is demonstrated both in simulation

and on the real robot. In the second experiment, the robot’s avoiding behavior

depends on characteristics of the collision: it takes a different trajectory depend-

ing on the detected angle of the collision with the object. The second experiment

is done on the robot.

5.5.1 Experiment 2a: Avoiding obstacles

The original dynamics used in Exp 2a are simple linear dynamics – reaching

in a straight line – while the modulated dynamics correspond to a maneuver

to avoid obstacles. Instead of trying to reach through obstacles, the modified

dynamics encode trajectories for which the end-effector moves back and goes

over them, thus doing a detour while still reaching for the target at point B (see

Figure 5.12).

By learning when to change trajectory, this strategy allows to reach directly

to the target while only taking a detour when necessary, hence saving time in

comparison with always choosing the avoidance trajectory.

(a) Original dynamics (b) Modulated dynamics

Figure 5.12: Exp 2a: In green, reaching and avoiding trajectories corresponding to
the original and modulated dynamics. The RGB frame on the right cor-
responds to the target. The modulated dynamics force the end-effector
to go above obstacles and avoid collision with it.

The start and end points are 60cm away from each other on the y axis.

Obstacles are placed on the path, see Figures 5.16, 5.18 and 5.19.

Similarly as in Exp 1, the function hs(s) mapping the external signal to

the activation of the modulation is learned from demonstrations. Because the

112

robot cannot stay in contact when there is a collision, and the system does not

have a memory of the last contact, we choose to encode as the external signal

s the time since the last collision10 (the time counted between the last collision

occured and the current time). This allows the system to learn how to avoid

obstacles given the memory of the last time a collision occurred11.

Learning the activation function from GUI demonstrations

During the execution of the task in simulation, a teacher specifies continu-

ous values for the modulation signal hs(s) between 0 (reaching directly) and 1

(reaching indirectly with the avoiding maneuver). The learned function hs(s)

and the training points can be seen on Figure 5.13.

Figure 5.13: Exp 2a simulation: Learning hs(s) from demonstration data. The blue
envelope around the mean represents the variance of the GP function.
The external signal s corresponds to the time since the last collision.

The learned modulation function corresponds to choosing the avoiding dy-

namics (hs(s) = 1) when a contact occurred less than 2 seconds ago, and slowly

switching to the original linear dynamics until 4 seconds after a contact. Then,

the system converges again in a straight line towards the target (hs(s) = 0).

Learning the activation function from real robot demonstrations

On the real robot, we make an attempt at learning the function hs(s) from

demonstrations, by back-driving the robot arm. In simulation, there is no prac-

tical way to let a human guide or tele-operate a robot easily while providing

feedback, for instance about collisions. Yet, it is crucial for the user to be aware

of the external signals on which depends the activation of the modulation.

On the real robot, we can however let a human perform demonstrations by

back-driving the robot. The objective is to define a mapping from the external

signal s, chosen in this experiment as the time since last contact, to an activation

value hs. However, this value is only implicitly given by the user through the

10When no collision has yet occurred, this value is set arbitrarily high.
11It could also be possible to record the position of the contact and measure the distance

between the robot and that contact, but this would not work if the objects are moving, such
as in the experiment presented in the accompanying video where objects are moving on a
conveyor belt.

113

demonstrated trajectories. Hence, at each timestep, we need to find the value

hs which produces the demonstrated velocity ẋs closest to the demonstrated

velocity ẋ.

One way is to look for an inverse mapping of the EMDS. Let’s go back to

the original formulation:

ẋ = M(x, s)f(x) (5.5.1)

Because s is always expressed through the activation value hs, as in Equa-

tion (5.2.4) for instance, we can rewrite the previous equation as:

ẋ = M(x, hs)f(x) (5.5.2)

Hence, for a fixed x, the whole DS can also be expressed as a function Gx specific

to that x:

ẋ = Gx(hs) (5.5.3)

If the function Gx is injective, there exists an inverse function G−1
x :

hs = G−1
x (ẋ) (5.5.4)

We know with certainty that the function Gx is not injective for all x. For

instance at x = 0, f(x) is 0 since the original dynamics is stable at the origin,

hence Gx cannot be injective. This is also the case for regions where the original

DS is not modulated, i.e. the function M(x, s) is constant for all s.

Practically, hs does not influence the dynamics in these regions, therefore

our estimate is not important there. Instead of computing a closed-form inverse

function, we estimate the value of hs at each timestep by performing a line-

search in the input space of Gx(hs), and search for the closest output:

hs = argmin
hsi∈{0,...,1}

‖Gx(hsi)− ẋ‖ (5.5.5)

We perform the line-search with values from 0 to 1 by increments of 0.1, and

interpolate between the two closest values.

Finally, we learn the function hs(s) in the same way as in the method demon-

strated previously, using Gaussian Process Regression. The result can be seen

on Figure 5.14.

In comparison with the function learned in simulation, the activation func-

tion goes back to zero only after 2 seconds, instead of 4 seconds. The slope of

11 In standard position controlled/time dependent systems, it is not straightforward to
handle demonstrations while the robot is already moving. Thanks to our passive DS controller,
users can safely interact with the robot during task execution. Our controller also guarantees
safety for the user: the max velocity of the DS is set to 7cm/s, and with the largest eigenvalue of
the damping matrix for the passive DS controller set to 130N/m.s, the maximum end-effector
force is 9.1N .

114

Figure 5.14: Exp 2 real robot: Learning hs(s) from demonstrated trajectories on
the real robot. The blue envelope around the mean represents the vari-
ance of the GP function. The external signal s corresponds to the time
since the last collision.

the decrease is also much more abrupt. This is probably due to the different

method of teaching: while in the first case teaching is done through a graphical

interface with a slider, in this case the user directly back-drives the robot arm.

Results, experiment 2a

In simulation

The progression of the task can be seen on Figure 5.16. A video of the exper-

iment can be seen here: https://youtu.be/gfL7aqogU0k. The corresponding

evolution of the external signal s, predicted modulation hs(s), altitude of the

hand, progression towards the target, and collision status are given on Fig-

ure 5.15. The predicted modulation hs(s) directly depends on s, following the

learning process described above. The altitude of the hand depends mostly on

the modulation or not of the dynamics: if the activation function is high, the

hand follows the avoidance dynamics and altitude increases. The progression

towards the target is the y coordinate normalized between 0 (start point) and

1 (target point). The collision status is 1 if the number of contacts is higher or

equal than 1, 0 otherwise. Objects from the first experiment (see Figure 5.8),

namely the drill and the cylinder, are used as obstacles.

The hand starts moving right in a direct line towards the target (to the right

of the cylinder), until it collides with the drill on frame (b). It then moves up

and backwards according to the modulated dynamics (see Figure 5.12(b)) until

it reaches the height encoded in the modified dynamics; it then moves right at

the same z-coordinate. After a few seconds without contact, the dynamics slowly

changes back to the original DS: the hand starts moving downwards towards the

target frame. It collides again on frame (f), and the same process repeats itself

twice until the end-effector reaches the target on frame (i).

115

Figure 5.15: Exp 2a simulation. Top: Evolution of the altitude of the hand (nor-
malized) and the progression of the task (horizontal position between
start and end points, normalized between 0 and 1). Bottom: Evolution
of the external signal s (time since last collision), activation function
hs(s), and the collision status. The vertical dotted lines correspond to
collisions with obstacles, see Figure 5.16.

The change between the two dynamics can be seen through the evolution of

several variables on Figure 5.15. When a contact occurs, s is reset to 0, and hs(s)

goes to 1. Simultaneously, the altitude starts increasing and the progression of

the task starts regressing, as the avoidance behaviour is triggered. Then, as the

time since the last contact increases and goes over 2 seconds, hs(s) goes back

to 0 and the altitude decreases: the end-effector tries to reach for the object

directly again.

For comparison, we ran the same experiment without the learned function

hs(s), instead fixing the value of hs. We either set the hs value to 1 (always take

the avoiding trajectory) or to 0 (always reach directly). Unsurprisingly, the first

one leads to the end-effector going above the obstacles without even touching

them, but doing a unnecessarily large detour, see Figure 5.17(a). The trajectory

starts by going away from the target until the hand reaches the desired height, as

encoded in the avoiding DS. In the second condition (hs(s) = 0), the end-effector

gets stuck in contact with the object after the collision, see Figure 5.17(b), as no

avoidance maneuver is triggered. This shows that the learned activation function

improves the execution of the task.

116

(a) (b) � (c)

(d) (e) (f) �

(g) (h) (i) �

(j) (k) (l)

Figure 5.16: Exp 2a simulation: Progression of the experiment in Gazebo. Colli-
sions occur on frames (b), (f) and (i). Collision points are marked with
a red dot on the images.

Corresponding evolution of the variables on Figure 5.15.

117

(a) The activation function hs(s) set to 1 (always avoiding)

(b) The activation function hs(s) set to 0 (never avoiding)

Figure 5.17: Exp 2a simulation: Reaching while avoiding obstacles with hs forced
to 1 (a) or 0 (b). Collisions are not displayed for (a) since none occur.
On (b), the progression gets stuck at second 16 when the hand enters
in collision with the first obstacle and gets stuck. It cannot progress
further and thus the progression does not increase anymore.

118

On the real robot

For the experiment on a real platform, we use a KUKA LWR robot with 7

DOFs with a force-torque sensor mounted at the end of the arm. We add a

probe-like end-effector after the sensor to be the contact point during collisions.

The force-torque sensor is used to detect collisions12.

We ran the same experiment on the real robot. We used objects from different

sizes as obstacles. The images of the experiments can be seen on Figures 5.18

and 5.19. A video of the experiment can be seen here: https://youtu.be/

scvDiqfETRc.

In the first one, the end-effector collides with the first obstacle, then with

the second obstacle. In the second one, the end-effector collides first with the

large box, then again on top of the large box.

Using external sensing only, we showed that the robot was able to avoid

obstacles when contact is detected, following behavior taught during demon-

strations.

Figure 5.18: Exp 2a real robot: Trajectory of the end-effector during the task with
two obstacles. The end-effector collides with the two objects.

12We simply threshold the norm of the force vector to detect a collision. The threshold is
set to 2.0N

119

Figure 5.19: Exp 2a real robot: Trajectory of the end-effector during the task with
one large obstacle. The end-effector collides on the side of the object
and another time on the top.

5.5.2 Experiment 2b: Navigating between obstacles

In this experiment, we increase the complexity of the external modulation by

taking into account two variables: the time since last contact, and the angle

of the last contact13. We aim at learning how to avoid obstacles depending on

information from the collision, here the force direction during contact.

For this purpose, we encode the original dynamics and the modulated dy-

namics as two opposite velocity fields in a central region, where the experiment

is taking place. Both dynamics converge to the target when going far enough

from that region. The first one is directed perpendicular to the direction between

initial and target frames, in a horizontal plane. The second one is directed in

the opposite direction, see Figure 5.20.

A whole range of dynamics is reachable by changing the activation of the

modulation. For instance, by setting the activation to 0.5, the resulting trajec-

tory is a straight line, see Figure 5.21. The angle of the deviation can be adjusted

by modifying the activation value between 0 and 1.

Learning the activation function

In order to learn the mapping hs(s), we perform demonstrations on the robot

in a similar way as presented in the previous experiment. Because the input

variable s is now two-dimensional (time since last contact and angle of last

contact), more demonstrations must be given, spanning the whole input space.

For this purpose, we perform 8 demonstrations with different collision angles.

13Since all of our motion is taking place on a plane, the angle is taken between the vector
of the force as measured by the force-torque sensor, and the direction from starting point
and target point. In practice, we compute it using atan2(fx, fy), f being the force vector, see
Figure 5.22.

120

(a) Original dynamics (b) Modulated dynamics

Figure 5.20: Exp 2b: Seen from above, in green, trajectories corresponding to the
original and modulated dynamics. The RGB frames on the left and right
correspond respectively to the starting point and the target.

(a) hs = 0.25 (b) hs = 0.40 (c) hs = 0.50 (d) hs = 0.60 (e) hs = 0.75

Figure 5.21: Exp 2b: The resulting dynamics with different levels of activation.
With hs = 0.50, the dynamics reach in a straight line.

The behaviour taught to the robot is the following. When no collision occur,

the robot moves in a straight line, i.e. hs(s) = 0.5. After a collision, the end-

effector adjusts its trajectory depending on the collision angle. If the angle is

small (see Figure 5.22 left), the robot does a large detour, hence picks an extreme

value of the activation function (0 or 1 depending on the direction of avoidance).

If the angle is large (see Figure 5.22 right), the robot only slightly adjusts its

trajectory.

Demonstration data are plotted on Figure 5.23. Each horizontal line of dat-

apoints corresponds to a demonstration. We can see that the input space corre-

sponding to the angle of collision is not perfectly spanned by the demonstrations,

due to the demonstrated collision angles not being spread perfectly evenly. Look-

ing at the horizontal axis, we can see that we recorded about 5 seconds of data

after a collision per demonstration. The color of each datapoint indicates its

corresponding hs value, estimated using the method described in Section 5.5.1.

We then learn a model with GPR, illustrated on Figure 5.24.

From these plots, we can extract a few observations:

1. The collision angles are not centered on 0. The median value, for which

the output hs(s) switches from values below 0.5 to values above, is at

about 0.4rad. It corresponds to a frontal collision. This is due to a mis-

calibration of the force-torque sensor’s orientation. Thanks to the learned

mapping, this is not an issue.

121

f

Figure 5.22: Exp 2b: Schematic of the demonstrated trajectories. In red, the col-
lision point and the force sensed during the collision. The end-effector
follows the shape of the objects after contact, then continues again in a
straight line after a few seconds.

2. After a few seconds, all datapoints converge back to a value of hs(s) = 0.5,

i.e. a straight line. This is the desired behaviour.

3. A few “wrong” datapoints are demonstrated: on the top right of Fig-

ure 5.23, there are some “red” points (hs(s) > 0.5), and on the bottom

right, a few “blue” points(hs(s) < 0.5). However, the value of hs for those

points is close to 0.5. This is inherent to the demonstration method, back-

driving the robot: it is sensitive to human demonstration errors.

4. The learned mapping, visible on Figure 5.24, corresponds to the desired

behaviour: small angles (close to the median value of 0.4) yield extreme

values of hs, i.e. trajectories close to either one of the original or the

modulated dynamics (see Figure 5.20). Bigger angles yield less extreme

values, leading to less modified trajectories.

5. Because the learned function is highly non-linear, especially close to the

median value, the kernel width of the Gaussian Process Regression is tricky

to choose. A too high value does not allow the rapid function change close

to the median angle value. A too low value overfits the data and removes

the ability to generalize over collision angles not demonstrated (e.g. at

−0.5rad). We chose a kernel width of 0.514.

6. In the region in which the collision angle is about 0.4, the activation value

h takes some values of 0.5. This is due to the fact that the desired mapping

14Because the GP’s output falls back to 0 when far away from training data, we also first
center our output data before learning the GP, so that its range lies between −0.5 and 0.5,
instead of 0 and 1. This way, the DS moves in a straight line (hs(s) = 0.5) when far away
from demonstration data.

122

Figure 5.23: Exp 2b: Data from the demonstrations. Each horizontal line corre-
sponds to one demonstration.

Figure 5.24: Exp 2b: Learned function hs(s), using Gaussian Process Regression
(GPR).

is discontinuous whereas the GP is continuous by default. This is not a

problem in practice because this region is very narrow and a little change

in the collision angle would drive the robot to one of the area above or

below.

Results

Images from the experiment can be seen on Figure 5.25. The task is executed

both activating the modulation depending on the input s, or fixing the value of

the activation to 0.5, hence ignoring external signals for a comparison purpose.

When the external signal is ignored, the end-effector moves in a straight line.

Because of the passive DS controller, the robot is compliant. However, when

ignoring the external signal, here the contact information, the robot does not

123

avoid the obstacles. The friction in the joints prevents it to be really deviated

from its trajectory and the robot displaces the obstacles while colliding with

them.

When using information from the external signal, the robot adapts its trajec-

tory after each collision and navigates between the obstacles. Depending on the

collision angle, the robot adapts the avoidance trajectory. Therefore, it some-

times slides along the object (here with the second obstacle), or moves away

from it (first and third obstacles). The video of these experiments can be found

here: https://youtu.be/Aiz3dUADcbw.

124

(a) hs(s) learned from demonstrations

(b) hs(s) = 0.5 (fixed)

Figure 5.25: Exp 2b: Evolution of the obstacle avoidance task with the controller
activated (a) or not (b). The end-effector reaches from left to right. In
both cases, the desired velocity is tracked using a passive DS controller.
In the second example, the objects are moved during the collisions.

125

5.6 Discussion

In this chapter, we provide a practical framework for achieving robust manip-

ulation skills using external feedback. We have demonstrated that EMDS can

easily be tailored to different tasks.

Desired behavior is achieved by modifying local modulations applied to an

existing dynamical system. This allows to conserve important stability proper-

ties for any external signal, assuming that the modulation function is full-rank.

We have proposed one way to design the modulation function based on regu-

lating a rotational and speed-scaling modulation, inspired by the type of mod-

ulation presented in previous work from our team. This design ensures that the

modulation matrix is always full-rank, and hence the system is stable for any

external signal. As such, this work can be directly applied to an existing LMDS,

provided a mapping between an external signal and the desired regulation of

the modulation.

For this purpose, we also suggested a method to capture how the dynami-

cal system should be modulated by the external signal, based on learning the

corresponding mapping by teaching the desired behavior during task execution.

We tested this teaching method by demonstrating both through a graphical in-

terface and through physical demonstrations on the real robot. We applied this

algorithm to a task of simluated blind reach-and-grasp, using only tactile data

for estimating the object’s pose, which is in general extremely difficult to use

in practice. In this task, the modulation between the reaching and grasping be-

haviors was encoded as a learned function of the variance of the pose estimate.

The regulation of the modulation allowed to find and grasp the object faster

than when always modulating the DS and following the grasping motion. To

the best of our knowledge, this is the first time that blind search-and-grasp has

been achieved, without using any vision.

We also applied this algorithm to tasks of reaching while avoiding obstacles.

The system learns when to bypass obstacles depending on the last contact. We

show that the task execution depends on learning a proper activation function,

otherwise the behaviour is inadequate. The learned function depends on the time

since the last contact, and thus depends implicitly on the size and shape of the

obstacles seen during the task. The robot would perform less well with different

obstacles as it would either collide again before bypassing (bigger obstacles), or

make unnecessarily big detours (smaller obstacles). The teaching hence depends

on the type of obstacles met during a specific type of task. We further studied

this task by introducing the angle of collision into our activation mapping. With

this two-dimensional external signal, our robot is able to navigate between ob-

stacles and choose its trajectory by adjusting the level of activation of the DS’s

modulation, depending on the external signals. Compared to conventional ob-

stacle avoidance methods, such as methods based on force fields, our method

can a) learn different ways to avoid obstacles depending on the demonstrations,

126

b) does not rely on a map of its environment: it is only reactive.

In this work, the mapping from external signal to modulation is learned

by teaching. We specify that the function can also be provided manually. An

alternative to learning this function by a teacher would be to use reinforcement

learning (Sutton and Barto, 1998) (RL) because the dimension of the problem

is low and hence the problem fits particularly well the RL framework.

When changing some parameters of a task (size of obstacles, difficulty to

localize an object, ..), the learned mapping may have to be adapted. In order to

avoid the whole retraining of the system, a system could be provided to adapt

the learned function by modulating the mapping. For instance, if the obstacles

become bigger, scaling the response to the time since the last contact could be a

solution. Otherwise, the quality of the generalization of the learned modulation

function may degrade too much to accomplish the task.

Additionally, the input in the first experiment (variance of the object’s pose

estimate) of this learned function could be multidimensional, i.e. use all the

terms of the covariance matrix and the object type. This could allow to modulate

the reaching for grasping trajectory object-wise and depending on the direction

of the object’s pose uncertainty. Indeed, it makes sense to approach objects

differently whether the position’s uncertainty is along their grasping axis or

along a different direction.

127

Chapter 6

Conclusions

In this final chapter I highlight the main contributions, limitations and possible

future directions of the work presented in this thesis, as well as personal insights.

6.1 Main Contributions

This thesis addressed the need for control algorithms and strategies when

robots make multiple contacts with their environment, especially in tasks of

exploration and grasping. This thesis leveraged the recent availability of com-

mercial tactile sensors to cover robots with pressure-sensitive skin and develop

new control algorithms.

First, we presented multiple scenarios in which tactile sensing is used to

compliantly and continuously follow surface’s contours while gathering tactile

information, in order to identify the surface in contact. We showed that partial

tactile data is sufficient to correctly classify human-like faces. We presented a

bimanual exploration strategy that does not require planning and allows fast

exploration of objects. We applied this method to what is to the best of our

knowledge the first example of bimanual haptic exploration with a robot. We

also believe that this is the first use of tactile sensors on parts of robot fin-

gers other than the fingertips during continuous tactile exploration, which has

the advantage of speeding up the exploration by collecting more tactile data

simultaneously.

Second, we focused on how to create and keep multiple contacts on robotic

fingers during haptic exploration. We presented a strategy to generate additional

contacts, using information from other current tactile contact, namely position

and normal of contacts. We developed a computationally efficient algorithm

to compute control torques for moving in the null-space of existing contacts,

putting constraints on maximum contact forces. We also demonstrated benefits

of these methods for grasping tasks, showing that we obtain more contacts and

thus better stability than by simple using enclosing strategies, given unknown

objects to make contact with.

Finally, we presented the Externally Modulated Dynamical Systems (EMDS)

algorithm, to take into account external signals beside time to modulate DS.

This method is based on activating or not local modulations of the DS in order

129

to change the dynamics while guaranteeing important stability properties. Along

with EMDS, we presented an interactive learning method for capturing how

the DS should be modulated by the external signal, using demonstrations of

the task. We demonstrated the usefulness of this algorithm in a challenging

blind reach-and-grasp task, using only tactile input for estimating the state of

the object. We also tested this method with a more complex two-dimensional

external signal describing collisions with the end-effector, which modulates the

trajectory of the robot to navigate between obstacles on a real robotic platform.

6.2 Limitations and Future Work

Human-like face recognition and bimanual exploration

The exploration strategies presented in Chapter 3 depend on the type of

object or surface to explore. In particular, the algorithm for the exploration of

human-like faces is designed for flat surfaces such as faces, and it is limited in

its workspace by the length of the robot’s arm. Reaching for the side or back

of a head to find more features to explore would for instance not be feasible.

Because the identification method (HMM) is based on a sequence of exploration

signals, the trajectories must be roughly comparable with each other in length.

This restricts the exploration to predefined trajectories. Changing identifica-

tion method would allow to relax constraints on the exploration trajectory, but

should be robust to the noise inherent from the inaccurate kinematics of the

robot.

In comparison, the bimanual exploration is based on 3D point-cloud recon-

struction, hence the identification does not depend on the exploration trajectory.

However, the fast trajectory generation for both arms requires objects to have

one principal axis along which to perform the exploration, and of relatively

small size in order to fit inside a robot’s hands. We believe that the latter issue

is inherent to bimanual manipulation settings, however the constraint on the

shape of the object could only be released at the cost of a much more complex

algorithm. Indeed, since the shape of the object is unknown at first, contacts

should be allowed on all parts of the robot, especially the wrists and sides of the

fingers. This is not yet possible on existing platforms. Furthermore, with more

complex shapes, planning would probably be required to generate collision-free

trajectories. Because planning takes time – notably with two arms – and re-

planning should occur as long as new tactile information is gathered, it would

requires a very slow exploration-planning iterative procedure.

One potential solution would be to plan only for the re-positioning of the

object (motion of the arm holding the object), and let the other arm perform

exploration using our multi-contact controller presented in Chapter 4.

130

Multi-contact controller

One of the main obstacles encountered while working with our multi-contact

exploration approach is the existence of local minima for the exploration mo-

tion. This is due to the fact that the shape of the object is only roughly known,

and the exploration is sequentially directed towards key frames spread around

the estimated shape. Although we did not tackle the high-level planning as-

pect of exploration, we briefly tried to merge our exploration strategy with a

planner1, to generate trajectories given the continuously updated point-cloud

gathered from tactile information. This first problem we encountered is that be-

cause planning takes time, and the model is continuously updated, the plans are

already irrelevant once available (the starting point has changed, as well as the

world model). The second problem comes from the fact that the planner does

not necessarily produce two similar consecutive plans, hence a new plan can con-

tradict the previous one (e.g. go around a object one way or the other way.), and

render the exploration process extremely inefficient. Both these issues could find

a solution with continuous motion planning approaches (Steffens et al., 2016),

although current methods are not fast enough for continuous exploration. An-

other issue comes from compromising collision avoidance and exploration: the

parts of the robot equipped with tactile sensors (particularly the fingers) must

be kept close to the estimated surface of the object to explore. This could be

incorporated into the objective function of the planning algorithm (if there is

one), although further increasing the planing time.

In the current version of the presented algorithm, we assume one contact

per link, hence one constraint when computing null-space torques. In case of

multiple contacts on one link of the robot, we would need to be able to dis-

criminate between multiple contacts and one large contact. Indeed, if there are

multiple contacts, each should generate a constraint, or be clustered together

to generate for instance one planar constraint if the points are aligned (hence

three constraints, one position and two rotations). One solution would be to

perform clustering on the tactile sensors’ signals for each link, and decide how

many clusters exist, hence how many constraints.

In our grasping application, the list of desired contacts points on the robot’s

fingers is provided by another algorithm (de Souza, 2016), depending on the

desired type of grasp. For our exploration experiments, we manually defined

the desired contact points as points on each of the links of the robot’s fingers.

However, some of these may never be able to be in contact, hence creating

useless secondary tasks, which may decrease the chances of other secondary

tasks to succeed. One could try to teach which desired points should be activated

depending on the type of surface to explore.

In all the experiments presented in this thesis, we limit ourselves to the

use of the following contact information: contact normal and amplitude of con-

1This is not part of the thesis. There is however a reference to our attempt in the conclusion
of Chapter 4.

131

tact. Some tactile sensors give access to additional features, such as the shape

of contact. The shape can be inferred from the distribution of the contacts on

multiple taxels of one patch, and used as an input for regression, see Sommer

(2012). Some tactile sensors can also provide indirectly an approximation of

tangential forces, measure temperature, and extract surface features.

We gave priority to maximizing the coverage of tactile sensors on the robot’s

surface over the number of features that the sensors could provide. Indeed, sen-

sors that bring additional information such as temperature of shear force (eg.

the Syntouch Biotac) are limited to use on the fingertips of the robot only. In

general, tactile sensors are already just mature enough to use simple informa-

tion such as amplitude of contact in a robust manner, i.e. for control. The use

of additional features would then be mostly limited to gathering information

about the explored object, but not for the control itself: tangential forces can

provide information about interaction forces, such as measuring the weight of

objects, or friction coefficients.

Given our exploration controller, it would only require to add such kind of infor-

mation to the model built during the exploration, but not change the controller

itself.

For the exploration itself, even if we were given perfect tactile sensors that can

measure any contact feature, there is no simple way to determine how such addi-

tional information could be used for the control of the robot. This could however

be the subject of further investigation. Moreover, adding features increases the

complexity of the control architecture, and in the context of learning behaviours,

it reinforces the risk of over-fitting and requires many more demonstrations with

the corresponding increase of dimensionality.

Finally, null-space torque control is sensitive to the dynamic model of the

robot. Because all robots have friction in the joints, especially robotics hands,

this model is never perfect. This may lead to constraints not being respected,

depending on the amplitude of the errors in the model. In practice, the con-

tact forces do not become high, even on the real robot, because friction is low

compared to contact forces. However, one could formulate our null-space com-

putation as a robust optimization problem to take this into account.

EMDS

One inherent limitation of EMDS is the requirement that the second DS

must be expressed as a local modulation of the first one. When using a rotational

modulation, this can be problematic if the two DS are strictly opposed. This

can produce some computational instability since one can find several rotations

that transform one DS into the other. In practice, the two DS are rarely exactly

opposite, and in that case, it is possible to define a favorite axis of rotation in

that case.

We suggested to generate the activation function hs(s) from demonstrations,

however giving demonstrations in a high-dimensional space is cumbersome. It

132

requires more demonstrations to cover the whole space (especially when learn-

ing the mapping with GPR). Because of that, the more demonstrations, the

higher the chances that some of them contain mistakes from human error. An

alternative would be to use reinforcement learning (RL) to obtain an optimal

mapping. Since the modulation function is low-dimensional, RL is particularly

suited.

Object localization

Identification of objects and/or localization, as tackled in Sections 3.4.2 and

5.3, have been approached with two methods: ICP and particle filters. Other

approaches have already been studied in the litterature and could provide better

performance (Gadeyne and Bruyninckx, 2001; Vezzani et al., 2016b; Petrovskaya

and Khatib, 2011).

6.3 Final Words

During my PhD, I have spent a long time working with tactile sensors

and robots. I have been gathering insights into the current limitations and the

promising uses of artificial tactile sensing for robotics, which I try to list below:

• Tactile data’s high dimensionality is both a blessing for extracting a lot

of information and a burden when using tactile sensing in a control system.

Many dimensions make it difficult to use in learning frameworks, especially

with learning from demonstrations since many demonstrations should be

given to span the whole space. On the other hand, the high dimensionality

of tactile signals provide a lot of information to be extracted, and could

for instance be very useful to communicate with the robot, for instance

during teaching.

• Hardware is the limit for haptic exploration.

Tactile sensors are difficult to work with on real robots. Indeed, sensors as

efficient as human skin are very difficult to produce. The existing designs

do not yet offer full coverage, they often suffer from drift and are not able

to detect very light contacts.

A potential improvement could come from designing the tactile sensors

along with the robotic hands’ design. The fingertip sensors of the iCub

humanoid robot are a good example of such a strategy, but even though

iCub arms and torso are now also covered with artificial skin, that is not

the case of the side of the hands and most of the fingers (besides the tip),

where contacts mostly occur. If a robot is expected to make contact with

unknown objects, its whole surface should be able to detect contacts.

At the same time, we need better torque-controlled robots to make impedance

control safer while interacting with humans.

133

• Commonly used Software for processing tactile sensing do not ex-

ist yet. Although there are many different types of tactile sensors, there

are many common operations required to process the data. For instance,

tactile sensors are usually composed of multiple taxels, each outputting a

pressure value. The combination of these values along with the geometri-

cal information of these taxels provide a way to know the location, force

and distribution of the contact points. A push to towards a unification of

methods could be useful for the community using tactile sensors .

• The combination of tactile sensors and compliant control will enable

robots to really be in contact with the environment without requiring

perfect a world model. That is also the way to safely physically interact

with humans. The example presented at the end of Chapter 5 using a

passive DS control for the compliance and sensors to detect collisions il-

lustrates well that a robot can interact with its environment, be perturbed

and keep performing its task.

134

Appendices

135

Appendix A

Appendices for Chapter 4

A.1 Exp 1: Details of the control

This appendix describes the controller used in experiment 1 for surface ex-

ploration.

Median of normal of contact and attached frame

The median normal of contact nm ∈ R
3 corresponds to the average of the

two most distant normals of contact between the robot and the surface. It is used

both for determining the desired orientation of the hand during the exploration

and the allowed plan of motion to reach the final Cartesian target (detailed in

the next paragraphs).

nm =

⎧⎨
⎩

ni+nj

2 if ni + nj �= 0

ni else.
(A.1.1)

where (i, j) = argmax(i,j)∈nc
{acos(ni, nj)} are the indices of the two contacts

which have the most different normals.

This is useful, because taking only the average of all the contact normals

would give little weight to outliers, which are very important as they represent

crucial information about the surface’s profile.

Orientation reference of the impedance controller

We create a rotational frame Rnm,rx , using the above normal direction of

contact nm and the orthogonal projection of the hand’s proximo-distal direction

(palm towards fingers) rx on nm:

r′x = rx − (rx · nm)nm (A.1.2)

Rnm,r′x =

[
nm, r′x, nm × r′x

]
(A.1.3)

This ensures that the palm of the hand stays perpendicular to the contact

normal, see Figure A.1.

137

Shape to
explore

Hand

Desired hand orientation

(a) One contact

Shape to
explore

Hand

Desired hand orientation

(b) Two contacts

Figure A.1: Schematic of the computation of the reference hand orientation for the
impedance controller. In the case of one contact, the normal of the con-
tact is chosen as a reference for the desired hand orientation. For two or
more contacts, the average of the two most distant normals is chosen.

Position reference of the impedance controller

The reference position pr ∈ R
3 of the impedance controller is computed

from the desired final position of the motion pf ∈ R
3, given by a higher-level

controller, the current position p ∈ R
3, and the computed median normal of

contact nm. The error pe between the current and final position is projected on

a plane normal to nm in order to create a motion tangential to the surface:

pe = pf − p (A.1.4)

p′e = p′e − (p′e · nm) · nm (A.1.5)

The reference position is then proportional with gain G ∈ R
+ to the pro-

jected error, and saturated if that distance is bigger than a scalar threshold

d ∈ R
+.

pr =

⎧⎨
⎩p+

p′
e

‖p′
e‖ ·G if ‖ p′e ‖> d

p+ p′e · G
d else.

(A.1.6)

Impedance control

Because the robot operates in contact with its environment, a compliant

controller provides a safe way to interact with the areas in contact.

Given the reference and actual positions pr, p ∈ R
3 and orientations Rr, R ∈

R
3×3 of the end effector (here defined at the base of the middle-finger), we define

the Cartesian error term as:

xe =

⎡
⎢⎣pe
Ψ

⎤
⎥⎦ , Ψ = angleaxis(RTRr) (A.1.7)

where angleaxis(R∗) represents the angle-axis representation corresponding to

a rotation matrix R.

138

The torques for the Cartesian impedance control task are computed by mul-

tiplication of the transposed Jacobian Je(q) with the Cartesian feedback control

forces:

τe = JT
e (Kxe +Dẋe) (A.1.8)

The stiffness and damping matrices K,D ∈ R
6×6 are symmetric positive defi-

nite:

K =

⎡
⎢⎣Kp 0

0 Kr

⎤
⎥⎦ , D =

⎡
⎢⎣Dp 0

0 Dr

⎤
⎥⎦ (A.1.9)

where Kp,Kr ∈ R
3×3 and Dp, Dr ∈ R

3×3 are sub-matrices respectively relat-

ing forces to positional errors, torques to rotational errors, forces to positional

velocity and torques to rotational velocities.

Definition of the stiffness and damping matrices

During the exploration, the purpose of the impedance control is to drive the

motion of the robotic hand, not to ensure contact with the surface. For this

reason, the stiffness matrices are defined in the rotational frame R attached to

the end-effector, as:

K ′
p =

⎡
⎢⎢⎢⎢⎢⎣
0 0 0

0 kp 0

0 0 kp

⎤
⎥⎥⎥⎥⎥⎦ , K ′

r =

⎡
⎢⎢⎢⎢⎢⎣
0 0 0

0 kr 0

0 0 kr

⎤
⎥⎥⎥⎥⎥⎦ (A.1.10)

where the first axis corresponds to the dorso-palmar direction, and the second

axis to the proximo-distal direction. In the robot’s frame, we use the rotated

stiffness matrices Kp = RK ′
pR

T and Kr = RK ′
rR

T . The rotational stiffness

value is zero in the dorso-palmar direction as the orientation of the hand along

that axis is not crucial for the exploration and this releases a degree of freedom

and allows more dexterous motions.

Both positional and rotational damping matrices are isotropic1:

Dr = dr · I3×3, Dp = dp · I3×3 with dr, dp ∈ R. (A.1.11)

Reference position

Thanks to our algorithm, the reference positions described as pf in Ap-

pendix A.1 do not need to lie on the surface since the controller navigates to

the closest point on the surface. Therefore, they can be randomly distributed

around the estimated position of the area to explore. We define a list of these

reference positions spread around the object to explore. When the end-effector

1We used kp = 300N.m−1, dp = 300N.s.m−1, kr = 10N.rad−1, dr = 3N.s.rad−1

139

reaches within a threshold of the orthogonal projection of the current reference

position on the surface’s estimated tangential plane, the next reference position

in the list is tracked. This way, the end-effector goes sequentially through all

the positions in the list. There are more informed ways to choose the reference

positions, for instance using entropy and information gain about the surface

being reconstructed, but the target of this experiment is to demonstrate the

possibility to be in contact with an unknown surface and to navigate smoothly

around it, not the search process itself.

140

Appendix B

Appendices for Chapter 5

B.1 Likelihood computation for the particle

filter’s measurement step

Two problems arise from comparing two contact sets. The first one is the

conversion of the measurement errors into a likelihood, and the second comes

from potentially different dimensionality between the measured contacts and the

virtual ones from a particle. Indeed, the number of contacts do not necessarily

match. In order to compute the likelihood used in the measurement step of the

particle filter, we use the following Algorithm 5.

Algorithm 5: Likelihood computation in the measurement step of the
particle filter

Data: The measurement y = {ci}i∈Nc ,
a potential object’s pose ξ,
a weighting diagonal matrix D ∈ R

7×7 to compute the distance
between two contact points,
the mapping functions f, d : R → R to convert contact distance and
intensity to likelihood.1

Result: Likelihood L that a measurement y was generated by object
pose ξ.

1 L = 1;
/* Generate contacts from object pose. */

2 ŷ = {ĉi}i∈N̂c
= G(ξ)

3 for i ← 1 to Nc do

4 if N̂c �= 0 then
5 L ∗= f(min

j∈N̂c

‖ci, ĉj‖D)

6 else
7 L ∗= Lpenalty

/* Penalize for high contact intensity */

8 for j ← 1 to N̂c do
9 L ∗= d(ĉj)

10 return L;

1The functions f and d both have the form f(x) = max(exp(
−(x−x0)

2

w
), fmin). They are

141

B.2 Proofs of stability for EMDS

These proofs are adapted from Kronander et al. (2015) for externally mod-

ulated LMDS.

Proposition 1 (Equilibrium points). If M(x, s) has full rank for all x and

s, the reshaped dynamics has the same equilibrium point(s) as the original dy-

namics.

If M(x, s) has full rank, it has an empty null-space, and hence Equation 5.2.3

is zero iff f(x) = 0.

Proposition 2 (Boundedness).Assume that the original dynamics is bounded

(See. Def 2). Assume further that M(x, s) is locally active on x in a compact

subset χ ⊂ R
N (See Def. 1b). Then, the reshaped dynamics is bounded.

Let BR be a ball centered at the origin of radius R in R
N . Let R be chosen

such that χ lies entirely in BR. Since χ is a compact set in R
N , it is always

possible to find such a R. For each δ > 0, let ε(δ) be an associated boundary

for the original dynamics (refer to Def. 2). Define ε′(δ) as a boundary for the

reshaped dynamics as follows: ε′ = ε(R) for δ < R and ε′ = ε(δ) for δ ≥ R.

Boundedness follows from Def. 2.

Proposition 3 (Lyapunov stability). Consider a system ẋ = f(x) that has a

single equilibrium point. Without loss of generality, let this equilibrium point be

placed at the origin. Assume further that the equilibrium point is stable. Assume

that the criteria for Propositions 1 and 2 are satisfied. If in addition, χ does not

include the origin, the reshaped system is stable at the origin.

According to Proposition 1, the reshaped dynamics has a single equilibrium

point at the origin. let Br be a ball centered at the origin with a radius r small

enough that Br does not include any point in χ. Hence, inside Br, we have

g(x) = f(x). By the stability of f , there exists for all 0 < ε < r a δ(ε) such that

||x(0)|| < δ(ε) ⇒ ||x(t)|| < ε, ∀t > 0. For any ε > r, let δ(ε) = δ(r). Then, by

the stability of f , ||x(0)|| < δ(ε) = δ(r) ⇒ ||x(t)|| < r < ε.

Proposition 4 (Local asymptotic stability). Consider a system ẋ = f(x)

that has a single equilibrium point. Assume that the conditions of Proposition 1,

2 and 3 are satisfied. then, the reshaped system is locally asymptotically stable

at the origin.

The original dynamics are globally asymptotically stable, which implies the

Gaussian functions of amplitude 1, with a minimum threshold to avoid setting the likelihood
to 0. The function f is centered on 0 (x0 = 0): a contact distance close to 0 does not decrease
the likelihood. The widths of the Gaussian functions are chosen according the desired level of
penalization for the measurements’ mismatch.

142

existence of a Lyapunov function V : RN → R
+ such that:

V (x) > 0, ∀x �= 0 and V (0) = 0 (B.2.1)

V̇ =
∂V

∂x
f(x) < 0, ∀x �= 0 and V̇ (0) = 0 (B.2.2)

Let Br be defined as in the proof of Proposition 3. Let M ⊂ Br denote the

largest level set of V that lies entirely inside Br. For any x0 ∈ M , the rehsaped

dynamics is exactly equal to the original dynamics ẋ = f(x). Hence, V (x) > 0

and V̇ (x) < 0 holds for all x ∈ M , which proves that the system is locally

asymptotically stable at the origin with the region of attraction given by M .

143

References

P.K. Allen and P. Michelman. Acquisition and interpretation of 3-D sensor data
from touch. IEEE Transactions on Robotics and Automation, 6(4):397–404,
August 1990. ISSN 1042-296X. doi: 10.1109/70.59353.

D. Anghinolfi, G. Cannata, F. Mastrogiovanni, C. Nattero, and M. Paolucci.
On the Problem of the Automated Design of Large-Scale Robot Skin. IEEE
Transactions on Automation Science and Engineering, 10(4):1087–1100, Oc-
tober 2013. ISSN 1545-5955. doi: 10.1109/TASE.2013.2252617.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and Au-
tonomous Systems, 57(5):469–483, May 2009. ISSN 0921-8890. doi: 10.
1016/j.robot.2008.10.024. URL http://www.sciencedirect.com/science/

article/pii/S0921889008001772.

Alan D. Berger and Pradeep K. Khosla. Using Tactile Data for Real-Time Feed-
back. The International Journal of Robotics Research, 10(2):88–102, April
1991. ISSN 0278-3649, 1741-3176. doi: 10.1177/027836499101000202. URL
http://ijr.sagepub.com/content/10/2/88.

Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D Shapes.
IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256, February 1992. ISSN
0162-8828. doi: 10.1109/34.121791. URL http://dx.doi.org/10.1109/34.

121791.

A. Bicchi and V. Kumar. Robotic grasping and contact: a review. In IEEE Inter-
national Conference on Robotics and Automation, 2000. Proceedings. ICRA
’00, volume 1, pages 348–353 vol.1, 2000. doi: 10.1109/ROBOT.2000.844081.

Antonio Bicchi, Marco Gabiccini, and Marco Santello. Modelling natural and
artificial hands with synergies. Philosophical Transactions of the Royal Soci-
ety of London. Series B, Biological Sciences, 366(1581):3153–3161, November
2011. ISSN 1471-2970. doi: 10.1098/rstb.2011.0152.

Alexander Bierbaum, Matthias Rambow, Tamim Asfour, and Rüdiger Dillmann.
A potential field approach to dexterous tactile exploration of unknown objects.
In Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International
Conference on, pages 360–366, 2008.

Aude Billard and Gillian M. Hayes. DRAMA, a Connectionist Architecture

145

for Control and Learning in Autonomous Robots. Adapt. Behav., 7(1):35–63,
December 1999. ISSN 1059-7123. doi: 10.1177/105971239900700103. URL
http://dx.doi.org/10.1177/105971239900700103.

Aude G. Billard, Sylvain Calinon, and Rüdiger Dillmann. Learning from Hu-
mans. In Bruno Siciliano and Oussama Khatib, editors, Springer Hand-
book of Robotics, pages 1995–2014. Springer International Publishing, 2016.
ISBN 978-3-319-32550-7 978-3-319-32552-1. URL http://link.springer.

com/chapter/10.1007/978-3-319-32552-1_74. DOI: 10.1007/978-3-319-
32552-1 74.

Gereon H. Büscher, Risto Kõiva, Carsten Schürmann, Robert Haschke, and
Helge J. Ritter. Flexible and stretchable fabric-based tactile sensor. Robotics
and Autonomous Systems, 63, Part 3:244–252, January 2015. ISSN 0921-
8890. doi: 10.1016/j.robot.2014.09.007. URL http://www.sciencedirect.

com/science/article/pii/S0921889014001821.

M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, and A. Bicchi. Adap-
tive synergies for a humanoid robot hand. In 2012 12th IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids), pages 7–14, November
2012. doi: 10.1109/HUMANOIDS.2012.6651492.

N. Chen, H. Zhang, and R. Rink. Edge tracking using tactile servo. In 1995
IEEE/RSJ International Conference on Intelligent Robots and Systems 95.
’Human Robot Interaction and Cooperative Robots’, Proceedings, volume 2,
pages 84–89 vol.2, August 1995. doi: 10.1109/IROS.1995.526143.

Z. Chen, T. Wimböck, M. A. Roa, B. Pleintinger, M. Neves, C. Ott, C. Borst,
and N. Y. Lii. An adaptive compliant multi-finger approach-to-grasp strategy
for objects with position uncertainties. In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4911–4918, May 2015. doi:
10.1109/ICRA.2015.7139881.

Matei Ciocarlie, Corey Goldfeder, and Peter Allen. Dexterous Grasping via
Eigengrasps: A Low-Dimensional Approach to a High-Complexity Problem.
Robotics: Science and Systems - Robot Manipulation: Sensing and Adapting
to the Real World, 2007. URL http://www.coreygoldfeder.com/papers/

RSS07.pdf.

Matei Ciocarlie, Kaijen Hsiao, Edward Gil Jones, Sachin Chitta, Radu Bogdan
Rusu, and Ioan A. Şucan. Towards Reliable Grasping and Manipulation in
Household Environments. In Oussama Khatib, Vijay Kumar, and Gaurav
Sukhatme, editors, Experimental Robotics, number 79 in Springer Tracts in
Advanced Robotics, pages 241–252. Springer Berlin Heidelberg, 2014. ISBN
978-3-642-28571-4 978-3-642-28572-1. DOI: 10.1007/978-3-642-28572-1 17.

William S. Cleveland. LOWESS: A Program for Smoothing Scatterplots by
Robust Locally Weighted Regression. The American Statistician, 35(1):p. 54,
1981. ISSN 00031305.

Ravin de Souza, Sahar El-Khoury, José Santos-Victor, and Aude Billard. Rec-

146

ognizing the grasp intention from human demonstration. Robotics and Au-
tonomous Systems, 74, Part A:108–121, December 2015. ISSN 0921-8890.
doi: 10.1016/j.robot.2015.07.006. URL http://www.sciencedirect.com/

science/article/pii/S0921889015001505.

Ravin de Souza, Luis. Grasping for the Task. PhD thesis, 2016. URL https:

//infoscience.epfl.ch/record/217897?ln=fr.

Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchical
quadratic programming: Fast online humanoid-robot motion generation. The
International Journal of Robotics Research, 33(7):1006–1028, June 2014.
ISSN 0278-3649, 1741-3176. doi: 10.1177/0278364914521306. URL http:

//ijr.sagepub.com/content/33/7/1006.

Jeremy A. Fishel and Gerald E. Loeb. Bayesian exploration for intelligent
identification of textures. Frontiers in Neurorobotics, 6:4, 2012. doi: 10.
3389/fnbot.2012.00004. URL http://journal.frontiersin.org/article/

10.3389/fnbot.2012.00004/full.

F. Flacco, A. De Luca, and O. Khatib. Prioritized multi-task motion con-
trol of redundant robots under hard joint constraints. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
3970–3977, October 2012. doi: 10.1109/IROS.2012.6385619.

Klaas Gadeyne and Herman Bruyninckx. Markov techniques for object lo-
calisation with force-controlled robots. pages 91–96, August 2001. URL
https://lirias.kuleuven.be/handle/123456789/160334.

Carolina Galleguillos and Serge Belongie. Context Based Object Categorization:
A Critical Survey. Comput. Vis. Image Underst., 114(6):712–722, June 2010.
ISSN 1077-3142. doi: 10.1016/j.cviu.2010.02.004. URL http://dx.doi.org/

10.1016/j.cviu.2010.02.004.

A. P. Gerratt, N. Sommer, S. P. Lacour, and A. Billard. Stretchable capacitive
tactile skin on humanoid robot fingers; First experiments and results. In 2014
IEEE-RAS International Conference on Humanoid Robots, pages 238–245,
November 2014. doi: 10.1109/HUMANOIDS.2014.7041366.

P. Giguere and G. Dudek. A Simple Tactile Probe for Surface Identification by
Mobile Robots. Robotics, IEEE Transactions on, 27(3):534 –544, June 2011.
ISSN 1552-3098.

Corey Goldfeder and Peter K. Allen. Data-driven grasping. Autonomous
Robots, 31(1):1–20, April 2011. ISSN 0929-5593, 1573-7527. doi: 10.1007/
s10514-011-9228-1. URL http://link.springer.com/article/10.1007/

s10514-011-9228-1.

E. Gribovskaya, S.M. Khansari-Zadeh, and A. Billard. Learning Non-linear Mul-
tivariate Dynamics of Motion in Robotic Manipulators. Int. J. Rob. Res., 30
(1):80–117, January 2011a. ISSN 0278-3649. doi: 10.1177/0278364910376251.
URL http://dx.doi.org/10.1177/0278364910376251.

147

E. Gribovskaya, A. Kheddar, and A. Billard. Motion learning and adaptive
impedance for robot control during physical interaction with humans. In
2011 IEEE International Conference on Robotics and Automation (ICRA),
pages 4326–4332, May 2011b. doi: 10.1109/ICRA.2011.5980070.

G. Grioli, M. Catalano, E. Silvestro, S. Tono, and A. Bicchi. Adaptive syn-
ergies: An approach to the design of under-actuated robotic hands. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1251–1256, October 2012. doi: 10.1109/IROS.2012.6385881.

Leon D. Harmon. Automated Tactile Sensing. The International Journal of
Robotics Research, 1(2):3–32, June 1982. ISSN 0278-3649, 1741-3176. doi:
10.1177/027836498200100201. URL http://ijr.sagepub.com/content/1/

2/3.

G. Heidemann and M. Schopfer. Dynamic tactile sensing for object identifica-
tion. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 1, pages 813 – 818 Vol.1, May 2004.

Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. OctoMap: an efficient probabilistic 3d mapping framework
based on octrees. Autonomous Robots, 34(3):189–206, April 2013. ISSN
0929-5593, 1573-7527. doi: 10.1007/s10514-012-9321-0. URL http://link.

springer.com/article/10.1007/s10514-012-9321-0.

Kaijen Hsiao, Sachin Chitta, Matei Ciocarlie, and E. Gil Jones. Contact-reactive
grasping of objects with partial shape information. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1228–
1235. IEEE, 2010.

Rinat Ibrayev and Yan-Bin Jia. Surface Recognition by Registering Data Curves
from Touch. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 55 –60, October 2006.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: learning attractor models for motor
behaviors. Neural Computation, 25(2):328–373, February 2013. ISSN 1530-
888X. doi: 10.1162/NECO a 00393.

Herbert Jaeger. The” echo state” approach to analysing and training recurrent
neural networks-with an erratum note’. Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report, 148,
2001. URL http://minds.jacobs-university.de/sites/default/files/

uploads/papers/EchoStatesTechRep.pdf.

Advait Jain, Marc D. Killpack, Aaron Edsinger, and Charles C. Kemp. Reach-
ing in clutter with whole-arm tactile sensing. The International Journal of
Robotics Research, 32(4):458–482, April 2013. ISSN 0278-3649, 1741-3176.
doi: 10.1177/0278364912471865. URL http://ijr.sagepub.com/content/

32/4/458.

148

N. Jamali, M. Maggiali, F. Giovannini, G. Metta, and L. Natale. A new design
of a fingertip for the iCub hand. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2705–2710, September 2015.
doi: 10.1109/IROS.2015.7353747.

N. Jamali, C. Ciliberto, L. Rosasco, and L. Natale. Active perception: Build-
ing objects’ models using tactile exploration. In 2016 IEEE-RAS 16th In-
ternational Conference on Humanoid Robots (Humanoids), pages 179–185,
November 2016. doi: 10.1109/HUMANOIDS.2016.7803275.

R. S. Jamisola, P. Kormushev, A. Bicchi, and D. G. Caldwell. Haptic exploration
of unknown surfaces with discontinuities. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1255–1260, September
2014. doi: 10.1109/IROS.2014.6942718.

A. R. Jiménez, A. S. Soembagijo, D. Reynaerts, H. Van Brussel, R. Ceres, and
J. L. Pons. Featureless classification of tactile contacts in a gripper using
neural networks. Sensors and Actuators A: Physical, 62(1–3):488 – 491, 1997.
ISSN 0924-4247. Proceedings of Eurosensors X.

R. S. Johansson and G. Westling. Roles of glabrous skin receptors and senso-
rimotor memory in automatic control of precision grip when lifting rougher
or more slippery objects. Experimental Brain Research, 56(3):550–564, 1984.
ISSN 0014-4819.

Roland S. Johansson and J. Randall Flanagan. Coding and use of tactile sig-
nals from the fingertips in object manipulation tasks. Nature Reviews Neuro-
science, 10(5):345–359, April 2009. ISSN 1471-003X, 1471-0048. doi: 10.1038/
nrn2621. URL http://www.nature.com/doifinder/10.1038/nrn2621.

Magnus Johnsson and Christian Balkenius. Experiments with Proprioception
in a Self-Organizing System for Haptic Perception. In [Host publication title
missing]. Towards Autonomous Robotic Systems 2007, University of Wales,
Aberystwyth, UK, 239-245., 2007. URL http://lup.lub.lu.se/record/

948984.

O. Kanoun, F. Lamiraux, and P. B. Wieber. Kinematic Control of Redundant
Manipulators: Generalizing the Task-Priority Framework to Inequality Task.
IEEE Transactions on Robotics, 27(4):785–792, August 2011. ISSN 1552-3098.
doi: 10.1109/TRO.2011.2142450.

Zhanat Kappassov, Juan-Antonio Corrales, and Véronique Perdereau. Tac-
tile sensing in dexterous robot hands — Review. Robotics and Autonomous
Systems, 74, Part A:195–220, December 2015. ISSN 0921-8890. doi: 10.
1016/j.robot.2015.07.015. URL http://www.sciencedirect.com/science/

article/pii/S0921889015001621.

C. C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges for robot ma-
nipulation in human environments [Grand Challenges of Robotics]. IEEE
Robotics Automation Magazine, 14(1):20–29, March 2007. ISSN 1070-9932.
doi: 10.1109/MRA.2007.339604.

149

S. M. Khansari-Zadeh and A. Billard. Learning Stable Nonlinear Dynamical
Systems With Gaussian Mixture Models. IEEE Transactions on Robotics, 27
(5):943–957, October 2011. ISSN 1552-3098. doi: 10.1109/TRO.2011.2159412.

O. Khatib, L. Sentis, J. Park, and J. Warren. Whole-body dynamic be-
havior and control of human-like robots. International Journal of Hu-
manoid Robotics, 01(01):29–43, March 2004. ISSN 0219-8436. doi: 10.1142/
S0219843604000058. URL http://www.worldscientific.com/doi/abs/10.

1142/S0219843604000058.

Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. The International Journal of Robotics Research, 5(1):90–98, March
1986. ISSN 0278-3649, 1741-3176. doi: 10.1177/027836498600500106. URL
http://ijr.sagepub.com/content/5/1/90.

Oussama Khatib. A unified approach for motion and force control of robot
manipulators: The operational space formulation. Robotics and Automation,
IEEE Journal of, 3(1):43–53, 1987. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=1087068.

Junggon Kim, K. Iwamoto, J.J. Kuffner, Y. Ota, and N.S. Pollard. Physically
Based Grasp Quality Evaluation Under Pose Uncertainty. IEEE Transactions
on Robotics, 29(6):1424–1439, December 2013. ISSN 1552-3098. doi: 10.1109/
TRO.2013.2273846.

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. volume 3, pages 2149–2154. IEEE, 2004. ISBN
978-0-7803-8463-7. doi: 10.1109/IROS.2004.1389727.

O. Kroemer, C. H. Lampert, and J. Peters. Learning Dynamic Tactile Sensing
With Robust Vision-Based Training. IEEE Transactions on Robotics, 27(3):
545–557, June 2011. ISSN 1552-3098. doi: 10.1109/TRO.2011.2121130.

K. Kronander and A. Billard. Passive Interaction Control With Dynamical
Systems. IEEE Robotics and Automation Letters, 1(1):106–113, January 2016.
ISSN 2377-3766. doi: 10.1109/LRA.2015.2509025.

K. Kronander, M. Khansari, and A. Billard. Incremental Motion Learning with
Locally Modulated Dynamical Systems. Robot. Auton. Syst., 70(C):52–62,
August 2015. ISSN 0921-8890. doi: 10.1016/j.robot.2015.03.010. URL http:

//dx.doi.org/10.1016/j.robot.2015.03.010.

Susan J Lederman and Roberta L Klatzky. Hand movements: A window
into haptic object recognition. Cognitive Psychology, 19(3):342–368, July
1987. ISSN 0010-0285. doi: 10.1016/0010-0285(87)90008-9. URL http:

//www.sciencedirect.com/science/article/pii/0010028587900089.

Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous grasp-
ing under shape uncertainty. Robotics and Autonomous Systems, 75,
Part B:352–364, January 2016. ISSN 0921-8890. doi: 10.1016/j.robot.
2015.09.008. URL http://www.sciencedirect.com/science/article/

150

pii/S0921889015001967.

H. Maekawa, K. Tanie, and K. Komoriya. Tactile sensor based manipu-
lation of an unknown object by a multifingered hand with rolling con-
tact. In , 1995 IEEE International Conference on Robotics and Automa-
tion, 1995. Proceedings, volume 1, pages 743–750 vol.1, May 1995. doi:
10.1109/ROBOT.1995.525372.

Perla Maiolino, Marco Maggiali, Giorgio Cannata, Giorgio Metta, and Lorenzo
Natale. A Flexible and Robust Large Scale Capacitive Tactile System for
Robots. IEEE Sensors Journal, 13(10):3910–3917, October 2013. ISSN 1530-
437X, 1558-1748. doi: 10.1109/JSEN.2013.2258149. URL http://arxiv.

org/abs/1411.6837. arXiv: 1411.6837.

N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. A versatile General-
ized Inverted Kinematics implementation for collaborative working humanoid
robots: The Stack Of Tasks. In International Conference on Advanced
Robotics, 2009. ICAR 2009, pages 1–6, June 2009.

M. Meier, M. Schopfer, R. Haschke, and H. Ritter. A Probabilistic Approach
to Tactile Shape Reconstruction. IEEE Transactions on Robotics, 27(3):630–
635, 2011. ISSN 1552-3098. doi: 10.1109/TRO.2011.2120830.

Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The iCub humanoid robot: an open platform for research in embodied
cognition. In Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems, PerMIS ’08, pages 50–56, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-293-1. doi: 10.1145/1774674.1774683.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning control Lyapunov
function to ensure stability of dynamical system-based robot reaching mo-
tions. Robotics and Autonomous Systems, 62(6):752–765, June 2014. ISSN
0921-8890. doi: 10.1016/j.robot.2014.03.001.

A. Narendiran and B. George. Capacitive tactile sensor with slip detection
capabilities for robotic applications. In 2015 IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC) Proceedings, pages
464–469, May 2015. doi: 10.1109/I2MTC.2015.7151312.

S.E. Navarro, N. Gorges, H. Worn, J. Schill, T. Asfour, and R. Dillmann. Haptic
object recognition for multi-fingered robot hands. In Haptics Symposium
(HAPTICS), 2012 IEEE, pages 497 –502, March 2012.

A.M. Okamura and M.R. Cutkosky. Haptic exploration of fine surface features.
In 1999 IEEE International Conference on Robotics and Automation, 1999.
Proceedings, volume 4, pages 2930–2936 vol.4, 1999. doi: 10.1109/ROBOT.
1999.774042.

A.M. Okamura, M.L. Turner, and M.R. Cutkosky. Haptic exploration of objects
with rolling and sliding. In , 1997 IEEE International Conference on Robotics
and Automation, 1997. Proceedings, volume 3, pages 2485–2490 vol.3, April

151

1997. doi: 10.1109/ROBOT.1997.619334.

Jaeheung Park and Oussama Khatib. Robot multiple contact control. Robot-
ica, 26(05):667–677, September 2008. ISSN 1469-8668. doi: 10.1017/
S0263574708004281. URL http://journals.cambridge.org/article_

S0263574708004281.

P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement adap-
tation based on previous sensor experiences. In 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 365–371, Septem-
ber 2011. doi: 10.1109/IROS.2011.6095059.

Peter Pastor, Mrinal Kalakrishnan, Franziska Meier, Freek Stulp, Jonas
Buchli, Evangelos Theodorou, and Stefan Schaal. From dynamic move-
ment primitives to associative skill memories. Robotics and Autonomous
Systems, 61(4):351–361, April 2013. ISSN 0921-8890. doi: 10.1016/j.robot.
2012.09.017. URL http://www.sciencedirect.com/science/article/

pii/S0921889012001716.

A. Petrovskaya and O. Khatib. Global Localization of Objects via Touch. IEEE
Transactions on Robotics, 27(3):569–585, June 2011. ISSN 1552-3098. doi:
10.1109/TRO.2011.2138450.

JR. Platt, A. H. Fagg, and R. A. Grupen. Null-Space Grasp Control: Theory
and Experiments. IEEE Transactions on Robotics, 26(2):282–295, April 2010.
ISSN 1552-3098. doi: 10.1109/TRO.2010.2042754.

N.S. Pollard. Synthesizing grasps from generalized prototypes. In , 1996 IEEE
International Conference on Robotics and Automation, 1996. Proceedings, vol-
ume 3, pages 2124–2130 vol.3, April 1996. doi: 10.1109/ROBOT.1996.506184.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected ap-
plications in speech recognition. In Proceedings of the IEEE, pages 257–286,
1989.

Máximo A. Roa and Raúl Suárez. Grasp quality measures: review and perfor-
mance. Autonomous Robots, 38(1):65–88, July 2014. ISSN 0929-5593, 1573-
7527. doi: 10.1007/s10514-014-9402-3. URL http://link.springer.com/

article/10.1007/s10514-014-9402-3.

C. Rosales, A. Ajoudani, M. Gabiccini, and A. Bicchi. Active gathering of fric-
tional properties from objects. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2014), pages 3982–3987, September
2014. doi: 10.1109/IROS.2014.6943122.

L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Souères, and J. Y. Fourquet.
Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other
Unilateral Constraints. IEEE Transactions on Robotics, 29(2):346–362, April
2013. ISSN 1552-3098. doi: 10.1109/TRO.2012.2234351.

Eric L. Sauser, Brenna D. Argall, Giorgio Metta, and Aude G. Billard. Itera-

152

tive learning of grasp adaptation through human corrections. Robotics and
Autonomous Systems, 60(1):55 – 71, 2012. ISSN 0921-8890.

Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to
motor learning by imitation. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 358(1431):537–547, 2003. URL http://rstb.

royalsocietypublishing.org/content/358/1431/537.short.

A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, andW. Burgard.
Object identification with tactile sensors using bag-of-features. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on, pages 243 –248, October 2009.

Carsten Schürmann, Matthias Schöpfer, Robert Haschke, and Helge Ritter.
A High-Speed Tactile Sensor for Slip Detection. In Erwin Prassler, Mar-
ius Zöllner, Rainer Bischoff, Wolfram Burgard, Robert Haschke, Martin
Hägele, Gisbert Lawitzky, Bernhard Nebel, Paul Plöger, and Ulrich Reiser,
editors, Towards Service Robots for Everyday Environments, number 76 in
Springer Tracts in Advanced Robotics, pages 403–415. Springer Berlin Hei-
delberg, 2012. ISBN 978-3-642-25115-3 978-3-642-25116-0. URL http:

//link.springer.com/chapter/10.1007/978-3-642-25116-0_27. DOI:
10.1007/978-3-642-25116-0 27.

Allen I. Selverston. Are Central Pattern Generators Understandable? Behavioral
and Brain Sciences, 3(4):535, 1980.

Ashwini Shukla and Aude Billard. Coupled dynamical system based arm–hand
grasping model for learning fast adaptation strategies. Robotics and Au-
tonomous Systems, 60(3):424–440, March 2012. ISSN 0921-8890. doi:
10.1016/j.robot.2011.07.023.

N. Sommer. Learning with tactile feedback on a humanoid robot. Mas-
ter thesis, INSA de Strasbourg, February 2012. URL http://eprints2.

insa-strasbourg.fr/1073/.

N. Sommer and A. Billard. Face classification using touch with a humanoid
robot hand. In 2012 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 120–125, 2012. doi: 10.1109/HUMANOIDS.2012.
6651508.

Nicolas Sommer and Aude Billard. Multi-contact haptic exploration and grasp-
ing with tactile sensors. Robotics and Autonomous Systems, 2016. ISSN 0921-
8890. doi: 10.1016/j.robot.2016.08.007. URL http://www.sciencedirect.

com/science/article/pii/S0921889016301610.

Nicolas Sommer, Miao Li, and Aude Billard. Bimanual compliant tactile explo-
ration for grasping unknown objects. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 6400–6407. IEEE, 2014.

J. S. Son and R. D. Nowe. Tactile sensing and stiffness control with multifingered
hands. In , 1996 IEEE International Conference on Robotics and Automation,

153

1996. Proceedings, volume 4, pages 3228–3233 vol.4, April 1996. doi: 10.1109/
ROBOT.1996.509204.

S. A. Stansfield. A haptic system for a multifingered hand. In , 1991 IEEE In-
ternational Conference on Robotics and Automation, 1991. Proceedings, pages
658–664 vol.1, April 1991. doi: 10.1109/ROBOT.1991.131658.

Ricarda Steffens, Matthias Nieuwenhuisen, and Sven Behnke. Continuous Mo-
tion Planning for Service Robots with Multiresolution in Time. In In-
telligent Autonomous Systems 13, pages 203–215. Springer, Cham, 2016.
URL http://link.springer.com/chapter/10.1007/978-3-319-08338-4_

16. DOI: 10.1007/978-3-319-08338-4 16.

Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb, G. S. Sukhatme,
and S. Schaal. Force estimation and slip detection/classification for grip con-
trol using a biomimetic tactile sensor. In 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pages 297–303, November
2015. doi: 10.1109/HUMANOIDS.2015.7363558.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 1998. URL http://www.cell.com/trends/

cognitive-sciences/pdf/S1364-6613(99)01331-5.pdf.

Pete Trautman, Jeremy Ma, Richard M. Murray, and Andreas Krause. Robot
navigation in dense human crowds: Statistical models and experimental stud-
ies of human–robot cooperation. The International Journal of Robotics Re-
search, page 0278364914557874, February 2015. ISSN 0278-3649, 1741-3176.
doi: 10.1177/0278364914557874. URL http://ijr.sagepub.com/content/

early/2015/02/05/0278364914557874.

M. R. Tremblay and M. R. Cutkosky. Estimating friction using incipient slip
sensing during a manipulation task. In , 1993 IEEE International Conference
on Robotics and Automation, 1993. Proceedings, pages 429–434 vol.1, May
1993. doi: 10.1109/ROBOT.1993.292018.

A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard. Task Parameteriza-
tion Using Continuous Constraints Extracted From Human Demonstrations.
IEEE Transactions on Robotics, 31(6):1458–1471, December 2015. ISSN 1552-
3098. doi: 10.1109/TRO.2015.2495003.

G. Vezzani, N. Jamali, U. Pattacini, G. Battistelli, L. Chisci, and L. Natale. A
novel Bayesian filtering approach to tactile object recognition. In 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Humanoids), pages
256–263, November 2016a. doi: 10.1109/HUMANOIDS.2016.7803286.

Giulia Vezzani, Ugo Pattacini, Giorgio Battistelli, Luigi Chisci, and Lorenzo
Natale. Memory Unscented Particle Filter for 6-DOF Tactile Localiza-
tion. arXiv:1607.02757 [cs], July 2016b. URL http://arxiv.org/abs/1607.

02757. arXiv: 1607.02757.

Y. Yamakawa, A. Namiki, M. Ishikawa, and M. Shimojo. One-handed knotting

154

of a flexible rope with a high-speed multifingered hand having tactile sen-
sors. In 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 703–708, October 2007. doi: 10.1109/IROS.2007.4399379.

155

Curriculum Vitae

157

NICOLAS SOMMER
Roboticist

� n.sommer@epfl.ch � +41 78 614 15 38 � Chemin du Bochet, 2 � VD1025 St-Sulpice, Switzerland
� github.com/nisommer
Nationality: French Residence permit: Permis B

RESEARCH INTERESTS

�
Machine Learning

�
Control with Tactile Sensors

	
Automation
Useful for everyday life

SKILLS

C++ Python Matlab LATEX

ROS
 μC programming

CAD (ProE, Solidworks)

Electronic Circuit Design (AltiumDesigner)

LANGUAGES

French ○○○○○
English ○○○○○
German ○○○○○
Spanish ○○○○○
Portuguese ○○○○○
Turkish ○○○○○

INTERESTS

Volleyball� Piano Salsa Diving

DIY projects Home automation

EDUCATION

PhD
“Multi-contact tactile exploration and interaction with unknown objects”
EPFL
� December 2012 –March 2017 � Lausanne, Switzerland

• Supervision of a studentMaster thesis: Proprioception for collision detection

• In charge of IT administration in the lab

Msc, Microengineering Robotics and Autonomous Systems
EPFL
� 2010 – 2012 � Lausanne, Switzerland

• Master project: Learning with tactile feedback on a humanoid robot
I applied Programming by Demonstration (PbD)methods to learn and
reproducemanipulation tasks, taking into account tactile signals from the
robot’s fingertips

• Double-degree between EPFL (CH) and INSA (FR)

Msc, Mechatronics

INSA
� 2006 – 2012 � Strasbourg, France

• Project: Design of a quadrotor controller
Model identification of a quadrotor, optimizing controller parameters for
flight, programming of the controller on onboardmicrocontroller (Microchip
dsPIC family)

WORKEXPERIENCE

Teaching assistant

EPFL
� 2011-2015 � Lausanne, Switzerland

• AppliedMachine Learning class forMaster Students

PCA ICA K-means KNN GMM/GMR SVM/SVR

Neural networks HMM

• Machine Learning class for PhD Students

CCA Bagging/boosting Reinforcement Learning

Summer internship

Siemens
� June – July 2009 � Haguenau, France

• Study of the precision and accuracy of the instruments in themetrology
laboratory (Quality departement)

Summer internship

Nussbaum (automobile lifts)
� June – July 2007 � Bodersweier, Germany

• First experience in a company. Various tasks: CADmodeling of hardware
components, electronic circuit verification, assistance to truck lifts
production.

PUBLICATIONS

� Journal Articles

• Sommer, Nicolas and Aude Billard (2016). “Multi-contact haptic exploration
and grasping with tactile sensors”. In: Robotics and Autonomous Systems.

� Conference Proceedings

• Gerratt, Aaron P., Nicolas Sommer, Stéphanie P. Lacour, and Aude Billard
(2014). “Stretchable capacitive tactile skin on humanoid robot fingers—First
experiments and results”. In: 2014 IEEE-RAS International Conference on
Humanoid Robots. IEEE.

• Sommer, Nicolas, Miao Li, and Aude Billard (2014). “Bimanual compliant
tactile exploration for grasping unknown objects”. In: 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE.

• Sommer, Nicolas and Aude Billard (2012). “Face classification using touchwith
a humanoid robot hand”. In: 2012 12th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).

� Workshop Presentations

• Nicolas Sommer (2014). Tactile exploration with the iCub robot. Presented at
the iCub and friendsWorkshop, ICRA 2014. Hong-Kong.

• Nicolas Sommer (2012). Face Classification using Touch with a Humanoid Robot.
Presented in the SecondWorkshop on Advances in tactile sensing and
touch-based human-robot interaction, IROS 2012. Villamoura, Portugal.

