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o Conclusions

 GPU works well as an uncertainty postprocessor for process-based hydrological models.

Concept

The Generalized Pareto Uncertainty (GPU) method [1,2] is a way of optimizing an
ensemble of deterministic models so that:

1) each model’s probability of exceedance is known, and

2) for each probability of exceedance, the optimized model’s errors as small as possible.

43.3 km? catchment, elevation range of 1668 to 3146 m.a.s.l., 2.1%
glacier cover.
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* Strong seasonal discharge pattern due to accumulation and
melting of snow. 7

e Discharge simulation available from SEHR-ECHO model [4]: =
* [s not specialized (e.g. predicts water levels, streamflows, runoff volumes, SSC, model errors). a) deterministic spatially explicit process-based model;

e Adapts to any input data (estimates are conditioned on it). b) input: air ter;lperature, precipitation, and potential
evaporation data;

* Any deterministic model can be used. Better fast and flexible (e.g. Artificial Neural Networks).

. . . . . . . ~ 85-95% m 75-85%
* Data-driven: better with long time series for calibration. c) 12 parameters calibrated with simple Monte Carlo Natlfra! discharge P —— » Copes well with heteroscedasticity, skewness, and dependency.
generation within a priori ranges. variations from ; ; e Can model uncertainty of many variables T
. . . 1981 to 2009 .. W 45-55% ®m35-45% Y Y Ca a b| I Itles
Implementatlon * Relevance of the case study: strong mismatches between | m25-35% m15-25% without adaptations or extra assumptions (e.g. SSC p

05-15% [1] or absolute model errors). Skewed distribution Heteroscedasticity

model simulations and observed discharges hint towards:

Discharge [m3/s]
IS

95.0%. | 95.0% |.

simulations depart from historical records. L =l e
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ii. problems with observed discharge data [5].

2) the other searches the Pareto front of high probabilities of exceedance and low errors. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A custom multi-objective evolutionary algorithm was developed.
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