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1 École Polytechnique Fédérale de Lausanne, 2 Humboldt-Universität zu Berlin,
3 The University of Queensland, 4 Griffith University

Abstract
Today’s social platforms, such as Twitter and Face-
book, continuously generate massive volumes of data.
The resulting data streams exceed any reasonable
limit for permanent storage, especially since data is
often redundant, overlapping, sparse, and generally
of low value. This calls for means to retain solely
a small fraction of the data in an online manner. In
this paper, we propose techniques to effectively de-
cide which data to retain, such that the induced loss
of information, the regret of neglecting certain data,
is minimized. These techniques enable not only ef-
ficient processing of massive streaming data, but are
also adaptive and address the dynamic nature of so-
cial media. Experiments on large-scale real-world
datasets illustrate the feasibility of our approach in
terms of both, runtime and information quality.

1 Introduction
Current social platforms such as Twitter, Facebook, and Yelp,
produce data streams with an unprecedented rate. For exam-
ple, about half a billion tweets are generated every day [24].
To make sense of these streams, one can typically only retain
a small fraction of the data for analysis, due to storage limits
and the cognitive load induced by the sheer data volume.

Against this background, traditional methods for the anal-
ysis of social platforms perform data summarization, e.g.,
based on relevance detection or measures of information di-
versity [9; 35]. However, these approaches are inherently
limited to a static setting: The data is crawled and stored,
before the top-k most important data items are selected as a
data summary. Even if feasible, such an approach incurs high
storage cost and does not avoid the problem of retaining only
a fraction of the data once its volume exceeds a storage limit.

In this paper, we consider the natural setting of social plat-
forms, where data is dynamic and available as a stream. Then,
retaining of data becomes more challenging compared to one-
off summarization, as data selection has to be repeated every
time new data arrives. Instead of considering the whole his-
torical data, summarization now works on the retained data
(i.e., a previous summary) and the new data. This further
degrades the informativeness of the original data since the
∗Corresponding author

summary of the retained data already induces some loss of
information. Specifically, the lack of historical data leads to
a biased assessment of data importance: Data that was con-
sidered unimportant and thus discarded in the past may retro-
spectively turn out to be important.

To minimize the regret of discarding important data, two
requirements have to be met. First, a compact data sketch
needs to be maintained, in addition to the actual data sum-
mary, to capture the long-term history of data and enable a
precise assessment of data utility over time. Yet, for data
stemming from social platforms, this sketch needs to be adap-
tive to changes in the data stream. Second, a protocol needs
to be specified to decide which data items to retain and to
discard, such that the total regret in data utility is minimal.
To cope with the data stream volume and velocity of social
platforms, this protocol needs to be very efficient.

In this paper, we tackle these requirements and propose a
novel statistical model, which does not only capture the tra-
ditional context of social data (importance of topics, user in-
fluence, information diffusion) [26; 35], but also embeds the
dynamics of this context over time. For example, topics are
not considered to be static. They may emerge or disappear
over time and relate to recurring events. Striving for online
processing of streaming data, we develop a scalable learn-
ing mechanism to quickly update the model with new data.
We further show how the statistical model is used to define a
utility function to assess the representativeness of a data sum-
mary. Minimizing the regret of discarding data then becomes
the problem of minimizing the difference between the utility
of the retained data and the utility of whole historical data.
Finally, we present a progressive algorithm to select which
data to retain, with guarantees on the induced regret factor.
This algorithm scales linearly in time and space, solely in the
size of the data summary (not the whole data stream).

Our contributions and the paper structure are summarized
as follows. After outlining the retaining problem with min-
imal regret (§2), we present (i) a statistical model to sketch
data properties; (ii) a utility function to assess data represen-
tativeness (§3); and (iii) a progressive algorithm to solve the
retaining problem (§4). Using diverse datasets derived from
Twitter, we demonstrate improvements of five orders of mag-
nitude in efficiency and up to 42% in information quality of
our approach over state-of-the-art baselines (§5). We then re-
view related work (§6) and conclude the paper (§7).



2 Problem Statement
We model the stream of data stemming from a social platform
by an infinite set of textual data items E = {e1, e2, . . .}. The
items are totally ordered based on their occurrence time, de-
noted by the subscript. By Et = {e1, . . . , et}, we denote the
set of items until time t. Acknowledging that not all items
from E can be stored permanently, a representative subset
of E of size k shall be retained. Here, the parameter k de-
pends on the application context and typically reflects the
storage limit. We further postulate a non-negative function
f : 2E → R≥0 to quantify the utility of a set of items S ⊆ E,
capturing how well S represents E according to some objec-
tive. Given that E is continuously extended with new data
items, the retaining problem with minimal regret is to select
k items, such that the regret ratio—the normalized difference
between the utility of the retained items and the utility of the
whole data stream—is minimal.
Problem 1 (Retaining Problem with Minimal Regret). Given
a data stream Et until time t, a current set of retained
items St ⊆ Et, a window of new data items W =
{et+1, . . . , et+|W |}, the problem is to construct a new set of
retained items St+w, such that:

St+w = arg min
S⊆(St∪W ), |S|=k

f(Et ∪W )− f(S)

f(Et ∪W )
. (1)

The problem setting is illustrated in Fig. 1. Upon the arrival of
a window of new items, the set of retained items is updated.
This is done by selecting items from the old set of retained
items and from the window.

The figure further illustrates why the retaining problem
with minimal regret cannot be addressed by applying tradi-
tional data summarization each time a window of new data
items arrives. Traditional summarization would consider
solely the current set of retained items and the items of the
new window. Yet, the data stream history in terms of items
discarded in the past would be neglected. Consequently,
when constructing a new set of retained items, the utility of
possible candidate sets cannot be assessed accurately.

As illustrated in Fig. 1, therefore, a concise sketch of his-
torical data needs to be maintained. It captures essential
properties of data items that have been discarded in the past,
thereby enabling an accurate assessment of the regret ratio
of a potential set of retained items. To realise such a sketch,
§3 presents a statistical model and also shows how to assess
the representativeness of an item set using an utility function.
In §4, we then present a progressive algorithm to solve the
retaining problem with minimal regret under this model.

Data item in stream

Retained data item

Set of retained items

Window of new items

Sketch of 
historical data

Figure 1: Illustration of the retaining problem (k = 5, |W | = 3).

3 Model and Approach
Below, we first propose a statistical model to sketch the his-
torical data of a stream, before turning to the question of how
to assess the utility of a set of retained data items. Finally, we
discuss a simple strategy to solve the retaining problem.

3.1 A statistical model for social data
For textual data items that originate from social platforms,
topics are a fundamental concept to understand the co-
occurrence relations of words [6; 7]. We thus capture infor-
mation on topics as a statistical means to select representa-
tive data items from important clusters of words. However,
the dynamic nature of streaming data from social platforms
prevents us from knowing a specific distribution of topics in
some future state. Rather, we face the following phenomena:
• Emergent topics: In a streaming setting, new topics may

emerge over time. Hence, topic modelling techniques
such as LDA [5] or pLSI [18] that fix a pre-defined num-
ber of topics are not applicable. A small number of topics
may lead to information loss, as different words might end
up in the same cluster, whereas a large number of topics
may imply sparse clusters, destroying data regularities.

• Emergent vocabulary: An evolving collection of topics
implies that the vocabulary of words changes over time.
Words may only be invented at a specific time [34] (e.g.,
‘brexit’ during the events in the UK in June 2016). A fixed
vocabulary as in traditional topic models [5; 14] does not
capture these dynamics and tends to be inefficient due to
unused and redundant words.

• Recurring topics: Traditional data summarization typi-
cally spans a short period of time [8; 35], due to data
storage limits. In contrast, when processing data streams
of social platforms, a long history of data items is con-
sidered, so that topics will recur over time [15] (e.g., the
topic of ‘football’ shows seasonal patterns). Such effects
influence the decision of which data items to retain.

Against this background, we propose a non-parametric [19]
probabilistic model to sketch the properties of past data items.
It features a potentially unbounded number of topics and
words that are learned from textual data items over time. It
also considers recurrent topics by means of temporal cluster
variables, for which the time granularity can be customised.

Formally, a textual data item e is modelled as a multiset
of words {v1, . . . , v|e|}, where vi is a word from a dynamic
vocabulary V . A multiset of words further defines a seman-
tic topic z. We model the dynamics of words per topic by
means of a Dirichlet process to generate the word distribution
φz and the vocabulary ρz of a topic z. Further, at time t, a
topic distribution θ is used to generate the topics of a new data
item et. To ensure that the temporal aspect of evolving topics
is reflected in the generation, we use a hierarchical Dirich-
let process to establish the link between data items in terms
of topics. This yields a a concise and consistent set of top-
ics rather than a sparse and unnecessarily large one. Finally,
we model the recurring topics by means of temporal clusters,
whose number is unbounded in general. To this end, a Chi-
nese restaurant process [3] τ is used to non-parametrically
generate a temporal cluster label ct for each data item et. The
model is summarised in Fig. 2.
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Figure 2: Model to sketch historical data. Shaded/blank circles are
observed/latent variables, non-circles are model parameters.

Generative process. The generative process for our model is
defined as follows. For each item et ∈ E at time t:
(1) Generate the lengths (number of words) of et from a Pois-

son distribution:
Ne ∼ Poiss(ε)

(2) Generate the topic of et from a categorical distribution:
ct ∼ Cat(τ)

(3) Generate the temporal cluster label of et from a multino-
mial distribution:
ht|ct, π ∼Mult(πct)
where the value of ht depends on the granularity accord-
ing to which the topic distribution is captured for the data
stream (e.g., ht has a value of 31 to model topics per day
of a month).

(4) For each of the i = 1 . . . Ne word indices of et:
a. Generate a topic from a multinomial distribution:
zi|ct, θ ∼ p(z|t) ,Mult(θct)

b. Generate a word vi from zi via a multinomial distri-
bution:
vi|zi, φ, ρ ∼ p(v|z) ,Multρzi (φzi)
where ρz is a vocabulary generated from an n-gram
model and φz is the probability of selecting ρz for
word vi [34].

Model parameters. The sketch of historical data is designed
by parametrising the model as follows. The sketch is denoted
by Θ = (α,G0, λ, γ, ζ, η, ε), a vector of parameters for:
• The Dirichlet process [13] to generate ρ and φ:
ρzk, φzk ∼ DP (α,G0), for t = 1, 2, . . . and k =
1, 2, . . ..

• The hierarchical Dirichlet process [31] to generate θ:
β ∼ GEM(γ), θc ∼ DP (λ, β), for c = 1, 2 . . .

• The Chinese restaurant process [3] to generate τ :
τ ∼ CRP (ζ)

• The Dirichlet distribution [13] to generate π:
πc ∼ Dir(η), for c = 1, 2, . . .

This parametrisation of the model yields a compact, light-
weight sketch of historical data. Since it contains solely
single-variable parameters, it has constant-space require-
ments. In §4, we will show how to update the model pa-
rameters based on a data stream by means of an incremental
inference mechanism.

3.2 Utility of retained data
To judge how well a set of retained data items stemming from
social platforms represents a whole data stream, we argue that
the following aspects shall be considered: First, semantic in-
formation such as topics and word frequencies has to be in-
corporated, see [5; 25; 35]. Second, the importance of data
from social platforms is influenced by the social context (e.g.,
the authors of a textual statement) and its freshness, as the in-
terestingness of social data degrades over time. Given the
above sketch of historical data Θ(t) at time t, these incorpo-
rate these aspects in the assessment of data utility as follows.
On semantic information. We first consider the probability
p(v, e) for observing a word w in a data item e at time t. It is
defined based on the evolution of topics over time as

p(v, e) = Ep(z|Θ(t))p(v|z)
where p(v|z) represents the probability distribution of words
given a topic, and p(z|Θ(t)) represents the probability distri-
bution of topics at time t. The latter is derived from sketch Θ
by the aforementioned generative distributions.

Based thereon, the probability of an item e being semanti-
cally important is defined as

p(e|Θ(t)) =
∏
v∈e

p(v, e|Θ(t)) =
∏

v∈V (t)

p(v, e)n(v,e)

where V (t) is the vocabulary at time t (maintained based on
Θ(t) in constant space [34]) and n(v, e) denotes the frequency
of a word v ∈ V (t) in item e.
On freshness and social context. To model that the inter-
estingness of data degrades over time, we define a monotonic
decreasing function g(t). Specifically, the decay in interest-
ingness of past data is described by an exponential form:

g(e) = exp−λ(t−t(e))

where λ is the decay rate and is set to 0.5 (maximal entropy
principle), t is the current time and t(e) is the time of e. Fol-
lowing [26; 35], we further associate each item ewith a vector
of social features (h1(e), . . . , hm(e)). Then, the aggregation
of these features, denoted by h(e), describes the social con-
text of a data item.
A utility measure. In social data, topics with highly frequent
words may dominate other topics. To avoid such vocabulary
bias, we define the utility of a set of items S as the log-
likelihood over its items based on the information entropy.
This measure of utility incorporates the above notions of se-
mantic information, freshness, and social context:

f(S) =
∑
e∈S

∑
v∈V

n(v, e)p(v, e) log
1

p(v, e)
g(e)h(e) (2)

Using this formulation, an algorithm to select data items
will prefer sets with high entropy, i.e., sets with items that
cover diverse topics and preserve the evolving topic distribu-
tion. As proven in the appendix, the above measure is mono-
tonic (selecting more items increases utility) and submodular
(marginal gains by selecting more items start to diminish due
to saturation of the utility objective).
Proposition 1. f(.) is a monotonic function.
Proposition 2. f(.) is a submodular function.



3.3 A simple retaining algorithm
A straight-forward approach to solve Problem 1 under the
above model applies traditional data summarization [35] on
the retained items and the content of a new window. Then,
the new set of retained items is selected as:

max
S⊆St∪W,|S|=k

f(S) (3)

which is equivalent to Eq. 1 since the value of f(Et+w) is
constant in terms of selecting any S. However, this problem
is known to be NP-complete [35; 27; 21]

Due to the computational complexity, greedy approxima-
tion algorithms (inspired by the knapsack problem) are com-
monly employed. They start with the empty set S(0) = ∅,
and at each iteration i over the current data, choose an item
e ∈ St ∪W maximizing the utility, i.e.,

S(i) = S(i−1) ∪ arg max
e∈St∪W

f(S(i−1) ∪ e)− f(S(i−1)) (4)

For a monotonic and submodular function (as our utility
function defined above), this greedy algorithm yields a (1 −
1/e) ≈ 0.63 approximation [27]. However, this algorithm
has an update time complexity of O(k(k + |W |)), which is
undesirable for streaming applications. Also, the update pro-
cess needs to be repeated every time new data arrives.

4 A Progressive Retaining Algorithm
Given the above results on hardness of the retaining prob-
lem and the time complexity of a simple greedy algorithm,
we now present a progressive algorithm. It is tailored to the
stream processing setting and shows linear time and space
complexity. The algorithm comprises of (i) an incremental
inference mechanism to update the sketch of historical data;
and (ii) a mechanism to select a new set of retained items.

4.1 Updating the data sketch
To update the parameters Θ of our model, we realise an on-
line learning mechanism. When data arrives, we compute the
observed variables and propagate back the information to the
model parameters. Once the parameters have been updated,
the conditional and marginal probabilities for the utility func-
tion are computed following the generative process.

Many online learning techniques have been developed
based on Markov chain Monte Carlo sampling (e.g., incre-
mental Gibbs sampling [6]). However, these techniques either
reduce model complexity (loosing the guarantee to converge
for the complete model) or have a space complexity that is lin-
ear in the number of items to analyse [16]. To overcome these
issues, we rely on stochastic variational inference [17]. Here,
the idea is to minimize the evidence lower bound (ELBO) of
the expected difference between the observed distribution and
the latent distribution, defined as:

L(Z) = Eq(Z)[ln
p(Z,E)

q(Z)
]

where Z is the set of all latent variables in the model (except
model parameters and observed variables); and q(Z) is an
approximate distribution of p(Z|E), which can be factorised

over the distributions of model parameters in the generative
process. Then, we apply stochastic optimisation to the ELBO
function over a data stream, which basically updates the new
parameter values from the previous ones following the direc-
tion of the ELBO gradient of new data with a fixed step size.
The more data is received, the more the model parameters
will converge to minimize the ELBO function.

Instead of single-item update, our approach considers mul-
tiple observations per update to reduce noise [17], which also
aligns with window-based processing to avoid order distor-
tion in data streaming settings. Receiving data as a series of
windows Wb, b = 1, 2, . . ., of items, we proceed as follows:
1. We update the local parameters of the variational distri-

bution of the word-topic variable z and the topic-cluster
variable c. This requires us to maintain additional Mz lo-
cal parameters for possible values of z, and Mc local pa-
rameters for possible values of c. Here, Mc,Mz are ‘prior
beliefs’ on the maximum number of topics and recurring
topic clusters. Yet, their effects are marginal, as the up-
dates are dominated by the observed information, so that
they can be safely set to large constant values (e.g., 1000).

2. We compute the natural gradients using previous param-
eter values Θ(t−1) and the above local parameters of the
ELBO function decomposed over each item e ∈ Eb [16].
Formally, we obtain∇Θ(t−1)Le as a vector of gradients for
each parameter in Θ(t−1).

3. The new values for model parameters are computed from
their previous value:

Θ(t) = Θ(t−1) + wb
1

|Wb|
∑
e∈Wb

∇Θ(t−1)Le (5)

where wb is the learning rate to control the learning qual-
ity and convergence of the inference. wb is often modelled
as a power function of b with a forgetting rate r [17]. Set-
ting r ∈ (0.5, 1] guarantees convergence [17], while larger
values often lead to higher learning quality and faster con-
vergence (but not monotonically).

Note that windows of large size reduce the number of up-
dates, but may lead to a poor estimation of model parameters.
To further improve scalability, updating of model parame-
ters can be parallelised by exploiting the conditional inde-
pendence property. When the global variables (i.e., the most
outer parameters in the model) are given, the updates to local
variables (i.e., inner parameters) become independent and can
thus be computed concurrently. Also, the computation of se-
mantic information, decay in interestingness, and social fea-
tures per data item, see §3.2, is independent once the model
parameters are updated and thus can be parallelised.

4.2 Retaining data items
We now turn to the selection of data items to retain. In
essence, at each step, a new set of items is selected as the one
with the highest utility among all candidate sets. The candi-
date sets are created by swapping at most one new item with a
retained item, if the utility increases. However, the arrival of
a new item may change the model parameters, influences the
decay in interestingness of old items, and may introduce new
social features. Hence, the utility of the retained set of items
has to be updated, before the swapping procedure is started.



Retaining algorithm. Our progressive retaining algorithm
is formalised in Alg. 1. We illustrate the algorithm with a
window size of |W | = 10 (line 6). The algorithm starts with
the empty set S0 = ∅. As long as no more than k elements
e1, . . . , et have arrived, all of them are kept, i.e., St = St−1∪
{et}, for t ≤ k. For each new item et, where t > k, we
update the utility value of f(St−1) and compute the semantic
importance p(et), the decay in interestingness g(et) and the
social features h(et). Then, we check whether swapping this
item and an item in St−1 will increase the utility value. If so,
the one that maximizes the utility is selected for swapping.

Theorem 1. Alg. 1 does a single pass over data stream, uses
O(k) memory, and has O(k) update time per item.

The proof of Theorem 1 can be found in the appendix. Cor-
rectness of Alg. 1 is established as follows: First, the decay
in interestingness is a monotonic decreasing function. Thus,
an optimal selection remains optimal after the utility has been
updated. Also, even if a new item does not increase utility in
terms of entropy and social features, the algorithm still swaps
it with an old item to preserve the freshness of the retained
set of items. Second, adding a new item increases the entropy
of the topic distribution. Thus, while the algorithm favours
new items, it still preserves topics by ensuring an even distri-
bution of the selected items across all topics (old and new).
Moreover, an optimal selection remains optimal as the en-
tropy increases for all old items.
Incremental utility computation. The above complexity re-
sult assumes that the computation of utility (line 14), when
swapping data items, is done in constant time. This indeed
holds true, since utility can be computed incrementally, i.e.,
f(Si) is derived from f(Si−1) in constant time as follows:

f(Si−1\{e}∪{e′}) = f(Si−1)−
∑
v∈V

n(v, e)p(v, e) log
1

p(v, e)

g(e)h(e) +
∑
v∈V

n(v, e′)p(v, e′) log
1

p(v, e′)
g(e′)h(e′).

Here, values p(., .), n(., .), g(.), h(.) have been computed al-
ready in the previous steps of the algorithm (lines 9 to 13).

5 Empirical Evaluation
Below, we first elaborate on the experimental setup, before
we analyse our method’s efficiency and effectiveness.

5.1 Experimental Setup

Datasets. We extracted datasets using the Twitter Stream-
ing API [35]. Over a year, we considered five different do-
mains (climate change, vaccination, processed food, genet-
ically modified organism, general public) and randomly se-
lected 1 million English tweets per domain. Furthermore,
a total of five important social features (e.g., user influence,
retweet score, and affective language) had been extracted for
each data item using existing frameworks [35].
Baselines. We compare our approach with several baselines:
• Traditional summarization: a state-of-the-art summariza-

tion technique [35] for social data.

Algorithm 1: A Progressive Retaining Algorithm
input : An infinite sequenceE of data items
output: A selected set St of size k of data items at any time t

1 S0 = ∅;
2 for t = 1 to k do St = St−1 ∪ {et} ;
3 W = ∅; .Window
4 for t = k + 1 to |E| do
5 W = W ∪ {et};
6 if |W | < 10 and t < n then
7 St = St−1;
8 continue;

// Incremental learning of model parameters

9 Compute Θ(t) from Θ(t−1) andW ;
10 Update p(v, e) and n(v, e) by new parameter Θ(t), ∀v ∈ V, e ∈ St−1;
11 Update g(e) ∀e ∈ St−1;
12 Update f(St−1);

// Prepare computation of utility of new items

13 Compute p(v, e′), n(v, e′), g(e′), h(e′) for all e′ ∈ W and v ∈ V ;

// Find swapping pair

14 e∗, eb = arg maxe∈St−1,e′∈W f(St−1 \ {e} ∪ {e′});

15 if f(St−1 \ {e∗} ∪ {eb}) ≥ f(St−1) then
16 St = St−1 \ {e∗} ∪ {eb};
17 else St = St−1 ;
18 W = ∅; . Reset for new window

• Greedy: the simple greedy algorithm (see §3.3) to select
the items to retain.

• Offline learning: an iterative algorithm to compute model
parameters using deterministic variational inference [22;
4], which requires a full pass of the data in each iteration.

• Static: our retaining algorithm tailored to the traditional,
static setting of data summarization: offline learning to
compute the sketch of historical data and the greedy algo-
rithm to select the items to retain.

Environment. All results have been obtained on an Intel i7
3.8GHz system (4 cores, 16GB RAM). Following [17; 16],
we vary the forget rate in (0.5, 1], choose a stable window
size = 10 and report average values.

5.2 Efficiency
We evaluate the update time of our approach, when new data
arrives. To assess the average time per window needed to
update the model parameters, we compare our online learning
algorithm with its offline version. The latter considers the
whole data received so far when computing the parameters
upon the arrival of a new window. Fig. 3 illustrates the results
averaged over all datasets, reporting the average update time
until 100K, 500K, and 1M data items are received. Here,
the update time of our progressive approach remains constant
and small (< 0.01s), whereas the baseline yields a high and
increasing runtime (up to 103s).

Focusing on how to select the items to retain, we com-
pare the efficiency of our progressive algorithm (fast) with
the greedy algorithm. We realise the online setting as above
and vary the size of the set of retained items (k = 0.2% to
1%). Fig. 4 depicts the update time of the algorithms, aver-
aged over all datasets. Our progressive algorithm outperforms
the greedy one. It also scales better to large data summaries.

5.3 Effectiveness
We compare the quality of model parameters, in terms of util-
ity, obtained with our online learning algorithm and its offline
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version. To mitigate the randomness of the Twitter streaming
API, we select 100K items Ẽ from the original datasets and
construct a set of retained items S as the k = 1% oldest items
in Ẽ. We stream Ẽ and learn model parameters online (ΘẼ).
Offline learning considers all data received so far, the result
being Θ′

Ẽ
. We then assess the relative difference in utility of

S, computed with either method, i.e., |fΘ(S)−fΘ′ (S)|
fΘ′ (S) .
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Figure 5: Effectiveness relative to amount of processed data

The difference in utility relative to the amount of processed
data is shown in Fig. 5a (averaged over 100 runs of different
Ẽ and the five datasets). Due to the stochastic property of
online learning (data is needed to converge in the model pa-
rameters), the utility increases initially. Also, the difference
between the online and offline learning results is less than
15% in general, underlining the usefulness of our approach.

We further compare the utility of retained items selected
by the greedy and our progressive algorithm. Similar to the
above setting, we stream all data and use online learning to
update the model parameters. Both algorithms start from
the set of k = 1% old items and update it upon the arrival
of a new window. We then measure the relative difference
of the obtained sets of retained items at each step. The re-
sults in Fig. 5b (averaged over 100 runs and the five datasets)
show that the utility difference increases with the arrival of
data. This is because the progressive algorithm accumulates
some loss of information. However, the difference is small
(≤ 15%) and converges with more data. As such, data qual-
ity is not compromised too much.

Finally, we compare the overall utility ratio (utility of out-
put over utility of whole data) of our retaining algorithm (dy-
namic) and two baselines: the static version of our algorithm
and traditional summarization (sum). The utility ratios ob-
tained after processing all data of the five datasets are shown
in Table 1, for different sizes of the set of retained items
(k = 0.1% and k = 1%). While the static approach outper-
forms traditional summarization (sum), we need to acknowl-
edge that both, static and sum, are inapplicable for streaming
data. However, the results of the dynamic technique are rel-
atively close to those of the static approach, highlighting its

usefulness for online processing. Also, its decrease in util-
ity for a smaller number of retained items (k) is less drastic
compared to traditional summarization.

Table 1: Overall utility ratio

k climate vacc food gmo public

1%
static 0.84 0.83 0.84 0.81 0.86
dynamic 0.70 0.74 0.73 0.74 0.76
sum 0.72 0.70 0.69 0.71 0.71

.1%
static 0.74 0.76 0.73 0.72 0.75
dynamic 0.69 0.67 0.68 0.65 0.68
sum 0.51 0.53 0.48 0.51 0.52

6 Related work
Social data analysis is often based on topic modelling [5],
feature extraction [26; 32; 28], and temporal-aware infor-
mation processing [9]. Methods for topic modelling, e.g.,
Latent Dirichlet Allocation [5], hierarchical Dirichlet pro-
cesses [14], or word modelling [34], are not applicable for a
streaming setting, since they require multiple passes over the
data. Streaming versions of these techniques [16; 6], in turn,
ignore the dynamics of social data. Our model follows a non-
parametric approach, where the number of topics and vocabu-
lary words is learned from the data rather than specified in ad-
vance. Moreover, our model incorporates social features [26;
12] when assessing data utility. Also, methods to query a
streams of social data [23; 33] are not applicable for data sum-
marization, since the query is not known in advance.

Traditional data summarization works on offline data [35;
30; 29; 20] and, even if temporal aspects are considered [9;
1; 10], on the whole data. Existing streaming algorithms for
data summarization [2] also rely on access to the complete
data, as they sample the data for an estimation of the utility. A
relaxed version of the retaining problem has been addressed
in [11], which finds subsets of items with maximal utility us-
ing a sliding window. Yet, different from our problem formu-
lation, this method targets solely the recent data bounded by
a fixed window size, discarding all old items. Whereas, our
approach retains old items as long as they are valuable. Also,
unlike [11], our approach summarizes the entire history of a
data stream. Finally, the algorithm in [11] assumes apriori
knowledge of an upper bound of utility. While this assump-
tion may be reasonable for some types of data streams, it it
unrealistic for dynamic data produced by social platforms.

7 Conclusions
This paper proposed a technique to retain a representative set
of items from a stream of social data. That is, we acknowl-
edge the online nature of data produced by social platforms,
which prevents us from storing the complete data stream.
This led the retaining problem with minimal regret, where
a protocol decides which data to retain, such that the loss of
utility is minimized. To address this problem, we proposed a
light-weight, adaptive sketch of historical data and a progres-
sive algorithms for the selection of data items. Experiments
on large-scale real-world data showed that our approach is ef-
ficient (five orders of magnitude faster than the baseline) and
effective (less than 15% reduction in the utility ratio).
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Appendix
Proof of Proposition 1. LetE be a sequence of items, S ⊂ E
is a selection, and e ∈ E \ S is from a set of non-selected
tweets. Then it holds that: f(S ∪ {e}) ≥ f(S). Indeed, we
denote all the words that occurs in e but not in the selection S
as the set of words e\VS . Then we have f(S∪{e})−f(S) =∑
v∈e\VS

n(v, e)p(v, e) log 1
p(v,e) , which is non-negative.

Proof of Proposition 2. Let E be a sequence of items, S a
selection, and e, e′ ∈ E \S from a set of non-selected tweets.
Then it holds that: f(S ∪ {e}) − f(S) ≥ f(S ∪ {e, e′}) −
f(S ∪ {e′}). Similar to the proof of monotonicity, we ex-
pand the inequality to:

∑
v∈e\VS

n(v, e)p(v, e) log 1
p(v,e) ≥∑

v∈e\VS∪{e′}
n(v, e)p(v, e) log 1

p(v,e) , which is equivalent to∑
v∈e′ n(v, e)p(v, e) log 1

p(v,e) ≥ 0. The equality happens if
and only if e ∩ e′ = ∅.
Proof of Theorem 1. The proof is straightforward from the
algorithm. The loops in line 2 and line 4 pass over the data
stream only once. We need to maintain a frequency matrix
and a probability matrix for n(v, e) and p(v, e) for all v ∈ V
and e ∈ St where |St| = k. Other maintenance of g(e)
and p(e) take only O(k) memory. Considering the number
of model parameters as constant yields the required mem-
ory as O(k) and the update time per each loop in line 14 as
O(k|W |). Since |W | is often small (|W | � k) and can be
considered as constant, the update time complexity becomes
O(k).
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