280 Birds with One Stone: Inducing Multilingual Taxonomies from Wikipedia using Character-level Classification

We propose a novel fully-automated approach towards inducing multilingual taxonomies from Wikipedia. Given an English taxonomy, our approach first leverages the interlanguage links of Wikipedia to automatically construct training datasets for the is-a relation in the target language. Character-level classifiers are trained on the constructed datasets, and used in an optimal path discovery framework to induce high-precision, high-coverage taxonomies in other languages. Through experiments, we demonstrate that our approach significantly outperforms the state-of-the-art, heuristics-heavy approaches for six languages. As a consequence of our work, we release presumably the largest and the most accurate multilingual taxonomic resource spanning over 280 languages.


Year:
2017
Publisher:
arxiv.org
Laboratories:




 Record created 2017-05-05, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)