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Abstract—We consider the problem of sampling at unknown
locations. We prove that, in this setting, if we take arbitrarily
many samples of a polynomial or real bandlimited signal, it is
possible to find another function in the same class, arbitrarily
far away from the original, that could have generated the same
samples. In other words, the error can be arbitrarily large.
Motivated by this, we prove that, for polynomials, if the sample
positions are constrained such that they can be described by an
unknown rational function, uniqueness can be achieved.

In addition to our theoretical results, we show that, in 1-D,
the problem of recovering a painted surface from a single image
exactly fits this framework. Furthermore, we propose a simple
iterative algorithm for recovering both the surface and the texture
and test it with simple simulations.

I. INTRODUCTION

In today’s information age, we are measuring the world
around us like never before and sampling theory provides the
tools to connect these digital measurements to their under-
lying continuous signals. The famous Whittaker-Kotelnikov-
Shannon theorem [1]], [2] states the sufficient condition on
the sampling rate needed to recover bandlimited functions.
It assumes that the samples are taken uniformly at known
positions; however, in many applications the sample positions
are not uniform and sometimes they are not even known.

Irregular sampling is well studied with fast iterative algo-
rithms available for reconstructing functions from shift invari-
ant spaces [3]], [4], [S]. It has many applications such as in
astronomy [6]], where it is only possible to take measurements
in certain conditions, and in magnetic resonance imaging,
where it is more efficient to use a spiral sampling grid.

In contrast, there is very little work considering unknown
sample positions. Such schemes arise, among others, when
measurements are regular but some data points are lost during
transmission, or when measurements are taken with a jittered
clock or moving sensor [7]. Another interesting example,
which we will investigate in this paper, is surface geometry
estimation from images.

Unsurprisingly, sampling at unknown location may not
have a unique solution: if we take m samples of a function
which belongs to an n-dimensional space, there are n + m
degrees of freedom in total, but only m measurements. De-
spite this some recovery results have been achieved for some
restricted cases. In particular, Marziliano et al. [§] studied
the recovery of discrete-time bandlimited signals from sam-
ples at unknown locations. In the continuous case, Browning
proposed an alternating least squares algorithm that converges
to a local minimum [9]. In addition, Kumar studied the

recovery of periodic bandlimited signals assuming that the
sample positions follow some stochastic model. He showed
that, if the sampling rate is sufficiently high, we can assume
that the sampling locations are uniformly distributed and the
reconstruction error is approximately inversely proportional to
the number of samples [10] [11].

In this work, we investigate continuous-time signals with
deterministic sample positions. We prove that, if we take
arbitrarily many samples of a polynomial or real bandlimited
signal, it is possible to find another function in the same class,
arbitrarily far away from the original, that could have gener-
ated the same samples. Due to this non-uniqueness, we then
investigate constraints on the sample positions. More precisely,
we prove that, for polynomials, if the sample positions are
constrained such that they can be described by an unknown
rational function, uniqueness can be achieved.

Finally, we consider the problem of retrieving a 1-D linear
surface, painted with a polynomial, from a single image.
We show that the locations of the samples on the camera’s
image plane are governed by the geometry of the surface and,
furthermore, they can be described by a rational function; i.e.,
this setup fits the conditions of our uniqueness result. In order
to estimate the surface orientation and polynomial parameters,
we use an adaptation of the alternating least squares recovery
algorithm that was proposed in [9]. Our surface recovery
technique is fundamentally different to traditional computer
vision techniques, such as triangulation, photometric stereo and
shape from shading/texture [12]], [[13[]; however, it has many
similarities to shape from bandwidth, which we have recently
proposed [14].

In order to make the results of this paper reproducible,
the code for all simulations is available at the following link:
https://github.com/micha7a/surface-reconstruction.

II. SAMPLING AT UNKNOWN LOCATIONS
A. Setup

The problem is as follows: let F be a linear space of
functions defined over the interval [0, 7. Assume we observe
a function f € F at m unknown and distinct locations over
the interval; that is, we measure f(¢1)...f(¢t;). The only
knowledge about the sampling instants is their linear order,
that is ¢; < to < --- < t,,,. The question is whether we can
recover the original f from the set of observations. Since F
is a linear space, recovering functions is understood as finding
the coefficients of the function f in the space F.

We call a solution any function fy; € F which could have
been a source for the observed samples; that is, a function for
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which there exist a sequence t1 < ty < -+ < t,, such that
t; € [0,T) and fs(t;) = f(¢;) for all i = 1...m. Of course,
f is a solution.

B. Non-uniqueness of solutions/a trajectory of solutions

Without further constraints on the sample locations, it is
easy to show that many solutions can exist. In [9]], it is argued
that a sufficiently small perturbation of a solution may also
be a solution. We show that for some classes of functions a
function may be arbitrary far (in L, norm) from the original
solution and still fit the samples. For example, if the measured
function is a polynomial of degree up to n, then for any affine
transformation of the domain (that keeps sample positions
inside the interval) one can easily find another polynomial of
degree at most n which matches the samples exactly. Indeed,
a scaled (or shifted) polynomial is also a polynomial. To avoid
this issue one can fix the positions of first and last samples,
and recover not one solution but a class of them.

It turns out that even with those assumptions the solution
can be arbitrary far from the original function, not only in the
class of polynomials of a finite degree, but also in the class of
bandlimited functions:

Lemma 1. Let f € F[0,T] be a sampled function, and let f;,
i = 1...m be samples taken from f at positions 0 = tg <
f<- <t =T. If

1)  F is the class of polynomials of degree at most n, or
2)  F is the class of real-valued, 2n-bandlimited func-
tions,

then for any M > O there exist a function fyr such that || f —
full = M and points 0 = 51 < s < --- < 8y, = T such that

fu(si) = fi

Proof: We divide the proof of this lemma into two parts.
In the first part, we prove that, if a function g € F has the
right sign at the extrema of f, then f + g is also a solution
for every a@ > 0. In the second part we show that, for both
classes, it is always possible to construct such a function g.

Part 1. Let tmam,l; tmaI’Q ... and tmin,l; tmin,Qa ... be the
arguments at which f attains its local maxima and minima,
respectively, and let g be a non constant function, g € F, such
that g(0) =0, g(tn) =0, g(tmin,i) <0 and g(tmaz,i) > 0 for
every i =1,...,m.

Consider a function fs; = f + ag, where a > 0. For any
value of f we can a find point at which f has the same value
by moving away from the closest local extremum, see Figure
Let us consider the interval [a,b] between a maximum and a
minimum. Since at point a the function f has its maximum,
g(a) > 0, s0 f(a) +ag(a) = f(a). Similarly, f(b) 4+ ag(b) <
f(b). Therefore, since these functions are continuous, for any
sample taken in the interval [a,b], we can find a new point
ts € la,b] such that f(ts) + ag(ts) is equal to this sample
value. Continuity of the functions also allows us to preserve
the order of the samples on this interval. A similar argument
may be used on intervals between minima and maxima and
between an extremum and the boundary. Therefore, we can
find new sample positions that fit the data while preserving
the order of the samples.
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Fig. 1. Movement of samples: a polynomial of degree 3 (solid line), with

extrema around 0.4 and 0.7, the corresponding polynomial g from Lemma [I]
(dashed-dotted line) and f + g (dashed line). With full circles are the samples
at their old and new positions.

This means that f is also a solution, which preserve the
values at the endpoints. Since g is not zero, the norm of the
difference || f — fs|| = ||agll = «||g|| can be made larger than
any constant M, by taking any o > Toll*

Part 2. We have just shown a way to construct an additive
perturbation to our original function that fits the samples. What
is left is showing that such a function g exists and lies in F.

Polynomial case: Let F be the space of polynomials
of degree at most n. A polynomial f € F has at most n — 1
extrema inside the interval [0, T']. For every pair of consecutive
extrema, we choose a number s; between them, which gives
[ <n — 2 numbers s, S9, ..., s;. Define

gt) =2ttt —=T)(t —s1)...(t — s1). (1)

This function is a polynomial of degree 241 < n, so g € F.
Moreover, g(0) = 0, g(T) = 0 and g has only single zeros
so it has a different sign when f attains its maxima and its
minima, so we can set the sign in such a way that when f
attains its maxima, g(t) is positive.

Band-limited case: The above reasoning cannot be repeated
for bandlimited periodic functions because the nature of zeros
of those functions is more subtle. Without loss of generality
we assume that 7' = 27r. Note that, since f(¢) is bandlimited
and defined on an interval, it can be extended to be periodic
bandlimited and therefore f(0) = f(27). The function f has at
most 2n— 2 extrema: let us call them s1, s3,...,58;, 1 < 2n—2.

We construct a function ¢ € JF, which is not zero
everywhere, has zeros at s1,S2,...,5—1 and 0, and has the
proper sign at t,,;,,,1. Consider the following function:

G(t) — €i(n71)t(1 _ eit)(eisl _ eit) o (eisl,l _ eit)'
This function has zeros in the desired places, and it is a sum
of powers of e’ from e~ ("=t to ("=t o it is periodic
and bandlimited. However, it is not necessary real, so it is not
necessarily in F. If the function G has a non-zero real part,
we can define the desired function g as the real part of G:

(1) = 5 (G(0) + TH). @



such that if f(s;) has a maximum, then g(s;) is positive and
otherwise g(s;) is negative. In the case that G would be purely
imaginary, we can define g as £ the imaginary part of G:

g(t) == FiG(1), 3)

again setting the sign such that g is positive if and only if
f(s;) is a maximum. In both cases, we get g € F, so g is the
desired function. ]

Note that Lemma [1| implies not only the existence of one
solution fs, but a whole family of solutions, f, = f + ag, for
a>0.

III. SAMPLING WITH CONSTRAINTS

In this section, we consider only the space F of polyno-
mials of degree < n. From the previous section, we know that
the reconstruction of polynomials is not unique in general.
Now we present an intuition why constraining the relative
sample positions can result in a uniquely-solvable problem,
and then we analyse rational functions as a class of constraints.

Example 2 (Relative movement of sample positions). Let f €
F be the original function and g € F be a polynomial from
Lemma [I} such that f + «g is a solution for every a > 0.

Consider the movement of samples as « changes, see
Figure [2| Let f be the sampled function and let 0 = ¢; <
ty < .-+ <ty =T be the original sample positions. We can
construct a set of functions s;(a), ¢ = 2...m — 1 such that

1)  s;(«) is the new sample position: (f + ag)(s;(a)) =
f(t),

2) s; are continuous,

3)  si(a) < sj(a) fori < j and every o

We can do this because g was constructed in such a way that
(f + ag)(t) — f(t;) has at least one solution. There might be
cases when, as « changes, a new solution appears, but then
we can just pick any branch for which s; is continuous. The
resulting family of functions, indexed by ¢, is parameterized
by a scalar a, which means that the set of possible sample
positions contains a path in the m-dimensional space of all
sample positions. A

If the possible movement along that path was the only
source of ambiguity, it would be enough to restrict the sample
positions to a subspace intersecting the path, but not following
it. Of course, there may be more than just one function g such
that f + g is a solution (for every o > 0), and there may be
solutions producing the correct samples, but not connected to
the original one by such a path. However, as s; are the roots
of polynomials of degree at most n, the sequence (s;) has
n degrees of freedom. If m is much bigger than n, it is very
likely that, for any constraints, the intersection between the set
of possible sample positions and the set of sample positions
defined by (s;) will be small.

Consider now the situation where we do not know the sam-
ple positions, but we restrict the way in which they can move.
In particular, assume that sample positions are only allowed to
move along trajectories defined by a rational function (we will
see later an application where rational functions arise naturally
as a constraint for sample trajectories). Then, we have the
following result:

Fig. 2. Samples cannot move arbitrary. The polynomial f(¢) + ag(t)
describes a surface. Five slices of this surface are plotted corresponding to five
different values of «. The first slice, when o = 0, is the original polynomial
f, which is sampled in four positions. We see that, as « increases, the position
of the samples follow a trajectory in the a-t plane corresponding to a contour
of the surface. Restricting the sample positions so that they cannot move along
these contours allows us to distinguish between f and f + ag

Lemma 3. Let F be a space of polynomials of degree at most
n. Let P be the sampled polynomial and let 0 < tg < t1 <
-« <ty < T be the original sample positions. Let t; = t(t;)
be other possible sample positions,

W)

t(t) = Vi 4)

where W and V' are irreducible polynomials of degrees:
deg(W) = ny < nyy = deg(V).

If the number of samples m > n(n, + 1), then there is no
polynomial QQ € F, Q # P such that P(t;) = Q(t;) for all i.

The above result states the minimum number of samples
required for uniqueness of the underlying function f € F.
Before we prove Lemma [3] let us make a few remarks
on the transformation f. Rational functions are not defined
everywhere, so we have to assume that the coefficients of V' are
such that ¢ is well defined on the interval [0, T']. This of course
will be true for every realistic transformation. In the general
problem of sampling at unknown locations, we assumed that
we knew the order of the samples, so for consistency we will
assume that if ¢; < ¢; then #; < t;, which means that #(¢) is
strictly increasing.

Proof: Let () € F be a polynomial such that

- W (t;)
t;) = = P(t;
alin =0 (i) = Pt
for every ¢ = 1,...,m. All ¢; satisfy the following equation:
; o (0N
S ooeth =D a () ; &)
k= = VO
where p, and qi, K = 1,...,n are the coefficients of the
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Fig. 3. Setting of painted line with pinhole camera model. Light rays reflected
from the surface travel through the origin and are recorded on the image plane
located at the distance f from the origin. The surface is parametrised by the
z-intercept b > 0 and slope a. The line is parametrised by variable ¢, with 0
at the intersection with z-axis.

polynomials P and @, respectively. We can rewrite this as
VEN" S prt* =D G (WO V). (©)
k=0 k=0

This equation defines a polynomial with degree at most v =
max(n,n + n, n,n). But, since n, > ny,, v = (n, + 1)n.

If the degree of P is greater than 1, the left hand side of
Equation (6] cannot be equal to the right hand side everywhere.
Therefore, Equation (3 has at most v solutions and hence the
polynomial P is unique provided that m > (n, + 1)n.

If P is a constant it is possible that both sides of Equation
(6) are equal everywhere but this can only occur if P = Q. ®

We considered here an arbitrary rational function. However,
if we fix some parameters of this rational function, we could
exploit the structure of the polynomials obtained and lower
the number of samples needed.

IV. APPLICATIONS

Rational mapping functions appear naturally when recon-
structing the geometry and texture of a painted surface. To see
this, consider a pinhole camera viewing a 1-D linear surface
painted with some texture, as depicted in Figure[3] The samples
are taken uniformly on the image sensor but, due to pinhole
projection and the surface’s geometry, the texture is sampled
irregularly. Furthermore, since we do not know the surface’s
orientation, we do not know the sample positions. However, as
we will show, the sample positions are governed by a rational
function and, if the texture is a polynomial, Lemma E] states
the conditions for its uniqueness.

To see that the mapping is rational, consider a sample
which was recorded at a distance s from the optical axis. In
the notation of Figure [3| the surface has planar coordinates
x(t) = cos(a)t and z(t) = sin(a)t + b, so the sample had to
come from a point ¢ such that

s _2t) _ cos(a)t o
f z(1t)  sin(a)t+b’
where f is the focal length.

~ Letaand b be the parameters of another planar surface, and
t be a position on this line which could produce this sample.

Applying the above equation to both ¢ and £ yields

. B beos(a)t
tt,a.b) = beos(a) + sin(a — a)t’ ®

The transformation ¢ is a rational function in terms of t. If
G # a, then the degree of the numerator is equal to the
degree of the denominator. From Lemma [3, we know that
the set of at least 2n + 1 samples (where n is the degree
of P) could be generated by only one of those lines, and with
the assumption that the tilt is a, no polynomial can be fitted
to those 2n + 1 samples perfectly. However, if a = a the
transformation # becomes just scaling. Therefore parameter a
can be reconstructed but parameter b cannot, and the sample
positions can be reconstructed up to a scaling.

To actually find the parameter a, we can use an adaptation
of the alternating least squares algorithm [9]. This algorithm
minimises the mean squared error, ||[Mp — f||?, where M is
a Vandermonde matrix consisting of the powers of #;, p is the
vector of coefficients and f is the vector of sample values. It
works by alternating between the following two steps:

1) fix the matrix M and solve for the coefficients p using
ordinary least squares,

2) fix the vector p and make one step of gradient descent
with respect to ;.

In our case, the #; are functions of the parameters a and b
and the position on the CCD and therefore the gradient can be
calculated in terms of a and b. As expected, if the algorithm
starts with the right distance parameter b, the sample positions
are recovered exactly, see Figure E}

To analyse the performance with respect to the degree
of the polynomial, we performed the following numerical
simulation. For polynomial degrees ranging from 2 to 8, we
ran our reconstruction algorithm on 50 randomly generated
polynomials painted onto a linear surface with 13 different
angles (equally spaced within [—300,4—300]). As can be seen
from Figure [ the performance is better for lower-degree
polynomials. This might be due to the non-convexity of the
constrained cost function, since the algorithm is more likely
to converge to a local minimum with the higher degrees.
Furthermore, higher order polynomials performed especially
poorly when the leading coefficient was small compared to
the others.

To analyse the noise robustness, we randomly generated 50
polynomials of degree 3 and painted them onto the same linear
surfaces. We tested the algorithm for different amounts of
noise and sampling rates. The results are depicted in Figure [5]
Although the error grows quite quickly as the noise amplitude
is increased, the results are still reasonable for a relative noise
amplitude of 0 = 0.1. However, oversampling improves the
results only slightly and brings with it a large increase in the
computational cost, since the complexity is of the order of
n? x (the number of iterations).

V. CONCLUSION AND FUTURE WORK

We investigated the problem of sampling at unknown
locations. We showed that, for polynomial and real bandlimited
signals, the error can be arbitrarily large; however, by con-
straining the path along which samples can move, uniqueness
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Fig. 4. ALS algorithm reconstructing a polynomial of degree 3. In the

upper image, the algorithm was initialised with the correct scale b. Given this
initialisation it calculates the correct orientation a and polynomial coefficients.
In the lower image, the algorithm was initialised with an incorrect scale b. The
algorithm still returns the correct orientation a but, as expected, the estimated
polynomial is stretched in time compared to the original one.

can be achieved. We proved this for the case where the sample
locations are governed by a rational function and we hope to
extend our results to other transformations.

As shown in this work, rational mapping functions have
applications in surface retrieval. However, to be practical, our
framework must be extended to 2D. We believe that this
is possible and can envision higher dimensional theoretical
results, similar to those developed in this paper, and iterative
algorithms that jointly estimate a 2D surface and texture.

Furthermore, we believe that other mapping functions
could be applicable in a wide range of applications including
simultaneous localisation and mapping (SLAM). In the SLAM
case, we expect the 1D case to be relatively simply but the
extension to motion trajectories in higher dimensions could be
far from straightforward.
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