000227933 001__ 227933
000227933 005__ 20190509132609.0
000227933 0247_ $$2doi$$a10.5075/epfl-thesis-7566
000227933 02470 $$2urn$$aurn:nbn:ch:bel-epfl-thesis7566-6
000227933 02471 $$2nebis$$a10890266
000227933 037__ $$aTHESIS
000227933 041__ $$aeng
000227933 088__ $$a7566
000227933 245__ $$aDefects on surface and interface for photoelectrochemical properties of hematite photoanodes
000227933 260__ $$bEPFL$$c2017$$aLausanne
000227933 269__ $$a2017
000227933 336__ $$aTheses
000227933 502__ $$aProf. Ulf Anders Hagfeldt (président) ; Prof. Michael Graetzel, Dr Artur Braun (directeurs) ; Prof. Kevin Sivula, Prof. David Tilley, Prof. Wolfram Jaegermann (rapporteurs)
000227933 520__ $$aHydrogen is a highly versatile fuel that may become one of the key solutions to face our future energy challenges. Among all these methods for hydrogen production, solar water splitting offers possible advantages regarding components integration, stability and costs. The key component for photoelectrochemical (PEC) water splitting is the semiconductor photoelectrode, which requires many material requirements in a single component, such as light absorption, charge separation, charge transport, H2 or O2 evolution kinetics at surface and stability for wide pH range. One of the materials of interest as photoanode for water splitting is hematite (alpha-Fe2O3) because of its suitable bandgap, low-cost and good resistance to corrosion. Considerable effort has been devoted to improving the efficiency of hematite but a complete understanding is still necessary for further application. In this thesis, I focused on investigation of correlation between defects and photoelectrochemical properties of hematite. Several strategies were proposed to modify the defects in hematite bulk, at hematite/substrate interface or on hematite surface, and their impacts on the PEC performance of hematite were studied. In addition, an in-situ operando cell was designed for ambient pressure X-ray spectroscopy to study photoelectrochemical processes occurring at hematite/H2O interface with different bias voltages applied.
000227933 6531_ $$aHydrogen economy
000227933 6531_ $$aSemiconductor photoelectrochemistry
000227933 6531_ $$aHematite
000227933 6531_ $$aPhotoelectrochemical water splitting
000227933 6531_ $$aSurface
000227933 6531_ $$aDefects
000227933 6531_ $$ain-situ operando
000227933 6531_ $$aHeterostructure
000227933 700__ $$0(EPFLAUTH)202566$$g202566$$aHu, Yelin
000227933 720_2 $$aGraetzel, Michael$$edir.$$g105292$$0240191
000227933 720_2 $$aBraun, Artur$$edir.$$g242930$$0(EPFLAUTH)242930
000227933 8564_ $$uhttps://infoscience.epfl.ch/record/227933/files/EPFL_TH7566.pdf$$zn/a$$s19577993$$yn/a
000227933 909C0 $$xU10101$$0252060$$pLPI
000227933 909CO $$pthesis-bn2018$$pDOI$$pSB$$ooai:infoscience.tind.io:227933$$qDOI2$$qGLOBAL_SET$$pthesis
000227933 917Z8 $$x108898
000227933 917Z8 $$x108898
000227933 918__ $$dEDCH$$cISIC$$aSB
000227933 919__ $$aLPI
000227933 920__ $$b2017$$a2017-5-3
000227933 970__ $$a7566/THESES
000227933 973__ $$sPUBLISHED$$aEPFL
000227933 980__ $$aTHESIS