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1 The model

0 Goal

1.1 Interpreting probabilistic forecasts

5 Hysteresis analysis
Learn from an exceptionally long Suspended Sediment Concentration (SSC) series
with a novel machine learning probabilistic technique.
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aConcept
The Generalized Pareto Uncertainty (GPU) method [1,2] is a way of optimizing an
ensemble of deterministic models so that:
1) each model’s probability of exceedance is known, and
2) for each probability of exceedance, the optimized model’s errors as small as possible.

• Any deterministic model can be used. better fast and flexible (e.g. Artificial Neural Networks).

• Is not specialized (e.g. predicts water levels, streamflows, runoff volumes, SSC).

• Adapts to any input data (estimates are conditioned on it).

• Data-driven: better with long time series for calibration.

Prediction and forecast of suspended sediment concentration 
on the Yangtze River [EGU2017-7133]

bImplementation
The essence of GPU lies on how to find the optimal parameters . To do so, GPU solves
simultaneously two multi-objective optimization problems :
1) one searches the Pareto front of low probabilities of exceedance and low errors;
2) the other searches the Pareto front of high probabilities of exceedance and low errors.
A custom multi-objective evolutionary algorithm was developed.

3 Tested schemes
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Two main characteristics [3]:
a) Reliability – are the probabilities

estimated correctly?
b) Resolution (or sharpness) – how

wide is the estimated uncertainty?
Both are “independent”. Sharp predictions can
be very unreliable. Reliable predictions my
display poor resolutions.

Sharp prediction Not so sharp prediction …both very reliable
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Reliability can be evaluated using a predictive QQ plot [5]

and resolution inferred from the 
prediction’s standard deviations
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• GPU is capable of predicting reliably fine sediment
dynamics at Pingshan.

• Local and seasonal processes have similar contributions to
SSC concentrations.

• Local and seasonal processes are complementary: combined
predictors (seasonal + local components) are over 15% more accurate.

• Sediment storage plays a major role in SSC concentrations.

• Hysteresis is well represented by the probabilistic model.

Predicting and forecasting SSC2 Case study. Upper Yangtze @ Pingshan

• 475 000 km2

• 54 years of daily data. 
Discharge (Q) and SSC (1954 
to 2007, Yangtze River 
Commission)

Uncertainty bands obtained after averaging 
outputs of models in the vicinity of a chosen 

probability of exceedance.
 

• Well captured by 
seasonal and 
combined prediction 
schemes   (b, d).

• Lagged SSC 
simulations have great 
predictive power (e, f).
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Forecasts

Predictions

• Highly seasonal response (Q and SSC) 
with a pulse from April to September.


