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• 43.3 km2 catchment, elevation range of 1668 to 3146 m.a.s.l., 2.1%

glacier cover.

• Strong seasonal discharge pattern due to accumulation and
melting of snow.

• Discharge simulation available from SEHR-ECHO model [4]:

a) deterministic spatially explicit process-based model;
b) input: air temperature, precipitation, and potential 

evaporation data;
c) 12 parameters calibrated with simple Monte Carlo 

generation within a priori ranges.

• Relevance of the case study: strong mismatches between 
model simulations and observed discharges hint towards:
i. strong system modification during observation period (1981 

to 2009);
ii. problems with observed discharge data [5].

Case study: Dischmabach, Switzerland
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Natural discharge 
variations from 

1981 to 2009

• GPU works well as an uncertainty postprocessor for process-based hydrological models.
• Copes well with heteroscedasticity, skewness, and dependency.
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1 The model

0 Goal
Test the Generalized Pareto Uncertainty (GPU) method as a postprocessor of
predictive uncertainty. Learn about the validity of the deterministic prediction.

aConcept
The Generalized Pareto Uncertainty (GPU) method [1,2] is a way of optimizing an
ensemble of deterministic models so that:
1) each model’s probability of exceedance is known, and
2) for each probability of exceedance, the optimized model’s errors as small as possible.

• Any deterministic model can be used. Better fast and flexible (e.g. Artificial Neural Networks).

• Is not specialized (e.g. predicts water levels, streamflows, runoff volumes, SSC, model errors).

• Adapts to any input data (estimates are conditioned on it).

• Data-driven: better with long time series for calibration.

bImplementation
The essence of GPU lies on how to find the optimal parameters . To do so, GPU solves
simultaneously two multi-objective optimization problems :
1) one searches the Pareto front of low probabilities of exceedance and low errors;
2) the other searches the Pareto front of high probabilities of exceedance and low errors.
A custom multi-objective evolutionary algorithm was developed.

Uncertainty bands obtained after averaging 
outputs of models in the vicinity of a chosen 

probability of exceedance.
 

Skewed distribution Heteroscedasticity
3.1 Capabilities

Moving average of absolute errors (90 days)

Moving average of absolute errors (365 days)
Prob. of 1 yr of results being in a “normal” range

1997. Good SEHR-ECHO performance

2001. Unusually poor SEHR-ECHO performance

2009. Regular SEHR-ECHO performance

• Can model uncertainty of many variables
without adaptations or extra assumptions (e.g. SSC
[1] or absolute model errors).

• Can check model adequacy and quantify it
statistically how much a deterministic model’s
simulations depart from historical records.

Errors out of 
prediction range


