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Abstract—This work presents a novel virtual vehicle based
decentralized coordination framework for Connected Au-
tonomous Vehicles (CAVs). We explore the idea of CAVs being
capable of positioning virtual vehicles to share their intended
maneuver as well as request cooperation. This framework
has potential to inspire versatile solutions and provides an
intuitive interface to interact with reactive and unconnected
vehicles. In this context, a preliminary coordination policy is
proposed and tested on a three-legged single-lane roundabout.
Simulation results show that the presented solution performs
outstandingly better when it leverages the freedom at position-
ing virtual vehicles that our framework provides. Furthermore,
the performance degradation resulting from mixing CAVs and
unconnected cars is observed, and coordination assessment
under this circumstance is discussed.

I. INTRODUCTION

The fast growth of Autonomous Vehicles (AVs) tech-
nology shapes a future traffic scenario that seems far from
being technologically homogeneous. Thus, decision-making
policies for AVs have to account for the issues derived from
the coexistence of vehicles with different levels of automa-
tion—referred here as heterogeneous traffic scenarios. In
particular, this article tackles the problem of coordination
of AVs at intersections, which has attracted a great deal of
attention over the last decades.

A broad range of centralized solutions can be found in
the literature. Since Peter Stone proposed his autonomous
intersection management protocol [1], reservation algorithms
have been extensively used in the literature [2]. Over the
last years, optimization-based policies have arisen, which
range from techniques covering planning and control at once
[3], to priority-based approaches where the relative priorities
between vehicles are assumed to be given [4].

Decentralized control schemes have been applied like-
wise. Reactive coordination protocols are popular in the
literature because of its low computational burden. Solu-
tions based on navigation functions [5], virtual vehicles
[6] or virtual platoons [7] have been presented in the
past. Optimization has also been exploited in decentralized
form. Solutions that assume that relative priorities between
vehicles are given [8] or that the optimization order is known
[9] have been proposed. Recently, game theory concepts
have been applied to address coordination of vehicles [10].

Although coordination on heterogeneous traffic condi-
tions has started raising awareness, there are only a few
works on the topic [11]. Typically, coordination strategies
are designed for homogeneous cases and then adapted to
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heterogeneous ones—which presumes that performing well
in the former cases is required to do so in the latter
ones. We claim that coordination solutions for heterogeneous
scenarios should not be directly inherited from homogeneous
cases as they do not present the same dynamics.

In this article, a virtual vehicle based coordination
framework for Connected Autonomous Vehicles (CAVs) is
proposed, whereby a simple interface with unconnected and
reactive cars is provided. The concept of virtual vehicle
denotes techniques that exploit phantom vehicles to reach
cooperation among CAVs, and it was first presented in [6],
where virtual vehicles were generated by mapping cars on
their targeted lane. This criterion is also used in [12] and
is slightly extended in [7] by making use of scaled traveled
distances to generate virtual vehicles.

The main contribution of this paper is the formulation of
a novel coordination framework for CAVs in heterogeneous
conditions, which is tested on a single-lane roundabout
scenario. The concept of virtual vehicles is extended by
allowing CAVs to control the state of their virtual vehicle,
which is then broadcast. Moreover, solutions are provided to
deal with the limitations stemming from the coexistence of
CAVs and unconnected and reactive cars. Lastly, based on
our simulation results, coordination assessment in heteroge-
neous scenarios is briefly discussed.

This manuscript is organized as follows. Firstly, the
proposed framework is presented in Section II. Specifics
concerning the coordination policy are then given in Section
III. Section IV describes the case study used to generate the
results shown in Section V. Finally, Section VI gathers some
conclusions and future research directions.

II. COORDINATION FRAMEWORK

We propose a framework based on the idea of using
virtual vehicles to represent the maneuvers that vehicles
aim to perform. These virtual vehicles are referred to as
projected vehicles (or projections in short), making reference
to the fact that they represent a maneuver intended to be
performed in the future. In this context, a vehicle would
navigate considering the projected vehicles of surrounding
cars and would perform maneuvers by generating its pro-
jection. Vehicle to vehicle communication is exploited by
considering that some CAVs can explicitly broadcast the
state of their projection. Hence they can freely position it
at any spot of interest.

This framework aims at scenarios where three types
of vehicles coexist: unconnected vehicles, reactive CAVs
(rCAVs), and anticipative CAVs (aCAVs). Unconnected ve-
hicles category gathers human-driven cars and unconnected
AVs. The term rCAVs denotes CAVs that share their current
state and can interpret any incoming information. Moreover,
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Fig. 1. Coordination framework scheme.

term aCAVs refers to CAVs able to broadcast not only their
current state but also that of its projection.

The fact that different kinds of vehicles are considered
allows classifying projections w.r.t. the source of information
they stem from. In this line, a projection is referred to as
exogenous when its position is explicitly broadcast by its
owner, i.e. it belongs to another CAVs. On the contrary, when
a projection represents the maneuver of an unconnected
vehicle, it has to be inferred from the context, and it is called
endogenous projection.

In subsequent sections, the framework is presented from
the egocentric standpoint of an aCAV, and the term EGO
vehicle (or EGO in short) is used to denote the vehicle
performing the described computations. A schematic rep-
resentation of the framework is shown in Figure 1, where
two main blocks are differentiated: projection management
and control reference. First, projections of nearby cars are
generated/received to model their intended maneuvers. These
projections are taken into account by EGO to calculate the
location of its projected vehicle, which is broadcast when
it is activated—meaning that a suitable spot to place the
projection was found. Afterward, speed references for EGO
and its projection are calculated and tracked by low-level
controllers. We assume in the rest of this manuscript that
these references can be perfectly followed.

The objective of this architecture is twofold. On the one
hand, the freedom of aCAVs to position their projection
potentially allows reaching cooperation in more intricate
situations—as the cooperation effort can be whereby de-
creased. On the other hand, it provides a simple way for
CAVs to interact with unconnected vehicles. Specifics and
further details are provided in §III.

A. Notation

Let us consider a generic traffic scenario with N cars
(set V : |V| = N ). Vehicles can be rCAVs, aCAVs,
or unconnected vehicles and are represented by the sets
Ar : |Ar| = Nr, Aa : |Aa| = Na, and U : |U| = Nu
respectively. Similarly, sets Vi ⊆ V , Ui ⊆ U , Ar

i ⊆ Ar and
Aa
i ⊆ Aa show the subsets of all vehicles, unconnected cars,

rCAVs and aCAVs respectively, that vehicle i can perceive.

A vehicle i ∈ Aa has to generate its projection ip, assign
an endogenous projection jn to every car j ∈ Ui ∪ Ar

i, and
an exogenous one jx to vehicles j ∈ Aa

i . Notice that, in this
paper, the term vehicle makes reference to both projected and
real vehicles if not stated otherwise. Moreover, the terms ≺i
and �i denote the first vehicle behind and ahead vehicle i.

Θi

i

ip � ip j

jn

δ i

δip,�ip

δip

EGO (aCAV)
CAV
Unconnected car

Fig. 2. EGO (vehicle i) performing a merging maneuver by placing
projection ip right ahead another CAV, which can cooperate by reacting to
it. The point before which the maneuver has to end is denoted Θi.

III. PRELIMINARY COORDINATION POLICY

This section presents a preliminary approach to address
projection management and speed reference generation prob-
lems from the standpoint of aCAVs.

Without lack of generality, spatially constrained ma-
neuvers (Figure 2) are considered, yet the discussion can
be adapted to other situations through the appropriated
modifications.

A. Projection management

The projection management problem for a vehicle i ∈
Aa (EGO vehicle) consists in positioning and activating a
projection ip to perform maneuvers as well as endogenous
and exogenous projections of vehicles j ∈ Ar

i ∪ Ui and j ∈
Aa
i to represent the intended maneuver of nearby vehicles.

The position of a vehicle i is given by its distance δi to the
point Θi where the maneuver has to end (Figure 2). By an
abuse of notation, the distance between vehicles i and j is
similarly termed δi,j . Besides, the fact that a maneuver is
being performed (termed activation state) is denoted by the
binary variable γi, showing whether vehicle i is performing
its targeted maneuver (γi = 1) or not (γi = 0).

1) Endogenous projections: Endogenous projections jn
are required to cooperate with vehicles j ∈ Ui ∪Ar

i and are
simply positioned on the targeted lane of vehicle j with

δjn = δj . (1)

Additionally, jn is considered to be active only when vehicle
j has started the maneuver, which is shown by the variable
γjn inferred from the state of the lane change indicator if
vehicle j ∈ Ui, or explicitly broadcast (γjx ) if j ∈ Ar

i.

2) Exogenous projections: Exogenous projections are
assigned to vehicles j ∈ Aa

i and are fully defined by δjx

and γjx , which are broadcast by vehicle j.

3) Projection of EGO: EGO (vehicle i ∈ Aa) makes
use of a projection to communicate its intention and request
cooperation to surrounding CAVs. Thus, positioning policies
have to account for (i) the communication capabilities of sur-
rounding vehicles and (ii) some decision-making criterion.

On the one hand, the projected vehicle of EGO has to
be placed right ahead a vehicle able to perceive it. On the
other hand, a decision-making criterion has to be defined to
perform the targeted maneuver. In this work, an estimation of
the requested cooperation effort is used to determine whether
it is feasible to place a projection at a certain spot or not.
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Fig. 3. Value of κ (6) considering a follower ≺ ip driving at v≺ip m/s.
Common parameters for both plots are v�i = 8 m/s and σi = 3 s.

The cooperation effort is measured through the maximum
acceleration that vehicle≺ip can apply over time such that
the headway s≺ip,ip is above the critical gap σi by the
time it reaches Θi. This acceleration is named cooperative
acceleration and denoted as κ(δip), where its dependence
with δip is explicitly expressed. Notice that in general, sj,i
represents the time between the position δi and vehicle j,
and is calculated as

sj,i =
δj,i
vj

. (2)

To calculate κ as a function of δip , the time τi at which the
gap reaches Θi is first estimated as

τi =
δip
v�ip

, (3)

where v�ip shows the average speed vehicle�ip is expected
to follow. Then, assuming that≺ip will apply in average the
acceleration a≺ip , the estimated headway ŝ≺ip,ip at τi is

ŝ≺ip,ip =
δ≺ip,ip + δip −

(
v≺ipτi + a≺ipτ

2
i /2
)

v≺ip + a≺ipτi
. (4)

To impose ŝ≺ip,ip ≥ σi, constraint

a≺ip ≤
δ≺ip,ip + δip − v≺ip (τi + σi)

τ2i /2 + σiτi
(5)

has to be fulfilled. The right side of the equation represents
the cooperative acceleration κ(δip). From (3) and (5), and
exploiting the fact that δ≺ip,ip = δ≺ip − δip , the next can be
written

κ(δip) =
2v2�ip

(
δ≺ip − v≺ip

(
δip/v�ip + σ

))
δ2ip + 2σv�ipδip

. (6)

In Figure 3, κ is shown for two different sets of parameters.
These graphs highlight the fact that as δip increases, nearby
vehicles would have to brake less to cooperate.

The projected vehicle of EGO is positioned as follows.
On the one hand, while the maneuver is being performed
(γip = 1), its position at t1 ≥ t0 is given by

δip(t1) = δip(t0) +

∫ t1

t0

vip(t|t0) dt , (7)

where vip(t|t0) is the speed profile (calculated at t0) that
projection ip has to follow. On the other hand, when pro-
jected vehicle is not active—meaning that a suitable location

i knj
δi,kn

ip jx k
δip,jx

EGO (aCAV) CAV Unconnected car

Fig. 4. Relevant vehicles to be taken into account by vehicle i ∈ Aa when
calculating speed references vi and vip to perform a lane change maneuver.

has not been found yet—the position is the result of the next
optimization problem

min δip (8)
s.t. δip ≥ δip (9)
≺ip ∈ Ar ∪ Aa if δip > δin (10)
κ(δip) ≥ κ∗i . (11)

This problem aims to find the closest suitable position
considering constraints (9)-(11). Constrain (9) limits to

δip = v�ipτ i (12)

the closer the projection ip can be to Θi. In (12), v�ip is used
as the expected average circulating speed in the targeted lane,
and τ i designates the minimum time the real vehicle needs
to reach Θi. The latter can be simply estimated by using the
kinematics equation for uniformly accelerated motion as

τ i =
vi +

√
v2i + 2αiδi
αi

, (13)

where αi denotes the maximum positive acceleration.

Then, constraint (10) makes sure that the first following
vehicle ≺ip can interpret projected vehicles if required.
Notice that placing a projection ip with δip ≤ δin does not
represent any problem w.r.t. vehicles j ∈ Ui. In fact, in
that case, these are expected to overreact by considering the
endogenous projection in.

Lastly, constraint (10) imposes the cooperative accelera-
tion to be above a threshold κ∗i . Meaning that the coopera-
tion effort that a vehicle requests to nearby vehicles is upper
bounded.

The activation of the projected vehicle is done through

γi =

{
1 if δi,�i ≥ δi ∧ ∃δip
0 otherwise . (14)

That is, the maneuver starts only if a suitable position was
found and there is no vehicle between vehicle i and Θi.

Notice that, even though two CAVs could generate pro-
jections at the same spot, it does not represent any problem.
In practice, as two real vehicles cannot occupy the same
physical location, one of the two conflicting projections
reaches the point that defines the end of its maneuver before
than the other. Consequently, one vehicle would perform the
maneuver while the other would control the projection to fit
in the closest existing gap.



B. Speed reference

Once the projected vehicle is placed and active, the speed
references vi and vip followed by vehicles i and ip have to
be calculated. Vehicles j ∈ Vi and their projections (jp, jx
or jn according to the case) have to be considered to that end
(Figure 4). Speed references should allow vehicles i and ip
to follow the traffic stream on their lanes, and merge when
the maneuver ends.

The preliminary solution presented here solves in-lane
navigation by implementing a state-of-the-art car-following
model, for which the distance up to the first perceptible
vehicle will be used. Moreover, a coupling strategy is
addressed to link vi and vip while a maneuver is being
performed. In this line, we propose the use of a car-following
model to obtain vip first and then computing vi according
to it. This section presents the car-following model used in
simulation as well as a preliminary coupling strategy.

1) Car-following model: A simplified version of Gipps
car-following model [13] is used here. Notice that, in this
work, surrounding projections and real cars are equally
considered notwithstanding that they represent soft and hard
constraints respectively.

The used car-following model applies the maximum
acceleration to either reach a desired speed or keep a safe
distance with the first vehicle ahead. According to it, the
speed reference vi(t|t0) of vehicle i is calculated as

vi(t|t0) = min
(
vi(t0) + α(t− t0), νi, vs

i(t|t0)
)
, (15)

where

vs
i(t|t0) = αTi +

√
v2�i(t|t0) + α2T 2

i − 2α(δi,�i(t|t0)− ηi) (16)

is the speed that allows keeping a safe distance with the next
vehicle on the lane. In Equations (15)–(16), Ti represents
reaction time, maximum positive and negative accelerations
are denoted by α and α, and ηi shows the minimum inter-
vehicle distance. Moreover v�i(t|t0) = v�i(t0), and

δi,�i(t|t0) = δi,�i(t0) + (v�i(t0)− vi(t0))(t− t0) . (17)

Notice that, by using δi,�i in (16) we consider that CAVs
react to active projections as if they were real vehicles.

2) Coupling: A coupling strategy is needed to control
a real vehicle i and its projection ip while performing a
maneuver. The target being making the projected and real
vehicles reach Θi at the same time with the same speed.

To do that, we consider vip(t|t0) to be given by the car-
following model described in (15)–(16). The speed reference
profile vi(t|t0) is then calculated as

vi(t|t0) = min
(
νi, vip(t|t0)ω(t|t0)

)
. (18)

In this Equation, ω(t|t0) with t ∈ [t0, µi] is the coupling
coefficient calculated at t0, which takes the form

ω(t|t0) = max
(
0, β1(t− µi)2 + β2(t− µi) + 1

)
, (19)

where µi = t0 + τi and β1 and β2 are tuning coefficients
that are updated at every sampling time. This formulation
makes ω(µi|t0) = 1, which imposes vi(µi|t0) = vip(µi|t0)
in (18). That is, both vehicles finalize the maneuver at time
µi with the same speed.

CAV
Unconnected car

Fig. 5. Three-legged single-lane roundabout.

Coefficients β1 and β2 are computed by considering

d ω(t|t0)

d t

∣∣∣∣
t0

= 0 , (20)

and the fact that vehicle i has to travel δi meters in τi seconds∫ µi

t0

vip(t|t0)ω(t|t0) dt = δi . (21)

A preliminary result is obtained by assuming that vip(t|t0)
in (21) is in average equal to v�ip(t0), what leads to[

β1
β2

]
=

[
τ3v�ip

3

τ2v�ip

2
−2τi 1

]−1 [
δi − v�ipτi

0

]
. (22)

One direct consequence of applying this strategy is that the
maximum speed in (15), when it refers to ip, takes the value

νip(t0) = νi(t0)ω(t0|t0) . (23)

IV. CASE STUDY

In this manuscript, a three-legged single-lane roundabout
is used to test the proposed coordination policy (Figure 5).
Roundabouts are particularly convenient in this context as
their natural working principle requires gaps generation, and
the entering maneuver is spatially constrained. They are
also challenging scenarios cooperative wise, due to their
geometry and complex interaction between conflicting traffic
streams [14].

Following sections describe the behavioral models used
to simulate rCAVs and unconnected cars in our scenario and
provide further details concerning information flow.

A. Reactive CAVs

Conceptually, rCAVs can interpret any incoming infor-
mation (hence able to generate exogenous projections) but
are not able to freely generate projected vehicles. In practice,
a vehicle i ∈ Ar is modeled as an aCAV whose projection
is placed according to

δip = δi . (24)

The activation in this case follows

γi =

{
1 if δi,�i ≥ δi ∧ κ(δip) ≥ κ∗i
0 otherwise . (25)

Regarding speed reference generation, the approach de-
scribed in §III-B is applied.



TABLE I. PERCEPTIBLE VEHICLES

EGO Nearby vehicle
j ∈ U j ∈ Ar j ∈ Aa

Unconnected veh. j, jn j, jn j, jn
RCAVs j, jn j, jn j, jx
aCAVs j, jn j, jn j, jx

B. Unconnected vehicles

Unconnected vehicles are supposed to exhibit human-
alike-driver behavior, which is here modeled as a combina-
tion of car-following and gap-acceptance models.

For the sake of consistency, gap-acceptance criterion
is formulated in terms of projection management. Thus,
a vehicle i ∈ U behaves as if its projection was placed
according to (24) and activated following

γi =

{
1 if δi,�i ≥ δi ∧ s≺ip,ip ≥ σi ∧ si,�i ≥ φi

0 otherwise , (26)

where σi and φi stand for the critical gap and follow-up
times for vehicle i respectively. Moreover, s≺ip,ip and si,�i
(2) designate the headway and follow-up time.

The implemented car-following model is the one exposed
in §III-B (Equations (15)-(16)) except the reaction time
is increased, and the intention of surrounding aCAVs are
modeled through endogenous projections.

C. Information flow

The set of projected and real vehicles perceived by every
type of vehicle is represented in Table I. Notice that when
unconnected vehicles (set U) are involved in the information
exchange, the two involved vehicles have to be within the
field of view of each other. Moreover, since vehicles in U are
unconnected, they cannot assign exogenous projections to
aCAVs. Furthermore, they are assumed to interpret correctly
the lane change indicators of nearby vehicles.

V. RESULTS

In this section, simulation results based on the case
study presented in §IV are shown and discussed. We first
gather the values of all used parameters. Critical gap and
follow up times are σ = 2 s and φ = 1 s. Acceleration
bounds are considered α = 3 m/s2 and α = −3 m/s2
and the cooperative acceleration threshold is κ∗ = 1 m/s2.
Maximum speed is assumed to be νi = 15 m/s. Ultimately,
the minimum distance considered safe is ηi = 3 and reaction
time Ti takes value 0.5 s if i ∈ Ar ∪ Aa and 1 s if i ∈ U .

We carried out simulations of 40 scenarios (with different
traffic load) where the instant at which vehicles arrive were
generated by using a Poisson distribution. Incoming traffic
is evenly distributed among the legs of the roundabout.
Besides, origin-destination patterns are uniformly drawn
considering the probability of taking the first, second and
third exits being 20%, 60%, and 20% respectively. For
each scenario, 6 cases with different vehicles combinations
were simulated. Details are shown in Table II, where two
groups (homogeneous and heterogeneous cases with a CAVs
penetration ratio of 50%) are differentiated. Figure 6 shows
the throughput values registered in each simulated case.

TABLE II. CASES: NUMBER AND TYPE OF CONSIDERED VEHICLES

Case
Nu
Nr
Na

1 2 3
200 - -

- 200
- 200

4 5 6
100 100 100
100 - 50

- 100 50

In cases 1–3 (upper plot in Figure 6), where homoge-
neous scenarios were tested, aCAVs report the best through-
put in 39 scenarios out of 40. Heterogeneous cases 4–6
(lower plot in Figure 6) show that mixing CAVs with human-
alike-driven vehicles always improves coordination w.r.t.
case 1 (where only unconnected vehicles are considered).

A fundamental performance result shown in Figure 6 is
the radically different trend observed in homogeneous and
heterogeneous conditions. On the one hand, the throughput
values in cases 2–3 are significantly reduced when uncon-
nected vehicles are introduced (cases 4–5). Interestingly,
while our algorithm reports the best throughputs in homoge-
neous conditions, no difference between tested approaches
is observed in the simulated heterogeneous scenarios.

In an attempt to understand the positive effect of aCAVs
in homogeneous cases and how it degrades with traffic
heterogeneity, an indicator composed of pairs: waiting time-
circulating speed is explored. This indicator is expected
to provide information concerning entering-circulating flow
balance. For each case, a set of samples S = {i} (associ-
ated to pairs (wi, v

c
i) waiting time-circulating speed) were

collected. The probability P(w, vc) was then represented
through 2D histograms, whose contour plots are shown in
Figure 7. Every area i ∈ [1, 4] therein included (differen-
tiable by its color) illustrates the subset

Si = {j ∈ S|pi ≤ P(wj , v
c
j) ≤ pi+1} , (27)

where pi is the ith element of vector p =
[0.1, 0.3, 0.5, 0.7, 0.99].

Clearly differentiable patterns are observed for aCAVs
and rCAVs in homogeneous conditions (upper plots in
Figure 7). These patterns show that the performance of our
algorithm in heavy traffic and homogeneous conditions is
due to a balanced waiting time distribution and a moderate
circulating speed. These two effects can be attributed to the
scanning and booking processes performed when an aCAV
places its projection. On the one hand, being able to scan the
full roundabout helps to find a suitable position sooner. On
the other hand, as the number of projected and real vehicles
within the intersection increases and becomes more stable,
the resulting circulating speed is more steady and moderate.

In heterogeneous scenarios, the patterns (lower plots in
Figure 7) are substantially different compared to homoge-
neous cases. It is clear that human-alike-driven vehicles add
dynamics that are not present in homogeneous scenarios.
Given the remarkable drop of performance, this issue is
worth being studied separately.

Two aspects were not evaluated here: the origin-
destination pattern as well as the number and distribution of
CAVs in the scenario. The origin-destination pattern could
be claimed not to cause the radical drop in performance since
it did not prevent the clear differences in homogeneous cases
from appearing. Therefore, CAVs penetration and distribu-
tion could be responsible for such degradation. This aspect,
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as well as its importance in designing reliable coordination
policies in heterogeneous conditions, are subjects of ongoing
investigations.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a coordination framework for connected au-
tonomous vehicles, based on the concept of virtual vehicles,
is proposed. The framework provides a suitable interface
to reach coordination between vehicles with uneven techno-
logical capabilities. Additionally, a preliminary coordination
policy has been formulated and assessed in simulation.

Cases where CAVs have freedom to place their projected
vehicles outperform cases where projected vehicles must be
inferred from the context. The assessment of waiting time
and circulating speed shows that our algorithm moderates
circulating speed and balances waiting time in heavy traffic

conditions, which results to be a suitable operation regime
for the treated intersection. This feature is remarkably de-
graded when human-alike driven cars are introduced, which
stresses that heterogeneous scenarios present new dynamics
w.r.t. homogeneous cases. Thus, appropriate techniques to
assess and design coordination algorithms have to be inves-
tigated.

The study of coordination policies that account for
origin-destination patterns as well as the expected behavior
of the traffic stream is subject of ongoing research.
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merging system for congested traffic situations,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 2, pp. 500–508,
2011.

[13] M. Treiber and A. Kesting, “Car-following models based on driving
strategies,” in Traffic Flow Dynamics. Springer, 2013, pp. 181–204.

[14] V. V. Dixit, “Modeling origin-destination effects on roundabout op-
erations and inflow control,” Journal of Transportation Engineering,
vol. 138, no. 8, pp. 1016–1022, 2011.


	Introduction
	Coordination framework
	Notation

	Preliminary coordination policy
	Projection management
	Endogenous projections
	Exogenous projections
	Projection of EGO

	Speed reference
	Car-following model
	Coupling


	Case study
	Reactive CAVs
	Unconnected vehicles
	Information flow

	Results
	Conclusions and future work
	Acknowledgments
	References

