
Extending Safe C Support In Leon

Marco Antognini

Version 1.1
May 2017

Abstract

As hardware designs get more robust and efficient, software can solve a wider range of
challenges, each one more advanced than the previous one. The direct consequence is that
software complexity grows continuously. Despite being used more frequently in development
processes, traditional testing frameworks are not enough to avoid flaws in programs. More-
over, many company concerned by the security of their applications, especially in mission
critical industries, spend a considerable effort and amount of money to write robust software
certified by solid guidelines and standards. For embedded systems, MISRA C is a certifica-
tion process commonly used which provides directives to write portable and maintainable
C code while avoiding many pitfalls of the language.

Leon takes an orthogonal approach by providing tools for formal verification of programs
written in a subset of Scala. In a previous work we introduced GenC , a module for Leon
that converts Scala applications into equivalent and safe C99 programs, allowing developers
to leverage high-level feature of Scala to implement robust applications, even for embedded
systems.

The aim of this project is to augment Leon and GenC in order to support a larger frag-
ment of Scala that includes inheritance, generic programming, additional numeric types,
pattern matching and more. Additionally, we closely analyse the MISRA Guidelines and
shape the generated C code to work towards compliance with its rules while taking ad-
vantage of the verification capabilities of Leon to automatically detect a variety of bugs.
We discuss these improvements and new features by implementing the famous LZW com-
pression/decompression algorithm as well as a kernel-based image processing algorithm and
show that the produced native C programs are significantly more efficient both in terms of
memory usage but also in terms of execution speed.

Master Thesis Project under the supervision of
Prof. Viktor Kuncak & Dr. Régis Blanc

Lab for Automated Reasoning and Analysis LARA - EPFL

Contents

1 Introduction 3

2 Motivation 7
2.1 A History of Bugs . 7
2.2 Challenges for Embedded Devices . 8

3 Additional Features For Leon 11
3.1 Strict Arithmetic Model & 8-bit Integer . 11
3.2 I/O Framework . 12

4 Memory, Aliasing & Mutability Models For GenC 15

5 Translation of Definitions 19
5.1 Primitive Types & Literals . 19
5.2 Tuples & Arrays . 19
5.3 Classes . 20
5.4 Functions . 21

6 Translation of Expressions 25
6.1 Execution Order Normalisation . 25
6.2 Bitwise Shift Operators . 25
6.3 Integer Conversions . 26
6.4 Membership Test & Cast . 27
6.5 Pattern Matching . 27

7 Library Support Using Annotations 31
7.1 Custom Function Implementation . 31
7.2 Custom Type Translation . 32
7.3 Ignoring Functions or Types . 32

8 Toward MISRA Compliance 33
8.1 General Directives & Defining a Standard C Environment 33
8.2 Ensuring Mandatory Rules . 34
8.3 Rules Subsumed Under Verification . 34
8.4 Code Generator Guarantees Enforcing Many Rules 36
8.5 Deviations from the Guidelines . 37
8.6 Responsibilities Left to the User . 38

9 Case Study: LZW 43
9.1 The LZW Algorithm . 43
9.2 Implementation: String Representation . 43
9.3 Implementation: Dictionary Representations . 45
9.4 Benchmark Results . 48

1

10 Case Study: Image Processing 53
10.1 Safely Acquiring Image Data . 53
10.2 Image Manipulation Using Kernels . 55
10.3 Runtime Performances . 56

11 Conclusion 63

12 Future Works 65

A Operator Equivalence Table 67

B LZW Implementations 71
B.1 Scala Source . 71
B.2 Generated C99 Code . 84

C Image Processing Implementation 95
C.1 Scala Source . 95
C.2 Generated C99 Code . 104

D References 123

2

1 Introduction

1 Introduction

Software become significantly more complex, solving every day new challenges, partly thanks to
the decrease in price of hardware which is constantly improved, making computers more and more
robust, faster and more energy efficient. Constant breakthroughs enabled us to revolutionise how
people benefit from their personal computers, or electronic devices in a general sense: from the
information now instantaneously available at our finger tips provided by satellites orbiting our
planet in an environment ranging from extremely cold to scorching temperature with intense
radiations, through remote devices performing advanced scientific experiments at an incredibly
huge distance from us communicating using channels resilient to immense delay and numerous
data errors, to surgical and medical tools helping to understand and to fight devastating diseases,
for example using brain or heart implements to improve patients’ life.

Future technologies can be expected to follow a similar evolution, making obvious that systems
complexity is predicted to increase. Many companies already spend a considerable amount of
money to assert their software is exempt of life threatening bugs through various certifications,
or to keep their data safe and available in a matter of milliseconds. Hence, being able to evaluate
the quality of software, detecting issues before they arise, in a reliable and simple fashion can
significantly boost performance of Quality Assurance (QA) processes.

Development strategies were developed to actively reinforce software. They can involve con-
tinuous integration servers to constantly check for defects by means of regression or unit tests and
powerful static analysers. Or they can be based on general design techniques, such as employing
design-by-contract programming or runtime validations and exception mechanisms.

Le
on

Verify

Repair

Synthesise

Generate
bytecode

(Cross)
Compile

JVM
Runtime

Native
Runtime

Write
Safe
Scala

Generate
Safe
C

Figure 1: Development Process

For programs written in Scala, Leon [1] is a powerful instrument that works at solving this
general issue of quality by providing tools to verify contracts, repair erroneous implementations
or even synthesises code. However, because Scala is based on JVM runtime, such tools are
close to worthless for many companies that run their software on very small devices: the lack of
memory and CPU resources prevents running virtualised code on such hardware. This explains
why those systems are written in low-level, native languages often taking their roots in the C
language.

3

1 Introduction

For these reasons we have previously introduced the GenC module of Leon [2] to transpile
Scala programs into safe and equivalent C99 pieces of software. GenC allows programmers to
leverage the high-level features of the Scala programming language and reduce the development
cost of low-level software while avoiding using error-prone languages. Moreover, it helps de-
velopers avoid some of the most commonly reported bugs (e.g. buffer overflows or arithmetic
errors).

The overall, high level development pipeline is illustrated in Figure 1. The first step is to
generate a valid and verified Scala program using Leon. Then the program can be converted
into an equivalent C99 code through the GenC phase. The produced code can then be compiled
using any standard-compliant C99 compiler – for example Clang [3], GCC [4] or formally verified
compilers like CompCert [5] [6] – to generate a native and optimised assembly code for specific
hardware architectures. Then the compiled program can be shipped to the desired hardware and
executed as usual.

I first introduced GenC through an Optional Semester Project at EPFL. The work presented
in this report is a continuation of this initial project in the form of my Master Thesis Project.
Both projects were supervised by the Lab for Automated Reasoning and Analysis (LARA).

The present work adds to GenC a better support for object oriented or generic programming,
a wider range of supported primitive types, an improved handling of arithmetic expressions and
an interfacing system to integrate existing C libraries, just to name a few. Together these
improvements augment the range of the supported fragments of Scala. We also introduce a new
memory model based on our analyse of recent improvements made to the xlang module [7] [8]
regarding mutability. One singular feature of this model is that it is solely based on stack
allocations.

Furthermore, we studied reliability processes used for development of applications targeted
at embedded devices, such as the ones used in the automotive industry. This work resulted
in a re-engineering of GenC to work toward compliance with the MISRA Guidelines, which is
intended to bring in robustness and reliability to the software, and to empower users with more
static analysis tools. We discuss in this document how verification can help substantially reduce
the amount of bugs in programs and report on how the Leon ecosystem manages to produce safe
code free of undefined behaviour and under which assumptions.

We also present two implementation of the famous LZW [9] compression and decompression
algorithm, as well as an image manipulation benchmark based on filters, illustrating how GenC
can successfully be used for real-life applications to produce efficient native programs that are
significantly faster than the default JVM-based runtime offered by Scala.

We structure this report as follow. First, we finish this section by reviewing some related
works. In Section 2 we highlight the most common kinds of bugs and what are the main challenges
for embedded development. Then, we present new features we developed for Leon itself in
Section 3. We introduce the memory model on which the generated C99 code is relying on in
Section 4 and further discuss specific details of the translation from Scala down to C in Sections
5 and 6. Next, we specify how external libraries can be integrated into the translation process
in Section 7. In Section 8 we present the MISRA Guidelines, discuss its importance and explain
how Leon and GenC work toward compliance. Then, we showcase in Sections 9 and 10 the
abilities of GenC by implementing the LZW algorithm and an image processing algorithm. We
summarise this report in Section 11 and in the final Section 12 we introduce how Leon and GenC
can be further improved to help developing safe applications.

4

1 Introduction

Related Works

Because GenC spans several fields it is relevant to identify whether some existing project pro-
poses to transpile a high-level language into embedded-friendly equivalent code, what kind of
verification systems exist or how bugs are tracked down in compilers.

First, we note that GenC is not the first attempt to translate a high-level language down to
C. There exists, for example, the now discontinued java2c [10] project which claims to transpile a
limited fragment of Java to C. The free GNU Compiler for Java (GCJ), which is now discontinued
as well and has been removed from the GNU Compiler Collection (GCC), was designed to be
capable of emitting both bytecode and machine code. However, contrary to those two projects,
GenC is built into a wider ecosystem that makes such translation even more meaningful thanks
to the different modules of Leon.

FLEX [11] was a compiler infrastructure for Java that featured program analysis and optimi-
sations for distributed and embedded systems with native backends for StrongARM and MIPS
processors. It was also capable of producing C code, but unlike GenC all its backends relied on
a garbage collector at runtime.

GenC works on Scala programs, which would, if run as-is, require a full-fledged Java Virtual
Machine to be executed. There exists however some version of Java and its virtual machine
that are significantly lighter such as the JavaCard system [12], which can run on microproces-
sor. Compared to C, this subset of Java offers a better portability system with its well-defined
runtime and standard library. However, these advantages are limited by issues of performance
and memory size.

Recently started, the Scala Native project [13] already offers the ability to compile many
Scala programs into native assembly instructions using the LLVM compiler and its internal
representation language. GenC differs from Scala Native in several ways. First, unlike the
assembly produced by Scala Native, the generated C99 code can be inspected easily and therefore
approved by security teams when necessary. Second, by generating standard C code, we give the
user the opportunity to choose their C compilers, as well as the targeted architecture for runtime
and other environment tuning options that are not exposed by Scala Native. Then, GenC also
takes into consideration verifications of programs, and the limitations that the verification process
imposes on the Scala language, to produce efficient code that doesn’t require garbage collecting
and other heavy runtime facilities that Scala Native has to deal with. In Section 10.3 we do a
performance comparison on our Image Processing benchmark.

Frama-C [14] is somewhat similar to the static analysis modules of Leon. Both offer to
verify without actually running programs whether some properties hold or not. But while Leon
works with programs written in Scala, Frama-C analyses software in C, which means that higher
level concepts such as inheritance or generic types cannot be used to design complex programs,
therefore limiting developers to basic tools. That being said, adding assertions and properties
written in ANSI/ISO C Specification Language (ACSL) [15] – which interface nicely with C
since it can be embedded in standard comment block – to the generated C99 code based on the
original verification conditions the user wrote in Scala would be beneficial to help prove the new,
low-level program still respects its original specification.

Microsoft has also been working on a similar project to Frama-C called VCC [16], with a
major difference being that VCC works at verifying concurrent C programs. The sub-language
used to specify verification conditions is significantly different, yet has no impact on runtime as
well. It is not clear whether this project is still active or not, but contrary to VCC GenC does
not offer the ability to work with concurrent programs written in Scala.

The Cyclone programming language [17] was designed based on C to bring safety to the
language using a similar syntax, avoiding bugs such as buffer overflows, format string attacks,

5

1 Introduction

dangling pointer accesses, and so forth. It added support for exceptions, region-based memory
management as well as an optional garbage collector on top of the usual manual memory man-
agement of C. Cyclone is now discontinued but several of its concept made their way into the
Rust system programming language. To the contrary, GenC produces pure C99 programs, which
are exempt of dangling pointers, while still being able to detect any potential buffer overflow,
thanks to Leon.

Finally, to design any program bigger than a few assembly instructions one will need to
use a compiler for whatever language is being used. GenC indirectly relies on project such as
Csmith [18] to improve the quality of compilers, especially the C ones, in order to test its ability
to produce valid C. While GenC currently only relies on classic regression tests, it could be
interesting to use a similar generator of random test-case than the one used by Csmith to further
assess its ability to transpile Scala code.

6

2 Motivation

2 Motivation

We begin this report by exposing how frequent and dangerous bugs can be through diverse
examples and issue databases. The second part of this section further details which additional
challenges need to be addressed when working with embedded devises, introduce the MISRA
Guidelines used by the industry to certify the quality of programs and how GenC fit in this
certification process.

2.1 A History of Bugs

There are some well-known bugs in the history of computer science that caused major monetary
loss to companies, and in a few cases even caused physical injuries or death. But there also exist
countless bugs that are more moderate but still threaten the security of our information systems
and everyday computers. In some specific cases bugs evolved into features, and in particularly
odd cases vulnerabilities were abused to patch the software itself. Here are a few examples:

Killer Bug, Therac-25 The Therac-25, which was used in the 80’s for radiation therapy,
caused 6 known accidents involving massive overdoses resulting in severe injuries and
deaths. An integer used to track error count overflowed, causing the program to re-enter a
valid state for operation [19].

To fight against such bugs we instrumented Leon to check for potential integer overflow
without running the software.

(s)elf-exploitation From time to time, a bug happen to be situated in the right position to
workaround another limitation. J. Garret explained in [20] how a buffer overflow was used
to patch a game in the most unexpected way. He also acknowledges that this wouldn’t
have been needed were the software including a remote patch procedure.

Out-of-Bounds Access & Buffer Overflow Some of the most frequent kinds of bugs present
in our software are overflows; for example Apple Security Update HT207275 [21] patches
several bugs, of which roughly 20% were simple buffer overflows and out-of-bounds accesses.

Those are typically bugs that can be avoided using Leon and GenC : the verification pro-
cedure highlights places in Scala programs where overflows can occur, with an example of
values that triggers the bug at runtime.

According to the widely adopted Common Vulnerabilities and Exposures (CVE) database [22],
which describes itself as The Standard for Information Security Vulnerability Names and has over
80,000 registered tickets, buffer overflows account for approximately 10% of the reported bugs
and integer overflows for roughly 1.6%.

The CVE Details website [23] reports that overflows, in its general meaning, is third in a
vulnerabilities-by-type ranking. One might expect that overflows are sufficiently studies and
known by developers that their presence in our modern software should not contain many such
bugs. However, as depicted by Figure 2, the fact is that the general trend is not toward a
reduction of the number of discovered bugs in this category. After a closer reading of the CVE
entries it appears that many vulnerabilities categorised as Denial of Service or Execute Code are
also tagged as Overflow.

It follows that people need clever tools, such as Leon, to detect and eradicate those om-
nipresent issues.

7

2 Motivation

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1,000

1,500

2,000

2,500

3,000

Years

N
um

be
r
of

V
ul
ne
ra
bi
lit
ie
s

Execute Code
Denial of Service
Overflow

Figure 2: The 3 most frequent categories of bugs in the last 10 years. Source: [23]

2.2 Challenges for Embedded Devices

Seen the range of bugs, their frequencies and gravity, it appears clear that developers needs
good tools in order to write decently safe software. Embedded devices add to this context
the challenge of producing safe and efficient code with a limited amount of resources, such as
computational power, memory capacity and energy. C is commonly chosen to develop programs
for such restrictive environments. The reason for this choice is twofold. Firstly, in contrast to Java
or Python it is a native language and therefore is more suited for such tiny runtime environments.
Secondly, despite the work of many C++ developers C remains the preferred language in practice
with an adoption of 60% [24], certainly for historical reasons but also because most suspect that
high-level language features such as meta-programming or object oriented design are too greedy.

However, it is well-known that C is not an easy language and that many pitfalls make devel-
opers’ life hard. Furthermore, if one wants to write portable software, one has to work through
numerous language elements that are either implementation-defined or described as undefined
behaviour by the C Standard. To get an idea of the difficulty this represents, the C99 Stan-
dard [25] in its Annex J holds a bullet-point list of such undefined elements that is 13 pages
long.

The following example is one of the shortest function that can trigger undefined behaviour,
illustrating the extend to which the language is implementation-defined:

int foobar(int x) { return -x; } // undefined when x == INT_MIN

It is not obvious in this snippet what is the ranged covered by int: the C99 standard specifies
a minimal size for int but leaves the implementation define its size as well as its memory
representation, with some constraints. It could theoretically be defined as a 19-bit integer using
1’s complement representation.

8

2 Motivation

On the other end of the spectrum, the Java programming language and its virtual machine,
and therefore Scala, precisely define the range of int (or Int in Scala) and its memory represen-
tation as a 32-bit integer using the now standard 2’s complement representation. Moreover, the
behaviour of the unary minus operator is properly defined by the Java Standard [26] on the whole
[−231, 231 − 1] range using wrap around semantic for overflow, meaning that −(−231) ≡ −231.

On top of the C standard, many companies, especially in the car, aeronautic or medical
industries, adopt additional guidelines to improve the quality of their software. They tend to be
very strict and even forbid some of the language features deemed unsafe or unpredictable. One
of the most used set of rules is MISRA C: Guidelines for the use of the C language in critical
systems [27].

Among many things, the MISRA Guidelines forbid any kind of dynamic memory allocation,
leaving only static allocation available to the developers and therefore significantly limiting pro-
gram designs; the rationale being that heap allocation is hard to predict not only in terms of
available memory space but also, and this is equally important for real-time application, in term
of responsiveness [28] and is therefore inadequate for most embedded systems.

One of the direct consequences of this memory allocation model is that a traditional List in
Scala cannot be implemented trivially in C. Listings 1 and 2 illustrate this.

abstract class List
case class Cons(x: Int, tail: List) extends List
case class Nil() extends List

Listing 1: List of integers in Scala.

WithGenC , developers can use Leon to produce low level C99 code as safe as the verified Scala
program given as input without having to deal with portability issues. By using a language like
Scala, programmers can take advantage of the strong type system to avoid illegal type conversions
that emerge from the needs of void* in C due to the absence of generic types, but also benefit
from the well-defined nature of the language.

Additionally, we believe it is possible to write safe and efficient code, as we hint with the
example of Listing 3. We can write two different append functions for a list of fixed maximum
capacity. One with a wide contract that returns an error when the list is already full and the
other one with a narrow contract that appends the element without checking the capacity but
should be called exclusively on non-full lists. With Leon, we can ensure that calls to the optimised
version are valid, without incurring runtime cost for assertions, and therefore allow the developer
to follow the C motto “not paying for what you don’t use”, without any additional risk.

9

2 Motivation

#include <inttypes.h>
#include <stddef.h>
#include <stdlib.h>

typedef struct List List;
struct List { int32_t x; List* tail; };
static List* const NIL = NULL;

List* cons(int32_t x, List* tail) {
// This might fail or take an arbitrary long time to execute.
List* head = malloc(sizeof(List));
head->x = x;
head->tail = tail;
return head;

}

void release(List* list) {
if (list != NULL) {
// This recursion could blow up the stack.
release(list->tail);
free(list);

}
}

Listing 2: List of integers in C using heap allocation.

case class ArrayList(val buffer: Array[Int], var size) {
require(0 <= size && size <= buffer.length)

def appendSafe(x: Int): Boolean = {
if (size < buffer.length) {
buffer(size) = x
size += 1
true

} else false
}

def appendOptimized(x: Int): Unit = {
require(size < buffer.length) // Only checked statically.
buffer(size) = x
size += 1

}
}

Listing 3: Optimisation through verification

10

3 Additional Features For Leon

3 Additional Features For Leon

We introduce in this section new tools for Leon that aim at increasing the safety of Scala pro-
grams, allowing Leon to handle a larger fraction of the Scala programming language and providing
users with I/O operations through a safe API.

3.1 Strict Arithmetic Model & 8-bit Integer

The verification facilities of Leon were augmented in two ways. Firstly, Byte is now supported in
addition to Int and BigInt. Secondly, we have introduced the --strict-arithmetic option
to help detect unexpected or undesired behaviour in the source code in order to avoid many
runtime bugs.

8-bit Integer Support

The smallest integer available in Java and Scala is Byte. It is specifically defined as a 8-bit
signed integer using 2’s complement representation and therefore can represent any integer in
the asymmetric range [−128, 127]. Furthermore, arithmetic operations on Byte and Int (and
any other primitive type) is fully defined by the Java specification [26].

In order to introduce into Leon support for Byte we decided to explicitly include in the
Abstract Syntax Tree (AST) representing programs the different integer promotion rules defined
by Java that are followed by Scala as well. This has the advantage to encode those rules in one
place only (i.e. when extracting a program into its AST form) such that no other module of
Leon needs detailed knowledge of the nature of integer arithmetic.

For the current scope of Leon, the integer promotion rules consist of:

1. widening Byte to Int (i.e. adding 24 leading bits such that the newly created integer
represent the same value) when a Byte is involved in any arithmetic operation, and

2. narrowing Int to Byte (i.e. keeping only the 8 least-significant bits) when the integer is
explicitly truncated.

The Java integer promotion rules impose that a Byte is automatically widened to an Int
before carrying out any arithmetic operations, even for the bitwise negation (~) operator which
therefore produces 32-bit integers as if one would have written ~(b.toInt). However, narrowing
casts are always explicitly introduced with the toByte method of Int.

We detail in the Section 5.1 how Byte support is implemented in GenC .

Strict Arithmetic Checking

It is common knowledge that division by 0 in Java triggers a java.lang.ArithmeticException
and Leon has been emitting verification issues when such a dangerous instruction could be
triggered in the user code. Furthermore, Java specifies exactly how should Int.MinValue be
transformed by the unary minus operator on the asymmetric range [−231, 231 − 1]: the JVM
should precisely yield Int.MinValue and not throw any exception. Because this behaviour is
not obvious and could lead to bugs in a software we have introduced a more strict verification
mode, available with the --strict-arithmetic option, that automatically instruments the
input source code to detect the following potentially undesired situation (where x and y both
denote Int values):

11

3 Additional Features For Leon

1. Overflows (also independently available with the --overflow option)

(a) -x, when x is Int.MinValue;
(b) x + y, when the values of x and y produce an overflow;
(c) x - y, when the values of x and y produce an overflow;
(d) x * y, when the values of x and y produce an overflow;
(e) x / y, when x and y are Int.MinValue and -1, respectively;

2. Undesired behaviour

(a) x % y, when x and y are Int.MinValue and -1, respectively.
While the result is very well defined in Java and Scala and one can understandably ex-
pect an answer of 0 this is not well defined in C99 and is actually undefined in C11 [29].
This is why we treat is as undesired behaviour with the --strict-arithmetic option.

(b) x >> y, x >>> y or x << y when y is outside the range[0, 31].
In Java and Scala only the 5 lowest-order bits of y are considered, effectively mapping
y onto [0, 31] using modulo arithmetic. Not only is the behaviour undefined in C99
when y is outside of this range but we believe this behaviour to be always undesired
and therefore unsafe.

Although x << y can, and very often will, overflow we believe that this behaviour is actually
intended when manipulating bit patterns. For signed integer in C99, such overflow are however
undefined. We detail in Section 6.2 how we deal with this issue when generated equivalent and
safe C code.

The overflows detected here can partially be detected at runtime in a Java program by using
the negateExact, addExact, substractExact, and multiplyExactmethods of java.lang.Math
[30]. It however appears that no such built-in method exists for detecting overflows in divisions.

The extra assertions added by --strict-arithmetic are assumed to be verified when con-
verting the Scala code into C by GenC in order to avoid triggering undefined behaviour when
running the generated C code.

3.2 I/O Framework
While most embedded systems do not have file I/O it remains an important feature for many
programs. That is why we have introduced I/O support for both standard input and output
streams and files in Leon’s library. We describe here the relevant features of the leon.io package
for GenC .

This framework serves also as a proof of concept for using C library functions and types with
GenC . We further discuss this point in Section 7.

leon.io.StdOut One can use the StdOut object in order to read data from the standard input
stream. Specifically, it is possible to print, with or without a new line, String, Char, Byte
and Int with the print and println functions.

leon.io.StdIn Similarly, the StdIn object provides facilities to read data from the standard
input stream. For reasons exposed in Section 5.1, it is currently only possible to read Int
and Byte.

Two flavours are available: readInt (readByte) and tryReadInt (tryReadByte). The
first one always returns a number and therefore should only be used when one can trust

12

3 Additional Features For Leon

the input source to be valid. The other one returns a leon.lang.Option in order to
distinguish success reads from failures such as reaching the end of the input or, in the case
of tryReadInt, attempting to read something that doesn’t match the format of an Int.

In order to provide equivalence between C and Scala we implement those functions such
that they follow the C conventions on byte and 32-bit decimal integer format, skipping any
leading space for the latter as scanf("%d", &x) would assuming 32-bit integers. That
is, we accept integers that match the following regular expression: \s*[+-]?\d+. For
simplicity reasons, we leave handling of overflows as undefined.

A curious reader might wonder why the provided functions take an implicit State param-
eter: def readByte()(implicit state: State): Byte = This is an artefact for
verification purposes [8]: it ensures that calling such methods can produce different results
every time.

leon.io.FileOutputStream To print content to a new file, we provide FileOutputStream. It
provides functions to check whether the file was successfully opened and the ability to write
String, Char, Byte and Int at the end of the file through the write overloaded method,
which requires the stream to be open and report errors by returning false.

It is important to note that one should always invoke the close() method when the file
stream is no longer needed in order to let the underlying system reclaim file resources.

leon.io.FileInputStream Like StdIn, FileInputStream provides an API to read Byte and
Int, but from a file. The readByte, readInt, tryReadByte and tryReadInt methods
follows the same convention as detailed above, plus require that the file is open. Finally, one
should also call close() when the file stream is no longer used to avoid leaking resources.

13

4 Memory, Aliasing & Mutability Models For GenC

4 Memory, Aliasing & Mutability Models For GenC

In the previous section we discussed how Leon was extended to support more Scala programs
with additional verification conditions to enforce a higher quality of software. We now continue
the discussion of overall feature support in Leon/GenC by exposing the memory model used by
the generated C code, and which limitations we impose in addition of the restrictions required
by Leon.

Thanks to the xlang module of Leon it is possible to transform a large set of imperative
programs into a functional equivalent and to verify such programs. With GenC we however
want to keep the imperative nature of the input code in order to produce as efficient as possible
C code. To achieve this we do not apply this transformation to the Abstract Syntax Tree (AST),
yet we retain the same restrictions on the supported imperative features because one of the
requirement of GenC is that the input program must be valid and therefore verified.

On the one hand, xlang allows one to use local varibables, assignments, blocks, while loops
(with invariant), imperative arrays (i.e. array elements can be mutated) and mutable objects
(i.e. classes with fields declared using var).

On the other hand, it forbids most form of aliasing: in any given scope no two named objects
(i.e. local variable, function parameter or class member) can refer to the same memory area.
To ensure no aliasing occurs, it is also not possible to return from a function one of its mutable
parameters. Listing 4 gives an example of illegal program where a variable is aliased.

case class Counter(var i: Int)

def scope {
val c = Counter(0)

def foobar(d: Counter) {
d.i += 1
c.i += 1

}

foobar(c) // ERROR: c is aliased
}

Listing 4: Example of an illegal program exhibiting aliasing.

Such restrictions do not apply on immutable objects because it does not change the behaviour
of the program to copy immutable class instances instead of sharing references to a single object.

Consequently, mutable objects have a single static allocation point and, when passed to a
function, a reference can be used to identify the object. If the mutable object is local to a
function it can be returned; at which point the object can be copied into a new instance at the
call site, without breaking existing references as there are none, as we illustrate in Listing 5.

Additional, Leon disallows the usage of null. Hence, when converting code with mutable
objects in C99 we can safely represent references using pointers without having to deal with
NULL pointer dereferencing. It also follows from the no-aliasing rules that at no point a memory
location can be accessed after it was released and therefore let us avoid a whole category of
potential bugs. This means that, in order to respect the equivalence between the produced
C code and the input Scala code, we do not need to implement any kind of garbage collector

15

4 Memory, Aliasing & Mutability Models For GenC

case class Counter(var i: Int)

def fun: Counter = {
val c = Counter(0)
// ...
c.i += 1
// ...
c

}

def gun {
val c = fun // Copy the returned Counter.
c.i += 1

}

Listing 5: Returning mutable object is safe for local variables.

because all objects use the automatic storage class1: they live on the stack and are destroyed
when the program exits their scope, releasing their memory in a deterministic order. Thus no
heap memory is needed throughout the execution of the transpiled program.

There is however a limitation to this general framework: because of the nature of arrays
allocated on the stack in C it is not possible to return them from functions. We detail the
underlying reasons for this limitation in Section 5.2.

As mentioned above, immutable objects can be copied without impacting the behaviour of
the program. It therefore remains to be defined when an object is considered mutable in a given
context.

A class is considered to be mutable if any of its fields is declared with the var keyword or if
any fields has a mutable type; additionally, any class of a hierarchy is considered as mutable type
if there exists at least one class in the hierarchy that is defined as mutable under the previous
rules. A specific Tuple type is only considered mutable if any of its member is of mutable type,
but arrays are never considered mutable because they already propagate side-effects even when
duplicated thanks to the indirection used in their representation. Primitive types, such as Int,
Byte, and String are not considered mutable.

Finally, a nested function parameter list is extended to include variables available in its scope
as if they were mutable objects in order to handle side-effects properly.

We illustrate how these rules are applied in Listings 6 and 7; the specifics of basic types, classes
and functions translation are detailed in Section 5.1, Section 5.3 and Section 5.4, respectively.

However, this model suffers from one limitation we exemplify in Listing 8 that is considered
valid by xlang but not by GenC . Such programs are therefore gracefully rejected by GenC .

The issue is that, with static allocations, when an instance of B is constructed it needs to
own all its members or the instance cannot be returned at all from any function: if we were to
translate B to struct B { A* a; }; instead of struct B { A a; }; then the construction of
a B would need two static allocation points, one for the member a and one for the constructed
B, and upon returning from a function the member a would be pointing to an invalid location
and accessing it would result in undefined-behaviour, as illustrated by Listing 9.

1See Section 6.2.4 Storage durations of objects of the C99 Standard for a full definition of the different storage
classes.

16

4 Memory, Aliasing & Mutability Models For GenC

case class A(var x: Int) // mutable type

def scope: A = {
var i = 0

def updateAndInc(a: A) {
i += 1 // might overflow
a.x += i // might overflow

}

val a = A(41)
updateAndInc(a)
assert(a.x == 42)

a
}

Listing 6: Example of code with mutable type.

typedef struct { int32_t x_0; } A_0;

static void updateAndInc_1(int32_t* i_18, A_0* a_4) {

*i_18 = (*i_18) + 1;
a_4->x_0 = a_4->x_0 + (*i_18);

}

static A_0 scope_1(void) {
int32_t i_18 = 0;
A_0 a_5 = (A_0) { .x_0 = 41 };
updateAndInc_1(&i_18, &a_5);
return a_5;

}

Listing 7: C99 code generated for Listing 6.

As we expect returning mutable objects to be significantly more frequent than constructing
anonymous and temporary mutable objects passed to functions, GenC considers that mutable
types own all their members. As a consequence, the update function shown above, despite taking
a by reference, cannot properly mutate a as a copy is sent to updateB. Listing 10 depicts this
issue. We sketch in Section 11 how this limitation might be lifted.

17

4 Memory, Aliasing & Mutability Models For GenC

case class A(var x: Int) // mutable type
case class B(a: A) // mutable type

def updateB(b: B): Unit = {
b.a.x = 42

}

def update(a: A): Unit = {
updateB(B(a)) // Note: the constructed B is an anonymous object

} ensuring(_ => a.x == 42)

Listing 8: Example of code accepted by Leon but illegal with GenC .

typedef struct { int x; } A;
typedef struct { A* a; } B;

/* Dangerous translation of: def foobar = B(A(42)) */
B foobar(void) {
A tmp = (A) { .x = 42 };
B b = (B) { .a = &tmp };
return b;

} /* b.a is now a dangling pointer */

Listing 9: Example of a dangling pointer bug in C.

typedef struct { int x; } A;
typedef struct { A a; } B;

static void update(A* a) {
updateB(&(B) { .a = (*a) });
/* copy a: ^^^^ */

}

Listing 10: Example of the limitation of GenC memory model.

18

5 Translation of Definitions

5 Translation of Definitions

With the memory model and its limitations defined in the previous section we now start discussing
how definitions are translated from Scala to C.

Support for primitive types, arrays, classes as well as functions has been improved since the
initial release of GenC . We describe here what is supported and how the translation from Scala
to C is performed at a high level, and, of course, what new features GenC has in store.

5.1 Primitive Types & Literals

Support for Unit, Boolean and Int is unchanged since their introduction in the previous version
of GenC ; that is, they are directly mapped to void, bool and int32_t, respectively. In addition
to those types we add the possibility to use Byte in the input programs, mapping this type to
int8_t. The Unit literal () disappears during the C translation, but true, false and the
integer literals are mapped into equivalent, decimal literals.

The conversion from Byte to Int, or vice versa, is handled through explicit cast in C. Casting
from 8-bit signed integer to 32-bit signed integer is always safe in C because any value repre-
sentable with 8 bits is representable with more than 8 bits. In contrast to that, converting an
integer that lies outside the [−128, 127] range falls into implementation-defined land. As discussed
in the Section 8 we require that the user C compiler must use 2’s complement representation for
integers and when casting a value from one integral type to another a modulo arithmetic is used.
In the particular conversion from int32_t to int8_t we expect C compilers to, in effect, keep
only the 8 lowest-order bits.

In addition to the above primitive types we introduce a minimal support for Char and String.
Again, the Java standard defines in great details how characters and sequence of characters handle
their different operations, and especially what encoding is supported. But the C99 standard is
very lax on this topic and leaves many aspects up to the implementer, which makes it extremely
difficult to write truly portable C code involving string manipulations. That is why GenC
currently limits the support of characters and strings to raw ASCII literals.

One advantage of such a restrictive model is that, because in C99 string literal have a static
storage, it is legal for functions to return them. Moreover, converting the String type to char*
is valid thanks to the fact strings cannot be mutated. Obviously, this comes at the cost of not
being able to read strings from files or through StdIn. Char cannot yet be read from external
sources as well because of the complexity of encoding. Furthermore, because character literals
are limited to the ASCII range, we are allowed to use char as a valid representation of such
values on any platform.

5.2 Tuples & Arrays

Support for TupleN[T1, ..., TN], or (T1, ..., TN), is virtually unchanged since the initial
release of GenC : a specific C structure gets generated for any combination of type parameters
as they appears in the input source code with fields names _1 to _N.

Similarly, support for Array[T] was not significantly modified. It is modelled in two parts:
an allocation point that reserves the memory on the stack using a classic C array, or a Variable
Length Array (VLA) when the array is initialised with Array.fill(length)(value) where
length is not an integer literal, of the corresponding type and, secondly, a C structure that
keeps track of the beginning of the memory reserved for the array using a pointer and the length
of the array, because this information is not present in the Scala Array type although the array
cannot be resized at runtime.

19

5 Translation of Definitions

While most compilers do support VLA, MISRA guidelines requires that they shall not be
used. We leave this responsibility to the user but do emit a warning when such an array is
generated by GenC .

With respect to the memory model, each array is statically allocated on the stack, VLA or
not. This has for consequence that returning the structure representing an array from functions
is not possible as this would result in dangling pointers. GenC also prevents you from returning
tuples or objects that themselves contain arrays for the same reason. Unfortunately, the C
language doesn’t provide tools to workaround this limitation without using heap allocation. It is
however possible to inline a function within Leon, using the @inline annotation, but one should
refrain from abusing of this technique.

typedef struct { int32_t _1; bool _2; } Tuple_int32_bool;
typedef struct { Tuple_int32_bool* data; int32_t length; }

array_Tuple_int32_bool;

Listing 11: C data structure representing Array[(Int, Boolean)].

5.3 Classes
Support for classes was significantly extended with this new version of GenC . Previously, only
case class having immutable fields and no inheritance nor generics were supported. Those limi-
tations are now lifted but types shall still be non-recursive. For example,

abstract class Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr

will be rejected by GenC because Expr and Add require each other to be fully defined and this
is not possible in C without the indirection of pointers and multiple allocation points. Two
additional restrictions over Scala that Leon imposes are that fields can only be defined in case
classes and that abstract classes must have at least one concrete child.

When no inheritance is involved, case classes and their fields are mapped to a C structure
with matching types. In order to support mutability, fields are not marked as const. When
inheritance is involved, the full class hierarchy is considered together: each case class is mapped
to a dedicated C struct as if no inheritance was involved, and the top level, abstract class is
translated to a tagged union where the tag is a C enum that identifies the runtime type within
the class hierarchy while the actual object is stored in a C union of all possible case classes. In
all cases, union and struct are initialised using the designated initialiser lists syntax.

As one constructs an instance of a class the runtime type is always known. But this informa-
tion can get lost when passing the object to a function. And so any function could apply pattern
matching or test for membership on the passed object. In order to preserve this information we
represent any object of a class hierarchy with a tagged union.

MISRA advises against using union, arguing that it is hard to use correctly as it can involve
implementation-defined behaviour when a union member is read after a different member was
written. However, in this particular case, thanks to Scala typing system, no two different union
members will get read or written during the lifetime of an object because the type of an object
cannot be changed and because all cast are safe if the program verification went successfully.

With this model, one can easily check using isInstanceOf whether an object of a given class
hierarchy is, at runtime, any of the case classes. However, one cannot directly know if an object

20

5 Translation of Definitions

is an instance of a non top level abstract class; instead one has to check if the object’s tag denotes
any of the concrete case classed derived from the given abstract class. This process is not yet
automated by GenC . The same limitation applies to casts: it is not possible to cast an object
to an intermediate level of the hierarchy. This, on the other hand, as no negative consequence
because an object is always represented by the same tagged-union.

An upside of this model is that it does not suffer from the slicing effect that many C++
developers have faced when returning an object by value. Or course, this is possible only because
we use as much memory as the widest case class in the hierarchy for all instances, regardless of
their runtime type.

Contrary to Scala, C99 disallows struct and union to have no members at all. For the
latter, because Leon requires that all class hierarchies have at least one concrete member, this
is not an issue. In order to produce valid code, GenC will introduce a dummy byte member in
every empty class.

But unlike Scala, C provides a language feature to define enumeration. The idiomatic way
to represent a small domain of values in Scala is using inheritance and empty case classes. For
that reason GenC maps to an enum any class hierarchy for which all case classes have no field.

Finally, generics are now supported as well. A notable difference between Scala Generics, as
they are handled by the JVM, and Generics within Leon is that Leon does not do type erasure for
verification purposes. This difference is very handy for GenC as it allows us to see meta-types as
C++ template classes: for each combination of type parameters used in the program, a specific
type is generated at build time.

Listing 12 shows an example of class inheritance with polymorphic function and Listing 13
reports the code generated by GenC for this particular example.

5.4 Functions

In addition to the support previously introduced for regular, overloaded and nested functions
with call-by-value arguments, GenC now handles generic functions in a similar fashion to generic
types: they are not typed erased in Leon which allows us to consider them as templates for
specialised functions. Moreover, GenC now offers to transpile higher-order functions as well:
non-capturing functions can be used as values.

For safety reasons, MISRA imposes that functions shall not call themselves, either directly
or indirectly. For that reason GenC will emit a warning when a recursive function is used. The
guidelines, however, allow such functions to be used if one can determine the worst case stack
space required during execution. And, as a matter of fact, the ecosystem of Leon offers support
for resource bound inference [31].

GenC expects two specific functions to be present in the input source: main and _main inside
the main object that represents the program. Those functions must follow a specific format. The
first one needs to match Scala convention for obvious compatibility reasons, but also must be
declared as @extern in order to let GenC ignore the mandatory array of strings which are
currently not well supported. In Java and Scala, the main function returns nothing but GenC
nonetheless converts it to a C function that returns an integral value assumed to be in the range
of an octet2. This value is obtained by calling the second function, _main, with no parameter.

2This is because most operating systems ignore all but the 8 least-significant bits.

21

5 Translation of Definitions

abstract class Top

case class One(x: Int) extends Top

abstract class Derived extends Top {
def sum: Int

}

case class Two(x: Int, y: Int) extends Derived {
def sum: Int = x + y // can overflow

}

case class Three(x: Int, y: Int, z: Int) extends Derived {
def sum: Int = x + y + z // can overflow

}

def foo = {
val x = One(1)
val y = Two(1, 2)
bar(x, y)

}

def bar(one: One, d: Derived) = one.x + d.sum // can overflow

Listing 12: Example of class inheritance and polymorphic function in Scala

To sum up, the core of the program must be similar to the following:

import leon.annotation.extern

object Program {
@extern
def main(args: Array[String]): Unit = _main()

def _main(): Int = {
leon.io.StdOut.println("Hello, World!")
0

}
}

When converting such programs, GenC identifies all the dependencies of _main (i.e. the
set of functions and types involved) without considering loop invariants, assertions, pre- and
postconditions and transpiles only these dependencies.

22

5 Translation of Definitions

typedef enum { tag_Two_0, tag_Three_0, tag_One_0 } enum_Top_0;
typedef struct { int32_t x_1; int32_t y_0; } Two_0;
typedef struct { int32_t x_2; int32_t y_1; int32_t z_0; } Three_0;
typedef struct { int32_t x_0; } One_0;

typedef union { Two_0 Two_0_v; Three_0 Three_0_v; One_0 One_0_v; }
union_Top_0;

typedef struct { enum_Top_0 tag; union_Top_0 value; } Top_0;

static int32_t bar_1(Top_0 one_0, Top_0 d_0) {
int32_t norm_1 = one_0.value.One_0_v.x_0;
int32_t norm_0 = sum_2(d_0);
int32_t norm_2 = norm_0;
return norm_1 + norm_2;

}

static int32_t sum_2(Top_0 thiss_0) {
if (thiss_0.tag == tag_Three_0) {

return (thiss_0.value.Three_0_v.x_2 + thiss_0.value.Three_0_v.y_1) +
thiss_0.value.Three_0_v.z_0;

} else if (thiss_0.tag == tag_Two_0) {
return thiss_0.value.Two_0_v.x_1 + thiss_0.value.Two_0_v.y_0;

}
}

static int32_t foo_1(void) {
Top_0 x_27 = (Top_0) {
.tag = tag_One_0,
.value = (union_Top_0) { .One_0_v = (One_0) { .x_0 = 1 } }

};
Top_0 y_8 = (Top_0) {
.tag = tag_Two_0,
.value = (union_Top_0) { .Two_0_v = (Two_0) { .x_1 = 1, .y_0 = 2 } }

};
return bar_1(x_27, y_8);

}

Listing 13: Generate C code for Listing 12.

23

6 Translation of Expressions

6 Translation of Expressions

We exposed in the previous section which definitions are supported and how they are translated
into C99. We continue in this section to describe the supported fragment of Scala by focusing
on expressions.

This new version of GenC improves some arithmetic operations and uses a more strict nor-
malisation of instructions, but also adds support for pattern matching. Conditional and loops
statements, if and while, were already introduced in the previous iteration of the project, and
assertions were not translated into C code. We also introduced the ability to use the == and !=
operators to compare object equality.

6.1 Execution Order Normalisation

On the one hand, Scala defines a strict evaluation order for expressions which is based on the
model used by Java: expressions are evaluated from left to right, with a few exceptions such as
short circuiting in || and && operations. On the other hand, C provides a lax execution policy:
between two sequence points3 expressions can be evaluated in an arbitrary order. Hence, the
same code can produce different results depending on the platform or compiler.

In order to produce programs that have exactly the same behaviour than their source, we
make sure that enough sequence points are explicitly introduced by means of temporary variables.
With this new release we are enforcing a stricter behaviour to produce valid code even for snippet
like Listing 14, which is transpiled into Listing 15.

// Extract from regression test: ExpressionOrder.scala
def test9() = {
var c = 0
val r = { c = c + 3; c } + { c = c + 1; c } * { c = c * 2; c }
r == 35 && c == 8

}.holds

Listing 14: Example of complex Scala code supported by GenC .

Regarding performance, using any modern compiler with its basic set of optimisations (-O1)
should be enough to make most if not all intermediate results disappear from the generated
assembly instructions, without involving what are considered by some people dangerous optimi-
sations.

6.2 Bitwise Shift Operators

As reported in the Appendix A, which details the behaviour of all arithmetic operators under
the C and Java standards, most of the operators supported previously by GenC were correctly
implemented. However, this was not the case for the bitwise shift operators, mainly because
signed shift operations do not work as one might expect in C. We have to rely on the unsigned
version of << and >> to match the behaviour of Java’s << and >>> operators.

However, this means converting int32_t to uint32_t and back. The first conversion is
well defined in C99: a positive integer is represented correctly as an unsigned integer, and a

3See Section 5.1.2.3 Program execution of the C99 Standard for the full definition of sequence points.

25

6 Translation of Expressions

static bool test9_1(void) {
int32_t c_13 = 0;
c_13 = c_13 + 3;
int32_t norm_121 = c_13;
c_13 = c_13 + 1;
int32_t norm_119 = c_13;
c_13 = c_13 * 2;
int32_t norm_120 = c_13;
int32_t norm_122 = norm_119 * norm_120;
int32_t r_3 = norm_121 + norm_122;
return r_3 == 35 && c_13 == 8;

}

Listing 15: Code generated for Listing 14

negative integer gets increased by 232 for the conversion. The opposite conversion is trickier:
if the unsigned integer falls in the range of values represented by the int32_t type then the
conversion is safe; otherwise, it is implementation-defined. Because of this, we have two options:

1. Expect the C compiler to properly define the uint32_t to int32_t as a "simple" reinterpret
cast of the underlying binary representation as a 2’s complement representation.

2. Use unsigned integer everywhere else to do only initial int32_t to uint32_t conversions.
This, of course, implies handling every operations with unsigned integers. For arithmetic
operations, this seems fine. For relational/logical operators such as <, this means testing
for sign bit manually in addition of the same operator on unsigned integer.

At this point, the first solution seems better for two reasons. Firstly, it impacts only two
operators with no measurable performance impact, assuming casts are in the worst case scenario
moving data from one specific register kind to a register of another kind, while additional bit
checking would have an impact on performance (despite being small and probably irrelevant for
many applications, this could be a concern for embedded devices). Secondly, if one cannot ensure
that the C compiler indeed fulfils our assumptions, one could devise a safe conversion function,
at a runtime cost.

After inspection of compilers’ manual it appears that GCC [32] and Microsoft’s [33] compilers
match the assumed behaviour; Clang lacks such information but we can assume GCC’s model
to hold as well [34].

6.3 Integer Conversions
With the support for Byte we also introduce the ability to convert an Int to a Byte by means of
Scala’s explicit casts with the toByte method, as well as the reverse operation though implicit
casts, which arise from Java’s integer promotion rules, or explicit casts when invoking toInt on
a Byte.

The C99 standard specifies that, when converting from one integral type to another, if the
given value can be represented by the destination type then the conversion is safe, however if the
value is not in the destination range then the conversion is implementation-defined.

Therefore, the widening conversion from Byte (int8_t) to Int (int32_t) is not an issue.
On the other hand, the narrowing cast from Int to Byte will fall outside the portable fragment

26

6 Translation of Expressions

of C for many values. Similarly to GenC ’s conversion of >>> we decided to rely on C implemen-
tations to obey the most common truncating behaviour but, were this requirement not met, one
could also update the translation to impose the Java arithmetic model in C by using additional
operations at a performance cost.

6.4 Membership Test & Cast
We leverage the tagged-union used to represent inheritance in order to support membership test.
Indeed, we only need to compare the tag of an instance to the tag corresponding to the given
type. Referring to the classes defined in Listing 12 from Section 5.3, the following Scala code

def fun(b: Top) = b.isInstanceOf[One]

gets translated into:

static bool fun(Top b) { return b.tag == tag_One; }

Similarly, we fully take advantage of the memory storage to perform casts, for which Leon
provides tools to prevent all illegal casts, as we show in the next listing. Concretely, GenC
transpiles casts into accesses to the appropriate union member. For example, GenC transpiles

def gun(b: Top) = {
require(b.isInstanceOf[One]) // Ensures that the cast is legal
b.asInstanceOf[One].x

}

into the following equivalent C99 code:

static int32_t gun(Top b) { return b.value.One_v.x; }

With our model for inheritance it is however not possible to directly test membership for
intermediary abstract class, such as Derived in Listing 12, or perform a cast to an abstract
class, with the exception of the root class in a hierarchy as this can be regarded as a NOP. GenC
therefore forbids such instructions.

The isInstanceOf and asInstanceOf expressions are used internally to handle some forms
of pattern matching, which we present next.

6.5 Pattern Matching
Support for most forms of pattern matching is also introduced in this new version. That is, with
the exception of the Unapply Pattern pattern matching expressions are converted to imperative
expressions using if-else statements. The format of a pattern matching expressions is

scrutinee match {
case pattern1 [if guard1] => body1
// ...
case patternN [if guardN] => bodyN

}

where scrutinee, body1, . . . , bodyN are expressions, each pattern guard is an optional expres-
sion that has no side-effect and pattern1 to patternN can be any of following kind of patterns:

27

6 Translation of Expressions

Binder Pattern binds the scrutinee to a given name b when b is not the wildcard _. The
identifier b can then be used in the pattern guard and body expressions, essentially aliasing
scrutinee.

Literal Pattern with an optional binder, checks whether the scrutinee is equal to a given
literal l, which type must match at compile time the type of scrutinee.

Instance Of Pattern checks whether the scrutinee is of a given type T, with an optional
binder as described above. When the binder is used in the pattern body or guard it has
the same type T as if scrutinee was casted to T. Note that T has to be related to the
static type of scrutinee in order to make the program type check.

Tuple Pattern in addition to an optional binder it recursively checks the given sub-patterns
for each member of the tuple.

Case Class Pattern binds the scrutinee to the given optional binder, checks that it is of the
given class type and recursively applies the given patterns for each class field.

Because the guards and patterns are assumed to have no side-effect we need only to ensure
the scrutinee is a constant expression. In order to do that, we can create a temporary variable
if it is, for example, a function call. That has the benefit of allowing us to replace the binders
from both guards and bodies with an expression of our design that can prevent variable to be
copied and therefore to incorrectly propagate side-effects when doing the C translation of the
resulting if-else expressions, as we illustrate with Listings 16, 17 and 18.

In addition to the classic match form of pattern matching, Leon and GenC also support the
let pattern matching, such as val (a, b) = getPair() or val Some(x) = getSome(), using
the same conversion technique.

case class A(var x: Int)

abstract class Base
case class Derived1(a: A) extends Base
case class Derived2(a: A) extends Base

def foo(b: Base): Unit = b match {
case Derived1(a) => a.x = 100
case Derived2(a) if a.x == 42 => a.x = 58
case Derived2(a) => a.x = 0

}

Listing 16: Example of regular pattern matching in Scala.

28

6 Translation of Expressions

case class A(var x: Int)

abstract class Base
case class Derived1(a: A) extends Base
case class Derived2(a: A) extends Base

def foo(b: Base): Unit = {
if (b.isInstanceOf[Derived1]) { b.asInstanceOf[Derived1].a.x = 100 }
else if (b.isInstanceOf[Derived2] && b.asInstanceOf[Derived2].a.x == 42) {
b.asInstanceOf[Derived2].a.x = 58

} else if (b.isInstanceOf[Derived2]) { b.asInstanceOf[Derived].a.x = 0 }
}

Listing 17: Conversion of pattern matching from Listing 16
into equivalent if-else expressions.

typedef struct { int32_t x_0; } A_0;

typedef struct { A_0 a_0; } Derived1_0;
typedef struct { A_0 a_1; } Derived2_0;

typedef enum { tag_Derived1_0, tag_Derived2_0 } enum_Base_0;
typedef union { Derived1_0 Derived1_0_v; Derived2_0 Derived2_0_v; }

union_Base_0;
typedef struct { enum_Base_0 tag; union_Base_0 value; } Base_0;

static void foo_1(Base_0* b_0) {
if (b_0->tag == tag_Derived1_0) {

b_0->value.Derived1_0_v.a_0.x_0 = 100;
} else if (b_0->tag == tag_Derived2_0 &&

b_0->value.Derived2_0_v.a_1.x_0 == 42) {
b_0->value.Derived2_0_v.a_1.x_0 = 58;

} else if (b_0->tag == tag_Derived2_0) {
b_0->value.Derived2_0_v.a_1.x_0 = 0;

}
}

Listing 18: Generated C99 code for Listing 16 based on the transformation
exposed in Listing 17.

29

7 Library Support Using Annotations

7 Library Support Using Annotations

Now that we have detailed how language constructs can be automatically converted into C we
discuss how one can workaround some limitations and also how external C libraries, such as the
Standard C Library, can be integrated to work with verified Scala code.

Although GenC does not yet support anonymous functions, Leon’s library was updated
so that most of leon.lang.Option methods can be used without having to deal with this
restriction. The trick used here is simply to annotate those methods with @inline in order
to remove the presence of lambdas in the AST. One can then use getOrElse, orElse, map,
flatMap, filter, withFilter, forall and exists. This trick can be used in the user code as
well but is limited, for obvious reasons, to non-recursive higher-order functions.

When it comes to functions using system calls, such as I/Os, no automated conversion is
possible. In those situations we let the user define their own implementation for functions, add
manual conversions from Scala types to C types or even drop some functions and types from the
translation, with @cCode.function, @cCode.typedef and @cCode.drop annotations, respec-
tively, from the package leon.annotation. Their usage is detailed in the following subsections.

Generally speaking, these annotations can be used to make proxies between the verified, Scala
code and some existing, trusted C libraries.

7.1 Custom Function Implementation

To circumvent some of the current limitations of Leon/GenC ecosystem one can use the

@cCode.function(code, includes)

annotation, usually accompanied by @extern, to define the corresponding implementation of any
function or method. The parameters are meant to be used as follows:

code For convenience, the C implementation given by code is represented using a string literal
and not an Abstract Syntax Tree. The user is responsible for the correctness of the provided
C99 code.

BecauseGenC renames the functions, e.g. to deal with overloading, the special __FUNCTION__
token must be used instead of the original name. Furthermore, the parameters and return
type must match the signature automatically generated by GenC .

For top-level functions the argument list is the same in C, modulo the translated types. For
nested functions, one has to add extra parameters for the variable available in the function
scope. And finally, for methods an extra argument for this needs to be added as well.
In case of mistakes in the parameters the user can refer to the automatically generated
function declaration, update the annotation and re-run GenC .

includes The optional parameter includes can hold a colon separated list of the required C99
include header files for the implementation of the function. GenC makes sure to include
headers exactly once, for readability purposes.

31

7 Library Support Using Annotations

Here is a typical example of a logging function using <stdio.h> facilities:

// Print a 32-bit integer using the *correct*
// format for printf in C99
@cCode.function(
code = """
|void __FUNCTION__(int32_t x) {
| printf("%"PRIi32, x);
|}
""",

includes = "inttypes.h:stdio.h"
)
def log(x: Int): Unit = {
print(x)

}

7.2 Custom Type Translation

@cCode.typedef(alias, include)

can be used when a whole type needs to be represented using a special C type. Here the include
parameter is also optional, however it can only refer to one header as it is not expected to have
a type defined in several headers. The alias string must represent an existing and valid C type.
As a consequence, the annotated type members do not get translated into equivalent C code
automatically.

Using an aliasing from T to U allows the user to use U directly when manually defining the
implementation of functions instead of having to deal with unique identifiers issues.

This annotation can be used, for example, to build a specific translation of a file API:

@cCode.typedef(alias = "FILE*", include = "stdio.h")
case class MyFile(// ...

7.3 Ignoring Functions or Types
It is also possible to skip the translation of some functions or types that are only used as imple-
mentation details in proofs using the

@cCode.drop()

annotation. As GenC triggers an error if a dropped type or function it can be useful to ensure
that a type or a function is indeed not used in live code.

32

8 Toward MISRA Compliance

8 Toward MISRA Compliance

It is well-known that C is a popular, powerful but complex language, and as any programming
language it has its imperfections. With that in mind, the Motor Industry Software Reliability As-
sociation (MISRA) [27] strives to provide and promote best practice in developing safety-related
embedded electronic systems and other software-intensive applications by means of guidelines
and requirements. The 2012 edition of the guidelines helps define a subset of the C90 and C99
languages that not only avoids features relying on undefined, unspecified or implementation-
defined behaviour to ease portability and maintenance of programs, but also attempts to avoid
obscure constructs easily misused or misunderstood and make sure that runtime errors are han-
dled appropriately. To do that, MISRA lays down the ground rules for a software development
process that impacts the selection of tools – such as which C language standard, compilers and
analysis tools – the definitions of the software requirements, especially the ones about safety,
and design specifications. In addition, it specifies how a team can claim compliance for a given
project through process activities required or expected by MISRA, or, if needed, how a deviation
to the guidelines should be documented.

GenC generates code that was engineered to follow most of the directives and rules imposed
by MISRA guidelines for C99 with its Appendix E Applicability to automatically generated code
in mind. But, for a few of them, it actually deviates from the recommendations for what we
believe to be valid reasons. We discuss here how GenC works toward fulfilling most of the
guidelines and clearly expose which ones are not met directly and for which the user should pay
special attention while developing software.

The directives and rules of the guidelines are each labelled with a severity level, ranging from
mandatory, required, advisory, to readability. From the many rules in the guidelines several are
not relevant for GenC because we do not use language features concerned by those rules, such as
macros or pointer type conversions. GenC abides by 64 rules: we focus in Section 8.2 on the 10
rules that are marked as mandatory, next we discuss in Section 8.3 how verification subsumes 6
rules, and in Section 8.4 we cover many rules that are met by carefully generating C99 compliant
code. In Section 8.5 we discuss 5 rules that are either ignored or not met, and in Section 8.6
we highlight 20 rules that are the responsibility of the user to respect. But first we detail the
general requirement for the generated C code.

8.1 General Directives & Defining a Standard C Environment

MISRA mandates that for each project a specific variant of the C language as well as requirements
for the compiler implementation(s) should be defined. With GenC we ask the user to use a C99
compiler with the generated code, but add no requirement on language extensions as none are
used.

The MISRA Directive 1.1 asks that all implementation-defined behaviour on which the pro-
gram relies upon must be documented and understood. As exposed in the relevant sections of
this report, GenC relies on:

1. the availability of int32_t and uint32_t types, which are defined as precisely 32-bit
integers and, for the former, uses two’s complement representation, and

2. converting a uint32_t to int32_t corresponds to the reinterpretation of their respective
binary representations, and, finally,

3. a byte having 8 bits.

33

8 Toward MISRA Compliance

GenC does not rely on any other implementation-defined behaviour listed under the annex G
of the MISRA Guidelines. Moreover, no assembly instructions are embedded in the produced C
code, making it as platform-independent as possible.

Furthermore, provided that the input Scala code was thoroughly verified with --strict-arithmetic
the C code should not result in undefined-behaviour, crash or exit the program except by re-
turning from the main function, unless stack space was exceeded. Specifically, runtime errors
mentioned in Directive 4.1 are avoided for the following reasons: 1) arithmetic errors are avoided
thanks to Leon’s verification capabilities, 2) pointer arithmetic is not used, 3) array bounds errors
cannot occur if, again, the program was verified, 4) function parameters are always valid when
Leon asserts that all function calls are valid with respect to function requirements, 5) pointer
dereferencing is assumed to be valid under our memory model even tough we do not explicitly
check for NULL pointers as explained in Section 4, and 6) dynamic memory allocation is avoided
altogether thanks to our memory model.

8.2 Ensuring Mandatory Rules

The MISRA Guidelines defines 10 rules of level mandatory. Three of those are not relevant
for GenC : the first has to do with the sizeof operator (Rule 13.6), which we do not use, the
second is about dynamic memory block deallocation (Rule 22.2) and the third has to do with an
uncommon usage of the static keyword and array size that we do not use at all (Rule 17.6).
The other 7 rules are about:

1. ensuring variables are not read before being initialised (Rule 9.1);

2. not implicitly declaring functions (Rule 17.3);

3. having an explicit return statement for all exit paths in functions (Rule 17.4);

4. not assigning or copying values to overlapping object (e.g. union) (Rule 19.1);

5. never writing to a stream that was opened as read-only (Rule 22.4);

6. not dereferencing a FILE object (Rule 22.5);

7. preventing using a stream after it was closed (Rule 22.6).

Points 1 is ensured by Scala automatically. Points 2 is guaranteed simply by generating
explicit declaration for all functions. Point 3 is fulfilled by Scala and by ensuring all pattern
matching cases are handled in a match expression, with the help of Leon. Point 4 holds thanks
to the exception listed in Rule 19.1 allowing assignment between two objects that overlap exactly
and have compatible types. Point 5, 6 & 7 are all ensured by the design of the new I/O component
of Leon’s library.

8.3 Rules Subsumed Under Verification

Thanks to the static analysis capabilities of Leon it is possible to verify whether some properties
are respected or not, providing a counter example that explains when and why a property does
not hold. For part of MISRA Guidelines we are able to take advantage of this system to notify
the user when a rule or directive is not respected.

34

8 Toward MISRA Compliance

We discuss here which rules can be asserted and why:

1. As mentioned before, runtime failure are minimised to meet Directive 4.1 by identifying
when an arithmetic expression could trigger undesired effect such as overflow or by en-
suring all indexes used for array accesses are within valid ranges, therefore avoiding an
underestimated number of bugs as discussed in Section 2.1.

def dot(a: Array[Int], b: Array[Int]): Int = {
var sum = 0
var i = 0
while (i < a.length) {
sum += a(i) * b(i) // overflow + invalid access
i += 1

}
sum

}

Listing 19: Buggy implementation of the dot product.

For example, the code in Listing 19 contains two issues: arrays a and b are not required to
have the same length and the multiplication and addition operations can overflow. One can
take several approaches to solve these problems. One of these consists in adding runtime
checks to detect and report such problems before they happen. This of course results in
performance penalty but can be sufficient for some applications. Alternatively, one can take
advantage of the verification system to ensure that both arrays have always the same size
and that all integers are in a specific range that prohibits integer overflow in this context,
moving the burden of minimising errors on the design of the application itself.

2. Verification conditions can be used to enforce all functions calls satisfy the contract im-
posed by function specifications, therefore implicitly validating Directive 4.11, which we
can expend to any function and not only functions of the standard C library.

To illustrate this, assuming the dot function starts with require(a.length == b.length),
the following code

val a = Array(0, 1) // someone forgot the third dimension
val b = Array(1, 0, 0)
dot(a, b) // precond. (call dot(a, b)) is invalid

results in an invalid precondition for the function call.

3. Rule 1.3 complements Directive 4.1 by requiring that there shall be no occurrence of unde-
fined or even unspecified behaviour. GenC can ensure this in two ways: 1) by generating
code that is not based, for example, on a particular order of evaluation of function argu-
ments, and 2) by ensuring, through static verification, that no division by zero can occur,
for example. Similarly to the previous rule, Rule 12.2 requires specifically that all operands
of shift expressions are within valid ranges. And, Rule 18.1 completes Directive 4.1 by ask-
ing developers to pay special attention to invalid pointer arithmetic, which includes array
access in C. Again, verification can detect such invalid operations.

35

8 Toward MISRA Compliance

4. As detailed in the previous section the mandatory Rule 17.4 is ensured when all execution
paths within a function are terminated by a return statement. Here too verification is
highly convenient as illustrated by Listing 20.

def foobar(opt: Option[Int]): Int = opt match {
case Some(x) if x >= 0 => x
case None() => 0
// match exhaustiveness:
// The following inputs violate the VC
// opt := Some[Int](-2147483648)

}

Listing 20: Code exhibiting potential MatchError.

8.4 Code Generator Guarantees Enforcing Many Rules

As we just shown, static analysis can be beneficial to spot where and when a piece of code can
fail to abide to a given set of rules. But a larger chunk of the MISRA Guidelines can be enforced
by carefully generating valid C99 code. We discuss here the required directives and rules that
GenC always respects.

1. Directive 2.1 and Rule 1.1 require that the generated code must compile without errors
and contain no transgressions of the standard C syntax while respecting the limitations
of the used C compiler. As discussed above, GenC assumes a compliant C99 compiler
is available for compilation and therefore can uses the whole spectrum of the standard C
syntax. It is also careful to generate exclusively standard C99 code, without embedding
assembly instructions.

2. As discussed through this report, GenC uses exclusively stack allocated objects. It directly
follows that Directive 4.12 – which asks that no dynamic allocations are used – is fulfilled.

3. Rules 3.1 and 3.2 are both about comments within C code, adding some requirements on
the syntax defined in the C standard. Because comments are solely addressed to human
being they are completely irrelevant at runtime. The syntax of comments in C and Scala
is also not quite identical; e.g. the latter allows nested comment blocks. Mainly for
these two reasons GenC does not translate Scala comments into the generated C code.
Additionally, comments are used only for readability purposes, delimiting several parts of
the code such as includes or function declarations. To that end we exclusively use the
/* block syntax */.

4. Rules 5.2, 5.3 and 5.7, which regulate usage of identifiers, should be enforced by the user as
we discuss in Section 8.6 but GenC does ensure Rule 5.5 is respected by not using macros.
Rule 5.6 is also respected because all identifiers used in typedefs are unique, thanks to
the extra unique postfixes added by GenC .

5. Regarding declarations and definitions, the guidelines specify that types should be explic-
itly specified to avoid using the implicit int type, prototype forms of functions should
always have named parameters and all declarations must be consistent with name and

36

8 Toward MISRA Compliance

type qualifiers usage. For GenC it is trivial to produce code respecting those three points,
detailed by Rules 8.1, 8.2 and 8.3: C programs need only to be rigorously constructed.

6. Because programs generated by GenC all consist of one compilation unit, static stor-
age class is used for all functions, except main for which we use the standard signature.
Furthermore, no global variables are allowed. Hence, Rule 8.8 is respected.

7. Rule 9.4, which requires that array elements or structure attributes must be initialised at
most once, is automatically met because Scala already ensures this behaviour by initialising
any object exactly once and because GenC maps one-to-one an object initialisation.

8. As mentioned in Section 6.1 GenC ensures the unambiguous evaluation model of Scala is
respected by the generated code. This model is strict enough to determine a specific order
of expression evaluation, such as evaluating function arguments or operands from left to
right. The C standard however leaves many details up to the C implementation. For that
reason, Rule 13.2 wants that all possible evaluation orders result in the same side-effects.
It therefore follows that by enforcing a unique evaluation order the generated code abides
to that rule.

9. Because it is unsafe to keep using the address of an object after it is released, GenC never
returns from function a pointer to an object with automatic storage. Only pointer to
string literals, which have a static storage class, can be returned. References are only
used when passing a mutable object to a function to propagate side-effects to the caller
site. Furthermore, because no aliasing is allowed, it is not possible to keep a reference
to an object declared in an if, while or block expression beyond its scope. The logical
conclusion is that the transpiled Scala code always follows Rule 18.6, which specifically
requires that the address of an object x with automatic storage is never stored in a second
object y outliving x.

10. When using #include directives, GenC exclusively uses the <filename> notation with
headers from the Standard C Library, de facto ensuring both Rule 20.2 and 20.3 are re-
spected. Moreover, this is the only usage of the # symbol, making all its usages valid
preprocessing directives as requested by Rule 20.13.

11. The MISRA documentation acknowledges that the type system used in C is far from trivial
and defines the essential type model to help developers understand and control implicit
and explicit conversions through portable coding practice. It goes further than the ISO C
Standard and defines several categories of essential types, on top of which Rules 10.1 to
10.8 are built to guide programmers into using the proper types for the various arithmetic
operations.

Many of these rules are automatically respected by GenC , mainly because we generate
code that follows the strict Java specification which already imposes that all arithmetic
operations are carried on 32-bit integers. And, as discussed in Sections 6.2 and 6.3, we
carefully craft C code to use safe shift expressions, respecting instructions of Rule 10.1.

8.5 Deviations from the Guidelines

GenC does not abide to 5 rules from the MISRA Guidelines: 2 readability rules, 2 advisory rules
and 1 required rule. We detail here the reasons why we either ignore or deviate from these and
why it does not impact the safety of the software.

37

8 Toward MISRA Compliance

Readability Rules

1. Directive 4.5 recommends using typographically unambiguous identifiers. While this is
partly up to the user, GenC also generates additional variables and rename all identifiers
to be unique. In doing so, it could happen that identifiers can be said to be typographically
ambiguous under this directive. This however does not affect the execution of the program
and therefore the generated program is as safe as the input program in that respect.

2. Rule 2.7 asks that no function parameter should be unused. First of all, Scala and Leon
do not forbid having unused parameters and therefore the user is accountable for providing
code free of unused function parameters. That being said, due to the way nested functions
and their respective context are translated into top-level functions GenC could generate
functions with unused parameters. Since the user is authorised to provide a custom im-
plementation for any function, GenC is not capable of computing the set of used variables
exclusively from the Scala code.

We understand the rationale behind this rule, which desire is to avoid mismatch between
specification and implementation, but do note that regarding performance this is not an
issue as all functions have internal linkage, therefore allowing a C optimiser to remove any
extra arguments.

Advisory Rules

1. Rule 8.13 advises using pointers to const-qualified types whenever possible. The produced
code however does not attempt to fulfil this rule nor does it use other const-qualified types
because this concept does not exists in Scala: types are either mutable or immutable. It
follows that this rule is not relevant for GenC .

2. Rules 19.2 claims that union types should not be used as they are deemed too complex
and error-prone, putting at risk the security of the software. With GenC we carefully avoid
any illegal instruction and keep usage of union to the minimum as detailed in Section 5.3,
producing what we strongly believe to be safe C programs.

Required Rule

1. Rule 7.4 requires that string literals are only assigned to pointers to const-qualified char.
The reasons why GenC uses char* and not char const* are twofold. On the one hand,
the C99 standard defines the type of a string literal as char [N], with N being the size
of the string plus one to accommodate for the implicit sentinel character, which decays to
char*. It also clearly specifies that mutating such an array results in undefined-behaviour.
But it remains that char* is a valid type to represent string literals. On the other, because
GenC does not yet provide support for string manipulation, it is impossible to execute
illegal instructions related to string literals, which is the rationale behind Rule 7.4. In that
sense, the rule is fulfilled.

We do however note that this model should be reconsidered when implementing a wider
support for string manipulations for GenC .

8.6 Responsibilities Left to the User
GenC tries to ensure as many rules as possible are met by generating appropriate programs.
For a considerably large part of the Guidelines it is capable of doing that, as we have discussed

38

8 Toward MISRA Compliance

above. For some rules however GenC needs to collaborate with the user, and for some other
rules GenC has to trust that the user provides Scala code that observes the mentioned directives
and rules.

There are 16 required and 4 advisory rules that GenC cannot deal with and therefore are the
sole responsibility of the user. We detail those now in an order of what we believe to be their
relative importance:

1. Directive 3.1 requires that all code shall be traceable to documented requirements. It
follows that to claim MISRA compliance one has to follow the process described in the
guidelines for Scala code as well. Because the generated code uses identifiers close to
the input program one can easily link documentation for a produced C function, type or
variable back to the original function, type or variable.

2. Directive 4.7 mandates that error information retuned from functions should be tested. To
that end we highly recommend users to use, for example, the monadic Option class to
represent the absence of result because one has to test the type of the returned instance,
using pattern matching for example, to extract result and therefore make error checking
unavoidable.

3. Rule 17.7 asks that every value returned by a function should be used. This applies to
Scala as well, except for the Unit value, of course.

4. Rules 2.1 and 2.2 demand that the source code should not contain unreachable or dead
code. The distinction between the two is that, in MISRA terminology, dead code is code
that can be executed but does not affect the outcome of the program while unreachable
code is code that is never reached under any input. GenC is designed to not add such
undesirable instructions but cannot remove such code. Moreover, we highlight the fact
that such constructs can be the symptoms of design issues or bugs.

5. Rule 17.2 reminds the user that recursive functions, either by directly calling themselves
or through intermediate function calls, can result in stack space shortage and therefore is
unsafe. We discuss this particular issue in Section 5.4.

6. Rule 18.8 strongly suggests avoiding using Variable Length Array (VLA). GenC allows
such constructs but will emit a warning. The user must ensure that the runtime size of
such array is strictly positive to avoid undefined-behaviour.

7. Rules 13.1 and 13.5 both require to avoid side-effect in specific contexts; the former when
initialising objects or arrays, the latter in operands of the logical && and || operators. By
extension to Scala we recommend users to avoid side effect in any operands and function ar-
guments, although the generated code ensures through normalisation that such instructions
have the same behaviour in C.

8. Rule 14.3 puts more weight on the fact that loops should progress, and therefore have
non-constant controlling expressions that are not invariant, in order to avoid undefined-
behaviour and the nasal demons it nourishes [35]. Exceptions to this rule allow constant
expressions4 to produce infinite loops such as while (true) { /* ... */ }.

9. GenC produces code free of variable shadowing by means of identifier postfixes but the
input code should be free of such issue in the first place to truly respect Rules 5.2 and 5.3.

4A constant expression can be evaluated during translation rather than runtime; for the full definition refer
to Section 6.6 Constant expressions of the C99 Standard.

39

8 Toward MISRA Compliance

Similarly, Rule 5.7 strongly advises against reusing the same identifier for two different
types. Since C99 does not support function overloading, it could be argued that this rule
also applies to functions. Even though the generated code is technically free of such issue
due to the disambiguating used postfixes, we recommend users to follow this guideline in
their Scala code for readability purposes.

10. Rule 22.3 asks that no file should be read and written at the same time through different
streams. The provided I/O API unfortunately cannot prevent this.

11. Rule 21.6 explains why one should not use features from the C Standard Library I/O
framework. We let the user determine whether this restriction applies to their project
or not. If I/O through FILE* is problematic the user should not use features from the
leon.io package.

12. Directive 4.13 advises to release resources in the opposite order they were acquired. As it
currently stands, only FileInputStream and FileOutputStream require to be released
using their respective close() method, but the user is free to create other proxies for
system resources using annotations presented in Section 7.

13. Rule 8.9 recommends to define variables, and by extension to Scala nested functions as
well, the closest to their usage as possible.

14. Rule 12.4 advocates against having (unsigned) wrap around evaluation in constant expres-
sions to avoid confusion. Note that when processing the input program such expressions
are constant folded to produce the final value automatically5. This means that expressions
such as val x = 2147483647 + 1 are translated into int32_t x = -2147483648;.

15. Rule 15.7 requires every if ... else if constructs to followed by a final else expression,
possibly only consisting of a comment explaining why no code is executed in this final
branch. Scala forces if statements to have a final else branch but only when they are
used to "return" a value. In other words, examples such as the following one are valid code
but do not respect this rule.

def foo(b: Boolean): Int = {
if (b) log("foo") // no explicit else
42

}

16. Rule 15.5 advises to end functions with a unique return statement. In the supported
fragment of Scala, all functions end with a unique expression as the return keyword is not
allowed. However, GenC inserts more that one return statements in a function when it is
ended by either an if-else expression or a pattern matching expression. To follow this rule,
one can always manually create a temporary variable for such expressions and then return
the variable instead, as we illustrate in Listing 21.

Finally, when using annotations presented in Section 7 in order to use existing C libraries,
users should be aware that they are injecting C code not handled by GenC . Therefore, users
should double check they do not violate any rule.

5This happens in Leon when extracting the AST using scalac.

40

8 Toward MISRA Compliance

def invalid1(opt: Option[Int]) = opt match {
case Some(42) => true
case _ => false

}

def valid1(opt: Option[Int]) = {
val res = opt match {
case Some(42) => true
case _ => false

}
res // ensures only one ‘return‘

}

def invalid2(x: Int) = if (x < 0) x else -x

def valid2(x: Int) = {
val res = if (x < 0) x else -x
res // ensures only one ‘return‘

}

Listing 21: Scala functions validity with respect to Rule 15.5.

41

9 Case Study: LZW

9 Case Study: LZW

To showcase the abilities of GenC we implemented the well-known Lempel–Ziv–Welch (LZW)
compression/decompression algorithm [9]. After laying down the weft of the algorithm we define
how strings are represented. Then we discuss the structure of two implementations in Scala.
And finally we give some benchmark measurements of the compression ratios and comment on
the speeds of the encoding & decoding processes.

9.1 The LZW Algorithm

In LZW a coding table, or dictionary, representing a mapping between known patterns and
codewords is constructed on the fly as the data to encode or decode is read. The way this
dictionary is built requires that the encoder and decoder only share one information beforehand:
the supported and ordered input alphabet. It allows the decoder to reform the original data
without being provided with the full encoding dictionary.

In this report we discuss one of the simplest versions published in the 80’s which was used
in several tools. Improved versions are still used in, for example, the GIF format. Compared
to other compression algorithms its compression ratio makes it really attractive while keeping a
relatively simple structure.

The compression, decompression and helper procedures for the algorithm are exposed in
Listing 22. Errors, such as premature end of file, are left out here for simplicity but our imple-
mentations do handle them.

Having an initial dictionary of codewords mapping to the default alphabet allows the encoding
and decoding procedures to always be able to handle new inputs: in the worst case scenario when
no pattern repetition occurs only strings of length one are processed.

The algorithm compression power is however limited by the size of the dictionary: the dictio-
nary is considered full when all codewords have been associated with a string. In that situation
several alternative are possible. One could always stop the encoding or decoding phase and
report an error. Because this is not satisfactory in our opinion, we instead decided to enter an
alternative encoding/decoding mode in which only existing codeword are used and the dictio-
nary stop growing. This allows processing files of all sizes. Other options includes clearing the
dictionary when full, except for the codewords for the base alphabet, or removing the oldest/less
frequently used codeword when a new one is needed.

9.2 Implementation: String Representation

Since no heap allocation is allowed we encoded strings using a fixed-length buffer of characters,
represented by the Buffer class which is sketched in the following listing. We also require that
all buffer instances have a capacity of BufferSize, which is a global compile time parameter of
the program, that is proven to be correct by means of verification conditions. This requirement
is helpful to simplify reasoning about Buffer. The actual implementation, which is available in
Appendix B, has additional methods that are only relevant for the implementation details of the
algorithm.

The characters themselves are, for the purpose of this benchmark, Byte; this allows us to
use a leon.io.FileInputStream and read file byte by byte, without having to interpret the
content of files nor care about encoding when the contents are text-based.

This string representation allows us to append characters, access individual characters, and
more, but under the strict restrictions that the capacity of the buffer is not exceeded and all

43

9 Case Study: LZW

PROCEDURE initialise dictionary, INPUT dictionary D:
for each character c in the alphabet

associate c with the next available codeword and
insert the relation in D

end

PROCEDURE encode, INPUT string data:
D ← empty dictionary
initialise dictionary D

w ← "" (the empty string)

for each character c in data
wc ← w + c
if D contains wc

w ← wc
else

o ← codeword for w in D
output o
associate wc to the next free codeword and
add the relation in D
w ← c

end
end

o ← codeword for w in D
output o

end

PROCEDURE decode, INPUT sequence of codewords data:
D ← empty dictionary
initialise dictionary D

previous ← consume head of data
o ← string associated with p in D
output o

for each codeword current in data
s ← string associated with current in D
output s

c ← first character of s
t ← string associated with previous in D
wc ← t + c
associate wc to the next free codeword and
add the relation in D

previous ← current
end

end

Listing 22: The three main procedures of the LZW algorithm.44

9 Case Study: LZW

array accesses are valid. Such safety properties are verified statically and therefore entitles the
program to assume all array accesses are in the allocated bounds.

We show here the main component of this Buffer class:

case class Buffer(private val array: Array[Byte], private var length: Int) {
val capacity = array.length
def size = length

def isFull: Boolean = length == capacity
def nonEmpty: Boolean = length > 0

def isEqual(b: Buffer): Boolean = // ...
def apply(index: Int): Byte = // ...
def append(x: Byte): Unit = // ...

}

9.3 Implementation: Dictionary Representations

The two implementation variants we present here use two different representations for the dic-
tionary. Both are using a linear search algorithm to find a key-value pair in an array but using
distinct memory layouts and encodings for the codeword-string pairs. We detail in this section
how the two versions differ but also what is their common denominator.

As implicitly mentioned above the input alphabet is the range covered by Byte, i.e. [−128, 127],
and this is true for all dictionary variants. Additionally, both use fix-sized, 16-bit codewords sim-
ilarly as the initial version of LZW. We were also able to use the same public interface for both,
which spare us the need of rewriting the encoding and decoding functions:

case class Dictionary(private /* implementation-defined */) {
def nonFull: Boolean
def lastIndex: Int // requires non-empty dictionary
def contains(index: Int): Boolean
def insert(b: Buffer): Unit // requires non-full dictionary
def encode(b: Buffer): Option[CodeWord]

}

Dictionary Design A: Array of Buffer

case class Dictionary(
private val buffers: Array[Buffer],
private var nextIndex: Int

) { /* ... */ }

As shown above, the first implementation of the dictionary is based on an Array[Buffer]:
the values (string buffers) are simply the values stored in the array while the keys (codewords)
are the indexes. This array is encapsulated in a Dictionary case class, which also keeps track
of the next free spot in the array. Because indexes are used to represent 16-bit codewords the

45

9 Case Study: LZW

underlying array cannot contain more than 216 elements; otherwise some indexes could not be
represented as codewords without being ambiguous.

When using the dictionary to encode data the algorithm needs to find out whether the
current candidate string (wc in the pseudo-code in Listing 22) is in the dictionary. To do that,
the dictionary array is traversed from its first element to its last used element in sequential
order. Because codeword-string pairs do not need to be removed from the dictionary in LZW all
valid buffers are stored contiguously in the array. It follows that the complexity for looking up
a codeword, or its absence, for a given string is O(n × BufferSize) where n is the size of the
dictionary and BufferSize takes into account the complexity of comparing two string buffers.

While this runtime complexity is not optimal, given a codeword as in the decoding procedure
we can get the corresponding string in O(1) using a random access lookup in the dictionary
array.

This implementation works decently at runtime, considering that it performs a linear lookup,
but suffers from mainly two tangled issues. To begin with, because only static allocation is
allowed with GenC , each array needs to be associated with a variable in the generated code in
order to be kept alive. And since the size of the array is not present in the array type, as discussed
in Section 5.2, GenC does not include this information in the type system. For example, the
Buffer class is represented as follows:

typedef struct { int8_t* data; int32_t length; } array_int8;
typedef struct { array_int8 array; int32_t length; } Buffer;

Because of this indirection, arrays such as array_int8 do not directly own the memory
allocated for the array. By transitivity, an instance of the Buffer structure does not directly
own all the memory associated with it. To illustrate this,

val b = Buffer(Array.fill(64)(0), 0)

is translated into the following C99 code6:

int8_t leon_buffer_0[64] = { 0 };
array_int8 norm_0 = (array_int8) { .data = leon_buffer_0, .length = 64 };
Buffer b = (Buffer) { .array = norm_0, .length = 0 };

Because GenC enforces that b does not outlive leon_buffer_0 it is safe to assume the
memory for the array of characters will always be available. However, the translated code
can degenerate when nested arrays are involved. This is the case with the implementation of
Dictionary defined earlier. The C code for

val d = Dictionary(Array.fill(1024){ createBuffer() }, 0)

where createBuffer() is an inlined function that returns Buffer(Array.fill(64)(0), 0),
is reported in Listing 23.

The second issue is a consequence of the number of variables and nested arrays that grows
fast with the size of arrays: it creates significantly large programs in terms of line of code.
Moreover, GenC can be noticeably slow to generate such programs, the compile time, especially
with optimisation enabled, takes a considerable amount of time and the generated assembly code
will be predictably large.

6The presented code is slightly simplified for the sake of this example; the actually produced code would be a
bit more complex to accommodate for some general normalisation transformations that are not relevant here.

46

9 Case Study: LZW

typedef struct { Buffer* data; int32_t length; } array_Buffer;
typedef struct { array_Buffer buffers; int32_t nextIndex; } Dictionary;

// In a function:
int8_t leon_buffer_0[64] = { 0 };
array_int8 norm_0 = (array_int8) { .data = leon_buffer_0, .length = 64 };
Buffer norm_1 = (Buffer) { .array = norm_0, .length = 0 };

int8_t leon_buffer_1[64] = { 0 };
array_int8 norm_2 = (array_int8) { .data = leon_buffer_1, .length = 64 };
Buffer norm_3 = (Buffer) { .array = norm_2, .length = 0 };

// ...

int8_t leon_buffer_1023[64] = { 0 };
array_int8 norm_2046 =

(array_int8) { .data = leon_buffer_1023, .length = 64 };
Buffer norm_2047 = (Buffer) { .array = norm_2046, .length = 0 };

Buffer leon_buffer_1024[1024] = { norm_1, norm_3, /* ... */, norm_2047 };
array_Buffer norm_2048 =

(array_Buffer) { .data = leon_buffer_1024, .length = 1024 };

Dictionary d = (Dictionary) { .buffers = norm_2048, .nextIndex = 0 };

Listing 23: Code generated with Design A for
val d = Dictionary(Array.fill(1024){ createBuffer() }, 0)

Dictionary Design B: Custom & Compact Memory Layout

case class Dictionary(
private val memory: Array[Byte],
private val pteps: Array[Int],
private var nextIndex: Int

) { /* ... */ }

With our second design of Dictionary we try to address the two issues related to the size
of the generated code. It is also an attempt at squeezing more strings into the same amount of
memory.

By analysing statistics of memory usage of the previous implementation, we notice that the
vast majority of string buffers were not using their full capacity at all; instead most of them
are short. For example, all the codewords for the initial alphabet are associated with strings of
length one, effectively wasting BufferSize - 1 bytes of memory per string.

Consequently, we represented a Dictionary storage using a raw memory region memory,
allocated on the stack using an Array[Byte], and an array of integers pteps7, holding for each
string in the dictionary the index in memory of the next Byte after that string. A dictionary can

7pteps stands for Past The End PointerS.

47

9 Case Study: LZW

therefore contain at most pteps.length strings, assuming memory is big enough to hold all of
them. The Dictionary case class also has an attribute keeping track of the next free index (and
therefore codeword).

It is arguably not obvious but pteps can be used to compute the size of each string stored
in memory: the length of the first string is pteps(0) itself while the i-th string has a length of
pteps(i) - pteps(i-1).

As illustrated Appendix B.1, this new design prohibits us from reusing some part of Buffer,
such as Buffer.set to insert new elements in the dictionary, and requires us to write more
complex code even for simple functions such as nonFull. It also follows that the verification
conditions used to prove the correctness of this class are notably more involved.

Regarding the generated code, creating a dictionary such as

val d = Dictionary(Array.fill(524288)(0), Array.fill(8192)(0), 0)

results in tremendously smaller code size as reported in Listing 24.

typedef struct { array_int8 memory; array_int32 pteps; int32_t nextIndex; }
Dictionary;

// In a function:
int8_t leon_buffer_0[524288] = { 0 };
array_int8 norm_0 = (array_int8) { .data = leon_buffer_0, .length = 524288 };
int32_t leon_buffer_1[8192] = { 0 };
array_int32 norm_1 = (array_int32) { .data = leon_buffer_1, .length = 8192 };
Dictionary* d =

(Dictionary) { .memory = norm_0, .pteps = norm_1, .nextIndex = 0 };

Listing 24: Code generated with Design B for
val d = Dictionary(Array.fill(524288)(0), Array.fill(8192)(0), 0)

The direct consequence of this is that GenC is capable of generating C99 for this implemen-
tation quickly, and C compilers are able to compile the program in a breeze, even with aggressive
optimisation turned on, and produce a relatively small assembly code. We will see next that this
second design compresses files with a smaller memory footprint but unfortunately not as quickly
as the previous implementation.

9.4 Benchmark Results

The first remark we can make about this experiment is that GenC is mature enough to transpile
a Scala implementation of the famous LZW algorithm. It is true that when dealing with some
forms of array the generated code can be large and therefore slow to produce and compile, but
we also showed how to avoid this issue at the cost of sacrificing the Don’t Repeat Yourself (DRY)
idiom. By customising the implementation of Dictionary as we have shown with the Design B
we were also able to reduce the memory footprint of the program at runtime and the size of the
binary produced by Clang, as reported in Table 1. Furthermore, this second design is capable
of producing smaller encoded output. However, to fairly compare the speed of both designs we
set up our benchmark to use the same maximal number of codewords and therefore produce the
same encoded data.

48

9 Case Study: LZW

We used commands similar to the following ones to transpile the LZW implementations,
compile them using the Clang C compiler and execute them:

Transpiling time leon --genc testcases/genc/LZWa.scala --o=LZWa.c

Compiling time clang LZWa.c -o LZWa -O3 --std=c99 -DNDEBUG

Running time -v ./LZWa

Time measurements for the runtime of both C99 implementations were done 10 times and
are reported as an average in Table 1. All commands were run on a Linux machine having an
Intel quad-core i7-6700 clocked at 3.4GHz and 64GB of RAM using Clang version 3.8.

A file of 755KB was used for this benchmark; all implementations were able to compress and
decompress it successfully, yielding exactly the original data. Using an implementation with heap
allocation written in C++ we were able to determine that, for our input data, a total of 55850
codewords were needed to optimally compress it down to 6.8% of its original size, the longest
string stored in the dictionary having a length of 65. We used for Design A a DictionarySize
of 8192 and a BufferSize of 64. And, forDesign B we additionally set DictionaryMemorySize
to 524288, i.e. DictionarySize * BufferSize.

These results show thatDesign A is about 6.5 times slower to transpile compared to Design
B, with a C99 code close to 200 times larger in size. Not surprisingly, compiling the first
implementation using most of Clang optimisations is significantly slower than its alternative
implementation, with a binary size ∼100 times larger. However, contrary to the intuition that
less assembly instructions is better for speed, the initial version is 40% faster, using the wall clock
to measure time, than the second one when both are tasked to compress the same file with the
same maximum number of codewords to achieve a compression ratio for 23.2%. Finally, we can
remark that Design A uses 60% more resident memory than Design B at their peak, exposing
the trade-off between memory usage and computational speed.

Design A Design B Comment

Transpiling
∼170s ∼26s user time
5.6MB 28KB size of C99 code

Compiling
∼575s <1s wall clock time
1.2MB 12KB size of assembly code

Runtime
4.62s 7.88s average wall clock time
4.62s 7.88s average user time
0.00s 0.00s average system time
3.1MB 1.9MB maximum resident set size
23.2% 23.2% compression ratio

Table 1: Measurements for LZW implementations

Because this benchmark does a lot of input and output operations using the file system, it
is important to study whether the measured running times are significantly impacted or not by
blocking kernel operations. As it turns out, using the POSIX time utility we can see by looking
at the difference of clock measurements (real or wall, user and system) that blocking operations

49

9 Case Study: LZW

account for a marginal portion of the runtime. It is therefore highly likely that the operating
system cached the whole input files in main memory and optimised the output operations as
well.

Interestingly, by looking at a breakdown of the CPU usage per function for both imple-
mentations, generated by profiling the generated C code compiled with Clang compilation op-
tions -O3 -std=c99 -fno-omit-frame-pointer -g -DNDEBUG -fno-inline-functions, we
can make two conclusions:

1. The decoding process, regardless of the implementation designs, only accounts for less than
1% of the total runtime. This is obviously because looking up codewords in the Dictionary
is O(1) and therefore very efficient.

2. In both cases, 50% or more of the time is spent comparing string buffers. As previously
noted, looking up strings in the dictionary is O(n×BufferSize), where n is the size of the
dictionary, and this is the bottleneck of the algorithm. It therefore would be wise to use a
different data structure, for example based on hash functions, to represent the dictionary
and improve the runtime performance of the programs. However, this was not the point of
this benchmark.

Finally, because the Scala code used to implement both designs is valid, we are able to
run both versions on the JVM. The compilation process lasted for about 15 seconds for both
programs, but their running time were 160s and 200s, respectively. Contrary to the equivalent
C code, these programs run all assertions at runtime and both spend more than 50s in kernel
functions and use much more memory, as reported by time. The main bottleneck of the Scala
programs is the implementation of the I/O API introduced in Section 3.2: Leon is currently not
capable of reasoning about Java types and, for this reason, using the Java I/O API is possible
exclusively in function annotated with @extern. The direct consequence of this is that I/O
streams need to be open and close for each individual I/O operation available through Leon’s
I/O framework.

That being said, it is straightforward to provide an efficient implementation of the same API
for runtime purposes using BufferedInputStream and BufferedOutputStream of the java.io
package. Furthermore, we removed verification conditions, such as require, ensuring, assert
or invariant, in order to have a fair comparison of the runtime performances between the JVM
and C backends. These changes resulted in runtimes around 12s and 10s on the JVM, respectively
for the Designs A & B, of user time as reported by the time utility.

Hence, using GenC , the speedups are of roughly 2.6x and 1.3x compared to single shot
executions of the original Scala programs, i.e. without specifically giving the JVM the chance
to warm up. It was also observed that using GCC 5.4 instead of Clang 3.8, with the same
compilation options, resulted in faster programs, with speedups of 2.6x and 1.8x, respectively.
Figure 3 reports these results: the left y-axis, which origin is at the bottom of the chart, presents
the speedup factors according to the jvm_no_vc baseline and the right y-axis, which starts at
the top of the graph, reports the absolute runtime measurements in seconds.

Memory-wise the JVM programs consume about 86MB and 147MB of RAM and their execu-
tions is interrupted by thousands of involuntary context switches. Again, the programs generated
by GenC are much more efficient in terms of memory consumption and context switches with
only a dozen context switches and consuming a handful megabytes.

50

9 Case Study: LZW

jvm_vc jvm_no_vc clang gcc
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 0

5

10

15

20

25

30

35

40

Runtime & Speedup by Backend

Speedup Design A Runtime Design A

Speedup Design B Runtime Design B

sp
ee

du
p

 fa
ct

or

ru
nt

im
e

[s
]

Figure 3: Results for the LZW Benchmark

51

10 Case Study: Image Processing

10 Case Study: Image Processing

To further illustrate what GenC is capable of, we present in this section a case study on image
processing. In this example, we first load some image stored in a file, then apply some filter and
finally save the modified image back into a new file. We discuss next mainly how the image data
is safely read from and saved to the filesystem, and present the main algorithm used by this case
study. We conclude this section with a discussion about performance by comparing runtimes
across several backends.

10.1 Safely Acquiring Image Data

For this experiment, we implemented a minimalistic parser for bitmap files (BMP). Because the
goal is not to support all variations of BMP files, our software exclusively works on 24-bit images
stored without compression that refer to the default palette. We provide two slightly different
versions for this case study. The first limits image size to a compile time constant. It could
be modified to process images of arbitrary sizes by processing them chunk by chunk thanks to
the nature of the image processing algorithm used here. Therefore processing a limited set of
images should not be interpreted as a hard limit of the memory model used by GenC . The second
version is provided for benchmarking purposes and relies on VLA, despite being discouraged by
the MISRA guidelines: it allows us, within the environment used for the benchmark, to measure
computational speed without including I/Os.

In order to write safe programs, especially those using I/O operations, one need to track
down potential errors. At this stage of the project, exception are not supported by GenC . The
remaining alternative is to work with error code. To do this in a type safe manner we define an
enumeration of Status, such as Success, OpenError, CorruptedDataError and so on. GenC
appropriately converts this set of values into a C enum, therefore converting the class hierarchy
expressed in Scala into a lightweight value representation in native C code.

abstract class Status
case class Success() extends Status
case class Failure() extends Status

case class Switch(val s: Boolean)

case class Out[A](var value: A)

def foo(a: Out[Int], b: Out[Switch]): Status = {
a.value = 42
b.value = Switch(true)
Success()

}

Listing 25: Thin wrapper for out-parameters.

However, returning a Status from a function typically means that an out-parameter is re-
quired. To propagate side-effect one can rely on a thin wrapper, such as Out[A] in Listing 25.
But this technique generally leads to verbose programs and has the downside to require a default

53

10 Case Study: Image Processing

initialisation of variables, often with random values. For example, a call site to function foo
defined in Listing 25 would look like this:

val outParamInt = Out(0)
val outParamSwitch = Out(Switch(false))
val status = foo(outParamInt, outParamSwitch)

Here, the choice of 0 and false to initialise the out-parameters is purely arbitrary. It can
also be argued that for some more complex types, it is not trivial to provide a default value.
Regardless of those issues, GenC supports Out-parameters.

Alternatively, the foo function can be modified to return a (Success, Int, Switch). This,
of course, moves the burden of default initialisation to foo itself instead of call sites. But in
both case, one has to remember to check the returned Status before using the out-parameters
(or the other members of the tuple).

Contrary to C, in Scala we can leverage the type system to ensure that out-parameters are
only used when the returned Status is a Success. The idea is to provide, through inheritance,
two alternatives: a success means the result of a function is available, and a failure means that the
status is not Success. The former is a Result[A] and the latter is represented by Failure[A]:

abstract class MaybeResult[A] { /* ... */ }
case class Result[A](result: A) extends MaybeResult[A]
case class Failure[A](status: Status) extends MaybeResult[A] {
require(status != Success())

}

With MaybeResult, the foo function can be rewritten to return a MabyeResult[(Int, Switch)]
and therefore no longer requires to arbitrarily construct values based on arbitrary parameters in
case of failure. At call sites, one can rely on pattern matching to extract the result, if the call was
successful. This technique has the additional benefit to increase compliance with Directive 4.7
of the MISRA Guidelines, which requires that error information returned from function should
be tested.

In combination with leon.lang.Option, MabyeResult was used in this case study to improve
the safety of the programs: for every cast or pattern matching Leon detects potential misuses of
the language that can result in runtime errors or missing branches.

One important fact about the BMP format is that integers are stored in little endian format.
This means that when loading a WORD, for example, the two bytes used to represent the 16-
bit unsigned integer have to be “swapped” using bitwise operations. Moreover, since Scala only
exposes signed integer types, WORDs have to be represented using Ints. Therefore, to translate
a 16-bit unsigned integer into one using two’s complement representation, one has to add 65536
to “negative” numbers. Listing 26 details how these elements are put together for the specific
example of WORD. The print operation for WORDs is shown in Listing 27. Additionally, we
wrote a small proof, which Leon is capable of verifying, showing that our conversions from little
to big endian as well as from signed to unsigned are consistent for every two bytes:

private def lemmaWord(byte1: Byte, byte2: Byte): Boolean = {
val word = constructWord(byte1, byte2)
val (b1, b2) = destructWord(word)
b1 == byte1 && b2 == byte2

}.holds

54

10 Case Study: Image Processing

// Attempt to read a WORD (16-bit unsigned integer).
// The result is represented using an Int.
def maybeReadWord(fis: FIS)(implicit state: State): MaybeResult[Int] = {
require(fis.isOpen)
// From little to big endian
val byte2 = fis.tryReadByte
val byte1 = fis.tryReadByte
if (byte1.isDefined && byte2.isDefined)
Result(constructWord(byte1.get, byte2.get))

else
Failure[Int](ReadError())

} ensuring { res =>
res match {
case Result(word) => inRange(word, 0, 65535)
case _ => true

}
}

private def constructWord(byte1: Byte, byte2: Byte): Int = {
// Shift range appropriately to respect unsigned numbers representation
val signed = (byte1 << 8) | (byte2 & 0xff) // has Int type
val unsigned = if (signed < 0) signed + (2 * 32768) else signed
unsigned

} ensuring { word => inRange(word, 0, 65535) }

Listing 26: Parsing a WORD.

Finally, after parsing the bitmap header data to identify where the image data starts in the
file, loading the pixels is fairly easy: the RGB components of each pixel are simply interleaved
so that a simple while loop is enough to read them one after the other. Furthermore, saving
the modified image back to the disk involves no special computation: it suffices to check that all
output operations have succeeded.

10.2 Image Manipulation Using Kernels

The image processing part of this case study involves a traditional matrix convolution approach:
a kernel, which represent the filter to be applied, is implemented as a 2D matrix of integers
and a scaling factor. In our implementation, the matrix is stored into a 1D array and can be
constructed as follows:

// Sharpen
val kernel = Kernel(size = 5, scale = 8, Array(
-1, -1, -1, -1, -1,
-1, 2, 2, 2, -1,
-1, 2, 8, 2, -1,
-1, 2, 2, 2, -1,
-1, -1, -1, -1, -1

))

55

10 Case Study: Image Processing

// Write a WORD
def writeWord(fos: FOS, word: Int): Boolean = {
require(fos.isOpen && inRange(word, 0, 65535))
val (b1, b2) = destructWord(word)
// From big endian to little endian
fos.write(b2) && fos.write(b1)

}

private def destructWord(word: Int): (Byte, Byte) = {
require(inRange(word, 0, 65535))
// Shift range appropriately to respect integer representation
val signed = if (word >= 32768) word - (2 * 32768) else word
val b1 = (signed >>> 8).toByte
val b2 = signed.toByte
(b1, b2)

}

Listing 27: Writing a WORD.

In other words, a given pixel will be modulated according to its neighbourhood and the kernel
matrix, which represents the weight of each pixel in the vicinity of the source pixel. By changing
only the kernel, one can produce various effects. Figure 4 shows three examples, all of which
were generated using the C code produced by GenC for this case study.

The algorithm itself is relatively straightforward, as shown in Listing 28. With the complete
version available in Appendix C, Leon is capable of showing that all array accesses and arithmetic
operations are valid, with two exceptions: the += and * on line 37 of Listing 28.

In order to prove that those two operations do not overflow, one should probably add some
constraints on the kernel size and its matrix content. For example, if the size is assured to be at
most 5 by 5 and all values of the matrix in the range [−10, 10], then only 16 bits are required to
compute the new pixel values before scaling it down as 5 ∗ 5 ∗ 10 ∗ 256 < 216. From this, we can
assume that in practice no overflow will occur when using 32-bit integers and regular kernels.

10.3 Runtime Performances

For this benchmark we compared exclusively the computational time of the application, without
taking into account the input and output processing times, using several runtime environments.
First, as a baseline, we ran the original Scala source code on a JVM as well as a modified version
trimmed of runtime assertions. Then, we used Leon and GenC to convert it into C code and
generated two native versions using both Clang and GCC compilers. We furthermore compared
compared the performances of Scala Native [13] after slightly adapting the source code. In order
to allow the JVM to perform optimisation at runtime, each measurement was performed 50 times
to let the JIT compiler kick in. However, we did not attempt to optimise the benchmark and
exclude measures impacted by the garbage collector because we strongly believe it is part of the
language environment and therefore should be accounted for.

To carry out this experiment, we set up a small API for benchmarks with an equivalent
implementation for C and Scala: it allows us to measure in milliseconds the elapsed time between

56

10 Case Study: Image Processing

edge detection
0 0 −1 0 0
0 0 −1 0 0
−1 −1 8 −1 −1
0 0 −1 0 0
0 0 −1 0 0



blurring

1
25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



sharpening

1
8


−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 8 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1



Figure 4: Three examples of Kernels: edge detection, blurring and sharpening filters.

two arbitrary points of a program. Given a source image, we measured the time needed to allocate
the memory for the output image and apply a given kernel on the input image.

The benchmark was run on kernels and images of different sizes. To accommodate for large
images we used Variable Length Arrays, despite being not recommended by the MISRA guide-
lines, and increased the maximal stack size of our Linux system using ulimit. The set of images
ranges from very small, 200x200 pixels images to large ones with more than 22 megapixels. We
used three sizes of kernels: 1x1, 3x3 and 5x5 matrices. Table 2 reports these parameters in
details.

57

10 Case Study: Image Processing

Image Pixels Size Kernel Matrix

input3.bmp 200x200 117 KB identity 1x1
input6.bmp 250x184 136 KB smooth 3x3
input4.bmp 220x334 216 KB emboss 3x3
input2.bmp 512x288 433 KB blur 5x5
input1.bmp 384x480 541 KB edges 5x5
input5.bmp 512x384 577 KB sharpen 5x5
input7.bmp 1350x900 3.5 MB
input7big.bmp 6000x4000 69 MB

Table 2: Properties of input images and kernels.

We used the following environment for this benchmark:

• Linux 4.8.0-42-generic x86_64;

• Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz;

• 4x 16GiB DIMM Synchronous 2133 MHz

• Scala compiler/code runner version 2.11.6;

• Java(TM) SE Runtime Environment (build 1.8.0_121-b13) & Java HotSpot(TM) 64-Bit
Server VM (build 25.121-b13, mixed mode);

• clang version 3.8.0-2ubuntu4 (tags/RELEASE_380/final);

• gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1˜16.04.4);

We present in Figure 5 a subset of the results that highlight the general trend of the mea-
surements. In these results, we use as baseline the Scala runtime where verification conditions
were removed from the code, denoted by jvm_no_vc. The data series named jvm_vc indicate
the runtime cost of verification conditions, which Leon could prove to be correct at compile time.
The clang.3 and gcc.3 series denote the performance of the generated C99 code compiled at the
-O3 optimisation level by Clang and GCC, respectively. Finally, the native series showcase the
performance of Scala Native.

In the first and second columns of the chart, we show the runtimes and speedups for the
second smallest and the largest image inputs, respectively, using boxplots: the red lines identify
the median runtime for each combination of parameters. In the third column are plotted the
speedups across inputs, where the smallest input image is on the left of the x-axis and the largest
on the right. For each row of the figure, we present the results for a different kernel. The first
row shows the outcomes for the smallest filter, i.e. a 1x1 matrix, while the second and third rows
present the results for a 3x3 and 5x5 kernel matrix, respectively.

From this data, we note a few things. First, the performance penalty to check at runtime
for errors accounts for a slowdown ranging from 4x to 10x. Thanks to Leon, this is not an issue
here: we can statically check whether the verification conditions present in the source code are
valid or not. Hence, we can remove such assertions from the executable program once we are
satisfied with the quality of the proofs used by Leon.

Then, for small inputs, such as the one presented in the first column of Figure 5, the generated
C99 code offers relatively similar performance to the JVM runtime denoted by jvm_no_vc: all
programs last for very few milliseconds. With a much bigger input, such as the one used in the

58

10 Case Study: Image Processing

second column of the chart, using Clang to compile the C99 code results in a slight slowdown, but
with a much smaller memory footprint. However, when using GCC instead, the performances
are notably better with speedups above 1.2x.

Then, the data shown in the third column of Figure 5 reveals that the size on the input
image does not affect the speedup factors in any significantly way, meaning that all runtime
environments scale similarly. The spike observed in the top right graph is due to the runtime
efficiency of the assembly code generated by GCC: because the program runs extremely fast
with the smallest image and kernel, the unit used for runtime measurement might not be precise
enough to provide accurate results.

Additionally, when exploring the runtime data we saw that the JIT compiler did not improve
the performance of the JVM backend significantly throughout the runs: the first and last runs
taking approximately the same time. The variance in the runtimes is therefore probably due to
the garbage collector doing its work.

We also modified the benchmark in order to be compatible with Scala Native and there-
fore produce an alternative native runtime. These modifications were surprisingly light and
did not impact the main algorithm. First, the I/O and timing facilities had to be rewritten
using functions from the standard C library, which resulted in a implementation close to iden-
tical as the one produced by GenC . Second, in order to use a stack allocated memory, we
replaced the Array[Byte] by native.Ptr[Byte] and explicitly allocated the image data us-
ing native.stackalloc[Byte](size) function. Furthermore, we also removed the verification
conditions so that the runtime performances reported by native in Figure 5 are comparable to
the jvm_no_vc, clang.3 and gcc.3 series. Specifically, to compare this version of the benchmark
against clang.3 and gcc.3, we turned off the garbage collector and configured the project to use
release mode in order to allow Link Time Optimisations (LTO).

However – and this can be explained by the experimental nature of version 0.28 of Scala
Native – this additional backend was slower than the C code generated by GenC and compiled
by GCC or Clang, and slower than the JVM runtime by a factor of 2x. It is expected that the
runtime performance of Scala Native will be significantly improved in upcoming updates and it
would therefore be relevant to run measurements for this benchmark again.

In conclusion to this benchmark, it clearly appears that GenC is capable of producing efficient
native code in comparison to the original Scala code; when using Clang we observed similar
performance as running the original Scala program on the JVM, but when using GCC the
performances were boosted and offered speedups between 1.2x and 1.5x. It follows that using
Leon to verify the safety of software does not implies slow runtimes. Moreover, with GenC we
add the ability to target hardware potentially not supported by the JVM.

8Version 0.2 was not yet released when running this benchmark.

59

10 Case Study: Image Processing

jvm_vc native jvm_no_vc clang.3 gcc.3

0

2

4

6

8

10

R
un

tim
e

[m
s]

speedups
0.24x 1.31x 1.0x 1.34x 1.34x

input6.bmp

jvm_vc native jvm_no_vc clang.3 gcc.3

0

500

1000

1500

2000

2500

3000

3500

4000
speedups

0.22x 0.78x 1.0x 0.97x 1.3x

input7big.bmp

input3 input6 input4 input2 input1 input5 input7 input7big

0

2

4

6

8

10

12

14

16

ke
rn

el
: i

d

speedups by input

clang.3
gcc.3
jvm_no_vc
jvm_vc
native

jvm_vc native jvm_no_vc clang.3 gcc.3

0

5

10

15

20

25

30

35

40

R
un

tim
e

[m
s]

speedups
0.15x 0.54x 1.0x 1.26x 0.95x

jvm_vc native jvm_no_vc clang.3 gcc.3

0

5000

10000

15000

20000

25000
speedups

0.11x 0.57x 1.0x 0.98x 1.25x

input3 input6 input4 input2 input1 input5 input7 input7big

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ke
rn

el
: s

m
oo

th

clang.3
gcc.3
jvm_no_vc
jvm_vc
native

jvm_vc native jvm_no_vc clang.3 gcc.3

0

10

20

30

40

50

60

70

80

R
un

tim
e

[m
s]

speedups
0.13x 0.47x 1.0x 1.15x 1.41x

jvm_vc native jvm_no_vc clang.3 gcc.3

0

10000

20000

30000

40000

50000

60000
speedups

0.09x 0.45x 1.0x 0.97x 1.21x

input3 input6 input4 input2 input1 input5 input7 input7big

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ke
rn

el
: s

ha
rp

en

clang.3
gcc.3
jvm_no_vc
jvm_vc
native

Runtimes & Speedups

Figure 5: Results for the Image Processing Benchmark

60

10 Case Study: Image Processing

1 case class Kernel(size: Int, scale: Int, kernel: Array[Int]) {
2 def apply(src: Image, dest: Image): Unit = {
3 require(src.w == dest.w && src.h == dest.h)
4
5 val size = src.w * src.h
6 var i = 0
7 (while (i < size) {
8 dest.r(i) = apply(src.r, src.w, src.h, i)
9 dest.g(i) = apply(src.g, src.w, src.h, i)
10 dest.b(i) = apply(src.b, src.w, src.h, i)
11
12 i += 1
13 }) invariant (inRange(i, 0, size))
14 }
15
16 private def apply(channel: Array[Byte],
17 width: Int, height: Int, index: Int): Byte = {
18 require(/*...*/)
19
20 // Get the colour component at the given position
21 def at(col: Int, row: Int):Int = {/*...*/} ensuring { inRange(_, 0, 255) }
22
23 val mid = size / 2
24 val i = index % width
25 val j = index / width
26
27 var res = 0
28 var p = -mid
29 (while (p <= mid) {
30 var q = -mid
31 (while (q <= mid) {
32 val kcol = p + mid
33 val krow = q + mid
34 val kidx = krow * size + kcol
35
36 // Here, the += and * operation could overflow
37 res += at(i + p, j + q) * kernel(kidx)
38
39 q += 1
40 }) invariant (inRange(q, -mid, mid + 1))
41 p += 1
42 }) invariant (inRange(p, -mid, mid + 1))
43
44 clamp(res / scale, 0, 255).toByte
45 }
46 }

Listing 28: Implementation of the matrix convolution

61

11 Conclusion

11 Conclusion

The goals achieved in this project are multiple: we extended the verification capabilities of Leon,
significantly augmented the set of Scala programs that GenC can convert into C99 equivalent
code while taking into account the MISRA guidelines, and showed through two case studies that
the generated programs are at least as fast as the original Scala programs, but often significantly
faster when compiled with a clever C tool-chain.

First, we introduced the ability to use Byte with Leon with the proper integer promotion
strategy used by Java and Scala. We also updated Leon to add automatic verification for a wider
range of potential integer overflows and to detect unexpected behaviour in arithmetic expressions.
Additionally, we introduced an Input/Output API for standard streams and files, with a backend
for C99.

After a carefully analysis of the requirement imposed by the xlang module regarding aliasing
we devised a memory model based on stack allocation, free of dynamic allocation, that is capable
of handling most form of mutability in class hierarchies, and therefore imposes no requirement
on heap memory management, such as having a Garbage Collector.

Not only did we introduce support for Byte and other primitive types, but we managed to
transpile generic types and functions into C code without using language extensions nor introduce
a runtime performance penalty. Next, we presented a stronger model for normalisation of Scala
code in order to properly project the evaluation semantics of the input software onto the generate
one. We also significantly improved the safety of shift operations, thanks to a close inspection of
the Java 8 and C99 standards to understand exactly when an expression is equivalent to another
in both languages and, especially for C, when undefined-behaviour can be triggered. With a
better comprehension of the limits of C programs we were able to use different integer types to
workaround some dangerous pitfalls by converting values from one to another type.

Furthermore, support for casts and membership tests within class hierarchies were added as
well as the ability to convert pattern matching expressions into equivalent, imperative code. And
in order to use stable and trusted C libraries we designed an annotation system to create proxy
interfaces, providing a bridge between Scala and C code.

One central aspect of this report is that we documented how GenC is capable of respecting,
with very few exceptions, the strict MISRA Guidelines for critical and embedded systems devel-
opment, exposing when the verification tools of Leon can be extremely beneficial and what the
user is required to do to work their way through full compliance.

We ended the discussion by using the LZW data compression and decompression algorithm
and an image processing algorithm using matrices, illustrating how successfully GenC can per-
form on real-life programs. Performance-wise, we showed that using Clang or GCC to compile
the code generated by Leon and GenC , especially when using the compilers’ clever optimisation
strategies, result in runtimes up to 2.5x faster compared to the usual JVM execution times of-
fered by Scala when runtime assertions are removed, while being as safe as the source programs.
Without Leon’s ability to prove the correctness of our benchmark at compile time, the runtime
assertions hinder performances by a factor exceeding 10x when compared to the computational
speed of the generated C99 code that is exempt of such costly checks.

Hence, we showed that one can write safe, efficient programs written in Scala using Leon
for verification purposes and its GenC module to generate equivalent, fast and portable C99
programs.

63

12 Future Works

12 Future Works

We end the present document by opening the discussion on several points that would benefit
from further development:

� Integrating optimisations in the generate code could be done by performing some analysis
on the AST to determine whether side-effect is present or not in a given set of expressions;
if expressions are all pure the normalisation introduced in Section 6.1 could be avoided,
generating simpler programs that C compilers could optimise more easily. Additionally,
some if statements could be transformed into switch statements when, for example, the
branching only depends on an enum value.

Performance benefit from such optimisations are however hard to estimate because nowa-
days C compilers do already perform some aggressive optimisations when asked to.

� Improving resource inference introduced by Orb [31] to deal more efficiently with imperative
programs, giving developers a good analysis of the memory requirements for their generated
C99 programs, but also in term of speed were an accurate execution model be elaborated
for a given hardware system.

� Adding an extra layer to the I/O library component of Leon to automatically close file
handles when they go out of scope. This could be implemented with an inlined and curried
function, similar to the one exposed below, fundamentally using the same trick as for
Option discussed in Section 7:

@inline
def withFile(filename: String)

(onSuccess: FileInputStream => Unit): Boolean = {
val fis = FileInputStream.open(filename)
if (fis.isOpen) {
onSuccess(fis)
fis.close()
true

} else false
}

Alternatively, two callback functions could be passed to withFile and a generic return
type could be inferred from them.

� With upcoming updates to the xlang module [8], the aliasing restrictions are expected to be
slightly relaxed, essentially allowing a variable to be aliased by a new one only if exclusively
the new one is subsequently used.

def foo(x: MutableType) = {
val y = x // Currently illegal but planned to be valid
bar(y) // as x is not used after y is created.

}

Such modification of the anti-aliasing rules would require a reassessment of how GenC
handle mutability to determine whether the translation process remains sound.

65

12 Future Works

� The memory model presented in Section 4 is known to suffer from one flaw illustrated in
Listing 8. Currently, GenC gracefully rejects such programs, but the alternative would
be to considerably change the ownership model used by GenC to represent types in two
fashions: owner and reference. The former would have exclusively value attributes and own
them. The latter would be bound to an owner and have references for its mutable fields.
Additionally, we should be able to convert an owner to a reference but not vice-versa. This
framework would allow passing mutable tuples or case classes to functions while respecting
aliasing (and therefore propagate side-effects) with the constraint that functions can only
return the owner variant of a type.
Applied to the Scala program displayed in Listing 8, instead of producing Listing 10 GenC
could generate a program along these lines:

typedef struct { int x; } A;
typedef struct { A a; } B_owner;
typedef struct { A* a; } B_ref;

static void update(A* a) {
updateB((B_ref) { .a = a });
/* no copy: ^ */

}

Such modifications of the type translation and representation system would, however, re-
quire a full analysis, notably assessing if the augmentation of types and type conversions
impact the generated C99 code in an undesirable way. Moreover, the impact of the relaxed
aliasing rules described above should be taken into account when solving this limitation.

� Developers using GenC need to pay attention to the key points discussed in Section 8.6 in
order to certify their project under the MISRA guidelines. Documenting and keeping track
of how each point is taken care of is obviously a tedious task when done solely manually.
However, for several points Leon and GenC could emit warnings and instruct users how to
solve specific issues. We list here several points of interest for a linter-like report:

1. Directive 4.7 and Rule 17.7 both ask that values returned by function should be used –
the former specifically address error values signalled by functions. Automatically
reporting when a value is not read should be possible locally to each function body.

2. Identifying systematically unreachable or dead code would directly help fulfilling Rules
2.1 and 2.2.

3. Detecting that no side-effect occur when initialising arrays, objects or in operands
would make it trivial to check for compliance to Rules 13.1 and 13.5.

4. Similarly, the benefits of reporting places in the user code where an identifier shadows
another one are twofold: it would make Rules 5.2, 5.3 and 5.7 obsolete and this
would allow GenC to avoid using complex postfixes on identifiers in many places, and
consequently making the generated C code looking more similar to the original Scala
code.

5. Using simple checks on the AST, Leon and GenC could determine whether all if
statements have an else branch in order to satisfy Rule 15.7. Similarly, when multiple
return expressions are inserted by GenC a warning could be emitted for Rule 15.5.

6. Finally, having the ability to detect overflows in constant expression within Leon
would allow use to warn the user when Rule 12.4 is not respected.

66

A Operator Equivalence Table

A Operator Equivalence Table

Here we briefly present an analysis of the different arithmetic operators present in Java/Scala
and C, highlighting the differences of semantics and behaviour as well as identifying the legal
ranges of values.

The first column indicates whether the C99 operator presented in the second column takes
one argument (unary) or two arguments (binary). The arguments are denoted by rhs and lhs,
which stand for right- and left-hand side. The seventh column contains the closest Java operator.
The valid range of values is detailed in the fourth and fifth columns for the C99 standard and
in the ninth and tenth ones for the Java environment. We refer in the third and eighth columns
which sections of the C Standard [25] and Java Standard [26], respectively, define the exact
semantic of the operators.

Then we highlight in the last column the main differences between the C and Java operators.
And finally, in the sixth column we use four symbols to specify under which conditions the C99
and Java operator semantics are equivalent. Their respective meaning is as follows, assuming
the operations are carried out on 32-bit integers:

X The two semantics are completely equivalent.

O The semantics are equivalent when no overflow occur.

S Under --strict-arithmetic verification mode the two are identical.

5 There is no direct equivalence between the operators.

67

A
O
perator

E
quivalence

T
able

C
at
eg
or
y

C
op

er
at
or

C
99

lh
s
ra
n
ge

rh
s
ra
n
ge

S
em

an
ti
c

Ja
va

op
er
at
or

Ja
va

8

lh
s
ra
n
ge

rh
s
ra
n
ge

C
om

m
en
t

unary + 6.5.3.3 any int N/A X + 15.15.3 any int N/A Not in Leon
unary - 6.5.3.3 all but

INT_MIN
N/A O - 15.15.4 any int N/A In Java -INT_MIN == INT_MIN

binary * 6.5.5 any int any int O * 15.17.1 any int any int
binary / 6.5.5 any int non-zero O / 15.17.2 any int non-zero � C99 defines division in the same fashion as

Java and C++11.
� In Java INT_MIN / -1 == INT_MIN.
� INT_MIN / -1 overflows in C.

binary % 6.5.5 any int non-zero S % 15.17.3 any int non-zero � MIN_INT % -1 is undefined in C11.
� It is unclear in C99 [29].
� In Java the result is defined to be 0.

binary + 6.5.6 any int any int O + 15.18.2 any int any int
binary - 6.5.6 any int any int O - 15.18.2 any int any int

unary ~ 6.5.3.3 any int N/A X ~ 15.15.5 any int N/A
binary & 6.5.10 any int any int X & 15.22.1 any int any int
binary ^ 6.5.11 any int any int X ^ 15.22.1 any int any int
binary | 6.5.12 any int any int X | 15.22.1 any int any int

68

A
O
perator

E
quivalence

T
able

C
at
eg
or
y

C
op

er
at
or

C
99

lh
s
ra
n
ge

rh
s
ra
n
ge

S
em

an
ti
c

Ja
va

op
er
at
or

Ja
va

8

lh
s
ra
n
ge

rh
s
ra
n
ge

C
om

m
en
t

binary signed
<<

6.5.7 see com-
ment

[0, 31] S << 15.19 any int any int � In Java, only the 5 lowest-order bits of rhs
are used (range [0, 31]). Moreover, the bits
are always shifted as one would expect.

� In C, assuming rhs is in [0, 31], we also need
to have lhs ∗ 2rhs in [0, 231 − 1]; otherwise
the behaviour is undefined.

binary unsigned
<<

6.5.7 any un-
signed
int

[0, 31] S << 15.19 any int any int � Assuming rhs is in [0, 31], the unsigned ver-
sion of << in C99 is equivalent to Java’s.

� However, converting back from unsigned in-
teger is implementation defined.

binary signed
>>

6.5.7 any non-
negative
int

[0, 31] 5 >>
or
>>>9

15.19 any int any int � In Java, only the 5 lowest-order bits of rhs
are used (range [0, 31]).

� Moreover, in Java, >> will sign-extend lhs
while >>> will zero-extend lhs.

� In C99, signed integer right shift is imple-
mentation defined for negative integers.

binary unsigned
>>

6.5.7 any un-
signed
int

[0, 31] S >>> 15.19 any int any int � In Java, only the 5 lowest-order bits of rhs
are used (range [0, 31]) and lhs will be zero-
extended.

� In C99, assuming rhs is in [0, 31], basically,
lhs gets zero-extended.

9Depending on the sign of lhs.

69

B
LZW

Im
plem

entations

B LZW Implementations

For completeness, we give print here our two implementations of LZW written in Scala as well as the C99 programs generated by GenC .
The sources are also available at https://github.com/mantognini/GenC.

B.1 Scala Source

Design A

/* Copyright 2009-2016 EPFL, Lausanne */

import leon.lang._

import leon.proof._

import leon.annotation._

import leon.io.{
FileInputStream => FIS,
FileOutputStream => FOS,
StdOut

}

object LZWa {

// GENERAL NOTES
// =============
//
// Encoding using fixed size of word;
// Input alphabet is the ASCII range (0-255);
// A word is made of 16 bits (instead of the classic 12-bit scenario, for

↪→simplicity);
// The dictionary is an array of Buffer where the index is the key;

// We limit the size of the dictionary to an arbitrary size, less than or
↪→equals to 2^16.

@inline
val DictionarySize = 8192

// We use fix-sized buffers
@inline
val BufferSize = 64 // characters

val AlphabetSize = Byte.MaxValue + -Byte.MinValue

private def lemmaSize: Boolean = {
DictionarySize >= AlphabetSize &&
BufferSize > 0 &&

AlphabetSize > 0 &&
DictionarySize <= 65536 // Cannot encode more index using only 16-bit
↪→codewords

}.holds

// Helper for range equality checking
private def isRangeEqual(a: Array[Byte], b: Array[Byte], from: Int, to:

↪→Int): Boolean = {
require(0 <= from && from <= to && to < a.length && to < b.length)
a(from) == b(from) && {
if (from == to) true
else isRangeEqual(a, b, from + 1, to)

}
}

private def allValidBuffers(buffers: Array[Buffer]): Boolean = {
def rec(from: Int): Boolean = {
require(0 <= from && from <= buffers.length)
if (from < buffers.length) buffers(from).isValid && rec(from + 1)
else true

}

rec(0)
}

// A buffer representation using a fix-sized array for memory.
//
// NOTE Use ‘createBuffer()‘ to get a new buffer; don’t attempt to create

↪→one yourself.
case class Buffer(private val array: Array[Byte], private var length: Int)

↪→ {
val capacity = array.length
require(isValid)

def isValid: Boolean = length >= 0 && length <= capacity && capacity ==
↪→BufferSize

71

https://github.com/mantognini/GenC

B
LZW

Im
plem

entations
def isFull: Boolean = length == capacity

def nonFull: Boolean = length < capacity

def isEmpty: Boolean = length == 0

def nonEmpty: Boolean = length > 0

def isEqual(b: Buffer): Boolean = {
if (b.length != length) false
else { isEmpty || isRangeEqual(array, b.array, 0, length - 1) }

}

def size = {
length

} ensuring { res => 0 <= res && res <= capacity }

def apply(index: Int): Byte = {
require(index >= 0 && index < length)
array(index)

}

def append(x: Byte): Unit = {
require(nonFull)

array(length) = x

length += 1
} ensuring { _ => isValid }

def dropLast(): Unit = {
require(nonEmpty)

length -= 1
} ensuring { _ => isValid }

def clear(): Unit = {
length = 0

} ensuring { _ => isEmpty && isValid }

def set(b: Buffer): Unit = {
if (b.isEmpty) clear
else setImpl(b)

} ensuring { _ => b.isValid && isValid && isEqual(b) }

private def setImpl(b: Buffer): Unit = {
require(b.nonEmpty)

length = b.length

var i = 0

(while (i < length) {
array(i) = b.array(i)
i += 1

}) invariant { // TIMEOUT
0 <= i && i <= length &&
// lengthCheckpoint == b.length && lengthCheckpoint == length && //

↪→no mutation of the length
isValid && nonEmpty &&
length == b.length &&
(i > 0 ==> isRangeEqual(array, b.array, 0, i - 1)) // avoid

↪→OutOfBoundAccess
}

} ensuring { _ => b.isValid && isValid && nonEmpty && isEqual(b) }

}

@inline // very important because we cannot return arrays
def createBuffer(): Buffer = {
Buffer(Array.fill(BufferSize)(0), 0)

} ensuring { b => b.isEmpty && b.nonFull && b.isValid }

def tryReadNext(fis: FIS)(implicit state: leon.io.State): Option[Byte] = {
require(fis.isOpen)
fis.tryReadByte()

}

def writeCodeWord(fos: FOS, cw: CodeWord): Boolean = {
require(fos.isOpen)
fos.write(cw.b1) && fos.write(cw.b2)

}

def tryReadCodeWord(fis: FIS)(implicit state: leon.io.State): Option[
↪→CodeWord] = {

require(fis.isOpen)
val b1Opt = fis.tryReadByte()
val b2Opt = fis.tryReadByte()

(b1Opt, b2Opt) match {
case (Some(b1), Some(b2)) => Some(CodeWord(b1, b2))
case _ => None()

}
}

def writeBytes(fos: FOS, buffer: Buffer): Boolean = {
require(fos.isOpen && buffer.nonEmpty)
var success = true
var i = 0

val size = buffer.size

(while (success && i < size) {

72

B
LZW

Im
plem

entations

success = fos.write(buffer(i))
i += 1

}) invariant {
0 <= i && i <= size

}

success
}

case class CodeWord(b1: Byte, b2: Byte) // a 16-bit code word

def index2CodeWord(index: Int): CodeWord = {
require(0 <= index && index < 65536) // unsigned index
// Shift the index in the range [-32768, 32767] to make it signed
val signed = index - 32768
// Split it into two byte components
val b2 = signed.toByte
val b1 = (signed >>> 8).toByte
CodeWord(b1, b2)

}

def codeWord2Index(cw: CodeWord): Int = {
// When building the signed integer back, make sure to understand
↪→integer

// promotion with negative numbers: we need to avoid the sign extension
↪→here.

val signed = (cw.b1 << 8) | (0xff & cw.b2)
signed + 32768

} ensuring { res => 0 <= res && res < 65536 }

case class Dictionary(private val buffers: Array[Buffer], private var
↪→nextIndex: Int) {

val capacity = buffers.length
require(isValid)

def isValid = 0 <= nextIndex && nextIndex <= capacity && capacity ==
↪→DictionarySize && allValidBuffers(buffers)

def isEmpty = nextIndex == 0

def nonEmpty = !isEmpty

def isFull = nextIndex == capacity

def nonFull = nextIndex < capacity

def lastIndex = {
require(nonEmpty)
nextIndex - 1

} ensuring { res => 0 <= res && res < capacity }

def contains(index: Int): Boolean = {
require(0 <= index)
index < nextIndex

}

def appendTo(index: Int, buffer: Buffer): Boolean = {
require(0 <= index && contains(index))

val size = buffers(index).size

assert(buffer.capacity == BufferSize)
if (buffer.size < buffer.capacity - size) {
assert(buffer.nonFull)

var i = 0
(while (i < size) {
buffer.append(buffers(index)(i))
i += 1

}) invariant {
0 <= i && i <= size &&
(i < size ==> buffer.nonFull)

}

true
} else false

}

def insert(b: Buffer): Unit = {
require(nonFull && b.nonEmpty)
buffers(nextIndex).set(b)
nextIndex += 1

}

def encode(b: Buffer): Option[CodeWord] = {
require(b.nonEmpty)

var found = false
var i = 0

(while (!found && i < nextIndex) {
if (buffers(i).isEqual(b)) {
found = true

} else {
i += 1

}
}) invariant {
0 <= i && i <= nextIndex && i <= capacity &&
isValid &&
(found ==> (i < nextIndex && buffers(i).isEqual(b)))

}

if (found) Some(index2CodeWord(i)) else None()

73

B
LZW

Im
plem

entations
}

}

@inline // in order to "return" the arrays
def createDictionary() = {
Dictionary(Array.fill(DictionarySize){ createBuffer() }, 0)

} ensuring { res => res.isEmpty }

def initialise(dict: Dictionary): Unit = {
require(dict.isEmpty) // initialise only fresh dictionaries

val buffer = createBuffer()
assert(buffer.isEmpty)

var value: Int = Byte.MinValue // Use an Int to avoid overflow issues

(while (value <= Byte.MaxValue) {
buffer.append(value.toByte) // no truncation here
dict.insert(buffer)
buffer.dropLast()
value += 1

}) invariant {
dict.nonFull &&
buffer.isEmpty &&
value >= Byte.MinValue && value <= Byte.MaxValue + 1 // last iteration
↪→ goes "overflow" on Byte

}
} ensuring { _ => dict.isValid && dict.nonEmpty }

def encode(fis: FIS, fos: FOS)(implicit state: leon.io.State): Boolean = {
require(fis.isOpen && fos.isOpen)

// Initialise the dictionary with the basic alphabet
val dictionary = createDictionary()
initialise(dictionary)

// Small trick to move the static arrays outside the main encoding
↪→function;

// this helps analysing the C code in a debugger (less local variables)
↪→but

// it actually has no impact on performance (or should, in theory).
encodeImpl(dictionary, fis, fos)

}

def encodeImpl(dictionary: Dictionary, fis: FIS, fos: FOS)(implicit state:
↪→ leon.io.State): Boolean = {

require(fis.isOpen && fos.isOpen && dictionary.nonEmpty)

var bufferFull = false
var ioError = false

val buffer = createBuffer()

assert(buffer.isEmpty && buffer.nonFull)

var currentOpt = tryReadNext(fis)

// Read from the input file all its content, stop when an error occurs
// (either output error or full buffer)
(while (!bufferFull && !ioError && currentOpt.isDefined) {
val c = currentOpt.get

assert(buffer.nonFull)
buffer.append(c)
assert(buffer.nonEmpty)

val code = dictionary.encode(buffer)

val processBuffer = buffer.isFull || code.isEmpty

if (processBuffer) {
// Add s (with c) into the dictionary, if the dictionary size

↪→limitation allows it
if (dictionary.nonFull) {
dictionary.insert(buffer)

}

// Encode s (without c) and print it
buffer.dropLast()
assert(buffer.nonFull)
assert(buffer.nonEmpty)
val code2 = dictionary.encode(buffer)

assert(code2.isDefined) // (*)
// To prove (*) we might need to:
// - prove the dictionary can encode any 1-length buffer
// - the buffer was empty when entering the loop or
// that the initial buffer was in the dictionary.
ioError = !writeCodeWord(fos, code2.get)

// Prepare for next codeword: set s to c
buffer.clear()
buffer.append(c)
assert(buffer.nonEmpty)

}

bufferFull = buffer.isFull

currentOpt = tryReadNext(fis)
}) invariant {
bufferFull == buffer.isFull &&
((!bufferFull && !ioError) ==> buffer.nonEmpty) // it might always be
↪→true...

}

74

B
LZW

Im
plem

entations

// Process the remaining buffer
if (!bufferFull && !ioError) {
val code = dictionary.encode(buffer)
assert(code.isDefined) // See (*) above.
ioError = !writeCodeWord(fos, code.get)

}

!bufferFull && !ioError
}

def decode(fis: FIS, fos: FOS)(implicit state: leon.io.State): Boolean = {
require(fis.isOpen && fos.isOpen)

// Initialise the dictionary with the basic alphabet
val dictionary = createDictionary()
initialise(dictionary)

decodeImpl(dictionary, fis, fos)
}

def decodeImpl(dictionary: Dictionary, fis: FIS, fos: FOS)(implicit state:
↪→ leon.io.State): Boolean = {

require(fis.isOpen && fos.isOpen && dictionary.nonEmpty)

var illegalInput = false
var ioError = false
var bufferFull = false

var currentOpt = tryReadCodeWord(fis)

val buffer = createBuffer()

if (currentOpt.isDefined) {
val cw = currentOpt.get
val index = codeWord2Index(cw)

if (dictionary contains index) {
bufferFull = !dictionary.appendTo(index, buffer)
ioError = !writeBytes(fos, buffer)

} else {
illegalInput = true

}

currentOpt = tryReadCodeWord(fis)
}

(while (!illegalInput && !ioError && !bufferFull && currentOpt.isDefined
↪→) {
val cw = currentOpt.get
val index = codeWord2Index(cw)
val entry = createBuffer()

if (dictionary contains index) {
illegalInput = !dictionary.appendTo(index, entry)

} else if (index == dictionary.lastIndex + 1) {
entry.set(buffer)
entry.append(buffer(0))

} else {
illegalInput = true

}

ioError = !writeBytes(fos, entry)
bufferFull = buffer.isFull

if (!bufferFull) {
val tmp = createBuffer()
tmp.set(buffer)
tmp.append(entry(0))
if (dictionary.nonFull) {
dictionary.insert(tmp)

}

buffer.set(entry)
}

currentOpt = tryReadCodeWord(fis)
}) invariant {
dictionary.nonEmpty

}

!illegalInput && !ioError && !bufferFull
}

sealed abstract class Status
case class Success() extends Status
case class OpenError() extends Status
case class EncodeError() extends Status
case class DecodeError() extends Status

implicit def status2boolean(s: Status): Boolean = s match {
case Success() => true
case _ => false

}

def _main() = {
implicit val state = leon.io.newState

def statusCode(s: Status): Int = s match {
case Success() => StdOut.println("success"); 0
case OpenError() => StdOut.println("couldn’t open file"); 1
case EncodeError() => StdOut.println("encoding failed"); 2
case DecodeError() => StdOut.println("decoding failed"); 3

}75

B
LZW

Im
plem

entations
def encodeFile(): Status = {
val input = FIS.open("input.txt")
val encoded = FOS.open("encoded.txt")

val res =
if (input.isOpen && encoded.isOpen) {
if (encode(input, encoded)) Success()
else EncodeError()

} else OpenError()

encoded.close
input.close

res
}

def decodeFile(): Status = {
val encoded = FIS.open("encoded.txt")
val decoded = FOS.open("decoded.txt")

val res =
if (encoded.isOpen && decoded.isOpen) {
if (decode(encoded, decoded)) Success()
else DecodeError()

} else OpenError()

decoded.close
encoded.close

res
}

val r1 = encodeFile()
statusCode(if (r1) decodeFile() else r1)

}

@extern
def main(args: Array[String]): Unit = _main()

}

76

B
LZW

Im
plem

entations

Design B

/* Copyright 2009-2016 EPFL, Lausanne */

import leon.lang._

import leon.proof._

import leon.annotation._

import leon.io.{
FileInputStream => FIS,
FileOutputStream => FOS,
StdOut

}

object LZWb {

// GENERAL NOTES
// =============
//
// Encoding using fixed size of word;
// Input alphabet is the ASCII range (0-255);
// A word is made of 16 bits (instead of the classic 12-bit scenario, for

↪→simplicity);
// The dictionary is an array of Buffer where the index is the key;

// We limit the size of the dictionary to an arbitrary size, less than or
↪→equals to 2^16.

@inline
val DictionarySize = 8192 // number of buffers in the dictionary

@inline
val DictionaryMemorySize = 524288 // DictionarySize * BufferSize

// We use fix-sized buffers
@inline
val BufferSize = 64 // characters

val AlphabetSize = Byte.MaxValue + -Byte.MinValue

private def lemmaSize: Boolean = {
DictionarySize >= AlphabetSize &&
BufferSize > 0 &&
AlphabetSize > 0 &&
DictionarySize <= 65536 // Cannot encode more index using only 16-bit
↪→codewords

}.holds

// Helper for range equality checking

private def areRangesEqual(a: Array[Byte], b: Array[Byte], from: Int, to:
↪→Int): Boolean = {

require(0 <= from && from <= to && to < a.length && to < b.length)
a(from) == b(from) && {
if (from == to) true
else areRangesEqual(a, b, from + 1, to)

}
}

private def allValidBuffers(buffers: Array[Buffer]): Boolean = {
def rec(from: Int): Boolean = {
require(0 <= from && from <= buffers.length)
if (from < buffers.length) buffers(from).isValid && rec(from + 1)
else true

}

rec(0)
}

def allInRange(xs: Array[Int], min: Int, max: Int): Boolean = {
require(min <= max)

def rec(index: Int): Boolean = {
require(0 <= index && index <= xs.length)
if (xs.length == index) true
else {
min <= xs(index) && xs(index) <= max && rec(index + 1)

}
}

rec(0)
}

// A buffer representation using a fix-sized array for memory.
//
// NOTE Use ‘createBuffer()‘ to get a new buffer; don’t attempt to create

↪→one yourself.
case class Buffer(private val array: Array[Byte], private var length: Int)

↪→ {
val capacity = array.length
require(isValid)

def isValid: Boolean = length >= 0 && length <= capacity && capacity ==
↪→BufferSize

def isFull: Boolean = length == capacity77

B
LZW

Im
plem

entations
def nonFull: Boolean = length < capacity

def isEmpty: Boolean = length == 0

def nonEmpty: Boolean = length > 0

def isEqual(b: Buffer): Boolean = {
if (b.length != length) false
else { isEmpty || areRangesEqual(array, b.array, 0, length - 1) }

}

def isRangeEqual(other: Array[Byte], otherStart: Int, otherSize: Int):
↪→Boolean = {
require(0 <= otherStart && 0 <= otherSize && otherSize <= other.length
↪→ && otherStart <= other.length - otherSize)
if (size != otherSize) false
else if (isEmpty) true
else {
var i = 0
var equal = true

(while (equal && i < size) {
equal = (other(otherStart + i) == array(i))
i += 1

}) invariant (
0 <= i && i <= size &&
otherStart + i <= other.length

)

equal
}

}

def size = {
length

} ensuring { res => 0 <= res && res <= capacity }

def apply(index: Int): Byte = {
require(index >= 0 && index < length)
array(index)

}

def append(x: Byte): Unit = {
require(nonFull)

array(length) = x

length += 1
} ensuring { _ => isValid }

def dropLast(): Unit = {
require(nonEmpty)

length -= 1
} ensuring { _ => isValid }

def clear(): Unit = {
length = 0

} ensuring { _ => isEmpty && isValid }

def set(b: Buffer): Unit = {
if (b.isEmpty) clear
else setImpl(b)

} ensuring { _ => b.isValid && isValid && isEqual(b) }

private def setImpl(b: Buffer): Unit = {
require(b.nonEmpty)

length = b.length

var i = 0
(while (i < length) {
array(i) = b.array(i)
i += 1

}) invariant {
0 <= i && i <= length &&
// lengthCheckpoint == b.length && lengthCheckpoint == length && //

↪→no mutation of the length
isValid && nonEmpty &&
length == b.length &&
(i > 0 ==> areRangesEqual(array, b.array, 0, i - 1)) // avoid

↪→OutOfBoundAccess
}

} ensuring { _ => b.isValid && isValid && nonEmpty && isEqual(b) }

}

@inline // very important because we cannot return arrays
def createBuffer(): Buffer = {
Buffer(Array.fill(BufferSize)(0), 0)

} ensuring { b => b.isEmpty && b.nonFull && b.isValid }

def tryReadNext(fis: FIS)(implicit state: leon.io.State): Option[Byte] = {
require(fis.isOpen)
fis.tryReadByte()

}

def writeCodeWord(fos: FOS, cw: CodeWord): Boolean = {
require(fos.isOpen)
fos.write(cw.b1) && fos.write(cw.b2)

}

78

B
LZW

Im
plem

entations

def tryReadCodeWord(fis: FIS)(implicit state: leon.io.State): Option[
↪→CodeWord] = {

require(fis.isOpen)
val b1Opt = fis.tryReadByte()
val b2Opt = fis.tryReadByte()

(b1Opt, b2Opt) match {
case (Some(b1), Some(b2)) => Some(CodeWord(b1, b2))
case _ => None()

}
}

def writeBytes(fos: FOS, buffer: Buffer): Boolean = {
require(fos.isOpen && buffer.nonEmpty)
var success = true
var i = 0

val size = buffer.size

(while (success && i < size) {
success = fos.write(buffer(i))
i += 1

}) invariant {
0 <= i && i <= size

}

success
}

case class CodeWord(b1: Byte, b2: Byte) // a 16-bit code word

def index2CodeWord(index: Int): CodeWord = {
require(0 <= index && index < 65536) // unsigned index
// Shift the index in the range [-32768, 32767] to make it signed
val signed = index - 32768
// Split it into two byte components
val b2 = signed.toByte
val b1 = (signed >>> 8).toByte
CodeWord(b1, b2)

}

def codeWord2Index(cw: CodeWord): Int = {
// When building the signed integer back, make sure to understand
↪→integer

// promotion with negative numbers: we need to avoid the signe extension
↪→ here.

val signed = (cw.b1 << 8) | (0xff & cw.b2)
signed + 32768

} ensuring { res => 0 <= res && res < 65536 }

case class Dictionary(private val memory: Array[Byte], private val pteps:
↪→Array[Int], private var nextIndex: Int) {

// NOTE ‘pteps‘ stands for Past The End PointerS. It holds the address
↪→in ‘memory‘ for the next buffer.

//
// By construction, for any index > 0, the begining of the buffer
↪→is stored in pteps[index - 1].

//
// It therefore holds that the length of the buffer at the given ‘
↪→index‘ is pteps[index] - pteps[index - 1]

// for index > 0, and pteps[0] for index == 0.

val capacity = pteps.length
require(
capacity == DictionarySize &&
memory.length == DictionaryMemorySize &&
allInRange(pteps, 0, DictionaryMemorySize) &&
0 <= nextIndex && nextIndex <= capacity

)

def isEmpty = nextIndex == 0

def nonEmpty = !isEmpty

def isFull = !nonFull

def nonFull = {
nextIndex < capacity && (nextIndex == 0 || (memory.length - pteps(
↪→nextIndex - 1) >= BufferSize))

}

private def getBufferBeginning(index: Int): Int = {
require(0 <= index && contains(index))
if (index == 0) 0
else pteps(index - 1)

} ensuring { res => 0 <= res && res < DictionaryMemorySize }

private def getNextBufferBeginning(): Int = {
require(nonFull) // less equirements than getBufferBeginning
if (nextIndex == 0) 0
else pteps(nextIndex - 1)

} ensuring { res => 0 <= res && res < DictionaryMemorySize }

private def getBufferSize(index: Int): Int = {
require(0 <= index && contains(index))
if (index == 0) pteps(0)
else pteps(index) - pteps(index - 1)

} ensuring { res => 0 <= res && res <= BufferSize }

def lastIndex = {
require(nonEmpty)
nextIndex - 1

79

B
LZW

Im
plem

entations
} ensuring { res => 0 <= res && res < capacity }

def contains(index: Int): Boolean = {
require(0 <= index)
index < nextIndex

}

def appendTo(index: Int, buffer: Buffer): Boolean = {
require(0 <= index && contains(index))

val size = getBufferSize(index)
val start = getBufferBeginning(index)

assert(buffer.capacity == BufferSize)
if (buffer.size < buffer.capacity - size) {
assert(buffer.nonFull)

var i = 0
(while (i < size) {
buffer.append(memory(start + i))
i += 1

}) invariant (
0 <= i && i <= size &&
0 <= start && start < DictionaryMemorySize &&
(i < size ==> buffer.nonFull)

)

true
} else false

}

def insert(b: Buffer): Unit = {
require(nonFull && b.nonEmpty)

val start = getNextBufferBeginning()

var i = 0
(while (i < b.size) {
memory(start + i) = b(i)
i += 1

}) invariant (
0 <= i && i <= b.size &&
0 <= start && start < DictionaryMemorySize

)

pteps(nextIndex) = start + i

nextIndex += 1
}

def encode(b: Buffer): Option[CodeWord] = {
require(b.nonEmpty)

var found = false
var index = 0

while (!found && index < nextIndex) {
val start = getBufferBeginning(index)
val size = getBufferSize(index)

if (b.isRangeEqual(memory, start, size)) {
found = true

} else {
index += 1

}
}

if (found) Some(index2CodeWord(index)) else None()
}

}

@inline // in order to "return" the arrays
def createDictionary() = {
Dictionary(Array.fill(DictionaryMemorySize)(0), Array.fill(
↪→DictionarySize)(0), 0)

} ensuring { res => res.isEmpty }

def initialise(dict: Dictionary): Unit = {
require(dict.isEmpty) // initialise only fresh dictionaries

val buffer = createBuffer()
assert(buffer.isEmpty)

var value: Int = Byte.MinValue // Use an Int to avoid overflow issues

(while (value <= Byte.MaxValue) {
buffer.append(value.toByte) // no truncation here
dict.insert(buffer)
buffer.dropLast()
value += 1

}) invariant {
dict.nonFull &&
buffer.isEmpty &&
value >= Byte.MinValue && value <= Byte.MaxValue + 1 // last iteration
↪→ goes "overflow" on Byte

}
} ensuring { _ => dict.nonEmpty }

def encode(fis: FIS, fos: FOS)(implicit state: leon.io.State): Boolean = {
require(fis.isOpen && fos.isOpen)

// Initialise the dictionary with the basic alphabet
val dictionary = createDictionary()

80

B
LZW

Im
plem

entations

initialise(dictionary)

// Small trick to move the static arrays outside the main encoding
↪→function;

// this helps analysing the C code in a debugger (less local variables)
↪→but

// it actually has no impact on performance (or should, in theory).
encodeImpl(dictionary, fis, fos)

}

def encodeImpl(dictionary: Dictionary, fis: FIS, fos: FOS)(implicit state:
↪→ leon.io.State): Boolean = {

require(fis.isOpen && fos.isOpen && dictionary.nonEmpty)

var bufferFull = false
var ioError = false

val buffer = createBuffer()
assert(buffer.isEmpty && buffer.nonFull)

var currentOpt = tryReadNext(fis)

// Read from the input file all its content, stop when an error occurs
// (either output error or full buffer)
(while (!bufferFull && !ioError && currentOpt.isDefined) {
val c = currentOpt.get

assert(buffer.nonFull)
buffer.append(c)
assert(buffer.nonEmpty)

val code = dictionary.encode(buffer)

val processBuffer = buffer.isFull || code.isEmpty

if (processBuffer) {
// Add s (with c) into the dictionary, if the dictionary size

↪→limitation allows it
if (dictionary.nonFull) {
dictionary.insert(buffer)

}

// Encode s (without c) and print it
buffer.dropLast()
assert(buffer.nonFull)
assert(buffer.nonEmpty)
val code2 = dictionary.encode(buffer)

assert(code2.isDefined) // (*)
// To prove (*) we might need to:
// - prove the dictionary can encode any 1-length buffer
// - the buffer was empty when entering the loop or

// that the initial buffer was in the dictionary.
ioError = !writeCodeWord(fos, code2.get)

// Prepare for next codeword: set s to c
buffer.clear()
buffer.append(c)
assert(buffer.nonEmpty)

}

bufferFull = buffer.isFull

currentOpt = tryReadNext(fis)
}) invariant {
bufferFull == buffer.isFull &&
((!bufferFull && !ioError) ==> buffer.nonEmpty) // it might always be
↪→true...

}

// Process the remaining buffer
if (!bufferFull && !ioError) {
val code = dictionary.encode(buffer)
assert(code.isDefined) // See (*) above.
ioError = !writeCodeWord(fos, code.get)

}

!bufferFull && !ioError
}

def decode(fis: FIS, fos: FOS)(implicit state: leon.io.State): Boolean = {
require(fis.isOpen && fos.isOpen)

// Initialise the dictionary with the basic alphabet
val dictionary = createDictionary()
initialise(dictionary)

decodeImpl(dictionary, fis, fos)
}

def decodeImpl(dictionary: Dictionary, fis: FIS, fos: FOS)(implicit state:
↪→ leon.io.State): Boolean = {

require(fis.isOpen && fos.isOpen && dictionary.nonEmpty)

var illegalInput = false
var ioError = false
var bufferFull = false

var currentOpt = tryReadCodeWord(fis)

val buffer = createBuffer()

if (currentOpt.isDefined) {
val cw = currentOpt.get

81

B
LZW

Im
plem

entations
val index = codeWord2Index(cw)

if (dictionary contains index) {
bufferFull = !dictionary.appendTo(index, buffer)
ioError = !writeBytes(fos, buffer)

} else {
illegalInput = true

}

currentOpt = tryReadCodeWord(fis)
}

(while (!illegalInput && !ioError && !bufferFull && currentOpt.isDefined
↪→) {
val cw = currentOpt.get
val index = codeWord2Index(cw)
val entry = createBuffer()

if (dictionary contains index) {
illegalInput = !dictionary.appendTo(index, entry)

} else if (index == dictionary.lastIndex + 1) {
entry.set(buffer)
entry.append(buffer(0))

} else {
illegalInput = true

}

ioError = !writeBytes(fos, entry)
bufferFull = buffer.isFull

if (!bufferFull) {
val tmp = createBuffer()
tmp.set(buffer)
tmp.append(entry(0))
if (dictionary.nonFull) {
dictionary.insert(tmp)

}

buffer.set(entry)
}

currentOpt = tryReadCodeWord(fis)
}) invariant {
dictionary.nonEmpty

}

!illegalInput && !ioError && !bufferFull
}

sealed abstract class Status
case class Success() extends Status

case class OpenError() extends Status
case class EncodeError() extends Status
case class DecodeError() extends Status

implicit def status2boolean(s: Status): Boolean = s match {
case Success() => true
case _ => false

}

def _main() = {
implicit val state = leon.io.newState

def statusCode(s: Status): Int = s match {
case Success() => StdOut.println("success"); 0
case OpenError() => StdOut.println("couldn’t open file"); 1
case EncodeError() => StdOut.println("encoding failed"); 2
case DecodeError() => StdOut.println("decoding failed"); 3

}

def encodeFile(): Status = {
val input = FIS.open("input.txt")
val encoded = FOS.open("encoded.txt")

val res =
if (input.isOpen && encoded.isOpen) {
if (encode(input, encoded)) Success()
else EncodeError()

} else OpenError()

encoded.close
input.close

res
}

def decodeFile(): Status = {
val encoded = FIS.open("encoded.txt")
val decoded = FOS.open("decoded.txt")

val res =
if (encoded.isOpen && decoded.isOpen) {
if (decode(encoded, decoded)) Success()
else DecodeError()

} else OpenError()

decoded.close
encoded.close

res
}

val r1 = encodeFile()

82

B
LZW

Im
plem

entations

statusCode(if (r1) decodeFile() else r1)
}

@extern

def main(args: Array[String]): Unit = _main()

}

83

B
LZW

Im
plem

entations
B.2 Generated C99 Code

Design A

The generated code is unfortunately too long to decently fit in this annex for reasons detailed in Section 9.3. It can however be accessed
here: https://github.com/mantognini/GenC.

Design B

/* ------------------------------------ includes ----- */

#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>

/* -------------------------------- type aliases ----- */

typedef FILE* FileInputStream;
typedef void* State;
typedef FILE* FileOutputStream;

/* --------------------------------------- enums ----- */

typedef enum {
tag_None_0_CodeWord_0,
tag_Some_0_CodeWord_0

} enum_Option_0_CodeWord_0;

typedef enum {
tag_None_0_int8,
tag_Some_0_int8

} enum_Option_0_int8;

typedef enum {
tag_OpenError_0,
tag_DecodeError_0,
tag_Success_0,
tag_EncodeError_0

} enum_Status_0;

/* ----------------------- data type definitions ----- */

typedef struct {
int8_t* data;
int32_t length;

} array_int8;

typedef struct {
int32_t* data;
int32_t length;

} array_int32;

typedef struct {
array_int8 memory_1;
array_int32 pteps_1;
int32_t nextIndex_1;

} Dictionary_2;

typedef struct {
array_int8 array_1;
int32_t length_3;

} Buffer_2;

typedef struct {
int8_t extra;

} None_0_CodeWord_0;

typedef struct {
int8_t b1_0;
int8_t b2_0;

} CodeWord_0;

typedef struct {
CodeWord_0 v_13;

} Some_0_CodeWord_0;

typedef union {
None_0_CodeWord_0 None_0_CodeWord_0_v;
Some_0_CodeWord_0 Some_0_CodeWord_0_v;

} union_Option_0_CodeWord_0;

typedef struct {
enum_Option_0_CodeWord_0 tag;

84

https://github.com/mantognini/GenC

B
LZW

Im
plem

entations

union_Option_0_CodeWord_0 value;
} Option_0_CodeWord_0;

typedef struct {
int8_t extra;

} None_0_int8;

typedef struct {
int8_t v_13;

} Some_0_int8;

typedef union {
None_0_int8 None_0_int8_v;
Some_0_int8 Some_0_int8_v;

} union_Option_0_int8;

typedef struct {
enum_Option_0_int8 tag;
union_Option_0_int8 value;

} Option_0_int8;

typedef struct {
Option_0_int8 _1;
Option_0_int8 _2;

} Tuple_Option_0_int8_Option_0_int8;

/* ----------------------- function declarations ----- */

static bool writeBytes_2(FileOutputStream fos_6, Buffer_2* buffer_7);
static void setImpl_3(Buffer_2* thiss_821, Buffer_2* b_31);
static Option_0_int8 tryReadByte_3(FileInputStream thiss_132, State state_27

↪→);
static bool isEmpty_12(Buffer_2* thiss_787);
static bool appendTo_3(Dictionary_2* thiss_819, int32_t index_33, Buffer_2*

↪→buffer_11);
static bool isEmpty_8_CodeWord_0(Option_0_CodeWord_0 thiss_109);
static void initialise_2(Dictionary_2* dict_2);
static enum_Status_0 decodeFile_1(State* state_24);
static int32_t size_10(Buffer_2* thiss_767);
static bool isOpen_4(FileInputStream thiss_130);
static bool encode_4(FileInputStream fis_2, FileOutputStream fos_2, State

↪→state_7);
static void print_5(char c_3);
static int32_t capacity_7(Dictionary_2* thiss_755);
static FileOutputStream open_2(char* filename_2);
static void println_6(void);
static void clear_4(Buffer_2* thiss_799);
static Option_0_CodeWord_0 tryReadCodeWord_1(FileInputStream fis_1, State

↪→state_6);
static void set_8(Buffer_2* thiss_817, Buffer_2* b_29);
static int8_t get_5_int8(Option_0_int8 thiss_106);
static bool contains_5(Dictionary_2* thiss_800, int32_t index_31);

static bool isRangeEqual_3(Buffer_2* thiss_797, array_int8 other_2, int32_t
↪→otherStart_2, int32_t otherSize_2);

static CodeWord_0 get_5_CodeWord_0(Option_0_CodeWord_0 thiss_106);
static Option_0_int8 tryReadNext_1(FileInputStream fis_0, State state_5);
static int32_t _main(void);
static bool isEmpty_8_int8(Option_0_int8 thiss_109);
static bool encodeImpl_2(Dictionary_2* dictionary_5, FileInputStream fis_6,

↪→FileOutputStream fos_7, State state_30);
static int32_t lastIndex_3(Dictionary_2* thiss_818);
static int32_t capacity_5(Buffer_2* thiss_753);
static bool nonFull_6(Dictionary_2* thiss_780);
static void append_3(Buffer_2* thiss_781, int8_t x_289);
static bool decodeImpl_2(Dictionary_2* dictionary_8, FileInputStream fis_7,

↪→FileOutputStream fos_8, State state_31);
static bool write_8(FileOutputStream thiss_125, int8_t x_246);
int32_t main(int32_t argc, char** argv);
static FileInputStream open_3(char* filename_3, State state_23);
static int8_t apply_21(Buffer_2* thiss_769, int32_t index_29);
static int32_t statusCode_1(State* state_24, enum_Status_0 s_20);
static bool isFull_5(Buffer_2* thiss_796);
static void insert_3(Dictionary_2* thiss_786, Buffer_2* b_23);
static bool isDefined_2_CodeWord_0(Option_0_CodeWord_0 thiss_111);
static Option_0_CodeWord_0 encode_5(Dictionary_2* thiss_798, Buffer_2* b_25)

↪→;
static int32_t getBufferBeginning_3(Dictionary_2* thiss_801, int32_t

↪→index_32);
static bool writeCodeWord_1(FileOutputStream fos_0, CodeWord_0 cw_0);
static bool close_5(FileOutputStream thiss_123);
static int32_t codeWord2Index_1(CodeWord_0 cw_1);
static bool decode_1(FileInputStream fis_4, FileOutputStream fos_4, State

↪→state_9);
static bool isDefined_2_int8(Option_0_int8 thiss_111);
static CodeWord_0 index2CodeWord_1(int32_t index_3);
static bool close_4(FileInputStream thiss_129, State state_25);
static void println_5(char* s_19);
static int32_t getNextBufferBeginning_3(Dictionary_2* thiss_783);
static bool isOpen_5(FileOutputStream thiss_124);
static int8_t impl_4(FileInputStream* thiss_132, State* state_27, bool*

↪→valid_2);
static void print_4(char* x_17);
static void dropLast_3(Buffer_2* thiss_785);
static enum_Status_0 encodeFile_1(State* state_24);
static int32_t getBufferSize_3(Dictionary_2* thiss_795, int32_t index_30);
static State newState_2(void);

/* ------------------------ function definitions ----- */

static bool writeBytes_2(FileOutputStream fos_6, Buffer_2* buffer_7) {
bool success_0 = true;
int32_t i_20 = 0;
int32_t size_3 = size_10(buffer_7);
while (success_0 && i_20 < size_3) {

85

B
LZW

Im
plem

entations
FileOutputStream norm_92 = fos_6;
int8_t norm_91 = apply_21(buffer_7, i_20);
int8_t norm_93 = norm_91;
bool norm_94 = write_8(norm_92, norm_93);
success_0 = norm_94;
i_20 = i_20 + 1;

}
return success_0;

}

static void setImpl_3(Buffer_2* thiss_821, Buffer_2* b_31) {
thiss_821->length_3 = b_31->length_3;
int32_t i_19 = 0;
while (i_19 < thiss_821->length_3) {

thiss_821->array_1.data[i_19] = b_31->array_1.data[i_19];
i_19 = i_19 + 1;

}
}

static Option_0_int8 tryReadByte_3(FileInputStream thiss_132, State state_27
↪→) {

bool valid_2 = true;
int8_t res_18 = impl_4(&thiss_132, &state_27, &valid_2);
if (valid_2) {

return (Option_0_int8) { .tag = tag_Some_0_int8, .value = (
↪→union_Option_0_int8) { .Some_0_int8_v = (Some_0_int8) { .v_13 =
↪→res_18 } } };

} else {
return (Option_0_int8) { .tag = tag_None_0_int8, .value = (

↪→union_Option_0_int8) { .None_0_int8_v = (None_0_int8) { .extra = 0 }
↪→} };

}
}

static bool isEmpty_12(Buffer_2* thiss_787) {
return thiss_787->length_3 == 0;

}

static bool appendTo_3(Dictionary_2* thiss_819, int32_t index_33, Buffer_2*
↪→buffer_11) {

int32_t size_4 = getBufferSize_3(thiss_819, index_33);
int32_t start_1 = getBufferBeginning_3(thiss_819, index_33);
int32_t norm_84 = size_10(buffer_11);
int32_t norm_88 = norm_84;
int32_t norm_85 = capacity_5(buffer_11);
int32_t norm_86 = norm_85;
int32_t norm_87 = size_4;
int32_t norm_89 = norm_86 - norm_87;
if (norm_88 < norm_89) {

int32_t i_21 = 0;
while (i_21 < size_4) {

append_3(buffer_11, thiss_819->memory_1.data[start_1 + i_21]);

i_21 = i_21 + 1;
}
return true;

} else {
return false;

}
}

static bool isEmpty_8_CodeWord_0(Option_0_CodeWord_0 thiss_109) {
if (thiss_109.tag == tag_Some_0_CodeWord_0) {

return false;
} else if (thiss_109.tag == tag_None_0_CodeWord_0) {

return true;
}

}

static void initialise_2(Dictionary_2* dict_2) {
int8_t leon_buffer_7[64] = { 0 };
array_int8 norm_10 = (array_int8) { .data = leon_buffer_7, .length = 64
↪→};

array_int8* norm_11 = &norm_10;
int32_t norm_12 = 0;
Buffer_2 res_217 = (Buffer_2) { .array_1 = (*norm_11), .length_3 =
↪→norm_12 };

Buffer_2* buffer_8 = &res_217;
int32_t value_2 = -128;
while (value_2 <= ((int32_t)127)) {

append_3(buffer_8, (int8_t)value_2);
insert_3(dict_2, buffer_8);
dropLast_3(buffer_8);
value_2 = value_2 + 1;

}
}

static enum_Status_0 decodeFile_1(State* state_24) {
FileInputStream encoded_0 = open_3("encoded.txt", *state_24);
FileOutputStream decoded_0 = open_2("decoded.txt");
bool norm_70 = isOpen_4(encoded_0);
bool norm_72 = norm_70;
bool norm_74;
if (norm_72) {

bool norm_71 = isOpen_5(decoded_0);
bool norm_73 = norm_71;
norm_74 = norm_73;

} else {
norm_74 = false;

}
enum_Status_0 norm_128;
if (norm_74) {

if (decode_1(encoded_0, decoded_0, *state_24)) {
norm_128 = tag_Success_0;

} else {

86

B
LZW

Im
plem

entations

norm_128 = tag_DecodeError_0;
}

} else {
norm_128 = tag_OpenError_0;

}
enum_Status_0 res_8 = norm_128;
close_5(decoded_0);
close_4(encoded_0, *state_24);
return res_8;

}

static int32_t size_10(Buffer_2* thiss_767) {
return thiss_767->length_3;

}

static bool isOpen_4(FILE* this) {
return this != NULL;

}

static bool encode_4(FileInputStream fis_2, FileOutputStream fos_2, State
↪→state_7) {

int8_t leon_buffer_5[524288] = { 0 };
array_int8 norm_5 = (array_int8) { .data = leon_buffer_5, .length =
↪→524288 };

array_int8* norm_7 = &norm_5;
int32_t leon_buffer_6[8192] = { 0 };
array_int32 norm_6 = (array_int32) { .data = leon_buffer_6, .length =
↪→8192 };

array_int32* norm_8 = &norm_6;
int32_t norm_9 = 0;
Dictionary_2 res_219 = (Dictionary_2) { .memory_1 = (*norm_7), .pteps_1
↪→= (*norm_8), .nextIndex_1 = norm_9 };

Dictionary_2* dictionary_6 = &res_219;
initialise_2(dictionary_6);
return encodeImpl_2(dictionary_6, fis_2, fos_2, state_7);

}

static void print_5(char c) {
printf("%c", c);

}

static int32_t capacity_7(Dictionary_2* thiss_755) {
return thiss_755->pteps_1.length;

}

static FILE* open_2(char* filename) {
FILE* this = fopen(filename, "w");

/* this == NULL on failure */
return this;

}

static void println_6(void) {
print_5(’\n’);

}

static void clear_4(Buffer_2* thiss_799) {
thiss_799->length_3 = 0;

}

static Option_0_CodeWord_0 tryReadCodeWord_1(FileInputStream fis_1, State
↪→state_6) {

Option_0_int8 b1Opt_0 = tryReadByte_3(fis_1, state_6);
Option_0_int8 b2Opt_0 = tryReadByte_3(fis_1, state_6);
Tuple_Option_0_int8_Option_0_int8 tmp_2 = (
↪→Tuple_Option_0_int8_Option_0_int8) { ._1 = b1Opt_0, ._2 = b2Opt_0 };

if (tmp_2._1.tag == tag_Some_0_int8 && tmp_2._2.tag == tag_Some_0_int8)
↪→{

return (Option_0_CodeWord_0) { .tag = tag_Some_0_CodeWord_0, .value
↪→= (union_Option_0_CodeWord_0) { .Some_0_CodeWord_0_v = (
↪→Some_0_CodeWord_0) { .v_13 = (CodeWord_0) { .b1_0 = tmp_2._1.value.
↪→Some_0_int8_v.v_13, .b2_0 = tmp_2._2.value.Some_0_int8_v.v_13 } } }
↪→};

} else {
return (Option_0_CodeWord_0) { .tag = tag_None_0_CodeWord_0, .value

↪→= (union_Option_0_CodeWord_0) { .None_0_CodeWord_0_v = (
↪→None_0_CodeWord_0) { .extra = 0 } } };

}
}

static void set_8(Buffer_2* thiss_817, Buffer_2* b_29) {
if (isEmpty_12(b_29)) {

clear_4(thiss_817);
} else {

setImpl_3(thiss_817, b_29);
}

}

static int8_t get_5_int8(Option_0_int8 thiss_106) {
return thiss_106.value.Some_0_int8_v.v_13;

}

static bool contains_5(Dictionary_2* thiss_800, int32_t index_31) {
return index_31 < thiss_800->nextIndex_1;

}

static bool isRangeEqual_3(Buffer_2* thiss_797, array_int8 other_2, int32_t
↪→otherStart_2, int32_t otherSize_2) {

int32_t norm_30 = size_10(thiss_797);

87

B
LZW

Im
plem

entations
int32_t norm_31 = norm_30;
int32_t norm_32 = otherSize_2;
if (norm_31 != norm_32) {

return false;
} else if (isEmpty_12(thiss_797)) {

return true;
} else {

int32_t i_18 = 0;
bool equal_0 = true;
while (true) {

bool norm_36 = equal_0;
bool norm_38;
if (norm_36) {

int32_t norm_34 = i_18;
int32_t norm_33 = size_10(thiss_797);
int32_t norm_35 = norm_33;
bool norm_37 = norm_34 < norm_35;
norm_38 = norm_37;

} else {
norm_38 = false;

}
if (norm_38) {

equal_0 = ((int32_t)other_2.data[otherStart_2 + i_18]) == ((
↪→int32_t)thiss_797->array_1.data[i_18]);

i_18 = i_18 + 1;
} else {

break;
}

}
return equal_0;

}
}

static CodeWord_0 get_5_CodeWord_0(Option_0_CodeWord_0 thiss_106) {
return thiss_106.value.Some_0_CodeWord_0_v.v_13;

}

static Option_0_int8 tryReadNext_1(FileInputStream fis_0, State state_5) {
return tryReadByte_3(fis_0, state_5);

}

static int32_t _main(void) {
State state_24 = newState_2();
enum_Status_0 r1_0 = encodeFile_1(&state_24);
bool norm_69;
if (r1_0 == tag_Success_0) {

norm_69 = true;
} else {

norm_69 = false;
}
enum_Status_0 norm_129;
if (norm_69) {

norm_129 = decodeFile_1(&state_24);
} else {

norm_129 = r1_0;
}
enum_Status_0 norm_130 = norm_129;
return statusCode_1(&state_24, norm_130);

}

static bool isEmpty_8_int8(Option_0_int8 thiss_109) {
if (thiss_109.tag == tag_Some_0_int8) {

return false;
} else if (thiss_109.tag == tag_None_0_int8) {

return true;
}

}

static bool encodeImpl_2(Dictionary_2* dictionary_5, FileInputStream fis_6,
↪→FileOutputStream fos_7, State state_30) {

bool bufferFull_0 = false;
bool ioError_0 = false;
int8_t leon_buffer_8[64] = { 0 };
array_int8 norm_19 = (array_int8) { .data = leon_buffer_8, .length = 64
↪→};

array_int8* norm_20 = &norm_19;
int32_t norm_21 = 0;
Buffer_2 res_218 = (Buffer_2) { .array_1 = (*norm_20), .length_3 =
↪→norm_21 };

Buffer_2* buffer_9 = &res_218;
Option_0_int8 currentOpt_0 = tryReadNext_1(fis_6, state_30);
while (true) {

bool norm_27 = !bufferFull_0;
bool norm_29;
if (norm_27) {

bool norm_24 = !ioError_0;
bool norm_26;
if (norm_24) {

bool norm_23 = isDefined_2_int8(currentOpt_0);
bool norm_25 = norm_23;
norm_26 = norm_25;

} else {
norm_26 = false;

}
bool norm_28 = norm_26;
norm_29 = norm_28;

} else {
norm_29 = false;

}
if (norm_29) {

int8_t c_5 = get_5_int8(currentOpt_0);
append_3(buffer_9, c_5);
Option_0_CodeWord_0 code_1 = encode_5(dictionary_5, buffer_9);
bool norm_44 = isFull_5(buffer_9);

88

B
LZW

Im
plem

entations

bool norm_46 = norm_44;
bool norm_48;
if (norm_46) {

norm_48 = true;
} else {

bool norm_45 = isEmpty_8_CodeWord_0(code_1);
bool norm_47 = norm_45;
norm_48 = norm_47;

}
bool processBuffer_0 = norm_48;
if (processBuffer_0) {

if (nonFull_6(dictionary_5)) {
insert_3(dictionary_5, buffer_9);

} else {

}
dropLast_3(buffer_9);
Option_0_CodeWord_0 code2_0 = encode_5(dictionary_5,

↪→buffer_9);
FileOutputStream norm_59 = fos_7;
CodeWord_0 norm_58 = get_5_CodeWord_0(code2_0);
CodeWord_0 norm_60 = norm_58;
bool norm_61 = writeCodeWord_1(norm_59, norm_60);
ioError_0 = !norm_61;
clear_4(buffer_9);
append_3(buffer_9, c_5);

} else {

}
bool norm_62 = isFull_5(buffer_9);
bufferFull_0 = norm_62;
Option_0_int8 norm_63 = tryReadNext_1(fis_6, state_30);
currentOpt_0 = norm_63;

} else {
break;

}
}
if (!bufferFull_0 && !ioError_0) {

Option_0_CodeWord_0 code_2 = encode_5(dictionary_5, buffer_9);
FileOutputStream norm_65 = fos_7;
CodeWord_0 norm_64 = get_5_CodeWord_0(code_2);
CodeWord_0 norm_66 = norm_64;
bool norm_67 = writeCodeWord_1(norm_65, norm_66);
ioError_0 = !norm_67;

} else {

}
return !bufferFull_0 && !ioError_0;

}

static int32_t lastIndex_3(Dictionary_2* thiss_818) {
return thiss_818->nextIndex_1 - 1;

}

static int32_t capacity_5(Buffer_2* thiss_753) {
return thiss_753->array_1.length;

}

static bool nonFull_6(Dictionary_2* thiss_780) {
int32_t norm_50 = thiss_780->nextIndex_1;
int32_t norm_49 = capacity_7(thiss_780);
int32_t norm_51 = norm_49;
bool norm_52 = norm_50 < norm_51;
if (norm_52) {

bool norm_53 = thiss_780->nextIndex_1 == 0 || thiss_780->memory_1.
↪→length - thiss_780->pteps_1.data[thiss_780->nextIndex_1 - 1] >= 64;

return norm_53;
} else {

return false;
}

}

static void append_3(Buffer_2* thiss_781, int8_t x_289) {
thiss_781->array_1.data[thiss_781->length_3] = x_289;
thiss_781->length_3 = thiss_781->length_3 + 1;

}

static bool decodeImpl_2(Dictionary_2* dictionary_8, FileInputStream fis_7,
↪→FileOutputStream fos_8, State state_31) {

bool illegalInput_0 = false;
bool ioError_1 = false;
bool bufferFull_1 = false;
Option_0_CodeWord_0 currentOpt_1 = tryReadCodeWord_1(fis_7, state_31);
int8_t leon_buffer_0[64] = { 0 };
array_int8 norm_80 = (array_int8) { .data = leon_buffer_0, .length = 64
↪→};

array_int8* norm_81 = &norm_80;
int32_t norm_82 = 0;
Buffer_2 res_220 = (Buffer_2) { .array_1 = (*norm_81), .length_3 =
↪→norm_82 };

Buffer_2* buffer_12 = &res_220;
if (isDefined_2_CodeWord_0(currentOpt_1)) {

CodeWord_0 cw_2 = get_5_CodeWord_0(currentOpt_1);
int32_t index_10 = codeWord2Index_1(cw_2);
if (contains_5(dictionary_8, index_10)) {

bool norm_90 = appendTo_3(dictionary_8, index_10, buffer_12);
bufferFull_1 = !norm_90;
bool norm_95 = writeBytes_2(fos_8, buffer_12);
ioError_1 = !norm_95;

} else {
illegalInput_0 = true;

}
Option_0_CodeWord_0 norm_96 = tryReadCodeWord_1(fis_7, state_31);
currentOpt_1 = norm_96;

89

B
LZW

Im
plem

entations
} else {

}
while (true) {

bool norm_104 = !illegalInput_0;
bool norm_106;
if (norm_104) {

bool norm_101 = !ioError_1;
bool norm_103;
if (norm_101) {

bool norm_98 = !bufferFull_1;
bool norm_100;
if (norm_98) {

bool norm_97 = isDefined_2_CodeWord_0(currentOpt_1);
bool norm_99 = norm_97;
norm_100 = norm_99;

} else {
norm_100 = false;

}
bool norm_102 = norm_100;
norm_103 = norm_102;

} else {
norm_103 = false;

}
bool norm_105 = norm_103;
norm_106 = norm_105;

} else {
norm_106 = false;

}
if (norm_106) {

CodeWord_0 cw_3 = get_5_CodeWord_0(currentOpt_1);
int32_t index_11 = codeWord2Index_1(cw_3);
int8_t leon_buffer_1[64] = { 0 };
array_int8 norm_107 = (array_int8) { .data = leon_buffer_1, .

↪→length = 64 };
array_int8* norm_108 = &norm_107;
int32_t norm_109 = 0;
Buffer_2 res_221 = (Buffer_2) { .array_1 = (*norm_108), .

↪→length_3 = norm_109 };
Buffer_2* entry_1 = &res_221;
if (contains_5(dictionary_8, index_11)) {

bool norm_110 = appendTo_3(dictionary_8, index_11, entry_1);
illegalInput_0 = !norm_110;

} else {
int32_t norm_114 = index_11;
int32_t norm_111 = lastIndex_3(dictionary_8);
int32_t norm_112 = norm_111;
int32_t norm_113 = 1;
int32_t norm_115 = norm_112 + norm_113;
if (norm_114 == norm_115) {

set_8(entry_1, buffer_12);
Buffer_2* norm_117 = entry_1;

int8_t norm_116 = apply_21(buffer_12, 0);
int8_t norm_118 = norm_116;
append_3(norm_117, norm_118);

} else {
illegalInput_0 = true;

}
}
bool norm_119 = writeBytes_2(fos_8, entry_1);
ioError_1 = !norm_119;
bool norm_120 = isFull_5(buffer_12);
bufferFull_1 = norm_120;
if (!bufferFull_1) {

int8_t leon_buffer_2[64] = { 0 };
array_int8 norm_121 = (array_int8) { .data = leon_buffer_2,

↪→.length = 64 };
array_int8* norm_122 = &norm_121;
int32_t norm_123 = 0;
Buffer_2 res_222 = (Buffer_2) { .array_1 = (*norm_122), .

↪→length_3 = norm_123 };
Buffer_2* tmp_1 = &res_222;
set_8(tmp_1, buffer_12);
Buffer_2* norm_125 = tmp_1;
int8_t norm_124 = apply_21(entry_1, 0);
int8_t norm_126 = norm_124;
append_3(norm_125, norm_126);
if (nonFull_6(dictionary_8)) {

insert_3(dictionary_8, tmp_1);
} else {

}
set_8(buffer_12, entry_1);

} else {

}
Option_0_CodeWord_0 norm_127 = tryReadCodeWord_1(fis_7, state_31

↪→);
currentOpt_1 = norm_127;

} else {
break;

}
}
return !illegalInput_0 && (!ioError_1 && !bufferFull_1);

}

static bool write_8(FILE* this, int8_t x) {
return fprintf(this, "%c", x) >= 0;

}

int32_t main(int32_t argc, char** argv) {
return _main();

90

B
LZW

Im
plem

entations

}

static FILE* open_3(char* filename, void* unused) {
FILE* this = fopen(filename, "r");
/* this == NULL on failure */
return this;

}

static int8_t apply_21(Buffer_2* thiss_769, int32_t index_29) {
return thiss_769->array_1.data[index_29];

}

static int32_t statusCode_1(State* state_24, enum_Status_0 s_20) {
if (s_20 == tag_Success_0) {

println_5("success");
return 0;

} else if (s_20 == tag_OpenError_0) {
println_5("couldn’t open file");
return 1;

} else if (s_20 == tag_EncodeError_0) {
println_5("encoding failed");
return 2;

} else if (s_20 == tag_DecodeError_0) {
println_5("decoding failed");
return 3;

}
}

static bool isFull_5(Buffer_2* thiss_796) {
int32_t norm_42 = thiss_796->length_3;
int32_t norm_41 = capacity_5(thiss_796);
int32_t norm_43 = norm_41;
return norm_42 == norm_43;

}

static void insert_3(Dictionary_2* thiss_786, Buffer_2* b_23) {
int32_t start_2 = getNextBufferBeginning_3(thiss_786);
int32_t i_22 = 0;
while (true) {

int32_t norm_14 = i_22;
int32_t norm_13 = size_10(b_23);
int32_t norm_15 = norm_13;
if (norm_14 < norm_15) {

int32_t norm_17 = start_2 + i_22;
int8_t norm_16 = apply_21(b_23, i_22);
int8_t norm_18 = norm_16;
thiss_786->memory_1.data[norm_17] = norm_18;
i_22 = i_22 + 1;

} else {
break;

}
}
thiss_786->pteps_1.data[thiss_786->nextIndex_1] = start_2 + i_22;
thiss_786->nextIndex_1 = thiss_786->nextIndex_1 + 1;

}

static bool isDefined_2_CodeWord_0(Option_0_CodeWord_0 thiss_111) {
bool norm_83 = isEmpty_8_CodeWord_0(thiss_111);
return !norm_83;

}

static Option_0_CodeWord_0 encode_5(Dictionary_2* thiss_798, Buffer_2* b_25)
↪→ {

bool found_0 = false;
int32_t index_9 = 0;
while (!found_0 && index_9 < thiss_798->nextIndex_1) {

int32_t start_3 = getBufferBeginning_3(thiss_798, index_9);
int32_t size_5 = getBufferSize_3(thiss_798, index_9);
if (isRangeEqual_3(b_25, thiss_798->memory_1, start_3, size_5)) {

found_0 = true;
} else {

index_9 = index_9 + 1;
}

}
if (found_0) {

CodeWord_0 norm_39 = index2CodeWord_1(index_9);
CodeWord_0 norm_40 = norm_39;
return (Option_0_CodeWord_0) { .tag = tag_Some_0_CodeWord_0, .value

↪→= (union_Option_0_CodeWord_0) { .Some_0_CodeWord_0_v = (
↪→Some_0_CodeWord_0) { .v_13 = norm_40 } } };

} else {
return (Option_0_CodeWord_0) { .tag = tag_None_0_CodeWord_0, .value

↪→= (union_Option_0_CodeWord_0) { .None_0_CodeWord_0_v = (
↪→None_0_CodeWord_0) { .extra = 0 } } };

}
}

static int32_t getBufferBeginning_3(Dictionary_2* thiss_801, int32_t
↪→index_32) {

if (index_32 == 0) {
return 0;

} else {
return thiss_801->pteps_1.data[index_32 - 1];

}
}

static bool writeCodeWord_1(FileOutputStream fos_0, CodeWord_0 cw_0) {
bool norm_54 = write_8(fos_0, cw_0.b1_0);
bool norm_56 = norm_54;
if (norm_56) {

bool norm_55 = write_8(fos_0, cw_0.b2_0);
bool norm_57 = norm_55;

91

B
LZW

Im
plem

entations
return norm_57;

} else {
return false;

}
}

static bool close_5(FILE* this) {
if (this != NULL)
return fclose(this) == 0;

else
return true;

}

static int32_t codeWord2Index_1(CodeWord_0 cw_1) {
int32_t signed_1 = ((int32_t)(((uint32_t)((int32_t)cw_1.b1_0)) << 8)) |
↪→(255 & ((int32_t)cw_1.b2_0));

return signed_1 + 32768;
}

static bool decode_1(FileInputStream fis_4, FileOutputStream fos_4, State
↪→state_9) {

int8_t leon_buffer_3[524288] = { 0 };
array_int8 norm_75 = (array_int8) { .data = leon_buffer_3, .length =
↪→524288 };

array_int8* norm_77 = &norm_75;
int32_t leon_buffer_4[8192] = { 0 };
array_int32 norm_76 = (array_int32) { .data = leon_buffer_4, .length =
↪→8192 };

array_int32* norm_78 = &norm_76;
int32_t norm_79 = 0;
Dictionary_2 res_223 = (Dictionary_2) { .memory_1 = (*norm_77), .pteps_1
↪→ = (*norm_78), .nextIndex_1 = norm_79 };

Dictionary_2* dictionary_9 = &res_223;
initialise_2(dictionary_9);
return decodeImpl_2(dictionary_9, fis_4, fos_4, state_9);

}

static bool isDefined_2_int8(Option_0_int8 thiss_111) {
bool norm_22 = isEmpty_8_int8(thiss_111);
return !norm_22;

}

static CodeWord_0 index2CodeWord_1(int32_t index_3) {
int32_t signed_0 = index_3 - 32768;
int8_t b2_2 = (int8_t)signed_0;
int8_t b1_2 = (int8_t)((int32_t)(((uint32_t)signed_0) >> 8));
return (CodeWord_0) { .b1_0 = b1_2, .b2_0 = b2_2 };

}

static bool close_4(FILE* this, void* unused) {
if (this != NULL)
return fclose(this) == 0;

else
return true;

}

static void println_5(char* s_19) {
print_4(s_19);
println_6();

}

static int32_t getNextBufferBeginning_3(Dictionary_2* thiss_783) {
if (thiss_783->nextIndex_1 == 0) {

return 0;
} else {

return thiss_783->pteps_1.data[thiss_783->nextIndex_1 - 1];
}

}

static bool isOpen_5(FILE* this) {
return this != NULL;

}

static int8_t impl_4(FILE** this, void** unused, bool* valid) {
int8_t x;

*valid = fscanf(*this, "%c", &x) == 1;
return x;

}

static void print_4(char* s) {
printf("%s", s);

}

static void dropLast_3(Buffer_2* thiss_785) {
thiss_785->length_3 = thiss_785->length_3 - 1;

}

static enum_Status_0 encodeFile_1(State* state_24) {
FileInputStream input_1 = open_3("input.txt", *state_24);
FileOutputStream encoded_1 = open_2("encoded.txt");
bool norm_0 = isOpen_4(input_1);
bool norm_2 = norm_0;
bool norm_4;
if (norm_2) {

92

B
LZW

Im
plem

entations

bool norm_1 = isOpen_5(encoded_1);
bool norm_3 = norm_1;
norm_4 = norm_3;

} else {
norm_4 = false;

}
enum_Status_0 norm_68;
if (norm_4) {

if (encode_4(input_1, encoded_1, *state_24)) {
norm_68 = tag_Success_0;

} else {
norm_68 = tag_EncodeError_0;

}
} else {

norm_68 = tag_OpenError_0;
}

enum_Status_0 res_9 = norm_68;
close_5(encoded_1);
close_4(input_1, *state_24);
return res_9;

}

static int32_t getBufferSize_3(Dictionary_2* thiss_795, int32_t index_30) {
if (index_30 == 0) {

return thiss_795->pteps_1.data[0];
} else {

return thiss_795->pteps_1.data[index_30] - thiss_795->pteps_1.data[
↪→index_30 - 1];

}
}

static void* newState_2(void) { return NULL; }

93

C
Im

age
P
rocessing

Im
plem

entation

C Image Processing Implementation

For completeness, we give print here our implementation of the Image Processing case study written in Scala as well as the C99 program
generated by GenC . The sources are also available at https://github.com/mantognini/GenC.

C.1 Scala Source

/* Copyright 2009-2016 EPFL, Lausanne */

import leon.annotation._

import leon.lang._

// import leon.lang.StaticChecks._ // uncomment this to disable runtime
↪→checks on the JVM

import leon.io.{
FileInputStream => FIS,
FileOutputStream => FOS,
StdOut

}
import leon.util.{ TimePoint }

import scala.annotation.tailrec

/**
* Some basic image processing.

*
* General NOTEs

* -------------

*
* Byte ranges from -128 to 127, not 0 to 255. It is important to remember

* that when manipulating individual component as Byte.

*
* The BMP format uses little endian.

*
* See https://msdn.microsoft.com/en-us/library/dd183391(v=vs.85).aspx

* for the full documentation.

*/
object ImageProcessing {

/**
* Constants *
**/

// Sizes in bytes of several Windows numerical types
@inline
val WordSize = 2 // 16 bits, unsigned
@inline

val DwordSize = 4 // 32 bits, unsigned
@inline
val LongSize = 4 // 32 bits, signed

// Maximum size of images
@inline
val MaxSize = 512
@inline
val MaxSurfaceSize = 512 * 512 // handwritten here to inline the values

/**
* Basic Algorithms *
**/

def inRange(x: Int, min: Int, max: Int): Boolean = {
require(min <= max)
min <= x && x <= max

}

def min(x: Int, y: Int): Int = {
if (x <= y) x else y

} ensuring { res =>
res <= x && res <= y && (res == x || res == y)

}

def max(x: Int, y: Int): Int = {
if (x < y) y else x

} ensuring { res =>
x <= res && y <= res && (res == x || res == y)

}

def clamp(x: Int, down: Int, up: Int): Int = {
require(down <= up)
max(down, min(x, up))

} ensuring { res => inRange(res, down, up) }

/**
* Status *

95

https://github.com/mantognini/GenC

C
Im

age
P
rocessing

Im
plem

entation
**/

sealed abstract class Status {
def isSuccess: Boolean = this.isInstanceOf[Success]

}

case class Success() extends Status
case class OpenError() extends Status
case class ReadError() extends Status
case class DomainError() extends Status
case class InvalidFileHeaderError() extends Status
case class InvalidBitmapHeaderError() extends Status
case class CorruptedDataError() extends Status
case class ImageTooBigError() extends Status
case class WriteError() extends Status
case class NotImplementedError() extends Status

def statusCode(s: Status): Int = s match {
case Success() => StdOut.println("success");
↪→ 0

case OpenError() => StdOut.println("couldn’t open file");
↪→ 1

case ReadError() => StdOut.println("couldn’t read some
↪→expected data"); 2

case DomainError() => StdOut.println("integer out of range"
↪→); 3

case InvalidFileHeaderError() => StdOut.println("file format
↪→unsupported"); 4

case InvalidBitmapHeaderError() => StdOut.println("bitmap format
↪→unsupported"); 5

case CorruptedDataError() => StdOut.println("the file appears to
↪→be corrupted"); 6

case ImageTooBigError() => StdOut.println("the image is too big"
↪→); 7

case WriteError() => StdOut.println("couldn’t write image"
↪→); 8

case NotImplementedError() => StdOut.println("not yet implemented")
↪→; 99

}

/**
* MaybeResult *
**/

// Basically, MaybeResult[A] is Either[A, B] where B is Status
abstract class MaybeResult[A] {
def isDefined = this match {
case Result(_) => true
case _ => false

}

def getResult: A = {
require(isDefined)
this.asInstanceOf[Result[A]].result

}

def getStatus: Status = {
require(!isDefined)
this.asInstanceOf[Failure[A]].status

}

def toStatus: Status = {
if (isDefined) Success()
else getStatus

}
}

case class Result[A](result: A) extends MaybeResult[A]
case class Failure[A](status: Status) extends MaybeResult[A] {
require(status != Success())

}

// Extra operations for MaybeResult[Int].
implicit class MaybeResultIntOps(val result: MaybeResult[Int]) {
def expect(value: Int): MaybeResult[Int] = result match {
case Result(res) if res == value => result
case Result(_) => Failure[Int](DomainError())
case _ => result // a Failure remains a
↪→Failure

}
}

// Combine two, three or four MaybeResult to a MaybeResult of tuple.
def combine[A, B](a: MaybeResult[A], b: MaybeResult[B]): MaybeResult[(A, B

↪→)] = {
if (a.isDefined) {
if (b.isDefined) {
Result((a.getResult, b.getResult))

} else Failure[(A, B)](b.getStatus)
} else Failure[(A, B)](a.getStatus)

}

def combine[A, B, C](a: MaybeResult[A], b: MaybeResult[B],
c: MaybeResult[C]): MaybeResult[(A, B, C)] = {

val tmp = combine(combine(a, b), c)
tmp match {
case Result(((a, b), c)) => Result((a, b, c))
case Failure(status) => Failure[(A, B, C)](status)

}
}

def combine[A, B, C, D](a: MaybeResult[A], b: MaybeResult[B],

96

C
Im

age
P
rocessing

Im
plem

entation

c: MaybeResult[C], d: MaybeResult[D]): MaybeResult
↪→[(A, B, C, D)] = {

val tmp = combine(combine(a, b, c), d)
tmp match {
case Result(((a, b, c), d)) => Result((a, b, c, d))
case Failure(status) => Failure[(A, B, C, D)](status)

}
}

// Convert an Option to a MaybeResult
def maybe[A](opt: Option[A], failStatus: Status): MaybeResult[A] = {
require(failStatus != Success())
opt match {
case Some(result) => Result(result)
case None() => Failure(failStatus)

}
}

// Special DSL for Option.
implicit class OptionOps[A](val opt: Option[A]) {
def toResultOr(failStatus: Status) = {
require(failStatus != Success())
maybe(opt, failStatus)

}
}

/**
* Data Structures *
**/

/*
* Hold (some) information about the general file structure;

* The file header is 14 bytes, the offset refers to the beginning of the
↪→file header.

*/
case class FileHeader(size: Int, offset: Int) {
require((14 + 40) <= size && inRange(offset, 14 + 40, size))
// offset cannot be before the end of BitmapHeader.

}

/*
* Hold basic information about the bitmap.

*
* See https://msdn.microsoft.com/en-us/library/dd183376(v=vs.85).aspx

*
* NOTE We assume that

* - The number of bits-per-pixel is 24 (RGB format, 8-bit channels);

* - No compression is used;

* - The palette is empty.

*/
case class BitmapHeader(width: Int, height: Int) {

require(0 <= width && 0 <= height)
}

/*
* Represent an Image, using the usual RGB channels.

*
* NOTE use createImage to create a new instance of this class easily.

*/
case class Image(r: Array[Byte], g: Array[Byte], b: Array[Byte], w: Int, h

↪→: Int) {
require(
r.length == MaxSurfaceSize &&
g.length == MaxSurfaceSize &&
b.length == MaxSurfaceSize &&
inRange(w, 0, MaxSize) &&
inRange(h, 0, MaxSize) &&
inRange(w * h, 0, MaxSurfaceSize)

)
}

@inline // <- in order to "return" the image
def createImage(width: Int, height: Int) = {
require(
inRange(width, 0, MaxSize) &&
inRange(height, 0, MaxSize) &&
inRange(width * height, 0, MaxSurfaceSize)

)
Image(
Array.fill[Byte](MaxSurfaceSize)(0),
Array.fill[Byte](MaxSurfaceSize)(0),
Array.fill[Byte](MaxSurfaceSize)(0),
width, height

)
}

/**
* I/O functions for WORD, DWORD, LONG, and other helpers *
**/

// Skip a given number of bytes, returning true on success.
def skipBytes(fis: FIS, count: Int)(implicit state: leon.io.State):

↪→Boolean = {
require(fis.isOpen && 0 <= count)

var i = 0
var success = true

(while (success && i < count) {
val opt = fis.tryReadByte()
success = opt.isDefined
i += 1

97

C
Im

age
P
rocessing

Im
plem

entation
}) invariant (inRange(i, 0, count))

success
}

// Fill the output with copies of the given byte.
@tailrec // <- a good indicator that the C compiler could optimise out the

↪→ recursion.
def writeBytes(fos: FOS, byte: Byte, count: Int): Boolean = {
require(fos.isOpen && 0 <= count)

if (count == 0) true
else fos.write(byte) && writeBytes(fos, byte, count - 1)

}

// Attempt to read a WORD (16-bit unsigned integer).
// The result is represented using an Int.
def maybeReadWord(fis: FIS)(implicit state: leon.io.State): MaybeResult[

↪→Int] = {
require(fis.isOpen)

// From little to big endian
val byte2 = fis.tryReadByte
val byte1 = fis.tryReadByte

if (byte1.isDefined && byte2.isDefined) Result(constructWord(byte1.get,
↪→byte2.get))

else Failure[Int](ReadError())
} ensuring { res =>
res match {
case Result(word) => inRange(word, 0, 65535)
case _ => true

}
}

private def constructWord(byte1: Byte, byte2: Byte): Int = {
// Shift range appropriately to respect unsigned numbers representation
val signed = (byte1 << 8) | (byte2 & 0xff) // has Int type
val unsigned = if (signed < 0) signed + (2 * 32768) else signed

unsigned
} ensuring { word => inRange(word, 0, 65535) }

// Write a WORD
def writeWord(fos: FOS, word: Int): Boolean = {
require(fos.isOpen && inRange(word, 0, 65535))

val (b1, b2) = destructWord(word)

// From big endian to little endian
fos.write(b2) && fos.write(b1)

}

private def destructWord(word: Int): (Byte, Byte) = {
require(inRange(word, 0, 65535))

// Shift range appropriately to respect integer representation
val signed = if (word >= 32768) word - (2 * 32768) else word

val b1 = (signed >>> 8).toByte
val b2 = signed.toByte

(b1, b2)
}

private def lemmaWord(byte1: Byte, byte2: Byte): Boolean = {
val word = constructWord(byte1, byte2)
val (b1, b2) = destructWord(word)
b1 == byte1 && b2 == byte2

}.holds

// Attempt to read a DWORD (32-bit unsigned integer).
// The result is represented using an Int, and values bigger than 2^31 - 1

↪→ results in DomainError.
def maybeReadDword(fis: FIS)(implicit state: leon.io.State): MaybeResult[

↪→Int] = {
require(fis.isOpen)

// From little to big endian
def buildInt(b1: Byte, b2: Byte, b3: Byte, b4: Byte): Int = {
require(0 <= b4)
(b4 << 24) | ((b3 & 0xff) << 16) | ((b2 & 0xff) << 8) | (b1 & 0xff)

} ensuring { int =>
inRange(int, 0, 2147483647)

}

val byte1 = fis.tryReadByte
val byte2 = fis.tryReadByte
val byte3 = fis.tryReadByte
val byte4 = fis.tryReadByte // the most significant byte

if (byte1.isDefined && byte2.isDefined && byte3.isDefined && byte4.
↪→isDefined) {
if (byte4.get >= 0) {
val dword = buildInt(byte1.get, byte2.get, byte3.get, byte4.get)
Result(dword)

} else Failure[Int](DomainError())
} else Failure[Int](ReadError())

} ensuring { res =>
res match {
case Result(dword) => inRange(dword, 0, 2147483647)
case _ => true

}
}

98

C
Im

age
P
rocessing

Im
plem

entation

// Write a DWORD
def writeDword(fos: FOS, dword: Int): Boolean = {
require(fos.isOpen && inRange(dword, 0, 2147483647))

val b4 = (dword >>> 24).toByte
val b3 = (dword >>> 16).toByte
val b2 = (dword >>> 8).toByte
val b1 = dword.toByte

// Big endian to little endian conversion
fos.write(b1) && fos.write(b2) && fos.write(b3) && fos.write(b4)

}

// Attempt to read a LONG (32-bit signed integer).
// The result is represented using an Int.
def maybeReadLong(fis: FIS)(implicit state: leon.io.State): MaybeResult[

↪→Int] = {
require(fis.isOpen)

// From little to big endian
def buildInt(b1: Byte, b2: Byte, b3: Byte, b4: Byte): Int = {
(b4 << 24) | ((b3 & 0xff) << 16) | ((b2 & 0xff) << 8) | (b1 & 0xff)

}

val byte1 = fis.tryReadByte
val byte2 = fis.tryReadByte
val byte3 = fis.tryReadByte
val byte4 = fis.tryReadByte // the most significant byte

if (byte1.isDefined && byte2.isDefined && byte3.isDefined && byte4.
↪→isDefined) {
val long = buildInt(byte1.get, byte2.get, byte3.get, byte4.get)
Result(long)

} else Failure[Int](ReadError())
}

// Write a LONG
def writeLong(fos: FOS, long: Int): Boolean = {
require(fos.isOpen)

val b4 = (long >>> 24).toByte
val b3 = (long >>> 16).toByte
val b2 = (long >>> 8).toByte
val b1 = long.toByte

// Big endian to little endian conversion
fos.write(b1) && fos.write(b2) && fos.write(b3) && fos.write(b4)

}

/**

* I/O functions for the BMP format *
**/

// Attempt to read the file header.
// Upon success, 14 bytes have been read.
def maybeReadFileHeader(fis: FIS)(implicit state: leon.io.State):

↪→MaybeResult[FileHeader] = {
require(fis.isOpen)

var skipSuccess = skipBytes(fis, WordSize)
val sizeRes = maybeReadDword(fis)
skipSuccess = skipSuccess && skipBytes(fis, WordSize * 2)
val offsetRes = maybeReadDword(fis)

combine(sizeRes, offsetRes) match {
case _ if !skipSuccess => Failure[FileHeader](ReadError())
case Failure(status) => Failure[FileHeader](status)
case Result((size, offset)) => {
if (14 <= size && 14 + 40 <= offset && offset <= size) Result(

↪→FileHeader(size, offset))
else Failure[FileHeader](InvalidFileHeaderError())

}
}

}

// Attempt to read the bitmap header (minimal version).
// Upon success, 18 bytes have been read.
def maybeReadBitmapHeader(fis: FIS)(implicit state: leon.io.State):

↪→MaybeResult[BitmapHeader] = {
require(fis.isOpen)

var skipSuccess = skipBytes(fis, DwordSize)
val widthRes = maybeReadLong(fis)
val heightRes = maybeReadLong(fis)
skipSuccess = skipSuccess && skipBytes(fis, WordSize)
val bppRes = maybeReadWord(fis)
val compressionRes = maybeReadWord(fis)

combine(widthRes, heightRes, bppRes, compressionRes) match {
case _ if !skipSuccess => Failure[BitmapHeader](
↪→ReadError())
case Failure(status) => Failure[BitmapHeader](status)
case Result((w, h, bpp, compression)) =>
if (w < 0 || h < 0 || bpp != 24 || compression != 0) {
log("width", w)
log("height", h)
log("bpp", bpp)
log("compression", compression)
Failure(InvalidBitmapHeaderError())

} else Result(BitmapHeader(w, h))
}

}

99

C
Im

age
P
rocessing

Im
plem

entation
def loadImageData(fis: FIS, image: Image)(implicit state: leon.io.State):

↪→Status = {
require(fis.isOpen)

val size = image.w * image.h
var i = 0
var status: Status = Success()

(while (status.isSuccess && i < size) {
val rOpt = fis.tryReadByte()
val gOpt = fis.tryReadByte()
val bOpt = fis.tryReadByte()

if (rOpt.isEmpty || gOpt.isEmpty || bOpt.isEmpty) {
status = ReadError()
log("stopped reading data abruptly after", i)

} else {
image.r(i) = rOpt.get
image.g(i) = gOpt.get
image.b(i) = bOpt.get

}

i += 1
}) invariant (
inRange(size, 0, MaxSurfaceSize) &&
inRange(i, 0, size)

)

status
}

def saveImage(fos: FOS, image: Image): Status = {
require(fos.isOpen)

def writeFileHeader(): Boolean = {
// Size: the headers and 3 channels per pixel, 1 byte per pixel
↪→component.
val size = 14 + 40 + image.w * image.h * 3
val reserved = 0 // two WORDs are reserved
val offset = 14 + 40 // after the two headers

fos.write(0x42.toByte) && fos.write(0x4d.toByte) && // the signature "
↪→BM"
writeDword(fos, size) &&
writeWord(fos, reserved) && writeWord(fos, reserved) &&
writeDword(fos, offset)

}

def writeBitmapHeader(): Boolean = {
val size = 40
val w = image.w

val h = image.h
val planes = 1
val bpp = 24
val comp = 0

writeDword(fos, size) &&
writeLong(fos, w) && writeLong(fos, h) &&
writeWord(fos, planes) &&
writeWord(fos, bpp) &&
writeWord(fos, comp) &&
writeBytes(fos, 0, 22) // the last 22 bytes are all not relevant for
↪→us and are set to 0

}

def writeImage(): Boolean = {
val count = image.w * image.h
var i = 0
var success = true

(while (success && i < count) {
success = fos.write(image.r(i)) && fos.write(image.g(i)) && fos.

↪→write(image.b(i))
i += 1

}) invariant (inRange(count, 0, MaxSurfaceSize) && inRange(i, 0, count
↪→))

success
}

if (writeFileHeader() && writeBitmapHeader() && writeImage()) Success()
else WriteError()

}

/**
* Logging Facilities *
**/

def log(msg: String, x: Int) {
StdOut.print(msg)
StdOut.print(": ")
StdOut.println(x)

}

def log(h: FileHeader) {
log("size", h.size)
log("offset", h.offset)

}

def log(h: BitmapHeader) {
log("width", h.width)
log("height", h.height)

100

C
Im

age
P
rocessing

Im
plem

entation

}

/**
* Kernel & Image Processing Algorithm *
**/

case class Kernel(size: Int, scale: Int, kernel: Array[Int]) {
require(
inRange(size, 0, MaxSize) &&
size % 2 == 1 &&
size * size == kernel.length &&
scale != 0 && scale != -1 // avoid division by zero and some
↪→particular overflow (*)

)

// (*) -2^31 / -1

/*
* Apply the kernel on the given channel. Return the new value for pixel
↪→ component

* at the given index.

*/
private def apply(channel: Array[Byte], width: Int, height: Int, index:
↪→Int): Byte = {
require(
channel.length == MaxSurfaceSize &&
inRange(index, 0, channel.length) &&
inRange(width, 1, MaxSize) &&
inRange(height, 1, MaxSize) &&
inRange(width * height, 0, MaxSurfaceSize)

)

// Clamping helper
def fix(x: Int, side: Int): Int = {
require(0 < side)
clamp(x, 0, side - 1)

}

// Get the color component at the given position in the range [0, 255]
def at(col: Int, row: Int): Int = {
val c = fix(col, width)
val r = fix(row, height)

val component = channel(r * width + c) // unsigned
if (component < 0) component + 255 else component

} ensuring { inRange(_, 0, 255) }

val mid = size / 2

val i = index % width
val j = index / width

var res = 0
var p = -mid

(while (p <= mid) {
var q = -mid

val oldP = p // Fix p for the inner loop (the invariant is not
↪→automatically inferred)

(while (q <= mid) {
val kcol = p + mid
val krow = q + mid

assert(inRange(krow, 0, size - 1))
assert(inRange(kcol, 0, size - 1))

val kidx = krow * size + kcol

// Here, the += and * operation could overflow
res += at(i + p, j + q) * kernel(kidx)

q += 1
}) invariant (oldP == p && inRange(q, -mid, mid + 1))

p += 1
}) invariant (inRange(p, -mid, mid + 1))

res = clamp(res / scale, 0, 255)
res.toByte

}

def apply(src: Image, dest: Image): Unit = {
require(src.w == dest.w && src.h == dest.h)

val size = src.w * src.h
var i = 0

(while (i < size) {
dest.r(i) = apply(src.r, src.w, src.h, i)
dest.g(i) = apply(src.g, src.w, src.h, i)
dest.b(i) = apply(src.b, src.w, src.h, i)

i += 1
}) invariant (inRange(i, 0, size))

}
}

/**
* Main Program *
**/

101

C
Im

age
P
rocessing

Im
plem

entation
@extern
def main(args: Array[String]): Unit = _main()

def _main(): Int = {
implicit val state = leon.io.newState
val input = FIS.open("input.bmp")
val output = FOS.open("output.bmp")

val status =
if (input.isOpen && output.isOpen) process(input, output)
else OpenError()

output.close()
input.close()

statusCode(status)
}

def process(fis: FIS, fos: FOS)(implicit state: leon.io.State): Status = {
require(fis.isOpen && fos.isOpen)

/*
* // Smooth kernel

* val kernel = Kernel(3, 1, Array(1, 1, 1, 1, 2, 1, 1, 1, 1))

*/

/*
* // Edges

* val kernel = Kernel(5, 1, Array(

* 0, 0, -1, 0, 0,

* 0, 0, -1, 0, 0,

* -1, -1, 8, -1, -1,

* 0, 0, -1, 0, 0,

* 0, 0, -1, 0, 0

*))

*/

/* // Identity

* val kernel = Kernel(5, 1, Array(

* 0, 0, 0, 0, 0,

* 0, 0, 0, 0, 0,

* 0, 0, 1, 0, 0,

* 0, 0, 0, 0, 0,

* 0, 0, 0, 0, 0

*))

*/

/* // Sharpen

* val kernel = Kernel(5, 8, Array(

* -1, -1, -1, -1, -1,

* -1, 2, 2, 2, -1,

* -1, 2, 8, 2, -1,

* -1, 2, 2, 2, -1,

* -1, -1, -1, -1, -1

*))

*/

/*
* // Blur

* val kernel = Kernel(5, 25, Array(

* 1, 1, 1, 1, 1,

* 1, 1, 1, 1, 1,

* 1, 1, 1, 1, 1,

* 1, 1, 1, 1, 1,

* 1, 1, 1, 1, 1

*))

*/

// Emboss
val kernel = Kernel(3, 1, Array(
-2, -1, 0,
-1, 1, 1,
0, 1, 2

))

def processImage(src: Image): Status = {
// Compute the processing time, without I/Os
val t1 = TimePoint.now()

val dest = createImage(src.w, src.h)
kernel.apply(src, dest)

val t2 = TimePoint.now()
val ms = TimePoint.elapsedMillis(t1, t2)
StdOut.print("Computation time: ")
StdOut.print(ms)
StdOut.println("ms.")

saveImage(fos, dest)
}

val fileHeaderRes = maybeReadFileHeader(fis)
val bitmapHeaderRes = maybeReadBitmapHeader(fis)

val status = combine(fileHeaderRes, bitmapHeaderRes) match {
case Failure(status) =>
status

/*
* Report an error when the file is corrupted, i.e. it’s too small.

* 40 is the minimal bitmap header size, 14 is the file header size.

* Note that more sanity check could be done but that’s not the main

* point of this example.

102

C
Im

age
P
rocessing

Im
plem

entation

*/
case Result((fh, bh)) if fh.size <= 14 + 40 =>
CorruptedDataError()

case Result((fh, bh)) =>
log(fh)
log(bh)

// Skip bytes until the start of the bitmap data
val toSkip = fh.offset - (14 + 18) // some bytes were already eaten
val success = skipBytes(fis, toSkip)

// Break test of size so we avoid overflows.
if (!success)

↪→CorruptedDataError()

else if (bh.width > MaxSize || bh.height > MaxSize) ImageTooBigError
↪→()

else if (bh.width * bh.height > MaxSurfaceSize) ImageTooBigError
↪→()

else {
val image = createImage(bh.width, bh.height)
val status = loadImageData(fis, image)
if (status.isSuccess) processImage(image)
else status

}
}

status
}

}

103

C
Im

age
P
rocessing

Im
plem

entation
C.2 Generated C99 Code

/* ------------------------------------ includes ----- */

#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

/* -------------------------------- type aliases ----- */

typedef FILE* FileInputStream;
typedef clock_t TimePoint;
typedef void* State;
typedef FILE* FileOutputStream;

/* --------------------------------------- enums ----- */

typedef enum {
tag_Failure_0_Tuple_Tuple_int32_int32_int32_int32,
tag_Result_0_Tuple_Tuple_int32_int32_int32_int32

} enum_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32;

typedef enum {
tag_None_0_int8,
tag_Some_0_int8

} enum_Option_0_int8;

typedef enum {
tag_Failure_0_BitmapHeader_0,
tag_Result_0_BitmapHeader_0

} enum_MaybeResult_0_BitmapHeader_0;

typedef enum {
tag_Failure_0_Tuple_int32_int32_int32_int32,
tag_Result_0_Tuple_int32_int32_int32_int32

} enum_MaybeResult_0_Tuple_int32_int32_int32_int32;

typedef enum {
tag_Failure_0_Tuple_Tuple_int32_int32_int32,
tag_Result_0_Tuple_Tuple_int32_int32_int32

} enum_MaybeResult_0_Tuple_Tuple_int32_int32_int32;

typedef enum {
tag_Failure_0_FileHeader_0,
tag_Result_0_FileHeader_0

} enum_MaybeResult_0_FileHeader_0;

typedef enum {
tag_Failure_0_Tuple_FileHeader_0_BitmapHeader_0,
tag_Result_0_Tuple_FileHeader_0_BitmapHeader_0

} enum_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0;

typedef enum {
tag_Failure_0_int32,
tag_Result_0_int32

} enum_MaybeResult_0_int32;

typedef enum {
tag_Failure_0_Tuple_int32_int32,
tag_Result_0_Tuple_int32_int32

} enum_MaybeResult_0_Tuple_int32_int32;

typedef enum {
tag_ReadError_0,
tag_OpenError_0,
tag_WriteError_0,
tag_CorruptedDataError_0,
tag_Success_0,
tag_NotImplementedError_0,
tag_DomainError_0,
tag_ImageTooBigError_0,
tag_InvalidBitmapHeaderError_0,
tag_InvalidFileHeaderError_0

} enum_Status_0;

typedef enum {
tag_Failure_0_Tuple_int32_int32_int32,
tag_Result_0_Tuple_int32_int32_int32

} enum_MaybeResult_0_Tuple_int32_int32_int32;

/* ----------------------- data type definitions ----- */

typedef struct {
int8_t extra;

} None_0_int8;

typedef struct {
int8_t v_14;

} Some_0_int8;

typedef union {
None_0_int8 None_0_int8_v;
Some_0_int8 Some_0_int8_v;

} union_Option_0_int8;

104

C
Im

age
P
rocessing

Im
plem

entation

typedef struct {
enum_Option_0_int8 tag;
union_Option_0_int8 value;

} Option_0_int8;

typedef struct {
enum_Status_0 status_0;

} Failure_0_Tuple_Tuple_int32_int32_int32;

typedef struct {
int32_t _1;
int32_t _2;

} Tuple_int32_int32;

typedef struct {
Tuple_int32_int32 _1;
int32_t _2;

} Tuple_Tuple_int32_int32_int32;

typedef struct {
Tuple_Tuple_int32_int32_int32 result_0;

} Result_0_Tuple_Tuple_int32_int32_int32;

typedef union {
Failure_0_Tuple_Tuple_int32_int32_int32

↪→Failure_0_Tuple_Tuple_int32_int32_int32_v;
Result_0_Tuple_Tuple_int32_int32_int32

↪→Result_0_Tuple_Tuple_int32_int32_int32_v;
} union_MaybeResult_0_Tuple_Tuple_int32_int32_int32;

typedef struct {
enum_MaybeResult_0_Tuple_Tuple_int32_int32_int32 tag;
union_MaybeResult_0_Tuple_Tuple_int32_int32_int32 value;

} MaybeResult_0_Tuple_Tuple_int32_int32_int32;

typedef struct {
enum_Status_0 status_0;

} Failure_0_Tuple_int32_int32;

typedef struct {
Tuple_int32_int32 result_0;

} Result_0_Tuple_int32_int32;

typedef union {
Failure_0_Tuple_int32_int32 Failure_0_Tuple_int32_int32_v;
Result_0_Tuple_int32_int32 Result_0_Tuple_int32_int32_v;

} union_MaybeResult_0_Tuple_int32_int32;

typedef struct {
enum_MaybeResult_0_Tuple_int32_int32 tag;
union_MaybeResult_0_Tuple_int32_int32 value;

} MaybeResult_0_Tuple_int32_int32;

typedef struct {
enum_Status_0 status_0;

} Failure_0_int32;

typedef struct {
int32_t result_0;

} Result_0_int32;

typedef union {
Failure_0_int32 Failure_0_int32_v;
Result_0_int32 Result_0_int32_v;

} union_MaybeResult_0_int32;

typedef struct {
enum_MaybeResult_0_int32 tag;
union_MaybeResult_0_int32 value;

} MaybeResult_0_int32;

typedef struct {
int32_t width_0;
int32_t height_0;

} BitmapHeader_0;

typedef struct {
int32_t _1;
int32_t _2;
int32_t _3;

} Tuple_int32_int32_int32;

typedef struct {
enum_Status_0 status_0;

} Failure_0_Tuple_int32_int32_int32;

typedef struct {
Tuple_int32_int32_int32 result_0;

} Result_0_Tuple_int32_int32_int32;

typedef union {
Failure_0_Tuple_int32_int32_int32 Failure_0_Tuple_int32_int32_int32_v;
Result_0_Tuple_int32_int32_int32 Result_0_Tuple_int32_int32_int32_v;

} union_MaybeResult_0_Tuple_int32_int32_int32;

typedef struct {
enum_MaybeResult_0_Tuple_int32_int32_int32 tag;
union_MaybeResult_0_Tuple_int32_int32_int32 value;

} MaybeResult_0_Tuple_int32_int32_int32;

typedef struct {
int8_t _1;
int8_t _2;

} Tuple_int8_int8;

105

C
Im

age
P
rocessing

Im
plem

entation
typedef struct {
int8_t* data;
int32_t length;

} array_int8;

typedef struct {
array_int8 r_0;
array_int8 g_0;
array_int8 b_3;
int32_t w_0;
int32_t h_0;

} Image_0;

typedef struct {
int32_t* data;
int32_t length;

} array_int32;

typedef struct {
int32_t size_2;
int32_t scale_0;
array_int32 kernel_0;

} Kernel_0;

typedef struct {
enum_Status_0 status_0;

} Failure_0_FileHeader_0;

typedef struct {
int32_t size_1;
int32_t offset_0;

} FileHeader_0;

typedef struct {
FileHeader_0 result_0;

} Result_0_FileHeader_0;

typedef union {
Failure_0_FileHeader_0 Failure_0_FileHeader_0_v;
Result_0_FileHeader_0 Result_0_FileHeader_0_v;

} union_MaybeResult_0_FileHeader_0;

typedef struct {
enum_MaybeResult_0_FileHeader_0 tag;
union_MaybeResult_0_FileHeader_0 value;

} MaybeResult_0_FileHeader_0;

typedef struct {
enum_Status_0 status_0;

} Failure_0_BitmapHeader_0;

typedef struct {
BitmapHeader_0 result_0;

} Result_0_BitmapHeader_0;

typedef union {
Failure_0_BitmapHeader_0 Failure_0_BitmapHeader_0_v;
Result_0_BitmapHeader_0 Result_0_BitmapHeader_0_v;

} union_MaybeResult_0_BitmapHeader_0;

typedef struct {
enum_MaybeResult_0_BitmapHeader_0 tag;
union_MaybeResult_0_BitmapHeader_0 value;

} MaybeResult_0_BitmapHeader_0;

typedef struct {
enum_Status_0 status_0;

} Failure_0_Tuple_FileHeader_0_BitmapHeader_0;

typedef struct {
FileHeader_0 _1;
BitmapHeader_0 _2;

} Tuple_FileHeader_0_BitmapHeader_0;

typedef struct {
Tuple_FileHeader_0_BitmapHeader_0 result_0;

} Result_0_Tuple_FileHeader_0_BitmapHeader_0;

typedef union {
Failure_0_Tuple_FileHeader_0_BitmapHeader_0

↪→Failure_0_Tuple_FileHeader_0_BitmapHeader_0_v;
Result_0_Tuple_FileHeader_0_BitmapHeader_0

↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v;
} union_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0;

typedef struct {
enum_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0 tag;
union_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0 value;

} MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0;

typedef struct {
enum_Status_0 status_0;

} Failure_0_Tuple_int32_int32_int32_int32;

typedef struct {
int32_t _1;
int32_t _2;
int32_t _3;
int32_t _4;

} Tuple_int32_int32_int32_int32;

typedef struct {
Tuple_int32_int32_int32_int32 result_0;

106

C
Im

age
P
rocessing

Im
plem

entation

} Result_0_Tuple_int32_int32_int32_int32;

typedef union {
Failure_0_Tuple_int32_int32_int32_int32

↪→Failure_0_Tuple_int32_int32_int32_int32_v;
Result_0_Tuple_int32_int32_int32_int32

↪→Result_0_Tuple_int32_int32_int32_int32_v;
} union_MaybeResult_0_Tuple_int32_int32_int32_int32;

typedef struct {
enum_MaybeResult_0_Tuple_int32_int32_int32_int32 tag;
union_MaybeResult_0_Tuple_int32_int32_int32_int32 value;

} MaybeResult_0_Tuple_int32_int32_int32_int32;

typedef struct {
enum_Status_0 status_0;

} Failure_0_Tuple_Tuple_int32_int32_int32_int32;

typedef struct {
Tuple_int32_int32_int32 _1;
int32_t _2;

} Tuple_Tuple_int32_int32_int32_int32;

typedef struct {
Tuple_Tuple_int32_int32_int32_int32 result_0;

} Result_0_Tuple_Tuple_int32_int32_int32_int32;

typedef union {
Failure_0_Tuple_Tuple_int32_int32_int32_int32

↪→Failure_0_Tuple_Tuple_int32_int32_int32_int32_v;
Result_0_Tuple_Tuple_int32_int32_int32_int32

↪→Result_0_Tuple_Tuple_int32_int32_int32_int32_v;
} union_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32;

typedef struct {
enum_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32 tag;
union_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32 value;

} MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32;

/* ----------------------- function declarations ----- */

static Option_0_int8 tryReadByte_2(FileInputStream thiss_41, State state_29)
↪→;

static bool isDefined_3_int8(Option_0_int8 thiss_179);
static int32_t statusCode_0(enum_Status_0 s_0);
static bool isDefined_2_Tuple_int32_int32_int32(

↪→MaybeResult_0_Tuple_int32_int32_int32 thiss_1);
static void log_2(BitmapHeader_0 h_2);
static void log_0(char* msg_0, int32_t x_6);
static void print_3(char c_3);
static bool close_2(FileInputStream thiss_38, State state_27);
static bool writeWord_0(FileOutputStream fos_1, int32_t word_0);

static MaybeResult_0_Tuple_Tuple_int32_int32_int32
↪→combine_0_Tuple_int32_int32_int32(MaybeResult_0_Tuple_int32_int32 a_0
↪→, MaybeResult_0_int32 b_0);

static MaybeResult_0_Tuple_int32_int32_int32_int32
↪→combine_2_int32_int32_int32_int32(MaybeResult_0_int32 a_2,
↪→MaybeResult_0_int32 b_2, MaybeResult_0_int32 c_1, MaybeResult_0_int32
↪→ d_0);

static enum_Status_0 getStatus_1_Tuple_int32_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32_int32 thiss_3);

static int8_t apply_13(Kernel_0* thiss_11, array_int8 channel_1, int32_t
↪→width_4, int32_t height_4, int32_t index_3);

static Tuple_int32_int32 getResult_1_Tuple_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32 thiss_2);

static void apply_14(Kernel_0* thiss_12, Image_0* src_3, Image_0* dest_2);
static enum_Status_0 loadImageData_0(FileInputStream fis_6, Image_0* image_0

↪→, State state_11);
static bool writeLong_0(FileOutputStream fos_3, int32_t long_0);
static int32_t at_0(Kernel_0* thiss_11, array_int8 channel_1, int32_t*

↪→width_4, int32_t* height_4, int32_t* index_3, int32_t col_1, int32_t
↪→row_0);

static bool close_3(FileOutputStream thiss_46);
static int8_t impl_0(FileInputStream* thiss_41, State* state_29, bool*

↪→valid_0);
static bool writeBitmapHeader_0(FileOutputStream* fos_4, Image_0* image_1);
static int32_t min_1(int32_t x_1, int32_t y_0);
static bool isDefined_2_BitmapHeader_0(MaybeResult_0_BitmapHeader_0 thiss_1)

↪→;
static FileHeader_0 getResult_1_FileHeader_0(MaybeResult_0_FileHeader_0

↪→thiss_2);
static enum_Status_0 getStatus_1_FileHeader_0(MaybeResult_0_FileHeader_0

↪→thiss_3);
static bool writeFileHeader_0(FileOutputStream* fos_4, Image_0* image_1);
static int32_t _main(void);
static enum_Status_0 getStatus_1_Tuple_int32_int32(

↪→MaybeResult_0_Tuple_int32_int32 thiss_3);
static MaybeResult_0_FileHeader_0 maybeReadFileHeader_0(FileInputStream

↪→fis_4, State state_9);
static int32_t buildInt_1(FileInputStream* fis_3, State* state_8, int8_t

↪→b1_7, int8_t b2_7, int8_t b3_2, int8_t b4_2);
static void log_1(FileHeader_0 h_1);
static int32_t clamp_0(int32_t x_3, int32_t down_0, int32_t up_0);
static Tuple_int32_int32_int32 getResult_1_Tuple_int32_int32_int32(

↪→MaybeResult_0_Tuple_int32_int32_int32 thiss_2);
static TimePoint now_0(void);
static void print_0(char* x_9);
static MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32

↪→combine_0_Tuple_int32_int32_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32_int32 a_0, MaybeResult_0_int32 b_0);

static bool writeBytes_0(FileOutputStream fos_0, int8_t byte_0, int32_t
↪→count_2);

static enum_Status_0 process_0(FileInputStream fis_7, FileOutputStream fos_5
↪→, State state_12);

107

C
Im

age
P
rocessing

Im
plem

entation
static MaybeResult_0_Tuple_int32_int32_int32 combine_1_int32_int32_int32(

↪→MaybeResult_0_int32 a_1, MaybeResult_0_int32 b_1, MaybeResult_0_int32
↪→ c_0);

static int32_t buildInt_0(FileInputStream* fis_2, State* state_7, int8_t
↪→b1_5, int8_t b2_5, int8_t b3_0, int8_t b4_0);

static FileOutputStream open_1(char* filename_3);
static MaybeResult_0_int32 maybeReadLong_0(FileInputStream fis_3, State

↪→state_8);
static int32_t elapsedMillis_0(TimePoint first_0, TimePoint second_0);
static enum_Status_0 getStatus_1_int32(MaybeResult_0_int32 thiss_3);
static MaybeResult_0_int32 maybeReadWord_0(FileInputStream fis_1, State

↪→state_6);
static void println_0(char* s_6);
static int32_t constructWord_0(int8_t byte1_0, int8_t byte2_0);
static bool skipBytes_0(FileInputStream fis_0, int32_t count_1, State

↪→state_5);
static void println_4(void);
static int32_t max_1(int32_t x_2, int32_t y_1);
static FileInputStream open_0(char* filename_2, State state_13);
int32_t main(int32_t argc, char** argv);
static enum_Status_0 saveImage_0(FileOutputStream fos_4, Image_0* image_1);
static bool isDefined_2_FileHeader_0(MaybeResult_0_FileHeader_0 thiss_1);
static bool isDefined_2_int32(MaybeResult_0_int32 thiss_1);
static void print_2(int32_t x_12);
static bool isOpen_3(FileOutputStream thiss_47);
static void println_2(int32_t x_13);
static bool isEmpty_3_int8(Option_0_int8 thiss_177);
static MaybeResult_0_BitmapHeader_0 maybeReadBitmapHeader_0(FileInputStream

↪→fis_5, State state_10);
static int32_t fix_0(Kernel_0* thiss_11, array_int8 channel_1, int32_t*

↪→width_4, int32_t* height_4, int32_t* index_3, int32_t x_29, int32_t
↪→side_0);

static enum_Status_0 processImage_0(FileInputStream* fis_7, FileOutputStream
↪→* fos_5, State* state_12, Kernel_0* kernel_1, Image_0* src_2);

static MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0
↪→combine_0_FileHeader_0_BitmapHeader_0(MaybeResult_0_FileHeader_0 a_0,
↪→ MaybeResult_0_BitmapHeader_0 b_0);

static BitmapHeader_0 getResult_1_BitmapHeader_0(
↪→MaybeResult_0_BitmapHeader_0 thiss_2);

static MaybeResult_0_int32 maybeReadDword_0(FileInputStream fis_2, State
↪→state_7);

static enum_Status_0 getStatus_1_BitmapHeader_0(MaybeResult_0_BitmapHeader_0
↪→ thiss_3);

static MaybeResult_0_Tuple_int32_int32 combine_0_int32_int32(
↪→MaybeResult_0_int32 a_0, MaybeResult_0_int32 b_0);

static bool writeDword_0(FileOutputStream fos_2, int32_t dword_0);
static bool writeImage_0(FileOutputStream* fos_4, Image_0* image_1);
static Tuple_int8_int8 destructWord_0(int32_t word_1);
static int32_t getResult_1_int32(MaybeResult_0_int32 thiss_2);
static State newState_0(void);
static bool isDefined_2_Tuple_int32_int32(MaybeResult_0_Tuple_int32_int32

↪→thiss_1);

static bool write_4(FileOutputStream thiss_48, int8_t x_181);
static bool isOpen_2(FileInputStream thiss_39);
static int8_t get_4_int8(Option_0_int8 thiss_174);
static bool isSuccess_1(enum_Status_0 thiss_0);

/* ------------------------ function definitions ----- */

static Option_0_int8 tryReadByte_2(FileInputStream thiss_41, State state_29)
↪→ {

bool valid_0 = true;
int8_t res_9 = impl_0(&thiss_41, &state_29, &valid_0);
if (valid_0) {

return (Option_0_int8) { .tag = tag_Some_0_int8, .value = (
↪→union_Option_0_int8) { .Some_0_int8_v = (Some_0_int8) { .v_14 = res_9
↪→ } } };

} else {
return (Option_0_int8) { .tag = tag_None_0_int8, .value = (

↪→union_Option_0_int8) { .None_0_int8_v = (None_0_int8) { .extra = 0 }
↪→} };

}
}

static bool isDefined_3_int8(Option_0_int8 thiss_179) {
bool norm_9 = isEmpty_3_int8(thiss_179);
return !norm_9;

}

static int32_t statusCode_0(enum_Status_0 s_0) {
if (s_0 == tag_Success_0) {

println_0("success");
return 0;

} else if (s_0 == tag_OpenError_0) {
println_0("couldn’t open file");
return 1;

} else if (s_0 == tag_ReadError_0) {
println_0("couldn’t read some expected data");
return 2;

} else if (s_0 == tag_DomainError_0) {
println_0("integer out of range");
return 3;

} else if (s_0 == tag_InvalidFileHeaderError_0) {
println_0("file format unsupported");
return 4;

} else if (s_0 == tag_InvalidBitmapHeaderError_0) {
println_0("bitmap format unsupported");
return 5;

} else if (s_0 == tag_CorruptedDataError_0) {
println_0("the file appears to be corrupted");
return 6;

} else if (s_0 == tag_ImageTooBigError_0) {
println_0("the image is too big");
return 7;

108

C
Im

age
P
rocessing

Im
plem

entation

} else if (s_0 == tag_WriteError_0) {
println_0("couldn’t write image");
return 8;

} else if (s_0 == tag_NotImplementedError_0) {
println_0("not yet implemented");
return 99;

}
}

static bool isDefined_2_Tuple_int32_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32_int32 thiss_1) {

if (thiss_1.tag == tag_Result_0_Tuple_int32_int32_int32) {
return true;

} else {
return false;

}
}

static void log_2(BitmapHeader_0 h_2) {
log_0("width", h_2.width_0);
log_0("height", h_2.height_0);

}

static void log_0(char* msg_0, int32_t x_6) {
print_0(msg_0);
print_0(": ");
println_2(x_6);

}

static void print_3(char c) {
printf("%c", c);

}

static bool close_2(FILE* this, void* unused) {
if (this != NULL)
return fclose(this) == 0;

else
return true;

}

static bool writeWord_0(FileOutputStream fos_1, int32_t word_0) {
Tuple_int8_int8 tmp_5 = destructWord_0(word_0);
Tuple_int8_int8 x$1_0 = (Tuple_int8_int8) { ._1 = tmp_5._1, ._2 = tmp_5.
↪→_2 };

int8_t b1_1 = x$1_0._1;
int8_t b2_1 = x$1_0._2;
bool norm_187 = write_4(fos_1, b2_1);
bool norm_189 = norm_187;

if (norm_189) {
bool norm_188 = write_4(fos_1, b1_1);
bool norm_190 = norm_188;
return norm_190;

} else {
return false;

}
}

static MaybeResult_0_Tuple_Tuple_int32_int32_int32
↪→combine_0_Tuple_int32_int32_int32(MaybeResult_0_Tuple_int32_int32 a_0
↪→, MaybeResult_0_int32 b_0) {

if (isDefined_2_Tuple_int32_int32(a_0)) {
if (isDefined_2_int32(b_0)) {

Tuple_int32_int32 norm_91 = getResult_1_Tuple_int32_int32(a_0);
Tuple_int32_int32 norm_93 = norm_91;
int32_t norm_92 = getResult_1_int32(b_0);
int32_t norm_94 = norm_92;
Tuple_Tuple_int32_int32_int32 norm_95 = (

↪→Tuple_Tuple_int32_int32_int32) { ._1 = norm_93, ._2 = norm_94 };
return (MaybeResult_0_Tuple_Tuple_int32_int32_int32) { .tag =

↪→tag_Result_0_Tuple_Tuple_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_Tuple_int32_int32_int32) { .
↪→Result_0_Tuple_Tuple_int32_int32_int32_v = (
↪→Result_0_Tuple_Tuple_int32_int32_int32) { .result_0 = norm_95 } } };

} else {
enum_Status_0 norm_96 = getStatus_1_int32(b_0);
enum_Status_0 norm_97 = norm_96;
return (MaybeResult_0_Tuple_Tuple_int32_int32_int32) { .tag =

↪→tag_Failure_0_Tuple_Tuple_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_Tuple_int32_int32_int32) { .
↪→Failure_0_Tuple_Tuple_int32_int32_int32_v = (
↪→Failure_0_Tuple_Tuple_int32_int32_int32) { .status_0 = norm_97 } } };

}
} else {

enum_Status_0 norm_98 = getStatus_1_Tuple_int32_int32(a_0);
enum_Status_0 norm_99 = norm_98;
return (MaybeResult_0_Tuple_Tuple_int32_int32_int32) { .tag =

↪→tag_Failure_0_Tuple_Tuple_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_Tuple_int32_int32_int32) { .
↪→Failure_0_Tuple_Tuple_int32_int32_int32_v = (
↪→Failure_0_Tuple_Tuple_int32_int32_int32) { .status_0 = norm_99 } } };

}
}

static MaybeResult_0_Tuple_int32_int32_int32_int32
↪→combine_2_int32_int32_int32_int32(MaybeResult_0_int32 a_2,
↪→MaybeResult_0_int32 b_2, MaybeResult_0_int32 c_1, MaybeResult_0_int32
↪→ d_0) {

MaybeResult_0_Tuple_int32_int32_int32 norm_103 =
↪→combine_1_int32_int32_int32(a_2, b_2, c_1);

MaybeResult_0_Tuple_int32_int32_int32 norm_104 = norm_103;

109

C
Im

age
P
rocessing

Im
plem

entation
MaybeResult_0_int32 norm_105 = d_0;
MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32 tmp_1 =
↪→combine_0_Tuple_int32_int32_int32_int32(norm_104, norm_105);

if (tmp_1.tag == tag_Result_0_Tuple_Tuple_int32_int32_int32_int32) {
return (MaybeResult_0_Tuple_int32_int32_int32_int32) { .tag =

↪→tag_Result_0_Tuple_int32_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32_int32_int32) { .
↪→Result_0_Tuple_int32_int32_int32_int32_v = (
↪→Result_0_Tuple_int32_int32_int32_int32) { .result_0 = (
↪→Tuple_int32_int32_int32_int32) { ._1 = tmp_1.value.
↪→Result_0_Tuple_Tuple_int32_int32_int32_int32_v.result_0._1._1, ._2 =
↪→tmp_1.value.Result_0_Tuple_Tuple_int32_int32_int32_int32_v.result_0.
↪→_1._2, ._3 = tmp_1.value.
↪→Result_0_Tuple_Tuple_int32_int32_int32_int32_v.result_0._1._3, ._4 =
↪→tmp_1.value.Result_0_Tuple_Tuple_int32_int32_int32_int32_v.result_0.
↪→_2 } } } };

} else if (tmp_1.tag ==
↪→tag_Failure_0_Tuple_Tuple_int32_int32_int32_int32) {

return (MaybeResult_0_Tuple_int32_int32_int32_int32) { .tag =
↪→tag_Failure_0_Tuple_int32_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32_int32_int32) { .
↪→Failure_0_Tuple_int32_int32_int32_int32_v = (
↪→Failure_0_Tuple_int32_int32_int32_int32) { .status_0 = tmp_1.value.
↪→Failure_0_Tuple_Tuple_int32_int32_int32_int32_v.status_0 } } };

}
}

static enum_Status_0 getStatus_1_Tuple_int32_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32_int32 thiss_3) {

return thiss_3.value.Failure_0_Tuple_int32_int32_int32_v.status_0;
}

static int8_t apply_13(Kernel_0* thiss_11, array_int8 channel_1, int32_t
↪→width_4, int32_t height_4, int32_t index_3) {

int32_t mid_2 = thiss_11->size_2 / 2;
int32_t i_21 = index_3 % width_4;
int32_t j_0 = index_3 / width_4;
int32_t res_7 = 0;
int32_t p_20 = -mid_2;
while (p_20 <= mid_2) {

int32_t q_1 = -mid_2;
int32_t oldP_0 = p_20;
while (q_1 <= mid_2) {

int32_t kcol_0 = p_20 + mid_2;
int32_t krow_0 = q_1 + mid_2;
int32_t kidx_0 = krow_0 * thiss_11->size_2 + kcol_0;
int32_t norm_159 = res_7;
int32_t norm_156 = at_0(thiss_11, channel_1, &width_4, &height_4

↪→, &index_3, i_21 + p_20, j_0 + q_1);
int32_t norm_157 = norm_156;
int32_t norm_158 = thiss_11->kernel_0.data[kidx_0];
int32_t norm_160 = norm_157 * norm_158;

res_7 = norm_159 + norm_160;
q_1 = q_1 + 1;

}
p_20 = p_20 + 1;

}
int32_t norm_161 = clamp_0(res_7 / thiss_11->scale_0, 0, 255);
res_7 = norm_161;
return (int8_t)res_7;

}

static Tuple_int32_int32 getResult_1_Tuple_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32 thiss_2) {

return thiss_2.value.Result_0_Tuple_int32_int32_v.result_0;
}

static void apply_14(Kernel_0* thiss_12, Image_0* src_3, Image_0* dest_2) {
int32_t size_8 = src_3->w_0 * src_3->h_0;
int32_t i_22 = 0;
while (i_22 < size_8) {

int32_t norm_163 = i_22;
int8_t norm_162 = apply_13(thiss_12, src_3->r_0, src_3->w_0, src_3->

↪→h_0, i_22);
int8_t norm_164 = norm_162;
dest_2->r_0.data[norm_163] = norm_164;
int32_t norm_166 = i_22;
int8_t norm_165 = apply_13(thiss_12, src_3->g_0, src_3->w_0, src_3->

↪→h_0, i_22);
int8_t norm_167 = norm_165;
dest_2->g_0.data[norm_166] = norm_167;
int32_t norm_169 = i_22;
int8_t norm_168 = apply_13(thiss_12, src_3->b_3, src_3->w_0, src_3->

↪→h_0, i_22);
int8_t norm_170 = norm_168;
dest_2->b_3.data[norm_169] = norm_170;
i_22 = i_22 + 1;

}
}

static enum_Status_0 loadImageData_0(FileInputStream fis_6, Image_0* image_0
↪→, State state_11) {

int32_t size_5 = image_0->w_0 * image_0->h_0;
int32_t i_19 = 0;
enum_Status_0 status_23 = tag_Success_0;
while (true) {

bool norm_123 = isSuccess_1(status_23);
bool norm_124 = norm_123;
bool norm_126;
if (norm_124) {

bool norm_125 = i_19 < size_5;
norm_126 = norm_125;

} else {
norm_126 = false;

110

C
Im

age
P
rocessing

Im
plem

entation

}
if (norm_126) {

Option_0_int8 rOpt_0 = tryReadByte_2(fis_6, state_11);
Option_0_int8 gOpt_0 = tryReadByte_2(fis_6, state_11);
Option_0_int8 bOpt_0 = tryReadByte_2(fis_6, state_11);
bool norm_127 = isEmpty_3_int8(rOpt_0);
bool norm_133 = norm_127;
bool norm_135;
if (norm_133) {

norm_135 = true;
} else {

bool norm_128 = isEmpty_3_int8(gOpt_0);
bool norm_130 = norm_128;
bool norm_132;
if (norm_130) {

norm_132 = true;
} else {

bool norm_129 = isEmpty_3_int8(bOpt_0);
bool norm_131 = norm_129;
norm_132 = norm_131;

}
bool norm_134 = norm_132;
norm_135 = norm_134;

}
if (norm_135) {

status_23 = tag_ReadError_0;
log_0("stopped reading data abruptly after", i_19);

} else {
int32_t norm_137 = i_19;
int8_t norm_136 = get_4_int8(rOpt_0);
int8_t norm_138 = norm_136;
image_0->r_0.data[norm_137] = norm_138;
int32_t norm_140 = i_19;
int8_t norm_139 = get_4_int8(gOpt_0);
int8_t norm_141 = norm_139;
image_0->g_0.data[norm_140] = norm_141;
int32_t norm_143 = i_19;
int8_t norm_142 = get_4_int8(bOpt_0);
int8_t norm_144 = norm_142;
image_0->b_3.data[norm_143] = norm_144;

}
i_19 = i_19 + 1;

} else {
break;

}
}
return status_23;

}

static bool writeLong_0(FileOutputStream fos_3, int32_t long_0) {
int8_t b4_3 = (int8_t)((int32_t)(((uint32_t)long_0) >> 24));
int8_t b3_3 = (int8_t)((int32_t)(((uint32_t)long_0) >> 16));

int8_t b2_8 = (int8_t)((int32_t)(((uint32_t)long_0) >> 8));
int8_t b1_8 = (int8_t)long_0;
bool norm_210 = write_4(fos_3, b1_8);
bool norm_220 = norm_210;
if (norm_220) {

bool norm_211 = write_4(fos_3, b2_8);
bool norm_217 = norm_211;
bool norm_219;
if (norm_217) {

bool norm_212 = write_4(fos_3, b3_3);
bool norm_214 = norm_212;
bool norm_216;
if (norm_214) {

bool norm_213 = write_4(fos_3, b4_3);
bool norm_215 = norm_213;
norm_216 = norm_215;

} else {
norm_216 = false;

}
bool norm_218 = norm_216;
norm_219 = norm_218;

} else {
norm_219 = false;

}
bool norm_221 = norm_219;
return norm_221;

} else {
return false;

}
}

static int32_t at_0(Kernel_0* thiss_11, array_int8 channel_1, int32_t*
↪→width_4, int32_t* height_4, int32_t* index_3, int32_t col_1, int32_t
↪→row_0) {

int32_t c_11 = fix_0(thiss_11, channel_1, width_4, height_4, index_3,
↪→col_1, *width_4);

int32_t r_4 = fix_0(thiss_11, channel_1, width_4, height_4, index_3,
↪→row_0, *height_4);

int8_t component_0 = channel_1.data[r_4 * (*width_4) + c_11];
if (((int32_t)component_0) < 0) {

return ((int32_t)component_0) + 255;
} else {

return (int32_t)component_0;
}

}

static bool close_3(FILE* this) {
if (this != NULL)
return fclose(this) == 0;

else
return true;

111

C
Im

age
P
rocessing

Im
plem

entation
}

static int8_t impl_0(FILE** this, void** unused, bool* valid) {
int8_t x;

*valid = fscanf(*this, "%c", &x) == 1;
return x;

}

static bool writeBitmapHeader_0(FileOutputStream* fos_4, Image_0* image_1) {
int32_t size_6 = 40;
int32_t w_4 = image_1->w_0;
int32_t h_7 = image_1->h_0;
int32_t planes_0 = 1;
int32_t bpp_1 = 24;
int32_t comp_0 = 0;
bool norm_209 = writeDword_0(*fos_4, size_6);
bool norm_247 = norm_209;
if (norm_247) {

bool norm_222 = writeLong_0(*fos_4, w_4);
bool norm_244 = norm_222;
bool norm_246;
if (norm_244) {

bool norm_223 = writeLong_0(*fos_4, h_7);
bool norm_241 = norm_223;
bool norm_243;
if (norm_241) {

bool norm_224 = writeWord_0(*fos_4, planes_0);
bool norm_238 = norm_224;
bool norm_240;
if (norm_238) {

bool norm_225 = writeWord_0(*fos_4, bpp_1);
bool norm_235 = norm_225;
bool norm_237;
if (norm_235) {

bool norm_226 = writeWord_0(*fos_4, comp_0);
bool norm_232 = norm_226;
bool norm_234;
if (norm_232) {

bool norm_231 = writeBytes_0(*fos_4, 0, 22);
bool norm_233 = norm_231;
norm_234 = norm_233;

} else {
norm_234 = false;

}
bool norm_236 = norm_234;
norm_237 = norm_236;

} else {
norm_237 = false;

}

bool norm_239 = norm_237;
norm_240 = norm_239;

} else {
norm_240 = false;

}
bool norm_242 = norm_240;
norm_243 = norm_242;

} else {
norm_243 = false;

}
bool norm_245 = norm_243;
norm_246 = norm_245;

} else {
norm_246 = false;

}
bool norm_248 = norm_246;
return norm_248;

} else {
return false;

}
}

static int32_t min_1(int32_t x_1, int32_t y_0) {
if (x_1 <= y_0) {

return x_1;
} else {

return y_0;
}

}

static bool isDefined_2_BitmapHeader_0(MaybeResult_0_BitmapHeader_0 thiss_1)
↪→ {

if (thiss_1.tag == tag_Result_0_BitmapHeader_0) {
return true;

} else {
return false;

}
}

static FileHeader_0 getResult_1_FileHeader_0(MaybeResult_0_FileHeader_0
↪→thiss_2) {

return thiss_2.value.Result_0_FileHeader_0_v.result_0;
}

static enum_Status_0 getStatus_1_FileHeader_0(MaybeResult_0_FileHeader_0
↪→thiss_3) {

return thiss_3.value.Failure_0_FileHeader_0_v.status_0;
}

static bool writeFileHeader_0(FileOutputStream* fos_4, Image_0* image_1) {
int32_t size_7 = 54 + (image_1->w_0 * image_1->h_0) * 3;
int32_t reserved_0 = 0;

112

C
Im

age
P
rocessing

Im
plem

entation

int32_t offset_2 = 54;
bool norm_171 = write_4(*fos_4, (int8_t)66);
bool norm_206 = norm_171;
if (norm_206) {

bool norm_172 = write_4(*fos_4, (int8_t)77);
bool norm_203 = norm_172;
bool norm_205;
if (norm_203) {

bool norm_185 = writeDword_0(*fos_4, size_7);
bool norm_200 = norm_185;
bool norm_202;
if (norm_200) {

bool norm_191 = writeWord_0(*fos_4, reserved_0);
bool norm_197 = norm_191;
bool norm_199;
if (norm_197) {

bool norm_192 = writeWord_0(*fos_4, reserved_0);
bool norm_194 = norm_192;
bool norm_196;
if (norm_194) {

bool norm_193 = writeDword_0(*fos_4, offset_2);
bool norm_195 = norm_193;
norm_196 = norm_195;

} else {
norm_196 = false;

}
bool norm_198 = norm_196;
norm_199 = norm_198;

} else {
norm_199 = false;

}
bool norm_201 = norm_199;
norm_202 = norm_201;

} else {
norm_202 = false;

}
bool norm_204 = norm_202;
norm_205 = norm_204;

} else {
norm_205 = false;

}
bool norm_207 = norm_205;
return norm_207;

} else {
return false;

}
}

static int32_t _main(void) {
State state_26 = newState_0();
FileInputStream input_1 = open_0("input.bmp", state_26);
FileOutputStream output_1 = open_1("output.bmp");

bool norm_0 = isOpen_2(input_1);
bool norm_2 = norm_0;
bool norm_4;
if (norm_2) {

bool norm_1 = isOpen_3(output_1);
bool norm_3 = norm_1;
norm_4 = norm_3;

} else {
norm_4 = false;

}
enum_Status_0 norm_267;
if (norm_4) {

norm_267 = process_0(input_1, output_1, state_26);
} else {

norm_267 = tag_OpenError_0;
}
enum_Status_0 status_24 = norm_267;
close_3(output_1);
close_2(input_1, state_26);
return statusCode_0(status_24);

}

static enum_Status_0 getStatus_1_Tuple_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32 thiss_3) {

return thiss_3.value.Failure_0_Tuple_int32_int32_v.status_0;
}

static MaybeResult_0_FileHeader_0 maybeReadFileHeader_0(FileInputStream
↪→fis_4, State state_9) {

bool skipSuccess_0 = skipBytes_0(fis_4, 2, state_9);
MaybeResult_0_int32 sizeRes_0 = maybeReadDword_0(fis_4, state_9);
bool norm_33 = skipSuccess_0;
bool norm_35;
if (norm_33) {

bool norm_32 = skipBytes_0(fis_4, 2 * 2, state_9);
bool norm_34 = norm_32;
norm_35 = norm_34;

} else {
norm_35 = false;

}
skipSuccess_0 = norm_35;
MaybeResult_0_int32 offsetRes_0 = maybeReadDword_0(fis_4, state_9);
MaybeResult_0_Tuple_int32_int32 tmp_2 = combine_0_int32_int32(sizeRes_0,
↪→ offsetRes_0);

if (!skipSuccess_0) {
return (MaybeResult_0_FileHeader_0) { .tag =

↪→tag_Failure_0_FileHeader_0, .value = (
↪→union_MaybeResult_0_FileHeader_0) { .Failure_0_FileHeader_0_v = (
↪→Failure_0_FileHeader_0) { .status_0 = tag_ReadError_0 } } };

} else if (tmp_2.tag == tag_Failure_0_Tuple_int32_int32) {
return (MaybeResult_0_FileHeader_0) { .tag =

↪→tag_Failure_0_FileHeader_0, .value = (

113

C
Im

age
P
rocessing

Im
plem

entation
↪→union_MaybeResult_0_FileHeader_0) { .Failure_0_FileHeader_0_v = (
↪→Failure_0_FileHeader_0) { .status_0 = tmp_2.value.
↪→Failure_0_Tuple_int32_int32_v.status_0 } } };

} else if (tmp_2.tag == tag_Result_0_Tuple_int32_int32) {
if (14 <= tmp_2.value.Result_0_Tuple_int32_int32_v.result_0._1 &&

↪→(54 <= tmp_2.value.Result_0_Tuple_int32_int32_v.result_0._2 && tmp_2.
↪→value.Result_0_Tuple_int32_int32_v.result_0._2 <= tmp_2.value.
↪→Result_0_Tuple_int32_int32_v.result_0._1)) {

return (MaybeResult_0_FileHeader_0) { .tag =
↪→tag_Result_0_FileHeader_0, .value = (union_MaybeResult_0_FileHeader_0
↪→) { .Result_0_FileHeader_0_v = (Result_0_FileHeader_0) { .result_0 =
↪→(FileHeader_0) { .size_1 = tmp_2.value.Result_0_Tuple_int32_int32_v.
↪→result_0._1, .offset_0 = tmp_2.value.Result_0_Tuple_int32_int32_v.
↪→result_0._2 } } } };

} else {
return (MaybeResult_0_FileHeader_0) { .tag =

↪→tag_Failure_0_FileHeader_0, .value = (
↪→union_MaybeResult_0_FileHeader_0) { .Failure_0_FileHeader_0_v = (
↪→Failure_0_FileHeader_0) { .status_0 = tag_InvalidFileHeaderError_0 }
↪→} };

}
}

}

static int32_t buildInt_1(FileInputStream* fis_3, State* state_8, int8_t
↪→b1_7, int8_t b2_7, int8_t b3_2, int8_t b4_2) {

return ((((int32_t)(((uint32_t)((int32_t)b4_2)) << 24)) | ((int32_t)(((
↪→uint32_t)(((int32_t)b3_2) & 255)) << 16))) | ((int32_t)(((uint32_t)
↪→(((int32_t)b2_7) & 255)) << 8))) | (((int32_t)b1_7) & 255);

}

static void log_1(FileHeader_0 h_1) {
log_0("size", h_1.size_1);
log_0("offset", h_1.offset_0);

}

static int32_t clamp_0(int32_t x_3, int32_t down_0, int32_t up_0) {
int32_t norm_154 = down_0;
int32_t norm_153 = min_1(x_3, up_0);
int32_t norm_155 = norm_153;
return max_1(norm_154, norm_155);

}

static Tuple_int32_int32_int32 getResult_1_Tuple_int32_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32_int32 thiss_2) {

return thiss_2.value.Result_0_Tuple_int32_int32_int32_v.result_0;
}

TimePoint now_0(void) {
return clock();

}

static void print_0(char* s) {
printf("%s", s);

}

static MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32
↪→combine_0_Tuple_int32_int32_int32_int32(
↪→MaybeResult_0_Tuple_int32_int32_int32 a_0, MaybeResult_0_int32 b_0) {

if (isDefined_2_Tuple_int32_int32_int32(a_0)) {
if (isDefined_2_int32(b_0)) {

Tuple_int32_int32_int32 norm_82 =
↪→getResult_1_Tuple_int32_int32_int32(a_0);

Tuple_int32_int32_int32 norm_84 = norm_82;
int32_t norm_83 = getResult_1_int32(b_0);
int32_t norm_85 = norm_83;
Tuple_Tuple_int32_int32_int32_int32 norm_86 = (

↪→Tuple_Tuple_int32_int32_int32_int32) { ._1 = norm_84, ._2 = norm_85
↪→};

return (MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32) { .
↪→tag = tag_Result_0_Tuple_Tuple_int32_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32) { .
↪→Result_0_Tuple_Tuple_int32_int32_int32_int32_v = (
↪→Result_0_Tuple_Tuple_int32_int32_int32_int32) { .result_0 = norm_86 }
↪→ } };

} else {
enum_Status_0 norm_87 = getStatus_1_int32(b_0);
enum_Status_0 norm_88 = norm_87;
return (MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32) { .

↪→tag = tag_Failure_0_Tuple_Tuple_int32_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32) { .
↪→Failure_0_Tuple_Tuple_int32_int32_int32_int32_v = (
↪→Failure_0_Tuple_Tuple_int32_int32_int32_int32) { .status_0 = norm_88
↪→} } };

}
} else {

enum_Status_0 norm_89 = getStatus_1_Tuple_int32_int32_int32(a_0);
enum_Status_0 norm_90 = norm_89;
return (MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32) { .tag =

↪→tag_Failure_0_Tuple_Tuple_int32_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_Tuple_int32_int32_int32_int32) { .
↪→Failure_0_Tuple_Tuple_int32_int32_int32_int32_v = (
↪→Failure_0_Tuple_Tuple_int32_int32_int32_int32) { .status_0 = norm_90
↪→} } };

}
}

static bool writeBytes_0(FileOutputStream fos_0, int8_t byte_0, int32_t
↪→count_2) {

if (count_2 == 0) {

114

C
Im

age
P
rocessing

Im
plem

entation

return true;
} else {

bool norm_227 = write_4(fos_0, byte_0);
bool norm_229 = norm_227;
if (norm_229) {

bool norm_228 = writeBytes_0(fos_0, byte_0, count_2 - 1);
bool norm_230 = norm_228;
return norm_230;

} else {
return false;

}
}

}

static enum_Status_0 process_0(FileInputStream fis_7, FileOutputStream fos_5
↪→, State state_12) {

int32_t norm_6 = 5;
int32_t norm_7 = 1;
int32_t leon_buffer_0[25] = { 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, -1, 8,
↪→ -1, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0 };

array_int32 norm_5 = (array_int32) { .data = leon_buffer_0, .length = 25
↪→ };

array_int32* norm_8 = &norm_5;
Kernel_0 kernel_1 = (Kernel_0) { .size_2 = norm_6, .scale_0 = norm_7, .
↪→kernel_0 = (*norm_8) };

MaybeResult_0_FileHeader_0 fileHeaderRes_0 = maybeReadFileHeader_0(fis_7
↪→, state_12);

MaybeResult_0_BitmapHeader_0 bitmapHeaderRes_0 = maybeReadBitmapHeader_0
↪→(fis_7, state_12);

MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0 tmp_4 =
↪→combine_0_FileHeader_0_BitmapHeader_0(fileHeaderRes_0,
↪→bitmapHeaderRes_0);

enum_Status_0 norm_266;
if (tmp_4.tag == tag_Failure_0_Tuple_FileHeader_0_BitmapHeader_0) {

norm_266 = tmp_4.value.Failure_0_Tuple_FileHeader_0_BitmapHeader_0_v
↪→.status_0;

} else if (tmp_4.tag == tag_Result_0_Tuple_FileHeader_0_BitmapHeader_0
↪→&& tmp_4.value.Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.result_0.
↪→_1.size_1 <= 54) {

norm_266 = tag_CorruptedDataError_0;
} else if (tmp_4.tag == tag_Result_0_Tuple_FileHeader_0_BitmapHeader_0)
↪→{

log_1(tmp_4.value.Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.
↪→result_0._1);

log_2(tmp_4.value.Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.
↪→result_0._2);

int32_t toSkip_0 = tmp_4.value.
↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.result_0._1.offset_0 -
↪→32;

bool success_2 = skipBytes_0(fis_7, toSkip_0, state_12);
if (!success_2) {

norm_266 = tag_CorruptedDataError_0;

} else if (tmp_4.value.Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.
↪→result_0._2.width_0 > 512 || tmp_4.value.
↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.result_0._2.height_0 >
↪→512) {

norm_266 = tag_ImageTooBigError_0;
} else if (tmp_4.value.Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.

↪→result_0._2.width_0 * tmp_4.value.
↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.result_0._2.height_0 >
↪→262144) {

norm_266 = tag_ImageTooBigError_0;
} else {

int8_t leon_buffer_1[262144] = { 0 };
array_int8 norm_115 = (array_int8) { .data = leon_buffer_1, .

↪→length = 262144 };
array_int8* norm_118 = &norm_115;
int8_t leon_buffer_2[262144] = { 0 };
array_int8 norm_116 = (array_int8) { .data = leon_buffer_2, .

↪→length = 262144 };
array_int8* norm_119 = &norm_116;
int8_t leon_buffer_3[262144] = { 0 };
array_int8 norm_117 = (array_int8) { .data = leon_buffer_3, .

↪→length = 262144 };
array_int8* norm_120 = &norm_117;
int32_t norm_121 = tmp_4.value.

↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.result_0._2.width_0;
int32_t norm_122 = tmp_4.value.

↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v.result_0._2.height_0;
Image_0 image_2 = (Image_0) { .r_0 = (*norm_118), .g_0 = (*

↪→norm_119), .b_3 = (*norm_120), .w_0 = norm_121, .h_0 = norm_122 };
enum_Status_0 status_27 = loadImageData_0(fis_7, &image_2,

↪→state_12);
if (isSuccess_1(status_27)) {

norm_266 = processImage_0(&fis_7, &fos_5, &state_12, &
↪→kernel_1, &image_2);

} else {
norm_266 = status_27;

}
}

}
enum_Status_0 status_25 = norm_266;
return status_25;

}

static MaybeResult_0_Tuple_int32_int32_int32 combine_1_int32_int32_int32(
↪→MaybeResult_0_int32 a_1, MaybeResult_0_int32 b_1, MaybeResult_0_int32
↪→ c_0) {

MaybeResult_0_Tuple_int32_int32 norm_100 = combine_0_int32_int32(a_1,
↪→b_1);

MaybeResult_0_Tuple_int32_int32 norm_101 = norm_100;
MaybeResult_0_int32 norm_102 = c_0;
MaybeResult_0_Tuple_Tuple_int32_int32_int32 tmp_0 =
↪→combine_0_Tuple_int32_int32_int32(norm_101, norm_102);

115

C
Im

age
P
rocessing

Im
plem

entation
if (tmp_0.tag == tag_Result_0_Tuple_Tuple_int32_int32_int32) {

return (MaybeResult_0_Tuple_int32_int32_int32) { .tag =
↪→tag_Result_0_Tuple_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32_int32) { .
↪→Result_0_Tuple_int32_int32_int32_v = (
↪→Result_0_Tuple_int32_int32_int32) { .result_0 = (
↪→Tuple_int32_int32_int32) { ._1 = tmp_0.value.
↪→Result_0_Tuple_Tuple_int32_int32_int32_v.result_0._1._1, ._2 = tmp_0.
↪→value.Result_0_Tuple_Tuple_int32_int32_int32_v.result_0._1._2, ._3 =
↪→tmp_0.value.Result_0_Tuple_Tuple_int32_int32_int32_v.result_0._2 } }
↪→} };

} else if (tmp_0.tag == tag_Failure_0_Tuple_Tuple_int32_int32_int32) {
return (MaybeResult_0_Tuple_int32_int32_int32) { .tag =

↪→tag_Failure_0_Tuple_int32_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32_int32) { .
↪→Failure_0_Tuple_int32_int32_int32_v = (
↪→Failure_0_Tuple_int32_int32_int32) { .status_0 = tmp_0.value.
↪→Failure_0_Tuple_Tuple_int32_int32_int32_v.status_0 } } };

}
}

static int32_t buildInt_0(FileInputStream* fis_2, State* state_7, int8_t
↪→b1_5, int8_t b2_5, int8_t b3_0, int8_t b4_0) {

return ((((int32_t)(((uint32_t)((int32_t)b4_0)) << 24)) | ((int32_t)(((
↪→uint32_t)(((int32_t)b3_0) & 255)) << 16))) | ((int32_t)(((uint32_t)
↪→(((int32_t)b2_5) & 255)) << 8))) | (((int32_t)b1_5) & 255);

}

static FILE* open_1(char* filename) {
FILE* this = fopen(filename, "w");
/* this == NULL on failure */
return this;

}

static MaybeResult_0_int32 maybeReadLong_0(FileInputStream fis_3, State
↪→state_8) {

Option_0_int8 byte1_4 = tryReadByte_2(fis_3, state_8);
Option_0_int8 byte2_4 = tryReadByte_2(fis_3, state_8);
Option_0_int8 byte3_1 = tryReadByte_2(fis_3, state_8);
Option_0_int8 byte4_1 = tryReadByte_2(fis_3, state_8);
bool norm_45 = isDefined_3_int8(byte1_4);
bool norm_55 = norm_45;
bool norm_57;
if (norm_55) {

bool norm_46 = isDefined_3_int8(byte2_4);
bool norm_52 = norm_46;
bool norm_54;
if (norm_52) {

bool norm_47 = isDefined_3_int8(byte3_1);
bool norm_49 = norm_47;

bool norm_51;
if (norm_49) {

bool norm_48 = isDefined_3_int8(byte4_1);
bool norm_50 = norm_48;
norm_51 = norm_50;

} else {
norm_51 = false;

}
bool norm_53 = norm_51;
norm_54 = norm_53;

} else {
norm_54 = false;

}
bool norm_56 = norm_54;
norm_57 = norm_56;

} else {
norm_57 = false;

}
if (norm_57) {

int8_t norm_58 = get_4_int8(byte1_4);
int8_t norm_62 = norm_58;
int8_t norm_59 = get_4_int8(byte2_4);
int8_t norm_63 = norm_59;
int8_t norm_60 = get_4_int8(byte3_1);
int8_t norm_64 = norm_60;
int8_t norm_61 = get_4_int8(byte4_1);
int8_t norm_65 = norm_61;
int32_t long_1 = buildInt_1(&fis_3, &state_8, norm_62, norm_63,

↪→norm_64, norm_65);
return (MaybeResult_0_int32) { .tag = tag_Result_0_int32, .value = (

↪→union_MaybeResult_0_int32) { .Result_0_int32_v = (Result_0_int32) { .
↪→result_0 = long_1 } } };

} else {
return (MaybeResult_0_int32) { .tag = tag_Failure_0_int32, .value =

↪→(union_MaybeResult_0_int32) { .Failure_0_int32_v = (Failure_0_int32)
↪→{ .status_0 = tag_ReadError_0 } } };

}
}

int32_t elapsedMillis_0(TimePoint first, TimePoint second) {
return 1000 * (second - first) / CLOCKS_PER_SEC; // mind the order of

↪→operations!
}

static enum_Status_0 getStatus_1_int32(MaybeResult_0_int32 thiss_3) {
return thiss_3.value.Failure_0_int32_v.status_0;

}

static MaybeResult_0_int32 maybeReadWord_0(FileInputStream fis_1, State
↪→state_6) {

116

C
Im

age
P
rocessing

Im
plem

entation

Option_0_int8 byte2_2 = tryReadByte_2(fis_1, state_6);
Option_0_int8 byte1_2 = tryReadByte_2(fis_1, state_6);
bool norm_70 = isDefined_3_int8(byte1_2);
bool norm_72 = norm_70;
bool norm_74;
if (norm_72) {

bool norm_71 = isDefined_3_int8(byte2_2);
bool norm_73 = norm_71;
norm_74 = norm_73;

} else {
norm_74 = false;

}
if (norm_74) {

int8_t norm_76 = get_4_int8(byte1_2);
int8_t norm_78 = norm_76;
int8_t norm_77 = get_4_int8(byte2_2);
int8_t norm_79 = norm_77;
int32_t norm_80 = constructWord_0(norm_78, norm_79);
int32_t norm_81 = norm_80;
return (MaybeResult_0_int32) { .tag = tag_Result_0_int32, .value = (

↪→union_MaybeResult_0_int32) { .Result_0_int32_v = (Result_0_int32) { .
↪→result_0 = norm_81 } } };

} else {
return (MaybeResult_0_int32) { .tag = tag_Failure_0_int32, .value =

↪→(union_MaybeResult_0_int32) { .Failure_0_int32_v = (Failure_0_int32)
↪→{ .status_0 = tag_ReadError_0 } } };

}
}

static void println_0(char* s_6) {
print_0(s_6);
println_4();

}

static int32_t constructWord_0(int8_t byte1_0, int8_t byte2_0) {
int32_t signed_0 = ((int32_t)(((uint32_t)((int32_t)byte1_0)) << 8)) |
↪→(((int32_t)byte2_0) & 255);

int32_t norm_75;
if (signed_0 < 0) {

norm_75 = signed_0 + 65536;
} else {

norm_75 = signed_0;
}
int32_t unsigned_0 = norm_75;
return unsigned_0;

}

static bool skipBytes_0(FileInputStream fis_0, int32_t count_1, State
↪→state_5) {

int32_t i_18 = 0;
bool success_0 = true;
while (success_0 && i_18 < count_1) {

Option_0_int8 opt_6 = tryReadByte_2(fis_0, state_5);
bool norm_10 = isDefined_3_int8(opt_6);
success_0 = norm_10;
i_18 = i_18 + 1;

}
return success_0;

}

static void println_4(void) {
print_3(’\n’);

}

static int32_t max_1(int32_t x_2, int32_t y_1) {
if (x_2 < y_1) {

return y_1;
} else {

return x_2;
}

}

static FILE* open_0(char* filename, void* unused) {
FILE* this = fopen(filename, "r");
/* this == NULL on failure */
return this;

}

int32_t main(int32_t argc, char** argv) {
return _main();

}

static enum_Status_0 saveImage_0(FileOutputStream fos_4, Image_0* image_1) {
bool norm_208 = writeFileHeader_0(&fos_4, image_1);
bool norm_263 = norm_208;
bool norm_265;
if (norm_263) {

bool norm_249 = writeBitmapHeader_0(&fos_4, image_1);
bool norm_260 = norm_249;
bool norm_262;
if (norm_260) {

bool norm_259 = writeImage_0(&fos_4, image_1);
bool norm_261 = norm_259;
norm_262 = norm_261;

} else {
norm_262 = false;

}
bool norm_264 = norm_262;
norm_265 = norm_264;

} else {
norm_265 = false;

}

117

C
Im

age
P
rocessing

Im
plem

entation
if (norm_265) {

return tag_Success_0;
} else {

return tag_WriteError_0;
}

}

static bool isDefined_2_FileHeader_0(MaybeResult_0_FileHeader_0 thiss_1) {
if (thiss_1.tag == tag_Result_0_FileHeader_0) {

return true;
} else {

return false;
}

}

static bool isDefined_2_int32(MaybeResult_0_int32 thiss_1) {
if (thiss_1.tag == tag_Result_0_int32) {

return true;
} else {

return false;
}

}

static void print_2(int32_t x) {
printf("%"PRIi32, x);

}

static bool isOpen_3(FILE* this) {
return this != NULL;

}

static void println_2(int32_t x_13) {
print_2(x_13);
println_4();

}

static bool isEmpty_3_int8(Option_0_int8 thiss_177) {
if (thiss_177.tag == tag_Some_0_int8) {

return false;
} else if (thiss_177.tag == tag_None_0_int8) {

return true;
}

}

static MaybeResult_0_BitmapHeader_0 maybeReadBitmapHeader_0(FileInputStream
↪→fis_5, State state_10) {

bool skipSuccess_1 = skipBytes_0(fis_5, 4, state_10);
MaybeResult_0_int32 widthRes_0 = maybeReadLong_0(fis_5, state_10);

MaybeResult_0_int32 heightRes_0 = maybeReadLong_0(fis_5, state_10);
bool norm_67 = skipSuccess_1;
bool norm_69;
if (norm_67) {

bool norm_66 = skipBytes_0(fis_5, 2, state_10);
bool norm_68 = norm_66;
norm_69 = norm_68;

} else {
norm_69 = false;

}
skipSuccess_1 = norm_69;
MaybeResult_0_int32 bppRes_0 = maybeReadWord_0(fis_5, state_10);
MaybeResult_0_int32 compressionRes_0 = maybeReadWord_0(fis_5, state_10);
MaybeResult_0_Tuple_int32_int32_int32_int32 tmp_3 =
↪→combine_2_int32_int32_int32_int32(widthRes_0, heightRes_0, bppRes_0,
↪→compressionRes_0);

if (!skipSuccess_1) {
return (MaybeResult_0_BitmapHeader_0) { .tag =

↪→tag_Failure_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_BitmapHeader_0) { .Failure_0_BitmapHeader_0_v = (
↪→Failure_0_BitmapHeader_0) { .status_0 = tag_ReadError_0 } } };

} else if (tmp_3.tag == tag_Failure_0_Tuple_int32_int32_int32_int32) {
return (MaybeResult_0_BitmapHeader_0) { .tag =

↪→tag_Failure_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_BitmapHeader_0) { .Failure_0_BitmapHeader_0_v = (
↪→Failure_0_BitmapHeader_0) { .status_0 = tmp_3.value.
↪→Failure_0_Tuple_int32_int32_int32_int32_v.status_0 } } };

} else if (tmp_3.tag == tag_Result_0_Tuple_int32_int32_int32_int32) {
if (tmp_3.value.Result_0_Tuple_int32_int32_int32_int32_v.result_0._1

↪→ < 0 || (tmp_3.value.Result_0_Tuple_int32_int32_int32_int32_v.
↪→result_0._2 < 0 || (tmp_3.value.
↪→Result_0_Tuple_int32_int32_int32_int32_v.result_0._3 != 24 || tmp_3.
↪→value.Result_0_Tuple_int32_int32_int32_int32_v.result_0._4 != 0))) {

log_0("width", tmp_3.value.
↪→Result_0_Tuple_int32_int32_int32_int32_v.result_0._1);

log_0("height", tmp_3.value.
↪→Result_0_Tuple_int32_int32_int32_int32_v.result_0._2);

log_0("bpp", tmp_3.value.
↪→Result_0_Tuple_int32_int32_int32_int32_v.result_0._3);

log_0("compression", tmp_3.value.
↪→Result_0_Tuple_int32_int32_int32_int32_v.result_0._4);

return (MaybeResult_0_BitmapHeader_0) { .tag =
↪→tag_Failure_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_BitmapHeader_0) { .Failure_0_BitmapHeader_0_v = (
↪→Failure_0_BitmapHeader_0) { .status_0 =
↪→tag_InvalidBitmapHeaderError_0 } } };

} else {
return (MaybeResult_0_BitmapHeader_0) { .tag =

↪→tag_Result_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_BitmapHeader_0) { .Result_0_BitmapHeader_0_v = (
↪→Result_0_BitmapHeader_0) { .result_0 = (BitmapHeader_0) { .width_0 =
↪→tmp_3.value.Result_0_Tuple_int32_int32_int32_int32_v.result_0._1, .

118

C
Im

age
P
rocessing

Im
plem

entation

↪→height_0 = tmp_3.value.Result_0_Tuple_int32_int32_int32_int32_v.
↪→result_0._2 } } } };

}
}

}

static int32_t fix_0(Kernel_0* thiss_11, array_int8 channel_1, int32_t*
↪→width_4, int32_t* height_4, int32_t* index_3, int32_t x_29, int32_t
↪→side_0) {

return clamp_0(x_29, 0, side_0 - 1);
}

static enum_Status_0 processImage_0(FileInputStream* fis_7, FileOutputStream
↪→* fos_5, State* state_12, Kernel_0* kernel_1, Image_0* src_2) {

TimePoint t1_0 = now_0();
int8_t leon_buffer_4[262144] = { 0 };
array_int8 norm_145 = (array_int8) { .data = leon_buffer_4, .length =
↪→262144 };

array_int8* norm_148 = &norm_145;
int8_t leon_buffer_5[262144] = { 0 };
array_int8 norm_146 = (array_int8) { .data = leon_buffer_5, .length =
↪→262144 };

array_int8* norm_149 = &norm_146;
int8_t leon_buffer_6[262144] = { 0 };
array_int8 norm_147 = (array_int8) { .data = leon_buffer_6, .length =
↪→262144 };

array_int8* norm_150 = &norm_147;
int32_t norm_151 = src_2->w_0;
int32_t norm_152 = src_2->h_0;
Image_0 dest_1 = (Image_0) { .r_0 = (*norm_148), .g_0 = (*norm_149), .
↪→b_3 = (*norm_150), .w_0 = norm_151, .h_0 = norm_152 };

apply_14(kernel_1, src_2, &dest_1);
TimePoint t2_0 = now_0();
int32_t ms_0 = elapsedMillis_0(t1_0, t2_0);
print_0("Computation time: ");
print_2(ms_0);
println_0("ms.");
return saveImage_0(*fos_5, &dest_1);

}

static MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0
↪→combine_0_FileHeader_0_BitmapHeader_0(MaybeResult_0_FileHeader_0 a_0,
↪→ MaybeResult_0_BitmapHeader_0 b_0) {

if (isDefined_2_FileHeader_0(a_0)) {
if (isDefined_2_BitmapHeader_0(b_0)) {

FileHeader_0 norm_106 = getResult_1_FileHeader_0(a_0);
FileHeader_0 norm_108 = norm_106;
BitmapHeader_0 norm_107 = getResult_1_BitmapHeader_0(b_0);
BitmapHeader_0 norm_109 = norm_107;
Tuple_FileHeader_0_BitmapHeader_0 norm_110 = (

↪→Tuple_FileHeader_0_BitmapHeader_0) { ._1 = norm_108, ._2 = norm_109
↪→};

return (MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0) { .tag
↪→= tag_Result_0_Tuple_FileHeader_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0) { .
↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0_v = (
↪→Result_0_Tuple_FileHeader_0_BitmapHeader_0) { .result_0 = norm_110 }
↪→} };

} else {
enum_Status_0 norm_111 = getStatus_1_BitmapHeader_0(b_0);
enum_Status_0 norm_112 = norm_111;
return (MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0) { .tag

↪→= tag_Failure_0_Tuple_FileHeader_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0) { .
↪→Failure_0_Tuple_FileHeader_0_BitmapHeader_0_v = (
↪→Failure_0_Tuple_FileHeader_0_BitmapHeader_0) { .status_0 = norm_112 }
↪→ } };

}
} else {

enum_Status_0 norm_113 = getStatus_1_FileHeader_0(a_0);
enum_Status_0 norm_114 = norm_113;
return (MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0) { .tag =

↪→tag_Failure_0_Tuple_FileHeader_0_BitmapHeader_0, .value = (
↪→union_MaybeResult_0_Tuple_FileHeader_0_BitmapHeader_0) { .
↪→Failure_0_Tuple_FileHeader_0_BitmapHeader_0_v = (
↪→Failure_0_Tuple_FileHeader_0_BitmapHeader_0) { .status_0 = norm_114 }
↪→ } };

}
}

static BitmapHeader_0 getResult_1_BitmapHeader_0(
↪→MaybeResult_0_BitmapHeader_0 thiss_2) {

return thiss_2.value.Result_0_BitmapHeader_0_v.result_0;
}

static MaybeResult_0_int32 maybeReadDword_0(FileInputStream fis_2, State
↪→state_7) {

Option_0_int8 byte1_3 = tryReadByte_2(fis_2, state_7);
Option_0_int8 byte2_3 = tryReadByte_2(fis_2, state_7);
Option_0_int8 byte3_0 = tryReadByte_2(fis_2, state_7);
Option_0_int8 byte4_0 = tryReadByte_2(fis_2, state_7);
bool norm_11 = isDefined_3_int8(byte1_3);
bool norm_21 = norm_11;
bool norm_23;
if (norm_21) {

bool norm_12 = isDefined_3_int8(byte2_3);
bool norm_18 = norm_12;
bool norm_20;
if (norm_18) {

bool norm_13 = isDefined_3_int8(byte3_0);
bool norm_15 = norm_13;
bool norm_17;
if (norm_15) {

bool norm_14 = isDefined_3_int8(byte4_0);

119

C
Im

age
P
rocessing

Im
plem

entation
bool norm_16 = norm_14;
norm_17 = norm_16;

} else {
norm_17 = false;

}
bool norm_19 = norm_17;
norm_20 = norm_19;

} else {
norm_20 = false;

}
bool norm_22 = norm_20;
norm_23 = norm_22;

} else {
norm_23 = false;

}
if (norm_23) {

if (((int32_t)get_4_int8(byte4_0)) >= 0) {
int8_t norm_24 = get_4_int8(byte1_3);
int8_t norm_28 = norm_24;
int8_t norm_25 = get_4_int8(byte2_3);
int8_t norm_29 = norm_25;
int8_t norm_26 = get_4_int8(byte3_0);
int8_t norm_30 = norm_26;
int8_t norm_27 = get_4_int8(byte4_0);
int8_t norm_31 = norm_27;
int32_t dword_2 = buildInt_0(&fis_2, &state_7, norm_28, norm_29,

↪→ norm_30, norm_31);
return (MaybeResult_0_int32) { .tag = tag_Result_0_int32, .value

↪→ = (union_MaybeResult_0_int32) { .Result_0_int32_v = (Result_0_int32)
↪→ { .result_0 = dword_2 } } };

} else {
return (MaybeResult_0_int32) { .tag = tag_Failure_0_int32, .

↪→value = (union_MaybeResult_0_int32) { .Failure_0_int32_v = (
↪→Failure_0_int32) { .status_0 = tag_DomainError_0 } } };

}
} else {

return (MaybeResult_0_int32) { .tag = tag_Failure_0_int32, .value =
↪→(union_MaybeResult_0_int32) { .Failure_0_int32_v = (Failure_0_int32)
↪→{ .status_0 = tag_ReadError_0 } } };

}
}

static enum_Status_0 getStatus_1_BitmapHeader_0(MaybeResult_0_BitmapHeader_0
↪→ thiss_3) {

return thiss_3.value.Failure_0_BitmapHeader_0_v.status_0;
}

static MaybeResult_0_Tuple_int32_int32 combine_0_int32_int32(
↪→MaybeResult_0_int32 a_0, MaybeResult_0_int32 b_0) {

if (isDefined_2_int32(a_0)) {
if (isDefined_2_int32(b_0)) {

int32_t norm_36 = getResult_1_int32(a_0);

int32_t norm_38 = norm_36;
int32_t norm_37 = getResult_1_int32(b_0);
int32_t norm_39 = norm_37;
Tuple_int32_int32 norm_40 = (Tuple_int32_int32) { ._1 = norm_38,

↪→ ._2 = norm_39 };
return (MaybeResult_0_Tuple_int32_int32) { .tag =

↪→tag_Result_0_Tuple_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32) { .
↪→Result_0_Tuple_int32_int32_v = (Result_0_Tuple_int32_int32) { .
↪→result_0 = norm_40 } } };

} else {
enum_Status_0 norm_41 = getStatus_1_int32(b_0);
enum_Status_0 norm_42 = norm_41;
return (MaybeResult_0_Tuple_int32_int32) { .tag =

↪→tag_Failure_0_Tuple_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32) { .
↪→Failure_0_Tuple_int32_int32_v = (Failure_0_Tuple_int32_int32) { .
↪→status_0 = norm_42 } } };

}
} else {

enum_Status_0 norm_43 = getStatus_1_int32(a_0);
enum_Status_0 norm_44 = norm_43;
return (MaybeResult_0_Tuple_int32_int32) { .tag =

↪→tag_Failure_0_Tuple_int32_int32, .value = (
↪→union_MaybeResult_0_Tuple_int32_int32) { .
↪→Failure_0_Tuple_int32_int32_v = (Failure_0_Tuple_int32_int32) { .
↪→status_0 = norm_44 } } };

}
}

static bool writeDword_0(FileOutputStream fos_2, int32_t dword_0) {
int8_t b4_1 = (int8_t)((int32_t)(((uint32_t)dword_0) >> 24));
int8_t b3_1 = (int8_t)((int32_t)(((uint32_t)dword_0) >> 16));
int8_t b2_6 = (int8_t)((int32_t)(((uint32_t)dword_0) >> 8));
int8_t b1_6 = (int8_t)dword_0;
bool norm_173 = write_4(fos_2, b1_6);
bool norm_183 = norm_173;
if (norm_183) {

bool norm_174 = write_4(fos_2, b2_6);
bool norm_180 = norm_174;
bool norm_182;
if (norm_180) {

bool norm_175 = write_4(fos_2, b3_1);
bool norm_177 = norm_175;
bool norm_179;
if (norm_177) {

bool norm_176 = write_4(fos_2, b4_1);
bool norm_178 = norm_176;
norm_179 = norm_178;

} else {
norm_179 = false;

}

120

C
Im

age
P
rocessing

Im
plem

entation

bool norm_181 = norm_179;
norm_182 = norm_181;

} else {
norm_182 = false;

}
bool norm_184 = norm_182;
return norm_184;

} else {
return false;

}
}

static bool writeImage_0(FileOutputStream* fos_4, Image_0* image_1) {
int32_t count_3 = image_1->w_0 * image_1->h_0;
int32_t i_20 = 0;
bool success_1 = true;
while (success_1 && i_20 < count_3) {

bool norm_250 = write_4(*fos_4, image_1->r_0.data[i_20]);
bool norm_256 = norm_250;
bool norm_258;
if (norm_256) {

bool norm_251 = write_4(*fos_4, image_1->g_0.data[i_20]);
bool norm_253 = norm_251;
bool norm_255;
if (norm_253) {

bool norm_252 = write_4(*fos_4, image_1->b_3.data[i_20]);
bool norm_254 = norm_252;
norm_255 = norm_254;

} else {
norm_255 = false;

}
bool norm_257 = norm_255;
norm_258 = norm_257;

} else {
norm_258 = false;

}
success_1 = norm_258;
i_20 = i_20 + 1;

}
return success_1;

}

static Tuple_int8_int8 destructWord_0(int32_t word_1) {
int32_t norm_186;
if (word_1 >= 32768) {

norm_186 = word_1 - 65536;
} else {

norm_186 = word_1;
}
int32_t signed_1 = norm_186;
int8_t b1_2 = (int8_t)((int32_t)(((uint32_t)signed_1) >> 8));
int8_t b2_2 = (int8_t)signed_1;
return (Tuple_int8_int8) { ._1 = b1_2, ._2 = b2_2 };

}

static int32_t getResult_1_int32(MaybeResult_0_int32 thiss_2) {
return thiss_2.value.Result_0_int32_v.result_0;

}

static void* newState_0(void) { return NULL; }

static bool isDefined_2_Tuple_int32_int32(MaybeResult_0_Tuple_int32_int32
↪→thiss_1) {

if (thiss_1.tag == tag_Result_0_Tuple_int32_int32) {
return true;

} else {
return false;

}
}

static bool write_4(FILE* this, int8_t x) {
return fprintf(this, "%c", x) >= 0;

}

static bool isOpen_2(FILE* this) {
return this != NULL;

}

static int8_t get_4_int8(Option_0_int8 thiss_174) {
return thiss_174.value.Some_0_int8_v.v_14;

}

static bool isSuccess_1(enum_Status_0 thiss_0) {
return thiss_0 == tag_Success_0;

}

121

D References

D References

[1] “Leon Web Interface.” http://leon.epfl.ch/.

[2] M. Antognini, “From Verified Functions to Safe C Code.” https://github.com/
mantognini/GenC, 2016.

[3] “clang: a C language family frontend for LLVM.” http://clang.llvm.org/.

[4] “GCC, the GNU Compiler Collection.” https://gcc.gnu.org/.

[5] X. Leroy, “A formally verified compiler back-end,” Journal of Automated Reasoning, vol. 43,
no. 4, pp. 363–446, 2009.

[6] “The Compcert C Compiler.” http://compcert.inria.fr/.

[7] R. Blanc, V. Kuncak, E. Kneuss, and P. Suter, “An Overview of the Leon Verification Sys-
tem: Verification by Translation to Recursive Functions,” in Proceedings of the 4th Workshop
on Scala, SCALA ’13, (New York, NY, USA), pp. 1:1–1:10, ACM, 2013.

[8] R. Blanc, “Verification by Reduction to Functional Programs.” 2017.

[9] T. Welch, “High speed data compression and decompression apparatus and method,” Dec. 10
1985. US Patent 4,558,302.

[10] R. Cohn, “A transpiler to convert Java to C source.” https://github.com/raphaelcohn/
java2c, 2015.

[11] “FLEX.” https://flex.cscott.net/.

[12] “Java card technology.” http://www.oracle.com/technetwork/java/embedded/
javacard/overview/default-1969996.html.

[13] D. Shabalin, “Scala native.” http://www.scala-native.org/, 2017.

[14] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-
C: A Software Analysis Perspective,” in Proceedings of the 10th International Conference
on Software Engineering and Formal Methods, SEFM’12, (Berlin, Heidelberg), pp. 233–247,
Springer-Verlag, 2012.

[15] P. Baudin, J.-C. Filliatre, C. Marché, B. Monate, Y. Moy, and V. Prevosto, “ACSL: AN-
SI/ISO C specification language.” http://frama-c.com/acsl.html, 2013.

[16] M. Moskal, T. Santen, and W. Schulte, “VCC: A Practical System for Verifying Concurrent
C,” in Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Springer.

[17] D. Grossman, M. Hicks, T. Jim, and G. Morrisett, “Cyclone: a Type-safe Dialect of C,”
C/C++ Users Journal, Jan. 2005.

[18] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and Understanding Bugs in C Compil-
ers,” SIGPLAN Not., vol. 46, pp. 283–294, June 2011.

[19] N. G. Leveson and C. S. Turner, “An Investigation of the Therac-25 Accidents,” Computer,
vol. 26, pp. 18–41, July 1993.

123

http://leon.epfl.ch/
https://github.com/mantognini/GenC
https://github.com/mantognini/GenC
http://clang.llvm.org/
https://gcc.gnu.org/
http://compcert.inria.fr/
https://github.com/raphaelcohn/java2c
https://github.com/raphaelcohn/java2c
https://flex.cscott.net/
http://www.oracle.com/technetwork/java/embedded/javacard/overview/default-1969996.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/default-1969996.html
http://www.scala-native.org/
http://frama-c.com/acsl.html

D References

[20] J. Garrett, J. Valenzuela, B. Douville, M. Carr-Robb-John, J. Adamczewsk, E. J. Douglas,
R. Morwood, B. Burbank, and C. Pruett, “Dirty Game Development Tricks.” http://www.
gamasutra.com/view/feature/194772/dirty_game_development_tricks.php, 2013.

[21] “About the security content of macOS Sierra 10.12.1, Security Update 2016-002 El Cap-
itan, and Security Update 2016-006 Yosemite.” https://support.apple.com/en-us/
HT207275, 2016.

[22] “Common Vulnerabilities and Exposures (CVE).” http://cve.mitre.org/, 1999.

[23] “CVE Details: The ultimate security vulnerability datasource.” https://www.cvedetails.
com/.

[24] D. Saks, “extern c: Talking to C Programmers about C++,” CppCon, 2016.

[25] “Programming languages – C,” standard, International Organization for Standardization,
1999.

[26] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley, The Java Language Specification,
Java SE 8 Edition. Oracle, 2015.

[27] MISRA C:2012, Guidelines for the use of the C language in critical systems. MIRA Limited,
Nuneaton, 2013.

[28] “Heap fragmentation or how my micro-benchmark went wrong blog logo.” http://
david-grs.github.io/heap_fragmentation_micro_benchmark/, 2016.

[29] J. Regehr, “INT_MIN % -1 = ?.” http://blog.regehr.org/archives/175, 2010.

[30] “java.lang.Math.” http://docs.oracle.com/javase/8/docs/api/java/lang/Math.
html.

[31] R. Madhavan and V. Kuncak, Symbolic Resource Bound Inference for Functional Programs,
pp. 762–778. Cham: Springer International Publishing, 2014.

[32] “GCC: C Implementation-Defined Behavior.” https://gcc.gnu.org/onlinedocs/gcc/
C-Implementation.html#C-Implementation.

[33] “Visual Studio: Implementation-Defined Behavior.” https://msdn.microsoft.com/
en-us/library/3d61ah0s.aspx.

[34] “Clang: Bug 11272 - document implementation-defined behavior.” https://llvm.org/
bugs/show_bug.cgi?id=11272.

[35] M. Spencer, “My Little Optimizer: Undefined Behavior is Magic,” CppCon, 2016.

124

http://www.gamasutra.com/view/feature/194772/dirty_game_development_tricks.php
http://www.gamasutra.com/view/feature/194772/dirty_game_development_tricks.php
https://support.apple.com/en-us/HT207275
https://support.apple.com/en-us/HT207275
http://cve.mitre.org/
https://www.cvedetails.com/
https://www.cvedetails.com/
http://david-grs.github.io/heap_fragmentation_micro_benchmark/
http://david-grs.github.io/heap_fragmentation_micro_benchmark/
http://blog.regehr.org/archives/175
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html#C-Implementation
https://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html#C-Implementation
https://msdn.microsoft.com/en-us/library/3d61ah0s.aspx
https://msdn.microsoft.com/en-us/library/3d61ah0s.aspx
https://llvm.org/bugs/show_bug.cgi?id=11272
https://llvm.org/bugs/show_bug.cgi?id=11272

	Introduction
	Motivation
	A History of Bugs
	Challenges for Embedded Devices

	Additional Features For Leon
	Strict Arithmetic Model & 8-bit Integer
	I/O Framework

	Memory, Aliasing & Mutability Models For GenC
	Translation of Definitions
	Primitive Types & Literals
	Tuples & Arrays
	Classes
	Functions

	Translation of Expressions
	Execution Order Normalisation
	Bitwise Shift Operators
	Integer Conversions
	Membership Test & Cast
	Pattern Matching

	Library Support Using Annotations
	Custom Function Implementation
	Custom Type Translation
	Ignoring Functions or Types

	Toward MISRA Compliance
	General Directives & Defining a Standard C Environment
	Ensuring Mandatory Rules
	Rules Subsumed Under Verification
	Code Generator Guarantees Enforcing Many Rules
	Deviations from the Guidelines
	Responsibilities Left to the User

	Case Study: LZW
	The LZW Algorithm
	Implementation: String Representation
	Implementation: Dictionary Representations
	Benchmark Results

	Case Study: Image Processing
	Safely Acquiring Image Data
	Image Manipulation Using Kernels
	Runtime Performances

	Conclusion
	Future Works
	Operator Equivalence Table
	LZW Implementations
	Scala Source
	Generated C99 Code

	Image Processing Implementation
	Scala Source
	Generated C99 Code

	References

