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Abstract
We establish in the world of stochastic processes a theoretical relation between sparsity and
wavelets. The underlying principle is to treat stochastic processes as generalized functions, which
facilitates the study of their properties in a transform domain. We focus on symmetric-α-stable
(SαS) processes, with α ∈ (0,2]. They are central to a recently proposed framework for sparse
stochastic processes. The case 0 <α< 2 corresponds to heavy-tail processes and, thus, to sparse
signals with the level of sparsity being more pronounced for smaller values of α. The limit case
α= 2 yields the classical Gaussian processes, which are not considered to be sparse.
In the first part of the thesis, we identify a particular class of wavelets and show that they provide
an independent-component analysis for SαS AR(1) signals, which form an important subclass of
sparse processes. This contribution can be considered as the first theoretical result ever found
about the optimality of wavelets in a stochastic framework. It is remarkable that, by decreasing
the parameter α, we continuously run the gamut from Fourier (for α= 2) to wavelets (for α≤ 1),
thus providing a unifying view that sees Fourier and wavelet transforms as two extremes of a
single spectrum.
In the second part of the thesis, we study the wavelet decomposition of self-similar processes—
which form a second important family of sparse SαS processes. In particular, in the context of
the wavelet-based denoising of a stochastic process, we are able to theoretically predict the exact
performance of an arbitrary orthonormal wavelet basis. As it turns out, our prediction takes a
tractable simple form, which allows us to design the optimal Meyer wavelet as an example of
application.
Our theoretical results suggest that the performance depends crucially on the localization of
wavelets. Consequently, in an image-processing context, we introduce a moment-based measure
of localization and propose an optimization framework to design better wavelets. We end the
thesis with the experimental confirmation that the proposed wavelets outperform the previously
existing ones.

Key words: Sparse stochastic processes, symmetric-α-stable, auto-regressive processes, self-
similar processes, independent component analysis, Kullback-Leibler divergence, infinite dimen-
sional optimization, operator-like wavelets, orthonormal wavelet basis, isotropic wavelet frames,
steerable pyramid, calculus of variations, image processing

iii





Résumé
Dans notre travail, nous établissons une relation entre la parcimonie et les ondelettes dans le
monde des processus stochastiques. Nous considérons les processus stochastiques comme des
fonctions généralisées, ce qui facilite leur étude dans un domain de transformation. Nous nous
concentrons sur des processus symétriques et α-stable (SαS), avec 0 <α≤ 2, qui sont au coeur
de la récente théorie des processus stochastiques parcimonieux. Pour 0 <α< 2, les processus
étudiés sont à queue épaisse, et correspondent donc à des signaux parcimonieux dont le niveau
de parcimonie s’accroît lorsque α diminue. Dans le cas limite α= 2, on retrouve les processus
Gaussien, qui ne sont traditionnellement pas considérés comme parcimonieux.
Dans la première partie de notre thèse, nous identifions une classe d’ondelettes et montrons
qu’elles permettent une analyse en composantes indépandantes d’un signal SαS correspondant au
modèle AR(1). Cette contribution est le premier résultat théorique jamais obtenu sur l’optimalité
des ondelettes pour l’analyse de modèles stochastiques. En réduisant le paramètre α, il est
remarquable de constater le passage continu de la transformée de Fourier, optimale pour α= 2,
aux ondelettes, optimales pour α≤ 1. Nous offrons ainsi une vue unifée où les transformées de
Fourier et en ondelettes sont les deux extrèmes d’un spectre unique.
Dans la seconde partie de la thèse, nous étudions la décomposition en ondelettes des processes
auto-similaires, qui sont une seconde famille importante des processus SαS parcimonieux.
En particulier, nous sommes capable de prédire la performance exacte d’une base arbitraire
d’ondelettes orthonormales pour le débruitage d’un tel processus stochastique. Notre prediction
prend une forme particulièrement maniable. Ceci nous permet de construire l’ondelette de Meyer
optimale comme application de notre résultat.
Nos résultats théoriques suggèrent que la performance d’une ondelette dépende fortement de ses
propriétés de localisation. Dans le cadre du traitement de l’image, nous introduisons de ce fait
une mesure de cette localisation basée sur les moments de l’ondelette et proposons une méthode
d’optimisation adaptée à la construction de meilleures ondelettes. La thèse s’achève sur des
expériences confirmant que nos nouvelles ondelettes supplantent celles existantes.

Mots clefs : Processsus stochastique parcimonieux, SαS, processus auto-régressifs, processus
auto-similaires, analyse en composantes indépendantes, divergence de Kullback-Leibler, optimi-
sation en dimension infinie, opérateurs adapté à une transformation en ondelettes, transformée en
ondelette isotropique, pyramide orientable, calcul des variations, traitement de l’image
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1 Introduction

Stochastic signal modeling and transform-domain signal processing are tools that pervade all
branches of signal processing. On one hand, stochastic processes are the prime candidate to
model practical phenomena since they view real signals or operations only through their statistics.
This offers some slack over the actual observed data, whereas the deterministic view of data
invariably fails to fulfill the idealized assumptions placed upon them [2]. On the other hand, the
analysis of most signals is best performed in a transform domain, which reveals more about their
intimate structure than could ever be found in the original domain. In the intersection of these
two fields, the investigation of transform-domain properties of stochastic processes has naturally
emerged in the literature as a fecund approach.

Classical statistical signal processing is predicated upon the notion that processes are Gaussian.
This goes hand-in-hand with a Fourier-transform representation of data, which is widely used
in classical signal processing, the Fourier transform being often the most appropriate choice to
represent Gaussian processes. (Similar observations hold for general finite-variance processes up
to second-order statistics [3, 4].) Unfortunately, practical signals often do not exhibit the regular
behavior of Gaussian processes; moreover, global transformations like Fourier are not necessarily
the most appropriate match for them. Therefore, modern signal processing focuses instead on the
concepts of sparsity for signal modeling [5] and on localized transformations like wavelets as the
representation domain [6].

In the late 1980s, the advent of the wavelet transform has opened new avenues of research. It is
a prominent component of modern signal processing that has replaced the Fourier transform in
many different applications such as signal reconstruction and compression [7, 8, 9]. As further de-
velopment, new redundant and non-redundant representations of signals (local cosines, curvelets)
have emerged during the past two decades and have led to better algorithms for data compression,
processing, and feature extraction. An important example is the joint photographic experts group
(JPEG) 2000 standard for image compression which gives almost 30% better performance over
the older discrete cosine transform (DCT)-based JPEG method. However, because they were
abandoning Fourier, researchers had also to progressively abandon the modeling of signals as

1



Chapter 1. Introduction

stationary Gaussian stochastic processes, adopting instead a more deterministic approximation-
theoretic point of view. As it turns out, many naturally occurring signals and images happen to
be experimentally sparse in some wavelet basis [10], while a Gaussian process never is.

Since the early 2000s, the different fields of signal processing have seen a tremendous amount
of research been conducted around the concept of sparsity [11]. Loosely said, a signal is said
to be sparse whenever its representation in an appropriate domain has only a small number of
significant values. Signals that have a sparse representation in some transform domain are easy to
compress; similarly, a simple pointwise processing will be highly successful at attenuating their
noise. The concept of sparsity has penetrated deep into both the stochastic and the deterministic
signal-processing frameworks. In the stochastic framework, studies such as [12] and [13] give
mathematically rigorous meaning to sparsity. In the deterministic framework, sparsity is also a
proven property of a particular class of signals [14].

Attempts have been made to connect wavelets with sparsity. Following an empirical approach,
the authors of [10] and [15] have suggested that some wavelet-like bases tend to be optimal to
control sparsity and for decoupling purposes. Following an approximation-theoretic approach
(without combining it with a stochastic one), the authors of [14] have demonstrated the theoretical
optimality of wavelets. More generally, many other researchers have actively sought to propose
criteria to design and optimize wavelets during the last two decades, but most of these criteria
are driven from approximation-theoretic considerations rather than statistics. In fact, despite all
these efforts, the connection between the concept of wavelets and that of sparsity has not been
well established, at least not from the statistical signal-processing point of view—even if the
statistical behavior of wavelets was nevertheless studied in a few rare cases [16].

The main reason for this shortage of statistics-related results could be stated to be the lack of a
good stochastic framework for modeling sparse signals. Fortunately, a timely innovation model
has been introduced recently in [17, 18, 19]. It is capable of modeling a wide range of stochastic
processes, from Gaussian to sparse, and brings to the signal-processing literature the overly
abstract stochastic model originally proposed by Russian mathematicians [20]. Indeed, the new
framework is particularly convenient for investigating the transform-domain representations of
stochastic processes.

Relying on this framework, the general aim of the thesis is to investigate the link between wavelets
and sparsity—from a stochastic point of view. In particular, we harness the information-theoretic
properties of the wavelet coefficients of sparse stochastic processes to build, for the very first time,
a mathematical model in which we can demonstrate the fitness of wavelets to sparse stochastic
processes. Then, we turn our attention to the characterization of different wavelet bases for
working with sparse stochastic processes. Finally, we put out theoretical musings to fruition by
designing new classes of wavelets that outperform the ones previously known in the literature, a
claim that we are able to validate with practical experiments. The summary of our thesis is told
in more details in Section 1.1.

2



1.1. Outline and Contributions of the Thesis

1.1 Outline and Contributions of the Thesis

In this section, we give a brief hierarchical outline of the contributions of the thesis. We put
forward the main result of each chapter and highlight a few select intermediate results as well.

Chapter 2 contains preliminaries on the fundamental concepts of the thesis. There, we describe the
innovation model of sparse stochastic processes and the symmetric-α-stable processes. Through-
out the thesis, these concepts form the basis of our stochastic analysis. Then, we present the
theoretical and practical definitions and properties that apply to conventional and operator-like
wavelet bases and frames.

The main body of the thesis starts in earnest after the preliminaries of Chapter 2. It consists of
two major parts, namely, theory and applications. The part on theory is contained in Chapters 3
and 4; the part on applications is contained in Chapter 5, where we use our theoretical results to
design wavelets that perform optimally in an image-processing context.

We start Chapter 3 by investigating the optimality of wavelets for decoupling stochastic processes.
We show, in particular, that operator-like wavelets are optimal to represent a certain class of
sparse stochastic processes. When we switch to other classes of sparse stochastic processes,
however, optimality may be lost. But, in Chapter 4, we are still able to distinguish between
wavelet bases on the ground of their performance to attenuate noise for some particular class of
sparse stochastic processes.

In the part on theory, we essentially consider two classes of stochastic processes: 1) autoregressive
processes; and 2) self-similar processes. They are of special importance in statistical signal
processing, both from a theoretical and a practical point of view. They can be considered as two
separate extensions of the Lévy processes, which are at the heart of the theory of continuous-
domain stochastic processes [21].

Autoregressive processes are related to Lévy processes through Markov processes. Indeed,
the class of autoregressive processes of first order (AR(1)) identifies with the class of Markov
processes, which are such that the knowledge of a sample of the process is enough to decouple
past and future—in the sense that it makes them independent. As it turns out, the Lévy processes
are Markov processes. Likewise, self-similar processes are related to Lévy processes, too. Indeed,
an important property of Lévy processes is their self-similarity. More precisely, they have a
fractal property of first order.

All excitation noises that we consider for these processes have an α-stable distribution. This is a
rich family of distributions that runs the gamut from Gaussian distributions to heavy-tail (and
thus, sparse) distributions. This enables us to roam between the classical and modern schools of
signal processing simply by sweeping over α.

Our theoretical results are as follows:
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• Proof of the Optimality of Operator-Like Wavelets for Decoupling α-Stable AR(1)

Processes

– Our result on wavelets must be contrasted with the situation where the transform
domain is Fourier, in which case finite-variance processes must be considered instead
of α-stable AR(1) ones.

– We derive a closed-form formula for the mutual information of entries of a vast class
of α-stable random vectors. Interestingly, our formula involves `α-norm calculations
that are in common use in the context of sparse-recovery algorithms.

– We relate the sparse-component analysis (SCA) to the independent-component analy-
sis (ICA). This is of utmost relevance from an information-theoretic point of view.

• Gauge of the Total Performance of a Wavelet when Attenuating the Noise of α-Stable
Self-Similar Processes

– We show how to determine the time-averaged energy of a signal through its wavelet
coefficients. It is noteworthy to observe that we deal with the wavelet decomposition
of signals that have a finite average energy, rather that finite-energy signals.

– We study the behavior of minimum mean-square error (MMSE) functions for infinite-
variance random variables when the width parameter tends to zero. In particular,
we extend to the infinite-variance case some existing results in the literature about
finite-variance random variables.

– We derive the optimal Meyer wavelet for attenuating the noise found in α-stable
self-similar processes [22].

– We obtain closed-form formulæ for the projector of a profile onto the infinite-dimen-
sional manifold of Meyer wavelets.

The part on applications revolves around solving practical problems found in the context of image
processing. More precisely, we consider the two wavelet-based tasks of 1) attenuating the noise in
images and 2) reconstructing images. Inspired by our theoretical results, we design new wavelets
tuned to each one of the considered applications. Our experiments confirm that the wavelets we
designed outperform previously existing ones.

Our practical results are as follows:

• Numerical Design of Maximally Localized Isotropic Tight Wavelet Frames

– We derive a novel closed-form formula for the projector of isotropic wavelets onto
the infinite-dimensional manifold of tight frames.

• Illustration of the Superiority of the Proposed Localized Wavelets Through Practical
Experiments

We conclude the thesis by summarizing our results and suggesting topics for future studies.
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2 Mathematical Preliminaries

There are two major theories that constitute the formulation of this thesis. The first one is the
theory of sparse stochastic processes and the second one is the theory of wavelets. To have a
self-contained text, in this section we give a brief introduction about these two major topics.
Before that, we present the notations that we will use throughout the text.

2.1 Notations

Throughout the paper we use R, Z, N for the set of real, integer, and positive integer numbers,
respectively. The Fourier transform of a function f from Rn to R is denoted by f̂ . Thus, we have

f̂ (ω) =
∫
R

f (x)e−j〈ω,x〉dx (2.1)

and

f (x) = 1

(2π)n

∫
R

f̂ (ω)ej〈ω,x〉dω (2.2)

with x = (x1, · · · , xn) ∈ Rn and ω= (ω1, · · · ,ωn) ∈ Rn being the space and the frequency domain
variables, respectively. Also, ‖ f ‖α represents the α-(pseudo)norm of f for any positive value α.
The notation 〈·, ·〉 is the standard inner product of two vectors, functions or a linear functional
with a test function.

To denote the action of an operator L acting on a function f , we use the forms of L f or L{ f }(x)

depending on if we want to mention the whole function or its value at a specific point. P(A) and
E[X ] stand for the probability of the event A and the expected value of the random variable X .
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2.2 Sparse Stochastic Processes

To define a stochastic process, several different approaches have been proposed up to now. Each
approach has its own advantages and limitations. Most of the conventional approaches are
based on constructing the sample paths of the processes. Although this constructions give us
intuitions about how a stochastic process looks like, they have technical difficulties for certain
signal processing procedures. For examples, taking a signal into a transformation domain is very
common in signal processing. But, with these constructions of stochastic processes, it is usually
complicated to characterize the transform domain properties of the stochastic processes.

In [20], the authors proposed a framework for defining stochastic processes that are very con-
venient for studying transform domain operations. Although it is a relatively old framework, it
did not attract much attention within the signal processing community due to its mathematical
technicalities. Recently, the authors of [18, 19, 23], reinterpreted this theory into the conventional
language of signal processing which is now very handy to work with. In the following subsections,
we give a brief preliminary about this framework.

2.2.1 Innovation Model

In [18], the authors define a sparse stochastic process s as the solution of the linear differential
equation

Ls = w (2.3)

where L is a suitable differential operator and w a Gaussian/non-Gaussian continuous-domain
white noise (or innovation process). However, the more interesting noises are the non-Gaussian
ones which are actually the source of the adjective “sparse" in the name of these processes.
Formally, (2.3) results into the solution

s = L−1w (2.4)

where the linear operator L−1 is the inverse of the whitening operator L, which also indicates that
a sparse stochastic process is a filtered version of a non-Gaussian white noise.

The delicate aspect with this simple operational description is that w is a highly singular entity
that does not admit an interpretation as a conventional function of the time variable t (think
of w as the stochastic counterpart of the Dirac distribution δ whose explicit definition as a
tempered distribution is 〈δ,ϕ〉 =ϕ(0) for all “test” functions ϕ). In fact, specifying a stochastic
process s in this framework is equivalent to prescribing the probability law of the random vector[〈s,ϕ1〉, · · · ,〈s,ϕN 〉]> for any N test functions

{
ϕ1, · · · ,ϕN

}
. The mathematical framework for
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2.2. Sparse Stochastic Processes

the correct interpretation of (2.4) is Gelfand’s theory of generalized stochastic processes [20],
which is briefly summarized as follows:

White Noise

The theory starts with the definition of the white noise. A generalized white noise is a probability
measure on the dual space of a set of test functions ϕ : R→ R (typically, Schwartz space of
tempered distributions) that has the following properties:

• For a given test function ϕ, the statistics of the random variable 〈w,ϕ〉 do not change upon
shifting ϕ, where w denotes a generic random element in the dual space of test functions .

• If the test functions in the collection {ϕβ}β∈B (B is an index set) have disjoint supports,
then the random variables in {〈w,ϕβ〉}β∈B are independent.

Under some mild regularity conditions, there is a one-to-one correspondence between the infinitely
divisible random variables and the white noises specified above. A random variable X is
called infinite divisible if for any n ∈N, there exists n iid random variables X1 to Xn such that
X1 +·· ·+Xn has the same distribution as X . Thus, if the characteristic function of X is

E
[
ejωX ]= e f (ω), (2.5)

then for any n ∈N, exp
( 1

n f (ω)
)

is also a valid characteristic function of a random variable. The
function f is called the Lévy exponent of the infinite-divisible random variable X . Now, the
white noise corresponding to the random variable X is the random process w for which we have

E

[
exp

(
j

N∑
i=1

ωi 〈w,ϕi 〉
)]

= exp

(∫
R

f

(
N∑

i=1
ωiϕi (x)

)
dx

)
(2.6)

where ϕ1 to ϕN are N arbitrary test functions. This completely characterizes the white noise w .

Stochastic Processes

To define the stochastic process s in (2.4), we take advantage of the formula

〈s,ϕ〉 = 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ〉 (2.7)

where L−1∗ is the adjoint operator of L−1. It means that one can readily deduce the statistical
distribution of 〈s,ϕ〉 given the white noise w and the operator L−1∗. The combination of (2.6)

7
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and (2.7) gives the complete characterization of the process s, i.e.

E

[
exp

(
j

N∑
i=1

ωi 〈s,ϕi 〉
)]

= exp

(∫
R

f

(
N∑

i=1
ωi L−1∗{ϕi }(x)

)
dx

)
(2.8)

for any N test functions ϕ1 to ϕN .

2.2.2 Symmetric-α-Stable (SαS) White Noise

An important family of white noises is the α-stable ones. They are an extension of the Gaussian
white noise that play a central role in the theory of stochastic processes. In this thesis, we focus
on this class of white noises; specifically the symmetric-α-stable (SαS) white noises. It is a rich
family that exhibit a wide range of desirable properties to model practical signals which will be
discussed later. Additionally, such stable models are attractive for statistical signal processing
because they lend themselves well to analytic calculations [24]. Areas of applications include
detection theory [25], communications [26], and signal denoising [27].

To describe the SαS white noises, we first describe the SαS random variables.

Definition 1. The random variable X is SαS if its characteristic function is of the form

E
[
ejωX ]= e−‖aω‖αα , (2.9)

for some a ∈R+. Notice that in order for (2.9) to be a valid characteristic function α needs to
be in (0,2], where α = 2 corresponds to the Gaussian case. The quantity aα is known as the
dispersion parameter which plays a role similar to the variance of Gaussian random variables.

We also recall a fundamental property of stable distributions that can also serve as their definition.

Property 1 (Linear combination of SαS random variables). Let r̄ =∑N
n=1 anrn where the rm are

iid SαS random variables that have the same distribution as an SαS random variable r . Then, r̄

is an SαS random variable as well with the same distribution as ‖[a1, · · · , aN ]‖α r [24].

To establish this property, we consider N iid SαS random variables r1, . . . ,rN with common char-
acteristic function exp(−|aω|α), and a corresponding sequence of real-valued weights a1, . . . , aN .
The characteristic function of the random variable r̄ =∑N

n=1 anrn is given by

p̂ r̄ (ω) =
N∏

n=1
e−|a anω|α = e−

∣∣a
(∑N

n=1 |an |α
)1/α

ω
∣∣α

. (2.10)

Thus, r̄ , which is a linear combination of iid SαS random variables, is an SαS random variable
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2.3. Discrete Wavelet Transform

with the same distribution as one of them multiplied by the factor (
∑N

n=1 |an |α)1/α; i.e.

r̄
d=

( N∑
n=1

|an |α
)1/α

r1. (2.11)

It is easy to see that stable distributions belong to the class of infinite divisible distributions.
Thus, there exist corresponding white noises that are called SαS white noises. According to
(2.5), the Lévy exponent corresponding to r is f (ω) =−|aω|α. Therefore, according to (2.6), the
corresponding SαS white noise w is characterized as follows

E

[
exp

(
j

N∑
i=1

ωi 〈w,ϕi 〉
)]

= exp

(∫
R

∣∣∣ N∑
i=1

ωiϕi (x)
∣∣∣αdx

)

= exp

(∥∥∥a
N∑

i=1
ωiϕi (x)

∥∥∥α
α

)
(2.12)

where ϕ1 to ϕN are any N number of test functions. Specifically, for a random variable 〈w,ϕ〉,
we have

p̂〈w,ϕ〉(ω) = E[
ejω〈w,ϕ〉]= e−|a‖ϕ‖αω|α (2.13)

which is the characteristic function of the SαS random variable with dispersion parameter aα‖ϕ‖αα.
This means that the observation of an SαS white noise through any window is an SαS random
variable.

The case of α= 2 is the well studied Gaussian distribution. Except that, the probability density
function (pdf) of an SαS random variable is heavy tailed for α< 2. Precisely, it decays with the
order of x−(α+1) asymptotically. Therefore, according to [12] and [13], these white noises are
good candidates for modelling sparse processes.

2.3 Discrete Wavelet Transform

Another main ingredient of this thesis are the wavelet bases and frames. In this subsection, we
provide a brief preliminaries about them which is enough to comprehend the next chapters.

The construction of wavelets start with the notion of a multi-resolution analysis for L2(R). Assume
that {Vi }i∈Z is a sequence of linear subspaces of L2(R) that satisfy the following three conditions:

1. Vi are nested, i.e. for all i ∈Z, we have

Vi ⊆Vi+1. (2.14)

9
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2. They generate L2(R), i.e.⋃
i∈Z

Vi = L2(R) (2.15)

where bar means the set closure operation.

3. Their intersection is empty, i.e.⋂
i∈Z

Vi =;. (2.16)

Also, assume that Vi is generated by the shifted versions of a single function ϕi over a uniform
grid, i.e.

Vi = span
{
ϕi j (x)

∣∣ϕi j (x) =ϕi (x − j Ti )
}

(2.17)

where Ti is the step size of grid corresponds to Vi . Now, this sequence of nested spaces gives us
a multi-resolution basis for L2(R) since by increasing i , projection of a function f ∈ L2(R) on Vi

results in an approximation of f with an intuitively higher resolution. This structure implies that
there exist hi j ∈R for i , j ∈Z such that

ϕi (x) = ∑
j∈Z

hi jϕi+1, j (x). (2.18)

Now, let Wi be the orthogonal complement of Vi inside Vi+1 (see (2.14)). Thus, we can write

Vi+1 =Vi ⊕Wi (2.19)

where ⊕ denotes the direct sum of vector spaces. Using this expression recursively, according to
(2.15), we deduce that, for any fixed i0 ∈Z,

Vi0 ⊕
∞⊕

i=i0

Wi =
∞⋃

i=i0

Vi = L2(R). (2.20)

Incorporating (2.16), we obtain⊕
i∈Z

Wi = L2(R). (2.21)

Since Wi is orthogonal to Vi and V j ⊆ Vi for all j < i , Wi is orthogonal to W j when i 6= j .
Hence, {Wi }i∈Z is a sequence of orthogonal spaces. Moreover, under certain conditions Wi is
also generated by shifted versions of a function ψi on the grid with step size Ti , i.e.

Wi = span
{
ψi j (x)

∣∣ψi j (x) =ψi (x − j Ti )
}

. (2.22)

Thus, relying on (2.20) for any i0 ∈Z,
{
ϕi0 j

}
j∈Z∪

{{
ψi j

}∞
i=i0

}
j∈Z generates L2(R). Also, relying
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on (2.21),
{
ψi j

}
i , j∈Z generates L2(R) as well. These two basis for L2(R) are called the wavelet

bases.

Similar to (2.18), we can also write

ψi (x) = ∑
j∈Z

gi jϕi+1(x − j Ti+1) (2.23)

with gi j ∈R for all i , j ∈Z. These coefficients hi j and gi j allow us to perform a fast algorithm
for calculating the representation coefficients of a function in the wavelet bases described above
[28].

2.3.1 Conventional Wavelets

In a conventional wavelet basis, it is additionally assumed that ϕi are dilated versions of a fixed
function ϕ for any i . Precisely, we have

ϕi (x) = 2
i
2ϕ(2i x) (2.24)

(the multiplicative constant is to keep the L2-norm of all ϕi fixed). It is also assumed that Ti = 2−i .
Consequently, we have

ϕi j (x) =ϕi (x − j Ti ) = 2
i
2ϕ(2i x − j ). (2.25)

Considering the case of i = 0, by substituting (2.24) in (2.18), we obtain

ϕ(x) =ϕ0(x) = ∑
j∈Z

h0 jϕ1
(
x −2−1 j

)
=p

2
∑
j∈Z

h0 jϕ0
(
2x − j

)
=
p

2
∑
j∈Z

h0 jϕ
(
2x − j

)
. (2.26)

This equation means that ϕ has a kind of fractal property since it is a linear combination of shifts
of its contracted version. According to (2.26), for any i ∈Z, we can write

ϕi (x) = 2
i
2ϕ(2i x)

= 2
i+1

2
∑
j∈Z

h0 jϕ
(
2i+1x − j

)
= ∑

j∈Z
h0 jϕi+1

(
x − j Ti+1

)
. (2.27)

Therefore, when (2.24) holds, the hi j in (2.18) are equal to h0 j irrelevant to i . Thus, we drop the
index 0 in h0 j from now on (so we just write h j ).
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Also, we can deduce that there exist a function ψ(x) such that for any i , we have

ψi (x) = 2
i
2ψ(2i x) (2.28)

and gi j in (2.23) equals g0 j for all i . We drop the index i for gi j , too.

Therefore, in brief, a conventional wavelet basis is
{
ϕi0 j

}
j∈Z∪

{{
ψi j

}∞
i=i0

}
j∈Z or

{
ψi j

}
i , j∈Z that

generates L2(R) and in which we have

ϕi j (x) = 2
i
2ϕ(2i x − j ), (2.29)

ψi j (x) = 2
i
2ψ(2i x − j ). (2.30)

Also, the function ϕ and ψ satisfy the two-scale relation

ϕ(x) =p
2

∑
j∈Z

h jϕ
(
2x − j

)
, (2.31)

ψ(x) =p
2

∑
j∈Z

g jϕ
(
2x − j

)
. (2.32)

They are called the father wavelet (or scaling function) and the mother wavelet, respectively.
Moreover, the sequences {h j } j∈Z and {g j } j∈Z are respectively the impulse response of a low-pass
and a high-pass filter. These filters play a fundamental role in Mallat’s efficient filter-bank
implementation of the wavelet decomposition [28].

The most famous wavelets are Daubechies wavelets [29] that are compactly supported in the time
domain and Meyer wavelets [30] that are compactly supported in the Fourier domain. We explain
the latter later on due to their importance in this thesis.

2.3.2 Operator-like Wavelets

Conventional wavelet bases act as smoothed versions of the derivative operator [31]. However,
there exist multi-resolution wavelet-like bases which essentially behave like a given differential
operator L. These bases are called operator-like wavelets [32]. The operator-like wavelet at scale
i and location j is given by

ψi j (x) = L∗{φi }(x − j 2−i T ), (2.33)

where φi is a scale-dependent smoothing kernel.

In our study, we work only with operator-like wavelets tailored to first order differential operators
L = D+κI where D is the differentiator and κ is a non-negative real number (they are also called
first order autoregressive (AR(1)) systems). In this case, the operator-like wavelets proposed
in [32] are very similar to Haar wavelets [33] (or first order Daubechies wavelets). The only
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difference is that Haar wavelets are piecewise constant while these operator-like wavelets are
piecewise exponential. Indeed, we have

ψi j (t ) ∝ e−2−iκTβκ,2−i T (t − j 2−i T )−βκ,2−i T (t − ( j +1)2−i T )

=



0 t < j 2−i T

e−κ(t−( j−1)2−i T ) j 2−i T ≤ t < ( j +1)2−i T

−e−κ(t−( j+1)2−i T ) ( j +1)2−i T ≤ t < ( j +2)2−i T

0 ( j +2)2−i T ≤ t

. (2.34)

where βκ,2−i T is the exponential B-spline with parameters κ and 2−i T [19]. In essence, this
amounts to replacing the finite-difference operations of the conventional wavelet transform
algorithm by a suitable series of linear prediction errors where the coefficients are determined
by the pole of the AR(1) system. In contrast with conventional wavelets, operator-like wavelets
have scale dependent hi j and gi j coefficients. However, it does not affect the efficiency of the
filter-bank implementation of them.

2.3.3 One-Dimensional Wavelet Frames

The story of conventional wavelets can be told from another point of view. Assume that for a
given function ψ, we define

ψi j (x) = 2
i
2ψ(2i x − j ) (2.35)

for i , j ∈Z, the same as what we had in the previous subsection. For
{
ψi j

}
i , j∈Z to be a frame (not

necessarily a basis) for L2(R) with robust reconstruction, there need to exist A,B > 0 such that for
any f ∈ L2(R), we have [34]

A‖ f ‖2
2 ≤

∑
i , j∈Z

|〈 f ,ψi j 〉|2 ≤ B‖ f ‖2
2. (2.36)

If A = B , then the frame is called a tight frame. Also, there exist a dual frame
{
ψ̃i j

}
i , j∈Z, which

gives us the representation coefficients, i.e.

f (x) = ∑
i , j∈Z

〈 f ,ψ̃i j 〉ψi j (x) (2.37)

for any f ∈ L2(R).

In [34], it is shown that for a given ψ, A and B which satisfy (2.36) can be calculated as

A = inf
ρ

{ ∑
i∈Z

∣∣ψ̂(2iρ)
∣∣2 − ∑

k∈Z\{0}

(
θ(2πk)θ(−2πk)

) 1
2

}
(2.38)
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and

B = sup
ρ

{ ∑
i∈Z

∣∣ψ̂(2iρ)
∣∣2 + ∑

k∈Z\{0}

(
θ(2πk)θ(−2πk)

) 1
2

}
(2.39)

where ψ̂ is the Fourier transform of ψ and

θ(s) = sup
ρ

∑
`∈Z

∣∣ψ̂(2`ρ)
∣∣∣∣ψ̂(2`ρ+ s)

∣∣. (2.40)

Therefore, if we assume that ψ is band-limited over [−π,π] and∑
i∈Z

∣∣ψ̂(2iρ)
∣∣2 = 1, (2.41)

then we get a frame which is tight with A = B = 1. These wavelets have two favorable properties.
The first one is norm preservation due to their tight frame property with A = B = 1. This property
implies that the dual frame is the same as the original frame, i.e.

f (x) = ∑
i , j∈Z

〈 f ,ψi j 〉ψi j (x). (2.42)

for any f ∈ L2(R), which is important in reconstruction applications. The second one is the band-
limitedness that can be translated into an efficient wavelet transform algorithm in the Fourier
domain.

Meyer Wavelet Bases

An interesting subfamily of wavelets that satisfy (2.41) are the Meyer wavelets. Meyer wavelets
are not only tight frames but also orthonormal bases [30, 34]. This subfamily is characterized by
a function v : [0,1] →R such that

v(ρ)+ v(1−ρ) = 1. (2.43)

Having this function, the mother wavelet profile in Fourier domain is

ψ̂(ρ) = ejρ/2 ×


sin

(
π
2 v( 3

2π |ρ|−1)
)
, 2π

3 < |ρ| ≤ 4π
3

cos
(
π
2 v( 3

4π |ρ|−1)
)
, 4π

3 < |ρ| ≤ 8π
3

0, otherwise

. (2.44)

Notice that the dilation that expands the support of ψ̂(ρ) to
[−8π

3 ,−2π
3

]∪ [2π
3 , 8π

3

]
, rather than a

subset of [−π,π], is crucial to obtain an orthonormal basis and not only a tight frame. In fact,
this specific construction results in miraculous cancelations (stated as such by Daubechies [34])
that result in the emergence of a basis. Moreover, this charaterization helps us to easily change
different properties of the wavelet such as localization while keeping it orthonormal.
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2.3.4 Two-Dimensional Isotropic Wavelet Frames

Similar to the 1-dimensional case, we can construct a wavelet frame for L2(R2). Let the mother
wavelet ψ be a function from R2 to R. The complete wavelet frame is given by

ψi ,k(x) = 2i ψ
(
2i x−k

)
, (2.45)

in which i ∈Z and k ∈Z2.

In particular, we are interested in isotropic wavelets. These wavelets are circular symmetric, thus,
enabling us to obtain orientation-free analysis of images. This means that the value of a wavelet
coefficient at a specific position does not change if one rotates the underlying image with respect
to the center of the wavelet. Mathematically, we can write

ψ(x) =ψ(r ), (2.46)

where r = ‖x‖. Here, for simplicity, we use the notation ψ both for the wavelet and for the radial
profile of the wavelet. Let h(ω) be the 2-dimensional Fourier transform of ψ(x). According to
the properties of the Fourier transform, h is also isotropic. Hence, like (2.46), we write

h(ω) = h(ρ), (2.47)

where ρ = ‖ω‖. According to [35], ψ and h are related through the Hankel transform as

ψ(r ) =H {h}(r ) =
∫ ∞

0
h(t ) J0(r t ) t dt . (2.48)

for r ≥ 0. This formula allows us to calculate the radial profile of an isotropic wavelet in space
domain from its radial profile in Fourier domain through a 1-dimensional integral, rather than
calculating 2-dimensional Fourier transforms.

The second assumption is thatψ creates a tight-frame family. According to [36, 37], this condition
is satisfied if∑

i∈Z
|h(2iρ)|2 = 1 for ∀ρ ∈R+\{0}. (2.49)

Comparing (2.49) with (2.41), we conclude that by using the Fourier transform of a 1-dimensional
mother wavelet of a tight wavelet family as radial frequency profile, we obtain a mother wavelet
of a 2-dimensional mother wavelet. Also, there is an equivalence between stating (2.49) for all
positive ρ and stating (2.49) for ρ ∈ [π2 ,π] because 2iρ, for i ∈Z, can reach any arbitrary positive
value.
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Filter-Bank Implementation of the Isotropic Wavelets

Since in practice we are working with discrete-domain signals, we are interested in obtaining
the wavelet coefficients of a discrete signal. To be precise, assume that f [k] for k ∈ Z2 is a
discrete-domain signal. Based on it, we construct a continuous-domain signal

f (x) = ∑
k∈Z2

f [k] sinc(x1 −k1)sinc(x2 −k2) (2.50)

where x = (x1, x2) ∈ R2 and k = (k1,k2). Now, we are interested in calculating the wavelet
coefficients of f (x).

To have a straightforward exact implementation of the wavelet transform, we assume that the
wavelet profile h(ρ) is supported on [π4 ,π]. We see the advantage of this assumption during the
derivation of the method. First, define the highpass hH and lowpass hL filters as

hH (ω) =


0 ‖ω‖ ≤ π

4

h(‖ω‖) π
4 < ‖ω‖ < π

2

1 π
2 ≤ ‖ω‖

, (2.51)

hL(ω) =


1 ‖ω‖ ≤ π

4

h(2‖ω‖) π
4 < ‖ω‖ < π

2

0 π
2 < ‖ω‖

, (2.52)

respectively. Notice that for these hH and hL , we have

h(ω) = hL

(ω
2

)
hH (ω), (2.53)

and also according to the tight-frame constraint (2.49), we automatically have that

h2
L(ω)+h2

H (ω) = 1. (2.54)

For i ∈Z and k ∈Z2, we have

wi ,k = 〈 f (x),ψi ,k(x)〉 = (
f (x)∗ψi ,0(x)

)(
2−i k

)
=F−1

{
f̂ (ω)2−i h

(
2−iω

)}
(2−i k). (2.55)

Since the support of f̂ (ω) is a subset of [−π,π]× [−π,π], for all i > 1, wi ,k = 0. Thus, we let

w0,k =F−1 {
f̂ (ω)hH (ω)

}
(k) (2.56)

which actually accumulates the effect of wavelet coefficients for i ≥ 0. For i < 0, according to the
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2.3. Discrete Wavelet Transform

properties of the Fourier transform, we have

F−1
{

f̂ (ω)2−i h
(
2−iω

)}
(2−i k) = 2i F−1

{
f̂
(
2iω

)
h (ω)

}
(k). (2.57)

Using (2.53), we can write

2i F−1
{

f̂
(
2iω

)
h (ω)

}
(k) = 2i F−1

{
f̂
(
2iω

)
hL

(ω
2

)
hH (ω)

}
(k). (2.58)

Notice that hL(ω) = 0 for ‖ω‖ > π
2 . Thus, downsampling F−1

{
f̂
(
2i+1ω

)
hL (ω)

}
(k) by factor of

2, we obtain F−1
{

f̂
(
2iω

)
hL

(ω
2

)}
(k) without any frequency aliasing. Also, notice that

hL

(ω
2

)
hL(ω) = hL(ω). (2.59)

These yield that by filtering F−1
{

f̂
(
2iω

)
hL

(ω
2

)}
(k) with hL(ω) and then downsampling by the

factor of 2, we get F−1
{

f̂
(
2i−1ω

)
hL

(ω
2

)}
(k). Combining this fact with (2.58), one can use the

recursive Algorithm 1 for calculating the wavelet coefficients of a discrete signal f :

Algorithm 1: Efficient Recursive Method for Calculating the Wavelet Coefficient of a Discrete
Signal

1: input: f [k] for k ∈Z2

2: f0 ← f
3: for j = 0 to ∞ do
4: wi ,k ←F−1

{
f̂i (ω)hH (ω)

}
(k)

5: fi−1[k] ← (1
2 F−1

{
f̂i (ω)hL (ω)

}
(k)

) ↓ 2
6: i ← i −1
7: end for
8: return {{wi ,k}k∈Z2 }i∈Z\N

Therefore, Algorithm 1 gives us an efficient implementation of the wavelet transform for discrete
signals which is equivalent to the standard decimated filter-bank implementation of wavelets. The
only difference is that we do not down-sample the wavelet coefficients in the high-pass channel
of highest resolution (w0,k) which means that the redundancy factor of these frames are 4/3.
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3 Optimal Representation of Sparse
AR(1) Processes

The discrete cosine transform (DCT) is known to be asymptotically equivalent to the Karhunen-
Loève transform (KLT) of Gaussian stationary processes including first-order auto-regressive
(AR(1)) ones. Since being uncorrelated under the Gaussian hypothesis is synonymous with
independence, it also yields an independent-component analysis (ICA) of such signals. In this
chapter, we present a constructive non-Gaussian generalization of this result: the characterization
of the optimal orthogonal transform (ICA) for the family of symmetric-α-stable AR(1) processes.
The degree of sparsity of these processes is controlled by the stability parameter 0 < α ≤ 2

with the only non-sparse member of the family being the classical Gaussian AR(1) process
with α= 2. Specifically, we prove that, for α< 2, a fixed family of operator-like wavelet bases
systematically outperforms the DCT in terms of compression and denoising ability. The effect
is quantified with the help of two performance criteria (one based on the Kullback-Leibler
divergence, and the other on Stein’s formula for the minimum estimation error) that can also
be viewed as statistical measures of independence. Finally, we observe that, for the sparser
kind of processes with 0 < α≤ 1, the operator-like wavelet basis, as dictated by linear system
theory, is undistinguishable from the ICA solution obtained through numerical optimization. Our
framework offers a unified view that encompasses sinusoidal transforms such as the DCT and a
family of orthogonal Haar-like wavelets that is linked analytically to the underlying signal model.

3.1 Introduction

Transform-domain processing is a classical approach to compress signals, model data, and extract
features. The guiding principle is to produce transform-domain coefficients that are decoupled
statistically so that a simple component-wise processing can be applied; i.e, each coefficient is
processed independently of the others. The reference solution in the field is the Karhunen-Loève
transform (KLT) which yields transform-coefficients that are uncorrelated and therefore also
independent, provided the process is Gaussian. Also, if the process is stationary with finite
variance and infinite length, then the KLT is a Fourier-like transform [3]. Moreover, it has been
shown that the discrete cosine transform (DCT) [38] is asymptotically equivalent to the KLT for
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Chapter 3. Optimal Representation of Sparse AR(1) Processes

the whole class of stationary processes [4], including the AR(1) model [39]; thus, for a Gaussian
input, all these transforms result in a fully decoupled (independent) representation. However, this
favorable independence-related property is extinguished for non-Gaussian processes. In this case,
the coefficients are only partially decoupled and the representation of the signal afforded by the
KLT is no longer optimal.

In recent years, wavelets have emerged as an alternative representation of signals and images.
Typical examples of successful applications are JPEG2000 for image compression [40] and
shrinkage methods for attenuating noise [7, 41]. The fact that wavelets are so effective in
transform-domain applications suggests that they are naturally suited to represent practical
processes. This empirical observation was established by early studies that include [10], where
many natural images were subjected to an independent-component analysis (ICA). It was found
that the resulting components have properties that are reminiscent of 2D wavelets and/or Gabor
functions. Additional ICA experiments were performed in [15] on realizations of the stationary
sawtooth process and of Meyer’s ramp process [42]; for both processes, the basis vectors of ICA
exhibit a wavelet-like multiresolution structure.

Despite their empirical usefulness, the optimality of wavelets for the representation of non-
Gaussian stochastic processes remains poorly understood from a theoretical point of view.
An early study can be traced back to [43], where the decomposition of fractional Brownian
motions over a wavelet basis was shown to result in almost uncorrelated coefficients, under
some conditions. By contrast, in the deterministic framework, it is well known that wavelets are
optimal (up to some constant) for the N -term approximation of functions in Besov spaces [14];
the extension of this result to a statistical setting could be achieved only experimentally.

The general distributional framework for the specification of sparse stochastic processes presented
in Section 2.2 is particularly well suited to the specification of symmetric-α-stable (SαS) white
noises. These noises can be used to drive first-order stochastic differential equations (SDE) to
synthesize AR(1) processes. As it turns out, AR(1) systems and α-stable distributions are at
the core of signal modeling and probability theory. As discussed in Section 2.2.2, the classical
Gaussian processes correspond to α= 2, while 0 <α< 2 yields stable processes that have heavy-
tailed statistics and that are prototypical representatives for sparse signals. Also, specifically
heavy-tailed AR have been used to model phenomena in network [44], sea surface [45], economy
and finance [46].

In this chapter, we take advantage of the framework presented in Section 2.2 to establish the
optimality of a certain class of wavelets in a stochastic sense. We start by characterizing the
amount of dependency between the coefficients of stochastic processes represented in an arbitrary
transform domain. To that end, we introduce two performance criteria. The first assesses the
coding performance of the transform: it is given by the Kullback-Leibler divergence between the
joint probability density function (pdf) of the original signal and the product of the marginals
in the transformed domain. The second is a theoretical prediction of denoising performance
under the hypothesis of additive white Gaussian noise (AWGN). It is based on Stein’s formula
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3.2. Information Theoretic Performance Measures

for the mean-square estimation error and also takes the form of a divergence between the joint
pdf of the original signal and the product of the marginals in the transformed domain. Then,
we seek the orthogonal transformation that minimizes these statistical criteria. We confirm the
loss of optimality of the DCT for 0 < α < 2 and validate the superiority of a special brand of
operator-like wavelet transform that is matched to the underlying signal model (see Section 2.3.2).
Our reference method in this comparison is the ICA solution that is determined by numerical
means for different values of α. The remarkable empirical finding of this chapter is that the
ICA solution converges to the operator-like wavelets for values of α below one. Moreover, the
practical relevance of these results is that, unlike ICA, the operator-like wavelets are known in
analytical form in terms of the pole of the underlying system

(
see Eq. (2.34)

)
.

This chapter is organized as follows: In Section 3.2, we introduce two measures of divergence
between distributions that are suitable for either noise attenuation or compression applications.
The signal model fundamental to this chapter is discussed in Section 3.3. In Section 3.4, we
derive the explicit form of our performance criteria for the SαS model in the context of transform-
domain compression and noise attenuation. In addition, we provide an iterative algorithm to find
the optimal basis (Section 3.5). Results for different AR(1) processes and different transform
domains are discussed in Section 3.6. The last section is dedicated to the recapitulation of the
main results, the relation to prior works, and topics for future studies.

3.2 Information Theoretic Performance Measures

In statistical signal processing, it is of interest to precisely quantify the best-achievable perfor-
mance when the model is not perfectly matched to the signal under investigation, or when certain
simplifying hypothesis, such as independence, are being made. In the following, we address this
issue for the two problems of compression and denoising when the assumed distribution and the
real one may differ.

3.2.1 Compression Based on Non-Exact Distribution

It is well-known that, if we have a source s of iid random vectors with common pdf ps, then the
logarithm of measure of the coding set per sample can be at least

H(ps) =−
∫

ps(s) log ps(s)ds (3.1)
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which is the entropy1 of the source [47]. However, if we compress s assuming that it is distributed
according to qs (rather than ps), then

H(qs) = H(ps)+D(ps‖qs)

= H(ps)+
∫

ps(s) log
ps(s)

qs(s)
ds (3.2)

in which D(·‖·) is the Kullback-Leibler divergence.

Typically, when there is a statistical dependency between the entries of s, compressing the vector
based on the exact distribution is often intractable. Thus, the common strategy is to expand the
vector in some other basis and to then do the compression entry-wise (neglecting the dependency
between entries of the transformed vector). This is equivalent to doing the compression assuming
that the signal distribution is the product of the marginal distributions. Thus, if the transformed
vector is y = Hs, then the normalized redundant information remaining in the compressed signal
is

R(H) = 1

N

(
H(py1 (y1) · · ·pyN (yN ))−H(ps)

)
= 1

N
D(py

(
y
)‖py1 (y1) · · ·pyN (yN )), (3.3)

where N is the number of entries in s. This is the first measure of performance of the transform
H that we use in this chapter. Also, this criterion is commonly used in ICA to find the “most-
independent” representation [48].

3.2.2 Denoising Based on Non-Exact Distribution

Although the Kullback-Leibler divergence is widely used to measure the distance between two
distributions, it is inherently tied to the application of compression. Here, we introduce a novel
measure of divergence between distributions that is more specifically targeted to the classical
denoising task. Consider the problem of estimating s from the noisy measurement

z = s+n (3.4)

where n is an N -dimensional Gaussian random vector with iid entries with variance σ2 that is
also independent from s. Our prior knowledge is the N th order pdf ps(·) of the signal. Under
these assumptions and according to Stein [49], the optimal signal estimator that obtains minimum

1H(·) is used for the random variable or its pdf interchangeably.
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mean-square error (MMSE) is

E [s|z] = z+σ2∇ log pz(z) (3.5)

where E [s|z] is the expected value of s given z, pz(z) = (
ps ∗pn

)
(z) is the N th order pdf of the

noisy measurements, and ∇ represents the gradient operator. Thus, the MSE given z is

E
[
(s−E [s|z])2

∣∣z]= ∫
‖s−z‖2 p(s|z)ds−σ4

∥∥∇ log pz(z)
∥∥2

= Nσ2 +σ4∆ log pz(z). (3.6)

where ∆ is the Laplacian operator. Averaging over z, we have

MMSE = Nσ2 −σ4
∫

pz(z)
∥∥∇ log pz(z)

∥∥2 dz

= Nσ2 +σ4
∫

pz(z)∆ log pz(z)dz, (3.7)

However, if we apply this signal estimator based on an incorrect prior qs (instead of the true
distribution ps) as the distribution of s, then by using (3.5)-(3.7), the MSE of estimation becomes

MSE(qs) =MMSE+σ4
∫

pz(z)

∥∥∥∥∇ log
pz(z)

qz(z)

∥∥∥∥2

dz (3.8)

where qz(z) is the distribution induced on z in (3.4) when the distribution on s is qs(s). Here,
notice the pleasing similarity between (3.1)-(3.2) and (3.7)-(3.8).

If the entries of s are dependent, then the entries of z are dependent, too. Then, performing the
exact MMSE estimator is once again often infeasible. The common scheme is then to take z into
a transform domain, perform an entry-wise denoising (regardless of the dependency between
coefficients), and map the result back into the original domain. This is justifiable when the
transformation H is unitary because the transform-domain noise remains Gaussian iid while the
`2-norm of the signal is preserved. Hence, the expected performance of this scalar denoising
scheme is MSE(p ỹ1 (ỹ1) · · ·p ỹN (ỹN )) where p ỹn (ỹn) is the marginal distribution of the nth entry
of ỹ = Hz. We write this as a function of H normalized by the dimensionality of s, with

MSE(H) = 1

N
MSE(p ỹ1 (ỹ1) · · ·p ỹN (ỹN )) (3.9)

which is the second measure of performance that we consider in this chapter.
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3.3 Continuous-Time SαS AR(1) Processes

In this section, we present a continuous-domain description of a SαS AR(1) process as the
solution of a first-order stochastic differential equation. This differential formulation is central to
our argumentation since it results in the identification of the operator-like wavelets, as discussed
in Section 2.3.2. We also show that the continuous-domain representation is consistent with the
more standard discrete AR(1) model in the sense that the latter is the sampled version of the
former.

In the case of an AR(1) process, we have that

L = D+κI (3.10)

where D and I are respectively the differentiator and the identity operator; then, s in (2.4) is a
continuous-domain SαS AR(1) process. It follows from the theory of linear systems that the
impulse response of L−1 is the causal exponential

ρκ(t ) = e−κt 1+(t ) (3.11)

where 1+(t ) is the unit step. Thus, as a function of t , we can write

s(t ) = (
ρκ∗w

)
(t ) (3.12)

where ∗ denotes the continuous-domain convolution operation. The AR(1) process is well-defined
for κ> 0. The limit case κ= 0 can also be handled by setting the boundary condition s(0) = 0,
which results in a Lévy process that is non-stationary. Realizations of AR(1) processes for
κ= 0.05 and for different values of α are depicted in Figure 3.1. When α decreases, the process
becomes sparser in the sense that its innovation becomes more and more heavy-tailed.

3.3.1 Discretization of AR(1) Processes

Now, for a given integer k and time period T , we set

ϕk (t ) = δ(t −kT )−e−κTδ (t − (k −1)T ) (3.13)

where δ is the Dirac impulse, and define wk as

wk = 〈s,ϕk (t )〉 = s(kT )−e−κT s((k −1)T ). (3.14)
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Figure 3.1 – Examples of AR(1) processes for different α.

This means that the sampled version {sk = s ((k −1)T )}k∈Z of s(t ) satisfies the first-order differ-
ence equation

sk = e−κT sk−1 +wk . (3.15)

Also, we have that

wk = 〈s,ϕk (t )〉 = 〈w, (ρ̌κ∗ϕk )(t )〉 (3.16)

where ρ̌κ(t ) = ρκ(−t ) is the impulse response of L−1∗ in (2.7). Also,

(ρ̌κ∗ϕk )(t ) =βκ,T (t −kT ) = 1[
kT,(k+1)T

)e−κ(t−kT ) (3.17)

where 1[
kT,(k+1)T

) is the indicator function of the set
[
kT, (k +1)T

)
. The fundamental property

here is that the kernels
{
βκ,T (·−kT )

}
k∈Z are shifted replicates of each other and have compact

and disjoint supports. Thus, according to the definition of a white noise in Section 2.2.2, {wk }k∈Z
is an iid sequence of SαS random variables with the common characteristic function

p̂w (ω) = E
[

ejω〈w,βκ,T 〉
]
= e−|‖βκ,T ‖αω|α . (3.18)
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The conclusion is that a continuous-domain AR(1) process maps into the discrete AR(1) process
{sk }k∈Z that is uniquely specified by (3.15) and (3.18).

We now consider N consecutive samples of the process and define the random vectors s =
[s1 · · · sN ]> and w = [w1 · · · wN ]>.

This allows us to rewrite (3.15) as

s = L−1w (3.19)

where L−1 = [
l̄i j

]
N×N and

l̄i j = e−κT ( j−i) ·1{ j≥i } (3.20)

which is the discrete-domain counterpart of (3.11).

In the next sections, we are going to study linear transforms applied to the signal s (or s).

3.4 Performance Measures for AR(1) Processes

3.4.1 Mutual Information of Representation Coefficients

From now on, we assume that the signal vector s = [s1 · · · sN ]> with sk = s ((k −1)T ) is obtained
from the samples of an SαS AR(1) process and satisfies the discrete innovation model (3.15). The
representation of the signal s in (3.19) in the transform domain is denoted by y = [y1 · · · yN ]> =
Hs, where H = [hi j ]N×N is the underlying orthogonal transformation matrix (e.g. DCT, wavelet
transform). The idea is now to rely on Property 1 to derive the explicit form of the proposed
performance criteria under the SαS hypothesis. This, in turn, will allow us to determine the
optimal transform (ICA solution) based on numerical optimization.

Let us now use (3.3) to characterize the performance of a given transformation matrix H. First,
we simplify (3.3) to

R(H) = 1

N

N∑
n=1

H(yn)− 1

N
H(y) (3.21)

= 1

N

N∑
n=1

H(yn)−H(w1)− 1

N
logdetHL−1,

where H(·) is the differential entropy defined in (3.1). Also, we observe that logdetHL−1 = 0. In
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addition, since the wm is α-stable, according to Property 1, we can write

yn
d= h̄n w1, (3.22)

where h̄n is the α-(pseudo)norm of the nth row of HL−1 given by

h̄n =
(

N∑
r=1

∣∣∣∣∣ N∑
m=1

hnm l̄mr

∣∣∣∣∣
α) 1

α

. (3.23)

It follows that

R(H) = 1

N

N∑
n=1

log h̄n , (3.24)

which can be readily calculated for any given H.

Note 1. This criterion is reminiscent of the sum-of-dispersion criterion
∑N

n=1 h̄n which is fre-
quently used in the study of α-stable stochastic processes [50, 51]. However, unlike (3.24), the
latter dispersion criterion does not have a direct information-theoretic interpretation.

3.4.2 Denoising-Oriented Decoupling Performance

As a second option, we use the criterion (3.9) to measure the performance of a given transform
matrix H for the denoising task. Similar to the case in (3.21), it can be simplified to

MSE(H) =σ2 − σ4

N

N∑
n=1

∫ (
p ′

ỹn
(ỹn)

)2

p ỹn (ỹn)
dỹn , (3.25)

in which σ2 is the noise variance and ỹn is the nth entry of

ỹ = Hz = Hs+Hn = y+ ñ. (3.26)

Since H is a unitary matrix, ñ has the same distribution as n. Also, according to (3.22),

ỹn
d= h̄n w1 +n1, (3.27)
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where n1 is a standard Gaussian random variable. This allows us to deduce the pdf expression

p ỹn (y) = 1

h̄n
pw1

(
y

h̄n

)
∗pn1 (y) (3.28)

which involves the convolution of a rescaled SαS law with a Gaussian of standard deviation σ.
Thus, (3.25) is calculable through one-dimensional integrals.

3.5 Optimization of the Representation Basis

3.5.1 Gradient of the Measures

Based on equations (3.24) and (3.25), we can now attempt to find the optimal transformation
HICA by minimizing these expressions over the space of all orthonormal matrices of size N .

To guide this optimization process, we first derive the gradient of the cost functions R and MSE
with respect to H. Specifically, according to (3.23) and (3.24), the partial derivative of R(H) is

∂R
∂hi j

= 1

Nαh̄αi

∂h̄αi
∂hi j

(3.29)

where

∂h̄αi
∂hi j

=α
N∑

r=1
l j r sgn

(
N∑

n=1
hi k lkr

)∣∣∣∣∣ N∑
n=1

hi k lkr

∣∣∣∣∣
α−1

. (3.30)

Also, the partial derivative of MSE(H) in (3.25) is

∂MSE
∂hi j

=−σ
4

N

∂

∂h̄i

∫ (
p(1)

ỹi
(u)

)2

p ỹi (u)
du × h̄1−α

i

α

∂h̄αi
∂hi j

(3.31)

=−σ
4

N

(
2
∫

∂

∂h̄i
p(1)

ỹi
(u)

p(1)
ỹi

(u)

p ỹi (u)
du −

∫
∂

∂h̄i
p ỹi (u)

 p(1)
ỹi

(u)

p ỹi (u)

2

du

)

× h̄1−α
i

α

∂h̄αi
∂hi j
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in which p(k)
ỹi

(y) is the kth derivative of p ỹi (y) which, according to (3.28), can be written as

p(k)
ỹi

(y) = pyi (y)∗ dk

dyk

(
1p

2πσ2
e−

y2

2σ2

)
. (3.32)

Also, we have that

∂

∂h̄i
p ỹi (y) =− 1

h̄i
p ỹi (y)− y

h̄i
p(1)

ỹi
(y)− 1

h̄i
p(2)

ỹi
(y) (3.33)

and

∂

∂h̄i
p(1)

ỹi
(y) =− 2

h̄i
p(1)

ỹi
(y)− y

h̄i
p(2)

ỹi
(y)− 1

h̄i
p(3)

ỹi
(y). (3.34)

Now, since the yi have nice characteristic functions, we can calculate (3.32) efficiently through
the inverse Fourier transform

p(k)
yi

(y) =F−1
ω

{
(jω)k e−|h̄iω|α− σ2

2 ω
2
}

(y) (3.35)

using the FFT algorithm.

Thus, we can use gradient-based optimization to obtain the optimal transformations for different
values of κ, α, and N . For our experiments, we implemented a gradient-descent algorithm with
adaptive step size to efficiently find the optimal transform matrix. Since the transform matrix
may deviate from the space of unitary matrices, after each step, we project it on that space using
the method explained in the next subsection.

3.5.2 Projection on the Space of Unitary Matrices

Suppose that A is an N ×N matrix. Our goal is to find the unitary matrix H∗ that is the closest to
A in Frobenius norm, in the sense that

H∗ = argmin
H

‖A−H‖F . (3.36)

According to singular-value decomposition (SVD), we can write A = UΛV> where U and V are
unitary matrices and Λ is a diagonal matrix with nonnegative diagonal entries.
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Since the Frobenius norm is unitarily invariant, we have that

‖A−H‖F = ‖Λ−U>HV‖F (3.37)

in which U>HV is a unitary matrix that we call K. The expansion of the right-hand side of (3.37)
gives

‖Λ−K‖2
F = ∑

1≤i , j≤N
k2

i j +
N∑

i=1
λ2

i i −2
N∑

i=1
λi i ki i

= N +
N∑

i=1
λ2

i i −2
N∑

i=1
λi i ki i . (3.38)

Since K is unitary, |ki i | ≤ 1 for i = 1, . . . , N . Thus, setting ki i = 1, which means setting K = I,
minimizes (3.38). Consequently, the projection of A on the space of unitary matrices is H∗ = UV>.

3.5.3 Optimization Algorithm

Given the measure of independence C (i.e., R or MSE), the algorithm is as follows:

Algorithm 2: Steepest-Descent Algorithm with Adaptive Step-Size to Apply ICA to Discrete
SαS AR(1) Processes

1: input: N ,α,κ
2: initialize: Hold, µ, a ∈ [1,+∞) and b ∈ [0,1]
3: repeat
4: H̃new = Hold −µ∇C |Hold

5: Set Hnew to the projection of H̃new onto the space of unitary matrices
6: if C (Hnew) <C (Hold) then
7: Hold ← Hnew
8: µ← a ·µ
9: else

10: Hnew ← Hold
11: µ← b ·µ
12: end if
13: until convergence
14: return Hnew

Algorithm 3 can be viewed as a model-based version of ICA. We take advantage of the underlying
stochastic model to derive an optimal solution based on the minimization of (3.24) and (3.25),
which involves the computation of `α-norms of the transformation matrix. By contrast, the
classical version of ICA is usually determined empirically based on the observations of a process,
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but the ultimate aim is similar; namely, the decoupling of the data vector.

3.6 Numerical Results and Discussion

The majority of experiments on ICA published in the literature are data-driven. The present
formulation, by contrast, is model-based so that it does not require the generation of signal
samples. To make an analogy, it is to ICA what the Karhunen-Loève transform is to principal
components (PCA). We can therefore rely on (3.24)-(3.25) to compute the performance of a
transform analytically. Also, the optimal transform (referred to as ICA) is found numerically
by running Algorithm 2. We recall that our theoretical figures of merit are relevant to practical
signal processing: the first (mutual information) gives in a direct measure of the coding gain in a
compression experiment, while the second measures the signal-to-noise ratio (SNR) improvement
for signal denoising, as justified in Section 3.2.2.

Also, notice that the wavelet coefficients of the signal s are

vi j = 〈s,ψi j 〉 = 〈L−1w,ψi j 〉 (3.39)

= 〈w,L−1∗L∗φi (·−2i j T )〉 = 〈w,φi (·−2i j T )〉.

where we have ψi j = L∗φi (·−2i j T ). Based on this equality, according to (3.18), we understand
that, for any given i and for all j , the vi j follows an SαS distribution with dispersion parameter
‖φi‖αα. Also, since w is independent at every point, intuitively, the level of decoupling has a
direct relation to the overlap of the smoothing kernels φi (·−2i j T ). For the operator-like wavelets
decdibed in Section 2.3.2, the supports of φi (·−2i j T ) do not overlap within the given scale i .
Thus, the wavelet coefficients at scale i are independent and identically distributed. This property
suggests that this type of transform is an excellent candidate for decoupling AR(1) processes.
The illustration of plugging these wavelets into (3.39) is given in Figure 3.2.

Initially, we investigate the effect of the signal length N on the value of R and MSE. We consider
the case of a Lévy process (i.e., κ= 0) and numerically optimize the criteria for different α and
plot it as a function of N . Results are depicted in Figure 3.3. As we see, the criteria values
converge quickly to their asymptotic values. Thus, for the remainder of the experiments, we
choose N = 64. This is a block size that is reasonable computationally and large enough to be
representative of the asymptotic regime.

Then, we investigate the performance of different transforms for various processes. First, we
focus on the Lévy processes. In this case, the operator-like wavelet transform is the classical Haar
wavelet transform (HWT). The performance criteria R and MSE as a function of α for various
transforms are plotted in Figures 3.4 and 3.5, respectively. The considered transformations are
as follows: identity as the baseline, discrete cosine transform (DCT), Haar wavelet transform
(HWT), and optimal solution (ICA) provided by the proposed algorithm. In the case of α= 2

(Gaussian scenario), the process s is a Brownian motion whose KLT is a sinusoidal transform
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φ0,0 = L−1∗ψ0,0

φ1,0 = L−1∗ψ1,0

φ1,1 = L−1∗ψ1,1
Cauchy white noise

(a)

(b)

Figure 3.2 – Two equivalent interpretations of the wavelet analysis of a sparse process. (a)
Operator-like wavelets at two consecutive scales acting on an Cauchy AR(1) process. (b) The
equivalent windows (smoothing kernels) acting on the underlying Cauchy white noise. Note that
ψ1,0 and ψ1,1 (φ1,0 and φ1,1, respectively) are non-overlapping.

that is known analytically [52]. In this case, the DCT and the optimal transform converge to the
KLT since being decorrelated is equivalent to being independent. We see this coincidence in both
Figures 3.4 and 3.5. The vanishing of R at α= 2 indicates perfect decoupling. By contrast, as
α decreases, neither the DCT nor the optimal transform decouples the signal completely. The
latter means that there is no unitary transform that completely decouples stable non-Gaussian
Lévy processes. However, we see that, based on both criteria R and MSE, and as α decreases,
the DCT becomes less favorable while the performance of the HWT gets closer to the optimal
one. Moreover, Figures 3.4 and 3.5 even suggest that the Haar wavelet transform is equivalent to
the ICA solution for α≤ 1.

Also, to see the transition from sinusoidal bases to Haar wavelet bases, we plot the optimal basis
which is obtained by the proposed algorithm at two consequent scales. In Figure 3.6, we see
the progressive evolution of the ICA solution from the sinusoidal basis to the Haar basis while
changing the parameter α of the model.

Next, we consider a stationary AR(1) process with e−κT = 0.9 and n = 64. For α= 2, we get the
well-known classical Gaussian AR(1) process for which the DCT is known to be asymptotically
optimal [3, 4]. For such a process, the operator-like wavelet is known before hand and given by
(2.34). The performance criterion R versus α for the DCT, the HWT, the operator-like wavelet
matched to the process, and the optimal ICA solution are plotted in Figure 3.7. Here too we see
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Figure 3.3 – Minimum value of R(H) and MSE(H) for Lévy processes as a function of N for
different values of α. In the second plot σ2 = 1.
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Figure 3.4 – R(H) of Lévy processes versus α when N = 64 for different H.

that, for α = 2, ICA is equivalent the DCT. But, as α decreases, the DCT loses its optimality
and the matched operator-like wavelet becomes closer to optimum. Again, we observe that, for
α≤ 1, the ICA solution is the matched operator-like wavelet described in Section 2.3.2. The fact
that the matched operator-like wavelet outperforms the HWT shows the benefit of the tuning
of the wavelet to the differential characteristics of the process. Also, as shown in Figure 3.8,
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Figure 3.5 – MSE(H) of Lévy processes versus α when N = 64 for different H when σ2 = 1.

experimentally determined ICA basis functions for α= 1 are indistinguishable from the wavelets
in Figure 3.2.

To substantiate those findings, we present a theorem that states that, based on the above men-
tioned criteria and for any α< 2, the operator-like wavelet transform outperforms the DCT (or,
equivalently, the KLT associated with the Gaussian member of the family) as the block-size N

tends to infinity.

Theorem 1. If α< 2 and κ≥ 0, we have that

lim
N→∞

R(OpWT) < lim
N→∞

R(DCT) =∞ (3.40)

and

lim
N→∞

MSE(OpWT) < lim
N→∞

MSE(DCT) =σ2, (3.41)

where OpWT stands for the operator-like wavelet transform.

The proof is given in Appendix 3.A.
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Figure 3.6 – Two rows of the optimal H (ICA) for α= 2 down to 1 when N = 64. In each row,
we see the evolution from sinusoidal waves to Haar wavelets by increasing the sparsity of the
underlying innovation process.

In addition, this theorem states that, for α< 2 and as N tends to ∞, the performance of the DCT
is equivalent to the trivial identity operator. This is surprising because, since the DCT is optimal
for the Gaussian case (α= 2), one may expect that it has a good result for other AR(1) processes.
However, although this theorem does not assert that operator-like wavelets are the optimal basis,
it still shows that, by applying them, we obtain better performance than trivial transformations.
Also, through simulations, we observed that operator-like wavelets are close to optimal transform
as α gets smaller. In such extreme scenari, the probabilities densities of the signal and of its
transformed-domain coefficients are extremely heavy-tailed which conforms with a statistical
notion of sparsity [12, 13].

It is worth mentioning that, in addition to the gain in performance, operator-like wavelets are
cheaper to compute than the DCT. They can be implemented with the same type of filter-bank
algorithm as the Haar transform, the only difference being that the filters are scale-dependent.
The resulting cost is of O (N ) (two operations per coefficient) which compares favorably with
the O (N log N ) of the DCT. Using operator-like wavelets is also immensely more efficient than
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Figure 3.7 – R(H) versus α when e−κT = 0.9 and N = 64 for different H.
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Figure 3.8 – Three rows of the optimal H for α= 1 and N = 64. Parts (a) and (b) show the dyadic
structure of the wavelets.

deploying the full ICA machinery. The latter requires the estimation of the transform and then
its full matrix computation (O (N 2)) which cannot benefit from any acceleration due to lack of
structure.
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3.7 Summary

In this chapter, we focused on the simplest version (first-order differential system with an SαS
excitation) of the sparse stochastic processes which have been proposed by Unser et al [18, 19].
Because of the underlying innovation model and the properties of SαS random variables, we could
obtain a closed-form formula for the performance of different transform-domain representations
and characterize the optimal transform. This is a novel model-based point of view for ICA.
We proved that operator-like wavelets are better than sinusoidal transforms for decoupling the
sparse AR(1) processes (α< 2). This result is remarkable since sinusoidal bases are known to
be asymptotically optimal for the classical case of α= 2 [3, 4]. Moreover, we showed that, for
very sparse excitations (α. 1), operator-like wavelets are equivalent to the ICA. As far as we
know, this is the first theoretical results on the optimality of wavelet-like bases for a given class
of stochastic processes.

Another interesting aspect of this study is that it gives a unified framework for Fourier-type
transforms and a class of wavelet transforms. Now, the Fourier transform and the wavelet
transforms were based on two different intuitions and philosophies. However, here we have a
model in which we obtain both transform families just by changing the underlying parameters.

The next step in this line of research is to investigate the extent to which these findings can
be generalized to other white noises or higher-order differential operators. Also, studying the
problem in the original continuous domain would be theoretically very valuable.

3.A Proof of Theorem 1

Proof of Part 1 (Equation (3.40))

According to (3.24), we have that

R(H) = 1

N

N∑
n=1

log h̄n = 1

N

N∑
n=1

log

(
1

h̄−1
n

)
=

∫
R

log

(
1

γ

)
p

(
γ
)

dγ (3.42)

in which p(·) is the empirical distribution of h̄−1
n .

According to SVD, we can write L−1 = UΛV> where Λ is a diagonal matrix with λi as diagonal
entries. Taking s in the KLT domain is equivalent to multiplying it by U>. The eigenvalues of the
covariance of AR(1) matrices are known in closed form and are given by [53] and [54], for κ≥ 0,
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as

|λi |−1 =
√(

1−e−κT
)2 +4e−κT sin2

(ωi

2

)
(3.43)

and

vi j =
p

2√
N + (

1−e−2κT
)
λ2

i

sin

(
ωi

(
j − N +1

2

)
+ i

π

2

)
(3.44)

in which ωi , i = 1, . . . , N , is the i th positive root of

tan(Nω) =−
(
1−e−2κT

)
sinω

cosω−2e−κT +e−2κT cosω
. (3.45)

Since tan(Nω) is an injective function that sweeps the whole domain of the real numbers while
ω ∈ [ i−1

N π, i
N π

]
, for i = 1, . . . , N , (3.45) has a single root in each of such intervals. Thus, as N

tends to infinity, the empirical distribution of the ωi tends to the uniform distribution on [0,π].
Then, starting from (3.43), one can obtain the limit empirical distribution of |λi | as

pλ(λ) = 2

π

λ√
λ2 − (

1−e−κT
)2

√(
1+e−κT

)2 −λ2
. (3.46)

Now,
∑N

j=1 v2
i j = 1 means that

N∑
j=1

∣∣∣∣sin

(
ωi

(
j − N +1

2

)
+ i

π

2

)∣∣∣∣2

∼O (N ) (3.47)

as N tends to infinity. But, for α< 2, we have that

(
N∑

j=1

∣∣∣∣sin

(
ωi

(
j − N +1

2

)
+ i

π

2

)∣∣∣∣α
) 1
α

≥ (3.48)

(
N∑

j=1

∣∣∣∣sin

(
ωi

(
j − N +1

2

)
+ i

π

2

)∣∣∣∣2
) 1
α

∼O (N
1
α ).

Thus, for α< 2,
(∑N

j=1

∣∣vi j
∣∣α ) 1

α grows faster than O (N
1
α
− 1

2 ) and thus tends to infinity as N tends
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to infinity. Consequently, the limit empirical distribution of h̄−1
i can be represented as

p(γ) =


2
π

γ√
γ2−(1−e−κT )2

√
(1+e−κT )2−γ2

α= 2

δ(γ) α 6= 2.
(3.49)

By plugging this result into (3.42), we conclude that, for α < 2, limN→∞R(KLT) =∞. This
completes the proof of the right-hand side.

Now, for the proof of the left-hand side, we need to specify the matrix H for the operator-like
wavelet transform. This matrix is given by the recursive construction

Hk =


p

1−e−2κTp
1−e−2k+1κT

0 ~0k−1

0
p

1−e−2κTp
1−e−2k+1κT

~0k−1

~0 >
k−1

~0 >
k−1 Ik−1

×


`k−1 e−2k−1κT`k−1

−e−2k−1κT`k−1 `k−1

H′
k−1 0

0 H′
k−1

 (3.50)

in which~0k−1 is the 2k−1-dimension zero row vector, Ik−1 is the 2k−1 ×2k−1 identity matrix,
H′

k−1 is the matrix Hk−1 omitting the first row and

`k−1 =
[

1 e−κT . . . e−(2k−1−1)κT
]

. (3.51)

Also, H0 = [1]. Let us denote the empirical distribution of h̄−1
i (the reciprocal of the α-(pseudo)

norm of the rows of Hk L2k ) by pk (γ) = ∑k
i=1 piδ(γ−γi ). Now, for the sequence of pi and γi ,

with respect to k, we have the following recursive relation:

• Replace pk−1 by
( pk−1

2 , pk−1

2

)

• Remove γk−1. Then, if κ> 0, set

γk−1 =
√

1−e−2k+1κT

p
1−e−2κT

(
2k−1∑

i=−2k−1+1

(
e−|i |κT −e−(2k−|i |)κT

1−e−2κT

)α)− 1
α

(3.52)

and

γk =
√

1−e−2k+1κT

p
1−e−2κT

(
2k∑

i=1

(
1−e−2iκT

1−e−2κT

)α)− 1
α

(3.53)

else, if κ= 0, set

γk−1 = 2
k
2

(
2k−1∑

i=−2k−1+1

(
2k−1 −|i |

)α)− 1
α

(3.54)
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and

γk = 2
k
2

(
2k∑

i=1
iα

)− 1
α

. (3.55)

Consequently, according to (3.42), we have that

lim
n→∞R(HWT) =

∞∑
k=1

2−k logγ−1
k . (3.56)

However, for the case κ> 0 and k < N ,

γ−1
k ≤

2
((

2k −1
)(

1−e−2kκT
)α) 1

α√(
1−e−2κT

)(
1−e−2k+1κT

)
≤ 2p

1−e−2κT

√
1−e−2kκT√
1+e−2kκT

(
2k −1

) 1
α

≤ 21+ k
αp

1−e−2κT
. (3.57)

Thus,

lim
n→∞R(HWT) ≤

∞∑
k=1

2−k log
21+ k

αp
1−e−2κT

=
( 2

α
+ 1

2
log

1

1−e−2κT

)
log2. (3.58)

For the case κ= 0 and k < N ,

γ−1
k ≤ 2− k

2

((
2k −1

)(
2k−1

)α) 1
α ≤ 2

k
2 + k

α
−1. (3.59)

Thus,

lim
n→∞R(HWT) ≤

∞∑
k=1

2−k log2
k
2 + k

α
−1 = 2

α
log2. (3.60)

Therefore, the proof is complete.
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Proof of Part 2 (Equation (3.41))

Proof: We have that

MSE(H) = 1

N

N∑
n=1

ν(h̄−1
n ) =

∫
R
ν(γ−1)p

(
γ
)

dγ (3.61)

in which ν(γ−1) is the MMSE of the estimating w from s in the scalar problem

s = γ−1w + z, (3.62)

where w is a stable random variable with characteristic function p̂w (ω) = exp(−|ω|α) and z is a
Gaussian random variable with variance σ2. We know that ν(·) is a monotone continuous function
that vanishes at zero and tends to σ2 asymptotically. Also, p(·) is the empirical distribution of the
reciprocals of h̄i in (3.23). The proof is then essentially the same as the one of Theorem 1 but
simpler since the function ν(·) is bounded.

For H equal to Fourier transform, the limiting p(γ) was given in (3.49). Thus, for α< 2, as n

tends to infinity, MSE(H) tends to σ2. This completes the proof of the right-hand side.

For the case that H is the operator-like wavelet transform, the limmit is p(γ) =∑∞
k=1 pkδ

(
γ−γk

)
where pk = 2−k and γk were given in (3.52) – (3.55). Thus, we have that

MSE(OpWT) =
∞∑

k=1
2−kν(γ−1

k ) ≤ 1

2
ν(γ−1

1 )+ σ2

2
. (3.63)

But, obviously, γ−1
1 <∞; hence, ν(γ−1

1 ) <σ2, which completes the proof.
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4 Denoising Performance of Wavelets
for Self-Similar SαS Processes

In this chapter, we investigate the performance of wavelet shrinkage methods for the denoising
of SαS self-similar stochastic processes corrupted by additive white Gaussian noise (AWGN),
where α is tied to the sparsity of the process. The wavelet transform is assumed to be orthonormal
and the shrinkage function minimizes the mean-square approximation error (MMSE estimator).
We derive the corresponding formula for the expected value of the averaged estimation error. We
show that the predicted MMSE is a monotone function of a simple criterion that depends on the
wavelet and the statistical parameters of the process. Using the calculus of variations, we then
optimize this criterion to find the best performing wavelet within the extended family of Meyer
wavelets, which are bandlimited. These are compared to the Daubechies wavelets, which are
compactly supported in time. We find that the wavelets that are shorter in time (in particular, the
Haar basis) are better suited to denoise the sparser processes (say, α< 1.2), while the bandlimited
ones (including the Held and Shannon wavelets) offer the best performance for α> 1.6, the limit
corresponding to the Gaussian case (fBm) with α= 2.

4.1 Introduction

In the previous chapter, we showed that operator-like wavelets are optimal for representation
of SαS AR(1) processes for the compression and denoising applications. Also, we observed
that conventional wavelets, specifically Haar wavelets exhibit a near optimal performance. In
this chapter, we are going to study the transform-domain performance of denoising of another
important classes of stochastic processes i.e. self-similar processes. Inspired by the result of the
previous chapter, we focus on the wavelet domain denoising performance. Also, it makes the
mathematical calculations doable. In contrast with the previous section, we study these processes
in the continuous domain rather than discretizing them.

A classical example of a self-similar process is the fractional Brownian motion (fBm) [55]. It
can be interpreted as the fractional integral of a continuous-domain white Gaussian noise (a.k.a.
innovation) [17, Section 7.5.2]. The order of integration γ provides a direct control of the degree
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of fractality, which explains why the fBm is a popular model of real-world signals such as images
[56, 57], traffic in communication networks [58], and financial processes [59]. Higher-order
generalizations of an fBm are characterized in [60].

The non-Gaussian counterpart of an fBm is the fractional stable motion [61, 62], which is
generated by replacing the Gaussian innovation of the fBm by some α-stable white noise with
0 <α≤ 2 (the case α= 2 corresponds to the Gaussian distribution and thus results in fBm). The
fractional stable motion has the properties of long-range dependency and self-similarity and
enjoys a wide range of applications [63, 24].

As discussed in Section 2.2.2, for α< 2, however, there is a special feature of α-stable processes
that makes them fundamentally different from their Gaussian cousins: the fact that all their second-
order moments (including the variance) are unbounded. This is equivalent to their statistical
distributions being heavy tailed, which is the statistical transcription of the concept of sparsity.
Again, this is very relevant to modern signal processing and to the development of algorithms for
the recovery of sparse signals, including compressed sensing [64, 65].

To fully exploit the property of sparsity, it is still necessary to expand the signal in an appropriate
basis. In the case of self-similar processes, the natural candidate is the wavelet transform whose
decorrelation properties have been studied extensively in the Gaussian case [66, 67, 68, 69].
Regarding the α-stable processes, there is some prior work on the determination of the statistical
distribution of wavelet coefficients [70], as well as a recent demonstration of the ability of the
Haar transform to provide an independent-component analysis of Lévy processes with γ= 1 and
α < 1 which is presented in the previous chapter. Our focus on wavelets is further motivated
by the observation that they perform remarkably well in a variety of practical signal-processing
tasks including coding [8, 71], signal reconstruction [72, 73], and denoising [74, 75, 76]. This is
reinforced by fundamental results from approximation theory on the optimality of wavelets for
the N -term approximation of functions in Besov spaces [14].

Our objective in this chapter is to characterize the ability of wavelets to optimally denoise
self-similar symmetric-α-stable (SαS) processes corrupted by additive white Gaussian noise
(AWGN). We focus on the traditional architecture where the wavelet coefficients are processed
independently of each other [77, 78, 79, 80]. Our first objective is to predict the mean (the
expected value) of the averaged estimation error (MAEE), in order to be able to compare the
denoising performance of different wavelet bases. Interestingly, we can relate this quantity to a
simple criterion: the Lα-norm of the γth fractional integral of the mother wavelet. The availability
of this criterion enables us to develop an infinite-dimensional optimization algorithm to find the
optimal frequency profile for a Meyer wavelet [30].

Similar to the discussions in Section 3.2.2, the use of a component-wise minimum mean-square
error (MMSE) estimation strategy ensures that the studied wavelet denoisers are the best solutions
among the broad family of wavelet-shrinkage estimators. Moreover, it attains the global optimum
(MMSE signal estimation) when the wavelet coefficients are perfectly decoupled (independent-
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component analysis). This suggests that the criterion can also be used as an indirect measure
of the decoupling performance of a given wavelet basis for the underlying class of stochastic
processes. Thus, a good wavelet according to this criterion should also be a good candidate for
other applications such as coding.

To reach our goal, we have to prove two theorems that could be of interest on their own right.
The first is a result that extends the use of the wavelet transform to signals that are not included
in L2(R) but are only locally square-integrable. The second is a high-level characterization of the
performance of the scalar MMSE estimator of an SαS random variable corrupted by Gaussian
noise as a function of the dispersion parameter and the noise variance. Similar studies for finite-
variance random variables have been conducted in [81]. Here, the fact that the variance of the
signal is unbounded requires a more technical treatment.

The chapter is organized as follows: In Section 4.2, we review the properties of self-similar SαS
processes. Our signal-estimation problem is then formulated in Section 4.3. In Section 4.4, we
address the issue of the calculation of the average energy of a signal from its wavelet coefficients.
In Section 4.5, we specify the MMSE estimator of a scalar SαS random variable corrupted by
AWGN and characterize its performance in terms of the dispersions of the signal and noise.
The main result of the chapter is presented in Section 4.6. In Section 4.7, using the calculus of
variations, we propose an algorithm to find the optimal Meyer wavelet. The numerical results and
the comparison between different Meyer and Daubechies wavelets are presented in Section 4.8.

4.2 Fractional SαS Lévy Processes

We now start with some preliminaries on self-similar SαS processes that are necessary for
understanding the chapter. We again use the framework introduced in [18, 19, 17] due to its
convenience for the treatment of the wavelet coefficients of stochastic processes. However, we
also make links to conventional stochastic calculus, which is more convenient for describing the
behavior of the process in the time domain [61].

We recall the notion of SαS white noise which was described in Section 2.2.2. Suppose that
w is an SαS white noise with the Lévy exponent −|aω|α for a given a > 0. A process s is a
self-similar SαS process of order γ≥ 0 if

Dγs = w, (4.1)

where Dγ is the γth order derivative operator that is defined as [17, Chapter 7.5]

Dγ{ f }(x) = 1

2π

∫
R

(jω)γ f̂ (ω)ejωx dω. (4.2)

For a test function θ, the random variable 〈s,θ〉 can be identified with

〈s,θ〉 = 〈D−γw,θ〉 = 〈w,D−γ∗θ〉 (4.3)
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in which D−γ∗ is the Lα-stable adjoint of the inverse operator of Dγ that is defined by (see [17,
Chapter 7.5])

D−γ∗{θ}(x) = 1

2π

∫
R

θ̂(ω)−∑bγ+ 1
α
c−1

k=0
θ̂(k)(0)ωk

k !

(jω)γ
ejωx dω (4.4)

when γ> 1− 1
α and either γ ∈N or γ−bγc > 1

α −1. Equivalently, in the space domain, we have
that

D−γ∗{θ}(x) =
∫
R

K (x, t )θ(t )dt , (4.5)

where the kernel of the inverse operator is

K (x, t ) = 1

Γ(γ)
(t −x)γ−1

+ −
bγ+ 1

α
c−1∑

k=0

t k

k !

(−x)γ−1−k
+

Γ(γ−k)
(4.6)

in which Γ(·) is Euler’s Gamma function where (x)+ = max{0, x}. Consequently, according to
(2.13) and (4.3), 〈s,θ〉 is an SαS random variable with the characteristic function

p̂〈s,θ〉(ω) = exp
(−∣∣a‖D−γ∗θ‖αω

∣∣α)
. (4.7)

Despite the unifying aspect of these formulas in terms of α, the behavior of the sample paths of
the process drastically change when we go from the finite-variance case (α= 2) to the sparse case
(α< 2). For α= 2, which is the Gaussian case, the sample paths are almost-surely continuous for
any γ> 1

2 . By contrast, for α< 2, the sample paths are almost-surely continuous only for γ> 1;
otherwise, when γ< 1, the sample paths are unbounded on any interval with positive length [61,
Chapter 10]. For the case γ = 1, which corresponds to Lévy processes, the sample paths are
right-semicontinuous with left limit [82, Chapter 2]. On the asymptotic behavior of the sample
paths, according to [82, Chapter 9] and [83, Theorem 1.3], we know that, if γ ≥ 1, then there
exists a constant Cη ∈R for which

|s(x)| ≤Cη (1+|x|)η (4.8)

for any η> γ−1+ 1
α .

We mainly need two properties to describe the effect of the operator D−γ∗. The first one is that the
restriction of D−γ∗ to the subspace of test functions with at least bγ+ 1

αc−1 vanishing moments
is a shift- and scale-invariant operator (see (4.4)). More precisely, when θ is in this subspace, we
have that

D−γ∗{θ(c ·−b)}(x) = c−γD−γ∗{θ(·)}(cx −b) (4.9)

for any b,c ∈R. If the test functions do not have enough vanishing moments, then D−γ∗ loses its
shift-invariance. In this situation, Lemma 1 applies.
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Lemma 1. Suppose γ> max{0,1− 1
α } and θ is a function for which there exists a constant A and

n > 1 such that |θ(x)| < A(1+|x|)−n . Also, assume that θ(x)(1+|x|)γ−1 ∈ L1(R) and
∫
Rθ(x)dx 6= 0.

Under these assumptions, we have that

lim
j→±∞

‖D−γ∗θ(·− j )‖α =∞. (4.10)

The proof is given in Appendix 4.A.

Lemma 1 means that the dispersion of 〈s,θ(·− j )〉 tends to infinity by letting j tend to infinity
(see (4.7)). This fact results in significant simplifications in the derivation of our main result in
Section 4.6.

4.3 Performance Measure of Denoising of Continuous Processes

Assume now that s is the self-similar SαS process defined by (4.1). Also, assume that z is an
AWGN independent from s with variance σ2. Then, the continuous-time stochastic process

s̃ = s + z (4.11)

is the noisy version of s.

We consider the following denoising problem: Given a realization of the process s̃, we want to
estimate the corresponding realization of the process s. We denote the estimated version of s by
ŝ. Notice that ŝ is also a stochastic process which depends on s, z, and the method of estimation.

To quantify the performance of the estimation method, we use the mean of the averaged estimation
error

MAEE(s, ŝ) = lim
T→∞

Es,ŝ

[
1

2T

∫ T

−T

(
s(x)− ŝ(x)

)2dx

]
. (4.12)

Now, recalling the discussions in Section 2.3.1, assume that ϕ and ψ are the father and mother
wavelets of an orthonormal wavelet family, respectively. Then, for any i0 ∈Z,{

ϕi0 j
}

j∈Z∪
{{
ψi j

}
j∈Z

}∞
i=i0

(4.13)

is an orthonormal basis for L2(R) where

ϕi0 j (x) = 2
i0
2 ϕ(2i0 x − j ) (4.14)

and

ψi j (x) = 2
i
2ψ(2i x − j ). (4.15)
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Here, i0 is the coarsest scale that we take into account. Under the conditions on s and on the
wavelet basis functions discussed in Section 4.4, the equality

s(x) = ∑
j∈Z

Πi0 jϕi0 j (x)+ ∑
i≥i0

∑
j∈Z

Ξi jψi j (x) (4.16)

holds almost everywhere for almost every realization of s when

Πi0 j = 〈s,ϕi0 j 〉, (4.17)

Ξi j = 〈s,ψi j 〉. (4.18)

Now, the general wavelet-domain denoising method is that based on the wavelet coefficients of s̃,
i.e.,

Π̃i0 j = 〈s̃,ϕi0 j 〉, (4.19)

Ξ̃i j = 〈s̃,ψi j 〉, (4.20)

we want to estimate the wavelet coefficients of s, i.e., Πi0 j and Ξi j . We denote the corresponding
estimated coefficients by Π̂i0 j and Ξ̂i j , respectively. Then, our estimation of the process s would
be

ŝ(x) = ∑
j∈Z

Π̂i0 jϕi0 j (x)+ ∑
i≥i0

∑
j∈Z

Ξ̂i jψi j (x). (4.21)

To optimally calculate Π̂i0 j and Ξ̂i j , we would need to take into account all statistical dependen-
cies among wavelet coefficients. But this is not computationally tractable except when the process
is Gaussian. Therefore, most of the denoising algorithms calculate Π̂i0 j and Ξ̂i j pointwise, based
only on the corresponding wavelet coefficient Π̃i0 j and Ξ̃i j of s̃. In other words, the dependencies
to the other wavelet coefficients are neglected. Hence, these methods are called coefficient-wise
denoising.

Our goal in this chapter is to calculate MAEE(s, ŝ) for a given wavelet basis using a coefficient-
wise denoiser and to characterize the optimal solution. Since our criterion is in fact a function of
ϕ, ψ, and i0, we write it as MAEEi0 (ϕ,ψ).

First, Theorem 2 tells us that the optimal coefficient-wise denoiser
(
the denoiser that minimizes

MAEEi0 (ϕ,ψ)
)

is the coefficient-wise MMSE estimator. Then, we establish in Theorem 3 some
properties for the MMSE function of denoising an SαS random variable. Based on these two
theorems, we transform (4.12) into a concise formula. This formula allows us to easily compare
different wavelets and to optimize a given design. We will also show in Section 4.6 that for
this denoiser the series on the right-hand side of (4.21) are convergent. This ensures that ŝ is
well-defined.
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The studied estimator is globally suboptimal because the denoising is performed coefficient-wise.
This suggests that the denoising result obtained with “more independent” wavelet coefficients
should be closer to the global minimizer of (4.12). Therefore, the derived formula can also
measure the ability of a given wavelet basis to decouple self-similar SαS stochastic processes.

4.4 Calculating Average Energy of a Signal Using Its Wavelet Coef-
ficients

This section is devoted to the calculation of the average energy of a signal based on its wavelet
coefficients. This is not a trivial task because the functions under consideration are not included
in L2(R). Such a characterization is also required to lend meaning to (4.16).

Consider the wavelet family defined in (4.13)-(4.14). For a function f ∈ L2(R), we have that

f (x) = ∑
j∈Z

〈 f ,ϕi0 j 〉ϕi0 j (x)+ ∑
i≥i0

∑
j∈Z

〈 f ,ψi j 〉ψi j (x) (4.22)

and

‖ f ‖2
2 =

∑
j∈Z

〈 f ,ϕi0 j 〉2 + ∑
i≥i0

∑
j∈Z

〈 f ,ψi j 〉2. (4.23)

This means that we can calculate the energy of a square-integrable function from its wavelet
coefficients. In Theorem 2, we show that the concept generalizes to the determination of the
average energy, even for signals that are not square-integrable, provided that the wavelets have
a sufficient decay. Notice that the family of signals that have a finite average energy is much
broader than L2(R) since L2-functions have an average energy of zero.

Theorem 2. Suppose that the wavelets are such that

|ϕ(x)|, |ψ(x)| ≤ η(x) = A

(1+|x|)n+1+ε (4.24)

for some A,n,ε> 0. Then, for any function f for which there exists B > 0 that satisfies

| f (x)| ≤ g (x) = B(1+|x|)n , (4.25)

we have that

lim
T→∞

1

2T

∫ T

−T
f (x)2dx = (4.26)

lim
N→∞

1

2N

( ∑
| j |≤2i0 N

〈 f ,ϕi0 j 〉2 + ∑
i≥i0

∑
| j |≤2i N

〈 f ,ψi j 〉2

)
.

The proof is given in Appendix 4.B.
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This theorem helps us evaluate (4.12) for a wavelet-domain denoising method. We can also
establish the complementary convergence result whose proof is given in Appendix 4.C.

Proposition 1. Under the assumptions of Theorem 2,

f (x) = ∑
j∈Z

〈 f ,ϕi0 j 〉ϕi0 j (x)+ ∑
i≥i0

∑
j∈Z

〈 f ,ψi j 〉ψi j (x) (4.27)

holds almost everywhere.

4.5 MMSE Denoising of SαS Random Variables

In this section, we study the MMSE performance of a denoiser that is applied to a scalar SαS
random variable contaminated by Gaussian noise. Suppose that

Y = X +Z , (4.28)

where X is an SαS random variable with dispersion parameter aα and Z is a Gaussian random
variable, independent from X , with mean 0 and variance σ2.

According to Stein’s formula, the MMSE estimator of X given Y is [49]

X̂ = E[X |Y ] = Y +σ2 p ′
Y (Y )

pY (Y )
(4.29)

in which

pY = pX ∗pZ . (4.30)

There, pX and pZ are the probability density functions of X and Z , respectively, and ∗ denotes
the convolution operator. Stein’s theory also provides the MMSE that is achieved by this optimal
denoiser as (see (3.7)) [84, 85]

E
[
(X − X̂ )2]=σ2 −σ4

∫ (
p ′

Y (y)
)2

pY (y)
dy . (4.31)

We call this function MMSE(a,σ), where a and σ are the dispersion of the signal and the standard
deviation of the noise, respectively.

In Theorem 3, we prove some properties of MMSE(a,σ) that we are going to use in the derivation
of our main result. A similar function is studied in [81, 86], mostly in the scenario where X is a
finite-variance random variable. The difficulty here is that SαS random variables for α< 2 have
an infinite variance.

Theorem 3. For any fixed σ≥ 0, the following properties hold for MMSE(a,σ) as a function of
the dispersion a:
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1. Increasing over [0,+∞).

2. Towards infinity, we have that

lim
a→∞MMSE(a,σ) =σ2. (4.32)

3. Around zero, we have that

lim
a→0

MMSE(a,σ)

aα−ε
= 0 (4.33)

for any ε> 0.

For the proof, refer to Appendix 4.D.

Also, notice that we trivially have that

MMSE(a,σ) ≤σ2 (4.34)

for any a and σ since the identity estimator, which is X̂ = Y , has the MSE of σ2. This can also
be deduced by using (4.31).

Additionally, we propose Conjecture 1. This conjecture is not required by our analysis but leads
to a nice intuitive interpretation.

Conjecture 1. Around zero, we have that

lim
a→0

MMSE(a,σ)

aα+ε
=∞ (4.35)

for any ε> 0.

4.6 MAEE of Component-Wise Wavelet-Based Denoising

We now present our main result on the solution of the problem formulated in Section 4.3. We
concentrate on the case where γ≥ 1 and the mother wavelet ψ has at least bγ+ 1

αc−1 vanishing
moments. Also, we assume that

|ϕ(x)|, |ψ(x)| ≤ A

(1+|x|)η (4.36)

for an η> γ+ 1
α and A ∈R. These assumptions, along with (4.8) and Proposition 1, yield

s(x) = ∑
j∈Z

〈s,ϕi0 j 〉ϕi0 j (x)+ ∑
i≥i0

∑
j∈Z

〈s,ψi j 〉ψi j (x) (4.37)

almost surely.
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Also, we can straightforwardly characterize the wavelet coefficients of Ξi j = 〈s,ψi j 〉. Assume
that

φ= D−γ∗ψ. (4.38)

As discussed in Section 4.2 and as a result of the vanishing moments of ψ, we can write

φi j (x) = D−γ∗{ψi j }(x) = 2i ( 1
2−γ)φ(2i x − j ). (4.39)

Therefore, according to (4.3) and (4.7), the characteristic function of Ξi j (see also (4.18)) is

p̂Ξi j (ω) = exp
(−∣∣a‖φi j‖αω

∣∣α)
. (4.40)

A crucial point is that ‖φi j‖α only depends on the scale index i . It is given by

‖φi j‖α = 2i ( 1
2− 1

α
−γ)‖φ‖α. (4.41)

Similarly, we find that

p̂Πi0 j (ω) = exp
(−∣∣a‖D−γ∗ϕi0 j‖αω

∣∣α)
. (4.42)

But, since ϕ is orthogonal to ψ, it does not have any vanishing moments. Thus, according to
Section 4.2, D−γ∗ϕi0 j with j varying are not shifted versions of each other. However, Lemma 1
is all what we need about them.

The combination of (4.11) with (4.19)-(4.18) implies that

Π̃i0 j =Πi0 j +Z ′
i0 j , (4.43)

Ξ̃i j =Ξi j +Zi j , (4.44)

where

Z ′
i0 j = 〈z,ϕi0 j 〉, (4.45)

Zi j = 〈z,ψi j 〉. (4.46)

Thanks to the orthonormality of the wavelet family, the random variables Z ′
i0 j and Zi j are iid

Gaussian with mean 0 and variance σ2. This allows us to determine the coefficient-wise MMSE
estimation of Πi0 j and Ξi j by the direct application of the scalar estimators discussed in Section
4.5.

In Section 4.3, MAEEi0 (ϕ,ψ) is the mean average error energy of the optimal coefficient-wise
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denoising. Thanks to Theorem 2, it is reformulated in the wavelet domain as

MAEEi0 (ϕ,ψ) =

lim
N→∞

1

2N
E

[ ∑
| j |≤2i0 N

(
Πi0 j − Π̂i0 j

)2 + ∑
i≥i0

∑
| j |≤2i N

(
Ξi j − Ξ̂i j

)2
]

= lim
N→∞

1

2N

( ∑
| j |≤2i0 N

E
[(
Πi0 j − Π̂i0 j

)2]+ ∑
i≥i0

∑
| j |≤2i N

E
[(
Ξi j − Ξ̂i j

)2]). (4.47)

Based on this formula, we infer that the optimal coefficient-wise denoiser (the one that gives
us the minimum MAEE) is the one that provides the MMSE for each coefficient. It is thus the
coefficient-wise MMSE denoiser. In this case and according to Section 4.5 and (4.40)-(4.42), we
have that

E
[
(Πi0 j − Π̂i0 j )2]=MMSE

(
a‖D−γ∗ϕi0 j }‖α,σ

)
, (4.48)

E
[
(Ξi j − Ξ̂i j )2]=MMSE

(
2i ( 1

2− 1
α
−γ)a‖φ‖α,σ

)
. (4.49)

Replacing (4.48) and (4.49) in (4.47), we get

MAEEi0 (ϕ,ψ) = (4.50)

lim
N→∞

1

2N

( ∑
| j |≤2i0 N

MMSE
(
a‖D−γ∗ϕi0 j }‖α,σ

)
+ ∑

i≥i0

(2i+1N +1)MMSE
(
2i ( 1

2− 1
α
−γ)a‖φ‖α,σ

))
.

Now, (4.41) gives us

MAEEi0 (ϕ,ψ) = lim
N→∞

1

2N

∑
| j |≤2i0 N

MMSE
(
a‖D−γ∗ϕi0 j }‖α,σ

)
+ ∑

i≥i0

2i MMSE
(
2i ( 1

2− 1
α
−γ)a‖φ‖α,σ

)
. (4.51)

Also, the existing limit in the right-hand side of (4.51) can be calculated by combining Lemma 1
and Part 1 of Theorem 3. Since ϕi0 j has no vanishing moments, ‖D−γ∗ϕi0 j‖α tends to infinity as
j goes to infinity. Thus, we conclude that

lim
j→∞

MMSE
(
a‖D−γ∗ϕi0 j‖α,σ

)=σ2. (4.52)

This means that there is no asymptotic advantage to denoise the coefficients corresponding to the
scaling functions (the low-pass basis functions) since this denoising performs no better than the
identity estimator whose MSE is σ2. Incorporating (4.52) in (4.51), we finally obtain

MAEEi0(ϕ,ψ)=2i0σ2 + ∑
i≥i0

2i MMSE
(
2i ( 1

2− 1
α
−γ)a‖φ‖α,σ

)
. (4.53)
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Since γ> 1
2 , there exists ε> 0 for which

(1

2
− 1

α
−γ)

(α−ε)+1 < 0. (4.54)

Thus, according to Part 3 of Theorem 3, the summation in (4.53) is finite, which is reassuring for
our application. If it was otherwise, any coefficient-wise denoising in any wavelet domain would
result in an unbounded mean average error energy, suggesting that there would be no advantage
in trying to optimize the wavelet basis. Here are other interesting consequences of our analysis.

Remark 1. The finiteness of MAEEi0 (ϕ,ψ) implies that the series in (4.21) are almost surely
convergent when Π̂i0 j and Ξ̂i j are the coefficient-wise MMSE estimations of Πi0 j and Ξi j from
Π̃i0 j and Ξ̃i j . Thus, almost every realization of ŝ is a well-defined function that is locally square-
integrable. Notice that the same statement does not hold for s̃ since almost every realization of z

is not a locally L2 function.

Remark 2. If we forget about the time-domain representation and consider (4.47) as our original
definition of performance measure as motivated by Theorem 2, then the story can also be told
with γ less than 1. The parameter γ can be seen as a measure of the spatial coupling of the process
instants: γ= 0 corresponds to white noise with no coupling, and larger γ leads to more coupling.
Then, Conjecture 1 reveals that it is possible to achieve a finite value for the estimation error by
performing a coefficient-wise wavelet-domain denoising only if γ≥ 1

2 . This happens when the
signal exhibits a sufficient amount of coupling. This is an interesting duality relation between
the amount of dependency that exists among the spatial instants of the original process and the
amount of dependency that we must utilize among its wavelet coefficients to denoise them.

Moreover, since MMSE(a,σ) ≤σ2 for any a, a decrease in i0 results in a decrease of (4.53). This
means that the use of more resolution levels in the denoising procedure gives better results. Thus,
by letting i0 tend to −∞, we get the quantity

MAEE(ψ) = ∑
i∈Z

2i MMSE
(
2i ( 1

2− 1
α
−γ)a‖φ‖α,σ

)
(4.55)

which is the least achievable MAEE by performing a coefficient-wise wavelet-domain denoising
for recovering SαS self-similar processes embedded in AWGN.

An interesting point about (4.53) and (4.55) is that, although the function MMSE(·, ·) is not
known analytically, a smaller ‖φ‖α results in a smaller MAEE(ψ). This is because we know that
MMSE(·, ·) is an increasing function of its first argument (Part 2 of Theorem 3). This means
that, to compare the denoising performance of two different families of wavelet for γ-order SαS
processes, it is enough to compare the α-norm of the γ-order integration of their mother wavelets;
i.e.,

∥∥D−γ∗ψ
∥∥
α. This observation tremendously simplifies the design of the optimal wavelet.

Also, it implies that the optimal wavelet depends neither on the dispersion aα of the signal nor on
the variance σ2 of the noise. Notice that, although it is obvious that the multiplication of a and σ
by a constant does not affect the optimal wavelet, the independence of the optimal wavelet from
a
σ is not obvious a priori.
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4.7 Optimal Meyer Wavelets for Denoising Self-Similar SαS Pro-
cesses

Based on the result of Section 4.6 and with the help of the calculus of variations, we now propose
an algorithm to design the optimal wavelet for a given γ and α within the so-called Meyer family
of bandlimited wavelets [30].

According to [30, 34], for a given function v : [0,1] →R such that

v(ρ)+ v(1−ρ) = 1, (4.56)

the profile

W {v}(ω) =


sin

(
π
2 v( 3

2π |ω|−1)
)
, 2π

3 < |ω| ≤ 4π
3

cos
(
π
2 v( 3

4π |ω|−1)
)
, 4π

3 < |ω| ≤ 8π
3

0, otherwise

(4.57)

is the Fourier transform of the mother wavelet of an orthonormal wavelet basis. These wavelets
are called Meyer wavelets.

We just saw that in order to rank the denoising performance of different wavelet bases, it is enough
to compare the α-(pseudo)norm of the γ-order integration of their mother wavelets. Hence, for a
Meyer wavelet, the criterion

Qγ
α(v) =

∫
R

∣∣∣∣ 1

2π

∫
R

W {v}(ω)

(jω)γ
ejωx dω

∣∣∣∣αdx (4.58)

= 1

πα

∫
R

∣∣∣∣∫ 8π
3

2π
3

W {v}(ω)

ωγ
cos

(
ωx − π

2
γ
)
dω

∣∣∣∣αdx

is a predictor of its denoising performance. Next, we apply a projected-gradient-descent algorithm
with adaptive step size to find the function v that minimizes Qγ

α(v). An adaptive step size is
specially important for α≤ 1 for which the functional does not have a Lipschitz gradient. The
pseudo-code of our optimization method is given in Algorithm 3. In the algorithm, ∇Qγ

α is the
infinite-dimensional gradient of the functional Qγ

α in the Hilbert space of L2([0,1]). Also, P {ṽ}

is the projector that maps ṽ to the nearest function that satisfies (4.56).
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Algorithm 3: Optimal Meyer Wavelet
1: input: α,γ
2: initialize: v ∈ L2([0,1])
3: initialize: η > 0, κ+ ≥ 1 and κ− ≤ 1
4: Q ← Qγ

α(v)
5: repeat
6: vol d ← v and Qol d ← Q
7: ṽ ← v −η ∇Qγ

α{v}
8: v ← P {ṽ}
9: Q ← Qγ

α(v)
10: if Q ≤ Qol d then
11: η ← κ+ ·η
12: else
13: v ← vol d and Q ← Qol d

14: η ← κ− ·η
15: end if
16: until v converges
17: return v

According to Appendix 4.E, ∇Qγ
α is calculated as

∇Qγ
α{v}(ρ) = (4.59)

1

πα
π2α

3

( 3

2π

)γ cos
(
π
2 v(ρ)

)
(ρ+1)γ

×
∫
R
λ

(∫ 8π
3

2π
3

W {v}(ω)

ωγ
cos

(
ωx − π

2
γ
)

dω

)
cos

(2π

3
(ρ+1)x − π

2
γ
)

dx

− 2

πα
π2α

3

( 3

4π

)γ sin
(
π
2 v(ρ)

)
(ρ+1)γ

×
∫
R
λ

(∫ 8π
3

2π
3

W {v}(ω)

ωγ
cos

(
ωx − π

2
γ
)

dω

)
cos

(4π

3
(ρ+1)x − π

2
γ
)

dx,

where λ(x) = sgn(x)|x|α−1. Also, in Appendix 4.E, we prove that

P {ṽ}(ρ) = ṽ(ρ)− ṽ(1−ρ)+1

2
. (4.60)

Thus, we have all the ingredients to implement Algorithm 3.

It is worth mentioning that for α = 2 as long as γ > 1
2 , which in fact includes all fBms, the

minimizer of Qγ
2 can be derived analytically. It is indeed the Shannon wavelet, irrespective of

the value of γ. This result is in accordance with the well-known result about the optimality
of Shannon wavelets for the minimum approximation error of processes with non-increasing
spectrum [87]. The formal statement of this result is given in Proposition 2.
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Proposition 2. If α= 2 and γ> 1
2 , then

v(ρ) = 1[
1
2 ,1

](ρ), (4.61)

which corresponds to the wavelet with the Fourier profile

W {v}(ω) = 1[−2π,−π](ω)+1[π,2π](ω), (4.62)

minimizes Qγ
2 (v).

The proof is provided in Appendix 4.F.

4.8 Optimization of Meyer Wavelets and Comparison of Different
Wavelet Families

In this section, we give the wavelet for some values of γ and α optimized according to the
derivation of Section 4.7. Additionally, we compare the performance of Meyer wavelets which
are compactly supported in the Fourier domain with the Daubechies wavelets [29] that are
compactly supported in the time domain.

To implement Algorithm 3, we take the samples of v and W {v} uniformly in the Fourier and time
domain, respectively. Since these wavelets are not compactly supported, we have to truncate
them at some point in the time domain.

We give in Figure 4.1 the outcome of the algorithm for γ= 1 and α= 1.2,1.8, and 2. We show
in Figure 4.2 the plots for the optimal wavelet when α = 1.2 and γ = 1,2,4. An interesting
phenomenon that is observed in these plots is that, by letting either α or γ increase, the wavelet
approaches the Shannon wavelet ((4.61) and (4.62)). Regarding α, remember thet Proposition
2 states that the optimal wavelet for α = 2 is exactly the Shannon wavelet. Regarding γ, we
qualitatively shrink the high frequencies as γ increases. Thus, in order to have a smaller Qγ

α(v),
the frequency content tends toward higher frequencies and v will have less weight on [0, 1

2 ].
Therefore, the optimal wavelet approaches the Shannon wavelet which is vanishing on this
interval (see (4.61)).

Conversely, the optimal wavelet tends to the Held wavelet (v(ρ) = ρ) when α decreases [37].
Thus, we can roughly say that, for very sparse cases (small α), it is better to use the Held wavelet;
for less sparse cases (α close to 2), it is better to use the Shannon wavelet.

In the next step, we compare the MAEE performance of the optimal Meyer wavelets and
Daubechies wavelets. Meyer wavelets lend themselves well to an FFT-based implementation due
to their compact support in the Fourier domain (band-limitedness). Daubechies wavelets, on the
other hand, are notorious for their minimal support in the time domain, which is valued in many
applications.
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Figure 4.1 – Optimal v(ρ) and corresponding wavelet profile W {v}(ω) for γ= 1 and α= 1.2,1.8,
and 2.

According to the discussions in Section 4.6, comparing the MAEE obtained by different wavelets
for denoising γth-order SαS self-similar processes is equivalent to comparing the α-(pseudo)norm
of the γth-order integration of their mother wavelet. We plotted this quantity versus α in Figure
4.3 for the case of Lévy processes (γ= 1).

We observe that for very sparse signals (small α) it is better to use compactly supported wavelets
(Daubechies wavelet). Moreover, we see that a smaller α favors a smaller wavelet support. Indeed,
the Daubechies wavelet of order 1 (the Haar wavelet [33]) has the shortest support in the time
domain and outperforms all the others for α. 1.3. However, in less sparse cases (α close to
2), a compact support in the Fourier domain (band-limitedness) becomes more favorable. For
special case α= 2, the Shannon wavelet, which has the shortest support in the Fourier domain,
outperforms the others, even if its superiority over the other Meyer wavelets is marginal.

4.9 Summary

In this chapter, we studied the performance of the wavelet-domain denoising of self-similar
symetric-α-stable (SαS) processes corrupted by additive white Gaussian noise. We focused
on the most classical denoising which proceeds coefficient-wise. We derived a simple formula
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Figure 4.2 – Optimal v(ρ) and corresponding wavelet profile W {v}(ω) for α= 1.2 and γ= 1,2,
and 4.

for the mean average energy of estimation error (MAEE) for a given γ, α, and wavelet family,
where γ is the order of the self-similar process under consideration. We showed that MAEE is
an increasing function of the α-(pseudo)norm of the γth-order integral of the mother wavelet
ψ, i.e. ‖D−γ∗ψ‖α. This is an essential property that allows us to compare different wavelets
based on this simple indicator of localization. The fact that the wavelet coefficients are treated
independently is the only source of suboptimality of these denoisers. Thus, more correct is this
assumption, MAEE is smaller. Therefore, the quantity ‖D−γ∗ψ‖α can also be used to measure
the decoupling performance of the wavelet. Moreover, the simplicity of the derived performance
criterion allowed us to propose an optimization algorithm to find the optimal Meyer wavelet
for a given γ and α. We could then compare the relative denoising performance of Meyer and
Daubechies wavelets. For highly sparse signals (small α) we deduced that, it is better to use
wavelets of compact support in the time domain; while for less sparse signals (α close to 2), it is
better to use wavelets of compact support in the Fourier domain (Meyer wavelets).

To obtain these results, we proved two main theorems that are interesting on their own right. The
first one enables us to calculate the average energy of a signal by using its wavelet coefficients
(Theorem 2). The second one is about the minimum mean-square error (MMSE) function of
estimating an SαS random variable given its summation with an independent Gaussian random
variable (Theorem 3).
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Figure 4.3 – The α-norm of the first-order integral of different mother wavelets versus α.

4.A Proof of Lemma 1

First, notice that

D−γ∗{θ(−·)}(x) = D−γ∗{θ(·)}(−x). (4.63)

Thus, it is enough to prove (4.10) when letting j tend to +∞. According to (4.5) and (4.6), for
x > 0, we have that

D−γ∗{θ(·− j )}(x) = 1

Γ(γ)

(
(−·)γ−1

+ ∗θ(·))(x − j ) (4.64)

which implies that

‖D−γ∗{θ(·− j )}‖α ≥ 1

Γ(γ)

∥∥∥(
(−·)γ−1

+ ∗θ(·)) ·1[− j ,0]

∥∥∥
α

, (4.65)

where 1[− j ,0] is the indicator function of [− j ,0]. Now, since α(γ−1) >−1, it is sufficient to prove
that

(
(−·)γ−1

+ ∗θ(·))(x) grows (decays) with the same rate as (−x)γ−1
+ when x tends to −∞; in

other words

lim
x→−∞

(
(−·)γ−1

+ ∗θ(·))(x)

(−x)γ−1
+

=C , (4.66)
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where C is a nonzero real number. We first prove this statement when θ is a nonnegative function
such that θ(x) ≥ 0 for all x ∈R, and then we generalize it to any θ.

Assuming that θ is a nonnegative function, x <−1, and 1
n < r < 1, we write

(
(−·)γ−1

+ ∗θ(·))(x)

(−x)γ−1
+

=
∫
R(t −x)γ−1

+ θ(t )dt

(−x)γ−1 (4.67)

=
∫
R

(
1− t

x

)γ−1
+ θ(t )dt

=
∫
|t |≤|x|r

(
1− t

x

)γ−1
+ θ(t )dt +

∫
|t |>|x|r

(
1− t

x

)γ−1
+ θ(t )dt .

If γ≥ 1, the first term of this summation is bounded by

(
1− 1

|x|r
)γ−1

∫
|t |≤|x|r

θ(t )dt

≤
∫
|t |≤|x|r

(
1− t

x

)γ−1
+ θ(t )dt ≤ (4.68)

(1+ 1

|x|r )γ−1
∫
|t |≤|x|r

θ(t )dt .

Consequently, as x tends to −∞, we obtain that

lim
x→−∞

∫
|t |≤|x|r

(
1− t

x

)γ−1
+ θ(t )dt =

∫
R
θ(t )dt . (4.69)

As for the second term in the right-hand side of (4.67), we write∫ −|x|r

−∞
(
1− t

x

)γ−1
+ θ(t )dt ≤ (

1− 1

|x|r
)γ−1

∫ −|x|r

−∞
θ(t )dt (4.70)

and, since |x|r <−x, we have that∫ ∞

|x|r
(
1− t

x

)γ−1
+ θ(t )dt ≤

∫ ∞

|x|r
(
1+ t

)γ−1
+ θ(t )dt . (4.71)

Since both integrals on the right-hand side of (4.70) and (4.71) are finite by assumption, by letting
x tend to −∞ we obtain that

lim
x→−∞

∫
|t |>|x|r

(
1− t

x

)γ−1
+ θ(t )dt = 0. (4.72)

Up to now, we have proved that,

lim
x→−∞

(
(−·)γ−1

+ ∗θ(·))(x)

(−x)γ−1
+

=
∫
R
θ(t )dt , (4.73)

provided that θ is a nonnegative function. For a general function θ, let θ+(x) = (θ(x))+ and
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θ−(x) = (−θ(x))+. Thus, both of θ+ and θ− are nonnegative functions whilst θ = θ+ − θ−.
Incorporating this fact in (4.73) and using the bilinearity of the convolution operator, we can
generalize (4.73) to any θ ∈ L1(R). Therefore, since

∫
Rθ(x)dx 6= 0, the argument (4.66) is proved

for γ> 1.

For γ< 1, the argument is the same except that the upper- and lower-bounds need to be swapped
in (4.68). Thus, (4.69) still holds. In (4.70), the inequality converts to∫ −|x|r

−∞
(
1− t

x

)γ−1
+ θ(t )dt

≤ sup
[x,−|x|r ]

|θ(t )|×
∫ −|x|r

x

(
1− t

x

)γ−1
+ dt

≤ A

(1+|x|r )n × −x

γ

(
1− 1

|x|r
)γ. (4.74)

Since nr > 1, the bound tends to zero as x tends to −∞. The corresponding inequality for (4.71)
with γ< 1 is∫ ∞

|x|r
(
1− t

x

)γ−1
+ θ(t )dt ≤ (

1+ 1

|x|r
)γ−1

∫ ∞

|x|r
θ(t )dt , (4.75)

which again tends to zero as x tends to −∞, and which completes the proof.

4.B Proof of Theorem 2

First, notice that the conditions on f , ϕ, and ψ guarantee that the wavelet coefficients exist and
are finite. We prove the result for i0 = 0. It extends to other i0 similarly. Define two projections

PT { f }(t ) = f (t ) ·1[−T,T ] (4.76)

in which 1[−T,T ] is the indicator function of [−T,T ], and

QN { f }(t ) = ∑
| j |≤N

〈 f ,ϕ0 j 〉ϕ0 j (t )+ ∑
i≥0

∑
| j |≤2i N

〈 f ,ψi j 〉ψi j (t ) (4.77)

for f :R→R satisfying the conditions of the theorem. Later in the proof, we show that, for a fixed
N , (4.77) is a converging series in L2 and thus QN f is well-defined. In fact, PT is the orthogonal
projections onto the space of functions that are supported on [−T,T ], while QN is the orthogonal
projection onto the space generated by {ϕ0 j }| j |≤N ∪ {{ϕi j }| j |≤2i N }∞i=0. Hence, we want to prove
that

lim
T→∞

1

2T

∥∥PT f
∥∥2

2 = lim
N→∞

1

2N

∥∥QN f
∥∥2

2 . (4.78)
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Since PT and QN are orthogonal projection, they do not increase the norm. Thus, we have that

‖PT f ‖2 = ‖PT QN f +PT (1−QN ) f ‖2

≤ ‖PT QN f ‖2 +‖PT (1−QN ) f ‖2

≤ ‖QN f ‖2 +‖PT (1−QN ) f ‖2. (4.79)

Similarly, we have that

‖QN f ‖2 ≤ ‖PT f ‖2 +‖QN (1−PT ) f ‖2. (4.80)

Therefore, we can write√
T

N

(‖PT f ‖2p
T

− ‖PT (1−QN ) f ‖2p
T

)
≤ ‖QN f ‖2p

N
≤ (4.81)√

T

N

(‖PT f ‖2p
T

+ ‖QN (1−PT ) f ‖2p
T

)
.

Now, assume that δ > 0 and let N+ = (1+δ)2T and N− = (1−δ)2T . Using the inequalities in
(4.81), by letting T tend to infinity we obtain that

(1−δ) limsup
N→∞

‖QN f ‖2p
N

≤

lim
T→∞

‖PT f ‖2p
T

+ limsup
T→∞

‖QN−(1−PT ) f ‖2p
T

(4.82)

and

(1+δ) limsup
N→∞

‖QN f ‖2p
N

≥

lim
T→∞

‖PT f ‖2p
T

− limsup
T→∞

‖PT (1−QN+) f ‖2p
T

. (4.83)

Hence, it is sufficient to prove that, for any δ> 0, we have that

limsup
T→∞

‖QN (1−PT ) f ‖2
2

T
= 0 if N ≤ (1−δ)T (4.84)

and

limsup
T→∞

‖PT (1−QN ) f ‖2
2

T
= 0 if N ≥ (1+δ)T. (4.85)

Notice that (4.84), at first hand, yields that (4.77) is a converging series in L2(R) and QN f is
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well-defiend. The reason is that∑
| j |≤N

〈 f ,ϕ0 j 〉2 + ∑
i≥0

∑
| j |≤2i N

〈 f ,ψi j 〉2 =
∑

| j |≤N
(〈PT f ,ϕ0 j 〉+〈(1−PT ) f ,ϕ0 j 〉)2

+ ∑
i≥0

∑
| j |≤2i N

(〈PT f ,ψi j 〉+〈(1−PT ) f ,ψi j 〉)2. (4.86)

Using the inequality (a +b)2 ≤ 2(a2 +b2), we get∑
| j |≤N

〈 f ,ϕ0 j 〉2 + ∑
i≥0

∑
| j |≤2i N

〈 f ,ψi j 〉2 ≤

2
( ∑
| j |≤N

〈PT f ,ϕ0 j 〉2 + ∑
i≥0

∑
| j |≤2i N

〈PT f ,ψi j 〉2
)

+2
( ∑
| j |≤N

〈(1−PT ) f ,ϕ0 j 〉2 + ∑
i≥0

∑
| j |≤2i N

〈(1−PT ) f ,ψi j 〉2
)

= 2‖QN PT f ‖2
2 +2‖QN (1−PT ) f ‖2

2. (4.87)

Since
∣∣PT f (x)

∣∣ ≤ PT g (x) and PT g ∈ L2(R), PT f also belongs to L2(R). This means that the
right-hand side of (4.86) is finite. Consequently, the left-hand side of (4.86) is finite, too, and
thus QN f belongs to L2(R).

To prove (4.84), we write

‖QN (1−PT ) f ‖2
2 = ∑

| j |≤N

(∫
|x|>T

f (x)ϕ(x − j )dx
)2

+ ∑
i≥0

∑
| j |≤2i N

(∫
|x|>T

f (x)2
i
2ψ(2i x − j )dx

)2

= ∑
| j |≤N

(∫
|x+ j |>T

f (x + j )ϕ(x)dx
)2

+ ∑
i≥0

∑
| j |≤2i N

2−i
(∫

| x+ j

2i |>T
f
( x + j

2i

)
ψ(x)dx

)2
. (4.88)

Using the facts that | f (x)| ≤ g (x), |ϕ(x)|, |ψ(x)| ≤ η(x), where g and η are even functions and g

is increasing on the positive numbers, along with T −N ≥ δT and (4.88), we deduce that

‖QN (1−PT ) f ‖2
2 ≤ 4T

(∫
x>δT

g (x +T )η(x)dx
)2

+ ∑
i≥0

2−i ·4 ·2i T
(∫

x>2iδT
g (x +T )η(x)dx

)2

≤ 4T
[(∫

x>δT
g
(
(1+ 1

δ
)x

)
η(x)dx

)2

+ ∑
i≥0

(∫
x>2iδT

g
(
(1+ 1

δ
)x

)
η(x)dx

)2]
. (4.89)
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However, we know that there exists c ∈R that satisfies g
(
(1+ 1

δ )x
)
η(x) < c

x1+ε . Thus, we have that

‖QN (1−PT ) f ‖2
2 ≤ 4T

[(∫ ∞

δT

c

x1+εdx
)2 + ∑

i≥0

(∫ ∞

2iδT

c

x1+εdx
)2]

= 4T

(
c2

δ2T 2ε +
∑
i≥0

c2

22iδ2T 2ε

)
= c ′T 1−2ε (4.90)

with c ′ independent of T , which completes the proof of (4.84).

To prove (4.85), we write

‖PT (1−QN ) f ‖2
2 =

∫ T

−T
|(1−QN ){ f }(x)|2dx

≤ 2T
[

sup
|x|≤T

∣∣(1−QN ){ f }(x)
∣∣]2

. (4.91)

We have that

(1−QN ){ f }(x) = ∑
| j |>N

(∫
R

f (u)ϕ(u − j )du
)
ϕ(x − j ) (4.92)

+ ∑
i≥0

∑
| j |>2i N

(∫
R

f (u)2
i
2ψ(2i u − j )du

)
2

i
2ψ(2i x − j ).

Using | f (x)| ≤ g (x) and |ϕ(x)|, |ψ(x)| ≤ η(x), and changing the variables of integrations, we get

∣∣(1−QN ){ f }(x)
∣∣ ≤ ∑

| j |>N

(∫
R

g (u + j )η(u)du
)
η(x − j ) (4.93)

+ ∑
i≥0

∑
| j |>2i N

(∫
R

g
(u + j

2i

)
η(u)du

)
η(2i x − j ).

For |x| < T , exploiting the fact that η is an even function and decreasing on positive numbers,
along with N ≥ (1+δ)T , we write

∣∣(1−QN ){ f }(x)
∣∣ ≤ ∑

| j |>N

(∫
R

g (u + j )η(u)du
)
η(δ′ j ) (4.94)

+ ∑
i≥0

∑
| j |>2i N

(∫
R

g
(u + j

2i

)
η(u)du

)
η(2iδ′ j ),

where δ′ = δ
1+δ . We know that there exists C ∈R, independent of x and y , that satisfies

(x + y)n ≤C (|x|n +|y |n). (4.95)

The same C satisfies

g (x + y) ≤C (g (x)+ g (y)). (4.96)
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Thus, we write

∣∣(1−QN ){ f }(x)
∣∣ ≤ C

∑
| j |>N

(∫
R

(g (u)+ g ( j ))η(u)du
)
η(δ′ j ) (4.97)

+C
∑
i≥0

∑
| j |>2i N

(∫
R

(
g
( u

2i

)+ g
( j

2i

))
η(u)du

)
η(2iδ′ j ).

By expanding the summations, we obtain

∣∣(1−QN ){ f }(x)
∣∣ ≤ C

(∫
R

g (u)η(u)du
) ∑
| j |>N

η(δ′ j )

+C
(∫
R
η(u)du

) ∑
| j |>N

g ( j )η(δ′ j )

+C
∑
i≥0

[(∫
R

g
( u

2i

)
η(u)du

) ∑
| j |>N

η(2iδ′ j )

+
(∫
R
η(u)du

) ∑
| j |>N

g
( j

2i

)
η(2iδ′ j )

]
. (4.98)

However, we have that∫
R

g
( u

2i

)
η(u)du ≤ BC

(∫
R
η(u)du + 1

2i n

∫
R

unη(u)du
)
, (4.99)

where B and C are as in (4.25) and (4.95), respectively. Likewise, we have that∫
|u|>N

g
( u

2i

)
η(2iδ′u)du ≤ BC

(∫
|u|>N

η(2iδ′u)du + 1

2i n

∫
|u|>N

unη(2iδ′u)du
)

≤ BC

2iδ′
(∫

|u|>2iδ′N
η(u)du + 1

(22iδ′)n

∫
|u|>2iδ′N

unη(u)du
)

≤ BC

2iδ′
( ċ

(2iδ′N )n+ε +
1

(22iδ′)n

c̈

2iδ′N ε

)
. (4.100)

Therefore, using the inequalities in (4.100) and bounding the summations in (4.98) by integrals,
for a large enough N , we get

∣∣(1−QN ){ f }(x)
∣∣≤ c1

N n+ε +
c2

N ε
+

∞∑
i=0

( c3

2(n+2)i
· 1

N n+ε +
c4

2(2n+1)i N ε

)
≤ c ′′

T ε
, (4.101)

in which c1 to c4 and c ′′ are constants independent of N and T . This completes the proof of
(4.85) and hence the proof of the theorem.
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4.C Proof of Proposition 1

Repeating the proof of (4.85), we show that

limsup
N→∞

‖PT (1−QN ) f ‖2
2 = 0 (4.102)

for any fixed T > 0. This means that QN f converges to f on [−T,T ] almost surely for any T ,
which completes the proof.

4.D Proof of Theorem 3

1) Assume that a1 ≥ a2 ≥ 0. We are going to show that M(a1,b) ≥ M(a2,b). Let X1 and X2

be two SαS random variables with dispersion parameters aα1 and aα2 , respectively. Due to the
stability of the distribution, we can write X1 = X2+X3, where X3 is another SαS random variable
that is independent of X2, with dispersion parameter aα1 −aα2 . If we denote the probability density
function of Xi by pXi , then we have that

pX1 (x) =
∫

pX2 (x − t )pX3 (t )dt

= EX3 [pX2 (x −X3)]. (4.103)

The MMSE of estimating X2 given Y = X2 + X3 + Z and X3, where Z is a Gaussian random
variable with variance σ2, is equal to M(a2,σ). Now, using the fact that the MMSE functional is
a concave function of the input distribution pX , we achieve the desired result [86].

2) This is a direct implication of [81, Theorem 11] since the distribution of an SαS random
variable is absolutely continuous.

3) For α= 2 (Gaussian distribution), we simply have that

M(a,σ) = 2a2σ2

2a2 +σ2 , (4.104)

which directly gives the result. Hence, we assume that α< 2. The case ε≥α is trivial. Thus, we
also assume that ε<α. The sketch of the proof is that we compute the mean-square error for the
estimator

T (y) =
0, |y | <∆

y, |y | ≥∆
(4.105)

and show that, upon an appropriate choice of ∆, the theorem holds for this estimator. Conse-
quently, it would automatically hold for M(a,σ).
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Denote the pdf of X by

fa(x) = 1

a
f
( x

a

)
, (4.106)

where f is the standard SαS pdf with dispersion 1. Also, let

Fa(s, t ) =
∫ t

s
fa(x)dx. (4.107)

Moreover, let g be Gaussian pdf with mean 0 and variance σ2 and define

G(s, t ) =
∫ t

s
g (x)dx. (4.108)

Then, we have that

MSE(T ) = EX ,Z
[
(X −T (X +Z ))2]

= P (|X +Z | <∆)EX ,Z
[

X 2
∣∣ |X +Z | <∆]

+P (|X +Z | ≥∆)EX ,Z
[

Z 2
∣∣ |X +Z | ≥∆]

. (4.109)

According to Bayes’ rule, we can write

fa
(
x
∣∣|X +Z | <∆)= P (|x +Z | <∆) fa(x)

P (|X +Z | <∆)

= G (−∆−x,∆−x) fa(x)

P (|X +Z | <∆)
(4.110)

and, similarly,

g
(
z
∣∣|X +Z | ≥∆)= (1−Fa (−∆− z,∆− z)) g (z)

P (|X +Z | ≥∆)
. (4.111)

Incorporating (4.110) and (4.111) in (4.109), we obtain

MSE(T ) =
∫
R

x2 fa(x)G(−∆−x,∆−x)dx

+
∫
R

z2g (z) (1−Fa (−∆− z,∆− z))dz. (4.112)

We investigate the behavior of the two terms on the right-hand side of (4.112) separately. For the
first term, we know that, for α< 2, we have that

lim
x→∞

f (x)

x−(1+α)
=C , (4.113)

where C is a positive finite value. Thus, we deduce that

x
1
2+α−δ fa(x) ∈ L2(R) (4.114)
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for some positive δ< ε. The Cauchy-Schwartz inequality then yields∫
x2 fa(x)G(−∆−x,∆−x)dx ≤∥∥∥x

1
2+α−δ fa(x)

∥∥∥
2
·
∥∥∥x

3
2−α+δG(−∆−x,∆−x)

∥∥∥
2

. (4.115)

Notice that

G(−∆−x,∆−x) ≤
1, |x| ≤∆
σ2

∆ g (x), |x| >∆
. (4.116)

Hence, since α< 2, we have that

∥∥∥x
3
2−α+δG(−∆−x,∆−x)

∥∥∥2

2
≤ ∆4−2α+2δ

2−α+δ + σ

2∆
p
π

. (4.117)

Additionally, we can write

∥∥∥x
1
2+α−δ fa(x)

∥∥∥
2
=

(∫
x1+2α−2δ f 2

a (x)dx

) 1
2

=
(∫

x1+2α−2δ 1

a2 f 2
( x

a

)
dx

) 1
2

= aα−δ
(∫

x1+2α−2δ f 2 (x)dx

) 1
2

= aα−δ
∥∥∥x

1
2+α−δ f (x)

∥∥∥
2

. (4.118)

Now, we investigate the second term of the right-hand side of (4.112). We specifically write∫
R

z2g (z) (1−Fa (−∆− z,∆− z))dz =∫
R

z2g (z)
∫
R

(
1−1[−∆,∆](x + z)

)
fa(x)dxdz

=
∫
R

∫
R

(
1−1[−∆,∆](x + z)

)
z2g (z) fa(x)dzdx

= 2
∫ ∞

∆

∫
R

z2g (z) fa(t − z)dzdt , (4.119)

where we have used the change of variable t = x+z. Since both of t 2g (t ) and fa(t ) are symmetric
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functions that decrease on t ≥σp2, we get∫
R

z2g (z) fa(t − z)dz =∫
|z|< t

2

z2g (z) fa(t − z)dz +
∫
|z|≥ t

2

z2g (z) fa(t − z)dz

≤ fa(
t

2
)
∫
R

z2g (z)dz + t 2

4
g (

t

2
)
∫
R

fa(z)dz

=σ2 fa(
t

2
)+ t 2

4
g (

t

2
) (4.120)

for t ≥ 2σ
p

2. Thus, we have that

2
∫ ∞

∆

∫
R

z2g (z) fa(t − z)dzdt ≤ 2σ2
∫ ∞

∆
fa(

t

2
)dt +2

∫ ∞

∆

t 2

4
g (

t

2
)dt (4.121)

for ∆≥ 2σ
p

2. According to (4.113), there exists C ′ ∈R for which

f (t ) ≤ C ′

t 1+α , (4.122)

and thus

fa(t ) ≤ aα
C ′

t 1+α . (4.123)

Also, there exists A ∈R for which

t 2e−
t2

2 ≤ Ae−t . (4.124)

Hence, relying on (4.121), we get

2
∫ ∞

∆

∫
R

z2g (z) fa(t − z)dzdt ≤ aα22+αC ′σ2 1+α
∆α

+2Aσ2

√
2

π
e−

∆
2σ . (4.125)

Now, incorporating (4.115) and (4.125) in (4.112), we obtain

MSE(T ) ≤ aα−δ
∥∥∥x

1
2+α−δ f (x)

∥∥∥
2

(
∆4−2α+2δ

4−2α+2δ
+2σ

p
π

)

+aα22+αC ′σ2 1+α
∆α

+2Aσ2

√
2

π
e−

∆
2σ . (4.126)

Finally, setting

∆= 2ασ
∣∣log a

∣∣ (4.127)

completes the proof.
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4.E Calculation of the Gradient of Qγ
α

According to the definition of the gradient, we have that

DuQγ
α(v) = ∂

∂ε
Qγ
α(v +εu)

∣∣∣
ε=0

=
∫ ∞

0
u(ρ) ∇Qγ

α{v}(ρ)dρ, (4.128)

where DuQγ
α(v) is the Gâteaux derivative of Qγ

α at point v in the direction of function u. Using
the rules of differentiation of the calculus of variations, we write

DuQγ
α(v) =
1

(2π)α

∫
R

∂

∂ε

∣∣∣∣∫
R

W {v +εu}(ω)

(jω)γ
ejωx dω

∣∣∣∣α∣∣∣∣
ε=0

dx

= α

(2π)α

∫
R
λ

(∫
R

W {v}(ω)

(jω)γ
ejωx dω

)(∫
R

W ′{v}(r )ū(ρ)

(jρ)γ
ejρx dρ

)
dx

= α

(2π)α

∫
R

ū(ρ)
W ′{v}(ρ)

(jρ)γ

(∫
R
λ

(∫
R

W {v}(ω)

(jω)γ
ejωx dω

)
ejρx dx

)
dρ (4.129)

in which λ(x) = sgn(x)|x|α−1,

W ′{v}(ρ) = π

2
×


cos(π2 v( 3

2π |ρ|−1)), 2π
3 < |ρ| ≤ 4π

3

−sin(π2 v( 3
4π |ρ|−1)), 4π

3 < |ρ| ≤ 8π
3

0, otherwise

(4.130)

and

ū(ρ) =
u( 3

2πρ−1), 2π
3 < |ρ| ≤ 4π

3

u( 3
4πρ−1), 4π

3 < |ρ| ≤ 8π
3

. (4.131)

By breaking the outer integral of (4.129) into two integrals on [ 2π
3 , 4π

3 ] and [ 4π
3 , 8π

3 ], and by
changing the variables of integrations, we get

DuQγ
α(v) = (2π)1−αα

3

∫ 1

0
u(ρ)

W ′{v}( 2π
3 (ρ+1))

(j 2π
3 (ρ+1))γ

×
(∫
R
λ

(∫
R

W {v}(ω)

(jω)γ
ejωx dω

)
ej 2π

3 (ρ+1)x dx

)
dρ

+ 2(2π)1−αα
3

∫ 1

0
u(ρ)

W ′{v}( 4π
3 (ρ+1))

(j 4π
3 (ρ+1))γ

×
(∫
R
λ

(∫
R

W {v}(ω)

(jω)γ
ejωx dω

)
ej 4π

3 (ρ+1)x dx

)
dρ. (4.132)
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Now, incorporating (4.57), (4.130) and some algebra, according to (4.128), we obtain (4.59).

Appendix F: Calculation of the Projection Operator P

For a given function ṽ(ρ), define the two functionals

J (v) = ∥∥v(ρ)− ṽ(ρ)
∥∥2

2 (4.133)

and

J̄ (v) = 1

2

(∥∥v(ρ)− ṽ(ρ)
∥∥2

2 +
∥∥(

1− v(1−ρ)
)− ṽ(ρ)

∥∥2
2

)
(4.134)

We are interested in

P {ṽ} = argmin J (v) (4.135)

subject to the constraint

v(x)+ v(1−x) = 1. (4.136)

Notice that J (v) = J̄ (v) for any function v that satisfies (4.136). Also, notice that for any function
v , J̄ (v(ρ)) = J̄ (v(1−ρ)). Since J̄ (v) is strictly convex, it has a unique minimizer. Thus, the
minimizer of J̄ (v) satisfies (4.136). Hence, P {ṽ} is the unconstrained minimizer of J̄ (v).

To find the minimizer of J̄ (v), we set its gradient to zero. According to the calculus of variation,
the gradient of J̄ (v) is

∇ J̄ {v}(ρ) = (v(ρ)− ṽ(ρ))− (1− v(ρ)− ṽ(1−ρ)). (4.137)

By solving ∇ J̄ {v} = 0, we obtain (4.60).

4.F Proof of Proposition 2

For α= 2, using Parseval, we can directly express Qγ
2 in the Fourier domain as

Qγ
2 (v) =

∫
R

∣∣∣∣W {v}(ω)

(jω)γ

∣∣∣∣2

dω. (4.138)

Based on (4.57), we get

Qγ
2 (v) = 2

∫ 4π
3

2π
3

sin2
(
π
2 v( 3

2πω−1)
)

ω2γ +2
∫ 8π

3

4π
3

cos2
(
π
2 v( 3

4πω−1)
)

ω2γ dω. (4.139)
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Performing ordinary algebraic manipulations, (4.139) leads to

Qγ
2 (v) = 2

((2π

3

)1−2γ− (4π

3

)1−2γ
)∫ 1

0

sin2
(
π
2 v(ρ)

)
(ρ+1)2γ dρ

+ 2

2γ−1

((4π

3

)1−2γ− (8π

3

)1−2γ
)
. (4.140)

Now, using (4.56), we get

Qγ
2 (v) = 2

((2π

3

)1−2γ− (4π

3

)1−2γ
)

×
∫ 1

2

0
sin2 (π

2
v(ρ)

)( 1

(ρ+1)2γ − 1

(2−ρ)2γ

)
dρ

+ 2

2γ−1

((π
2

)1−2γ−π1−2γ
)
. (4.141)

However, since (ρ+1)−2γ− (2−ρ)−2γ is positive on [0, 1
2 ], the function v(ρ) that vanishes on this

interval minimizes Qγ
2 (v). Consequently, we obtain v(ρ) = 0 on [0, 1

2 ], and v(ρ) = 1 on ( 1
2 ,1] as

the minimizer of Qγ
2 (v).
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5 Localized Isotropic Wavelets for Im-
age Analysis and Reconstruction

In this chapter, we use the previous theoretical results to gain a practical advantage. We propose
two classes of optimality criteria based on which we design new isotropic wavelets for image
processing applications. The first class specifies the spatial localization of the wavelet profile,
and the second that of the resulting wavelet coefficients. Also, we present an infinite-dimensional
optimization scheme that helps us find the optimal profile for a given criterion over the space of
tight frames. From these metrics and the proposed algorithm, we construct tight wavelet frames
that are optimally localized and provide their analytical expression. In particular, one of the
considered criterion helps us finding back the popular Simoncelli wavelet profile. Finally, the
investigation of local orientation estimation, image reconstruction from detected contours in
the wavelet domain, and denoising, indicate that optimizing wavelet localization improves the
performance of steerable wavelets, since our new wavelets outperform the traditional ones.

5.1 Introduction

Isotropic wavelets described in Section 2.3.4 are purely radial functions that allow for an
orientation-free decomposition of images, while retaining all other popular features of clas-
sical wavelet bases such as multiresolution analysis. The steerable pyramid [88, 89, 90, 91, 92] is
a well-known construction that relies on such wavelets. In this setting, a purely angular element is
included in order to rotate derivatives of the wavelets and impose a preferred directionality. Some
well-known algorithms for denoising ([93], including the widely-used Bayesian least-squares
Gaussian-scale-mixture (BLS-GSM) algorithm [94]), texture analysis (or synthesis) [95, 96],
and regularization with sparsity constraints for inverse problems [97, 98] rely on the steerable
pyramid, although methods that do not exploit steerability are also available for these tasks.
Steerability is a crucial aspect in many other image-processing applications such as finding the
dominant orientation at each image location, detecting contours [99], or identifying features
in a rotation-invariant fashion [100]. More recently, algorithms for image reconstruction from
the small subset of wavelet coefficients called the “primal sketch” have been proposed relying
on the steerable pyramid [101, 102]. In this work, we study the design of wavelet profiles for
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use in applications relying on steerable tight frames. The specification of steerable wavelet
frames includes two components: a radial profile and a directional components can be optimized
separately. The angular component is represented using circular harmonics [91]. Here, we
concentrate on the radial profile, which determines the localization.

In order to generate an isotropic wavelet transform, the underlying basis functions must satisfy
several properties, the main ones being isotropy and perfect reconstruction of the image. Another
desirable feature is that the basis functions form a tight frame. In this way, the wavelet transform
is self-reversible, enabling simpler and faster algorithms. As discussed in Section 2.3.4, the
isotropy and perfect-reconstruction conditions are ensured by choosing a radially bandlimited
mother wavelet that satisfies some partition of unity in the frequency domain [36, 37]. Many such
bases have been proposed, which include the Meyer [34], Papadakis [103], and Simoncelli [104]
wavelets. Inspired by the biological visual system, the Simoncelli wavelet is the one implemented
in the original version of the steerable pyramid and the BLS-GSM denoising algorithm. Due
to its good performance in a wide range of practical applications, it remains a commonly used
profile.

It is always interesting to have a simple measure which quantifies the performance of a wavelet
in practical applications. The studies in previous chapters give us a clue about what the measure
of performance should be. In Chapters 3 and 4, we considered two different classes of stochastic
processes and in both cases we deduced that the best wavelets are the ones that are most localized
ones after applying the inverse of the whitening operators. However, the meaning of localization
were different for different processes. As we saw, the localization meant having shortest support
for AR(1) processes, and it meant having smallest Lα-norm for self-similar processes (notice
that finite Lα-norm of a function controls its decay rate). Thus, we can conclude that, in general,
localization is the best candidate for measuring the performance of a wavelet. However, we have
to pick a general meaning for localization for a general purpose wavelet, i.e. when it is not design
for a specific stochastic process. On the other hand, there are also intuitive justifications about
appropriateness of localization measure. On the practical side, steerable wavelets are bandlimited
with infinitely many vanishing moments, which tends to induce oscillations that can be visually
displeasing. It is observed that more-localized wavelets result in fewer oscillations and are less
subject to truncation artifacts.

In this chapter, we introduce a method to design radial profiles for steerable tight frames. Since
the frequency response of steerable wavelets is polar-separable, we can concentrate on the task of
optimizing the radial frequency profile. We focus on moment-based measures of localization and
propose two different classes of criteria depending on whether we consider the localization in the
spatial domain or in the wavelet domain. Two criteria can be derived within each class, depending
on whether one wants to consider localization over the whole space or in each radial direction.
Ultimately, the choice of a particular criterion among these is guided by the application. Similar
to Section 4.7, we describe an algorithm using the calculus of variations to optimize the wavelet
corresponding to each measure through gradient descent. We then obtain analytical expressions
for the optimally localized profiles. We then show the benefit of our optimized design in three

76



5.2. Localized Isotropic Wavelets

practical applications, namely, local orientation estimation, image reconstruction from edges, and
denoising. These experiments highlight different use-cases in which each of the proposed type
of localization (spatial versus wavelet domain) is desirable. In particular, we provide additional
results on the image-reconstruction problem compared to [105], as well as further study of the
performance of our wavelets for local orientation estimation and for the BLS-GSM denoising
algorithm.

The organization of the chapter is as follows: In the next section, we specify our measures
of localization and propose a step-by-step algorithm to design optimally localized profiles
corresponding to each measure. We then provide the closed-form expression of the resulting
optimal wavelets. Finally, we focus on three practical applications in Section 5.3, namely, local
orientation estimation in filamentous structures, image reconstruction from a primal sketch and
image denoising using BLS-GSM. We use our novel optimally localized wavelet profiles and
compare them against well-known wavelet profiles such as the Papadakis, Meyer, and Simoncelli
wavelets.

5.2 Localized Isotropic Wavelets

In this section, we present a general framework that relies on the calculus of variations to find the
optimal wavelet with respect to a given localization measure. We restrict ourselves to wavelets
specified in Section 2.3.4 and focus on two natural classes of moment-based measures. Due
to lack of our knowledge about the underlying process in practice, the choice of these natural
measures of localization is the most justifiable. Additionally, the theoretical justifications that
come in the sequel along with their nice properties from optimization view point are the other
reasons for proposing these criteria.

First, regarding Section 2.3.4, if ψ(r ) is the radial profile of the mother wavelet of an isotropic
tight wavelet frame with a fast filterbank implementation, then we have

ψ(r ) =H {h}(r ) =
∫ ∞

0
h(t ) J0(r t ) t dt . (5.1)

in which h(ρ) is the radial profile of the Fourier transform of ψ that is supported on [π4 ,π] and
satisfies∑

i∈Z
|h(2iρ)|2 = 1 for ∀ρ ∈R+\{0}. (5.2)

Now, assume that the functional V is a given measure of localization. We shall consider that this
measure operates in the Fourier domain. When V is Gâteaux differentiable, the natural method
of minimizing it would be to use a variation of the steepest-descent algorithm [106]. To do this,
we need the gradient of V . As V is a functional on an infinite-dimensional space, we have to rely
on the calculus of variations to obtain its gradient. The second issue which should be taken care
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of is that, during the optimization steps, we have to be careful not to leave the set of tight frames.
Thus, we need to characterize the projector onto the space of tight wavelet frames. Having these
two major components, the outline of the optimization algorithm is given in Algorithm 4, in
which ∇V (h)(ρ) denotes the gradient of V at ρ, and P denotes the orthogonal projector onto
the space of tight wavelet frames. This corresponds to the standard projected gradient descent
algorithm in an infinite dimensional space [107].

Algorithm 4: Most Localized Wavelet
1: initialize: h ∈ L2([0,∞])
2: initialize: η> 0
3: repeat
4: h̃ ← h −η ∇V {h}
5: h ←P {h̃}
6: until h converges
7: return h

5.2.1 Measures of Localization

We now propose four measures of localization split between two natural classes. The first class
consists of measures of the variance. Variance is the most well-known measure of localization
as less variance implies more concentration around the center. In addition, we know from the
uncertainty principle that the best achievable localization of a function is inversely proportional to
the localization of its Fourier transform, and vice versa. More precisely, for a function ψ :R2 →R,
we have [108]∫

R2 ‖x‖2ψ(x)2dx∫
R2 ψ(x)2dx

·
∫
R2 ‖ω‖2|F {ψ}(ω)|2dω∫

R2 |F {ψ}(ω)|2dω
≥ 1

16π4 . (5.3)

The first term of the left-hand side is the variance of the wavelet itself, and the second term is the
variance of its Fourier transform. Thus, setting an upper bound on the variance in one domain
imposes a lower bound on the variance in the other domain. In practice, we are interested in
bandlimited wavelets, which implies that the variance of the wavelet in the Fourier domain is
bounded from above. Thus, the variance of the wavelet in the space domain is bounded from
below. Since we are interested in finding the wavelet profile that attains the minimum value for
the variance, our first measure of localization is given by

V2D(ψ) =
∫
R2 ‖x‖2ψ(x)2dx∫
R2 ψ(x)2dx

=
∫ ∞

0 r 2ψ(r )2 r dr∫ ∞
0 ψ(r )2 r dr

. (5.4)

Isotropic wavelets are often used in a directional framework, for instance by applying the Riesz
transform or by applying an angular mask. This suggests that the variance of the one-dimensional
radial profile of the isotropic wavelet can also be a good candidate for the measure of localization.
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Hence, we propose the second variance-based measure of localization

V1D(ψ) =
∫ ∞

0 r 2ψ(r )2 dr∫ ∞
0 ψ(r )2 dr

. (5.5)

It measures the spread of the wavelet along each radial line.

The second class of measures focuses on the localization of the wavelet coefficients rather
than that of the wavelet profile. More precisely, the energy of a function computed over some
spatial neighbourhood should be well represented by the wavelet coefficients associated to that
neighbourhood and its vicinity. According to [109], if f =∑

m∈Z2 fm is an L2-function from R2

to R and fm is the restriction of f to the unit square centered at m, then

|〈 fm ,ψi ,k〉| ≤Ci

(∫
R2
‖x‖2ψ(x)2dx

)1/2

‖ fm‖2 |k−m|−1, (5.6)

where Ci is a constant that only depends on the scale i and is independent of ψ and f . The
`1-norm of a vector is denoted as | · | and the standard L2-norm of a function as ‖·‖2. Thus, as the
wavelet ψi ,k gets further from position m, the contribution of fm in the corresponding wavelet
coefficient decays. Moreover, the rate of decay is controlled by a constant that corresponds to the
unnormalized variance of the wavelet profile ψ. We hence propose this value as a third measure
of localization, this time for the wavelet coefficients. We define

U2D(ψ) =
∫
R2
‖x‖2ψ(x)2dx =

∫ ∞

0
r 2ψ(r )2 r dr. (5.7)

Accounting for the fact that isotropic wavelets are often used in a directional setting, we define
the unnormalized variance of the one-dimensional radial profile of the wavelet in analogy to (5.5)
as our last measure of localization

U1D(ψ) =
∫ ∞

0
r 2ψ(r )2 dr. (5.8)

To summarize, the first class of measures focuses on the localization of the shape of the wavelet
in the space domain while the second class of measures describes the localization of the wavelet
coefficients. We thus expect the first class to match applications that benefit from a local wavelet
analysis. The second class should, on the contrary, be more appropriate in the context of
applications that involve some form of wavelet-domain N -term approximation. For both classes
of measures, the index 2D indicates that the spread of the wavelet is a measure over the whole
space. The index 1D, conversely, measures the spread in each radial direction. In applications
where a directionality component is imposed on top of the isotropic profile (e.g., in detection
tasks using steerable filters), we predict that profiles with the best radial localization should
exhibit the best performances.
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5.2.2 Gradient of the Functionals and Projector onto the Space of Tight Frames

In this subsection, we give the explicit expressions of the two major components that are required
for implementing Algorithm 4: the gradient of the localization criterion and the operator P that
projects a solution onto the space of tight wavelet frames.

For formalization purpose, we consider h as a function in the weighted L2-space of [0,∞], Lw ,
whose inner product is defined as

〈 f , g 〉w =
∫ ∞

0
f (ρ)g (ρ)w(ρ)dρ, (5.9)

where w is a strictly positive weighting function.

We shall see that the inclusion of such a weight will provides us with some degrees of freedom to
design the projection operator, which can then be used advantageously to simplify the implemen-
tation. Since we are operating in a Hilbert space, the choice of w specifies the metric and hence
the form of the orthogonal projection operator Pw : Lw →T , where T is the set of functions
satisfying the tight frame property (5.2). Now, if we switch to another weighting function v , we
can define another “orthogonal” projection operator Pv : Lv →T which is such that Pv h = h

for all h ∈ T as well as PvPv f = Pv f for all f ∈ Lw . In other words, Pv also constitutes a
valid projector for the space Lw (including L2([0,∞]) with w = 1), albeit not necessarily the one
that minimizes the corresponding approximation error. The important point here is that using Pv

rather than Pw will not modify the outcome of the optimization process. Another way to put it
is that the underlying Karush-Kuhn-Tucker conditions of optimality in the Lagrange multiplier
method of optimization (see [110]) are independent of the actual choice of the Hilbert space Lw .

Now, defining

Am(h) =
∫ ∞

0
r mH {h}(r )2dr , (5.10)

we see that V2D, V1D, U2D, and U1D can be easily written in terms of Am for different m. Thus,
we only need to compute the gradient of Am . Using the basic rules of differentiation, we have

∇V2D{h} = 1

A1(h)
∇A3{h}− A3(h)

A1(h)2 ∇A1{h}, (5.11)

∇V1D{h} = 1

A0(h)
∇A2{h}− A2(h)

A0(h)2 ∇A0{h}, (5.12)

∇U2D{h} =∇A3{h} (5.13)
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5.2. Localized Isotropic Wavelets

and

∇U1D{h} =∇A2{h}. (5.14)

The main point for our purpose is that the functional Am : Lw →R is Gâteaux differentiable and
that its infinite-dimensional gradient can be obtained explicitly as shown in Appendix 5.A. The
ultimate outcome is

∇Am{h}(ρ) = 2ρ

w(ρ)

∫ ∞

0
r mH {h}(r )J0(ρr )dr , (5.15)

where H {h}. Note that this functional gradient depends on the weighting function of the space,
w .

The final ingredient for our algorithm is the operator that projects a function onto the set of tight-
frames. Here, unlike in the case of the gradient, the computational complexity of the orthogonal
projector is strongly dependent on the choice of w . In fact, in the following theorem, we will
see that there is a very specific weighting function w = v for which we can have a closed-form
formula for the required projector.

Theorem 4. Let Lw be the Hilbert space whose inner product is specified by (5.9) and let T be
the set of functions in Lw satisfiying the tight frame property (2.49). Then, the operator

P {h̃}(ρ) = h̃(ρ)√∑
i∈Z h̃2(2iρ)

(5.16)

is a projector from Lw → T . In particular, it is the orthogonal projector Lv → T for the
weighting function

v(t ) = 2i for
π

2i+1
≤ t ≤ π

2i
. (5.17)

The proof is given in Appendix 5.B.

The form (5.16) of the projector is intuitively very reasonnable. The simplification results from
the choice of the appropriate metric in the proof of the theorem. The result is non-obvious a priori
because this is the only instance of w for which we are able to carry out the computation to the
end. Constraint (5.2) is the equation of the unit infinite-dimensional sphere for each value of ρ.
The projector (5.16) is therefore projecting h̃ on the unit sphere for each value of ρ. The theorem
ensures that we have an equivalence between the `2-norm projection in the space of sequences
corresponding to each value of ρ and a projection in the weighted L2-space of functions on R for
the weighting function v specified by (5.17).
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5.2.3 Numerical Optimization

We apply our numerical optimization algorithm for each of the proposed measures of localization.
First of all, it has been shown analytically [109] that the Simoncelli wavelet minimizes the
criterion U2D. Thus, we already know the optimal profile with respect to the measure U2D.
Regarding V2D, V1D, and U1D, we run Algorithm 4 by uniformly taking 512 samples of h(ρ)

for ρ in π/4 to π on a logarithmic scale, hence simplifying the computation of the projection
map (5.16). To calculate H {h}(r ), we compute the integral of (2.48) from 0 to 300 relying on
the trapezoid method with 3000 intervals. The algorithm is left to run until absolute variations of
V (h) fall under 10−3.

In this optimization settings, we obtain the minimum values 1.73, 0.39, and 1.64 for V2D(h),
V1D(h), and U1D(h), respectively. However, due to the Gibbs phenomenon that results from the
truncation of the Fourier transform, the resulting wavelets exhibit ringing artifacts. In order to
remove these effects and obtain a smooth profile for practical applications, we fitted a closed-
form formula to the numerically obtained wavelets. We thus propose four wavelets named
hV2D , hU2D , hV1D , and hU1D , which correspond to each of the considered measures of localization.
From (2.51), (2.52), and (2.54), it is sufficient to specify the wavelet profile either on [π4 , π2 ] or
on [π2 ,π] to describe it entirely. The expressions of hV2D and hU2D are more easily given on the
interval [π4 , π2 ] as

hV2D (ρ)
∣∣
ρ∈[ π4 , π2 ] =

p
6−

√
1+20( 2ρ

π −1)2

p
6−1

, (5.18)

hU2D (ρ)
∣∣
ρ∈[ π4 , π2 ] = cos

(π
2

log2
2ρ

π

)
. (5.19)

We recall that hU2D corresponds to the Simoncelli wavelet. The profiles hV1D and hU1D are better
expressed on the interval [π2 ,π] as

hV1D (ρ)
∣∣
ρ∈[ π2 ,π] =

(
log2

π

ρ
−0.005

√
π

ρ
sin

(
π log2

π

ρ

)) 2
5

, (5.20)

hU1D (ρ)
∣∣
ρ∈[ π2 ,π] =

√
(log2

π
ρ +0.6)4 −0.64

1.64 −0.64 . (5.21)

The radial profiles of these wavelets are shown in Figures 5.1 and 5.2 in Fourier and space
domains, respectively. We have that V2D(hV2D ) = 1.74, V1D(hV1D ) = 0.40, and U1D(hU1D ) = 1.65.
These values are only marginally suboptimal. The values of the different measures of localization
for each of these wavelets as well as for more traditional ones are given in Table 5.1. Moreover,
we note that Figure 5.2 confirms our expectation that hV1D has the most localized profile shape.

The measures V2D and U2D can also be interpreted as the normalized and unnormalized third-
order moment of the radial profile of the wavelet, respectively, while V1D and U1D correspond
to its normalized and unnormalized second-order moment. Furthermore, having finite values
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Figure 5.1 – Wavelet profiles in Fourier domain for (a) the proposed optimal profiles, and (b)
existing ones (Simoncelli, Meyer, and Papadakis).

for higher-order moments in the space domain implies being smoother in the Fourier domain.
Thus, the minimiziers of V2D and U2D necessarily have finite V1D and U1D values. However, the
converse is not always true.

As we see in Table 5.1, the minimizers of V1D and U1D have infinite values for V2D and U2D.
This is in accordance with the roughness of the profiles at points π

4 , π2 , and π (see Figure 5.1). In
the case of the Shannon wavelet, the discontinuities of the frequency-domain profile results in a
slow decay in the spatial domain that brings V1D and U1D to infinity. From Table 5.1, we observe
that the Simoncelli wavelet is not only optimal for the criterion U2D, but also exhibits reasonable
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Figure 5.2 – Wavelet profiles in space domain for (a) the proposed optimal profiles, and (b)
existing ones (Simoncelli, Meyer, and Papadakis).

values for other measures of localization.

5.3 Applications

We now demonstrate the benefit of well-localized wavelet profiles for practical applications. In
particular, we study the performance of our wavelets and compare them against other existing
popular profiles for the problems of local orientation estimation, image reconstruction from edges
and denoising.
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Table 5.1 – Localization of Different Wavelets Measured by V2D, V1D, U2D, and U1D (Equations
(5.4)-(5.5) and (5.7)-(5.8))

Wavelet type Localization
V2D V1D U2D U1D

hV2D (5.18) 1.74 0.44 3.88 2.19
hV1D (5.20) +∞ 0.40 +∞ 2.03

hU2D (Simonceli) (5.19)[95] 1.84 0.46 3.55 1.93
hU1D (5.21) +∞ 0.52 +∞ 1.65

Papadakis [103] 2.06 0.49 4.93 2.52
Meyer [34] 2.88 0.66 6.04 2.61

Shannon [90] +∞ +∞ +∞ +∞

5.3.1 Estimation of Local Orientation

In this section, we focus on the task of estimating the local orientation of ridge-like objects (e.g.,
filaments) using a steerable ridge detector. We construct Hessian-like wavelets, the design of
which is made easy by selecting an isotropic kernel and applying the generalized Riesz-wavelet
transform using the appropriate shaping matrix, as described in [91, Section 5.1.3]. We refer the
reader to [111] for a detailed description on how to steer Hessian filters to retrieve the orientation
corresponding to the best response of the ridge detector at every point of the image. To perform a
multiscale ridge detection at every location using the Hessian filter, we go through every scale of
the wavelet pyramid and select the one where the strongest filter response can be found. The final
output of our experiment is therefore an angle map with the same dimensions as the input image,
and which contains at each pixel the estimated local orientation yielding the best ridge filter
response. The Riesz-wavelet transform [91] and the extraction of local orientation estimation for
each point of the input image have been implemented as a Java-based plug-in for the open-source
image-analysis software ImageJ [112].

In our experiment, we rely on a 512× 512 pixels 8-bits image (Figure 5.3) in which several
regions of interest (ROIs) made of short line segments have been manually selected by an expert,
and where local orientation should be estimated. The angle that each of the manually placed ROI
form with the horizontal direction is considered as ground truth and corresponds to the orientation
that shall automatically be retrieved. We estimate the local orientation of each ROI with the
trivial isotropic profile (Shannon [90]), several popular isotropic wavelet profiles (Simoncelli [95],
which corresponds to hU2D (5.19), Papadakis [103], and Meyer [34]), as well as with the wavelets
we propose (hU1D (5.21), hV2D (5.18) and hV1D (5.20)). To obtain an estimation of the local
orientation of each ROI, we average the orientation estimates provided by the steerable filter
under the ROI (i.e., we average the values of the pixels that belong to the line segment composing
the ROI). We investigate the quality of each of the local orientation estimate by comparing the
ground truth orientation with the automatically retrieved one (Table 5.2). We also report the
absolute error between the ground truth and each of the estimates in Table 5.3. The experiment is
conducted using 4 scales of wavelet decomposition.
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(a) (b)

Figure 5.3 – Estimation of local orientation. (a) Original filaments image from [1], and (b)
overlaid local regions of interest with their label.

In this experiment, we observe that best results are obtained with hU1D . This can be explained by
the fact that the two classes of wavelets hU and hV are optimized for different applications. The
profiles of hV2D and hV1D are most localized in the spatial domain as they optimize V2D (5.4) and
V1D (5.5), while hU2D and hU1D optimally localizes wavelet coefficients following U2D (5.7) and
U1D (5.8). The estimation of local orientation is better when the wavelet response is strong and
well localized, as ridges (here, the filaments) are then more accurately detected. In the present
experiment, a profile maximizing wavelet coefficients localization, and hence a criterion of the
class U , is therefore desirable. This is confirmed by the results and the good performance obtained
by hU1D and hU2D . Also, among the class of hU wavelets, one observes that hU1D outperforms
hU2D . An argument for this is that a 1-dimensional design is more suitable for steerable wavelets
since they are inherently directional. In the current application, the wavelets align themselves
with ridges so that the U1D criterion, which measures the spread in each radial direction, is the
most appropriate one.

5.3.2 Image Reconstruction from Edges

The experiment we study here is image approximation from a reduced set of wavelet-based edges.
First, a multiscale primal sketch [101], or edge map [102], is extracted from the set of wavelet
coefficients of the image. An approximation of the original image is then recovered from this
small subset of coefficients relying on constrained optimization.

To extract a multiscale edge map from the input image, we rely on a gradient-like wavelet
framework. It is implemented with the help of the generalized Riesz-wavelet transform [91],
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and of an appropriate shaping matrix [91, Section 5.1.1] that yields a pair of x- and y-derivative
wavelets. Edges in the multiscale gradient signal are then detected based on a wavelet-domain
version of the Canny edge detector, which includes non-maximum suppression and hysteresis
thesholding [101]. Note that the Canny edge detector requires an estimation of the strength
and orientation of the gradient for each point of the image, which is obtained by steering the
gradient-like wavelets at every scale and location. The final edge map is composed of the wavelet
coefficients retained by the multiscale edge detector. To preserve the graylevel information of the
image, all coefficients of the lowpass residual of the wavelet decomposition are saved.

Reconstruction is then formulated as the constrained optimization problem

minimize ‖z‖1 (5.22)

subject to z = WH f (5.23)

zi = qi , ∀ i ∈ S, (5.24)

with variables z and f , where S is the set of indices for the wavelet coefficients that are part of
the edge map, WH the wavelet-analysis operator, and f an image. Finally, qi denotes the wavelet
coefficient of the original image at location i , where i is an index of 2-D position and scale. This
formulation is motivated by two main principles. First, we aim at conserving the elements of the
edge-map in order to reconstruct the image. We refer to them as wavelet-based edges, as they are
the output of a Canny edge detector applied on the wavelet transform of the image. This gives
us constraint (5.24), which imposes the elements qi , i ∈ S to be fixed during the optimization
process. Second, we want the estimated missing wavelet coefficients to project back onto an
image. Knowing that images are sparse in the wavelet domain, we impose sparsity by minimizing
the `1-norm of the wavelet transform z of the image, yielding (5.22). Our problem thus amounts
to minimizing a convex functional under a finite set of linear constraints, which guarantees the
existence of a feasible minimum that can be reached using appropriate optimization algorithms.

Here, we propose an improvement of the reconstruction algorithm in [102] that relies on a gradient
descent of the augmented Lagrangian. Our new algorithm is based on the alternating-direction
method of multipliers (ADMM), which motivates the introduction of the auxiliary variable z .
ADMM is a method known to converge very fast to an acceptable solution and that guarantees
the residual to be brought to zero. In practice, it is observed that the fast and moderately good
estimate provided after 30 iterations of the algorithm is already visually satisfactory. We refer the
reader to [113] for a complete description of the method.

To reconstruct the image with ADMM, we first form the augmented Lagrangian

L (z , f ,λ) = ‖z‖1 +λT (
z −WH f

)+ µ

2

∥∥z −WH f
∥∥2

2 , (5.25)

where µ is a step size that can be adapted to influence the speed of convergence. We rewrite (5.25)
in terms of the scaled dual variable u = λ

µ in order to obtain simpler mathematical expressions,
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yielding

L (z , f ,u) = ‖z‖1 + µ

2

∥∥z −WH f +u
∥∥2

2 −
µ

2
‖u‖2

2 . (5.26)

The ADMM algorithm for our problem thus consists of the three successive iterations

z (k+1) = argmin
z

L (z , f (k),u(k)), (5.27)

f (k+1) = argmin
f

L (z (k+1), f ,u(k)), (5.28)

u(k+1) = u(k) +
(

z (k+1) −WH f (k+1)
)

. (5.29)

The update for z can be rewritten in an element-wise manner as

z (k+1) = argmin
z

(
‖z‖1 + µ

2

∥∥∥z −WH f (k) +u(k)
∥∥∥2

2

)
(5.30)

= argmin
z

(∑
i∈I

|zi |+ µ

2

∑
i∈I

∣∣∣zi − v (k)
i

∣∣∣2
)

, (5.31)

where we denote by I the set of indices for all wavelet coefficients of the image. We introduced
v (k)

i = [WH f (k)]i −u(k)
i for convenience. For all elements i ∈ S, (5.24) imposes that zi = qi ,

and no further computations are required. For i ∉ S, zi should be colinear with vi in order to
annihilate the second term in (5.31). Plugging zi =C vi into (5.31) and solving for the optimal
constant C brings us to the component-wise expression of the z update

z(k+1)
i =


qi , if i ∈ S(

1− 1

µ
∣∣∣v (k)

i

∣∣∣
)
+

v (k)
i , if i ∉ S,

(5.32)

where (·)+ = max(0, ·) corresponds to the shrinkage of v (k)
i . Then, updating f boils down to an

unconstrained quadratic optimization problem. It can hence be performed by taking the partial
derivative of the augmented Lagrangian and solving for zero. This yields

f (k+1) = argmin
f

∥∥z −WH f +u
∥∥2

2 (5.33)

= (
WWH )−1

W
(

z (k+1) +u(k)
)

. (5.34)

As W forms a tight frame, (5.34) can be further simplified by observing that WWH = I. Finally, u

is simply modified through a linear update.

In practice, the algorithm is initialized with a z (0) composed of all the wavelet coefficients
qi , i ∈ S retained in the edge map and the complete lowpass residual of the image to reconstruct.
Then, f (0) is initialized as an image entirely composed of pixels with value zero and WH f (0) is
obtained by taking its wavelet transform. Finally, u(0) is set as a pyramid of images composed
only of zeros and having the same number of scales and dimensions as WH f (0). The parameter µ
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is empirically set to 106. With these settings, between thirty and fifty ADMM iterations were
observed to be sufficient to reach “visual convergence”, which corresponds to a situation where
additional iterations bring unnoticeable visual improvements. Note that, through the whole
optimization procedure, the left-multiplication by WH or W corresponds to performing a wavelet
analysis or synthesis, respectively. The algorithm can thus be executed in reasonable time as
these two operations can be performed efficiently with the help of a filterbank implementation. To
illustrate this experiment, we give in Figure 5.4 the original Cameraman image, its reconstruction
from 7% of the wavelet coefficients, as well as the mask containing the coefficients retained by
our multiscale wavelet-based edge detector.

We implemented the Riesz-wavelet transform [91] as well as the edge-map extraction and
subsequent image reconstruction using ADMM as a Java-based plug-in for the open-source
image-analysis software ImageJ [112].

We gather results on a set of 5 standard test images, namely, House, Pirate, Peppers, Lena,
Bridge, Cameraman, and Einstein, all being 512×512 pixels grayscale images. We run the same
experiments with the trivial isotropic profile (Shannon [90]), several popular isotropic wavelet
profiles (Simoncelli [95], which happens to be hU2D (5.19), Papadakis [103], and Meyer [34]),
and finally with our proposed wavelets (hU1D (5.21), hV2D (5.18) and hV1D (5.20)). We investigate
the reconstruction performance of the different wavelets in terms of the PSNR of the reconstructed
image. We start by retaining 7% of the total number of wavelet coefficients in the image. These
7% are chosen among the set of wavelet-based edges retained by our multi-scale Canny edge
detector1. Note that, as our test images all have the same size, this percentage corresponds to the
same absolute number of coefficients in each case. All experiments are conducted using 4 scales
of decomposition. Reconstruction results obtained after 30 iterations of the ADMM algorithm are
shown in Table 5.4. In order to allow for a visual comparison of the performance, we also show in
Figure 5.5 close-ups of the Lena image reconstructed using the different wavelet profiles. We here
observe that hU1D outperforms the other wavelets. Further experiments of reconstruction using
a set of edge coefficients corresponding to 1 to 7% of the total number of wavelet coefficients
in the image allows us to reach similar conclusions, as seen in Figure 5.6. Here, only results
on Lena and Cameraman are displayed, as they are representative of the results observed in the
remaining test images. This confirms that the proposed hU1D profile is better for reconstruction
than the other wavelets considered in this experiment.

Notice that, in this application, hU1D followed by hU2D outperforms in particular hV2D and hV1D . As
the construction of the edge map in the current experiment relies on the same kind of framework
as the filaments detection for local orientation estimation in Section 5.3.1 (namely, multiscale
steerable filters), the same arguments hold for explaining these results. The reconstruction
task obtains better results when the edge map contains sharper elements, which corresponds
to better sets of edges. What matters most in this experiment is therefore again the optimal
localization of the wavelet coefficients. This explains why the best performance is obtained with

1In practice, we adapt the percentage of coefficients retained by the multiscale Canny edge detector by changing
the hysteresis thresholding parameters.
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(a) (b)

(c)

Figure 5.4 – Wavelet-based edge reconstruction. (a) Original Cameraman image, (b) final result
after reconstruction using hU1D , and (c) binary masks featuring the wavelet coefficients saved
for reconstruction at different scales. Here, 4 scales were used and 7% of the total number of
coefficients were retained.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.5 – Wavelet-based edge reconstruction. Close-up of reconstruction of Lena relying on
(a) Shannon, (b) Meyer, (c) Papadakis, (d) hU1D , (e) hU2D (Simoncelli), (f) hV1D , and (g) hV2D .
The best PSNR is achieved by hU1D shown in (e). Here, 4 scales were used and 7% of the total
number of coefficients were retained.
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(a) (b)

Figure 5.6 – Wavelet-based edge reconstruction. Evolution of the PSNR as a function of the
percentage of retained wavelet coefficients using different wavelet profiles on the (a) Lena and
(b) Cameraman images. The legend is sorted by decreasing order of performance.

the profiles optimizing criterion of the class U (hU1D and hU2D ). Results can actually directly be
interpreted from the values of U1D provided in Table 5.1. Starting from the optimal hU1D , the
next most localized profiles sorted by distance to the optimum are Simoncelli (hU2D ), hV1D , hV2D ,
Papadakis and Meyer. The quality of reconstruction obtained by the different profiles and shown
in Figure 5.6 follow the same pattern, with Papadakis and Meyer being the worst and followed by
hV2D and hV1D , hU2D (Simoncelli), and finally hU1D , which achieves the best results.

5.3.3 BLS-GSM Denoising

The BLS-GSM algorithm [94] is a famous and very efficient approach for recovering noise-
corrupted images. The motivation behind this method is the observed strong correlation between
wavelet coefficients located at similar positions at various orientations and scales. More specifi-
cally, the properties of the image (i.e., the neighborhood of each wavelet coefficient) are modeled
by a Gaussian scale mixture model (GSM) in the multiresolution wavelet transform space. The
original, noise-free value of each coefficient is then estimated using Bayesian least squares (BLS)
under the Gaussian scale mixture model, and making use of the correlation between coefficients
in the pyramid. The algorithm therefore improves the denoising by taking advantage of local
similarities. In practice, BLS-GSM is performed on subbands of an oriented multiresolution
transformation of the noise-corrupted image, which corresponds in the original implementation
to the steerable pyramid with Simoncelli’s wavelet profile. We orient readers interested in a more
detailed description of BLS-GSM to the very comprehensive paper of Rajaei [114].

A Matlab implementation of BLS-GSM has been released by the authors of the initial paper [94].
In order to perform the following experiments, we modify this original implementation2 by
replacing the Simoncelli wavelet by other wavelet profiles.

2BLS-GSM Image Denoising Matlab Toolbox 1.0.3 (latest revision: February 23, 2005), available from http:
//www.io.csic.es/PagsPers/JPortilla/software/section/3-bayesian-denoising-in-the-wavelet-domain9/
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Chapter 5. Localized Isotropic Wavelets for Image Analysis and Reconstruction

We perform several experiments in order to compare performance of different isotropic wavelet
profiles when denoising with the BLS-GSM algorithm. We use the same image set as previously
in 5.3.2. We also compare results between the same collection of wavelet profiles, namely
Shannon, Meyer, Papadakis, Simoncelli (hU2D ), hU1D , hV2D and hV1D . In our first experiment, we
corrupt the images with additive Gaussian noise of standard deviation σ= 40 and use the default
number of orientations for the construction of the steerable pyramid, namely 4. We evaluate
results in terms of the PSNR of the denoised image, as presented in Table 5.5. From this, one
observes that hV1D (5.20) outperforms all other profiles. In order to further investigate this, we
perform two additional experiments by varying the parameters of BLS-GSM. We first run the
algorithm for each wavelet profile on images corrupted by noise levels with σ ∈ [20,70]. Results
are displayed in Figure 5.7. As expected, higher noise levels yield lower PSNR as the image
becomes harder to retrieve. We also study the influence on the number of orientations chosen
to built the steerable pyramid3. Increasing the number of orientations yield better results, but
also significantly increases computation time. We show results for each of the studied wavelet
profile in Figure 5.8. From these two experiments, we observe that hV1D , followed by hV2D ,
yields consistently better results than all the other popular profiles we tested, outperforming
state-of-the-art results using the steerable pyramid. Although we only show here results on Lena
and Cameraman due to space constraints, the same observation can be made using House, Pirate,
Peppers, Bridge and Einstein.

Unlike hV2D and hV1D , we observe that hU1D yield less impressive results, and in particular does
not compete with the Simoncelli profile (hU2D ) initially used in BLS-GSM, which gives similar
results than hV2D . This observation is consistent with the way each of the wavelets are constructed.
As explained in Section 5.3.1, the hU maximally localizes the wavelet coefficients, while the
hV have a profile which is optimally localized in spatial domain. The most desirable feature
here, in comparison with local orientation estimation and image reconstruction from edges, is a
spatially localized profile for the steerable pyramid. A transformation yielding very localized
wavelet coefficients is actually even counter-productive as it concentrates the neighborhood of
each coefficient, and thus reduces the amount of information that can be exploited by BLS-GSM.
The profiles of choice for this application are hence of the class hV . The values of V1D that can
be found in Figure 5.1 for the different profiles are consistent with these observations: hV1D is
optimal, then comes hV2D and hU2D (Simoncelli), which is the third closest to the optimal value.
The Papadakis and hU1D follow with V1D values that are about equivalently far from the optimum,
and the Meyer wavelet finally gets the worse V1D localization value. This trend is conserved in
our results, as seen in Figures 5.7 and 5.8. Sorting the profiles by result quality (from best to
worse) indeed yields hV1D , hV2D , hU2D (Simoncelli), Papadakis, hU1D and Meyer.

Note that although the difference in PSNR are marginal, the improvement comes at no cost as the
only modification to the algorithm is a change of the radial wavelet profile. We also emphasize
that these results do not imply that the proposed design should outperform denoising results based
on other non-steerable wavelet frames. Rather, they indicate that the signal-domain localization

3The maximum number of orientations allowed by the Matlab implementation is 16.
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5.4. Summary

(a) (b)

Figure 5.7 – BLS-GSM denoising. Evolution of the PSNR as a function of noise using different
wavelet profiles on the (a) Lena and (b) Cameraman images. The legend is sorted by decreasing
order of performance.

(a) (b)

Figure 5.8 – BLS-GSM denoising. Evolution of the PSNR as a function of the number of angles
using different wavelet profiles on the (a) Lena and (b) Cameraman images. The legend is sorted
by decreasing order of performance.

of the wavelets is beneficial to the BLS-GSM algorithm.

5.4 Summary

In this chapter, we have introduced a method for designing maximally localized isotropic tight-
frame wavelets. The key ingredient is a measure of localization that can be optimized in order to
derive the corresponding profile. We provide two classes of criterion for measuring localization
either in the spatial or in the wavelet domain and express the resulting profiles optimizing
each criterion either over the whole space or along each radial direction. We then consider three
experimental settings in which we compare results obtained with our wavelets against state-of-the-
art. First, we focus on the problem of estimating local orientation of filamentous structures, and
then on the task of reconstructing an image from a small subset of edges in the wavelet domain.
Both of these experiments rely on steerable filters, either Hessian- or gradient-based. In this
setting, the wavelets obtained by optimizing the localization of wavelet coefficients outperforms
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existing isotropic wavelet profiles. Then, we demonstrate the efficiency of the most localized
profiles in spatial domain in a denoising experiment using the popular BLS-GSM algorithm.
These different use-cases show that both of our classes of localization criterion are relevant
depending on the kind of application being considered, and that the proposed wavelet profiles are
interesting candidates for image-processing tasks involving isotropic wavelets. Moreover, our
results experimentally confirm the validity of the proposed localization criterion. The good or
bad performance of the studied wavelet profiles can indeed be interpreted in the light of these two
metrics. This further hints at the fact that our localization criterion are useful in order to study
the localization of a given wavelet either in terms of its spatial profile, or of the coefficients it
generates. In fact, the two proposed localization criteria can serve as quick estimates to assess
the relative performance of any given isotropic tight-frame wavelet profile based on a simple
calculation.

5.A Computation of the Gradient

In order to obtain the gradient of the functional Am : Lw → R, we first calculate the Gâteaux
derivative of Am in the direction of a given function g ∈Lw as

Dg Am(h) = ∂

∂ε
Am(h +εg )

∣∣∣
ε=0

(5.35)

=
∫ ∞

0
r m ∂

∂ε
H {h +εg }(r )2

∣∣∣
ε=0

dr .

Due to the linearity of H {·}, we can write

Dg Am(h) =
∫ ∞

0
r m ∂

∂ε

(
H {h}(r )+εH {g }(r )

)2∣∣∣
ε=0

dr

= 2
∫ ∞

0
r m H {h}(r )H {g }(r )dr

= 2
∫ ∞

0
r mH {h}(r )

(∫ ∞

0
g (t )J0(tr )tdt

)
dr

= 2
∫ ∞

0
g (t )t

(∫ ∞

0
r mH {h}(r )J0(tr )dr

)
dt . (5.36)

According to the definition of the gradient, we have that

Dg Am(h) =
∫ ∞

0
g (t ) ∇Am{h}(t ) w(t )dt . (5.37)

We therefore obtain

∇Am{h}(ρ) = 2ρ

w(ρ)

∫ ∞

0
r mH {h}(r )J0(ρr )dr . (5.38)
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5.B Characterization of the Projector onto the Space of Tight Frames

In order to characterize the orthogonal projector P : Lw →T , we have to solve a minimization
problem. For a given h̃ ∈Lw , we are looking for a function h ∈T that satisfies∑

i∈Z
|h(2iρ)|2 = 1 for ρ ∈ [

π

2
,π] (5.39)

and that minimizes the functional

‖h̃ −h‖2
2 =

∫ ∞

0
(h̃(ρ)−h(ρ))2w(ρ)dρ. (5.40)

We solve this problem using an infinite-dimensional Lagrange-multiplier method [115]. Similar
to (5.35)-(5.38), we calculate the gradient of constraint (5.39) for each value of ρ as

∇
{∑

i∈Z
|h(2iρ)|2

}
(t ) = 2

h(t )

w(t )

∑
i∈Z

δ(t −2iρ), (5.41)

where δ is the Dirac delta distribution. The gradient of (5.40) is given by

∇{‖h̃ −h‖2
2

}
(t ) = 2(h(t )− h̃(t )). (5.42)

According to the Lagrange-multiplier method, there exists a function k supported on [π2 ,π] at the
minimizer of (5.40) for which we have that [115]

h(t )− h̃(t ) =
∫ π

0
k(ρ)

h(t )

w(t )

∑
i∈Z

δ(t −2iρ)dρ

= h(t )

w(t )

∑
i∈Z

2i k(2i t ). (5.43)

Therefore,

h(t ) = h̃(t )

1− 1
w(t )

∑
i∈Z2i k(2i t )

. (5.44)

Now, we fix the weight function w as

w(t ) = 2i for
π

2i+1
≤ t ≤ π

2i
. (5.45)

Equation (5.44) can now be simplified to

h(t ) = h̃(t )

1−∑
i∈Zk(2i t )

. (5.46)
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To determine k, we substitute (5.46) in (5.39) and obtain

∑
j∈Z

h̃2(2 j t )

(1−∑
i∈Zk(2i+ j t ))2

= 1. (5.47)

Since the denominator of (5.46) is invariant to dilations by powers of 2, the denominator of (5.47)
does not depend of j . It means that

1− ∑
i∈Z

k(2i t ) =
( ∑

j∈Z
h̃2(2 j t )

) 1
2

. (5.48)

By substituting (5.48) in (5.46), we get that

h(t ) = h̃(t )√∑
i∈Z h̃2(2i t )

. (5.49)
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6 Summary and Future Studies

In this thesis, we theoretically substantiated the optimality of wavelets for representing sparse
signals in a stochastic framework. Also, we obtained a criteria to distinguish between different
wavelet families. At the end, we employed our theoretical results to gain practical advantages. In
the sequel, we give the contributions in more detail.

6.1 Summary of Results

Optimality of operator-like wavelets for decoupling AR(1) SαS processes: In the first chapter
of the main body of the thesis, we studied AR(1) processes that are driven by SαS noises. First,
we showed that by sampling a continuous-domain AR(1) process, we obtain a discrete-domain
AR(1) process. Then, we focused on discrete-domain SαS AR(1) processes and derived an exact
formulation for the mutual information of their coefficient in a transform domain. This formula
enabled us to run an optimization algorithm to find the orthonormal basis which maximally
decouples such processes. Ultimately, we saw that for small α, the optimal basis is exactly the
operator-like wavelets matched to the process under consideration. Additionally, we proposed a
criterion to measure the coefficient-wise denoising in a transform domain based on the Stein’s
formula. Using that, we also saw that the optimal basis for small enough α is the matched
operator-like wavelet. Moreover, we proved that for any α less than 2, operator-like wavelets
outperform DCT-like bases for both compression and denoising applications. In fact, we showed
that for sparse signals, the representation in DCT-like bases have no advantage over the original
time domain.

Characterizing the performance of a wavelet basis for denoising self-similar SαS processes:
In the second part, we studied another important family of sparse stochastic processes, namely self-
similar processes. In contrast with the previous chapter, we studied their wavelet decomposition
in the continuous domain rather than sampling them. Our goal was to determine the performance
of an arbitrary wavelet basis for the application of denoising. To achieve this goal, we first
proved a theorem about wavelet decomposition of locally-L2 signals (rather than L2 signals). In
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the second step, we extended some existing results for the MMSE function of finite variance
signals to SαS signals. Combining these two theorems, we could exactly determine the denoising
performance of any given orthonormal wavelet basis. Also, we could simplify and obtain a very
concise criteria to compare different wavelets. At the end, using calculus of variations, we ran
an infinite-dimensional optimization algorithm to find the optimal Meyer wavelet for denoising
self-similar SαS processes.

Designing steerable wavelets that outperform the existing ones in image processing appli-
cations: In the theoretical chapters while studying the wavelet decomposition of AR(1) and
self-similar processes, we observed in both cases that localization of the mother wavelet plays
the main role in the performance of the basis. In the last chapter, we exploited this observation to
design wavelets for practical image processing applications. First, we used our intuition about
images to propose appropriate criteria for different image processing applications. Then, similar
to the previous chapter, we proposed an infinite-dimensional optimization algorithm for designing
maximally localized steerable tight wavelet frames. These wavelets have a wide usage in different
image processing applications. Finally, we could demonstrate the benefits of an optimal wavelet
design in several applications.

6.2 Future Studies

Finally, we list some extensions of the work presented in this thesis. First, we may extend the
framework of Chapter 3 from AR(1) processes to general discrete sparse stationary processes.
Also, we can impose the multi-resolution constraint on the matrix under optimization to di-
rectly derive a wavelet-like basis. Another direction altogether would be abandon finding the
transformation that maximally decouples the signal. While this decoupling allows us to apply a
coefficient-wise manipulation to get a near-optimal coding or denoising performance, there are
also other patterns of dependency for which we can perform the optimal or near-optimal manipu-
lations. For example, for signals with Markov dependency, we can implement the exact MMSE
estimator by using graphical models and belief propagation [54, 116]. Based on this fact, we can
try to find a representation domain in which the coefficients have maximum Markov dependency,
instead of trying to find a representation with the maximally independent coefficients.

We could also investigate the coding of continuous-domain stochastic processes. In that case, we
actually need to perform a rate-distortion analysis, because in the continuous domain, a wavelet
can have small average mutual-information but at the same time a high approximation error.
Therefore, the study should take into account both statistical dependency of the coefficients and
approximation power of the wavelets. Deriving criteria for stochastic processes more general
than self-similar ones and considering the situations in which partial dependency between the
coefficients are taken into account are two other interesting subjects to work on.

Another open topic is to find the optimal frames rather than bases. This problem can be seen as a
generalized dictionary learning where we try to design overcomplete dictionaries to represent
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finite dimensional signals. Finally, a valuable theoretical study is interpreting the already existing
results in SCA as the ICA for heavy-tailed, or more specifically, α-stable random variables. This
way, we can obtain a statistical interpretation for the existing deterministic methods and then we
can use statistical tools to improve them.
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