
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr D. Gillet, président du jury
Prof. P. Fua, Prof. V. Lepetit, directeurs de thèse

Prof. A. Zisserman, rapporteur
Dr H. Jégou, rapporteur

Prof. B. Merminod, rapporteur

Vision-based detection of aircrafts and UAVs

THÈSE NO 7589 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 5 MAI 2017

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE VISION PAR ORDINATEUR

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Artem ROZANTSEV

Acknowledgements
There are many people, without whom this PhD thesis will not be possible. I would like to first

thank Pascal Fua, for the great opportunity to join his Computer Vision Laboratory at EPFL. I am

very thankful for the experience that I have acquired during the years of my PhD. I would also

like to thank Vincent Lepetit for his time, patience and helpfulness especially in the beginning of

my PhD, when I had little knowledge about computer vision and lots of questions. Further, I am

very thankful to Mathieu Salzmann for the useful discussions that helped me during the last year

of my studies. I am also grateful to the committee members, Denis Gillet, Andrew Zissermann,

Hervé Jégou and Bertrand Merminod for accepting to evaluate this thesis.

I would also like to give thanks to all the present and past members of CVLab: Timur, Ksenia,

Agata, Carlos, Pierre, Jan, Roger, Alberto, Isinsu, Andrii, Amos, Bugra, Amaury, Sandro, Anne,

Pablo, Eduard and Kwang for the great time I have spent in the lab. In particular I would like to

thank my officemate Timur for being a great source of fun stories of his adventures in Russia,

US and other countries. I am also very grateful to Horesh and the whole playfulvision (now

SecondSpectrum) team, with whom I visited Italy and Poland and watched (filmed) different

volleyball tournaments with world-class teams competing with each other. These trips were really

fun and I got ‘in the field’ computer vision experience. I would like to give special thanks to

Arianne and Josiane for their kindness and assistance. I want to particularly thank Arianne for

the support and creativeness in helping me to find solutions to any problem that I encountered.

I would further like to thank Rafah and Ajay with whom we started our PhD journey, shared a

lot of fun and exciting moments, visited different countries, sang in the karaoke bars and who

supported me during tough times. I also want to thank all my friends at EPFL: Roman, Marwa,

Farah, Silvia, Katerina, Jose, Fay, Jean, Ersi, Beril, Pinar, Elena, Helen, Nico and who made this

PhD experience extremely entertaining with boat trips, concerts, hikes, ski weekends and parties.

I would not like Lausanne as much as I do now, without all these people. I am also very grateful

to Dima (known as Dimaleks) for showing me this opportunity of doing PhD at EPFL and for

amazing skiing and surfing trips.

I would like then to give thanks to my Lausanne friends. First, I want to thank my volleyball

teams with whom we played in competitive championships. In particular I would like to thank

Laetitia and Max for bringing in so much fun in the trainings, for wine tasting, skiing trips and

great summer beach volley. I would also like to thank the whole Moschimö team with whom

we went the whole path from almost being kicked out of the league to reaching the finals and

getting the fifth place among the top mixed teams in Canton Vaud (Switzerland). Further, I am

i

Acknowledgements

also very grateful to Fred and the whole Powerball team for great time spent at trainings and

matches. Last but not least I would like to thank Simone and the IC team, who gave me the

opportunity to support the I&C department in the EPFL competition. Second, I want to thank

Katia and Franziska Perrollaz, from whom I rented the studio, where I lived for almost all my

PhD for the warmth, support and readiness to solve any problem that I encountered.

I am also very thankful to Renata for bringing a lot of love, happiness, smiles, and creativeness to

my life, for the great trips and amazing cocktails, for her kindness, support and all the exciting

moments that we share. I would also like to thank Kostya and Lena for their support, help in

various situations and for our amazing trips in Italy, the UK and Finland. Finally, I would like to

give special thanks to my parents for their unconditional support in the toughest times, for their

love, kindness and readiness to help in all possible and impossible situations. Without them this

PhD will be absolutely impossible.

ii

Abstract
Unmanned Aerial Vehicles are becoming increasingly popular for a broad variety of tasks ranging

from aerial imagery to objects delivery. With the expansion of the areas, where drones can be

efficiently used, the collision risk with other flying objects increases. Avoiding such collisions

would be a relatively easy task, if all the aircrafts in the neighboring airspace could communicate

with each other and share their location information. However, it is often the case that either

location information is unavailable (e.g. flying in GPS-denied environments) or communication is

not possible (e.g. different communication channels or non-cooperative flight scenario). To ensure

flight safety in this kind of situations drones need a way to autonomously detect other objects that

are intruding the neighboring airspace. Visual-based collision avoidance is of particular interest

as cameras generally consume less power and are more lightweight than active sensor alternatives

such as radars and lasers. We have therefore developed a set of increasingly sophisticated

algorithms to provide drones with a visual collision avoidance capability.

First, we present a novel method for detecting flying objects such as drones and planes that

occupy a small part of the camera field of view, possibly move in front of complex backgrounds,

and are filmed by a moving camera. In order to be solved this problem requires combining

motion and appearance information, as neither of the two alone is capable of providing reliable

enough detections. We therefore propose a machine learning technique that operates on spatio-

temporal cubes of image intensities where individual patches are aligned using an object-centric

regression-based motion stabilization algorithm.

Second, in order to reduce the need to collect a large training dataset and to manual annotate it,

we introduce a way to generate realistic synthetic images. Given only a small set of real examples

and a coarse 3D model of the object, synthetic data can be generated in arbitrary quantities

and further used to supplement real examples for training a detector. The key ingredient of our

method is that the synthetically generated images need to be as close as possible to the real ones

not in terms of image quality, but according to the features, used by a machine learning algorithm.

Third, though the aforementioned approach yields a substantial increase in performance when

using Adaboost and DPM detectors, it does not generalize well to Convolutional Neural Networks,

which have become the state-of-the-art. This happens because, as we add more and more synthetic

data, the CNNs begin to overfit to the synthetic images at the expense of the real ones. We

therefore propose a novel deep domain adaptation technique that allows efficiently combining

real and synthetic images without overfitting to either of the two. While most of the adaptation

techniques aim at learning features that are invariant to the possible difference of the images,

iii

Acknowledgements

coming from different sources (real and synthetic). Unlike those methods, we suggest modeling

this difference with a special two-stream architecture. We evaluate our approach on three different

datasets and show its effectiveness for various classification and regression tasks.

Key words: Computer vision, unmanned aerial vehicles, object detection, motion compensation,

synthetic data generation, machine learning, deep learning, domain adaptation.

iv

Résumé
Les véhicules aériens sans pilote sont de plus en plus populaires pour une grande variété de tâches

allant de l’imagerie aérienne à la livraison d’objets. Avec l’expansion des domaines où les drones

peuvent être utilisés efficacement, le risque de collisions avec d’autres objets volants augmente.

Il serait relativement facile de prévenir ces collisions, à condition que tous les aéronefs dans

un espace aérien voisin communiquent entre eux et partagent leurs informations de localisation.

Cependant, il existe un grand nombre de cas où les informations d’emplacement ne sont pas

disponibles (par exemple, vol dans des environnements privés de GPS) ou la communication

n’est pas possible (par exemple, différents canaux de communication ou scénario de vol non

coopératif). Pour assurer la sécurité des vols dans ce genre de situation, les drones ont besoin

d’un moyen de détecter de façon autonome d’autres objets qui entrent dans l’espace aérien

voisin. L’évitement de collision visuel est d’un intérêt particulier car les caméras consomment

généralement moins d’énergie et sont plus légères que les alternatives de capteurs actifs comme

le radar et le laser. A la lumière de ceci, nous présentons trois algorithmes, dont le premier est

une technique d’apprentissage capable de détecter des objets volants basés sur une seule caméra

embarquée. Les deux autres permettent de réduire la taille de l’ensemble de données nécessaires

à l’entrainement d’un détecteur, car la collecte de vidéos réelles et leur annotation manuelle est

une procédure complexe et fastidieuse.

D’abord, nous présentons une nouvelle méthode pour détecter des objets volants tels que des

drones et des avions qui occupent une petite partie du champ de vision de la caméra, se déplacent

éventuellement devant des fonds complexes et sont filmés par une caméra mobile. Pour résoudre

ce problème, il faut combiner des informations de mouvement et d’apparence, car aucune des

deux seuls n’est capable de fournir des détections suffisamment fiables. Nous proposons donc

une technique d’apprentissage qui opère sur des cubes spatio-temporels d’intensités d’image où

les patchs individuels sont alignés à l’aide d’un algorithme de stabilisation de mouvement par

régression.

Deuxièmement, afin de réduire le besoin de collecter un grand ensemble de données d’entraîne-

ment et son annotation manuelle, nous introduisons un moyen de générer des images synthétiques

réalistes. Basé sur un petit ensemble d’exemples réels et un modèle 3D grossier de l’objet, les

données synthétiques peuvent être générées en quantités arbitraires et utilisées pour compléter

des exemples réels dans l’entrainement d’un détecteur. L’ingrédient clé de notre méthode est que

les images générées par cette synthèse doivent être aussi proches que possible des vraies images,

non en termes de qualité d’image, mais selon les caractéristiques qui sont utilisées en entrée par

notre algorithme d’apprentissage.

v

Acknowledgements

Troisièmement, bien que l’approche mentionnée ci-dessus montre une augmentation substantielle

de la performance pour les détecteurs Adaboost et DPM, elle n’apporte pas beaucoup d’amélio-

ration pour les réseaux neuronaux convolutifs. Cela se produit en raison de la spécialisation de

ce dernier à un grand nombre d’images synthétiques que nous ajoutons à l’ensemble d’entraîne-

ment et à son manque de généralisation aux images réelles. Nous proposons donc une nouvelle

technique d’adaptation de domaine qui permet de combiner efficacement des images réelles et

synthétiques sans sur-adaptation à l’une ou l’autre. Alors que la plupart des techniques d’adapta-

tion visent des caractéristiques d’apprentissage qui sont invariantes à la différence possible des

images, venant de sources différentes (réelles et synthétiques). Contrairement à ces méthodes,

nous suggérons de modéliser cette différence avec une architecture spéciale à deux flux. Nous

évaluons notre approche sur trois ensembles de données différents et montrons son efficacité pour

diverses tâches de classification et de régression.

Mots clés : vision par ordinateur, véhicules aériens sans pilote, détection d’objets, compensation

de mouvement, génération de données synthétiques, apprentissage automatique, adaptation de

domaine, machine learning, deep learning.

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xiii

Introduction 1
1 Motivation . 1

2 Challenges . 2

2.1 Fast motions and small sizes . 2

2.2 In-class appearance variation . 3

3 Contributions . 4

3.1 UAV detection . 4

3.2 Synthetic data generation . 5

3.3 Domain Adaptation for Deep Neural Networks 6

4 Outline . 7

1 Flying Objects Detection 9
1.1 Introduction . 9

1.2 Related Work . 10

1.3 Detection Framework . 11

1.3.1 3D HoG with Gradient Boost . 13

1.3.2 Convolutional Neural Networks . 13

1.4 Motion Compensation . 15

1.4.1 Boosted tree-based regressors . 15

1.4.2 CNN-based regressors . 17

1.4.3 Motion Compensated st-cubes . 17

1.5 Designing the Optimal Approach . 19

1.5.1 Datasets . 19

1.5.2 Training and Testing . 20

1.5.2.1 Training the Motion Regressors 21

1.5.2.2 Evaluation Metrics . 22

vii

Contents

1.5.2.3 Motion Compensation Performance Analysis 22

1.5.2.4 Detection-Based Evaluation . 24

1.6 Comparing against Competing Methods . 26

1.6.1 Baselines . 26

1.6.2 Evaluation against Competing Approaches 28

1.6.2.1 Appearance-Based Methods. 29

1.6.2.2 Motion-Based Methods . 29

1.6.2.3 Hybrid approaches . 30

1.6.3 Collision Courses . 30

1.6.4 Scale Adjustment . 33

1.7 Conclusion . 37

2 Synthetic Data Generation 39
2.1 Related Work . 41

2.2 Generating Synthetic Images . 42

2.3 Optimizing the Rendering Parameters . 43

2.4 Image Similarity Measures . 44

2.5 Results . 46

2.5.1 Gauging the Various Components of the Approach using the UAV Dataset 48

2.5.1.1 Experimental Setup . 49

2.5.1.2 Comparing against simply Perturbing the Real Images 50

2.5.1.3 Relative Importance of the Various Rendering Effects 50

2.5.1.4 Importance of Optimizing over the Rendering Parameters . . . 51

2.5.1.5 Influence of the Number of Synthetic and Real Images 53

2.5.1.6 Optimal Performance . 54

2.5.2 Detecting Multiple Kinds of Aircrafts . 55

2.5.3 Comparing against another Image-Based Synthesis Approach 56

2.6 Conclusion . 58

3 Domain Adaption for Deep Networks 61
3.1 Related Work . 63

3.2 Our Approach . 64

3.2.1 Weight Regularizer . 65

3.2.2 Unsupervised Regularizer . 65

3.2.3 Training . 66

3.3 Experimental Results . 66

3.3.1 Leveraging Synthetic Data for Drone Detection 67

3.3.1.1 Dataset and Evaluation Setup 68

3.3.1.2 Network Design . 69

3.3.1.3 Evaluation . 70

3.3.1.4 Influence of the Number of Samples 72

3.3.2 Domain Adaptation on Office . 72

3.3.2.1 Unsupervised Domain Adaptation 72

viii

Contents

3.3.2.2 Supervised Domain Adaptation 74

3.3.3 Unsupervised Domain Adaptation on MNIST-USPS 75

3.3.4 Supervised Facial Pose Estimation . 76

3.3.5 Discussion . 78

3.4 Conclusion . 78

4 Concluding Remarks 81
Limitations and Future Work . 82

1 Joint training . 82

2 Tracking . 82

3 Synthetic data generation improvement . 83

4 Domain Adaptation . 84

4.1 Modeling of complex domain transformations 84

4.2 Automatic architecture selection 85

Bibliography 97

Curriculum Vitae 99

ix

List of Figures
1 Small fast moving objects . 2

2 Collision courses . 3

3 Variation in Aircraft appearance . 3

4 Sample real and synthetic data . 5

5 Two-stream architecture . 6

1.1 Motion compensation for four different st-cubes 10

1.2 Object detection pipeline . 12

1.3 Sample st-cubes of the UAVs and aircrafts . 14

1.4 Convolutional Neural Network for object detection 14

1.5 Convolutional Neural Network for motion compensation 16

1.6 Detections from several video frames . 16

1.7 Sample image patched from our datasets . 17

1.8 Examples of flying objects in the video sequences 18

1.9 Motion compensation examples . 20

1.10 Influence of the st-cubes sizes on the detector performance 21

1.11 Comparison of motion compensation methods . 25

1.12 Evaluation of our method with respect to the appearance-based ones 27

1.13 Comparison of our approach with respect to motion-based methods 28

1.14 Comparison to the hybrid approach . 30

1.15 Detection results . 31

1.16 Collision courses . 31

1.17 Evaluation for aircrafts on a collision course . 32

1.18 Scale adjustment . 33

1.19 Scale adjustment CNN structure . 34

1.20 Simultaneous scale and motion compensation . 34

1.21 Scale estimation example . 36

2.1 Synthetic data generation pipeline . 40

2.2 Post-processing effects . 42

2.3 Histograms of the joint distributions of different pairs of capture parameters . . . 45

2.4 Samples of real images with corresponding synthetic ones 46

2.5 Sample real images . 47

2.6 Qualitative detector evaluation . 48

xi

List of Figures

2.7 Sample detections by the AdaBoost detector trained using both real and synthetic

data . 49

2.8 Capture parameter evaluation . 52

2.9 Evaluation of different detectors trained on real and synthetic data 52

2.10 Influence of number of synthetic images on the detection accuracy 53

2.11 Performance of various detectors for different numbers of seed real images 54

2.12 Aircraft models . 55

2.13 Sample images from the Aircraft dataset . 55

2.14 Algorithm evaluation of the aircraft dataset . 56

2.15 Sample detections and mis-detections done by the detector trained on real and

synthetic data for the Aircraft dataset . 57

2.16 Sample synthetic images of cars generated by our approach 57

2.17 Sample synthetic RGB images of cars . 59

2.18 Sample detections made by the 5 component DPM 59

3.1 Our two-stream architecture . 62

3.2 Our UAV dataset . 67

3.3 Evaluation of the best network architecture . 69

3.4 Influence of the ratio of synthetic to real data . 71

3.5 Some examples from three domains in the Office dataset 73

3.6 Office dataset . 74

3.7 Samples images from Source and Target datasets 76

3.8 Network architecture for facial pose estimation . 77

4.1 Sample images showing sharp light reflection from the UAV rotors 83

4.2 Sample complex 3D UAV models . 84

4.3 Sample pair of domains, related with a flipping transformation 84

xii

List of Tables
1.1 Evaluation of motion compensation methods . 23

1.2 Average presicion of detection methods . 29

1.3 Speed comparison . 35

1.4 Evaluation of HBT-Detection method with and without scale adjustment 35

2.1 Comparison to standard data augmentation method 50

2.2 Influence of various post-processing effects . 51

2.3 Detection method evaluation . 54

2.4 Evaluation of each detection method with the optimal number of synthetic images 56

2.5 Evaluation of DPM detector on the PASCAL VOC car dataset 58

3.1 Statistics of our two UAV datasets . 68

3.2 Comparison to other domain adaptation techniques on the UAV-200 (small) dataset. 70

3.3 Comparison of our method against several baselines on the UAV-200 (full) dataset 71

3.4 Comparison against other domain adaptation techniques on the Office benchmark 73

3.5 Evaluation of Office benchmark according to the supervised protocol 75

3.6 Evaluation on MNIST+USPS benchmark . 76

3.7 Regression results on facial pose estimation . 78

xiii

Introduction

1 Motivation

We are headed for a world in which the skies are occupied not only by birds and planes but

also by Unmanned Aerial Vehicles (UAVs) [1, 2], or simply ‘drones’. Their role is becoming

increasingly important in a broad variety of tasks including surveillance [3, 4], environment

mapping [5], goods [6] and medical supplies [7] delivery. Some of these drones will be able

to communicate with each other to avoid collisions using for example the Global Positioning

System (GPS) and radio communication, but not all of them. Furthermore, systems like GPS

are only reliable when UAVs are flying in the open areas and are useless indoors. Therefore,

drones need a way to autonomously navigate and avoid collisions with other objects that may

appear in the neighboring airspace. Among the broad variety of possible sensors, which can be

used to solve this task, cameras are the most promising ones, as they are cheaper and consume

less power then alternatives like radars or lasers. This stresses the need for vision-based drone

collision avoidance methods to be developed.

In general there are two classes of objects that may pose threat to a UAV: static and moving

ones. Preventing collision with static obstacles has been thoroughly studied in the world of flying

machines as a sub-problem of a more general task, which is accurate position estimation and

navigation from single or multiple cameras [8, 9, 10, 11, 12, 13, 14, 15]. The second class of

objects, on the other hand, has received far less attention [16, 17]. It is nevertheless becoming

increasingly important given the recent explosive growth of interest in consumer UAVs. In this

thesis we, therefore, focus on developing inexpensive algorithms for visual-based moving objects

detection from an on-board camera.

A related problem of detecting moving objects from a moving camera has been well-studied

and successfully tackled in the automotive world. Various algorithms have been proposed for

human [18, 19, 20] and vehicle [21, 22, 23] detection. This in turn gave rise to a number of

commercial products [24, 25] that are currently used as driving assistants, with the ultimate goal

of completely autonomous driving [26, 27].

However, it is not possible to simply extend these algorithms to the world of aircrafts and drones,

as flying object detection poses several unique challenges that are not present in pedestrian and

1

Introduction

(a) (b)

Figure 1: Detecting a small flying object against a complex moving background. (a) It is almost

invisible to the human eye and hard to detect from a single image. (b) Yet, our algorithm can find

it by using appearance and motion cues.

car detection cases. In the remainder of this chapter we first discuss these challenges. We then

introduce our approach to solving them and present an outline of the thesis.

2 Challenges

2.1 Fast motions and small sizes

One of the major obstacles to reliably detecting drones is the high speed and complex motions

that they can undertake. This produces large amounts of motion blur in the parts of the image

where the drones are seen. Such motion blur can only be neglected when UAVs fly close to

the camera of the observing drone, as enough appearance information can be extracted from

the video frame. However, due to the specifics of collision avoidance problem, drones need

to be detected in advance, when they are still at a safe distance, far away from the observing

UAV. This increases the complexity of the detection task, as motion blur now has significant

influence on the drone appearance. In general there are three types of approaches that can

be used to detect small fast-moving objects. They can be appearance-based [28, 18, 29, 30],

motion-based [31, 32, 33, 34], or hybrid [19, 35].

Appearance-based algorithms do not achieve good accuracy for our problem, because they rely

on the information extracted just from one frame of the video sequence. As it was mentioned

before, due to severe motion blur and small object sizes appearance is not enough for reliable

detection. Thus, motion information should also be taken into account.

On the other hand, purely motion-based methods [31, 32, 33, 34] are prone to errors, as images

acquired by a moving camera are noisy, which complicates the task of detecting small objects

and feature backgrounds that are hard to stabilize because they are non-planar and change rapidly.

More importantly these methods will give no positive response for the observed drone A, when it

is hovering above the ground, or is on a collision course with the observing drone B , as depicted

by Fig. 2. In both of these cases drone A will be static in the camera view of drone B . Furthermore,

since there may be other moving objects in the scene, such as a person in the left most image in

Fig. 1(a), motion by itself is not enough and appearance should be also taken into account.

2

2. Challenges

Figure 2: Collision courses. [LEFT] The apparent size of a standard glider and its 15 m wingspan

flying towards another aircraft at a relatively slow speed (100 km/h) is very small 33s before

impact, but the glider completely fills the field of view only half a minute later, 3s before impact.

[RIGHT] An aircraft on a collision course is seen in a constant direction but its apparent size

grows, slowly at first and then faster.

Unmanned Aerial Vehicles

Fixed-wing Aircrafts

Figure 3: Flying vehicles appearance variation. [TOP] Different types of Unmanned Aerial

Vehicles. [BOTTOM] Various fixed-wing aircrafts and a helicopter seen from different perspectives

and in front of different backgrounds.

Finally, hybrid methods combine motion and appearance information, but unfortunately, most of

them [19, 35] were developed primarily for pedestrian detection. As people typically occupy a

relatively large portion of the camera’s field of view and travel at moderate speeds, these methods

are not directly applicable to the task of small fast-moving object detection.

2.2 In-class appearance variation

Another challenge that is common to all detection problems, is the extreme variety of shapes of

objects that need to be detected by the algorithm. Fig. 3 depicts a few examples of shapes and

appearances of various aircrafts and UAVs in different environments.

For a broad variety of object categories, such as cars, animals, flowers, people, etc. there exist

3

Introduction

publicly available datasets [36, 37, 38] with a large number of examples of these objects seen from

different perspectives, in various environments and lighting conditions. In our case, however, no

such dataset exist and building one is a very time consuming process, because it is hard to collect

real-world footage and then to manually annotate it. Furthermore, the resulting collection of

images/videos need to be constantly updated as, over time, new drone models will be introduced,

potentially with significant variation in shape from the ones that already exist in the database.

One common way of tackling the problem of limited training data is to augment the training

set with perturbed versions of real images. This introduces variability, but does not solve the

problem of having a limited number of poses in which the object is seen. To address this issue

a number of methods [39, 40, 41, 42] propose supplementing a small set of real examples with

realistic synthetic images. The advantage of this category of approaches is that synthetic data can

be relatively easily generated in large quantities and no additional manual annotation is required.

Most of the existing methods, however, focus on generating visually appealing images, which

may not exhibit all the properties of the real ones, which is crucial for effective detector training.

Furthermore, to achieve their top performance these methods typically require a large number of

parameters to be manually adjusted.

3 Contributions

We now briefly list our contributions. We start with a learning-based technique to tackle the

small fast moving object detection problem. We then introduce two complementary approaches,

where the first one aims at generating realistic synthetic images and the second one allows

effectively combining them with real data to achieve state-of-the-art performance with Deep

Neural Networks, which have recently proved to be very successful in solving classification and

detection tasks [43, 44].

3.1 UAV detection

We propose a novel method that combines appearance and motion features for training a detector.

To this end, our approach takes as an input not just a single image, but rather a short sequence

of consecutive video frames. As it is often done in object detection we use a sliding window

method to locate the drone in the image, however, instead of using image patches we work with

spatio-temporal cubes of image intensities that allow capturing both appearance and motion

information. This, however, significantly increases the feature variation, as similar objects

traveling in different directions will create very different spatio-temporal feature representations.

Thus, in order to simplify the work for a detector we need to decrease this diversity. We tackle

this problem with an object-centric motion compensation algorithm that aligns individual patches

of the spatio-temporal cubes so that the drone is always in the center. Apart from the reduction of

feature diversity, this makes the detector more focused on the drone itself and less dependent on

the background. As shown in Fig. 1(b) our approach enables the successful detection of drones

4

3. Contributions

Synthetic Real
D

ro
n

es
A

ir
cr

af
ts

Figure 4: Synthetic and real examples of drones and fixed-wing aircrafts.

in complicated outdoor environments. Part of this work appears in [45, 46].

As the task of UAV detection is relatively new, there are no publicly available datasets for the

evaluation of our approach. Therefore, we have collected a couple of datasets that reflect various

challenges common to the problem of detecting drones in outdoor environments. The first dataset

comprises videos from the camera mounted on a drone that records other UAVs flying around.

The second dataset is a collection of videos from the publicly available sources, recorded by a

hand-held camera and filming different types of aircrafts flying in various environments.

3.2 Synthetic data generation

We then move to the problem of increasing the diversity of drone shapes and poses that are

present in the training dataset. This issue is critical for training an unbiased detector, capable

of reliably working in outdoor environments. As mentioned before, collecting and annotating a

large dataset with different types of objects in various environments and lighting conditions is

very time consuming. We, therefore, propose to use synthetic data to augment the small number

of real images of drones and aircrafts that we have.

Starting from a small set of real images, our algorithm estimates the rendering parameters required

to generate synthetic images that are similar to the real ones, given a coarse 3D model of the target

object. These parameters can then be reused to generate an unlimited number of training images

of the object of interest in arbitrary 3D poses, which can further be added to the training set to

increase classification accuracy. Our key insight is that the synthetically generated images should

be similar to the real ones, not in terms of image quality, but rather in terms of features used

during the classifier training. We show that generating images in such a way yields significantly

5

Introduction

Figure 5: Our two-stream architecture that allows effectively combining real and synthetic images

for accuracy improvement. The optimization is done by simultaneously minimizing the loss

function that consists of the classification, regularization and domain discrepancy components.

Briefly, Classification loss is computed based on available labeled images. The Regularization
loss term penalizes the large differences between the corresponding parameters of the networks

(streams). Finally the Domain discrepancy loss is required to make the final feature representation

of real and synthetic data similar to each other, as we are using the same classification layer for

both of the streams.

better performances than simply perturbing real images [47, 48] or even synthesizing images in

such a way that they look realistic [41], as is often done when only limited amounts of training

data are available. Fig. 4 shows some examples of real and synthetic images generated by our

framework. Part of this work appears in [49].

3.3 Domain Adaptation for Deep Neural Networks

The aforementioned approach allows us to arbitrary increase the size of the training set with very

few real examples. In general this results in having a stronger classifier, that is less sensitive

to differences in flying object shapes and view-points from which the drone can be seen. This

method, however, still suffers from one drawback, which is common for all learning-based

approaches that rely on a vast amount of synthetic examples during training. They all tend

to overfit to the synthetic images at the expense of the real ones. As a result, they may be

over-influenced by any bias that might have been introduced by the synthetic data generation

algorithm. This is particularly true for Convolutional Neural Networks (CNNs), which reach

state-of-the-art [30, 43, 50, 44] thanks to their ability to fit the data, which makes them vulnerable

to bias.

We developed a technique that lets us leverage the large amount of synthetic images to train a

UAV detector. Our method not only avoids overfitting to either real or synthetic data, but also

significantly reduces the dependency on real data collection, as one only needs to collect 5-10%

of labeled training samples to achieve good results. Part of this work appears in [51].

6

4. Outline

Our approach, falls into the category of Domain Adaptation algorithms, which aim at transferring

the knowledge from one domain to the other. This essentially means that a classifier trained on

images of a given type can be efficiently used to classify images of another. In the context of Deep

Learning most of these methods [52, 53, 54, 55, 56, 57] aim at finding domain invariant feature

representation, which will essentially lead to an effective classifier transfer from one domain to

another. Unlike the existing work, however, we propose to model the difference between domains

and use it to boost the resulting classification accuracy.

To do so we propose a novel two-stream architecture, where each of the streams corresponds to a

convolutional neural network of the same structure. Each of these networks (streams) operates

on either synthetic or real data. For simplicity we refer to the first one as stream S and the

latter as stream T . The parameters θS and θT of these streams, however, are not completely

independent but are related to each other, so that θT � φ
(
θS

)
, where φ(·) is a linear function.

This allows stream T to learn the feature representation that is optimal for classifying real

images. The learning process is, however, regularized by stream S that operates just on synthetic

samples, which have a significantly larger variation in pose and appearance. Furthermore, the

linear function φ(·) makes the whole system flexible and allows modeling such domain shifts as

illumination or contrast changes. Fig. 5 depicts the deep learning architecture that we use.

4 Outline

We begin by introducing our approach to drone detection with object-centric motion compensation

in Chapter 1. We further present two datasets that we have collected for the evaluation of our

method and show that due to effective leveraging of motion and appearance information, our

approach outperforms state-of-the-art algorithms for the small fast moving object detection

problem.

In Chapter 2 we tackle the problem of augmenting the small set of real images with synthetic

data and introduce a way to generate synthetic images so that they are close to the real ones from

the perspective of the detector. This lets us increase the spectrum of UAV poses that are present

in the training dataset leading to a stronger detector.

In Chapter 3, we investigate, how the aforementioned approach can be improved in the context of

Deep Neural Networks to avoid overfitting to a large number of synthetic samples. We introduce

our domain adaptation algorithm that instead of learning a set of domain invariant features, uses

the difference between real and synthetic images to improve classification accuracy.

Finally, we close this thesis in Chapter 4 with concluding remarks and the future work discussion.

7

1 Flying Objects Detection

In this chapter we present a novel approach for detecting flying objects such as UAVs and

aircrafts when they occupy a small portion of the field of view, possibly moving against complex

backgrounds, and are filmed by a camera that itself moves. Solving such a difficult problem

requires combining both appearance and motion cues. To this end we propose a regression-

based approach for object-centric motion stabilization of image patches that allows us to achieve

effective classification on spatio-temporal image cubes and outperform state-of-the-art techniques.

1.1 Introduction

One of the main challenges for outdoor drone detection is their fast speeds and small sizes, which

make the appearance-based methods impractical. As mentioned before purely motion-based

approaches also do not allow us to achieve desired accuracy, as they are incapable of detecting

hovering UAVs and may also detect other moving objects in the scene, such as humans or cars.

Therefore, we propose solving the UAV detection problem by combining appearance and motion

information inside the detector.

More formally, we detect whether an object of interest is present and constitutes danger by

classifying 3D descriptors computed from spatio-temporal image cubes of image intensities,

which we will refer as st-cubes for simplicity. The latter are formed by stacking motion-stabilized

image windows over several consecutive frames, which give more information than using a single

image. What makes this approach both practical and effective is a regression-based motion-

stabilization algorithm. Unlike those relying on optical flow, it remains effective even when the

shape of the object to be detected is blurry or barely visible, as illustrated by Fig. 1.1. This arises

from the fact that learning-based motion compensation focuses on the object and is more resistant

to complicated backgrounds, compared to the optical flow method as shown in Fig. 1.1.

St-cubes have been routinely used for action recognition and pose estimation purposes [58, 59,

60, 61] using a monocular camera. By contrast, most current detection algorithms work either

on a single frame, or by estimating the optical flow from consecutive frames. Our approach can

9

Chapter 1. Flying Objects Detection

UAVs Aircrafts
Uniform background Very noisy background Non-uniform background Noisy background

No motion compensation

Optical Flow

Our approach

(a) (b) (c) (d)

Figure 1.1: Motion compensation for four different st-cubes of flying objects seen against

different backgrounds. [TOP] For each one, we show four consecutive patches before motion

stabilization. In the leftmost plot below the patches, the blue dots denote the location of the true

center of the drone and the red cross is the patch center over time. The other two plots depict the

x and y deviations of the drone center with respect to the patch center. [MIDDLE] The same four

st-cubes and corresponding graphs after motion compensation using an optical flow approach, as

suggested by [35]. [BOTTOM] The same four st-cubes and corresponding graphs after motion

compensation using our approach.

therefore be seen as a way to combine both the appearance and motion information to achieve

effective detection in a very challenging context. In our experiments we show that this method

allows to achieve higher accuracy, comparing to either appearance or motion-based methods

individually.

1.2 Related Work

Approaches for detecting moving objects can be classified into three main categories: those that

rely on appearance in individual frames, those that rely primarily on motion information across

frames, and those that combine the two. We briefly review all three types in this section. In the

results section, we will demonstrate that we can outperform state-of-the-art representatives of

each class.

10

1.3. Detection Framework

Appearance-based methods rely on Machine Learning and have proved to be powerful even in

the presence of complex lighting variations or cluttered background. They are typically based on

Deformable Part Models (DPM) [29], Convolutional Neural Networks (CNN) [62], or Random

Forests [28]. Among them the Aggregate Channel Features (ACF) [18] algorithm is considered

as one of the best.

These approaches work best when the target objects are sufficiently large and clearly visible in

individual images, which is often not the case in our applications. For example, in the images of

Fig. 1, the object is small and it is almost impossible to make out from the background without

motion cues.

Motion-based approaches can themselves be subdivided into two subclasses. The first com-

prises those that rely on background subtraction [63, 64, 31, 32] and determine objects as groups

of pixels that are different from the background. The second includes those that depend on optical

flow [33, 65, 34].

Background subtraction works best when the camera is static or its motion is small enough to be

easily compensated for, which is not the case for the on-board camera of a fast moving aircraft.

Flow-based methods are more reliable in such situations but still critically dependent on the quality

of the flow vectors, which tends to be low when the target objects are small and blurry. Some

methods combine both optical flow and background subtraction algorithms [66, 67]. However, in

our case there may be motion in different parts of the images, for example people or tree tops.

Thus motion information is not enough for reliable flying object detection. Other methods that

combine optical flow and background subtraction, such as [68, 69, 70, 71] still critically depend

on optical flow, which is often estimated with [34] and thus may suffer from the low quality of

the flow vectors. In addition to optical flow dependence, [70] makes an assumption that camera

motion is translational, which is violated in aerial videos.

Hybrid approaches combine information about object appearance and motion patterns and are

therefore the closest in spirit to what we propose. For example, in [19], histograms of flow

vectors are used as features in conjunction with more standard appearance features and are fed

to a statistical learning method. This approach was refined in [35] by first aligning the patches

to compensate for motion and then using the differences of the frames, which may or may not

be consecutive, as additional features. The alignment relies on the Lucas-Kanade optical flow

algorithm [65]. The resulting algorithm works very well for pedestrian detection and outperforms

most of the single-frame methods. However, when the target objects become smaller and harder

to see, the flow estimates become unreliable and this approach, like the purely flow-based ones,

becomes less effective.

1.3 Detection Framework

Our detection pipeline is illustrated by Fig. 1.2 and comprises the following steps:

11

Chapter 1. Flying Objects Detection

Figure 1.2: Object detection pipeline with st-cubes and motion compensation. Provided a set of

video frames from the camera, we use a multi-scale sliding window approach to extract st-cubes.

We than process every patch of the st-cube to compensate for the motion of the aircraft and then

run the detector. (best seen in color)

• Divide the video sequence into N -frame overlapping temporal slices. The larger the overlap

is, the higher the precision but only up to a point. Our experiments show that making the

overlap more than 50% increases computation time without improving performance. Thus,

50% is what we used.

• Build st-cubes from each slice using a sliding window approach, independently at each

scale.

• Apply our motion compensation algorithm to the patches of each of the st-cubes to create

stabilized st-cubes.

• Classify each st-cube as containing an object of interest or not.

• Since each scale has been processed independently, we perform non-maximum suppression

in scale space. If there are several detections for the same spatial location at different

scales, we only retain the highest-scoring one. As an alternative to this simple scheme, we

have developed a more sophisticated learning-based one, which we discuss in more details

in Section 1.6.4.

In this section, we introduce two separate approaches—one based on boosted trees, the other

one on Convolutional Neural Networks—to deciding whether or not an st-cube contains a target

object and will compare their respective performance in Section 1.5. We will discuss motion

compensation in Section 1.4.

More specifically, we want to train a classifier that takes as input st-cubes such as those depicted by

Fig. 1.3 and returns 1 or −1, depending on the presence or absence of a flying object. Let (sx , sy , st)

be the size of our st-cubes. For training purposes, we use a dataset of pairs (bi , yi), i ∈ [1, N],

where bi ∈ Rsx×sy×st is an st-cube, in other words st image patches of resolution sx × sy pixels.

Label yi ∈ {−1,1} indicates whether or not a target object is present.

12

1.3. Detection Framework

1.3.1 3D HoG with Gradient Boost

The first approach we tested relies on boosted trees [72] to learn a classifier ψ(·) of the the form

ψ(b) = ΣH
j=1α j h j (b), where α j=1..H are real valued weights, b ∈ Rsx×sy×st is the input st-cube,

h j : Rsx×sy×st → R are weak learners, and H is the number of selected weak learners, which

controls the complexity of the classifier. The α’s and h’s are learned in a greedy manner, using

the Gradient Boost algorithm [72], which can be seen as an extension of the classic AdaBoost to

real-valued weak learners and more general loss functions.

In standard Gradient Boost fashion, we take our weak learners to be regression trees h j (b) =
T (θ j ,HoG3D(b)), where θ j denotes the tree parameters and HoG3D(b), the 3-dimensional

Histograms of Gradients (HoG3D) computed for b. HoG3D was introduced in [60], and can be

seen as an extension of the standard HoG [73] with an additional temporal dimension. It is fast to

compute and proved to be robust to illumination changes in many applications, and allows us to

combine appearance and motion efficiently.

At each iteration j , the weak learner h j (·) with the corresponding weight α j is taken as the one

that minimizes the exponential loss function:

(h j (·),α j) = argmin
h(·),α

N∑
i=1

e−y(ψ j−1(bi)+αh(bi)) . (1.1)

The tests in the nodes of the trees compare one coordinate of the HoG3D vector with a threshold,

both selected during the optimization.

1.3.2 Convolutional Neural Networks

Since Convolutional Neural Networks (CNN) [47] have proved very successful in many detection

problems, we have tested it as an alternative classification method. We use the architecture

depicted by Fig. 1.4, which alternates convolutional layers and pooling layers. Convolutional

layers use 3D linear filters while pooling layers apply max-pooling in 2D spatial regions only.

The last layer is fully connected and outputs the probability that the input st-cube contains an

object of interest. We use the hyperbolic tangent function as the non-linear operator [74].

We take the input of our CNN is a normalized st-cube

η= b −μ(b)

σ(b)
, (1.2)

where μ(b) and σ(b) are the mean and standard deviation of the pixel intensities in b, respectively.

Note, that this normalization step is important because network parameters optimization fails to

converge when using raw image intensities.

During training, we write the probability that an st-cube η contains an object of interest (y = 1) or

13

Chapter 1. Flying Objects Detection

UAVs Aircrafts

Figure 1.3: Sample st-cubes of the UAVs and aircrafts. Each row corresponds to a single st-cube

and illustrates different possible motions that an aircraft could have.

Figure 1.4: The structure of the Convolutional Neural Network, which we used for flying object

detection. CL, PL and FL correspond to Convolution, Pooling, and Fully-connected layers

respectively.

is a part of the background (y = 0) as

P (Y = y | η) = eCNN(η)[y]

eCNN(η)[0] +eCNN(η)[1]
, y = {0,1} , (1.3)

where CNN(η)[y] denotes the classification score that the network predicts for η as being part of

class y and e(·) denotes the exponential function. We then minimize the negative log-likelihood

L (W,bi as) =−
N∑

k=1
logP (Y = yk | ηk) (1.4)

with respect to the CNN parameters. Here (ηk , yk) are pairs of normalized st-cubes and their

corresponding labels from the training dataset, as defined in Section 1.3. To this end, we use the

algorithm of [75] combined with Dropout [76] to improve generalization.

We tried many different network configurations, in terms of the number of filters per layer and the

size of the filters. However, they all yield similar performance, which suggests that only minor

improvements could be obtained by further tweaking the network. We also tried varying the

dimensions of the st-cube. These variations have a more significant influence on performance,

which will be evaluated in Section 1.5.

14

1.4. Motion Compensation

1.4 Motion Compensation

Neither of the two approaches to classifying st-cubes introduced in the previous section accounts

for the fact that both the gradient orientations used to build the 3D HoG and the filter responses

in the CNN case are biased by the global object motion. This makes the learning task much

more difficult and we propose to use motion compensation to eliminate this problem. Motion

compensation will allow us to accumulate visual evidence from multiple frames, without adding

variation due to the object motion. We therefore aim at centering the target object, so that when

present in an st-cube, it remains at the center of all its image patches.

More specifically, let It denote the t -th frame of the video sequence and (i , j) some pixel position

in it. The st-cube bi , j ,t is the 3D array of pixel intensities from images Iz with z ∈ [t − st +1, t]

at image locations (k, l) with k ∈ [i − sx + 1, i] and l ∈ [j − sy + 1, j], as depicted by Fig. 1.3.

Correcting for motion can be formulated as allowing patches mi , j ,z , z ∈ [1, st] of the st-cube bi , j ,t

to shift horizontally and vertically in individual images.

In [35], these shifts are computed using optical flow information, which has been shown to be

effective for pedestrians occupying a large fraction of the patch and moving relatively slowly

from one frame to the next. However, as can be seen in Fig. 1.3, these assumptions do not hold in

our case and we will show in Section 1.6 that this negatively impacts performance. To overcome

this difficulty, we introduce instead a learning-based approach to compensate for motion and

keep the object in the center of the mi , j ,z patches of the st-cube even when the target object’s

appearance changes drastically.

More specifically, we treat motion compensation problem as a regression task: given a single

image patch, we want to predict the 2D translation that best centers the target object. By rectifying

all the image patches in an st-cube with their predicted translation, we can then align the images

of the object of interest together.

1.4.1 Boosted tree-based regressors

One way to predict the translation for an input patch m, is to train two different boosted trees

regressors [77] φx (m) and φy (m), one for each 2D direction (horizontal and vertical).

As for detection, we use regression trees h j (m) = T (θ j ,HoG(m)) as weak learners, where

HoG(m) denotes the Histograms of Oriented Gradients for patch m. The difference is that we

minimize here a quadratic loss function instead of an exponential one

L(r,φ∗(m)) = (r −φ∗(m))2, (1.5)

where m is the input patch, r the corresponding expected 2D vector, and φ∗(m) = [φx (m),φy (m)]�

the 2D vector predicted by the 2 regression trees.

15

Chapter 1. Flying Objects Detection

Coarse

alignment

Refinement

Figure 1.5: Structure of the CNNs used for motion compensation. [TOP] The first network uses

extended patches to correct for the large displacements of the aircraft. [BOTTOM] The second

network is applied after rectification by the motion predicted by the first network, and is designed

to correct for the small motions.

Figure 1.6: Combining multiple detections in several images of a video sequence. The red square

and dots depict the positions of the original detection across the 50 frames preceding two different

images. The green square and dots illustrate the position of the same detections after refinement.

They are superposed and form much smoother trajectories. (best seen in color)

We then apply these regressors in an iterative way: we obtain a first estimate of the shift of the

target object—if present—from the center of the patch. We translate it according to this estimate,

and we re-apply the regressors. We iterate until both shift estimates drop to 0 or the algorithm

reaches a preset number of iterations. In practice, 4 to 5 iterations are enough to achieve good

accuracy.

16

1.4. Motion Compensation

(a) UAV dataset (b) Aircraft dataset

Figure 1.7: Sample image patches containing aircrafts or UAVs from our datasets.

1.4.2 CNN-based regressors

Another possible approach is to use a Convolutional Neural Network (CNN) to solve the regres-

sion task. CNNs are more flexible, as features are learned directly from the training data, in

contrast to the hand-designed HoG features we need to use with our boosted tree-based regressors.

We trained two separate CNNs whose structure is depicted by Fig. 1.5. Note that there is no

pooling layer after the first convolutional one. This is because pooling layers are typically used

not only to reduce computational complexity but also to achieve invariance to small motions.

In our case, such invariance would be counter-productive because these motions are precisely

what we are trying to estimate. Furthermore, the computational complexity remains manageable

even without the first pooling layer. We trained the first CNN using examples involving large 2D

translations (coarse-CNN) and the second smaller ones (fine-CNN). In practice we use the latter

to refine the predictions of the former. As when using boosted-trees, we use CNN-regressors

iteratively until convergence, as described at the end of Section 1.4.1. We first correct for large

displacements by applying several times coarse-CNN and we then apply fine-CNN, which is

trained to compensate for small shifts of the object, for a couple more iterations.

In fact, we also tried training two different boosted-tree regressors such as those discussed in

Section 1.4.1. Unlike in the case of the CNN regressors, it produced no significant improvement.

This likely happens because our boosted trees motion compensation algorithm is based on HoG,

where histograms are computed over the bins of fixed size. This, in fact, introduces invariance to

small deviations of objects, which makes it hard to achieve high localization precision.

1.4.3 Motion Compensated st-cubes

Once the regressors have been trained, we use them to compensate for motion and build the

st-cubes that we will use as input for classification, as depicted by Fig. 1.2. Fig. 1.1 illustrates

several st-cubes of a drone from the testing dataset and after motion compensation, using either

optical flow from [35] or our approach. Note that the latter tends to keep the target object much

closer to the center, especially when the background is non-uniform and noisy or under lighting

changes.

17

Chapter 1. Flying Objects Detection

UAV Dataset

Aircraft Dataset

Figure 1.8: An object’s apparent size can change enormously depending on its pose and distance

to the camera. We therefore use a sliding window approach at different resolutions. The green

boxes denote detections by our algorithm, which successfully handles background, lighting, scale,

and pose changes.

Part of the difficulty in detecting fast moving flying objects is that they can appear anywhere in

the 3D environment and that their apparent size can vary enormously. This makes it necessary

to scan the whole image at different scales using a sliding window approach to avoid missing

anything, which is computationally expensive.

Fortunately, our motion compensation scheme frees us from the need to evaluate every image

position. When there is a target object, our algorithm automatically shifts the patch so it is in the

center. As a result, instead of having to test windows centered at every pixel location, we only

have to check non-overlapping ones because the algorithm will automatically shift their location

to center the target object when one is present. This also makes its unnecessary to use heuristics

18

1.5. Designing the Optimal Approach

such as non-maximum suppression, as all the detections that arise from a single object will be

shifted to the same position. The duplicates can therefore easily be removed, leaving us with just

a single detection per object, as illustrated by Fig. 1.6.

As discussed in Section 1.3, we process each scale independently. We then perform non-maximum

suppression in scale-space as a final step.

1.5 Designing the Optimal Approach

The two key components of our pipeline are motion compensation and classification of the

st-cubes, both of which can be implemented using either CNNs or hand-designed features. In this

section, we test the various possible combinations and justify the parameter choices we made for

the final evaluation of our whole approach against several baselines, as described in Section 1.6.

Since the problem of detecting small flying objects has not yet received extensive attention

from our community, there is not yet any standard dataset that can be used for testing purposes.

We therefore built our own, one for UAVs and one for planes. We first describe them and then

describe our testing protocol and the metrics we used for evaluation purposes. Finally, we perform

the above-mentioned comparisons and demonstrate that the best results are obtained by using

the CNN approach of Section 1.4.2 for motion compensation and the HoG3D descriptors of

Section 1.3.1 for actual detection.

1.5.1 Datasets

To evaluate the performance of our approach, we built two separate datasets. They feature many

real-world challenges including fast illumination changes and complex backgrounds, such as

those created by moving treetops seen against a changing sky. We now briefly present each of

these datasets:

• UAV dataset comprises 20 video sequences of 4000 752×480 frames each on average.

They were acquired by a camera mounted on a drone filming similar ones while flying

indoors and outdoors. The outdoor sequences present a broad variety of lighting and

weather conditions. All these videos contain up to two objects of the same category per

frame. However, the shape of the drones is rarely perfectly visible and thus their appearance

is extremely variable due to changing altitudes, lighting conditions, and even aliasing and

color saturation due to their small apparent sizes. Fig. 1.7(a) illustrates some examples of

the variety of appearance of a drone present in this dataset.

• Aircraft dataset consists of 20 publicly available videos of radio-controlled planes. Some

videos were acquired by a hand-held camera from the ground and the rest was filmed by a

camera on board of an aircraft. These videos vary in length from hundreds to thousands

of frames and in resolution from 640×480 to 1280×720. Fig. 1.7(b) depicts the variety

19

Chapter 1. Flying Objects Detection

UAV dataset

Aircraft dataset

Several failure cases

Figure 1.9: Examples of motion compensation. The first image in each pair shows the middle

patch of the original st-cube, coming from the sliding window. The second image corresponds to

the same patch after applying our motion compensation algorithm. Failure cases are often due to

motion estimation failures, which happen when the appearance of the object is heavily corrupted

by noise.

of plane types. The aircrafts may also appear under different angles, which makes the

problem more complex. Fig. 1.8 shows some examples of the pose variation that a plane

could have throughout the video sequence.

1.5.2 Training and Testing

In all cases, we used half of the data to train regressors and detectors and the rest for testing. We

manually supplied 8000 bounding boxes centered on a UAV and 4000 on a plane.

We used the Boosted trees implementation of [78] for both regression and detection. To compute

the HoG3D and HoG descriptors, we used the publicly available implementations [60] and [79],

respectively. We used Theano [62] to build the CNN models for both regression and detection

tasks. In both of these cases we used the method described in [75] for optimization. The structures

of the CNNs for detection and motion compensation are depicted by Figs. 1.4 and 1.5 respectively.

Here the parameters of each layer—the numbers of filters per layer and their dimensions—are

20

1.5. Designing the Optimal Approach

(a) UAV dataset (b) Aircraft dataset

Figure 1.10: Influence of the st-cubes sizes on the performance of Boosted trees (HBT-Detection)

and CNN (CNN-Detection) detectors with CNN-based motion compensation method, as de-

scribed in Section 1.5.2.3. The plots are colored according MR|F PPI=1 criterion (introduced in

Section 1.5.2.2). Here blue corresponds to the higher MR|F PPI=1, while red to the lower one.

The darker lines on both plots correspond to the best performing examples of two different types

of machine learning algorithms, according to the same criterion. The evaluation was performed

on the validation subsets of the UAV and Aircraft datasets. (best seen in color)

given in the figures in the format N × (kx ,ky ,kt), where N and (kx ,ky ,kt) are the number of

filters and their sizes respectively.

1.5.2.1 Training the Motion Regressors

To provide labeled examples where the aircraft or UAV is not in the center of the patch but still at

least partially within it, we randomly shifted the ground truth bounding boxes by a translation

of magnitude up to half of their sizes. This step was repeated for all the frames of the training

database to cover the variety of shapes and backgrounds in front of which the aircraft might

appear.

Applying large translations to the training data allows us to run the detection to only non-

overlapping patches without missing the target, as explained at the end of Section 1.4.3. This pro-

cedure allows us to generate as much training data as needed for both Boosted trees (HBT-Regression)

and CNN regressors (CNN-Regression), which is important for performance especially as the

latter is known to require large amounts of training data.

The apparent size of the objects in the UAV and Aircraft datasets varies from 10 to 100 pixels.

To train the regressor, we used 40×40 patches containing the UAV or aircraft shifted from the

center.

The CNN-based regressor relies on convolutions of the original patch with filters from different

network layers, which may produce artifacts close to the patch borders and degrade performance

when the object is only partially visible. To reduce the influence of such artifacts, we extend the

21

Chapter 1. Flying Objects Detection

input patch by 25% in both the horizontal and vertical directions. This needs to be done only

for the coarse alignment CNN, as depicted by the top row of Fig. 1.5. It is not required for the

refinement CNN that only estimates small motions.

Fig. 1.9 depicts some examples of motion compensation. Note that even though both aircrafts and

drones appear in front of changing backgrounds, the motion compensation algorithm correctly

estimates the object location within the patch. Fig. 1.9 also illustrates some cases when the

motion compensation system is unable to correctly predict the location of the object in the patch.

This typically occurs when the patches are very noisy and the object is almost not visible.

To handle the wide range of flying objects apparent sizes, we use a multi-scale sliding window

detector. Fig. 1.8 shows the same UAV and plane appearing at various distances from the camera

throughout the video sequence.

1.5.2.2 Evaluation Metrics

In our experiments we consider an object to be correctly detected if there is 50% overlap between

the detected bounding box and the ground-truth bounding box.

We report precision-recall curves. Precision is computed as the number of true positives detected

by the algorithm divided by the total number of detections. Recall is the number of true positives

divided by the number of the positive test examples. Additionally we use the Average Precision
measure, which we take to be the integral

∫1
0 p(r)dr , where p is the precision, and r the recall.

We also report the log-average miss-rate (MR) with respect to the average number of false

positive per image (FPPI). The miss-rate is computed as the number of true positives missed by

the detector, divided by the total number of true positives; FPPI is computed as the total number

of false positives, divided by the total number of images in the testing dataset:

MR = 1−Nd /Nt p ,

F PPI = N f d /N f ,
(1.6)

where Nd , N f d , Nt p , N f are the number of true and false detections, the number of positively

labeled examples and the number of frames in the test set, respectively.

1.5.2.3 Motion Compensation Performance Analysis

Prior to evaluating the detection accuracy of the methods we need to apply motion compensation

to the st-cubes. Thus we need to evaluate, which motion compensation method performs best.

To this end, we created a validation dataset by selecting one video from each dataset. These

videos are then used to generate data, using the method introduced in Section 1.5.2.1. We use

the validation set to tune the parameters and then perform the comparison against competing

approaches on the test set.

22

1.5. Designing the Optimal Approach

We compare HBT-Regression and CNN-Regression in terms of Root Mean Square Error (RMSE).

More formally, we are given a validation set of pairs
(
Xi ,Sa

i

)
, i ∈ 1..N , where Xi is a patch and

Sa
i ∈ R2 corresponds to the true shift of the object from the center of the patch. Let also Sp

i ∈
R2 : Sp

i =φ(Xi) be the prediction of the shift of the object, obtained by the motion compensation

system. Then the RMSE is computed using the following equation:

RMSE=
√√√√ 1

N

N∑
i=1

(
Sp

i −Sa
i

)2
. (1.7)

Note that Sp
i and Sa

i do not depend on the size of the patch.

Table 1.1 depicts the results of this comparison. CNN-Regression outperforms HBT-Regression

on both datasets. For reference we also provide RMSE0, which is computed as:

RMSE0 =
√√√√ 1

N

N∑
i=1

(
Sa

i

)2. (1.8)

RMSE0 reflects the case when no motion compensation is applied.

RMSE

method UAV dataset Aircraft dataset

No motion compensation (RMSE0) 0.1474 0.1451

HBT-Regression 0.0939 0.0805

CNN-Regression 0.0669 0.0749

Table 1.1: Performance of motion compensation methods.The valuation was performed on the

validation subsets of the UAV and Aircraft datasets.

We therefore used the CNN-Regression algorithm to produce a number of aligned st-cubes of

sizes ranging from (sx , sy , st) = (28,28,4) to (sx , sy , st) = (40,40,11), some of which we used for

training and others for testing. For patches smaller than 40×40, we simply upscale them to 40×40

before applying the motion compensation regressors. The choice of st controls the trade-off

between detecting far away objects using large values and closer ones using smaller ones. This is

because, when the object is very close, the apparent motion may become too large for our motion

compensation scheme. We found that increasing st beyond 11 did not bring any improvement in

performance, while decreasing it below 4 left us with too little motion information.

As described above we have used the same video sequences to select the most appropriate size st

for the st-cube. Fig. 1.10 summarizes our experiments, in terms of log-average miss-rate curves.

The legend of the plot describes the set-up used during the experiments. The numbers in brackets

correspond to the (sx , sy , st) dimensions of the st-cube. The order of the curves in the legend is

23

Chapter 1. Flying Objects Detection

designed in the way that the highest curve is highest in terms of MR|F PPI=1 measure. The lowest

curve corresponds to the best performing set-up. For the different detection algorithms we show

the best performing results by making the curves darker.

The classifiers of Section 1.3.1 rely on boosted trees operating on HoG3D descriptors [60]. We

computed them using the default parameters, that is, 24 orientations per bin of size 4×4×2 pixels.

The Boosted trees detector uses 1500 trees of depth 2. We will further refer to this method as

HBT-Detection.

For the CNNs of Section 1.3.2, we tried different network configurations, with variations of the

number and size of filters in the convolutional layers and varying numbers of fully connected

layers. In the end, they all ended up yielding very similar results. The final configuration that we

used is illustrated by Fig. 1.4. We will refer to this method as CNN-Detection.

As depicted by Fig. 1.10, HBT and CNN detectors perform similarly on the plane dataset but the

former clearly outperforms the latter on the UAV dataset when we allow a single false positive

per frame on average. This may seem surprising but similar behaviors have been reported by [80]

where the top four methods rely on decision forests while the Deep learning approach ranks only

sixth. In our case, this may be attributable to the size of the training database not being large

enough to take full advantage of the power of CNNs. Furthermore, for tasks that require as few

false positives as possible, the CNNs win.

In any event, these experiments suggest that the optimal dimension of the st-cube depends on the

task at hand. The apparent size of the UAVs is small, which favors large temporal dimension.

As can be seen in Fig. 1.10(a), the best results are obtained for st = 11. By contrast, the Aircraft

dataset comprises examples of planes flying at many different distances from the camera. In this

case, st = 7 is optimal for both HoG3D descriptors and CNNs.

1.5.2.4 Detection-Based Evaluation

Another way to evaluate our motion compensation algorithm is to compare the detectors, trained

on the data, processed with either HBT-Regression or CNN-Regression methods. This measures

the influence our motion compensation algorithm has on the accuracy of the detector, which is

what we are interested in. We have chosen HBT-Detection method for detection task, as it is

faster to train and it showed better accuracy on validation set, based on experiments, depicted by

Fig. 1.10. We compared our two methods described in Section 1.4 with an optical flow based

method [35], which is probably the best available.

Fig. 1.11 illustrates the results of this comparison. We also provide the performance of the same

detector, trained and tested on the data without motion stabilization for reference.

Our methods are able to correctly compensate for the UAV motion even in the cases where the

background is complex and the drone might not be visible due to image saturation and noise.

24

1.5. Designing the Optimal Approach

(a) UAV dataset (b) Aircraft dataset

Average Precision

UAV dataset Aircraft dataset

HBT-Detection with:

No motion compensation 0.485 0.497

Optical flow 0.540 0.652

HBT-Regression 0.751 0.789

CNN-Regression 0.849 0.864

Figure 1.11: Comparison of motion compensation methods on the test subsets of our datasets.

For all the motion compensation algorithms we have used the same HBT-Detection approach,

as it proved to be more accurate, comparing to CNN-Detection. Unlike the optical flow-based

algorithm, our regression-based ones properly identify the shift in object position and correct for

it, even when the background is complex and the object outlines are barely visible. This yields a

better precision/recall. Table in the bottom of the figure depicts the Average Precision score for

the methods presented above.

Fig. 1.1(b,d) illustrates this hard situation with an example. On the contrary, the optical flow

method is more focused on the background, which decreases its performance. Fig. 1.1(c) shows

an example of a relatively easy situation, where the aircraft is clearly visible, but the optical flow

algorithm fails to correctly compensate for its movement, while our regression-based approach

succeeds.

Fig. 1.1(a) illustrates another situation, where the object is not in the center of the patch for the

middle image of the st-cube. Optical flow methods will align other patches of the st-cube with

respect to the middle one, which will result in object being shifted from the center in all the

st-cube patches. By contrast, our motion compensation algorithm does not require any reference

frame, leading to higher accuracy.

25

Chapter 1. Flying Objects Detection

Using motion compensation for alignment of the st-cubes results into a higher performance of

the detectors, as in-class variation of the data is decreased. Fig. 1.11 shows that we can achieve at

least 15% improvement in average precision on both datasets using our motion compensation

algorithm.

Our CNN-based motion compensation algorithm performs best. It yields about a 10% increase

in accuracy, compared to the boosted trees method. Such difference in performance most likely

lies in the nature of the features used by these machine learning techniques. The boosted trees

regressor is using HoG features, which might not be perfectly suited for the problem, while the

filters in the CNN are learned directly from the data. As the CNN obtains better accuracy, for our

further experiments we will use the CNN-based motion compensation.

1.6 Comparing against Competing Methods

In this section, we compare the performance of the pipeline of Section 1.3, optimized as de-

scribed in Section 1.5, against several state-of-the-art algorithms on the two challenging datasets

introduced in Section 1.5.1. For these experiments, we therefore use st-cubes whose sizes are

(28,28,11) for UAVs and (28,28,7) for planes, which are those we determined to yield the lowest

miss-rates when we use HoG3D descriptors for detection and CNNs for motion compensation.

We first list the algorithms we use as baselines and show that ours outperforms them consistently

both for plane and UAV detection. We then demonstrate that motion compensation does not

significantly degrade performance in cases when it is not strictly needed, such as when two

aircrafts are on a collision course.

1.6.1 Baselines

To demonstrate the effectiveness of our approach, we compare it against state-of-the-art algo-

rithms. We chose them to be representative of the three different ways the problem of detecting

small moving objects can be approached, as discussed in Section 1.2.

• Appearance-Based Approaches rely on detection in individual frames. We will compare

against Deformable Part Models (DPM) [29], single-frame based Convolutional Neural

Networks (s-f CNN-based detector) [62], Random Forests [81], and the Aggregate Channel

Features method (ACF) [18], the latter being widely considered to be among the best.

Since our algorithm considers st-cubes, for a fair comparison with these single-frame

algorithms, we proceed as follows. Similarly to our approach we divide the video sequence

into a set of N -frame overlapping slices. We further extract st-cubes using a sliding window

approach, but motion compensation is not applied. We then run the single frame based

detector on each of the patches of these st-cubes and consider the whole st-cube b as

26

1.6. Comparing against Competing Methods

UAV dataset Aircraft dataset

Figure 1.12: Comparing against appearance-based approaches [81, 62, 18, 29] in terms of

precision/recall. For both the UAV and Aircraft datasets, the blue curve depicts our approach and

is significantly above the others.

positive if the weighted average of scores of the patches in b is positive. We use a simple

Gaussian kernel G centered on the middle frame of b as a weighting function. G is defined

as

G = exp

(
− (i − st /2)2

2σ2

)
, (1.9)

where st is the filter size and σ is taken as σ= 0.3((st −1)/2−1)+0.8 as often done. We

tried simply averaging over the detection scores of the set of patches in the b, but it resulted

in lower accuracy, because the detectors tend to give a higher score to the middle frame, in

which the object appears to be close to the patch center.

• Motion-based Approaches do not use any appearance information and rely purely on

the correct estimation of the background motion. Among those we experimented with

MultiCue background subtraction [64, 31] and large displacement optical flow [34].

• Hybrid approaches are closer in spirit to ours and correct for motion using image-flow.

Among those, the one presented in [35] is the most recent we know of and the one

we compare against. The main difference is that it relies on optical flow for motion

compensation whereas we use CNNs. To ensure a fair comparison, we used the same

patches to construct the st-cubes both for our method and to extract the features [35]

requires.

27

Chapter 1. Flying Objects Detection

Our approach

Background subtraction

Optical flow

UAV dataset Aircraft dataset

Figure 1.13: Comparing against motion-based methods [34, 64]. [TOP] Our detector detects the

objects by relying on motion and appearance, as evidenced by the green rectangles. [MIDDLE]

Background subtraction results of [64]. Only in the leftmost frame of the three on the left, is

there a blob that corresponds to a UAV, along with one that does not. Similarly, there is a small

blob that corresponds to a plane in the central frame of the three right-most ones and many large

ones in the others that do not clearly correspond to anything. [BOTTOM] Optical flow computed

using the algorithm of [34]. The plane and UAV generate a distinctly visible pattern in 2 or the 3

right-most images but in none of the three left-most ones. (best seen in color)

For all the motion-based [34, 64, 31] and single-frame-based [81, 62, 18, 29] approaches, the code

was downloaded from publicly available sources. In particular, for ACF and Random Forests,

we used the toolboxes of [82] and [78] respectively. The DPM implementation is publicly

available [29]. We also used the open source BGSLibrary [31] for state-of-the-art background

subtraction algorithms. To compute features, we used default parameter configurations much

as we did in our own pipeline for HoG3D. For algorithms relying on Random Forest, we tried

varying the number of trees, and kept the number yielding the best results, again much as we did

to find the best CNN configurations in our pipeline. For [35], we did not find a publicly available

implementation and reimplemented the algorithm ourselves.

1.6.2 Evaluation against Competing Approaches

We used the same video sequences to train all the methods from the three classes described above.

We compare here their results against ours.

28

1.6. Comparing against Competing Methods

Average Precision

Method UAV dataset Aircraft dataset

Single-frame based approaches

DPM [29] 0.573 0.470

Random Forests [81] 0.618 0.563

s-f CNN-based detector [62] 0.682 0.647

ACF [18] 0.652 0.648

Hybrid approaches

Park [35] 0.568 0.705

Ours 0.849 0.864

Table 1.2: Average precision of detection methods on our datasets. We can see that in both

cases our approach is able to reach higher detection accuracy. We achieve about 15% increase

comparing to the best competing algorithms for the UAV and Aircraft datasets.

1.6.2.1 Appearance-Based Methods.

In Fig. 1.12, we compare our method with appearance-based ones on our two datasets in terms

of precision/recall. Table 1.2 summarizes the results in terms of Average Precision. For both

the UAV and Aircraft datasets we improve on average by 15−20% over ACF [18], which itself

outperforms the others.

The CNN approach, provided by[62] yields scores comparable to those of the Random Forests

and ACF methods. The structure of the network is the one depicted by Fig. 1.4, except for the

fact that we replaced 3D convolutions by standard 2D ones. To boost CNN performance, we

used Local Contrast Normalization (LCN) [83] after every convolutional layer and minimize the

Hinge Loss at the final layer of the network, which was shown to be effective [84, 85].

The DPM [29] performs worst on average. This likely happens because it depends on using the

correct size of the bins for HoG estimation, which makes it hard to generalize for a large variety

of flying objects.

1.6.2.2 Motion-Based Methods

Fig. 1.13 depicts cases where background subtraction [64] and optical flow computation [34]

algorithms, even though they are state-of-the-art, do not work well enough for detecting UAVs or

planes in the challenging conditions we consider.

We did not compute precision-recall curves using these motion-based methods because it is

unclear how big the moving part of the frame should be considered as an aircraft. We have tested

several potential sizes and the resulting average precision values were much lower than those in

Table 1.2 in all cases.

29

Chapter 1. Flying Objects Detection

(a) UAV dataset (b) Aircraft dataset

Figure 1.14: Comparing against the hybrid method of [35]. Our approach performs better for

both UAVs and Planes.

1.6.2.3 Hybrid approaches

In Fig. 1.14, we compare our method against the hybrid approach of [35], which relies on motion

compensation using Lucas-Kanade optical flow method, and yields state-of-the-art performance

for pedestrian detection. As shown in Fig. 1.1, optical flow motion compensation cannot achieve

good performance in our case, mostly because the target object is rather small and its appearance

can significantly change due to illumination and background changes.

As a result, our regression-based approach allows achieving higher performance for both the

UAV and aircraft datasets. This suggests that accurate localization of the object in the patch is

essential and leads to significant improvement in detection accuracy. Fig. 1.15 shows several

frames to illustrate the performance of our approach.

1.6.3 Collision Courses

Motion compensation can be seen as a way to make the st-cube invariant from the motion of

the aircraft, as it keeps flying object in the center, for all the patches of the st-cube. To evaluate

whether enforcing this kind of invariance negatively impacts performance in the situations when

it is not required, we applied our approach to the case of aircrafts on collision courses.

As shown in Fig. 1.16, if the aircraft A1, observed from the camera of another aircraft A2, is on

collision course with A2 then its behavior can be characterized by two important properties:

• A1 remains at constant angle with respect to A2

30

1.6. Comparing against Competing Methods

UAV dataset

Aircraft dataset

Figure 1.15: Some detection results. Thumbnails at the side of each figure show the zoomed-in

versions of the detections made by our algorithm.

Figure 1.16: Collision courses. [LEFT] The apparent size of a standard glider and its 15 m

wingspan flying towards another aircraft at a relatively slow speed (100 km/h) is very small 33s

before impact, but the glider completely fills the field of view only half a minute later, 3s before

impact. [RIGHT] An aircraft on a collision course is seen in a constant direction but its apparent

size grows, slowly at first and then faster.

• the apparent size of A1 increases from the point of view of A2

These properties are invariant from the actual positions of the aircrafts in the 3D environment,

the only constraint is that the paths of the aircrafts should intersect, which effectively means

31

Chapter 1. Flying Objects Detection

AP
st-cube (Average Precision)

Without compensation 0.907

With compensation 0.904

Figure 1.17: Performance for aircrafts on a collision course. [LEFT] Precision/recall with and

without motion compensation. [RIGHT] Average Precision with and without motion compensa-

tion.

collision. In our case only the first property is important, which means that motion stabilization

is not needed, as A1 will always occupy the same position in the image from the camera of A2,

provided A1 and A2 are on collision course.

We therefore searched publicly available sources for video sequences in which airplanes appear

to be on a collision course for a substantial amount of time. We found fourteen, which vary in

length from tens to several hundreds of frames. As before, we used half of them to train the

detector and the others to test it.

In Fig. 1.17, we compare our results with and without motion stabilization. As expected, even

though the non-stabilized results were poor in the general case, they are much better in this specific

scenario. Incorporating motion stabilization very slightly degrades performance, which could

be expected because enforcing any kind of invariance always loses some amount of information

and is penalizing when such invariance is not required. However, in this case, the loss is almost

negligible.

This is significant because, in a practical on-board system, detecting aircrafts on a collision

course, which present a clear and immediate danger, would probably take priority over detecting

all others. The former does not require motion compensation while the latter does. However,

since nothing is lost by having motion compensation on, we can detect all aircrafts, whether on a

collision course or not, without performance loss in the crucial case of those that are.

32

1.6. Comparing against Competing Methods

(a) (b)

(c) (d)

(e) (f)

Figure 1.18: Scale adjustment. The red bounding box shows the original detection and the green

one the position adjusted for scale and motion. The thumbnails on the right are zoomed-in

versions of the detections, with the top one illustrating the original detection and the bottom one

showing the one after being motion and scale are adjusted. (best seen in color)

1.6.4 Scale Adjustment

As discussed in Section 1.4.3, we must run our detection scheme at different image resolutions

to accommodate rapid size changes. This additional computational burden can be reduced by

compensating not only for motion but also for size, which makes it possible to reduce the number

of scales the system needs to check.

More specifically, we trained a regressor φsc (·) to adjust for scale so that the bounding box fits

the object of interest, much in the same way as we learned a regressor to compensate for motion.

33

Chapter 1. Flying Objects Detection

Figure 1.19: Structure of the scale adjustment Convolutional Neural Network. Several input chan-

nels contain object at different scales. The output of the CNN is a number, which characterizes

the true scale of the object.

UAV dataset

Airraft dataset

Figure 1.20: Sample results for simultaneous scale and motion compensation. The left image of

each pair contains the original patch, where neither scale nor position are corrected. The right

patch depicts the resulting patch after scale and motion correction.

Fig. 1.18 illustrates this process in two separate cases. Note that in the case of Fig. 1.18(b), there

were originally two different detections, which were collapsed into the same one after adjustment

without having to perform non-maximum suppression.

Since CNNs have proved more effective for motion compensation than HoG-based regressors,

we used them to implement scale adjustment as well. We found out experimentally that using

just a single patch to predict the true scale of the object is not enough. As in [86], we therefore

34

1.6. Comparing against Competing Methods

motion compensation + detection 0.123s

motion and scale adjustment + detection 0.193s

Table 1.3: Speed comparison of the motion and scale adjustment methods with motion compen-

sation. We provide the time needed to process a single st-cube using an Intel� Xeon� CPU

E5-2650 v2 running at 2.60GHz.

UAV dataset

Method:
number of scales average miss-rate

processed per frame for FPPI = 1

HBT-Detection

without scale adjustment 4 51%

without scale adjustment 8 50%

with scale adjustment 8 54%

with scale adjustment 16 52%

with scale adjustment 32 48%

Table 1.4: Evaluation of the HBT-Detection method on the UAV dataset with and without scale

adjustment. Both method perform better when more scales are used, at the cost of increasing the

computation time.

used several scales as inputs to the CNN. Fig. 1.19 illustrates its structure.

The input to this CNN is a set of images of the object at different scales, which are provided as

separate channels. Its output is the estimated scale of the object. Since there is no pooling layer

after the first convolutional layer, we can estimate the scale with high precision. Furthermore, this

CNN can be combined with the motion stabilization one of Section 1.4 to increase the accuracy

of both motion compensation and scale adjustment. The structure of the resulting composite

CNN is similar to the one depicted by Fig. 1.19. However, the output of its fully-connected layer

has 3 floating point values instead of only 2. The first two are the shifts from the center of the

patch in the spatial domain and the last one is the estimated scale. This replaces NMS in scale

space, as described in Section 1.3, and yields precise object localization. Fig. 1.20 depicts some

scale-adjustment results.

Table 1.3 compares the time required to process a single st-cube using our approach with and

without scale adjustment. In this case, we have used st-cubes of size (40,40,4) and 7 scales for

the scale adjustment algorithm. Note that the number of scales can be selected with respect to

the desired localization quality. Thus having many scales will yield more precise estimation of

the object size, at the cost of a computation time increase. In our experiments we selected 7

scales, which results in high localization precision, as depicted by Fig. 1.21, while keeping the

processing time relatively low. Even though adding scale adjustment to motion compensation

increases the processing time per st-cube, it reduces the overall computation time by a factor of

about 4. This is because it replaces the need of doing NMS across 7 different scales, which takes

35

Chapter 1. Flying Objects Detection

Figure 1.21: Precise estimation of the scale of the object allows us to localize it in 3-D space.

[TOP LEFT] Scale and motion adjusted detection of the aircraft in one frame of a video sequence.

[TOP RIGHT] Projection of the points of the 3D trajectory throughout the previous 20 frames

to the image plane. [BOTTOM LEFT] Changes of object scale. [BOTTOM RIGHT] Trajectory of

the object in 3D space is quite smooth due to the motion compensation algorithm, while neither

tracking nor additional smoothing is applied.

0.123∗7 = 0.861 seconds, by processing one st-cube while accounting for scale, which takes

0.193 seconds.

In Table 1.4, we evaluate our approach on the UAV dataset with and without scale adjustment.

Even though HBT-Detection with scale adjustment allows for faster computation, its performance

is slightly lower than without scale adjustment. This is mainly due to the artifacts that appear

when resizing small noisy images. Greater scale numbers improve detection accuracy at the cost

of increased computation time.

In the experiments of Section 1.6.2, we rely on 50% overlap between detected and ground-truth

bounding boxes. Thus, it is unnecessary to localize the target objects very precisely. We therefore

use our method without scale adjustment on 8 distinctive scales, which yields a good balance

between accuracy and computational time.

Fig. 1.21 illustrates the performance of our detection method in combination with motion

compensation and scale adjustment. Our algorithm localizes the flying object with a great

accuracy and yields trajectories that are smooth both in the spatial domain and in scale space.

Provided that the camera is calibrated and given the true size of the object, we can estimate its

36

1.7. Conclusion

distance to the camera, which is critical for collision avoidance purposes.

Different other examples that illustrate the performance of our motion compensation and detection

approaches can be found at the following link: http://cvlab.epfl.ch/research/unmanned/detection.

1.7 Conclusion

In this chapter we showed that temporal information from a sequence of frames plays vital role in

detection of small fast moving objects like UAVs or aircrafts in complex outdoor environments.

We therefore developed a novel object-centric learning-based motion compensation approach that

is robust to changes in the appearance of both object and background. Both CNN and Boosted

trees methods allow us to outperform state-of-the-art techniques on two challenging datasets.

The CNN-based method proved to be more suitable for motion compensation than the Boosted

trees-based one.

37

2 Synthetic Data Generation

In the previous chapter we have presented a learning-based approach that combines motion and

appearance information to efficiently detect drones in the challenging video sequences. The

main limitation of this method lies in the complexity of data collection, as the training dataset

should contain images/videos of various types of aircrafts in different environments and lighting

conditions. Though we can not completely avoid the data collection process we can reduce the

manual effort by augmenting the small training set of images. The standard way of doing this is

by applying small deformations and adding noise to the training samples [87, 88], as done for

character [47, 48], face [89], and image patch recognition [90]. This approach, however, assumes

that the original training set is already diverse enough, as the range of augmented images that can

be produced is limited.

A different direction is taken by [91], who suggests augmenting the small dataset of real images

with synthetic ones for the task of 3D body pose estimation from a single depth camera. The major

difference with our problem is that depth images do not depend on lighting, motion blur, and

other artifacts that affect images from a regular camera, and are therefore comparatively simpler

to synthesize. In the context of RGB images, synthetic data has been investigated for human

detection and pose estimation purposes in [39, 40], but [39] does not model image-acquisition

artifacts, while [40] involves considerable amounts of manual interaction, which is less desirable.

It was recently shown [41] that it is possible to use a 3D car model to first extract appearance

information from real images of cars, and use it to synthesize novel views. Using these generated

images along with the real ones during training improves performance, however this approach

does not account for other artifacts such as motion blur and is only applicable to objects with

relatively simple geometry.

Furthermore, to the best of our knowledge none of these approaches offers a principled way

to choose the image synthesis parameters to match the behavior of real-world cameras in the

presence of noise. The relevant parameters are typically tuned by hand, which quickly becomes

unmanageable when the rendering pipeline is complex. To overcome this limitation, we therefore

introduce a fully automated and generic method to estimate these parameters from a small set

39

Chapter 2. Synthetic Data Generation

Figure 2.1: Synthetic data generation pipeline. [LEFT] Input to the system includes a simple

model of the object of interest, an image of this object and a background image (it should be

the same background as the image of the object has). [MIDDLE] Overlaying the model on the

background yields a synthetic image. This image is then processed to maximize its similarity to a

real image from the perspective of the detector. [RIGHT] The resulting synthetic image can be

used for training the detector.

of available real images to maximize the performance of a detector trained using the resulting

synthetic images.

To this end, we start from a small set of real seed images containing a target object and corre-

sponding background images without it, such as the ones depicted by Fig. 2.1. Given a very

coarse 3D model of the object of interest, such as that of the drone of Fig. 2.1, we estimate the

3D pose of the object, overlaid onto the background image, and then post-process the resulting

composite image so that it is as similar as possible to the real one. This is achieved by automated

selection of the post-processing parameters to maximize a similarity between the two images.

Once these parameters are found, we can then change the position and the orientation of the

object in the images to generate arbitrary large synthetic datasets with realistic imaging artifacts.

A key ingredient of our approach is the similarity function used to measure the difference between

real and synthetic images. An obvious candidate would be the pixel-wise Euclidean distance.

However, our goal is not to generate visually pleasant images, but rather training data that is

effective for our intended purpose. We will therefore show that the best similarity depends on the

target detection method. We demonstrate this for three widely used methods that are representative

of the state-of-the-art: The Deformable Part Model (DPM) method [92], an AdaBoost-based

detector [93], and a detector based on Convolutional Neural Networks (CNN) [94].

In short, our contribution is a novel and fully automated approach to generating synthetic

training image databases that increases detection performance and outperforms the state-of-the-

art techniques discussed above, irrespective of the specific detector used. We will demonstrate

this in the context of drone, plane, and car detection.

In the remainder of this chapter, we first discuss the related work. In Section 2.2 we then present

40

2.1. Related Work

the image-specific effects we want to model in our synthetic images, followed by a discussion on

different similarity functions that we use to quantify the difference between synthetic and real

images in Section 2.4. Finally, in Section 2.5 we demonstrate the performance of our approach

on three different datasets and compare it to the state-of-the-art.

2.1 Related Work

Given the prevalence of Machine Learning based algorithms, capturing and annotating training

images has become a major issue, and sometimes a severe bottleneck when such images are

hard to acquire. In such cases, using Computer Graphics techniques to generate them is a very

attractive alternative.

For example, Optical Character Recognition systems have long been trained using samples

created by applying various deformations and adding image noise to actual samples [47, 48].

Similarly, synthetically generated image patches have been successfully used in [95, 96]. Note,

however, that neither characters nor patches exhibit the full complexity of natural images and

are therefore easier to synthesize. In [91], this approach was used on complete depth images

generated from 3D models of people to train classifiers to recover human 3D pose from the

output of a Kinect camera. This has been remarkably successful, in large part because it provides

a way to create arbitrarily large training dataset. However, depth images also lack many of the

imaging artefacts present in ordinary images, such as motion blur or lighting effects, which make

it difficult to use such an approach for video imagery.

This was attempted in [39] by generating images of pedestrians in various poses and environments

to train a pedestrian detector. The results are encouraging but the method does not take complex

imaging artefacts into account. More recently, an approach to creating more realistic synthetic

images by extracting people’s silhouettes from real images, and superimposing them over various

backgrounds was proposed [40]. However, it is very specific to pedestrian detection and requires

a considerable amount of manual annotation.

Like ours, the approach of [41] relies on both real training images and a 3D model. After

registering the 3D model to the images, the material and lighting properties of the different object

components are estimated and used to synthesise new views of the 3D model. However, it does

not take into account other artifacts such as motion blur and requires precise registration.

Furthermore, to the best of our knowledge none of the aforementioned approaches offers a

principled way to choose the image synthesis parameters to match the behavior of real-world

cameras in the presence of noise. The relevant parameters are typically tuned by hand, which

quickly becomes unmanageable when the rendering pipeline is complex.

Of course, generic image synthesis techniques have also been used in computer vision for many

other purposes, such as optimizing camera tracking algorithms [97], evaluation of algorithms [98,

99, 100, 101, 102, 103], gesture recognition and pose estimation [104, 105], or rendering virtual

41

Chapter 2. Synthetic Data Generation

Boundaries blurring Motion blurring

Random noise Diffuse coefficient of material variation

Figure 2.2: The four post-processing effects we use for increasing the similarity between the real

and synthetic images.

objects that merge well with real images [106]. Some of these approaches simply project the 3D

model of the object of interest on an arbitrary background image. Others add post-processing on

similarly generated synthetic images in order to make them look realistic. However, to the best

of our knowledge none of them estimate neither how realistic the resulting images are, nor how

suitable they are for the application itself.

In this work, we will use some of the same approaches to synthesizing realistic images. This being

said, visual realism is not our end goal, but rather the classification performance improvement.

As such our algorithm, unlike the others, automatically optimizes the rendering parameters solely

for this purpose.

2.2 Generating Synthetic Images

As illustrated by Fig. 2.1, while our pipeline is simple, it depends on many parameters that would

be hard to choose by hand. We use simple CAD models, such as that of Fig. 2.1, which roughly

captures the target object geometry. We assume that we are given a small set of real images

featuring the target object and a corresponding set of background images without it. As we will

explain, these background images can usually be extracted from the training video sequence

itself. In cases where the background is not visible at any time, it is still possible to estimate

it by cutting out the object from the original images and using a texture filling algorithm. This

approach will be more thoroughly discussed in Section 2.5.3.

For each real image, we then compute 5 object pose parameters, that include 3 orientations

(αp ,βp ,γp) and 2 translations (t p
x , t p

y), which lets us project the 3D model at the desired location.

Note that as we use multi-scale detector, we do not need to vary the scale of the object.

As shown in Fig. 2.2, we then post-process the synthetic image to maximize its similarity to the

real image. This involves:

42

2.3. Optimizing the Rendering Parameters

• Object boundary blurring (BB). The discrete nature of the image sensor causes a mixture

of the intensities of the background and the target object along its boundaries. To simulate

this effect we apply Gaussian blurring along the object boundaries after the object image

has been overlaid on the background image. This is controlled by the standard deviation

σs of the Gaussian kernel used for smoothing.

• Motion blurring (MB). This mimics the blurring effect that affects on fast moving objects

if the shutter time of the camera is too long. To simulate this effect we use anisotropic

Gaussian blurring applied to the pixels of the object in the direction of its motion. The

parameters are the two standard deviations σm
u and σm

v of the Gaussian kernel and the

angle αm of the motion.

• Random noise (RN). This emulates the shot noise added to the image by the camera. To

simulate this effect we simply add independent Gaussian noise to the pixel intensities. Note

this is limited to the image pixels that correspond to the inserted object, as the background

images are real ones and already contain similar noise. This is controlled by the standard

deviation σn of the Gaussian distribution used to generate the noise.

• Material properties (MP). We also vary the material properties, by changing the weight

wd of the diffuse reflection. This allows us not only to vary the color of the object, but also

to introduce some diffuse lighting effects. While we do not take specularities into account,

this would be a very natural extension to our approach.

We refer to these synthetic data generation parameters as capture parameters

Θ= [αp ,βp ,γp , t p
x , t p

y︸ ︷︷ ︸
pose

,σs ,σm
u ,σm

v ,αm ,σn , w d︸ ︷︷ ︸
capture

]� . (2.1)

These parameters are challenging to tune because they are heavily correlated. This is particularly

true of object pose and direction of motion blur, as well of boundary blurring and motion blurring.

Thus our goal is to estimate the Θ parameters for every seed real image that we use for synthetic

data generation. Given the background images and the corresponding Θ parameters, we retain the

capture parameters and randomize the pose ones to generate arbitrary large numbers of synthetic

images that will be realistic enough to be used for training the object detector. We explain below

how we recover these Θ parameters.

2.3 Optimizing the Rendering Parameters

To optimize the pose and capture parameters in Θ, we rely on a small set of real images of the

target object, together with the corresponding images of the background without the target.

Starting from a background image on which we render the CAD model of the target object, we

optimize the rendering parameters to reproduce the corresponding real image. This optimization is

43

Chapter 2. Synthetic Data Generation

performed on each image independently, because the same capture parameters do not necessarily

apply to all of them. More formally, we consider the set of pairs of real images {(Xi ,Bi)}N
i=0,

where Xi ∈ χ is the i th image of the object and Bi ∈ χ is the background image for Xi . Let

d :χ × χ→ R+ be a similarity function, which we use to compare two images, and which we

will define explicitly in Section 2.4. Lastly, let S(Θ,Bi) ∈ χ represent the synthetically rendered

image by applying the synthetic data generation process with parameters Θ to the Background Bi

To find the set of parameters Θ that best corresponds to real image Xi , we look for

Θ(i) = argmin
Θ

d(Xi ,S(Θ,Bi)) (2.2)

by Simulated Annealing [107]. This approach is widely used for solving non-continuous optimiza-

tion problems with a large number of parameters. In practice, we initialize the pose parameters

by manually providing the object center, which could be avoided with a more sophisticated

optimization algorithm. Capture parameters are initialized randomly. This optimization takes a

few seconds on each of our 40×40 images.

The capture parameters in Θ depend on viewing conditions, such as lighting and weather condi-

tions, which is why we perform the optimization in each image independently. Fig. 2.3 describes

their distributions across images. Note that these distributions are absolutely not Gaussian and

that it would therefore be non-trivial to describe them analytically.

2.4 Image Similarity Measures

The resulting parameters depend critically on the similarity function d(·, ·) used to evaluate how

close the two images are to each other. The simplest is the Euclidean distance between the

intensity values of corresponding pixels

dEucl(Xre, Xsy) =
√√√√ H∑

v=1

W∑
u=1

(
Xre(u, v)−Xsy(u, v)

)2 , (2.3)

where Xre and Xsy are the real and synthetic images respectively, and W and H denote the images

dimensions.

However, since our goal is to generate synthetic images that are more effective to train a detection

method, we will see this is not the best possible choice, for our purposes.

More specifically, we evaluated our approach in conjunction with three commonly used object

detectors—DPM [92], an AdaBoost-based detector [93], and a CNN [94]—and we therefore

introduce three different similarity functions, each one based on the image features used by one

of these methods. We will show that our approach to image generation works best when relying

on the distance function corresponding to the detection method.

44

2.4. Image Similarity Measures

Figure 2.3: Each histogram depicts the joint distribution of different pairs of capture parameters.

(best seen in color)

Since DPM relies on Histograms-of-Gradients (HoG) [73], the first similarity function we

consider the distance between the HoG vectors [73] computed for the two images as the similarity

function

dHoG(Xre, Xsy) =
√√√√ L∑

i=1

(
HoGi (Xre)−HoGi (Xsy)

)2 , (2.4)

where HoGi (X) is the i th coordinate of the HoG vector computed for image X .

We also consider an AdaBoost detector, whose weak learners rely on the image gradients proposed

in [108]. We write

hR,o,τ(X) =
{

1, if E(X ,R,o) > τ,

0, otherwise.
(2.5)

These weak learners are parametrized by a region R, an orientation o, and a threshold τ. E(X ,R,e)

is the normalized image gradient energy over region R in X and in orientation o. We therefore

introduce the additional function:

d H
WL(Xre, Xsy) =

√√√√ L∑
i=1

αi
(
hi (Xre)−hi (Xsy)

)2 , (2.6)

45

Chapter 2. Synthetic Data Generation

Original dEucl dHoG d R
WL d L

WL dCNN

Figure 2.4: Samples of real images with corresponding synthetic ones. The Θ parameters for the

synthetic images were optimized using different image similarity functions.

where L is the number of weak learners hi with their corresponding weights αi . We tried two

different methods to build such a set:

• d R
WL(Xre, Xsy) will denote the previous similarity function when random weak learners,

each with a weight α= 1, are used;

• d L
WL(Xre, Xsy) will denote the previous similarity function when a set of weak learners and

their weights selected by AdaBoost on the seed real images is used.

The third detection method we consider is a Convolutional Neural Network (CNN) which, unlike

the previous two, does not rely on hard-coded image features but learns them instead. We

therefore first train a CNN on the real seed images only and consider the distance

dCNN(Xre, Xsy) =
√√√√ N∑

n=2

Ln∑
i=1

(
CNNn

i (Xre)−CNNn
i (Xsy)

)2 , (2.7)

where CNNn
i (X) is the value of the i th neuron of the nth layer of the Convolutional Neural

Network; N is the number of layers in the CNN; Ln is the number of neurons of the nth layer of

CNN.

In Fig. 2.4, we show synthetic images with the corresponding real seed images. Each image was

obtained by finding the rendering parameters that minimize one of the five similarity functions

introduced above.

2.5 Results

In this section, we first introduce the three datasets that we used for training and testing of our

algorithms. Then we compare our synthetic data generation approach with several baselines, and

46

2.5. Results

Training Data

Evaluation Data

Figure 2.5: Sample real images both for training and evaluation from the UAV dataset. The

evaluation images, while created using a single UAV, are very challenging as they are low-

resolution while exhibiting significant lighting, background, and pose variations.

evaluate the importance of each of our rendering effects. Our next step is to show the significance

of the optimization of the Θ rendering parameters. Further, we experimentally estimate the

optimal ratio between synthetic and real samples used for training. We then show that our

algorithm is able to generalize to multiple kinds of aircrafts. Finally, we compare our approach to

a very recent one on realistic data generation on the PASCAL VOC dataset.

We evaluate our synthetic data generation method on three different datasets.

• UAV Dataset. This dataset contains challenging images that were acquired from the

camera of a flying UAV. In these low-resolution images one can see another drone that flies

around and appears against different backgrounds and under various lighting conditions.

Even though only one drone was used to produce the images, the dataset includes many of

the challenges that outdoor environments pose, such as large illumination and background

changes. We use it to investigate the impact of the different effects our rendering pipeline

includes.

• Aircraft dataset. This dataset contains images of different planes seen against changing

backgrounds and under a variety of weather and lighting conditions. We use it to demon-

strate that our approach generalizes to a much larger class of objects than simply drones. As

in the case of the UAV dataset, we will demonstrate that regardless of the machine learning

method used to detect the target objects, we can improve performance by appropriately

generating our synthetic images.

• PASCAL VOC 2007. We use this standard Computer Vision benchmark to compare our

approach to a very recent work on synthetic view generation [41]. As in [41], we restrict

ourselves here to the car class, which nevertheless further demonstrates the versatility of

our approach.

We will present our results in terms of both recall (r) vs precision (p) curves and average
precision (AP). Some additional results and video sequences can be found on the webpage of the

47

Chapter 2. Synthetic Data Generation

Trained on Trained on

Real Real & Synthetic Real Real & Synthetic

Figure 2.6: Qualitative comparison of the performance of the detectors trained just on real data

versus both real and synthetic data.

project1.

2.5.1 Gauging the Various Components of the Approach using the UAV Dataset

We created a dataset of 2000 images of UAVs in various environments and seen under different

lighting conditions. Fig. 2.5 depicts some of the images. The images were captured by one UAV

filming another one while they were both flying.

Fig. 2.6 depicts detections by an AdaBoost classifier trained using either real images only or

both real and synthetic images. We will quantify the observed performance improvement in the

remainder of this section. In Fig. 2.7, we show additional examples of detections by the detector

trained on both real and synthetic data as well as some failure cases to illustrate how challenging

this dataset is.

We first describe the acquisition process and then use these UAV images to test individual

components of our pipeline and to evaluate overall performance.

1http://cvlab.epfl.ch/research/unmanned/synthetic

48

2.5. Results

Correct Detections

Missed and False Detections

Figure 2.7: [TOP] Sample detections by the AdaBoost detector trained using both real and

synthetic data. [BOTTOM] Missed or false detections to highlight the challenges that the dataset

provides for the detector. (best seen in color)

2.5.1.1 Experimental Setup

To obtain the background images required to render the composite ones, we first aligned consecu-

tive frames by computing the homographies between the frames, and kept the median intensity at

each location of the aligned images.

The training and testing videos were acquired in different environments and feature different

backgrounds. The CAD model of the UAV used for rendering only coarsely outlines the main

geometrical structure of the real object, as illustrated by Fig. 2.1. Negative training and testing

samples were obtained by randomly sampling the backgrounds of the training images. For

detection, we use a sliding window approach that applies the detector at every spatial location

and at different scales of the whole image. Non-maximum suppression is then applied to the

response image scale-space.

The detection methods in the experiments are trained with a combination of real and synthetic

data and tested on the real data only.

49

Chapter 2. Synthetic Data Generation

Using real By perturbing
Our methodimages only the real images

Detection method: Average precision:

DPM 0.84 0.87 0.93
AdaBoost 0.80 0.83 0.92
CNN 0.85 0.86 0.89

Table 2.1: Comparing average precisions for each detection method when either perturbing real

training images or using our approach with the optimal number of synthetic images and the

appropriate distance measure. Our approach significantly outperforms this traditional method.

2.5.1.2 Comparing against simply Perturbing the Real Images

A broadly used approach to augmenting a training set is to perturb the available images using

simple image transformations [47, 48]. Table 2.1 compares the performances of all three selected

detectors when being trained on images generated either in this way or using our approach. The

perturbations involve combining rotation, translation, mirroring, blurring and adding noise to the

original images.

Our approach significantly outperforms this simple technique. This can be explained by the fact

that we generate realistic combinations of 3D poses and background that are not present in the

seed images.

2.5.1.3 Relative Importance of the Various Rendering Effects

To demonstrate that correctly setting each one of the capture parameters introduced in Section 2.2

truly matters, we performed the two sets of experiments. For the first one we suppress the

influence of all the introduced effects (Object Boundary blurring, Motion blurring, Random noise,

Material properties) by setting the values of the corresponding capture parameters in Θ to 0.

We then vary only the parameters that correspond to a single post-processing effect and repeat

this experiment with different values of this parameter, and for each of the effects. Table 2.2

summarizes the results of this experiment, which show that all the classifiers benefit from the

application of every single post-processing effect.

For the second experiment we proceed as follows. For each effect we set the corresponding value

in the capture parameters Θ of Eq. 2.1 to 0 to cut off its influence. Further we optimize the other

parameters using the appropriate similarity measure for each detection method. We then use

the resulting Θ’s to generate the synthetic images and train the corresponding detector on these

images. Fig. 2.8 illustrates the evaluation results, which prove that correctly modeling each effect

clearly has a positive influence on final performance.

50

2.5. Results

Classification method Average precision

Boundaries blurring:

No effects σs = 1 σs = 1.5 σs = 2

DPM 0.78 0.77 0.84 0.75

AdaBoost 0.65 0.73 0.79 0.79
CNN 0.86 0.89 0.85 0.86

Motion blurring:

No effects
σm

u = 0.3 σm
u = 0.5 σm

u = 1

σm
v = 0.3 σm

v = 0.5 σm
v = 1

DPM 0.78 0.84 0.81 0.79

AdaBoost 0.65 0.72 0.79 0.79
CNN 0.86 0.87 0.88 0.89

Random noise:

No effects σn = 0.5 σn = 0.9 σn = 1.1

DPM 0.78 0.83 0.81 0.83
AdaBoost 0.65 0.75 0.79 0.75

CNN 0.86 0.89 0.86 0.85

Material properties:

No effects wd = 0.5 wd = 1 wd = 2

DPM 0.78 0.83 0.84 0.86
AdaBoost 0.65 0.70 0.76 0.66

CNN 0.86 0.88 0.89 0.81

Table 2.2: Influence of various post-processing effects on the detection accuracy of different

detectors. More specifically, we remove the influence of all the post-processing effects by setting

the corresponding capture parameter to zero and then vary the influence of only one of capture

parameters to investigate the influence of the respective effect.

2.5.1.4 Importance of Optimizing over the Rendering Parameters

To show the importance of optimizing over the capture parameters Θ, we compare in Fig. 2.9

the final performance obtained using optimized parameters with the final performance obtained

with random parameters drawn from a uniform distribution. The minimum and maximum values

of the uniform distribution were taken as the minimum and maximum values of the optimized

parameters. Our optimization-based approach clearly brings a significant improvement.

51

Chapter 2. Synthetic Data Generation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

All parameters
All, but Boundaries Blurring
All, but Motion Blurring
All, but Material
All, but Noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

All parameters
All, but Boundaries Blurring
All, but Motion Blurring
All, but Material
All, but Noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

All parameters
All, but Boundaries Blurring
All, but Motion Blurring
All, but Material
All, but Noise

DPM and dHoG AdaBoost and d L
WL CNN and dCNN

Synthetic data generation effects:

no BB no MB no RN no MP All

Detection method: Average precision:

DPM 0.83 0.84 0.83 0.80 0.93
AdaBoost 0.85 0.71 0.75 0.91 0.92
CNN 0.88 0.89 0.88 0.85 0.89

Figure 2.8: Evaluating the importance of each capture parameter. Each one clearly has a positive

influence of the quality of the synthetic data. However, their respective impacts depends on the

specific detection method. (best seen in color)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

DPM (DPM)
DPM (Random par.)
DPM (Real Data)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

AdaBoost (OWL)
AdaBoost (Random par.)
AdaBoost (Real Data)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

CNN (CNN)
CNN (Random par.)
CNN (Real Data)

DPM AdaBoost CNN

Using real Random Optimized

images only parameters parameters

Classification method: Average precision:

DPM 0.84 0.82 0.93
AdaBoost 0.80 0.82 0.92
CNN 0.85 0.87 0.89

Figure 2.9: Comparison of the performances of different detectors trained on real and synthetic

data generated using corresponding similarity measures with those where the capture parameters

are randomly selected. The optimized parameters always yield better performance. (best seen in

color)

52

2.5. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
1000 synthetic samples
2500 synthetic samples
5000 synthetic samples
10000 synthetic samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
P

re
c
is

io
n

Recall

Real Data
500 synthetic samples
2000 synthetic samples
5000 synthetic samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
600 synthetic samples
1300 synthetic samples
5000 synthetic samples
10000 synthetic samples
20000 synthetic samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
500 synthetic samples
1500 synthetic samples
2500 synthetic samples
5000 synthetic samples

DPM and dHoG AdaBoost and d R
WL AdaBoost and d L

WL CNN and dCNN

Figure 2.10: We varied the number of synthetic images used for training, for three detection

methods, using their corresponding similarity measures. Using both real and synthetic data for

training phase increases performances compared to real data used alone. However using too

much synthetic data may also hurt. (best seen in color)

2.5.1.5 Influence of the Number of Synthetic and Real Images

To evaluate how much we can improve the performances using synthetic images generated with

our approach, we trained each of the detection methods we consider with different numbers of

synthetic samples in addition to the real training samples. For each detector, the synthetic samples

were generated using the parameters obtained using the appropriate similarity functions.

Fig. 2.10 compares the performances of these detectors when varying the number of synthetic

samples. We can see that using the synthetic images significantly improves performance over

using the real images alone. However, this is only true up to a point. When there are too many

synthetic images, the performance eventually decreases because the influence of the real images

gets drowned out. In practice, this means that for best performance, it makes sense to use a

validation set to ascertain the optimal ratio of synthetic to real images.

From these experiments we can conclude that the best ratio of synthetic and real examples that

should be used for training depends on the detection algorithm. AdaBoost achieves its highest

accuracy with 100 synthetic images for each real one, DPM with 50 synthetic images for each

real one, and CNN with 15−20 synthetic images for each real one.

We also evaluated the influence of the number of seed real images on the final performances, by

decreasing the number of real images used to optimize the rendering parameters. Fig. 2.11 shows

the results for the AdaBoost detector. Using as few as 12 real samples is enough to generate

synthetic samples that allows us to outperform a detector trained with about 8 times as many real

images. Unsurprisingly, increasing the number of seed real images results in an improvement of

the final performances.

53

Chapter 2. Synthetic Data Generation

Similarity measure:

Using real dEucl dHoG d R
WL d L

WL dCNN
images only

Detection method: Average precision:

DPM 0.84 0.78 0.93 0.70 0.72 0.67

AdaBoost 0.80 0.72 0.85 0.89 0.92 0.75

CNN 0.85 0.84 0.84 0.84 0.86 0.89

Table 2.3: Comparison of average precisions for each detection method, when the optimal

number of synthetic images is used. Each detection method performs best with the corresponding

similarity function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recal

Real Data (100 real)
12 real + 5000 synthetic
50 real + 5000 synthetic
100 real + 5000 synthetic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recal

Real Data (100 real)
12 real + 2500 synthetic
50 real + 2500 synthetic
100 real + 2500 synthetic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recal

Real Data (100 real)
12 real + 1500 synthetic
50 real + 1500 synthetic
100 real + 1500 synthetic

DPM and dHoG AdaBoost and d L
WL CNN and dCNN

Figure 2.11: Performance of the DPM, AdaBoost, and CNN detectors for different numbers

of seed real images. Using as few as 12 real samples is enough to generate synthetic samples

that allow us to outperform a detector trained with 100 images. For each detector, the synthetic

images were generated using the corresponding similarity measure.

2.5.1.6 Optimal Performance

In this section, for each detection method, we use the optimal numbers of synthetic samples

as discussed in the previous section. For comparison purposes, we also estimated the optimal

numbers of synthetic samples when using the Euclidean distance dEucl as similarity measure.

Table 2.3 confirms that each detection method performs best when trained using synthetic images,

generated using appropriate similarity measure, as discussed in Section 2.4. In particular, using

the Euclidean distance is not only ineffective, but actually yields worse results than not using

synthetic images at all. Interestingly, the best performance is obtained with DPM trained with

both real and synthetic images, even though CNN was better than DPM when no synthetic images

were used.

54

2.5. Results

Figure 2.12: The three publicly available CAD models we used for the Aircraft dataset.

(a) Real samples (b) Synthetic samples

Figure 2.13: Sample (a) real and (b) generated synthetic images from the Aircraft dataset.

2.5.2 Detecting Multiple Kinds of Aircrafts

For the Aircraft dataset, we generated synthetic data using CAD models depicted by Fig. 2.12

of three types of fixed-wing aircrafts and tested them on different real video sequences. We

use 100 real images of these three aircraft types along with their corresponding background

images. These images were collected by manually annotating different video sequences where

the aircrafts fly in different weather conditions and appear at different angles. Sample images

from this dataset are shown on Fig. 2.13(a).

Here, we used an AdaBoost detector trained using real and synthetic images generated based on

the d L
WL similarity function of Section 2.4. We generated 10000 synthetic samples to supplement

the real images and used them as a training dataset. Fig. 2.13(b) depicts sample synthetic images.

The test images come from 8 video sequences, one of which contains 5000 frames, while the

others are made of 500 frames. These sequences show different types of aircrafts flying in

different environments and weather conditions. In Table 2.4 and Fig. 2.14, we compare results

using real images only against an optimal combination of real and synthetic images.

Using the detector trained on both real and synthetic images we achieve about 90% detection

accuracy, as opposed to approximately 65% when using real images only. This large improvement

can be explained by the fact that we have only 100 real images containing three different models,

while we generated 100 images for each real seed image, which results in total in 10000 positive

examples. Table 2.4 illustrate the best accuracy one can get varying the number of synthetic

samples being added to the training set. Sample detections are shown in Fig. 2.15, which also

depicts some failure cases.

55

Chapter 2. Synthetic Data Generation

Similarity measure:

Using real
dEucl dHoG d R

WL d L
WL dCNN

images only

Detection method: Average precision:

DPM 0.79 0.83 0.88 0.85 0.86 0.81

AdaBoost 0.65 0.75 0.84 0.87 0.92 0.73

CNN 0.72 0.75 0.85 0.70 0.83 0.88

Table 2.4: Comparing average precisions for each detection method when the optimal number

of synthetic images is used for the Aircraft dataset. Each detection method performs best when

using the corresponding similarity function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real data
Real and Synth samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real data
Real and Synth samples(BWL)
Real and Synth samples(RWL)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real data
Real and Synth samples

DPM and dHoG AdaBoost and d L,R
WL CNN and dCNN

Figure 2.14: Comparing the accuracy of the detectors trained with real images only (blue) against

those trained using both synthetic and real images (red or green). AdaBoost in particular does

not perform very well with only the real images because 100 samples are not enough to train the

algorithm to detect 3 different kinds of aircrafts. Nevertheless, introducing synthetic images lets

us enrich the training set to the point where performance improves substantially in all cases. In

the AdaBoost case, the red curve is obtained by using the d L
WL similarity measure and the green

one the d R
WL similarity measure.

2.5.3 Comparing against another Image-Based Synthesis Approach

We compare here our approach with the one of [41], which was applied to car detection on

the PASCAL VOC car dataset. Like ours, it uses a CAD model of the target object and seed

real images. Its main contributions are the estimation of the material properties of every car

component in a real image and the exploitation of this information to generate new synthetic

views, which are then used to supplement real ones to train a DPM detector. This requires

registration of the model so that it precisely fits the car in the image and the image texture can

then back-projected onto the car model, so that material properties can be assigned to each visible

part of the model. To generate a new view, the model is rotated in 3D and re-projected in the

scene, which includes the ground plane and the background plane. This ends up making some

previously invisible parts of the car visible. Material properties for these newly visible parts are

estimated using a weighted sum of the properties of the parts whose material properties have

56

2.5. Results

Correct Detections

Missed and False Detections

Figure 2.15: Examples of detections and some errors made by the detector, trained on both real

and synthetic samples, and evaluated on the Aircraft dataset.

(a) (b) (c)

Figure 2.16: (a) Sample synthetic images of cars generated by our approach. (b, c) Patches

extracted from these images emphasizing the importance of the boundary and motion blurring

effects.

already been estimated.

Since, our algorithm requires background images in addition to the model and seed real images,

we derived them from the seed images by cutting out the car and filling the empty space using

content aware texture filling [109]. Sample synthetic images, generated by our system are shown

in Fig. 2.16.

57

Chapter 2. Synthetic Data Generation

Test set Training set Avg. Precision

Number of components: N = 3 N = 4 N = 5

V
O

C
2

0
0

7

Side 16.2 18.4 16.7

Side+Synth [41] 30.2 31.4 33.2

Side+Synth (Our method) 35.1 37.9 38.0

Full 51.7 53.4 50.7

Full+Synth [41] 50.2 53.1 50.9

Full+Synth (Our method) 52.1 52.9 55.3

Table 2.5: Comparing the performances of the DPM detector on the PASCAL VOC car dataset

when trained with the method of [41] and our method as a function of N , the number of DPM

components. The performance of the detectors trained using only the real images is also given

for reference.

The images of the Pascal VOC dataset being in color, for a fair comparison against [41] that

exploits this fact, we extended our approach to color images by simply optimizing on the Θ

parameters on the three RGB channels independently, which yields three sets of parameters for

every image. These parameters are then used to generate separate synthetic images for every

channel, and finally combined in one RGB image. We vary the pose of the car model, but also

the direction of the light source, which cannot be done with [41]. The results of this combination

are presented in Fig. 2.17. The car in the second column of Fig. 2.17 does not look very realistic,

because the same properties are applied to all the components of the car. A more sophisticated

model would solve this issue, however we already obtain satisfying results using this simplistic

rendering, which confirms that producing visually pleasing synthetic images is not a primary

requirement. Some detections made by the 5 component DPM framework, trained on both real

and synthetic data are presented in the Fig. 2.18.

Table 2.5 shows that we outperform [41] even though our approach was originally designed to

generate small image patches centered on the target object. Furthermore, as shown in the previous

sections, it is applicable to low-resolution images with very limited texture, for which the method

of [41] is not well adapted. Furthermore, if we don’t use color, the performance drops by only

1-2%, which is not very large.

2.6 Conclusion

We have shown that by properly optimizing the parameters of a very simple rendering pipeline,

we can generate synthetic images that significantly improve the performance of an object detector

when used for training. We believe our parameter optimization scheme is a powerful tool to

manage the large numbers of parameters a more complex rendering pipeline could have.

58

2.6. Conclusion

Figure 2.17: Sample synthetic RGB images of cars, generated by our system. Images in the

second column do not look very realistic, because the same properties are applied to all the

components of the car. A more sophisticated model could be used to address this issue. However

realism does not seem to be critical for our purposes since our simplistic model is sufficient to

outperform [41].

Correct Detections

Mis-detections

Figure 2.18: Sample detections made by the 5 component DPM, trained on the full real VOC

dataset, supplemented by synthetic data, generated by our method. Last row shows the missed

detections. (best seen in color)

59

3 Domain Adaption for Deep Networks

In the previous chapter we have presented a way to generate synthetic images that can further be

used to supplement a small amount of real samples for training a detector. From the experiments

in Section 2.5 we can see that our method achieves a relatively large performance improvement

for AdaBoost and DPM methods, however, does not generalize well to Convolutional Neural

Networks (CNNs), which have recently become the state-of-the-art in various areas of computer

vision [30, 43, 50, 44]. This happens because, with the increase of the amount of synthetic data,

the CNNs start to overfit to the synthetic images at the cost of the real ones. Therefore, in this

chapter we introduce a novel approach that learns from a combination of real and synthetic

images without overfitting to either of the two.

The problem of efficient leveraging of synthetic data can be viewed as a sub-case of a more

general one, which is transferring a classification model, learned on one set of images (e.g.

synthetic data, for which enough training data is available) to classify images from a related but

different dataset (e.g. real images, where only very small amounts of additional annotations, or

even none can be acquired). Domain Adaptation [110] and Transfer Learning [111] have long

been used to overcome this problem. Recently, Domain Adaptation has been investigated in the

context of Deep Learning with promising results [52, 53, 54, 55, 56, 57]. Following the classic

Domain Adaptation trend these methods use the same deep architecture with the same weights

for both source and target domains, which essentially means learning domain invariant features.

In this chapter, we show that imposing feature invariance is detrimental to discriminative power

of the final model. Therefore instead of making features invariant to the domain shift we propose

to explicitly model it. To this end, we introduce the two-stream architecture depicted by Fig. 3.1.

One stream operates on the source domain and the other on the target one. This makes it possible

not to share the weights in some of the layers. Instead, we introduce a loss function that is lowest

when they are linear transformations of each other. Furthermore, we introduce a criterion to

automatically determine which layers should share their weights and which ones should not.

In short, our approach explicitly models the domain shift by learning features adapted to each

domain, but not fully independent, to account for the fact that both domains depict the same

61

Chapter 3. Domain Adaption for Deep Networks

Figure 3.1: Our two-stream architecture. One stream operates on the source data and the other

on the target data. Their weights are not shared. Instead, we introduce loss functions that prevent

corresponding weights from being too different from each other.

underlying problem.

We demonstrate that our approach is well suited to leveraging synthetic data to increase the

performance of the classifier on real images. Here, we treat the synthetic images as forming the

source domain and the real images the target one. We then make use of our two-stream architecture

to learn an effective model for the real data even though we have only few annotations for it. We

further show that our method is more effective than state-of-the-art weight-sharing schemes on

standard Domain Adaptation benchmarks for image recognition. Finally we demonstrate the

effectiveness of our approach at leveraging synthetic data for facial pose estimation.

Aforementioned examples prove the generality of our method, as the first two applications

involve solving a classification task and the third one – regression problem. We outperform

the state-of-the-art methods in all these cases, and our experiments support our contention that

specializing the network weights outperforms sharing them.

In the remainder of this chapter we first briefly review some recent trends in Domain Adaptation,

with a focus on Deep Learning based methods, which are the most related to our work. In

Section 3.2 we then present our approach and discuss the experimental results in Section 3.3.

62

3.1. Related Work

3.1 Related Work

A natural approach to Domain Adaptation is to modify a classifier trained on the source data

using the available labeled target data. This was done, for example, using SVM [112, 113],

Boosted Decision Trees [114] and other classifiers [115]. In the context of Deep Learning,

fine-tuning [52, 53] essentially follows this pattern. In practice, however, when only a small

amount of labeled target data is available, this often results in overfitting.

Another approach is to learn a metric between the source and target data, which can also be

interpreted as a linear cross-domain transformation [116] or a non-linear one [117]. Instead

of working on the samples directly, several methods involve representing each domain as one

separate subspace [118, 119, 120, 121]. A transformation can then be learned to align them [120].

Alternatively, one can interpolate between the source and target subspaces [118, 119, 121].

In [122], this interpolation idea was extended to Deep Learning by training multiple unsupervised

networks with increasing amounts of target data. The final representation of a sample was

obtained by concatenating all intermediate ones. It is unclear, however, why this concatenation

should be meaningful to classify a target sample.

Another way to handle the domain shift is to explicitly try making the source and target data

distributions similar. While many metrics have been proposed to quantify the similarity between

two distributions, the most widely used in the Domain Adaptation context is the Maximum Mean

Discrepancy (MMD) [123]. The MMD has been used to re-weight [124, 125] or select [126]

source samples such that the resulting distribution becomes as similar as possible to the target

one. An alternative is to learn a transformation of the data, typically both source and target, such

that the resulting distributions are as similar as possible in MMD terms [127, 128, 129]. In [130],

the MMD was used within a shallow neural network architecture. However, this method relied

on SURF features [131] as initial image representation and thus only achieved limited accuracy.

Recently, using Deep Networks to learn features has proven effective at increasing the accuracy

of Domain Adaptation methods. In [132], it was shown that using DeCAF features instead

of hand-crafted ones mitigates the domain shift effects even without performing any kind of

adaptation. However, performing adaptation within a Deep Learning framework was shown to

boost accuracy even further [133, 54, 55, 56, 57, 134, 135]. For example, in [133], a Siamese

architecture was introduced to minimize the distance between pairs of source and target samples,

which requires training labels available in the target domain thus making the method unsuitable

for unsupervised Domain Adaptation. The MMD has also been used to relate the source and target

data representations learned by Deep Networks [54, 55] thus making it possible to avoid working

on individual samples. [56, 57] introduced a loss term that encodes an additional classifier

predicting from which domain each sample comes. This was motivated by the fact that, if the

learned features are domain-invariant, such a classifier should exhibit very poor performance.

All these Deep Learning approaches rely on the same architecture with the same weights for both

the source and target domains. In essence, they attempt to reduce the impact of the domain shift

63

Chapter 3. Domain Adaption for Deep Networks

by learning domain-invariant features. In practice, however, domain invariance might very well

be detrimental to discriminative power. As discussed in the introduction, this is the hypothesis

we set out to test in this work by introducing an approach that explicitly models the domain shift

instead of attempting to enforce invariance to it. We show in the results section that this yields a

significant accuracy boost over networks with shared weights.

3.2 Our Approach

The core idea of our method is that, for a Deep Network to adapt to different domains, the

weights should be related, yet different for each of the two domains. As shown empirically, this

constitutes a major advantage of our method over the competing ones discussed in Section 3.1. To

implement this idea, we therefore introduce a two-stream architecture, such as the one depicted

by Fig. 3.1. The first stream operates on the source data, the second on the target one, and they

are trained jointly. While we allow the weights of the corresponding layers to differ between the

two streams, we prevent them from being too far from each other. Additionally we use the MMD

between the learned source and target representations. This combination lets us encode the fact

that, while different, the two domains are related.

More formally, let Xs = {xs
i }N s

i=1 and Xt = {xt
i }N t

i=1 be the sets of training images from the source

and target domains, respectively, with Y s = {y s
i } and Y t = {y t

i } being the corresponding labels. To

handle unsupervised target data as well, we assume, without loss of generality, that the target

samples are ordered, such that only the first N t
l ones have valid labels, where N t

l = 0 in the

unsupervised scenario. Furthermore, let θs
j and θt

j denote the parameters, that is, the weights and

biases, of the j th layer of the source and target streams, respectively. We train the network by

minimizing a loss function of the form

L(θs ,θt |Xs ,Y s ,Xt ,Y t) = Ls +Lt +Lw +LM MD , (3.1)

Ls = 1

N s

N s∑
i=1

c(θs |xs
i , y s

i), (3.2)

Lt = 1

N t
l

N t
l∑

i=1
c(θt |xt

i , y t
i), (3.3)

Lw =λw
∑
j∈Ω

rw (θs
j ,θt

j), (3.4)

LM MD =λuru(θs ,θt |Xs ,Xt), , (3.5)

where c(θ·|x·i , y ·
i) is a standard classification loss, such as the logistic loss or the hinge loss.

rw (·) and ru(·) are the weight and unsupervised regularizers discussed below. The first one

represents the loss between corresponding layers of the two streams. The second encodes the

MMD measure and favors similar distributions of the source and target data representations.

These regularizers are weighted by coefficients λw and λu , respectively. In practice, we found

our approach to be robust to the specific values of these coefficients and we set them to 1 in all

64

3.2. Our Approach

our experiments. Ω denotes the set of indices of the layers whose parameters are not shared. This

set is problem-dependent and, in practice, can be obtained by comparing the MMD values for

different configurations, as demonstrated in our experiments.

3.2.1 Weight Regularizer

While our goal is to go beyond sharing the layer weights, we still believe that corresponding

weights in the two streams should be related. This models the fact that the source and target

domains are related, and prevents overfitting in the target stream, when only very few labeled

samples are available. Our weight regularizer rw (·) therefore represents the distance between the

source and target weights in a particular layer. In principle, we could take it to directly act on the

difference of those weights. This, however, would not truly attempt to model the domain shift,

for instance to account for different means and ranges of values in the two types of data. To better

model the shift and introduce more flexibility in our model, we therefore propose not to penalize

linear transformations between the source and target weights. We then write our regularizer either

by relying on the L2 norm as

rw (θs
j ,θt

j) =
∥∥∥a jθ

s
j +b j −θt

j

∥∥∥2

2
, (3.6)

or in an exponential form as

rw (θs
j ,θt

j) = exp
(
‖a jθ

s
j +b j −θt

j‖2
)
−1 . (3.7)

In both cases, a j and b j are scalar parameters that are different for each layer j ∈Ω and learned

at training time along with all other network parameters. While simple, this parameterization can

account, for example, for global illumination changes in the first layer of the network. As shown

in the results section, we found empirically that the exponential version gives better results.

We have tried replacing the simple linear transformation of Eqs. 3.6 and 3.7 by more sophisticated

ones, such as quadratic or piecewise linear ones. This, however, did not yield any performance

improvement.

3.2.2 Unsupervised Regularizer

In addition to regularizing the weights of corresponding layers in the two streams, we also aim

at learning a final representation, that is, the features before the classifier layer, that is domain

invariant. To this end, we introduce a regularizer ru(·) designed to minimize the distance between

the distributions of the source and target representations. Following the popular trend in Domain

Adaptation [136, 54], we rely on the MMD [123] to encode this distance.

As the name suggests, given two sets of data, the MMD measures the distance between the mean

of the two sets after mapping each sample to a Reproducing Kernel Hilbert Space (RKHS). In

65

Chapter 3. Domain Adaption for Deep Networks

our context, let fs
i = fs

i (θs ,xs
i) be the feature representation at the last layer of the source stream,

and ft
j = ft

j (θt ,xt
j) of the target stream. The MMD2 between the source and target domains can

be expressed as

MMD2({fs
i }, {ft

j }) =
∥∥∥∥∥

N s∑
i=1

φ(fs
i)

N s −
N t∑
j=1

φ(ft
j)

N t

∥∥∥∥∥
2

, (3.8)

where φ(·) denotes the mapping to RKHS. In practice, this mapping is typically unknown.

Expanding Eq. 3.8 and using the kernel trick to replace inner products by kernel values lets us

rewrite the squared MMD, and thus our regularizer as

ru(θs ,θt |Xs ,Xt) =∑
i ,i ′

k(fs
i , fs

i ′)

(N s)2 −2
∑
i , j

k(fs
i , ft

j)

N s N t +∑
j , j ′

k(ft
j , ft

j ′)

(N t)2 , (3.9)

where the dependency on the network parameters comes via the f·i s, and where k(·, ·) is a kernel

function. In practice, we make use of the standard RBF kernel k(u, v) = exp
(−‖u − v‖2/σ

)
, with

bandwidth σ. In all our experiments, we found our approach to be insensitive to the choice of σ

and we therefore set it to 1.

3.2.3 Training

To learn the model parameters, we first pre-train the source stream using the source data only. We

then simultaneously optimize the weights of both streams according to the loss of Eqs. 3.2-3.5

using both source and target data, with the target stream weights initialized from the pre-trained

source weights. Note that this also requires initializing the linear transformation parameters of

each layer, a j and b j for all j ∈Ω. We initialize these values to a j = 1 and b j = 0, thus encoding

the identity transformation. All parameters are then learned jointly using backpropagation with

the AdaDelta algorithm [75]. Note that we rely on mini-batches, and thus in practice compute all

the terms of our loss over these mini-batches rather than over the entire source and target datasets.

Depending on the task, we use different network architectures, to provide a fair comparison with

the baselines. For example, for the Office benchmark, we adopt the AlexNet [30] architecture, as

was done in [54], and for digit classification we rely on the standard network structure of [47] for

each stream.

3.3 Experimental Results

In this section, we demonstrate the potential of our approach in both the supervised and unsuper-

vised scenarios using different network architectures. We first thoroughly evaluate our method

for the drone detection task. We then demonstrate that it generalizes well to other classification

problems by testing it on the Office and MNIST+USPS datasets. Finally, to show that our ap-

proach also generalizes to regression problems, we apply it to estimating the position of facial

66

3.3. Experimental Results

Train data

Synthetic Real
p

o
si

ti
v
es

n
eg

at
iv

es

Test real data

p
o

si
ti

v
es

n
eg

at
iv

es

Figure 3.2: Our UAV dataset. [TOP] Synthetic and real training examples. [BOTTOM] Real

samples from the test dataset.

landmarks.

3.3.1 Leveraging Synthetic Data for Drone Detection

Due to the lack of large publicly available datasets, UAV detection is a perfect example of a

problem where training videos are scarce and do not cover a wide enough range of possible shapes,

poses, lighting conditions, and backgrounds against which drones can be seen. However, it is

relatively easy to generate large amounts of synthetic examples, which can be used to supplement

67

Chapter 3. Domain Adaption for Deep Networks

Dataset

Training Testing

Pos Neg Pos Neg

(Real) (Synthetic) (Real) (Real) (Real)

UAV-200 (full) 200 32800 190000 3100 135000

UAV-200 (small) 200 1640 9500 3100 6750

Table 3.1: Statistics of our two UAV datasets. Note that UAV-200 (small) is more balanced than

UAV-200 (full).

a small number of real images and increase detection accuracy [49]. We show here that our

approach allows us to exploit these synthetic images more effectively than other state-of-the-art

Domain Adaptation techniques.

3.3.1.1 Dataset and Evaluation Setup

We used the approach of [49], described in Chapter 2 to create a large set of synthetic examples.

Fig. 3.2 depicts sample images from the real and synthetic dataset that we used for training and

testing. In our experiments, we treat the synthetic images as source samples and the real images

as target ones.

We report results using two versions of this dataset, which we refer to as UAV-200 (small) and

UAV-200 (full). Their sizes are given in Table 3.1. They only differ in the number of synthetic and

negative samples used for training and testing. The ratio of positive to negative samples in the

first dataset is better balanced than in the second one. For UAV-200 (small), we therefore express

our results in terms of accuracy, which is commonly used in Domain Adaptation and can be

computed as

Accuracy= # correctly classified examples

all examples
. (3.10)

Using this standard metric facilitates the comparison against the baseline methods whose publicly

available implementations only output classification accuracy.

In real detection tasks, however, training datasets are typically quite unbalanced, since one usually

encounters many negative windows for each positive example. UAV-200 (full) reflects this more

realistic scenario, in which the accuracy metric is poorly-suited. For this dataset, we therefore

compare various approaches in terms of precision-recall. Additionally, we report the Average
Precision (AP) measure.

For this experiment, we follow the supervised Domain Adaptation scenario. In other words,

training data is available with labels for both source and target domains.

68

3.3. Experimental Results

Figure 3.3: Evaluation of the best network architecture. [TOP] The y-axis corresponds to the

MMD2 loss between the outputs of the corresponding streams that operate on real and synthetic

data, respectively. [BOTTOM] Here the y-axis corresponds to the AP on validation data (500
positive and 1500 negative examples). Note that low values of MMD tend to coincide with high

AP values. The x-axis denotes the network configuration, where a ‘+’ sign indicates that the

corresponding network layers are regularized with a loss function and a ‘−’ sign that the weights

are shared for the corresponding layers. (Best seen in color)

3.3.1.2 Network Design

Our network consists of two streams, one for the source data and one for the target data, as

illustrated by Fig. 3.1. Each stream is a CNN that comprises three convolutional and max-pooling

layers, followed by two fully-connected ones. The classification layer encodes a hinge loss,

which was shown to outperform the logistic loss in practice for some tasks [84, 85].

As discussed above, some pairs of layers in our two-stream architecture may share their weights

while others do not, and we must decide upon an optimal arrangement. To this end, we trained

one model for every possible combination. We plot the results in Fig. 3.3 (top), with the + and

− signs indicating whether the weights are stream-specific or shared. Since we use a common

classification layer, the MMD2 value ought to be small when our architecture accounts well for

69

Chapter 3. Domain Adaption for Deep Networks

Accuracy

ITML [116] 0.60

ARC-t assymetric [117] 0.55

ARC-t symmetric [117] 0.60

HFA [137] 0.75

DDC [54] 0.89

Ours 0.92

Table 3.2: Comparison to other domain adaptation techniques on the UAV-200 (small) dataset.

the domain shift [54]. It therefore makes sense to choose the configuration that yields the smallest

MMD2 value. In this case, it happens when using the exponential loss to connect the first three

layers and sharing the weights of the others. Our intuition is that, even though the synthetic and

real images feature the same objects, they differ in appearance, which is mostly encoded by the

first network layers. Thus, allowing the weights to differ in these layers yields good adaptative

behavior, as will be demonstrated in Section 3.3.1.3.

As a sanity check, we used validation data (500 positive and 1500 negative examples) to confirm

that this MMD-based criterion reflects the best architecture choice. In Fig. 3.3 (bottom), we

plot the real detection accuracy as a function of the chosen configuration. The best possible

accuracies are 0.916 and 0.757 on the validation and test data, respectively, whereas the ones

corresponding to our MMD-based choice are 0.902 and 0.732, which corresponds to the second

best architecture. Note that the MMD of the best solution also is very low. Altogether, we believe

that this evidences that our MMD-based criterion provides an effective alternative to select the

right architecture in the absence of validation data.

3.3.1.3 Evaluation

We first compare our approach to other Domain Adaptation methods on UAV-200 (small). As can be

seen in Table 3.2, it significantly outperforms many state-of-the-art baselines in terms of accuracy.

In particular, we believe that outperforming DDC [54] goes a long way towards validating our

hypothesis that modeling the domain shift is more effective than trying to be invariant to it. This

is because, as discussed in Section 3.1, DDC relies on minimizing the MMD loss between the

learned source and target representations much as we do, but uses a single stream for both source

and target data. In other words, except for the non-shared weights, it is the method closest to ours.

Note, however, that the original DDC paper used a slightly different network architecture than

ours. To avoid any bias, we therefore modified this architecture so that it matches ours.

We then turn to the complete dataset UAV-200 (full). In this case, the baselines whose implemen-

tations only output accuracy values become less relevant because it is not a good metric for

unbalanced data. We therefore compare our approach against DDC [54], which we found to be

our strongest competitor in the previous experiment, and against the Deep Learning approach

70

3.3. Experimental Results

AP

(Average Precision)

CNN (trained on Synthetic only (S)) 0.314

CNN (trained on Real only (R)) 0.575

CNN (pre-trained on S and fine-tuned on R):

Loss: Lt 0.612

Loss: Lt +Lw (with fixed source CNN) 0.655

CNN (pre-trained on S and fine-tuned on R and S:)

Loss: Ls +Lt [49] 0.569

DDC [54] (pre-trained on S and fine-tuned on R and S) 0.664

Our approach (pre-trained on S and fine-tuned on R and S)

Loss: Ls +Lt +Lw 0.673

Loss: Ls +Lt +LM MD 0.711

Loss: Ls +Lt +Lw +LM MD 0.732

Table 3.3: Comparison of our method against several baselines on the UAV-200 (full) dataset. As

discussed in Section 3.2, the terms Ls , Lt , Lw , and LM MD correspond to the elements of the loss

function, defined in Eqs. 3.2, 3.3, 3.4, 3.5, respectively.

Figure 3.4: Influence of the ratio of synthetic to real data. [LEFT] AP of our approach (violet

stars), DDC (blue triangles), and training using real data only (red circles) as a function of

the number of real samples used given a constant number of synthetic ones. [RIGHT] AP of

our approach (violet stars) and DDC (blue triangles) as a function of the number of synthetic

examples used given a small and constant number of real one. (Best seen in color)

of [49], which also tackles the drone detection problem. We also turn on and off some of our loss

terms to quantify their influence on the final performance. We give the results in Table 3.3. In

short, all loss terms contribute to improving the AP of our approach, which itself outperforms all

the baselines by large margins. More specifically, we get a 10% boost over DDC and a 20% boost

over using real data only. By contrast, simply using real and synthetic examples together, as was

done in [49], does not yield significant improvements. Note that dropping the terms linking

71

Chapter 3. Domain Adaption for Deep Networks

the weights in corresponding layers while still minimizing the MMD loss (Loss: Ls +Lt +LM MD)

performs worse than using our full loss function. We attribute this to overfitting of the target

stream.

3.3.1.4 Influence of the Number of Samples

Using synthetic data in the UAV detection scenario is motivated by the fact that it is hard and

time consuming to collect large amounts of real data. We therefore evaluate the influence of the

ratio of synthetic to real data. To this end, we first fix the number of synthetic samples to 32800,

as in UAV-200 (full), and vary the amount of real positive samples from 200 to 5000. The results of

this experiment are reported in Fig. 3.4(left), where we again compare our approach to DDC [54]

and to the same CNN model trained on the real samples only. Our model always outperforms the

one trained on real data only. This suggests that it remains capable of leveraging the synthetic

data, even though more real data is available, which is not the case for DDC. More importantly,

looking at the leftmost point on our curve shows that, with only 200 real samples, our approach

performs similarly to, and even slightly better than, a single-stream model trained using 2500

real samples. In other words, one only needs to collect 5-10% of labeled training data to obtain

good results with our approach, which, we believe, can have a significant impact in practical

applications.

Fig. 3.4(right) depicts the results of an experiment where we fixed the number of real samples to

200 and increased the number of synthetic ones from 0 to 32800. Note that the AP of our approach

steadily increases as more synthetic data is used. DDC also improves, but we systematically

outperform it except when we use no synthetic samples, in which case both approaches reduce to

a single-stream CNN trained on real data only.

3.3.2 Domain Adaptation on Office

To demonstrate that our approach extends to the unsupervised case, we further evaluate it on

the Office dataset, which is a standard domain adaptation benchmark for image classification.

Following standard practice, we express our results in terms of accuracy, as defined in Eq. 3.10.

The Office dataset [116] comprises three different sets of images (Amazon, DSLR, Webcam)

featuring 31 classes of objects. Fig. 3.5 depicts some images from the three different domains.

3.3.2.1 Unsupervised Domain Adaptation

For this experiment, we used the “fully-transductive” evaluation protocol proposed in [116],

which means using all the available information on the source domain and having no labels at all

for the target domain. In addition to the results obtained using our MMD regularizer of Eq. 3.5,

and for a fair comparison with [56], which achieves state-of-the-art results on this dataset, we

also report results obtained by replacing the MMD loss with one based on the domain confusion

72

3.3. Experimental Results

A
m

az
o

n
W

eb
ca

m
D

S
L

R

Figure 3.5: Some examples from three domains in the Office dataset.

Accuracy

A → W D → W W → D Average

GFK [119] 0.214 0.691 0.650 0.518

DLID [122] 0.519 0.782 0.899 0.733

DDC [54] 0.605 0.948 0.985 0.846

DAN [55] 0.645 0.952 0.986 0.861

DRCN [134] 0.687 0.964 0.990 0.880

GRL [56] 0.730 0.964 0.992 0.895

Ours 0.630 0.961 0.992 0.861

Ours (+ GRL) 0.760 0.967 0.996 0.908

Table 3.4: Comparison against other domain adaptation techniques on the Office benchmark. We

evaluate on all 31 categories, following the “fully-transductive” evaluation protocol [116].

classifier advocated in [56]. We used the same architecture as in [56] for this classifier.

Fig. 3.6(a) illustrates the network architecture we used for this experiment. Each stream corre-

sponds to the standard AlexNet CNN [30]. As in [54, 56], we start with the model pre-trained

on ImageNet and fine tune it. However, instead of forcing the weights of both streams to be

shared, we allow them to deviate as discussed in Section 3.2. To identify which layers should

share their weights and which ones should not, we used the MMD-based criterion introduced in

Section 3.3.1.2. In Fig. 3.6(b), we plot the MMD2 value as a function of the configuration on the

Amazon → Webcam scenario, as we did for the drones in Fig. 3.3. In this case, not sharing the

73

Chapter 3. Domain Adaption for Deep Networks

(-
,-,

-,-
,-,

-,-
,-)

(-
,+

,-,
-,-

,-,
-,-

)

(+
,-,

-,-
,-,

-,-
,-)

(-
,-,

-,-
,-,

-,+
,+

)

(-
,+

,+
,-,

-,-
,-,

-)

(+
,+

,-,
-,-

,-,
-,-

)

(-
,-,

-,-
,-,

+,
+,

+)

(+
,+

,+
,-,

-,-
,-,

-)

(+
,+

,+
,+

,-,
-,-

,-)

Layers, regularized by the loss function

1

1.2

1.4

1.6

1.8

2

M
M

D
 lo

ss

conv 1
conv 2
conv 3
conv 4
conv 5
full 1
full 2

(a) (b)

Figure 3.6: Office dataset. (a) The network architecture that proved to be the best according to

our MMD-based criterion. (b) The y-axis corresponds to the MMD2 loss between the outputs

of the corresponding streams that operate on Amazon and Webcam, respectively. The x-axis

describes the configuration, as in Fig. 3.3.

last two fully-connected layers achieves the lowest MMD2 value, and this is the configuration we

use for our experiments on this dataset.

In Table 3.4, we compare our approach against other Domain Adaptation techniques on the three

commonly-reported source/target pairs. It outperforms them on all the pairs. More importantly,

the comparison against GRL [56] confirms that allowing the weights not to be shared increases

accuracy.

3.3.2.2 Supervised Domain Adaptation

For this experiment, we used the evaluation protocol proposed in [116], which corresponds to the

supervised scenario. This involves using a fraction of the available labeled samples in the target

domain for training purposes along with all the labeled data from the source domain. As in [116],

we used the labels of 20 randomly sampled images for each class for the Amazon domain and 8

labeled images per class for the DLSR and Webcam domains, when used as source datasets. For

the target domain, we only used 3 randomly selected labeled images per class. The rest of the

dataset was then used as unlabeled data for the calculation of the MMD loss of Eq. 3.5.

In Table 3.5, we compare our approach against other Domain Adaptation techniques on the three

74

3.3. Experimental Results

Accuracy

A → W D → W W → D Average

GFK [119] 0.464 0.613 0.663 0.530

SA [120] 0.450 0.648 0.699 0.599

DA-NBNN [138] 0.528 0.766 0.762 0.685

DLID [122] 0.519 0.782 0.899 0.733

DeCAF6 [132] 0.807 0.948 – –

DaNN [130] 0.536 0.712 0.835 0.694

DDC [54] 0.841 0.954 0.963 0.919

Ours 0.876 0.960 0.988 0.941

Table 3.5: Comparison to other domain adaptation techniques for the supervised domain adap-

tation on the Office standard benchmark. We evaluate on all 31 categories, according to the

supervised evaluation protocol described in [116].

commonly-reported source/target pairs. It outperforms them on all three. More importantly, the

comparison against DDC confirms that allowing the weights not to be shared increases accuracy.

3.3.3 Unsupervised Domain Adaptation on MNIST-USPS

The MNIST [47] and USPS [139] datasets for digit classification both feature 10 different classes

of images corresponding to the 10 digits. They have recently been employed for the task of

Domain Adaptation [140].

For this experiment, we used the evaluation protocol of [140], which involves randomly selecting

of 2000 images from MNIST and 1800 images from USPS and using them interchangeably as

source and target domains. As in [140], we work in the unsupervised setting, and thus ignore

the target domain labels at training time. Following [136], as the image patches in the USPS
dataset are only 16×16 pixels, we rescaled the images from MNIST to the same size and applied

L2 normalization of the pixel intensities. For this experiment, we relied on the standard CNN

architecture of [47] and employed our MMD-based criterion to determine which layers should not

share their weights. We found that allowing all layers of the network not to share their weights

yielded the best performance.

In Table 3.6, we compare our approach with DDC [54] and with methods that do not rely on

deep networks [127, 119, 120, 140]. Our method yields superior performance in all cases, which

we believe to be due to its ability to adapt the feature representation to each domain, while still

keeping these representations close to each other.

75

Chapter 3. Domain Adaption for Deep Networks

Accuracy

method M→U U→M Average

PCA 0.451 0.334 0.392

SA [120] 0.486 0.222 0.354

GFK [119] 0.346 0.226 0.286

TCA [127] 0.408 0.274 0.341

SSTCA [127] 0.406 0.222 0.314

TSL [141] 0.435 0.341 0.388

JCSL [140] 0.467 0.355 0.411

DDC [54] 0.478 0.631 0.554

Ours 0.607 0.673 0.640

Table 3.6: Comparison against other domain adaptation techniques on the MNIST+USPS standard

benchmark.

Synthetic (source domain)

Real (target domain)

Figure 3.7: Samples images from Source and Target datasets with synthetic and real images

respectively.

3.3.4 Supervised Facial Pose Estimation

To demonstrate that our method can be used not only for classification or detection tasks but also

for regression ones, we further evaluate it for pose estimation purposes. More specifically, the

task we address consists of predicting the location of 5 facial landmarks given 50×50 image

76

3.3. Experimental Results

Source (synthetic) Target (real)

Squared Loss

Fully connected

MMD

Fully connectedFully connected

Regularization

Fully connected

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional loss

loss

shared

shared

shared

shared

shared

(-
,-,

-,-
,-,

-,-
,+

)

(-
,-,

+,
-,-

,-,
-,-

)

(-
,-,

-,-
,-,

-,+
,+

)

(-
,-,

+,
+,

-,-
,-,

-)

(-
,-,

-,-
,-,

+,
+,

+)

(-
,-,

+,
+,

+,
-,-

,-)

Layers, regularized by the loss function

0

0.2

0.4

0.6

0.8

1

M
M

D
 lo

ss

conv 1
conv 2
conv 3
conv 4
conv 5
full 1
full 2

Figure 3.8: [LEFT] Network architecture for facial pose estimation. [RIGHT] Choosing the

network architecture according to our MMD2 criterion. ‘-’ and ‘+’ denote that the weights of the

corresponding layers are shared and stream-specific, respectively.

patches, such as those of Fig. 3.7. To this end, we train a regressor to predict a 10D vector with

two floating point coordinates for each landmark. As we did for drones, we use synthetic images,

such as the ones shown in the top portion of Fig. 3.7, as our source domain and real ones, such as

those shown at the bottom, as our target domain. Both datasets contain ∼ 10k annotated images.

We use all the synthetic samples but only 100 of the real ones for training, and the remainder for

testing.

Our architecture is depicted by Fig. 3.8. The same figure further shows the MMD2 values

corresponding to different configurations of layers with shared/non-shared weights. Here, the

x-axis illustrates the network configuration, where ‘-’ and ‘+’ denote that the weights of the

corresponding layers are shared and stream-specific, respectively. As we can see the first two-

layers should be allowed to have different weights, which, as in the UAV dataset, reflects the fact

that the synthetic images differ from the real ones mostly by low-level appearance variations.

In Table 3.7, we compare our Domain Adaptation results to those of DDC [54] in terms of

percentage of correctly estimated landmarks (PCP-score). Each landmark is considered to be

correctly estimated if it is found within a 2 pixel radius from the ground-truth. Note that, again,

by not sharing the weights, our approach outperforms DDC.

77

Chapter 3. Domain Adaption for Deep Networks

Synthetic DDC [54] Ours

Right eye 64.2 68.0 71.8
Left eye 39.3 56.2 60.3
Nose 56.3 64.1 64.5
Right mouth corner 47.8 57.6 59.8
Left mouth corner 42.3 55.5 57.7

Average 50.0 60.3 62.8

Table 3.7: Regression results on facial pose estimation.

3.3.5 Discussion

In all the experiments reported above, allowing the weights not to be shared in some fraction of

the layers of our two-stream architecture boosts performance. This validates our initial hypothesis

that explicitly modeling the domain shift is generally beneficial.

However, the optimal choice of which layers should or should not share their weights is application

dependent. In both the UAV detection and facial pose estimation cases, allowing the weights in

the first two layers to be different yields top performance, which we understand to mean that

the domain shift is caused by low-level changes that are best handled in the early layers. By

contrast, for the Office dataset, it is best to only allow the weights in the last two layers to differ.

This network configuration was determined using Amazon and Webcam images, such as those

shown in Fig. 3.5. Close examination of these images reveals that the differences between them

are not simply due to low-level phenomena, such as illumination changes, but to more complex

variations. It therefore seems reasonable that the higher layers of the network, which encode

higher-level information, should be domain-specific.

Fortunately, we have shown that the MMD provides us with an effective criterion to choose the

right configuration. This makes our two-steam approach practical, even when no validation data

from the target domain is available.

3.4 Conclusion

In this chapter we have shown that Deep Learning approaches to Domain Adaptation should

not focus on learning features that are invariant to the domain shift, which makes them less

discriminative. Instead, we should explicitly model the domain shift. To prove this, we have

introduced a two-stream CNN architecture, where the weights of the streams may or may not be

shared. To nonetheless encode the fact that both streams should be related, we encourage the

non-shared weights to remain close to being linear transformations of each other by introducing

an additional loss term.

Our experiments on very diverse datasets have clearly validated our hypothesis. Our approach

78

3.4. Conclusion

consistently yields higher accuracy than networks that share all weights for the source and target

data, both for classification and regression.

79

4 Concluding Remarks

We began this thesis by identifying the need for cheap and effective vision-based collision

avoidance algorithms for Unmanned Aerial Vehicles. With the growing consumer and industrial

interest in this area other means of relative positioning, such as those based on GPS paired

with radio communication, are not enough to ensure flight safety in both indoor and outdoor

environments. Vision-based detection and collision avoidance of UAVs, however, poses several

unique challenges that are specific to our chosen application domain. These led us to develop

three approaches, where the first one is the learning based technique that allows detecting small

fast-moving flying objects from a single moving camera and the other two aim at decreasing the

need for real data collection and its manual annotation.

In Chapter 1 we introduced a hybrid approach that combines appearance and motion information

for detection of small fast moving objects in complex outdoor environments. The proposed

method relies on spatio-temporal cubes (st-cubes) of image intensities extracted from a sequence

of consecutive video frames, which allows the detector to efficiently combine appearance and

motion cues that both play vital role in detection process. However, this led to a significant

increase in the data variability, as the features computed from these st-cubes are very different

for the same aircraft flying in different directions. Therefore, we introduced an object-centric

regression-based motion compensation method that considerably reduces this variation, which

ultimately led to a significant increase in detection accuracy.

We then showed in Chapter 2 that we can decreases the need in collecting real footage and its

manual annotation by augmenting a dataset of real images with synthetic ones. This resulted in a

more robust detector capable of identifying different kinds of aircrafts in various environments

and weather conditions. The key component of the proposed synthetic data generation approach

is the feature-based similarity measure that allows generating images that do not have to be

visually pleasing, but are close to the real images in the feature space of the chosen detector. We

proved the effectiveness of our approach on three different datasets, featuring UAVs, fixed-wing

aircrafts and cars.

Motivated by the success of Deep Learning in various classification and detection tasks [30, 43,

81

Chapter 4. Concluding Remarks

50, 44] we applied the aforementioned algorithm for synthetic data generation to train a Deep

Neural Network. In Chapter 3 we showed that simply combining real and synthetic images is

not enough and leads to overfitting to the large amount of synthetic examples. To this end, we

proposed a novel domain adaptation technique that enables us to learn useful representations on

synthetic data and apply those to real images. Our technique is based on a two-stream architecture

that efficiently combines large amount of synthetic images and a small number of real ones during

training. Our two-stream architecture models the domain shift which is the difference between

real and synthetic images and allows improving over the state-of-the-art domain adaptation

techniques.

To summarize, methods presented in this work will make it possible to increase fight safety and

awareness of the UAVs about surrounding flying objects both indoors and outdoors using a single

camera. They will also help reduce the annotation requirements for learning-based detection

and regression algorithms. The methods we have proposed are generic and widely applicable.

Therefore, they have the potential to help not just in the area of flying vehicles, but also in a broad

variety of other fields where manual data annotation is either time consuming or prohibitively

difficult.

Limitations and Future Work

In this section we discuss the limitations of our existing approaches and ways in which they could

be overcome.

1 Joint training

In Chapter 1 we showed that combining motion and appearance information is essential for

precise detection and localization of small fast moving objects in complex outdoor environments.

We evaluated different approaches for detection and showed that the one based on Convolutional

Neural Networks achieves accuracy which is on par with the method based on boosted trees [72],

which itself demonstrates state-of-the-art. We further showed that CNN-based object-centric mo-

tion compensation significantly improves detection accuracy by decreasing the in-class variation

of the data. In our current implementation, motion compensation and detection algorithms are

trained separately. We believe a further increase in performance can be achieved by merging both

of these approaches in a unified Deep Learning architecture, which enables us to jointly optimize

the parameters on both tasks.

2 Tracking

In Chapter 1 we focused on improving the quality of individual detections of flying objects. A

different way of increasing the overall accuracy and improving the speed of the whole UAV

relative positioning framework is linking these detections over time with the help of tracking

82

Figure 4.1: Sample images showing sharp light reflection from the UAV rotors. The thumbnails

on the right of each image illustrate the zoomed in patch of the image with the drone and show

the importance of modeling the specular light reflection.

approaches.

Single-view tracking has been studied well in the context of estimating trajectories of pedestri-

ans [142, 143], vehicles [144, 145] and other objects [146, 147]. However, in the context of UAVs,

this area has been relatively unexplored due to the complexity of possible motions and variety of

drone appearances. Our detection approach can be particularly beneficial in this case, due to the

fact that it is based on st-cubes of image intensities, cropped out of consecutive video frames.

Processing each of these st-cubes with motion compensation system and the detector gives us

not just the location of the drone, but also its movement direction and its short-term trajectory

(tracklet). These tracklets and drone’s movement orientation can then be efficiently used by

tracking algorithms to increase robustness to false detections and avoid possible identity switches,

when multiple drones are flying around. Therefore combining existing tracking approaches with

our detector is a promising direction for future research.

3 Synthetic data generation improvement

In Chapter 2 we described our approach to generating synthetic images from a very coarse model

of the object and a set of pairs of images with and without a drone. The proposed algorithm can

be extended by increasing the range of effects that it is capable of modeling. One example of

such an effect is the specular component of the Phong reflection model [148], modeling which

could be rather important, as it may have a large influence on the appearance of the rendered

UAV, e.g. in situations, when the light is reflected from the rotors of the drone. Fig. 4.1 depicts

several frames from the video sequence, where specular light reflection has a high impact on the

drone appearance.

83

Chapter 4. Concluding Remarks

Figure 4.2: Sample complex 3D UAV models.

S
o

u
rc

e

⏐⏐⏐⏐�
⏐⏐⏐⏐� Domain transformation (flip)

⏐⏐⏐⏐�
⏐⏐⏐⏐�

T
ar

g
et

Figure 4.3: Sample pair of domains, related with a flipping transformation

Further, in our experiments we used a somewhat simplistic 3D model that roughly outlines the

geometric structure of the drone. Therefore, another way of improving the quality of synthetic

images is to increase the expressiveness of the underlying UAV model, for example by having

different material properties for different parts of the model (body, rotors, etc.) or adding texture

to it, as illustrated by Fig. 4.2. We believe that these particular improvements and, generally,

application of more sophisticated Computer Graphics techniques for data generation will make

synthetic images even closer to the real ones from detector’s point of view, resulting in a further

increase in performance.

4 Domain Adaptation

4.1 Modeling of complex domain transformations

In Chapter 3 we argue that our two-stream architecture for modeling the difference between

domains is beneficial for the overall classification accuracy. We further show that weights of

the different streams should not be independent from each other. More specifically the top

performance is reached when the parameters of one network are linear transformations of the

parameters of the other one. As depicted by Eq. 3.7 in Section 3.2.1 this transformations solely

depend on two parameters for each pair of layers that are not shared.

While effective, this method is not capable of modeling such geometric domain transformations

as image mirroring, flipping, rotation, etc. (sample domain transformation is depicted by Fig. 4.3).

84

Therefore, one of our future research directions will be extending our approach to model both

appearance and geometric domain transformations by increasing the expressibility of the function

that models the relationship between the corresponding parameters of two streams. One possible

way to pursue this would be to introduce an additional neural network that transforms parameters

of the stream that operates on the source data to parameters of the stream that operates only on the

target data. This will allow the modeling of complex domain shifts including the ones, depicted

in Fig. 4.3.

4.2 Automatic architecture selection

Our domain adaptation technique requires the set of layers that do not share their weights to

be defined before the beginning of the training. While we have seen in Chapter 3 that MMD-

criterion can be used to select the right configuration, allowing the network to make this decision

automatically is an attractive alternative, as in this case we will not need to train multiple versions

of the network to find the optimal configuration. This will facilitate the use of deeper architectures,

such as VGG [43] and GoogleNet [50], as evaluating different possible configurations for these

networks is very time consuming. Therefore, automatic architecture selection for our two-stream

domain adaptation technique is a possible direction for future research.

85

Bibliography

[1] “Dji matrice 100.” [Online]. Available: http://www.dji.com/product/matrice100

[2] “AscTec FireFly.” [Online]. Available: http://www.asctec.de/en/uav-uas-drones-rpas-roav/

asctec-firefly/

[3] “Microdrones.” [Online]. Available: https://www.microdrones.com/en/applications/

areas-of-application/monitoring/

[4] “Airborne Drones.” [Online]. Available: http://www.airbornedrones.co/pages/

security-drones

[5] Pix4D, “Pix4D Mapper,” 2012. [Online]. Available: https://www.pix4d.com/

[6] “Amazon Prime Air.” [Online]. Available: https://www.amazon.com/b?node=8037720011

[7] A. Momont, “Ambulance Drone.” [Online]. Available: http://www.io.tudelft.nl/onderzoek/

delft-design-labs/applied-labs/ambulance-drone/

[8] G. Conte and P. Doherty, “An Integrated UAV Navigation System Based on Aerial Image

Matching,” in IEEE Aerospace Conference, 2008, pp. 3142–3151.

[9] C. Martínez, I. F. Mondragón, M. Olivares-Méndez, and P. Campoy, “On-Board and

Ground Visual Pose Estimation Techniques for UAV Control,” Journal of Intelligent and
Robotic Systems, vol. 61, no. 1-4, pp. 301–320, 2011.

[10] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK: A System for

Autonomous Flight Using Onboard Computer Vision,” in International Conference on
Robotics and Automation, 2011, pp. 2992–2997.

[11] C. Hane, C. Zach, J. Lim, A. Ranganathan, and M. Pollefeys, “Stereo Depth Map Fusion

for Robot Navigation,” in Proceedings of International Conference on Intelligent Robots
and Systems, 2011, pp. 1618–1625.

[12] S. Weiss, M. Achtelik, S. Lynen, M. Achtelik, L. Kneip, M. Chli, and R. Siegwart,

“Monocular Vision for Long-Term Micro Aerial Vehicle State Estimation: A Compendium,”

Journal of Field Robotics, vol. 30, pp. 803–831, 2013.

87

Bibliography

[13] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A Robust and Modular

Multi-Sensor Fusion Approach Applied to MAV Navigation,” in International Conference
on Intelligent Robots and Systems, 2013, pp. 3923–3929.

[14] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct Monocular Visual

Odometry,” in International Conference on Robotics and Automation, 2014, pp. 15–22.

[15] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza, “Au-

tonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor Micro

Aerial Vehicle,” Journal of Field Robotics, vol. 33, no. 4, pp. 431–450, 2016.

[16] T. Zsedrovits, A. Zarándy, B. Vanek, T. Peni, J. Bokor, and T. Roska, “Visual Detection

and Implementation Aspects of a UAV See and Avoid System,” in European Conference
on Circuit Theory and Design, 2011, pp. 472–475.

[17] J. Li, D. H. Ye, T. Chung, M. Kolsch, J. Wachs, and C. Bouman, “Multi-target detection

and tracking from a single camera in unmanned aerial vehicles (uavs),” in International
Conference on Intelligent Robots and Systems, 2016, pp. 4992–4997.

[18] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral Channel Features,” in British
Machine Vision Conference, 2009, pp. 1–11.

[19] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New Features and Insights for Pedestrian

Detection,” in Conference on Computer Vision and Pattern Recognition, 2010, pp. 1030–

1037.

[20] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “How Far are We from Solv-

ing Pedestrian Detection?” in Conference on Computer Vision and Pattern Recognition,

2016, pp. 1259–1267.

[21] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun, “3D

Object Proposals for Accurate Object Class Detection,” in Advances in Neural Information
Processing Systems, 2015, pp. 424–432.

[22] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular 3d ob-

ject detection for autonomous driving,” in Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2147–2156.

[23] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Subcategory-aware Convolutional Neural Net-

works for Object Proposals and Detection,” in arXiv Preprint, 2016, vol. abs/1604.04693.

[24] “Mercedes-Benz Intelligent Drive.” [Online]. Available: https://www.mercedes-benz.com/

en/mercedes-benz/innovation/mercedes-benz-intelligent-drive/

[25] “Mobileeye Inc.” [Online]. Available: http://us.mobileye.com/technology/

[26] “Tesla autopilot.” [Online]. Available: https://www.tesla.com/autopilot

88

Bibliography

[27] “Mercedes Autonomous Driving.” [Online]. Available: https://www.mercedes-benz.com/

en/mercedes-benz/innovation/autonomous-driving/

[28] A. Bosch, A. Zisserman, and X. Munoz, “Image Classification Using Random Forests and

Ferns,” in International Conference on Computer Vision, 2007, pp. 1–8.

[29] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object Detection with

Discriminatively Trained Part Based Models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[30] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolu-

tional Neural Networks,” in Advances in Neural Information Processing Systems, 2012,

pp. 1106–1114.

[31] A. Sobral, “BGSLibrary: An OpenCV C++ Background Subtraction Library,” in IX
Workshop de Visao Computacional, 2013.

[32] D. Zamalieva and A. Yilmaz, “Background Subtraction for the Moving Camera: A

Geometric Approach,” Computer Vision and Image Understanding, vol. 127, pp. 73–85,

2014.

[33] T. Brox and J. Malik, “Object Segmentation by Long Term Analysis of Point Trajectories,”

in European Conference on Computer Vision, 2010, pp. 282–295.

[34] T. Brox and J. Malik, “Large Displacement Optical Flow: Descriptor Matching in Varia-

tional Motion Estimation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 3, pp. 500–513, 2011.

[35] D. Park, C. L. Zitnick, D. Ramanan, and P. Dollár, “Exploring Weak Stabilization for

Motion Feature Extraction,” in Conference on Computer Vision and Pattern Recognition,

2013, pp. 2882–2889.

[36] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” Master’s thesis,

Department of Computer Science, University of Toronto, 2009.

[37] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL

Visual Object Classes Challenge 2012 (VOC2012) Results.”

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S.Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei, “Imagenet Large Scale Visual Recogni-

tion Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,

2015.

[39] J. Marin, D. Vázquez, D. Geronimo, and A. M. Lopez, “Learning Appearance in Virtual

Scenarios for Pedestrian Detection,” in Conference on Computer Vision and Pattern
Recognition, 2010, pp. 137–144.

89

Bibliography

[40] L. Pishchulin, A. Jain, A. Mykhaylo, T. Thormaehlen, and B. Schiele, “Articulated People

Detection and Pose Estimation: Reshaping the Future,” in Conference on Computer Vision
and Pattern Recognition, 2012, pp. 3178–3185.

[41] K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars, “Image-Based Synthesis and Re-

Synthesis of Viewpoints Guided by 3D Models,” in Conference on Computer Vision and
Pattern Recognition, 2014, pp. 3898–3905.

[42] J. Papon and M. Schoeler, “Semantic Pose Using Deep Networks Trained on Synthetic

RGB-D,” in International Conference on Computer Vision, 2015, pp. 774–782.

[43] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” in International Conference for Learning Representations, 2015.

[44] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3D Bounding Box Estimation

Using Deep Learning and Geometry,” arXiv Preprint, vol. abs/1612.00496, 2016.

[45] A. Rozantsev, V. Lepetit, and P. Fua, “Flying Objects Detection from a Single Moving

Camera,” in Conference on Computer Vision and Pattern Recognition, 2015, pp. 4128–

4136.

[46] A. Rozantsev, V. Lepetit, and P. Fua, “Detecting Flying Objects Using a Single Moving

Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to

Document Recognition,” in Proceedings of the IEEE, 1998, pp. 2278–2324.

[48] T. Varga and H. Bunke, “Generation of Synthetic Training Data for an HMM-Based

Handwriting Recognition System,” in International Conference on Document Analysis
and Recognition, 2003, pp. 618–622.

[49] A. Rozantsev, V. Lepetit, and P. Fua, “On Rendering Synthetic Images for Training an

Object Detector,” Computer Vision and Image Understanding, vol. 137, pp. 24–37, 2015.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in Conference on Computer Vision
and Pattern Recognition, June 2015, pp. 1–9.

[51] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond Sharing Weights for Deep Domain

Adaptation,” arXiv Preprint, 2016.

[52] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation,” arXiv Preprint, 2013.

[53] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and Transferring Mid-Level Image

Representations Using Convolutional Neural Networks,” in Conference on Computer
Vision and Pattern Recognition, 2014, pp. 1717–1724.

90

Bibliography

[54] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep Domain Confusion:

Maximizing for Domain Invariance,” arXiv Preprint, 2014.

[55] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning Transferable Features with

Deep Adaptation Networks,” in International Conference on Machine Learning, 2015, pp.

97–105.

[56] Y. Ganin and V. Lempitsky, “Unsupervised Domain Adaptation by Backpropagation,” in

International Conference on Machine Learning, 2015, pp. 1180–1189.

[57] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous Deep Transfer Across

Domains and Tasks,” in International Conference on Computer Vision, 2015, pp. 4068–

4076.

[58] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior Recognition via Sparse

Spatio-Temporal Features,” in VS-PETS, October 2005, pp. 65–72.

[59] I. Laptev, “On Space-Time Interest Points,” International Journal of Computer Vision,

vol. 64, no. 2-3, pp. 107–123, 2005.

[60] D. Weinland, M. Ozuysal, and P. Fua, “Making Action Recognition Robust to Occlusions

and Viewpoint Changes,” in European Conference on Computer Vision, 2010, pp. 635–648.

[61] B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua, “Direct Prediction of 3D Body Poses

from Motion Compensated Sequences,” in Conference on Computer Vision and Pattern
Recognition, 2016, pp. 991–1000.

[62] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard,

and Y. Bengio, “Theano: new features and speed improvements,” 2012.

[63] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian Computer Vision System for Modeling

Human Interactions,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, no. 8, pp. 831–843, 2000.

[64] N. Seungjong and J. Moongu, “A New Framework for Background Subtraction Using

Multiple Cues,” in Asian Conference on Computer Vision. Springer Berlin Heidelberg,

2013, pp. 493–506.

[65] B. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application

to Stereo Vision,” in IJCAI, 1981, pp. 674–679.

[66] Y. Zhang, S.-J. Kiselewich, W.-A. Bauson, and R. Hammoud, “Robust Moving Object

Detection at Distance in the Visible Spectrum and Beyond Using a Moving Camera,” in

Conference on Computer Vision and Pattern Recognition Workshops, 2006, p. 131.

[67] S.-W. Kim, K. Yun, K.-M. Yi, S.-J. Kim, and J.-Y. Choi, “Detection of Moving Objects

with a Moving Camera Using Non-Panoramic Background Model,” Machine Vision and
Applications, vol. 24, pp. 1015–1028, 2013.

91

Bibliography

[68] S. Kwak, T. Lim, W. Nam, B. Han, and J. Han, “Generalized Background Subtraction

Based on Hybrid Inference by Belief Propagation and Bayesian Filtering,” in International
Conference on Computer Vision, 2011, pp. 2174–2181.

[69] A. Elqursh and A. Elgammal, “Online Moving Camera Background Subtraction,” in

European Conference on Computer Vision, 2012, pp. 228–241.

[70] M. Narayana, A. Hanson, and E. Learned-miller, “Coherent Motion Segmentation in

Moving Camera Videos Using Optical Flow Orientations,” in International Conference on
Computer Vision, 2013, pp. 1577–1584.

[71] A. Papazoglou and V. Ferrari, “Fast Object Segmentation in Unconstrained Video,” in

International Conference on Computer Vision, 2013, pp. 1777–1784.

[72] J. Friedman, “Stochastic Gradient Boosting,” Computational Statistics & Data Analysis,

vol. 38, no. 4, pp. 367–378, 2002.

[73] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in

Conference on Computer Vision and Pattern Recognition, 2005, pp. 886–893.

[74] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” in

International Conference on Artificial Intelligence and Statistics, 2011, pp. 315–323.

[75] M. D. Zeiler, “ADADELTA: an Adaptive Learning Rate Method,” arXiv Preprint, 2012.

[76] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[77] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, 2009.

[78] R. Sznitman, C. Becker, F. Fleuret, and P. Fua, “Fast Object Detection with Entropy-

Driven Evaluation,” in Conference on Computer Vision and Pattern Recognition, 2013, pp.

3270–3277.

[79] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer vision

algorithms,” http://www.vlfeat.org/, 2008.

[80] R. Benenson, O. Mohamed, J. Hosang, and B. Schiele, “Ten Years of Pedestrian Detection,

What Have We Learned?” in European Conference on Computer Vision Workshops, 2014,

pp. 613–627.

[81] L. Breiman, “Random Forests,” Machine Learning, 2001.

[82] P. Dollár, “Piotr’s Computer Vision Matlab Toolbox (PMT),” http://vision.ucsd.edu/

~pdollar/toolbox/doc/index.html.

92

Bibliography

[83] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the Best Multi-Stage

Architecture for Object Recognition?” in International Conference on Computer Vision,

2009, pp. 2146–2153.

[84] J. Jin, K. Fu, and C. Zhang, “Traffic Sign Recognition with Hinge Loss Trained Convolu-

tional Neural Networks,” Transactions on Intelligent Transportation Systems, vol. 15, pp.

1991–2000, 2014.

[85] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Transformer

Networks,” in Advances in Neural Information Processing Systems, 2015, pp. 2017–2025.

[86] M. Oberweger, P. Wohlhart, and V. Lepetit, “Hands Deep in Deep Learning for Hand Pose

Estimation,” arXiv Preprint, vol. abs/1502.06807, 2015.

[87] C. Burges and B. Schölkopf, “Improving the Accuracy and Speed of Support Vector

Machines,” in Advances in Neural Information Processing Systems, 1997, pp. 375–381.

[88] D. Decoste and B. Schölkopf, “Training Invariant Support Vector Machines,” Machine
Learning, vol. 46, pp. 161–190, 2002.

[89] F. Fleuret and D. Geman, “Coarse-To-Fine Visual Selection,” International Journal of
Computer Vision, vol. 41, no. 1, pp. 85–107, January 2001.

[90] V. Lepetit, P. Lagger, and P. Fua, “Randomized Trees for Real-Time Keypoint Recognition,”

in Conference on Computer Vision and Pattern Recognition, June 2005, pp. 775–781.

[91] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore,

P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient Human Pose Estimation from

Single Depth Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 12, pp. 2821–2840, 2013.

[92] P. Felzenszwalb, D. Mcallester, and D. Ramanan, “A Discriminatively Trained, Multiscale,

Deformable Part Model,” in Conference on Computer Vision and Pattern Recognition,

June 2008.

[93] Y. Freund and R. Schapire, “A Decision-Theoretic Generalization of On-Line Learning

and an Application to Boosting,” in European Conference on Computational Learning
Theory, 1995, pp. 23–37.

[94] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust Object Recognition

with Cortex-Like Mechanisms,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 3, pp. 411–426, 2007.

[95] V. Lepetit and P. Fua, “Keypoint Recognition Using Randomized Trees,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1465–1479,

September 2006.

93

Bibliography

[96] D. Cireşan, A. Giusti, L. Gambardella, and J. Schmidhuber, “Deep Neural Networks

Segment Neuronal Membranes in Electron Microscopy Images,” in Advances in Neural
Information Processing Systems, 2012, pp. 2852–2860.

[97] A. Handa, R. Newcombe, A. Angeli, and A. Davison, “Real-Time Camera Tracking:

When is High Frame-Rate Best?” in European Conference on Computer Vision, 2012, pp.

222–235.

[98] B. Horn and B. Schunck, “Determining Optical Flow,” Artificial Intelligence, vol. 17, pp.

185–204, 1981.

[99] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical Flow Techniques,”

International Journal of Computer Vision, vol. 12, pp. 43–77, 1994.

[100] M. Stark, M. Goesele, and B. Schiele, “Back to the Future: Learning Shape Models from

3D CAD Data,” in British Machine Vision Conference, 2010, pp. 1061–10 611.

[101] J. Liebelt and C. Schmid, “Multi-View Object Class Detection with a 3D Geometric Model,”

in Conference on Computer Vision and Pattern Recognition, 2010, pp. 1688–1695.

[102] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski, “A Database and

Evaluation Methodology for Optical Flow,” International Journal of Computer Vision,

vol. 92, pp. 1–31, 2011.

[103] B. Kaneva, A. Torralba, and W. Freeman, “Evaluation of Image Features Using a Pho-

torealistic Virtual World,” in International Conference on Computer Vision, 2011, pp.

2282–2289.

[104] V. Athitsos and S. Sclaroff, “Estimating 3D Hand Pose from a Cluttered Image,” in

Conference on Computer Vision and Pattern Recognition, June 2003, pp. 432–439.

[105] L. Taycher, G. Shakhnarovich, D. Demirdjian, and T. Darrell, “Conditional Random

People: Tracking Humans with CRFs and Grid Filters,” in Conference on Computer Vision
and Pattern Recognition, 2006, pp. 222–229.

[106] G. Klein and D. W. Murray, “Simulating Low-Cost Cameras for Augmented Reality

Compositing,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 3,

pp. 369–380, 2010.

[107] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated Annealing,” Science,

vol. 220, no. 4598, pp. 671–680, 1983.

[108] K. Levi and Y. Weiss, “Learning Object Detection from a Small Number of Examples: the

Importance of Good Features,” in Conference on Computer Vision and Pattern Recognition,

2004, pp. 53–60.

[109] T. Ruzic and A. Pizurica, “Texture and Color Descriptors as a Tool for Context-Aware

Patch-Based Image Inpainting,” in SPIE Electronic Imaging, vol. 8295, 2012.

94

Bibliography

[110] J. Jiang, “A Literature Survey on Domain Adaptation of Statistical Classifiers,” University

of Illinois at Urbana-Champaign, Tech. Rep., 2008.

[111] S. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, 2010.

[112] L. Duan, I. Tsang, D.Xu, and S. Maybank, “Domain Transfer SVM for Video Concept

Detection,” in Conference on Computer Vision and Pattern Recognition, 2009, pp. 1375–

1381.

[113] A. Bergamo and L. Torresani, “Exploiting Weakly-Labeled Web Images to Improve Object

Classification: A Domain Adaptation Approach,” in Advances in Neural Information
Processing Systems, 2010, pp. 181–189.

[114] C. Becker, M. Christoudias, and P. Fua, “Non-Linear Domain Adaptation with Boosting,”

in Advances in Neural Information Processing Systems, 2013, pp. 485–493.

[115] H. Daumé and D. Marcu, “Domain Adaptation for Statistical Classifiers,” Journal of
Artificial Intelligence Research, vol. 26, no. 1, pp. 101–126, 2006.

[116] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting Visual Category Models to New

Domains,” in European Conference on Computer Vision, 2010, pp. 213–226.

[117] B. Kulis, K. Saenko, and T. Darrell, “What You Saw is Not What You Get: Domain

Adaptation Using Asymmetric Kernel Transforms,” in Conference on Computer Vision
and Pattern Recognition, 2011, pp. 1785–1792.

[118] R. Gopalan, R. Li, and R. Chellappa, “Domain Adaptation for Object Recognition: An

Unsupervised Approach,” in International Conference on Computer Vision, 2011, pp.

999–1006.

[119] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic Flow Kernel for Unsupervised

Domain Adaptation,” in Conference on Computer Vision and Pattern Recognition, 2012,

pp. 2066–2073.

[120] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised Visual Domain

Adaptation Using Subspace Alignment,” in International Conference on Computer Vision,

2013, pp. 2960–2967.

[121] R. Caseiro, J. Henriques, P. Martins, and J. Batista, “Beyond the Shortest Path : Unsuper-

vised Domain Adaptation by Sampling Subspaces Along the Spline Flow,” in Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3846–3854.

[122] S. Chopra, S. Balakrishnan, and R. Gopalan, “DLID: Deep Learning for Domain Adap-

tation by Interpolating Between Domains,” in International Conference on Machine
Learning, 2013.

95

Bibliography

[123] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A Kernel Method for

the Two-Sample Problem,” arXiv Preprint, 2008.

[124] J. Huang., A. Smola, A. Gretton., K. Borgwardt, and B. Scholkopf, “Correcting Sample

Selection Bias by Unlabeled Data,” in Advances in Neural Information Processing Systems,

2006, pp. 601–608.

[125] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf, “Covari-

ate Shift by Kernel Mean Matching,” Journal of the Royal Statistical Society, vol. 3, no. 4,

pp. 5–13, 2009.

[126] B. Gong, K. Grauman, and F. Sha, “Connecting the Dots with Landmarks: Discrimi-

natively Learning Domain-Invariant Features for Unsupervised Domain Adaptation,” in

International Conference on Machine Learning, 2013, pp. 222–230.

[127] S. Pan, I. Tsang, J. Kwok, and Q. Yang, “Domain Adaptation via Transfer Component

Analysis,” in International Joint Conference on Artificial Intelligence, 2009, pp. 1187–

1192.

[128] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain Generalization via Invariant Feature

Representation,” in International Conference on Machine Learning, 2013, pp. 10–18.

[129] M. Baktashmotlagh, M. Harandi, B. Lovell, and M. Salzmann, “Unsupervised Domain

Adaptation by Domain Invariant Projection,” in International Conference on Computer
Vision, 2013, pp. 769–776.

[130] M. Ghifary, W. B. Kleijn, and M. Zhang, “Domain Adaptive Neural Networks for Object

Recognition,” in Pacific Rim International Conference on Artificial Intelligence, 2014, pp.

898–904.

[131] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,”

Computer Vision and Image Understanding, vol. 10, no. 3, pp. 346–359, 2008.

[132] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “DeCAF: A

Deep Convolutional Activation Feature for Generic Visual Recognition,” in International
Conference on Machine Learning, 2014, pp. 647–655.

[133] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a Similarity Metric Discriminatively,

with Application to Face Verification,” in Conference on Computer Vision and Pattern
Recognition, 2005, pp. 539–546.

[134] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep Reconstruction-

Classification Networks for Unsupervised Domain Adaptation,” European Conference on
Computer Vision, pp. 597–613, 2016.

[135] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, “Domain Sep-

aration Networks,” in Advances in Neural Information Processing Systems, 2016, pp.

343–351.

96

Bibliography

[136] M. Long, J. Wang, G. Ding, J. Sun, and P. Yu, “Transfer Feature Learning with Joint

Distribution Adaptation,” in International Conference on Computer Vision, 2013, pp.

2200–2207.

[137] W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with Augmented Features for Super-

vised and Semi-Supervised Heterogeneous Domain Adaptation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1134–1148, 2014.

[138] T. Tommasi and B. Caputo, “Frustratingly Easy NBNN Domain Adaptation,” in Interna-
tional Conference on Computer Vision, 2013, pp. 897–904.

[139] J. Hull, “A Database for Handwritten Text Recognition Research,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 16, pp. 550–554, 1994.

[140] B. Fernando, T. Tommasi, and T. Tuytelaars, “Joint Cross-Domain Classification and

Subspace Learning for Unsupervised Adaptation,” Pattern Recognition Letters, vol. 65, pp.

60–66, 2015.

[141] S. Si, D. Tao, and B. Geng, “Bregman Divergence-Based Regularization for Transfer

Subspace Learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 7, pp. 929–942, 2010.

[142] M. Enzweiler and D. M. Gavrila, “Monocular Pedestrian Detection: Survey and Experi-

ments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12,

pp. 2179–2195, 2009.

[143] B. Yang, C. Huang, and R. Nevatia, “Learning Affinities and Dependencies for Multi-

Target Tracking Using a CRF Model,” in Conference on Computer Vision and Pattern
Recognition, 2011, pp. 1233–1240.

[144] S. Sivaraman and M. M. Trivedi, “A review of recent developments in vision-based vehicle

detection,” in IEEE Intelligent Vehicles Symposium, 2013, pp. 310–315.

[145] Q. Yuan, A. Thangali, V. Ablavsky, and S. Sclaroff, “Multiplicative kernels: Object

detection, segmentation and pose estimation,” in Conference on Computer Vision and
Pattern Recognition, June 2008, pp. 1–8.

[146] W. Luo, J. Xing, X. Zhang, X. Zhao, and T.-K. Kim, “Multiple Object Tracking: A

Literature Review,” in arXiv Preprint, vol. abs/1409.7618, 2015.

[147] T. Vojir, J. Matas, and J. Noskova, “Online Adaptive Hidden Markov Model for Multi-

Tracker Fusion,” Computer Vision and Image Understanding, vol. 153, pp. 109–119,

2016.

[148] B. T. Phong, “Illumination for Computer Generated Pictures,” Commun. ACM, vol. 18,

no. 6, pp. 311–317, June 1975.

97

Artem Rozantsev
EPFL / IC / ISISM / CVLab

Station 14, CH-1015
Lausanne, Switzerland

+41(0) 78 947-27-21
E-mail: artem.rozantsev@gmail.com
Skype: artem.rozantsev
http://people.epfl.ch/artem.rozantsev

Interests
Computer Vision
Computer Graphics
Deep Learning

Object detection and tracking, 3D reconstruction
Realistic synthetic data generation, realistic environment modeling
Deep domain adaptation, deep pose estimation

Experience
2012-present

CVlab, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, Doctoral Assistant (PhD)
• Project ‘Detect and Avoid Systems for Unmanned and Manned Aviation’

o Developed small fast moving objects detection algorithm from a single moving camera
o Developed an automatic system for synthetic data generation
o Designed an Deep Learning approach to efficiently combine real and synthetic data, which

yields 20% accuracy increase
• Project ‘Human 3D pose estimation’

 Developed and implemented algorithms for precise person localization
• EU Project http://www.mycopter.eu/

Developed detection algorithms for visual-based aircraft detection
Tools: C/C++, MATLAB and Python

June 2016 – Sep 2016
(3 months)

Microsoft Research, Redmond, Washington, USA, Research Intern
Developed a 3D reconstruction technique for the recovery of the trajectory of small fast moving
objects from multiple weakly calibrated static cameras. Part of this work has been accepted as an Oral
presentation at CVPR 2017.
Tools: C/C++ and MATLAB

April 2016 – May 2016
(2 months)

Honeywell, Prague, Czech Republic, Visiting Researcher
As part of an EU project http://www.centaur-project.eu/. Improved tracking algorithms for multi-
camera video surveillance.
Tools: C/C++ and MATLAB

2010–2012 ASTEROS, Moscow, Russia, Software developer
Tools: MS SQL, Oracle Access and Identity Manager software

Education
2012–present (expected in
may 2017)

Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
Ph.D. in Computer Vision
Topic: Visual Detection and Tracking of Flying Objects in Unmanned Aerial Vehicles

2007–2012

Lomonosov Moscow State University (MSU), Moscow, Russia
Specialist (5 years).
Diploma with honors in Mathematics and Computer Science. (CGPA 4.7/5)

Summer 2010 Cornell University, Ithaca, NY, USA
Business Management, Intensive case-study program with emphasis on strategic analysis. (GPA A-)

Technical Skills
C/C++
Matlab
Python

Other

6 years of experience with OpenCV, OpenGL and STL libraries
4 years of experience with toolboxes for computer vision and machine learning
2 year experience with Numpy, Scipy and Theano for general purpose programming and machine
learning with Neural Networks
Software: QT, Blender

Publications
• A. Rozantsev, S.N. Sinha, D. Dey and P. Fua. ‘Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras’.

Accepted to Computer Vision and Pattern Recognition conference (CVPR), 2017
• A. Rozantsev, V. Lepetit and P. Fua. ‘Detecting Flying Objects using a Single Moving Camera’. Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2017
• A. Rozantsev, M. Salzmann and P. Fua. ‘Beyond Sharing Weights for Deep Domain Adaptation’. arXiv preprint, 2016

99

• K. Sapkota, S. Roelofsen, A. Rozantsev, V. Lepetit, D. Gillet, P. Fua and A. Martinoli. ‘Vision-Based Unmanned Aerial Vehicle
Detection and Tracking for Sense and Avoid Systems’. In International Conference on Intelligent Robots and Systems (IROS), 2016

• B. Tekin, A. Rozantsev, V. Lepetit and P. Fua. ‘Direct Prediction of 3D Body Poses from Motion Compensated Sequences’. In
Computer Vision and Pattern Recognition conference (CVPR), 2016

• A. Rozantsev, V. Lepetit and P. Fua. ‘Flying Objects Detection from a Single Moving Camera.’ In Computer Vision and Pattern
Recognition conference (CVPR), 2015

• A. Rozantsev, V. Lepetit and P. Fua. ‘On Rendering Synthetic Images for Training an Object Detector’. In Computer Vision and
Image Understanding (CVIU), 2015

• A. Rozantsev, C. M. Christoudias, V. Lepetit and P. Fua. ‘Detection of Aircrafts on a Collision Course using Spatio-Temporal
HOG’. Technical report, 2013

• V. Trofimov and A. Rozantsev. ‘2D soliton formation of BEC at its interaction with external potential’. In Proc. SPIE, Photonic
Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VI, 2012

Teaching
Teaching Assistant (EPFL): Computer Vision and C/C++ programming courses

Honors
Privileged Admission–Full Scholarship, Lomonosov Moscow State University
Winner of the Multidisciplinary Olympiad, Lomonosov Moscow State University

Extracurricular
Co-President of the Graduate Student Association at the doctoral school of the computer science department at EPFL

• Organized Open House events of the Computer Science department in EPFL
• Organized social events for the new Ph. D. students of the department

Academic Group Leader, Lomonosov Moscow State University

Language
English: fluent TOEFL(100)
Russian: native
French: elementary (A2/B1)

Hobbies
Volleyball, snowboard, soccer

100

